Nothing Special   »   [go: up one dir, main page]

WO2016009635A1 - センサーユニット、電子機器、および移動体 - Google Patents

センサーユニット、電子機器、および移動体 Download PDF

Info

Publication number
WO2016009635A1
WO2016009635A1 PCT/JP2015/003525 JP2015003525W WO2016009635A1 WO 2016009635 A1 WO2016009635 A1 WO 2016009635A1 JP 2015003525 W JP2015003525 W JP 2015003525W WO 2016009635 A1 WO2016009635 A1 WO 2016009635A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
sensor unit
substrate
outer case
inner case
Prior art date
Application number
PCT/JP2015/003525
Other languages
English (en)
French (fr)
Inventor
木下 裕介
正泰 佐久間
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014145671A external-priority patent/JP6451112B2/ja
Priority claimed from JP2014257001A external-priority patent/JP6500423B2/ja
Priority claimed from JP2015136741A external-priority patent/JP6575181B2/ja
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Priority to EP15822656.3A priority Critical patent/EP3171131A4/en
Priority to CN201910933108.9A priority patent/CN110645970B/zh
Priority to CN201580033626.5A priority patent/CN106662446B/zh
Priority to US15/325,399 priority patent/US10551194B2/en
Publication of WO2016009635A1 publication Critical patent/WO2016009635A1/ja
Priority to US16/729,614 priority patent/US11041723B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5783Mountings or housings not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0009Structural features, others than packages, for protecting a device against environmental influences
    • B81B7/0016Protection against shocks or vibrations, e.g. vibration damping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/166Mechanical, construction or arrangement details of inertial navigation systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/245Housings for sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions

Definitions

  • the present invention relates to a sensor unit, an electronic device equipped with the unit, and a mobile body.
  • a sensor unit 91 (apparatus) having a configuration in which an angular velocity sensor 83 is mounted inside a box-like case 80 as a sensor unit equipped with an inertial sensor that detects an inertia based on a predetermined detection axis, as shown in FIG.
  • the substrate 82 on which the angular velocity sensor 83 is mounted is directly fixed to the bottom surface 81 inside the box-like case 80.
  • the angular velocity sensor 83 forms a comb actuator 84 having a weight or a comb-like electrode on a semiconductor substrate using MEMS (Micro Electro Mechanical Systems) technology, and is generated by Coriolis force acting when an angular velocity is applied. The motion was read out electrically (e.g.
  • Patent Document 1 proposes a sensor device shown in FIG. 28 to FIG.
  • the substrate 82 including the angular velocity sensor 83 is suspended from the bottom surface 81 of the case 80 by the metal spring 86 in a state where the case 80 is turned upside down (upside down).
  • the substrate 82 including the angular velocity sensor 83 is suspended from the outer peripheral edge of the case 80 using the flexible substrate 87.
  • a step-like step 88 is formed at the periphery of the inside of the case 80, a plurality of bonding wires 89 are taken out from the step 88, and the substrate 82 including the angular velocity sensor 83 is suspended.
  • the configuration of the sensor devices 92 to 94 can sufficiently attenuate the influence of noise vibration.
  • the position of the substrate 82 including the angular velocity sensor 83 floats inside the case 80. Is inclined.
  • a bias is applied to the comb-tooth actuator 84 due to the influence of gravity, so that the detection result is affected and the reliability is poor.
  • the substrate 82 may be vibrated up and down due to the influence of noise vibration. This vertical vibration may also affect the detection result, making it difficult to obtain stable detection accuracy.
  • the substrate 82 is suspended by a member having elasticity, vibration of the substrate 82 is caused by the influence of noise vibration, so it is similarly difficult to obtain stable detection accuracy.
  • the present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as the following applications or embodiments.
  • the sensor unit includes an inertial sensor, a sensor module having the inertial sensor mounted thereon, an outer case having a bottom wall and a side wall in contact with the bottom wall to accommodate the sensor module, the sensor module comprising: It is characterized in that it is joined to the bottom wall of the outer case via a joining member.
  • the sensor module is joined to the bottom wall of the outer case via the joining member.
  • the sensor module is bonded to the inside of the outer case, and a ring-shaped bonding member is disposed along the bonding portion to bond the two.
  • the bonding member may have adhesiveness, and both are bonded in a state where the bonding member is compressed.
  • the outer case, the joint member, and the sensor module (case portion) can be precisely formed by cutting or a mold, and these portions are assembled in order and assembled as in the prior art. Unlike the configuration in which the inertial sensor is suspended, the sensor module equipped with the inertial sensor can be positioned with high accuracy.
  • the position of the inertial sensor is stable, the reliability can be enhanced, and the vibration-insulating bonding member is provided, so that the detection accuracy is not easily affected. Becomes stable. Therefore, it is possible to provide a highly reliable sensor unit with stable detection accuracy.
  • a joining member is comprised from the material whose elasticity modulus is smaller than an outer case.
  • the joining member also functions as a vibration proofing member, so that noise vibration can be suppressed from being transmitted from the outer case to the sensor module. . Therefore, it becomes difficult to be influenced by the external environment, and the reliability can be further improved.
  • the outer case is in the form of a box whose one surface facing the bottom wall is an opening surface, and the sensor module is housed so as to close the opening of the opening surface. It is preferable that a first bonding surface having a small distance from the opening surface is formed, and the bonding member is disposed in contact with the first bonding surface.
  • the height of the exposed surface of the sensor module from the outer surface of the bottom wall is preferably lower than the height of the open surface of the outer case from the outer surface of the bottom wall.
  • the outer case and the sensor module be fastened by a fastening member inserted from a through hole provided in the bottom wall.
  • the outer case and the sensor module can be firmly fixed by the fastening member.
  • the joining member is disposed between the outer case and the sensor module, propagation of noise vibration from the outer case to the sensor module can be suppressed in the fastening structure of the outer case and the sensor module by the fastening member.
  • the joining member is in contact with the side wall as well as the side wall (or the bottom wall of the outer case or the first joint surface which is a part of the bottom wall).
  • the sensor module includes an inertial sensor, a substrate on which the inertial sensor is mounted, and an inner case on which the substrate is mounted, and the peripheral portion on the side facing the bottom wall in the inner case Preferably, a second bonding surface overlapping with the bonding member is formed.
  • the inner case is fitted in the outer case in a nested manner, a compact and robust package configuration can be realized.
  • the outer case, the joint member, and the inner case (sensor module) are stacked, it is easy to assemble and the manufacturing efficiency is good.
  • the substrate is adhered to the inner case with an adhesive having elasticity in a solidified state.
  • the vibration isolation member has a two-stage configuration, the influence of noise vibration can be further reduced, and the reliability can be further enhanced.
  • a connector for connecting to the outside is mounted on the substrate, and an opening is formed in the inner case so as to expose the connector to the outside from the opening surface of the outer case.
  • a recess is formed, and in the space formed by the substrate and the recess, the inertial sensor is disposed in a region overlapping the recess in a plan view as viewed from the thickness direction of the substrate.
  • a filling member is filled, and the sensor module is joined to the bottom wall of the outer case via a joining member.
  • the space formed by the substrate and the recess of the inner case is filled with the filling member.
  • the resonance frequency of the sensor module can be shifted out of the band of noise vibration from the outside, and the influence of the noise vibration can be reduced.
  • the inertial sensor since the inertial sensor is disposed in the area overlapping the recess in a plan view as viewed from the thickness direction of the substrate, the inertial sensor can be made less susceptible to external noise vibration. Therefore, it is possible to provide a sensor unit which is not easily affected by noise vibration and which has stable detection accuracy.
  • At least a part of the body of the inertial sensor is disposed in the space of the sensor module.
  • the body of the sensor module refers to the sensor module body, and refers to the outer shape of the sensor module mounted on a substrate.
  • the inertial sensor is covered by the filling member filled in the space formed by the substrate and the recess, so that the inertial sensor can more effectively suppress the influence of noise vibration from the outside.
  • the entire body of the inertial sensor or the major part of the body be disposed in the space between the substrate and the recess, because the influence of noise vibration is further reduced.
  • a shelf portion higher than the concave bottom surface of the recess in the thickness direction of the inner case is formed on a part of the periphery of the recess.
  • the excess filling The member is housed in a shelf provided at the periphery of the recess. Therefore, it is possible to prevent the excess filling member from overflowing to an undesired place. Therefore, it is possible to provide a sensor unit that facilitates control of the filling amount of the filling member filling the recess in the manufacturing process.
  • a groove portion or a through hole portion opened to the concave portion side is formed in a region overlapping with the concave portion in a plan view as viewed from the thickness direction of the substrate.
  • the filling member filled in the space formed by the substrate of the sensor module and the recess of the inner case becomes larger than the volume of the space
  • the excess filling The member is accommodated in the groove or through hole of the substrate.
  • the bonding member is preferably any of rubber, an elastomer, a porous member, and an adhesive. Further, it is preferable that a plurality of bonding members be arranged.
  • fixed part for fixing to a to-be-mounted body is formed in the outer case.
  • the sensor unit may be mounted on an electronic device or a mobile body.
  • FIG. 2 is a perspective view showing an outline of a sensor unit as viewed from the mounting surface side of FIG. 1;
  • the disassembled perspective view of the sensor unit shown seeing from the same direction as FIG. FIG. The perspective view in the ff cross section of FIG.
  • FIG. 7 is a plan view showing a substrate mounted on a sensor unit according to a second embodiment.
  • FIG. 7 is a cross-sectional view showing a vibration transmission suppressing structure in a sensor unit according to a second embodiment.
  • FIG. 7 is a cross-sectional view of an aspect according to a modification 1; FIG. 7 is a cross-sectional view of an aspect according to a modification 1; FIG. 10 is a cross-sectional view of an aspect according to a second modification; FIG. 10 is a cross-sectional view of an aspect according to a second modification; FIG. 18 is a perspective view of a sensor unit according to a third modification.
  • FIG. FIG. 16 is a cross-sectional perspective view of a sensor unit according to a fourth modification. Sectional drawing which shows an example of the sensor unit which concerns on the modification 5.
  • FIG. Sectional drawing which shows an example of the sensor unit which concerns on the modification 5.
  • FIG. 20 is a perspective view showing an outline of a sensor unit according to a modification 6 as viewed from the mounting surface side of FIG. 19; The disassembled perspective view which looks at the sensor unit which concerns on the modification 6 from the same direction as FIG. Sectional drawing which shows the vibration transmission suppression structure in the sensor unit which concerns on the modification 6.
  • FIG. Sectional drawing which shows an example of the sensor unit which concerns on the modification 7.
  • FIG. 5 is an external view showing an example of an electronic device.
  • FIG. 5 is an external view showing an example of an electronic device.
  • FIG. 2 is an external view showing an example of a moving object.
  • FIG. 1 is a perspective view showing a state in which the sensor unit according to the first embodiment is fixed to a mounting surface.
  • FIG. 2 is a perspective view which shows the outline
  • IMU inertial measurement unit
  • the sensor unit 100 functions as a so-called six-axis motion sensor provided with a three-axis acceleration sensor and a three-axis angular velocity sensor.
  • the sensor unit 100 is a rectangular solid having a substantially square planar shape, and each side of the square has a length of about 3 cm and a thickness of about 1 cm. Screw holes 2 as fixing portions are formed in the vicinity of two apexes located in the diagonal direction of the square.
  • the sensor unit 100 is used in a state where the sensor unit 100 is fixed to the mounting surface 71 of a mounting body (device) such as a car by passing two screws 70 through the two screw holes 2.
  • a mounting body such as a car by passing two screws 70 through the two screw holes 2.
  • the said size is an example, and it is also possible to miniaturize to the size which can be mounted, for example in a smart phone or a digital camera by selection of a component, or a design change.
  • the sensor unit 100 adopts a characteristic package configuration for suppressing noise vibration such as engine vibration of a car transmitted from the mounting surface 71.
  • This configuration achieves higher reliability and stability in detection accuracy than conventional sensor units.
  • this characteristic package configuration will be described in detail.
  • this structure is not limited to IMU provided with 6-axis motion sensor, It is applicable if it is a unit provided with an inertial sensor, or a device.
  • an opening 21 is formed on the surface of the sensor unit 100 as viewed from the mounting surface side.
  • a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (male) connector 16 is disposed inside (inside) the opening
  • the thickness direction of the sensor unit 100 will be described as the Z-axis direction.
  • a connector (not shown) of a socket type (female) is connected to the connector 16 from the mounting apparatus, and transmission and reception of electric power such as the power of the sensor unit 100 and detection data are performed between the two.
  • FIG. 3 is an exploded perspective view of the sensor unit as viewed from the same direction as FIG. Subsequently, the configuration of the sensor unit will be described in detail, mainly using FIG. 3 and appropriately using FIGS. 1 and 2.
  • the sensor unit 100 includes an outer case 1, a bonding member 10, a sensor module 25 and the like.
  • the sensor module 25 is joined (inserted) by interposing the joining member 10 in the inside 3 of the outer case 1.
  • the sensor module 25 is composed of an inner case 20 and a substrate 15.
  • the part name is made into the outer case and the inner case in order to make the description easy to understand, you may call it the 1st case and the 2nd case.
  • the outer case 1 is a pedestal formed by cutting aluminum into a box shape.
  • the material is not limited to aluminum, and other metals such as zinc and stainless steel, resin, or a composite material of metal and resin may be used.
  • the outer shape of the outer case 1 is a rectangular solid having a substantially square planar shape, similar to the overall shape of the sensor unit 100 described above, and screw holes 2 are formed in the vicinity of two apexes located in the diagonal direction of the square. ing.
  • the screw hole 2 forms the notch which can be screwed with a screw (structure which forms a notch in the outer case 1 corner part of the screw hole 2), and screws
  • a flange ear
  • the screw hole forms the notch which can be screwed with a screw (structure which forms a notch in the outer case 1 corner part of the screw hole 2), and screws
  • a flange ear
  • the screw will slip out of the notch when screwing and it will be oblique
  • the notch of the outer case may be deformed or cut off due to the screw that is dislocated.
  • the outer case 1 has a rectangular parallelepiped outer shape and a box shape without a lid, and the inside 3 (inner side) thereof is an inner space (container) surrounded by the bottom wall 5 and the side wall 4.
  • the outer case 1 is in the form of a box whose one surface facing the bottom wall 5 is an opening surface, and the sensor module is arranged to cover most of the opening in the opening surface (close the opening). 25 is accommodated, and the sensor module 25 is exposed from the opening (see FIG. 2).
  • the opening surface facing the bottom wall 5 is the same surface as the upper surface 7 of the outer case 1.
  • the planar shape of the inside 3 of the outer case 1 is a hexagonal shape obtained by chamfering the corners of two apexes of the square, and the two beveled apexes correspond to the positions of the screw holes 2.
  • the bottom wall 5 is formed with a first joint surface 6 as a bottom wall one step higher than the central portion at the periphery of the interior 3, ie, the interior space.
  • the first joint surface 6 is a part of the bottom wall 5 and is a step-like portion formed in a ring shape surrounding the central portion of the bottom wall 5 in a planar manner, This is a surface whose distance from the opening surface (the same surface as the upper surface 7) is short.
  • the outer case of the outer case 1 has been described as an example in which the outer shape of the outer case 1 is a rectangular solid having a substantially square planar shape and a box shape without a lid, the outer shape of the outer case 1 is not limited thereto. It may be a polygon such as a polygon, or the corners of the vertexes of the polygon may be chamfered, or it may be a planar shape in which each side is a curve.
  • planar shape of the inside 3 (inner side) of the outer case 1 is not limited to the hexagonal shape described above, and may be a square (tetragonal) such as a square or another polygonal shape such as an octagon.
  • outer shape of the outer case 1 and the planar shape of the inside 3 may or may not be similar.
  • the inner case 20 is a member that supports the substrate 15, and has a shape that fits inside the outer case 1. More specifically, in plan view, it is a hexagon with beveled corners of two apexes of a square, and is provided in the opening 21 which is a rectangular through hole and the surface on the side supporting the substrate 15 in it. A recess 31 is formed. The two beveled corner portions correspond to the positions of the screw holes 2 of the outer case 1. The thickness direction (Z-axis direction) is lower than the height from the top surface 7 of the outer case 1 to the first joint surface 6.
  • the inner case 20 is also formed by cutting out aluminum, but other materials may be used as in the outer case 1.
  • the peripheral portion of the back surface of the inner case 20 is a second joint surface 22 formed of a ring-shaped flat surface.
  • the second joint surface 22 has a substantially similar shape to the first joint surface 6 of the outer case 1 in a plan view, and when the inner case 20 is set in the outer case 1, the second joint surface 22 holds the joint member 10 in a state of holding Will face each other.
  • the structures of the outer case 1 and the inner case 20 are one example, and the present invention is not limited to this structure.
  • FIG. 4 is a perspective view of the substrate. Subsequently, the configuration of the substrate 15 on which the inertial sensor is mounted will be described.
  • the substrate 15 is a multilayer substrate in which a plurality of through holes are formed, and a glass epoxy substrate is used. In addition, it does not limit to a glass epoxy board, and it may be a rigid board on which a plurality of inertial sensors, electronic parts, connectors and the like can be mounted. For example, a composite substrate or a ceramic substrate may be used.
  • the connector 16, the angular velocity sensor 17 z, the acceleration sensor 18 and the like are mounted on the surface of the substrate 15 (the surface on the inner case 20 side).
  • the connector 16 is a plug type (male) connector, and includes two rows of connection terminals arranged at equal pitches in the X-axis direction. Preferably, a total of 20 pins are connected in a row of 10 bins, but the number of terminals may be changed appropriately according to the design specification.
  • An angular velocity sensor 17z as an inertial sensor is a gyro sensor that detects an angular velocity of one axis in the Z-axis direction.
  • a vibration gyro sensor is used which uses quartz as a vibrator and detects an angular velocity from the Coriolis force applied to a vibrating object.
  • the present invention is not limited to the vibration gyro sensor, and any sensor capable of detecting an angular velocity may be used.
  • a sensor using ceramic or silicon as a vibrator may be used.
  • an angular velocity sensor 17x is mounted which detects the angular velocity of one axis in the X-axis direction such that the mounting surface (mounting surface) is orthogonal to the X-axis.
  • an angular velocity sensor 17y for detecting the angular velocity of one axis in the Y-axis direction is mounted such that the mounting surface (mounting surface) is orthogonal to the Y-axis.
  • the configuration is not limited to the configuration using three angular velocity sensors for each axis, and any sensor capable of detecting the angular velocity of three axes may be used.
  • one acceleration sensor 18 described later may be used.
  • a sensor device capable of detecting (detecting) angular velocity of three axes may be used.
  • the acceleration sensor 18 as an inertial sensor is an electrostatic capacitance type in which a silicon substrate capable of detecting (detecting) acceleration in three directions (three axes) of the X axis, Y axis, and Z axis by one device is processed by MEMS technology.
  • An acceleration sensor is used.
  • the sensor is not limited to this sensor, and any sensor capable of detecting acceleration may be used.
  • it may be a piezoresistive acceleration sensor, a heat detection acceleration sensor, or, as in the above-mentioned angular velocity sensor, one acceleration sensor may be provided for each axis.
  • a control IC 19 is mounted on the back surface (surface on the outer case 1 side) of the substrate 15.
  • the control IC 19 is an MCU (Micro Controller Unit), incorporates a storage unit including a non-volatile memory, an A / D converter, and the like, and controls each unit of the sensor unit 100.
  • the storage unit stores a program that defines the order and content for detecting acceleration and angular velocity, a program that digitizes detection data and incorporates it into packet data, and accompanying data. Besides, a plurality of electronic components are mounted on the substrate 15.
  • FIG. 5 is a cross-sectional perspective view of the sensor unit at the ff cross section in FIG. Subsequently, the main part of the characteristic package configuration of the sensor unit 100 will be described in detail with reference to FIG. 3 as appropriate.
  • an elastic (flexible) adhesive (not shown) in a solidified state after curing.
  • a silicone rubber adhesive is used.
  • the adhesive is not limited to silicone rubber but may be any adhesive that is more flexible than the outer case 1 in the solidified state, such as a room temperature curing type, a two-liquid mixing type, a thermosetting type, an ultraviolet curing type, or these It may be a complex type.
  • the adhesive may be fixed using a rubber adhesive or hot melt (bond).
  • the adhesive since the adhesive is applied without a gap around the connector 16 as well, the air tightness (sealability) with the outside air (outside) is secured, preventing the outside air from entering the back side of the substrate 15.
  • the filling member 50 is filled and solidified.
  • inertial sensors such as the acceleration sensor 18 and the angular velocity sensor 17y are disposed in a region overlapping with the recess 31 in a plan view seen from the thickness direction of the substrate 15, and part or all of the bodies of these inertial sensors are filled It is arranged to be covered by the member 50.
  • the body of the inertial sensor refers to the inertial sensor main body, and refers to the outer shape of the inertial sensor in a state of being mounted on the substrate 15.
  • a mold material used for semiconductor mounting can be suitably used as the filling member 50, but in the solidified state after curing as in the case of the adhesive for bonding the inner case 20 and the substrate 15 described above.
  • Various types of adhesives such as an adhesive having a predetermined elasticity are filled with physical properties such as the rigidity of the substrate 15 and appropriate properties according to physical properties and specifications of electronic components such as an inertial sensor mounted on the substrate 15 It can be used as the member 50.
  • the connector 16 is exposed from the opening of the inner case 20, and the substrate 15 portion around the connector 16 is covered with the adhesive so as to prevent the entry of water and air into the second area. Bonded with 20.
  • the second region forms a space between it and the recess 31 of the inner case 20, if a closed space filled with the filling member 50 is formed, the compressive stress due to the difference in thermal expansion coefficient between the filling member 50 and the substrate 15 Etc. because it is received by the inertial sensor (17y, 18 etc.) and causes output fluctuation, which is not preferable. Therefore, it is preferable that a communication passage connecting the inner case 20 side and the outer case 1 side is formed in the second region.
  • the bonding member 10 is a ring-shaped planar shape along the first bonding surface 6 of the outer case 1 and is a packing (gasket) having a thickness of about 1 mm.
  • a packing having an elliptical cross section, which is formed by a compression molding method using a dedicated mold, is employed.
  • the cross-sectional shape may be circular or rectangular.
  • a silicone rubber packing having self-adhesiveness is used. Since the packing is impregnated with a silicone rubber-based adhesive, it plays a role of bonding (joining) the first joint surface 6 of the outer case 1 and the second joint surface 22 of the inner case 20.
  • the joining member 10 should just be a material whose elasticity modulus is smaller than the outer case 1.
  • rubber or an elastomer may be used, or a porous member such as a sponge may be used.
  • a packing may be formed of these materials, and an adhesive may be applied at the time of assembly to provide adhesion, and these materials have adhesion, self-adhesion, and tackiness to achieve adhesion. You may have sex.
  • a silicone gel sheet having self-adhesiveness can be applied as the bonding member 10.
  • the adhesive for the substrate 15 described above may be used.
  • a thermosetting adhesive is applied to the second bonding surface 22 of the inner case 20 by an ink jet method or the like, and then primary (preliminary) curing is performed to form the bonding member 10 in a semi-cured state. After being incorporated into 1, it may be cured secondarily.
  • the bonding member 10 since the outer case 1 and the inner case 20 both use aluminum having a high thermal conductivity, the bonding member 10 can be efficiently cured even after assembly.
  • the bonding member 10 is sandwiched between the first bonding surface 6 of the outer case 1 and the second bonding surface 22 of the inner case 20. Specifically, the bonding member 10 is compressed by two surfaces and is in a slightly crushed state. In other words, the first joint surface 6, the joint member 10, and the second joint surface 22 overlap each other.
  • a constant gap is formed between the outer shape of the inner case 20 and the outer case 1 over the entire circumference. In other words, the inner case 20 and the outer case 1 are joined only via the joining member 10. Further, the height of the upper surface 27 of the sensor module 25 (inner case 20) is lower than the upper surface 7 of the outer case 1.
  • the inner case 20 is joined to the outer case 1 like a drop lid. These gaps and the setting of the thickness of the inner case 20 are intentionally determined in the design stage. The details of the height relationship between the upper surface 27 of the sensor module 25 and the upper surface 7 of the outer case 1 in the sensor unit 100 and the effects thereof will be described later.
  • FIG. 6 is an exploded perspective view of the sensor unit 100 from the same direction as FIG.
  • FIG. 7 is a cross-sectional view showing a vibration (noise vibration) transmission suppression structure in the sensor unit 100.
  • the transmission suppression structure of the noise vibration which the sensor unit 100 of this embodiment has, etc. are demonstrated in detail using these figures.
  • the sensor module 25 and the outer case 1 is fastened (fixed) by a screw 170 as a fastening member.
  • a screw 170 as a fastening member.
  • two screws 170 are used as the fastening member, but the number of screws 170 is not limited to this.
  • the two screws 170 are inserted into the through holes 9 provided in the outer case 1 from the bottom surface 8 side, and screwed and fixed to the inner case 20 with the bonding member 10 and the substrate 15 interposed therebetween.
  • an adhesive which is an elastic resin after solidification is used as an adhesive for bonding the inner case 20 and the substrate 15
  • the adhesive after the solidification by the screw tightening with the screw 170 is compressed to make the seal more airtight. Sex is enhanced.
  • a through hole 9 for a screw 170 is provided on the bottom surface 8 side of the outer case 1.
  • two through holes 9 are provided in the vicinity of the diagonal of the bottom surface 8 of the outer case 1 (see FIG. 6).
  • a through hole is provided at a position overlapping with the through hole 9 of the bonding member 10 in plan view, and a screw hole 29 is formed at a position overlapping with the through hole 9 of the inner case 20 in plan view.
  • a recess for accommodating the screw head of the screw 170 is formed on the bottom surface 8 side of the through hole 9 forming portion of the outer case 1, and in the recess, the screw 170 is an elastic member 310 in the through hole 9 of the outer case 1. Is inserted through. Also, the depth of the recess is set so that the screw head of the screw 170 in the fastened state does not protrude outside the bottom surface 8.
  • the elastic member 310 may be made of a material having a smaller elastic modulus than the outer case 1. For example, rubber or an elastomer may be used, or a porous member such as a sponge may be used.
  • each inertial sensor (17 x, 17 y, 17 z) is in a region overlapping the recess 31 in a plan view seen from the thickness direction of the substrate 15. , 18) are arranged.
  • a part or all of the body of each inertial sensor (17x, 17y, 17z, 18) is disposed in the space formed by the recess 31 and the substrate 15. Then, the filling member 50 is filled in the space formed by the substrate 15 and the recess 31 and solidified.
  • the filling member 50 filling the space (recessed space) formed by the substrate 15 and the recessed portion 31 allows the bodies such as the respective inertial sensors (17x, 17y, 17z, 18) in the recessed space 31 and other electronic elements. It is desirable for the filling member 50 to cover as much of the part as possible.
  • the entire body of the angular velocity sensor 17z and the acceleration sensor 18 which are inertia sensors for horizontal installation are covered with the filling member 50, and about half of the bodies of the angular velocity sensors 17x and 17y which are inertia sensors for vertical installation are adhesive It is covered by With the above-described configuration in which the filling member 50 is filled in the recess 31 space, a part or all of the substrate 15 and each of the inertial sensors (17x, 17y, 17z, 18) mounted on the substrate 15 is covered by the filling member 50. As a result, the resonance frequency of the entire sensor module 25 is shifted out of the band of noise vibration from the outside when the filling member 50 is not present.
  • the bonding member 10 interposed between the outer case 1 and the inner case 20 of the sensor module 25 contacts the first bonding surface 6 as a part of the bottom wall 5 of the outer case 1, It is also arranged to contact the side wall 4 rising from the first joint surface 6 (bottom wall 5). That is, the joining member 10 is formed to have an L-shaped (crank-like) cross section. Further, as shown in FIG. 7, when the sensor module 25 is housed in the outer case 1, the height of the upper surface 27 of the sensor module 25 (that is, the bottom surface of the inner case 20) is the height of the upper surface 7 of the outer case 1.
  • the height from the top of the opening surface (the same surface as the top surface 7) of the outer case 1 is a good height from the outer surface (bottom surface 8) of the bottom wall 5.
  • the bonding member 10 is formed of an elastic member, the height of the upper surface 27 of the sensor module 25 with respect to the height of the upper surface 7 of the outer case 1 is an assembly process of the sensor unit 100. , The tightening torque of the screw 170 can be adjusted.
  • the sensor unit 100 in the sensor module 25 including the inner case 20 mounted with the substrate 15 on which various inertial sensors (17x, 17y, 17z, 18) and the like are mounted, the recess 31 is formed in the inner case 20
  • Each inertial sensor (17x, 17y, 17z, 18) is disposed in a region that is formed and overlaps the recess 31 in a plan view as viewed from the thickness direction of the substrate 15.
  • a part or all of the body of each inertial sensor (17x, 17y, 17z, 18) is disposed in the space formed by the substrate 15 and the recess 31.
  • each inertial sensor (17x, 17y, 17z, 18) mounted on the substrate 15 is covered with the filling member 50 filled in the recess 31, and the sensor module including the substrate 15 and the inner case 20
  • the resonance frequency of 25 can be shifted out of the band of noise vibration from the outside to reduce the influence of noise vibration from the outside. Therefore, since each inertial sensor (17x, 17y, 17z, 18) in the sensor module 25 can be made less susceptible to the influence of noise vibration from the outside, even for an undetected object having relatively large vibration, A sensor unit 100 capable of maintaining stable detection accuracy can be provided.
  • the sensor module 25 (inner case 20) is joined to the first joining surface 6 which is a part of the bottom wall 5 of the outer case 1 via the joining member 10. Since the inner case 20 is set in such a size that a fixed gap is formed over the entire circumference when the inner case 20 is incorporated into the outer case 1, both are joined only through the joining member 10. It has become.
  • the bonding member 10 is made of a material (elasticity) having a smaller elastic modulus than the outer case 1, it functions to absorb (attenuate) noise vibration transmitted from the outer case 1.
  • the bonding member 10 is a vibration-proofing member that suppresses the noise vibration from reaching the inner case 20. Alternatively, it may be rephrased as a shock-absorbing member that mitigates the noise vibration.
  • an inertial sensor using MEMS technology is a micromachine provided with a comb-like electrode structure or the like, it exhibits a large response to the vibration of the resonance frequency component inherent to the structure, and noise appears in the measurement result. Although there was a risk of being included, according to these configurations, noise vibration can be reliably suppressed.
  • the height of the upper surface 27 of the sensor module 25 is lower than the upper surface 7 of the outer case 1 and is housed in a drop lid shape, so for example, the inner case 20 side is directed to the mounting apparatus Even in the case of fixing, since the inner case 20 does not contact with the mounting surface, the propagation of noise vibration can be prevented. Therefore, it is possible to provide a user-friendly sensor unit 100 that can be used even when the top and bottom (up and down) are reversed.
  • the outer case 1 and the sensor module 25 are fastened by the screw 170 inserted from the through hole 9 provided in the outer case 1, and the outer case 1 and the sensor module 25
  • the joint member 10 as an elastic member and the elastic member 310 are disposed between the screw head of the screw 170 and the outer case 1. According to this configuration, by disposing the joint member 10 and the elastic member 310 having elasticity between the outer case 1 and the sensor module 25, in the fastening structure of the outer case 1 and the sensor module 25 by the screw 170, The propagation of noise vibration from the outer case 1 to the sensor module 25 can be suppressed more reliably.
  • the bonding member 10 contacts the side wall 4 rising from the first bonding surface 6 together with the first bonding surface 6 which is a part of the bottom wall 5 of the outer case 1.
  • junction member 10 is used as a positioning guide to outer case 1 of sensor module 25 in an assembly process.
  • the inertial sensor is suspended as in the prior art. Unlike the configuration, the substrate 15 (sensor module 25) on which the inertial sensor is mounted can be accurately positioned. In other words, the position of the inertial sensor is always stable. Moreover, the structure which piles up and assembles is easy to work and has a good manufacturing efficiency. Therefore, according to the sensor unit 100, since the position of the inertial sensor is stable and the joint member 10 having high reliability and vibration isolation is provided, it is not easily affected by noise vibration and the detection accuracy is stabilized. . Therefore, it is possible to provide a highly reliable sensor unit 100 with stable detection accuracy.
  • the package structure is compact (compact) and robust (strong). Accordingly, it is possible to provide the sensor unit 100 having a wide choice of installation places and excellent durability.
  • the bonding member 10 a packing made of silicone rubber having excellent airtightness is used. Therefore, the bonding member 10 not only bonds the first bonding surface 6 of the outer case 1 and the second bonding surface 22 of the inner case 20, but also secures the airtightness of the ring-shaped bonding surface. Further, since the adhesive is applied without a gap around the connector 16 as well, the opening 21 of the inner case 20 is also airtight. With these configurations, the inside of the sensor unit 100 is airtight from the outside (waterproofness). Therefore, the internal environment of the sensor unit 100 is less susceptible to the influence of the external environment, and it is possible to measure the inertial force under a substantially constant and stable environment. In other words, usable environmental conditions are broadened. Therefore, it is possible to provide the sensor unit 100 having a wide range of usable environmental conditions and high reliability. In addition, it is possible to ensure airtightness similarly, even when it is a case where other materials for junction member 10 mentioned above are used.
  • this adhesive since the substrate 15 is adhered to the inner case 20 with an adhesive having elasticity (flexibility) in a solidified state, this adhesive also causes noise vibration from the inner case 20 to the substrate 15. It functions as a damping member to suppress, and as a buffer member. Therefore, in addition to the bonding member 10, the adhesive of the substrate also functions as a vibration absorbing member and a buffer member, so that noise vibration can be reduced more effectively. Therefore, it is possible to provide the sensor unit 100 with higher reliability and stable detection accuracy.
  • FIG. 8 is a plan view showing a substrate mounted on the sensor unit according to the second embodiment.
  • FIG. 9 is a cross-sectional view showing a vibration transmission suppressing structure in the sensor unit according to the second embodiment.
  • the configuration of the sensor unit according to the second embodiment will be described with reference to these drawings.
  • the same number is used and the overlapping description is abbreviate
  • a substrate 15 ′ mounted on a sensor unit 100B (see FIG. 9) according to the second embodiment is substantially the same as the substrate 15 (see FIG. 4 etc.) in the sensor unit 100 of the first embodiment. It has a configuration.
  • a through hole 90 is formed in a region overlapping the recess 31 in a plan view as viewed from the thickness direction of the substrate 15 ′ according to the second embodiment. Although the through hole 90 is formed in the vicinity of the region where various inertial sensors (17x, 17y, 17z, 18) are mounted in the present embodiment, the present invention is not limited to this.
  • the through hole 90 may be provided in any part of the base material of the substrate 15 ′, and the filling member 50 may be provided in the space formed by the substrate 15 and the recess 31 of the inner case 20 on the outer periphery of the substrate 15 ′. When filling, it is preferable to form in the vicinity of the location where trouble will occur if the filling member 50 overflows. Further, the shape and the number of the through holes 90 are not limited to the shape and the number of the through holes 90 in FIG. 8, and the shape and the number of the through holes can be appropriately formed. Preferably, the through hole 90 is disposed closer to the center of the substrate 15 than the at least one inertial sensor in a plan view of the substrate 15.
  • the inner case it is preferable to be located on the opposite side across the inertia sensor with respect to the communication passage communicating the 20 side and the outer case 1 side.
  • the filling member 50 is also moved to the through hole 90 side together with the communication passage which is the release part of the space.
  • the filling member 50 can be evenly spread over the space formed by the substrate 15 and the recess 31, and the inertia sensor can be uniformly covered by the filling member 50.
  • the filling member 50 filled in the space formed by the substrate 15' and the recess 31 has a portion exceeding the volume of the space.
  • the through hole 90 is accommodated.
  • the substrate 15 is mounted (adhered) on the inner case 20 to assemble the sensor module 25, and the sensor module 25 is outboard via the joint member 10.
  • a process of accommodating in the case 1 and screwing and fixing by the screw 170 is taken.
  • an adhesive for bonding the substrate 15 and the inner case 20 described above is applied to a predetermined position of the inner case 20 or the substrate 15
  • the filling member 50 is filled in a predetermined amount in the recess 31 of the inner case 20.
  • the inner case 20 and the substrate 15 are aligned and stacked, and then the adhesive for bonding the substrate 15 and the inner case 20 and the filling member 50 filled in the space of the recess 31 are cured.
  • the “predetermined amount” of the filling member 50 filled in the recess 31 of the inner case 20 is within the space formed by the substrate 15 and the recess 31 when the substrate 15 ′ is mounted (adhered) on the inner case 20.
  • the filling member 50 is filled so as to extend around the gaps of the respective inertial sensors (17x, 17y, 17z, 18) and other electronic components to be disposed, and there is no extra filling member 50 that overflows from the space to the outside It is desirable to be an amount.
  • the volume of the space formed by the substrate 15 and the recess 31 is the total volume of the inertial sensors (17x, 17y, 17z, 18) and the other electronic elements disposed in the space Is the "predetermined amount".
  • the filling member 50 when the filling member 50 is filled by a dispenser generally used in the step of controlling and filling the filling amount of the adhesive, the temperature change of the surrounding, the viscosity change of the filling member 50 with time, etc. If the filling amount of the filling member 50 changes, the filling amount can not be accurately managed, and there is a possibility that the filling of the filling member 50 may be insufficient, or the filling member 50 may overflow from the recess 31 space to an undesired portion. is there. In the present embodiment, since the through holes 90 are formed in the region overlapping the recess 31 in plan view in the thickness direction of the substrate 15 ′, the filling member 50 is filled in the space formed by the substrate 15 ′ and the recess 31.
  • the discharge amount of the filling member 50 is set to be slightly larger within the range of the volume inside the through hole 90 within the thickness of the base material of the substrate 15 'in anticipation of the change of the discharge amount of the filling member 50 by the above-described dispenser. By doing this, it is possible to prevent the insufficient filling of the filling member 50 or the problem that the filling member 50 overflows to an unnecessary part.
  • the sensor unit 100B on which the substrate 15 'according to the present embodiment is mounted in addition to the effects of the first embodiment, management of the filling amount of the filling member 50 in the assembly process of the sensor unit 100B is performed.
  • the sensor unit 100B can be provided which can be easily obtained and the effect of suppressing the influence of the noise vibration by the filling member 50 can be more remarkably obtained.
  • the filling state of the filling member 50 can be visually recognized from the through hole portion 90, it is possible to obtain the effect that the discharge amount management of the filling member 50 and the quality inspection like the filling state of the filling member 50 are easy.
  • the configuration in which the through holes 90 are provided in the substrate 15 ′ has been described.
  • the present invention is not limited thereto.
  • the side facing the recess 31 in a region overlapping the recess 31 in plan view seen from the thickness direction of the substrate It is good also as composition provided with a slot opened to the field of a. According to this configuration, since the excess filling member 50 which does not fit into the recess 31 space is accommodated in the groove, substantially the same effect as the through hole 90 can be obtained.
  • (Modification 1) 10 and 11 are cross-sectional views respectively showing one aspect of the sensor unit according to the first modification.
  • one bonding member 10 has been described, but the present invention is not limited to this configuration, and a plurality of bonding members may be used.
  • the sensor unit according to the first modification will be described.
  • the same number is attached
  • the bonding member 11 may be further disposed at the peripheral portion of the upper portion (upper surface) of the inner case 20.
  • the bonding member 10 may be a porous member
  • the bonding member 11 may be L-shaped (crank-shaped) in cross section and made of silicone rubber.
  • the two members utilizing the characteristics of the material are complementarily used to ensure the anti-vibration property by the bonding member 10 and to ensure the air tightness by the bonding member 11. Vibration and air tightness can be ensured.
  • the inner case 20 (sensor module) can be more reliably bonded to the outer case 1 by bonding the two bonding members 10 and 11 together.
  • a groove may be formed around the side surface of the inner case 20, and the bonding member 12 may be disposed in the groove.
  • the cross section of the joint member 12 may be a simple circle, and since the joint member 12 can not be seen from the outside, there is no concern that the appearance will be impaired.
  • the bonding member 10 is disposed on the first bonding surface 6 which is a peripheral edge which is one step higher than the central portion in the bottom wall 5, the present invention is not limited thereto.
  • the joint member 10 may be directly disposed on the peripheral portion of the bottom wall 5 as a thimble configuration by the side wall 4 and the bottom wall 5. .
  • (Modification 2) 12 and 13 are partial enlarged cross-sectional views of one aspect according to the second modification. Specifically, the connector 16 mounting portion of the substrate 15 in the sensor unit 100 of FIG. 7 is shown upside down and enlarged. In the sensor unit 100 according to the embodiment, the connector 16 is mounted on the substrate 15 for connection to the outside, and the inner case 20 is formed with the opening 21 for exposing the connector 16 to the outside. There is. In this configuration, a socket-type (female) connector is connected to the connector 16 from the mounting device as an external device, but when the external connection terminal of the connector 16 is mounted on the substrate 15 by soldering or the like, the mounting device There is a possibility that the noise vibration which arises may propagate to the sensor module via the connector 16.
  • a socket-type (female) connector is connected to the connector 16 from the mounting device as an external device, but when the external connection terminal of the connector 16 is mounted on the substrate 15 by soldering or the like, the mounting device There is a possibility that the noise vibration which arises may propagate to
  • the connector 16 is positioned and fixed to the substrate 15 via the elastic member 210, and the electrical connection between the connector 16 and the substrate 15 is flexible. It carries out using flexible wiring members 215, such as a substrate and a covering cable. Further, as shown in FIG. 13, the substrate 15 and the connector 16 may be connected by the flexible wiring member 216 so that mechanical fixing of the connector 16 to the substrate 15 may not be performed. As described above, when the substrate 15 and the connector 16 are joined and connected by the method described above, the possibility of noise vibration being transmitted from the connector 16 is reduced. Therefore, it is possible to provide the sensor unit 100 that is highly stable in detection accuracy and reliable, and that can perform reliable communication with the mounted device.
  • FIG. 14 is a perspective view of a sensor unit according to a third modification.
  • a sensor unit 100C shown in FIG. 14 is formed by shaving a metal such as aluminum, zinc or stainless steel, and has a coated surface 82 in which most of the outer surface of the outer case 1 is coated with an insulating paint.
  • the painted surface 82 is provided for the purpose of decoration of the appearance of the sensor unit 100C, surface protection for suppressing oxidation and scratches on the surface of the outer case 1, or insulation.
  • the opening of the coated surface 82 from the edge of the screw hole 2 formed in the vicinity of the two apexes located in the diagonal direction An exposed portion 81, which is a portion and in which the underlying metal surface is exposed, is formed.
  • the exposed portion 81 of the present embodiment the exposed portion 81 is formed only in a region around the screw hole 2 of one of four corner portions of a substantially square flat surface.
  • Two metal screws 70 are inserted through the two screw holes 2 at the corner where the exposed part 81 is formed and the corner located in the diagonal direction on the plane, and the mounting object (device) of an automobile etc.
  • the sensor unit 100C is fixed to the mounting surface 71 and used.
  • the sensor unit 100C of this modification can be grounded to the ground of the object to be mounted by fixing it through the metal screw 70 to the object to be mounted, so that more accurate detection results can be obtained. It is possible to provide a sensor unit 100C capable of Further, in the present modification, the exposed portion 81 is provided only at one of four corner portions of the substantially square plane of the outer case 1. Thus, the mounting direction of the sensor unit 100C with respect to the mounted body can be confirmed with the exposed portion 81 as a standard.
  • the exposed portion 81 may be provided at the exposed portion 81 and the corner portion opposed thereto to be two places, or other corner portions It may be provided in three places or four places including.
  • FIG. 15 is an exploded perspective view of a sensor unit according to a fourth modification.
  • the configuration of the sensor unit according to the fourth modification will be described in detail, mainly using FIG. 15 and also including other figures as appropriate.
  • the same number is attached
  • the sensor unit 100D includes an outer case 1d, a joining member 10, a sensor module 25 and the like.
  • the sensor module 25 is joined (inserted) by interposing the joining member 10 in the inside 3 of the outer case 1 d.
  • the sensor module 25 is composed of an inner case 20 and a substrate 15.
  • the part name is made into the outer case and the inner case in order to make the description easy to understand, you may call it the 1st case and the 2nd case.
  • the outer case 1 d is a pedestal obtained by shaving aluminum in a box shape.
  • the material is not limited to aluminum, and other metals such as stainless steel, resin, or a composite material of metal and resin may be used.
  • the outer shape of the outer case 1d is a rectangular solid having a substantially square planar shape, similar to the entire shape of the sensor unit 100d described above, and a notch hole as a fixing portion near two apexes located in the diagonal direction of the square. 2d is formed. In addition, it does not limit to the notch hole 2d, and it is good also as a structure which forms a flange (ear) on the side of the outer case 1d, and screws a flange part.
  • the outer case 1 d has a rectangular parallelepiped outer shape and a box shape without a lid, and the inside 3 (inner side) is an inner space (container) surrounded by the bottom wall 5 and the side wall 4.
  • the planar shape of the interior 3 is a heptagon in which the corners of three apexes of the square are chamfered, and two places among the three apexes that are chamfered correspond to the positions of the cutout holes 2d.
  • a first joint surface 6 one step higher than the bottom wall 5 is formed between the bottom wall 5 and the side wall 4.
  • the first joint surface 6 is a part of the side wall 4 and is a step-like portion formed in a ring shape surrounding the bottom wall 5 in a planar manner.
  • the inner case 20 is a member for supporting the substrate 15 and has a shape that fits in the inside 3 of the outer case 1 d. Specifically, in plan view, it is a heptagon in which corners of three apexes of a square are chamfered, and an opening 21 which is a rectangular through hole is formed therein. Of the three beveled corner portions, two locations correspond to the positions of the notch holes 2d of the outer case 1d. The thickness direction (Z-axis direction) is lower than the height from the top surface 7 of the outer case 1 d to the first joint surface 6.
  • the inner case 20 is also formed by cutting out aluminum, but other materials may be used as in the outer case 1 d.
  • the substrate 15 is set (positioned and mounted) on the guide pins and the support surface and bonded to the back surface of the inner case 20.
  • the details of the substrate 15 will be described later.
  • the peripheral portion of the back surface of the inner case 20 is a second joint surface 22 formed of a ring-shaped flat surface.
  • the second bonding surface 22 has a substantially similar shape to the first bonding surface 6 of the outer case 1 d in a plan view, and when the inner case 20 is set to the outer case 1 d, 2 Will face each other.
  • the structure of the outer case 1 d and the inner case 20 is an example, and the present invention is not limited to this structure.
  • FIG. 16 is a cross-sectional perspective view of a sensor unit according to the present modification. Subsequently, the main part of the characteristic package configuration of the sensor unit 100D will be described in detail with reference to FIG. 15 as appropriate.
  • the substrate 15 is bonded to the inner case 20 with an adhesive (not shown) having flexibility (elasticity) even after curing.
  • an adhesive (not shown) having flexibility (elasticity) even after curing.
  • a silicone rubber adhesive is used.
  • the adhesive is not limited to silicone rubber but may be any adhesive that is more flexible than the outer case 1 after curing, such as a room temperature curing type, a two liquid mixing type, a thermosetting type, an ultraviolet curing type, or these It may be a complex type.
  • the adhesive may be fixed using a rubber adhesive or hot melt (bond).
  • the adhesive is applied without a gap around the connector 16 as well, the air tightness (sealability) with the outside air (outside) is secured, preventing the outside air from entering the back side of the substrate 15.
  • the joint member 10 is a ring-shaped planar shape along the first joint surface 6 of the outer case 1 d, and is a packing (gasket) of about 1 mm in thickness, as shown in FIG.
  • a packing having an elliptical cross section, which is formed by a compression molding method using a dedicated mold, is employed.
  • the cross-sectional shape may be circular or rectangular.
  • a silicone rubber packing having self-adhesiveness is used. Since the packing is impregnated with a silicone rubber adhesive, it plays a role of bonding (bonding) the first bonding surface 6 of the outer case 1 d and the second bonding surface 22 of the inner case 20.
  • the joining member 10 should just be a material which has a softness
  • rubber or an elastomer may be used, or a porous member such as a sponge may be used.
  • a packing may be formed of these materials, and an adhesive may be applied at the time of assembly to provide adhesion.
  • the adhesive for the substrate 15 described above may be used.
  • a thermosetting adhesive is applied to the second bonding surface 22 of the inner case 20 by an ink jet method or the like, and then primary (preliminary) curing is performed to form the bonding member 10 in a semi-cured state. After being incorporated in 1 d, secondary (book) curing may be performed.
  • the bonding member 10 can be efficiently cured even after assembly.
  • the bonding member 10 is sandwiched between the first bonding surface 6 of the outer case 1d and the second bonding surface 22 of the inner case 20. Specifically, the bonding member 10 is compressed by two surfaces and is in a slightly crushed state. In other words, the first joint surface 6, the joint member 10, and the second joint surface 22 overlap each other.
  • a constant gap is formed over the entire circumference between the outer shape of the inner case 20 and the outer case 1 d. In other words, the inner case 20 and the outer case 1 d are joined only via the joining member 10.
  • the height of the upper surface of the sensor module 25 is lower than the upper surface 7 of the outer case 1d.
  • the inner case 20 is joined to the outer case 1 d like a drop lid.
  • the sensor module 25 (inner case 20) is joined to the inner wall surface of the outer case 1d via the joining member 10. Since the inner case 20 is set in such a size that a fixed gap is formed over the entire circumference when it is incorporated into the outer case 1d, both are joined only through the joining member 10 It has become.
  • the bonding member 10 is made of a material that is more flexible (elastic) than the outer case 1 d, the bonding member 10 has an effect of absorbing (damping) noise vibration transmitted from the outer case 1 d.
  • the bonding member 10 suppresses the noise vibration from reaching the inner case 20 as a vibration-proofing member having a vibration-proof property.
  • it may be rephrased as a buffer member that mitigates noise vibration.
  • the inertial sensor using the MEMS technology is a micromachine provided with a comb-like electrode structure or the like, it exhibits a large response to the vibration of the resonance frequency component inherent to the structure and noise in the measurement result
  • noise vibration can be reliably suppressed.
  • the inertial sensor is suspended as in the prior art. Unlike the configuration, the substrate 15 (sensor module 25) on which the inertial sensor is mounted can be accurately positioned. In other words, the position of the inertial sensor is always stable. Moreover, the structure which piles up and assembles is easy to work and has a good manufacturing efficiency. Therefore, according to the sensor unit 100D, since the position of the inertial sensor is stable and the joint member 10 having high reliability and anti-vibration property is provided, the sensor unit 100D is not easily affected by noise vibration and the detection accuracy is stabilized. .
  • the inner case 20 made of aluminum is similarly fitted in a nested manner to the aluminum outer case 1d, the package structure is compact (compact) and robust (strong). Therefore, it is possible to provide a sensor unit 100D having a wide choice of installation places and excellent durability.
  • the bonding member 10 a packing made of silicone rubber having excellent airtightness is used. Therefore, the bonding member 10 not only bonds the first bonding surface 6 of the outer case 1 d to the second bonding surface 22 of the inner case 20, but also secures the airtightness of the ring-shaped bonding surface. Further, since the adhesive is applied without a gap around the connector 16 as well, the opening 21 of the inner case 20 is also airtight. With these configurations, the inside of the sensor unit 100D is kept airtight (waterproof) from the outside. Therefore, the internal environment of the sensor unit 100D is less susceptible to the influence of the external environment, and measurement of inertial force can be performed under a substantially constant and stable environment. In other words, usable environmental conditions are broadened. Therefore, it is possible to provide the sensor unit 100D having a wide range of usable environmental conditions and high reliability. In addition, it is possible to ensure airtightness similarly, even when it is a case where other materials for junction member 10 mentioned above are used.
  • this adhesive is also a vibration-proof member that suppresses noise vibration from the inner case 20 to the substrate 15 , Acts as a buffer member. Therefore, in addition to the bonding member 10, the adhesive of the substrate also functions as a vibration absorbing member and a buffer member, so that noise vibration can be reduced more effectively. Therefore, it is possible to provide a more reliable sensor unit 100D with stable detection accuracy.
  • a connector 16 for connecting to the outside is mounted on the substrate 15, and an opening 21 for exposing the connector 16 to the outside is formed in the inner case 20.
  • a socket type (female) connector is connected to the connector 16 from the mounting device, but since a flexible wiring member such as a flexible substrate or a covered cable is used for the wiring portion, noise vibration is transmitted from the connector 16 The fear of coming is low. Therefore, it is possible to provide a sensor unit 100D that is highly stable in detection accuracy and reliable, and that can perform reliable communication with the mounted device.
  • the height of the upper surface of the sensor module 25 is lower than the upper surface 7 of the outer case 1d, and is housed in a drop lid shape, so for example, the inner case 20 side is fixed to the mounting device Even in this case, since the inner case 20 does not contact the mounting surface, the propagation of noise vibration can be prevented. Therefore, it is possible to provide a user-friendly sensor unit 100D that can be used even when the top and bottom (up and down) are reversed.
  • FIG. 17 and FIG. 18 are cross-sectional views showing an example of a sensor unit according to a fifth modification.
  • the bonding member 10 is described as one, but it is not limited to this configuration, and a plurality of bonding members may be used.
  • the bonding member 11 may be further disposed at the peripheral edge portion of the upper portion (upper surface) of the inner case 20.
  • the bonding member 10 may be a porous member, and the bonding member 11 may be L-shaped (crank-shaped) in cross section and made of silicone rubber.
  • the two members utilizing the characteristics of the material are complementarily used to ensure the anti-vibration property by the bonding member 10 and to ensure the air tightness by the bonding member 11. Vibration and air tightness can be ensured. Furthermore, the inner case 20 (sensor module) can be more reliably bonded to the outer case 1 by bonding the two bonding members 10 and 11 together.
  • a groove may be formed around the side surface of the inner case 20, and the bonding member 12 may be disposed in the groove. Also in this configuration, necessary vibration isolation and airtightness can be secured.
  • the cross section of the joint member 12 may be a simple circle, and since the joint member 12 can not be seen from the outside, there is no concern that the appearance will be impaired.
  • the joining member 10 is described as being disposed on the first joining surface 6 which is one step higher than the bottom wall 5, the invention is not limited to this, and the joining member 10 is disposed in a portion where the outer case 1d and the inner case 20 face each other. Any configuration is acceptable.
  • the joint member 10 may be directly disposed on the peripheral portion of the bottom wall 5 as a thimble configuration of the side wall 4 and the bottom wall 5.
  • FIG. 19 is a perspective view showing a state in which the sensor unit according to the modification 6 is fixed to the mounting surface.
  • FIG. 20 is a perspective view showing an outline of the sensor unit as viewed from the mounting surface side of FIG.
  • a sensor unit 100E according to the present modification will be described.
  • a sensor unit 100E is an inertial measurement unit (IMU) that detects the posture or behavior (inertial momentum) of a moving body (mounted device) such as a car or a robot.
  • IMU inertial measurement unit
  • the sensor unit 100E functions as a so-called six-axis motion sensor provided with a three-axis acceleration sensor and a three-axis angular velocity sensor.
  • the sensor unit 100E is a rectangular solid having a substantially square planar shape, and each side of the square has a length of about 3 cm and a thickness of about 1 cm. In the vicinity of two apexes located in the diagonal direction of the square, notch holes 2e as fixing parts are formed.
  • the sensor unit 100E is used in a state where the sensor unit 100E is fixed to the mounting surface 71 of a mounting body (device) such as a car through two screws 70 through the two notched holes 2e.
  • the said size is an example, and it is also possible to miniaturize to the size which can be mounted, for example in a smart phone or a digital camera by selection of a component, or a design change.
  • the sensor unit 100E adopts a distinctive package configuration for suppressing noise vibration such as engine vibration of a car transmitted from the mounting surface 71.
  • This configuration achieves higher reliability and stability in detection accuracy than conventional sensor units.
  • this characteristic package configuration will be described in detail.
  • this structure is not limited to IMU provided with 6-axis motion sensor, It is applicable if it is a unit provided with an inertial sensor, or a device.
  • an opening 21 is formed on the surface of the sensor unit 100E.
  • a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (male) connector 16 is disposed inside (inside) the opening 21, a plug-type (
  • the thickness direction of the sensor unit 100E will be described as the Z-axis direction.
  • a socket type (female) connector (not shown) is connected to the connector 16 from the mounting apparatus, and transmission and reception of the electric power such as the power of the sensor unit 100E and detection data are performed between the two.
  • the sensor unit 100E adopts a distinctive package configuration for suppressing noise vibration such as engine vibration of a car transmitted from the mounting surface 71 (see FIG. 19). This configuration achieves higher reliability and stability in detection accuracy than conventional sensor units.
  • this characteristic package configuration will be described in detail.
  • this structure is not limited to IMU provided with 6-axis motion sensor, It is applicable if it is a unit provided with an inertial sensor, or a device.
  • FIG. 21 is an exploded perspective view showing a sensor unit 100E of the present modification as viewed in the same direction as FIG.
  • FIG. 22 is a cross-sectional view showing a vibration (noise vibration) transmission suppression structure in the sensor unit 100e.
  • the transmission suppression structure of the noise vibration which the sensor unit 100e of this embodiment has, etc. are demonstrated in detail using these figures.
  • the sensor module 25 and the outer case 1e is fastened (fixed) by a screw 170 as a fastening member.
  • two screws 170 are used as the fastening member, but the number of screws 170 is not limited to this.
  • the two screws 170 are inserted into the through holes 9 provided in the outer case 1 e from the bottom surface 8 side, and screwed and fixed to the inner case 20 with the bonding member 10 and the substrate 15 interposed therebetween.
  • the through hole 9 for the screw 170 is provided on the bottom surface 8 side of the outer case 1 e.
  • two through holes 9 are provided in the vicinity of the diagonal of the bottom surface 8 of the outer case 1 (see FIG. 21).
  • a through hole is provided at a position overlapping with the through hole 9 of the bonding member 10 in plan view, and a screw hole 29 is formed at a position overlapping with the through hole 9 of the inner case 20 in plan view.
  • a recess for accommodating the screw head of the screw 170 is formed, and in the recess, the screw 170 is an elastic member 310 in the through hole 9 of the outer case 1. Is inserted through. Also, the depth of the recess is set so that the screw head of the screw 170 in the fastened state does not protrude outside the bottom surface 8.
  • the joining member 10 interposed between the outer case 1 e and the inner case 20 of the sensor module 25 contacts the first joining surface 6 as a part of the bottom wall 5 of the outer case 1 e, It is also arranged to contact the side wall 4 rising from the first joint surface 6 (bottom wall 5). That is, the joining member 10 is formed to have an L-shaped (crank-like) cross section. Further, as shown in FIG. 22, in the state where the sensor module 25 is housed in the outer case 1e, the height of the upper surface 27 of the sensor module 25 (that is, the bottom of the inner case 20) is the height of the upper surface 7 of the outer case 1e. Is lower than In the configuration shown in FIG.
  • the bonding member 10 is formed of an elastic member, the height of the upper surface 27 of the sensor module 25 with respect to the height of the upper surface 7 of the outer case 1e is the assembly process of the sensor unit 100E. , The tightening torque of the screw 170 can be adjusted.
  • the sensor module 25 (inner case 20) is joined to the first joint surface 6 which is a part of the bottom wall 5 of the outer case 1e via the joint member 10. Since the inner case 20 is set in such a size that a constant gap is formed over the entire circumference when the inner case 20 is incorporated into the outer case 1e, both are joined only through the joining member 10 It has become.
  • the bonding member 10 is made of a material (elasticity) having a smaller elastic modulus than the outer case 1 e, it functions to absorb (attenuate) noise vibration transmitted from the outer case 1 e.
  • the bonding member 10 is a vibration-proofing member that suppresses the noise vibration from reaching the inner case 20.
  • it may be rephrased as a shock-absorbing member that mitigates the noise vibration. Since an inertial sensor using MEMS technology is a micromachine provided with a comb-like electrode structure or the like, it exhibits a large response to the vibration of the resonance frequency component inherent to the structure, and noise appears in the measurement result. Although there was a risk of being included, according to these configurations, noise vibration can be reliably suppressed.
  • the height of the upper surface 27 of the sensor module 25 is lower than the upper surface 7 of the outer case 1e, and is housed in a drop lid shape, so for example, the inner case 20 side is directed to the mounting device Even in the case of fixing, since the inner case 20 does not contact with the mounting surface, the propagation of noise vibration can be prevented. Therefore, it is possible to provide a user-friendly sensor unit 100E that can be used even when the top and bottom (up and down) are reversed.
  • the outer case 1e and the sensor module 25 are fastened by the screw 170 inserted from the through hole 9 provided in the outer case 1e, and the outer case 1e and the sensor module 25 are And the elastic member 310 is disposed between the screw head of the screw 170 and the outer case 1e.
  • the joint member 10 and the elastic member 310 having elasticity between the outer case 1 e and the sensor module 25, in the fastening structure of the outer case 1 e and the sensor module 25 by the screw 170 The propagation of noise vibration from the outer case 1 e to the sensor module 25 can be more reliably suppressed.
  • the bonding member 10 contacts the side wall 4 rising from the first bonding surface 6 together with the first bonding surface 6 which is a part of the bottom wall 5 of the outer case 1 e.
  • the propagation of noise vibration due to the sensor module 25 coming into contact with the side wall 4 of the outer case 1 e can be suppressed, and the joining member 10 is used as a positioning guide for the sensor module 25 with respect to the outer case 1 e in the assembly process.
  • the effect of improving the workability of assembly can be expected.
  • the inertial sensor is suspended as in the prior art. Unlike the configuration, the substrate 15 (sensor module 25) on which the inertial sensor is mounted can be accurately positioned. In other words, the position of the inertial sensor is always stable. Moreover, the structure which piles up and assembles is easy to work and has a good manufacturing efficiency. Therefore, according to the sensor unit 100E, since the position of the inertial sensor is stable, and the joint member 10 having high reliability and anti-vibration property is provided, the sensor unit 100E is not easily affected by noise vibration and the detection accuracy is stabilized. .
  • the inner case 20 made of aluminum is similarly fitted in a nested manner with the outer case 1e made of aluminum, the package structure is compact (compact) and robust (strong). Therefore, it is possible to provide a sensor unit 100E having a wide choice of installation places and excellent durability.
  • the bonding member 10 a packing made of silicone rubber having excellent airtightness is used. Therefore, the bonding member 10 not only bonds the first bonding surface 6 of the outer case 1 e and the second bonding surface 22 of the inner case 20, but also secures the airtightness of the ring-shaped bonding surface. Further, since the adhesive is applied without a gap around the connector 16 as well, the opening 21 of the inner case 20 is also airtight. With these configurations, the inside of the sensor unit 100 is airtight from the outside (waterproofness). Therefore, the internal environment of the sensor unit 100E is less susceptible to the influence of the external environment, and it is possible to always measure the inertial force in a substantially constant and stable environment. In other words, usable environmental conditions are broadened. Therefore, it is possible to provide a sensor unit 100E having a wide range of usable environmental conditions and high reliability. In addition, it is possible to ensure airtightness similarly, even when it is a case where other materials for junction member 10 mentioned above are used.
  • this adhesive since the substrate 15 is adhered to the inner case 20 with an adhesive having elasticity (flexibility) in a solidified state, this adhesive also causes noise vibration from the inner case 20 to the substrate 15. It functions as a damping member to suppress, and as a buffer member. Therefore, in addition to the bonding member 10, the adhesive of the substrate also functions as a vibration absorbing member and a buffer member, so that noise vibration can be reduced more effectively. Therefore, it is possible to provide a more reliable sensor unit 100E with stable detection accuracy.
  • FIG. 23 is a cross-sectional view showing a sensor unit according to the seventh modification.
  • a sensor unit according to the seventh modification.
  • a shelf 31f higher than the concave bottom of the recess 31 in the thickness direction of the inner case 20 is formed on a part of the peripheral edge of the recess 31 of the inner case 20 ( In FIG. 23, the concave bottom surface of the concave portion 31 is located above, and the shelf portion is positioned below the concave bottom portion).
  • the shelf 31 f is formed along the side closer to the connector 16 of the recess 31 and the side opposite to the side in the plan view of the sensor unit 100 F, but the invention is not limited thereto.
  • a shelf 31 f may be formed along one side, or a shelf may be provided along the other side.
  • the shelf portion 31 f can also be referred to as a step formed at a part of the periphery of the recess 31 of the inner case 20 or a region where the depth of the recess 31 is shallow.
  • the shelf 31 f formed on a part of the periphery of the recess 31 is preferably disposed closer to the center of the substrate 15 than the at least one inertial sensor in plan view of the substrate 15, and more preferably, the recess 31.
  • a space formed by the substrate 15, the communication passage connecting the inner case 20 side and the outer case 1 side may be located on the opposite side across the inertial sensor.
  • the filling member 50 is a shelf together with the communication passage which is a release portion of the space. Since it also moves to the portion 31 f, the filling member 50 can be spread evenly in the space formed by the substrate 15 and the recess 31.
  • the excess filling member 50 is provided at the peripheral portion of the recess 31.
  • the sensor unit is accommodated in the shelf portion, so that it is possible to suppress the excess adhesive from overflowing to a portion where it is not desired, and a sensor unit that facilitates control of the filling amount of the filling member 50 filling the recess 31 in the manufacturing process. Can be provided.
  • FIG. 24 is an external view of a smartphone as an example of the electronic device.
  • the above-described sensor units 100, 100B, and 100C are incorporated in the smartphone 110.
  • Detection data detected by the sensor units 100, 100B, and 100C is transmitted to the control unit 111 of the smartphone 110.
  • the control unit 111 is configured to include a CPU (Central Processing Unit), recognizes the attitude and behavior of the smartphone 110 from the received detection data, changes the display image, generates a warning sound, and an effect sound.
  • the body can be vibrated by sounding or by driving a vibrating motor.
  • motion sensing of the smartphone 110 can be performed, and the display content can be changed, sound, vibration, or the like can be generated from the measured posture or behavior.
  • FIG. 25 is an external view of a digital camera as an example of the electronic device.
  • the digital camera 120 incorporates the above-described sensor units 100, 100B, and 100C. Detection data detected by the sensor units 100, 100B, and 100C are transmitted to a control unit (not shown) of the digital camera 120.
  • the control unit is configured to include a CPU, detects the attitude of the digital camera 120 from the received detection data, and transmits a control signal based on the detection result to the camera shake correction device 121.
  • the camera shake correction device 121 moves a specific lens in the lens set 122 according to the control signal to perform camera shake correction.
  • the sensor unit is not limited to smartphones and digital cameras, and may be used in various electronic devices such as mobile phones, portable game machines, game controllers, car navigation systems, pointing devices, head mounting displays, tablet personal computers, etc.
  • 100, 100 B and 100 C can be incorporated, and similar effects can be obtained.
  • FIG. 26 is an external view of a car 130 as an example of a moving body.
  • the above-described sensor units 100, 100B, 100C are incorporated in the automobile 130.
  • Detection data detected by the sensor units 100, 100B, and 100C are transmitted to the vehicle body attitude control device 132 of the automobile 130.
  • the vehicle body posture control device 132 is configured to include a CPU, detects the posture and behavior of the vehicle 130 from the received detection data, and generates a control signal based on the detection result as a brake control device for the wheel 133 or suspension control. Send to device.
  • the brake control device applies the brake to each wheel 133 according to the control signal.
  • the traveling direction of the vehicle is corrected and controlled to maintain the original traveling direction.
  • braking is performed to maintain the traveling direction of the vehicle.
  • the sensor units 100 and 100B are not limited to automobiles, and various types of moving objects such as motorcycles, civil engineering / construction machines, agricultural machines, heavy machinery for farms, unmanned vehicles, aircraft, helicopters, small submarines, robots, etc. , 100 C can be incorporated, and similar effects can be obtained.
  • each inertial sensor (17x, 17y, 17z, 18) and other electronic elements mounted on the substrate 15 are disposed in the space of the recess 31 formed by the substrate 15 and the recess 31.
  • the configuration is such that it is mounted on the surface on the concave portion 31 side of the substrate 15.
  • the filling member 50 should cover as many parts as possible, such as the inertial sensors (17x, 17y, 17z, 18) and other electronic elements disposed in the recess 31 space.
  • the effects of the present invention can be obtained as long as the substrate 15 and the inner case 20 are fixed so as to secure a predetermined strength or more by the filling member 50 filling the space of the recess 31.
  • the inertial sensor and the other electronic elements may be arranged on the surface opposite to the substrate 15 (the surface opposite to the surface facing the recess 31).
  • the joining member 10 interposed between the outer case 1 and the inner case 20 of the sensor module 25 is in contact with the first joining surface 6 as a part of the bottom wall 5 of the outer case 1. And the side wall 4 rising from the first joint surface 6 (bottom wall 5) is also in contact. Not limited to this, if the gap can be secured and fixed so that the sensor module 25 does not contact the side wall 4 of the outer case 1, the joint member 10 is a part of the bottom wall 5 and the bottom wall 5 of the outer case 1. It should just be arrange
  • the upper surface 7 of the outer case 1 in contact with the mounting surface 71 in the sensor unit 100 when mounted on the mounting surface 71 of an external device or the like is illustrated as an example having the same frame shape.
  • the contact portion of the outer case 1 with the mounting surface 71 is not limited to this, as long as the sensor unit 100 can be fixed to the mounting surface 71 to an extent that there is no defect.
  • the contact surface divided into a plurality of surfaces It may be.
  • mounting surface 81 ... exposed portion, 82 ... painted surface, 90 ... through hole, 100, 100B, 100C, 100D, 100E ... sensor unit, 110 ... smartphone 120 ... digital camera, 130 ... motor vehicle, 170 ... screws as fastening members, 210, 310 ... elastic member.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Automation & Control Theory (AREA)
  • Gyroscopes (AREA)

Abstract

 信頼性が高く、被装着物の振動に対しても検出精度の安定したセンサーユニットを提供すること。 センサーユニット100は、慣性センサー(17x,17y,17z,18)が実装された基板15と、基板15が搭載されたインナーケース20と、を含んで構成されたセンサーモジュール25と、センサーモジュール25を収容するアウターケース1と、を備え、インナーケース20には凹部31が形成されており、基板15の厚み方向からみた平面視において凹部31と重なる領域に慣性センサー(17x,17y,17z,18)が配置されて、且つ、基板15および凹部31により形成される空間に充填部材50が充填され、センサーモジュール25は、アウターケース1の底壁5に接合部材10を介して接合されていることを特徴とする。

Description

センサーユニット、電子機器、および移動体
 本発明は、センサーユニット、当該ユニットを備えた電子機器、および移動体に関する。
 従来、所定の検出軸に基づく慣性を検出する慣性センサーを搭載したセンサーユニットとして、図27に示すように、箱状のケース80の内部に角速度センサー83を搭載した構成のセンサーユニット91(装置)が知られていた。詳しくは、箱状のケース80の内部における底面81に、角速度センサー83が実装された基板82を直接固定する構成となっていた。角速度センサー83は、半導体基板上に、MEMS(Micro Electro Mechanical Systems)技術を用いて、錘や、櫛歯状の電極を有する櫛歯アクチュエーター84を形成し、角速度が加わる際に働くコリオリ力で生じる動きを電気的に(例えば、容量変化として)読み出していた。
 他方、このような従来構成では、被装着面85(装置)から伝達される固有の振動(ノイズ振動)の影響を受け易く、検出精度への影響が否めないという問題があった。例えば、センサーユニット91をカーナビゲーションシステムに取付けた場合、自動車のエンジン動作に起因するノイズ振動が、ケース80の底面81から角速度センサー83に直接伝わってしまう恐れがあった。これは、角速度センサーのパッケージ構成に限らず、加速度センサーなどの慣性センサー全般のパッケージ構成に共通する問題であった。
 上記問題に鑑み、特許文献1では、図28~図30で示すセンサー装置を提案している。図28のセンサー装置92では、ケース80を伏せた(天地反転)状態として、ケース80の底面81から、金属製のバネ86により、角速度センサー83を含む基板82を吊るす構成としている。また、図29のセンサー装置93では、ケース80の外周縁から、フレキシブル基板87を用いて、角速度センサー83を含む基板82を吊るす構成としている。また、図30のセンサー装置94では、ケース80内部の周縁部に階段状の段差88を形成し、当該段差88から複数のボンディングワイヤー89を出して、角速度センサー83を含む基板82を吊るす構成としている。当該文献によれば、センサー装置92~94の構成により、ノイズ振動の影響を十分に減衰できるとしている。
特開2006-194681号公報
 しかしながら、特許文献1のセンサー装置92~94では、信頼性が乏しく、安定した検出精度を得ることは困難であるという課題があった。詳しくは、センサー装置92~94のいずれの構成においても、角速度センサー83を含む基板82の位置が、ケース80の内部に浮いた状態となっているため、自重や、経時変化により、角速度センサー83が傾いてしまう。角速度センサー83が傾くと、重力の影響で櫛歯アクチュエーター84にバイアスが掛ってしまうため、検出結果に影響が及んでしまい、信頼性に乏しかった。
 また、バネ86で基板82を吊るす構成の場合、ノイズ振動の影響により、基板82が上下に振動してしまう恐れもあった。この上下振動も、検出結果に影響を及ぼす恐れがあり、安定した検出精度を得ることは困難であった。なお、センサー装置93,94においても、弾性を有する部材で基板82を吊るす構成であることから、ノイズ振動の影響による基板82の振動は生じるため、同様に、安定した検出精度を得ることは困難であった。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の適用例または形態として実現することが可能である。
 (適用例)
 センサーユニットは、慣性センサーと、前記慣性センサーを搭載したセンサーモジュールと、底壁と該底壁に接する側壁とを有して前記センサーモジュールを収容するアウターケースと、を備え、前記センサーモジュールは、前記アウターケースの前記底壁に接合部材を介して接合されていることを特徴とする。
 この構成によれば、センサーモジュールは、アウターケースの底壁に接合部材を介して接合されている。好適には、センサーモジュールをアウターケースの内部に篏合させて、当該篏合部に沿ってリング状の接合部材を配置して両者を接合する。接合部材は、接着性を持っていても良く、両者は接合部材を圧縮した状態で接合される。
 また、アウターケース、接合部材、およびセンサーモジュール(ケース部分)は、切削加工や、金型で精度良く形成可能であり、これらの部位を順番に重ねて組立てる構成となるため、従来技術のように慣性センサーを宙吊り状態とした構成とは異なり、慣性センサーを搭載したセンサーモジュールを精度良く位置決めできる。
 従って、適用例のセンサーユニットによれば、慣性センサーの位置が安定しているため信頼性が高められるとともに、防振性がある接合部材を備えているためノイズ振動の影響を受け難く、検出精度が安定する。従って、信頼性が高く、検出精度の安定したセンサーユニットを提供することができる。
 また、接合部材は、アウターケースよりも弾性率の小さい材料から構成されていることが好ましい。前述したように、好適には、リング状の接合部材を用いて両者を接着するため、気密性を確保することができる。このように、接合部材としてアウターケースよりも弾性率の小さい材質を用いることにより、接合部材が防振部材としても機能するため、アウターケースからセンサーモジュールにノイズ振動が伝わることを抑制することができる。
 よって、外部環境の影響を受け難くなり、より信頼性を高めることができる。
 また、アウターケースは、底壁と対向する一面を開口面とする箱状をなしており、開口面の開口部を塞ぐようにセンサーモジュールが収納され、底壁には、周縁部に中央部よりも開口面からの距離が小さい第1接合面が形成されており、第1接合面に接触して、接合部材が配置されることが好ましい。
 またセンサーモジュールの露出面の底壁の外面からの高さは、アウターケースの開口面の底壁の外面からの高さより低いことが好ましい。
 この構成によれば、センサーユニットを外部機器などの被装着面に装着したときに、被装着面にはアウターケースの上面だけが接触している構造になるので、外部機器側からセンサーユニットに伝播するノイズ振動を、接合部材により抑制することができる。
 また、アウターケースとセンサーモジュールとは、底壁に設けられた貫通孔から挿入される締結部材により締結されていることが好ましい。
 この構成によれば、アウターケースとセンサーモジュールとを、締結部材によって強固に固定することができる。ここで、アウターケースとセンサーモジュールとの間に接合部材が配置されているので、締結部材によるアウターケースとセンサーモジュールとの締結構造において、アウターケースからセンサーモジュールへのノイズ振動の伝播が抑えることができるとともに、気密性が高められるという効果を奏する。
 また、接合部材は、アウターケースの側壁(または底壁、あるいは、底壁の一部である第1接合面)とともに側壁にも接触していることがさらに好ましい。
 また、センサーモジュールは、慣性センサーと、慣性センサーが実装された基板と、基板が搭載されたインナーケースと、を含んで構成され、インナーケースにおける底壁と対向している側の周縁部には、接合部材と重なる第2接合面が形成されていることが好ましい。
 この構成によれば、アウターケースに、インナーケースを入れ子状に篏合させる構造であるため、小型で、堅牢なパッケージ構成を実現することができる。また、アウターケース、接合部材、インナーケース(センサーモジュール)を重ねる構成のため、組立て易く、製造効率が良い。
 また、基板は、インナーケースに対して、固化状態において弾性を有する接着剤で接着されていることが好ましい。この構成によれば、防振部材が2段階構成となるため、ノイズ振動の影響をさらに低減でき、より信頼性を高めることができる。
 また、基板には、外部と接続するためのコネクターが実装されており、インナーケースには、アウターケースの開口面からコネクターを外部に露出するように開口部が形成されていることが好ましい。
 また、インナーケースには凹部が形成されており、前記基板の厚み方向からみた平面視において前記凹部と重なる領域に前記慣性センサーが配置されて、且つ、前記基板および前記凹部により形成される空間に充填部材が充填され、前記センサーモジュールは、前記アウターケースの前記底壁に接合部材を介して接合されていることが好ましい。
 この構成によれば、慣性センサーが搭載された基板とインナーケースとにより構成されたセンサーモジュールにおいて、基板とインナーケースの凹部とにより形成される空間に充填部材が充填されている。これにより、センサーモジュールの共振周波数を外部からのノイズ振動の帯域から外すようにシフトさせて、ノイズ振動の影響を低減させることができる。特に、センサーモジュールにおいて、基板の厚み方向からみた平面視において凹部と重なる領域に慣性センサーが配置されているので、慣性センサーが外部からのノイズ振動の影響を受け難くさせることができる。
 従って、ノイズ振動の影響を受け難く、検出精度の安定したセンサーユニットを提供することができる。
 また、前記慣性センサーは、前記センサーモジュールの前記空間にボディーの少なくとも一部が配置されていることが好ましい。
 本適用例において、センサーモジュールのボディーとは、センサーモジュール本体のことをいい、基板に搭載された状態のセンサーモジュールの外形を指す。
 この構成によれば、基板と凹部とにより形成される空間に充填される充填部材に慣性センサーの少なくとも一部が覆われるので、慣性サンサーが外部からのノイズ振動の影響をより効果的に抑えることができる。
 なお、基板と凹部とによる空間には、慣性センサーのボディー全体またはボディーの大部分が配置される構成とした方が、ノイズ振動の影響をさらに受け難くなるのでより好ましい。
 また、前記凹部の周縁の一部に、前記インナーケースの厚み方向において前記凹部の凹底面よりも高い棚部が形成されていることを特徴とする。
 この構成によれば、センサーモジュールの組立工程において、センサーモジュールの基板とインナーケースの凹部とにより形成される空間に充填される充填部材が空間の容積よりも多くなった場合に、過剰分の充填部材が凹部の周縁部に設けられた棚部に収容される。これにより、過剰分の充填部材が望まない箇所に溢れ出すのを抑えることができる。
 したがって、製造工程において凹部に充填する充填部材の充填量の管理がし易いセンサーユニットを提供することができる。
 また、前記基板の厚み方向からみた平面視において前記凹部と重なる領域に、前記凹部側に開口した溝部または貫通孔部が形成されていることが好ましい。
 この構成によれば、センサーモジュールの組立工程において、センサーモジュールの基板とインナーケースの凹部とにより形成される空間に充填される充填部材が空間の容積よりも多くなった場合に、過剰分の充填部材が基板の溝部または貫通孔部に収容される。これにより、過剰分の充填部材が望まない箇所に溢れ出すのを抑えることができるとともに、基板と凹部とにより形成される空間を充填部材で満たすことが可能になる。
 したがって、製造工程における凹部への充填部材の充填量の管理がし易く、また、充填部材によるノイズ振動の影響の抑制効果がより顕著に得られるセンサーユニットを提供することができる。
 また、接合部材は、ゴム、エラストマー、多孔質部材、および接着剤のいずれかであることが好ましい。また、接合部材は、複数配置されていることが好ましい。
 また、アウターケースには、被装着体に固定するための固定部が形成されていることが好ましい。また、慣性センサーは、複数あり、加速度センサーと、角速度センサーとを含んでいることが好ましい。
 上記センサーユニットは、電子機器、または移動体に搭載しても良い。
実施形態1に係るセンサーユニットが被装着面に固定された状態を示す斜視図。 センサーユニットの概要を図1の被装着面側からみて示す斜視図。 図2と同じ方向からみて示すセンサーユニットの分解斜視図。 基板の斜視図。 図2のf-f断面における斜視図。 図1と同じ方向からみたセンサーユニットの分解斜視図。 センサーユニットにおける振動伝達抑制構造を示す断面図。 実施形態2に係るセンサーユニットに搭載される基板を示す平面図。 実施形態2に係るセンサーユニットにおける振動伝達抑制構造を示す断面図。 変形例1に係る一態様の断面図。 変形例1に係る一態様の断面図。 変形例2に係る一態様の断面図。 変形例2に係る一態様の断面図。 変形例3に係るセンサーユニットの斜視図。 変形例4に係るセンサーユニットの分解斜視図。 変形例4に係るセンサーユニットの断面斜視図。 変形例5に係るセンサーユニットの一例を示す断面図。 変形例5に係るセンサーユニットの一例を示す断面図。 変形例6に係るセンサーユニットが被装着面に固定された状態を示す斜視図。 変形例6に係るセンサーユニットの概要を図19の被装着面側からみて示す斜視図。 変形例6に係るセンサーユニットを図19と同じ方向からみて示す分解斜視図。 変形例6に係るセンサーユニットにおける振動伝達抑制構造を示す断面図。 変形例7に係るセンサーユニットの一例を示す断面図。 電子機器の一例を示す外観図。 電子機器の一例を示す外観図。 移動体の一例を示す外観図。 従来のパッケージ構成を示す断面図。 従来のパッケージ構成の一例を示す断面図。 従来のパッケージ構成の一例を示す断面図。 従来のパッケージ構成の一例を示す断面図。
 以下、本発明の実施形態について、図面を参照して説明する。なお、以下の各図においては、各層や各部位を図面上で認識可能な程度の大きさとするため、各層や各部位の縮尺を実際とは異ならしめてある。
 (実施形態1)
 《センサーユニットの概要》
 図1は、実施形態1に係るセンサーユニットが被装着面に固定された状態を示す斜視図である。また、図2は、センサーユニットの概要を図1の被装着面側からみて示す斜視図である。まず、本実施形態に係るセンサーユニット100の概要について説明する。
 図1において、センサーユニット100は、自動車や、ロボットなどの運動体(被装着装置)の姿勢や、挙動(慣性運動量)を検出する慣性計測装置(IMU:Inertial Measurement Unit)である。センサーユニット100は、3軸の加速度センサーと、3軸の角速度センサーとを備えた、いわゆる6軸モーションセンサーとして機能する。
 センサーユニット100は、平面形状が略正方形の直方体であり、正方形の一辺の長さが約3cmで、厚さが約1cmのサイズである。正方形の対角線方向に位置する2ヶ所の頂点近傍に、固定部としてのネジ穴2が形成されている。この2ヶ所のネジ穴2に、2本のネジ70を通して、自動車などの被装着体(装置)の被装着面71に、センサーユニット100を固定した状態で使用する。なお、上記サイズは一例であり、部品の選定や設計変更により、例えば、スマートフォンや、デジタルカメラに搭載可能なサイズに小型化することも可能である。
 センサーユニット100は、被装着面71から伝わって来る自動車のエンジン振動などのノイズ振動を抑制するための特長あるパッケージ構成を採用している。この構成により、従来のセンサーユニットよりも、高い信頼性と、検出精度の安定性とを実現している。以下、この特長あるパッケージ構成について、詳しく説明する。なお、この構成は、6軸モーションセンサーを備えたIMUに限定するものではなく、慣性センサーを備えたユニット、またはデバイスであれば適用可能である。
 図2に示すように、センサーユニット100の被装着面側からみた表面には、開口部21が形成されている。開口部21の内部(内側)には、プラグ型(オス)のコネクター16が配置されている。コネクター16は、複数のピンを有しており、複数のピンが図2に正対して横方向に延在配置されている。なお、以下説明において、この複数のピンの延在方向をX軸方向とする。換言すれば、センサーユニット100の正方形状において、図2に正対して横方向となる辺の延在方向をX軸方向とする。また、正方形状においてX軸方向と直交する方向の辺の延在方向をY軸方向とする。そして、センサーユニット100の厚さ方向をZ軸方向として説明する。
 コネクター16には、被装着装置からソケット型(メス)のコネクター(図示せず)が接続されて、センサーユニット100の電力や、検出データなどの電気信号の送受信が両者間で行われる。
 《センサーユニットの構成》
 図3は、図2と同じ方向からみて示すセンサーユニットの分解斜視図である。
 続いて、図3を主体に、適宜図1および図2を交えながらセンサーユニットの構成について詳細に説明する。
 図3に示すように、センサーユニット100は、アウターケース1、接合部材10、センサーモジュール25などから構成されている。換言すれば、アウターケース1の内部3に、接合部材10を介在させて、センサーモジュール25を篏合(挿入)した構成となっている。センサーモジュール25は、インナーケース20と、基板15とから構成されている。なお、説明を解り易くするために、部位名をアウターケース、インナーケースとしているが、第1ケース、第2ケースと呼び換えても良い。
 アウターケース1は、アルミニウムを箱状に削り出した台座である。材質は、アルミニウムに限定するものではなく、亜鉛やステンレスなど他の金属や、樹脂、または、金属と樹脂の複合材などを用いても良い。アウターケース1の外形は、前述したセンサーユニット100の全体形状と同様に、平面形状が略正方形の直方体であり、正方形の対角線方向に位置する2ヶ所の頂点近傍に、それぞれネジ穴2が形成されている。なお、ネジ穴2に限定するものではなく、例えば、ネジによりネジ止めすることが可能な切り欠き(ネジ穴2のアウターケース1コーナー部に切り欠きを形成する構造)を形成してネジ止めする構成としてもよいし、あるいは、アウターケース1の側面にフランジ(耳)を形成して、フランジ部分をネジ止めする構成としても良い。ただし、前者の切り欠き穴を固定部としてネジ止めする場合に、切り欠き穴の切り欠きがネジ径よりも広く開いていると、ネジ止めする際にネジが切り欠きからずれ出して斜めになってしまい、ネジ止めの固定が外れやすくなったり、ずれたネジによってアウターケースの切り欠き穴部分が変形してしまったり削れたりする虞がある。このため、固定部として切り欠き穴を設ける場合には、切り欠き穴の切り欠きをネジの径よりも小さく設けることが好ましい。
 アウターケース1は、外形が直方体で蓋のない箱状であり、その内部3(内側)は、底壁5と側壁4とで囲まれた内部空間(容器)となっている。換言すれば、アウターケース1は、底壁5と対向する一面を開口面とする箱状をなしており、その開口面の開口部のほとんどを覆うように(開口部を塞ぐように)センサーモジュール25が収納され、センサーモジュール25が開口部から露出した状態となる(図2を参照)。ここで、底壁5と対向する開口面とは、アウターケース1の上面7と同一面である。また、アウターケース1の内部3の平面形状は、正方形の2つの頂点部分の角を面取りした6角形であり、面取りされた2つの頂点部分はネジ穴2の位置に対応している。また、内部3の断面形状(厚さ方向)において、底壁5には、内部3即ち内部空間における周縁部に中央部よりも一段高い底壁としての第1接合面6が形成されている。即ち、第1接合面6は、底壁5の一部であり、平面的に底壁5の中央部を囲ってリング状に形成された一段の階段状の部位であり、底壁5よりも開口面(上面7と同一面)からの距離が小さい面である。
 なお、アウターケース1の外形が、平面形状が略正方形の直方体で蓋のない箱状である一例について説明したが、これに限らず、アウターケース1の外形の平面形状は、例えば6角形や8角形などの多角形であってもよいし、その多角形の頂点部分の角が面取りされていたり、各辺が曲線である平面形状であっったりしてもよい。また、アウターケース1の内部3(内側)の平面形状も、上述した6角形に限らず、正方形などの方形(4角形)や、8角形などの他の多角形状であってもよい。また、アウターケース1の外形と内部3の平面形状とは相似形であってもよいし、相似形でなくてもよい。
 インナーケース20は、基板15を支持する部材であり、アウターケース1の内部3に収まる形状となっている。詳しくは、平面的には、正方形の2つの頂点部分の角を面取りした6角形であり、その中に長方形の貫通穴である開口部21と、基板15を支持する側の面に設けられた凹部31とが形成されている。面取りされた2つの頂点部分はアウターケース1のネジ穴2の位置に対応している。厚さ方向(Z軸方向)は、アウターケース1の上面7から第1接合面6までの高さよりも、低くなっている。好適例では、インナーケース20もアルミニウムを削り出して形成しているが、アウターケース1と同様に他の材質を用いても良い。
 インナーケース20の裏面(アウターケース1側の面)には、基板15を位置決めするための案内ピンや、支持面(いずれも図示せず)が形成されている。基板15は、当該案内ピンや、支持面にセット(位置決め搭載)されてインナーケース20の裏面に接着される。なお、基板15の詳細については後述する。インナーケース20の裏面の周縁部は、リング状の平面からなる第2接合面22となっている。第2接合面22は、平面的にアウターケース1の第1接合面6と略同様な形状であり、インナーケース20をアウターケース1にセットした際には、接合部材10を挟持した状態で2つの面が向い合うことになる。なお、アウターケース1およびインナーケース20の構造については、一実施例であり、この構造に限定されるものではない。
 《センサー基板の構成》
 図4は、基板の斜視図である。
 続いて、慣性センサーが実装された基板15の構成について説明する。基板15は、複数のスルーホールが形成された多層基板であり、ガラスエポキシ基板を用いている。なお、ガラエポ基板に限定するものではなく、複数の慣性センサーや、電子部品、コネクターなどを実装可能なリジット基板であれば良い。例えば、コンポジット基板や、セラミック基板を用いても良い。
 基板15の表面(インナーケース20側の面)には、コネクター16、角速度センサー17z、加速度センサー18などが実装されている。コネクター16は、プラグ型(オス)のコネクターであり、X軸方向に等ピッチで配置された2列の接続端子を備えている。好適には、1列10ビンで合計20ピンの接続端子としているが、端子数は、設計仕様に応じて適宜変更しても良い。
 慣性センサーとしての角速度センサー17zは、Z軸方向における1軸の角速度を検出するジャイロセンサーである。好適例として、水晶を振動子として用い、振動する物体に加わるコリオリの力から角速度を検出する振動ジャイロセンサーを用いている。なお、振動ジャイロセンサーに限定するものではなく、角速度を検出可能なセンサーで有れば良い。例えば、振動子としてセラミックや、シリコンを用いたセンサーを用いても良い。
 また、基板15のX軸方向の側面には、実装面(搭載面)がX軸と直交するように、X軸方向における1軸の角速度を検出する角速度センサー17xが実装されている。同様に、基板15のY軸方向の側面には、実装面(搭載面)がY軸と直交するように、Y軸方向における1軸の角速度を検出する角速度センサー17yが実装されている。なお、軸ごとの3つの角速度センサーを用いる構成に限定するものではなく、3軸の角速度が検出可能なセンサーであれば良く、例えば、後述する加速度センサー18のように、1デバイス(パッケージ)で3軸の角速度が検出(検知)可能なセンサーデバイスを用いても良い。
 慣性センサーとしての加速度センサー18は、1デバイスでX軸、Y軸、Z軸の3方向(3軸)の加速度を検出(検知)可能な、シリコン基板をMEMS技術で加工した静電容量型の加速度センサーを用いている。なお、このセンサーに限定するものではなく、加速度が検出可能なセンサーであれば良い。例えば、ピエゾ抵抗型加速度センサーや、熱検知型加速度センサーであっても良い、または、前述の角速度センサーのように、軸ごとに1つの加速度センサーを設ける構成であっても良い。
 基板15の裏面(アウターケース1側の面)には、制御IC19が実装されている。
 制御IC19は、MCU(Micro Controller Unit)であり、不揮発性メモリーを含む記憶部や、A/Dコンバーターなどを内蔵しており、センサーユニット100の各部を制御する。記憶部には、加速度、および角速度を検出するための順序と内容を規定したプログラムや、検出データをデジタル化してパケットデータに組込むプログラム、付随するデータなどが記憶されている。なお、基板15には、その他にも複数の電子部品が実装されている。
 《各部の接合構成》
 図5は、図2のf-f断面におけるセンサーユニットの断面斜視図である。
 続いて、センサーユニット100の特長あるパッケージ構成の要部について、適宜、図3を交えて詳しく説明する。
 まず、基板15は、インナーケース20に対して、硬化後の固化状態において弾性を有する(柔軟性がある)接着剤(図示せず)で接着されている。好適例としては、シリコーンゴム系の接着剤を用いている。なお、シリコーンゴム系に限定するものではなく、固化状態においてアウターケース1よりも柔軟性がある接着剤であれば良く、常温硬化型、2液混合型、熱硬化型、紫外線硬化型、またはこれらの複合型であっても良い。例えば、ゴム系接着剤や、ホットメルト(ボンド)を用いて接着固定しても良い。また、コネクター16の周囲も隙間なく接着剤が塗布されているため、外気(外部)との気密性(密封性)は確保されており、外気の基板15裏側への入り込みを防止している。
 基板15と、インナーケース20の凹部31とにより形成される空間には、充填部材50が充填されて固化されている。詳しくは後述するが、基板15の厚み方向からみた平面視において凹部31と重なる領域には加速度センサー18や角速度センサー17yなどの慣性センサーが配置され、それら慣性センサーのボディーの一部または全部が充填部材50に覆われるように配置される。ここで、慣性センサーのボディーとは、慣性センサー本体のことをいい、基板15に搭載された状態の慣性センサーの外形を指す。また、充填部材50は、例えば、半導体実装で用いられるモールド材などを好適に用いることができるが、上記したインナーケース20と基板15とを接着する接着剤と同様に、硬化後の固化状態において所定の弾性を有する接着剤など、種々のタイプの接着剤を、基板15の剛性などの物性や、基板15に搭載する慣性センサーなどの電子部品の物性や仕様などに応じた適当なものを充填部材50として用いることができる。
 上記のように、基板15のインナーケース20に接着される側の面には、コネクター16が配置されている第1領域と、複数の慣性センサー(17y,18など)が配置されている第2領域とが形成されている。そして、第1領域においてはコネクター16がインナーケース20の開口部から露出し、且つ、第2領域への水、空気の進入を防ぐようにコネクター16の周囲の基板15部分は接着剤によってインナーケース20と接着されている。また、第2領域はインナーケース20の凹部31との間に空間を形成するが、充填部材50で満たされた閉空間を形成すると充填部材50と基板15との熱膨張率の違いによる圧縮応力等を慣性センサー(17y,18など)が受けてしまい出力変動を引き起こすので好ましくない。そこで第2領域にはインナーケース20側とアウターケース1側とを連通する連通路が形成されているのが好ましい。
 接合部材10は、図3に示すように、アウターケース1の第1接合面6に沿ったリング状の平面形状で、1mm程度の厚さのパッキン(ガスケット)である。好適例として、専用の金型を用いてコンプレッション成型法で形成した、断面が楕円形状のパッキンを採用している。なお、断面形状は、円形状でも良いし、長方形であっても良い。好適例として自己接着性を有するシリコーンゴム製のパッキンを用いている。当該パッキンは、シリコーンゴム系の接着剤を含浸しているため、アウターケース1の第1接合面6と、インナーケース20の第2接合面22とを接着(接合)する役割を果たす。なお、この構成に限定するものではなく、接合部材10はアウターケース1よりも弾性率が小さい材質であれば良い。例えば、ゴムや、エラストマーを用いても良いし、スポンジのような多孔質部材を用いても良い。また、これらの材料でパッキンを形成し、組立て時に接着剤を塗布して接着性を持たせても良いし、これらの材料が、自己粘着性、自己接着性、タック性を有することで、接着性を持たせても良い。例えば、自己粘着性を有するシリコーンゲルシートを接合部材10として適用できる。
 または、前述した基板15用の接着剤を用いても良い。例えば、インナーケース20の第2接合面22に、熱硬化型の接着剤をインクジェット法などにより塗布した後、一次(予備)硬化して半硬化状態の接合部材10を形成しておき、アウターケース1に組込んだ後に、二次(本)硬化することでも良い。好適例では、アウターケース1、インナーケース20ともに、熱伝導性が良いアルミニウムを用いているため、組立て後であっても、効率良く接合部材10を硬化することができる。
 図5に戻る。
 センサーモジュール25(インナーケース20)をアウターケース1に組込むと、アウターケース1の第1接合面6とインナーケース20の第2接合面22とで、接合部材10を挟み込んだ状態となる。詳しくは、2つの面で接合部材10を圧縮して、少し潰した状態となっている。換言すれば、第1接合面6と、接合部材10と、第2接合面22とが重なり合った構成となっている。
 ここで、図5に示すように、インナーケース20の外形と、アウターケース1との間には、全周に渡って一定の隙間が形成されている。換言すれば、インナーケース20と、アウターケース1とは、接合部材10のみを介して接合されている。また、センサーモジュール25(インナーケース20)の上面27の高さは、アウターケース1の上面7よりも低くなっている。換言すれば、アウターケース1に対して、インナーケース20が落し蓋のように篏合されている。これらの隙間や、インナーケース20の厚さの設定は、設計段階において意図的に定めている。なお、センサーユニット100におけるセンサーモジュール25の上面27とアウターケース1の上面7との高さ関係、およびその効果などの詳細については後述する。
 図6は、センサーユニット100を図1と同じ方向からみた分解斜視図である。また、図7は、センサーユニット100における振動(ノイズ振動)伝達抑制構造を示す断面図である。以下、これらの図を用いて、本実施形態のセンサーユニット100が有するノイズ振動の伝達抑制構造などについて詳細に説明する。
 図6に示すように、インナーケース20と基板15とから構成されたセンサーモジュール25と、アウターケース1とを、接合部材を介在させて嵌合したセンサーユニット100において、センサーモジュール25と、アウターケース1とは、締結部材としてのネジ170により締結(固定)されている。本実施形態では、締結部材として2本のネジ170が用いられているが、ネジ170の数はこの限りではない。また、2本のネジ170は、アウターケース1に設けられた貫通孔9に底面8側から挿入され、接合部材10および基板15を挟んで、インナーケース20にネジ止め・固定されている。
 なお、インナーケース20と基板15との接着に用いる接着剤として、固化後に弾性を有する樹脂である接着剤を用いた場合は、ネジ170によるネジ締めによって固化後の接着剤が圧縮されてより気密性が高められる。
 以上、説明したセンサーユニット100の各部の締結構造、および、その締結構造におけるノイズ振動の伝達抑制構造について、以下、詳細に説明する。
 図7において、アウターケース1の底面8側には、ネジ170用の貫通孔9が設けられている。本実施形態では、アウターケース1の底面8の対角付近に2つの貫通孔9が設けられている(図6を参照)。接合部材10の貫通孔9と平面視で重なる位置には貫通孔が設けられ、インナーケース20の貫通孔9と平面視で重なる位置にはネジ穴29が形成されている。そして、アウターケース1の貫通孔9から挿入された締結部材としてのネジ170がインナーケース20のネジ穴29にネジ締めされることにより、アウターケース1内に、センサーモジュール25が接合部材10(弾性部材)を介して締結・固定されている。ここで、アウターケース1の貫通孔9形成部分の底面8側には、ネジ170のネジ頭を収容する凹部が形成され、その凹部において、ネジ170がアウターケース1の貫通孔9に弾性部材310を介して挿入されている。また、締結状態のネジ170のネジ頭が底面8より外側に突出しないように凹部の深さが設定されている。なお、弾性部材310は、アウターケース1よりも弾性率が小さい材質であれば良い。例えば、ゴムや、エラストマーを用いても良いし、スポンジのような多孔質部材を用いても良い。
 また、図7に示すように、インナーケース20に基板15が接着されたセンサーモジュール25において、基板15の厚み方向からみた平面視において凹部31と重なる領域に、各慣性センサー(17x,17y,17z,18)が配置されている。本実施形態では、各慣性センサー(17x,17y,17z,18)のボディーの一部分または全部が凹部31および基板15により形成される空間に配置されている。そして、基板15および凹部31により形成される空間内に充填部材50が充填され固化されている。ここで、基板15および凹部31により形成される空間(凹部空間)に充填する充填部材50により、凹部31空間内の各慣性センサー(17x,17y,17z,18)や他の電子素子などのボディーのなるべく多くの部分が充填部材50に覆われている状態にすることが望ましい。本実施形態では、横置きの慣性センサーである角速度センサー17zおよび加速度センサー18のボディー全体が充填部材50で覆われ、縦置きの慣性センサーである角速度センサー17x,17yのボディーの半分程度が接着剤に覆われている。以上述べた、凹部31空間に充填部材50が充填された構成により、基板15および該基板15に実装された各慣性センサー(17x,17y,17z,18)の一部分または全部が充填部材50に覆われることによって、充填部材50が無い場合からセンサーモジュール25全体の共振周波数を、外部からのノイズ振動の帯域から外すようにシフトさせている。
 また、図7において、アウターケース1とセンサーモジュール25のインナーケース20との間に介在する接合部材10は、アウターケース1の底壁5の一部としての第1接合面6に接触するとともに、第1接合面6(底壁5)から立ち上がる側壁4にも接触するように配置されている。即ち、接合部材10は、断面がL字状(クランク状)に形成されている。
 また、図7に示すように、センサーモジュール25をアウターケース1に収納した状態において、センサーモジュール25の上面(即ち、インナーケース20の底面)27の高さは、アウターケース1の上面7の高さより低くなっている。換言すると、センサーモジュール25をアウターケース1に収納した状態のセンサーユニット100において、アウターケース1から露出するセンサーモジュール25の露出面(上面27)の、底壁5の外面(アウターケース1の底面8)からの高さは、アウターケース1の開口面(上面7と同一面)の、底壁5の外面(底面8)からの高さ良い低くなっている。なお、図7に示す構成において、接合部材10が弾性部材により構成されていることから、アウターケース1の上面7の高さに対するセンサーモジュール25の上面27の高さは、センサーユニット100の組み立て工程において、ネジ170の締め付けトルクによって調整することが可能である。
 以上述べたように、本実施形態に係るセンサーユニット100によれば、以下の効果を得ることができる。
 本実施形態のセンサーユニット100では、各種慣性センサー(17x,17y,17z,18)などが搭載された基板15を搭載したインナーケース20を含んだセンサーモジュール25において、インナーケース20には凹部31が形成されており、基板15の厚み方向からみた平面視において凹部31と重なる領域に各慣性センサー(17x,17y,17z,18)を配置した。特に、本実施形態では、各慣性センサー(17x,17y,17z,18)のボディーの一部分または全部が、基板15および凹部31により形成される空間内に配置されるようにした。そして、基板15および凹部31により形成される空間に充填部材50を充填して固化させた構成とした。
 これにより、基板15に搭載された各慣性センサー(17x,17y,17z,18)が凹部31に充填された充填部材50に覆われ、基板15とインナーケース20とを含んで構成されたセンサーモジュール25の共振周波数を、外部からのノイズ振動の帯域から外すようにシフトさせて、外部からのノイズ振動の影響を低減させることができる。従って、センサーモジュール25における各慣性センサー(17x,17y,17z,18)が、外部からのノイズ振動の影響を受け難くさせることができるので、比較的大きな振動を有する非検出物に対しても、安定した検出精度を保持することが可能なセンサーユニット100を提供することができる。
 また、センサーモジュール25(インナーケース20)は、アウターケース1の底壁5の一部である第1接合面6に接合部材10を介して接合されている。インナーケース20は、アウターケース1に組込んだ際に、全周に渡って一定の隙間が形成されるサイズに設定されているため、両者は、接合部材10のみを介して接合される構成となっている。
 ここで、接合部材10は、アウターケース1よりも弾性率が小さい(柔軟性(がある)材質で構成されているため、アウターケース1から伝わって来るノイズ振動を吸収(減衰)する作用を果たす。換言すれば、接合部材10は、防振性を有する防振部材としてノイズ振動がインナーケース20に及ぶことを抑制している。または、ノイズ振動を緩和する緩衝部材と言い換えても良い。特に、MEMS技術を用いた慣性センサーは、櫛歯状の電極構造などを備えた微小機械であるため、当該構造に拠る固有の共振周波数成分の振動に対して大きな反応を示し、計測結果にノイズが含まれてしまう恐れがあったが、これらの構成によれば、ノイズ振動を確実に抑制することができる。
 また、センサーモジュール25(インナーケース20)の上面27の高さは、アウターケース1の上面7よりも低く、落し蓋状に収納されているため、例えば、インナーケース20側を被装着装置に向けて固定する場合でも、インナーケース20が被装着面と接触しないため、ノイズ振動の伝播を防止することができる。従って、天地(上下)を反転しても使用可能な使い勝手の良いセンサーユニット100を提供することができる。
 また、上記実施形態のセンサーユニット100によれば、アウターケース1とセンサーモジュール25とは、アウターケース1に設けられた貫通孔9から挿入されるネジ170により締結され、アウターケース1とセンサーモジュール25との間に弾性部材としての接合部材10、および、ネジ170のネジ頭とアウターケース1との間に弾性部材310が配置される構成とした。
 この構成によれば、アウターケース1とセンサーモジュール25との間に弾性を有する接合部材10および弾性部材310が配置されることにより、ネジ170によるアウターケース1とセンサーモジュール25との締結構造において、アウターケース1からセンサーモジュール25へのノイズ振動の伝播をより確実に抑えることができる。
 また、接合部材10は、アウターケース1の底壁5の一部である第1接合面6とともに、その第1接合面6から立ち上がる側壁4にも接触させる構成とした。これにより、センサーモジュール25がアウターケース1の側壁4と接触することによるノイズ振動の伝播を抑制することができるとともに、組立工程において、接合部材10をセンサーモジュール25のアウターケース1に対する位置決めガイドとして用いることにより、組立の作業性を向上させる効果が期待できる。
 さらに、切削加工や、金型で精度良く形成されたアウターケース1、接合部材10、インナーケース20を、この順番で重ねて組立てる構成であるため、従来技術のように慣性センサーを宙吊り状態とした構成とは異なり、慣性センサーを搭載した基板15(センサーモジュール25)を精度良く位置決めできる。換言すれば、慣性センサーの位置が常に安定している。また、重ねて組立てる構成は、作業し易く製造効率が良い。
 よって、センサーユニット100によれば、慣性センサーの位置が安定しているため信頼性が高く、防振性がある接合部材10を備えているためノイズ振動の影響を受け難く、検出精度が安定する。
 従って、信頼性が高く、検出精度の安定したセンサーユニット100を提供することができる。また、アルミ製のアウターケース1に、同じくアルミ製のインナーケース20を入れ子状に篏合させる構造であるため、小型(コンパクト)で、かつ、堅牢(強固)なパッケージ構成となっている。従って、設置場所の選択肢が広く、かつ、耐久性に優れたセンサーユニット100を提供することができる。
 さらに、接合部材10として気密性に優れたシリコーンゴム製のパッキンを用いている。よって、接合部材10は、アウターケース1の第1接合面6と、インナーケース20の第2接合面22とを接着するだけでなく、リング状の接合面の気密性も確保している。また、コネクター16の周囲も隙間なく接着剤が塗布されているため、インナーケース20の開口部21も気密性が確保されている。これらの構成により、センサーユニット100の内部は、外部からの気密性(防水性)が確保されている。よって、センサーユニット100の内部環境は、外部環境の影響を受け難くなり、常に略一定の安定した環境下で慣性力の測定を行うことができる。換言すれば、使用可能な環境条件が広くなる。
 従って、使用可能な環境条件が広く、信頼性が高いセンサーユニット100を提供することができる。なお、気密性は、前述した接合部材10用の他の材料を用いた場合であっても、同様に確保することが可能である。
 また、基板15は、インナーケース20に対して、固化状態において弾性を有する(柔軟性がある)接着剤で接着されているため、この接着剤も、インナーケース20から基板15へのノイズ振動を抑制する防振部材、緩衝部材として機能する。
 よって、接合部材10に加えて、基板の接着剤も防振部材、緩衝部材として機能するため、より効果的にノイズ振動を低減することができる。
 従って、より信頼性が高く、検出精度の安定したセンサーユニット100を提供することができる。
 (実施形態2)
 図8は、実施形態2に係るセンサーユニットに搭載される基板を示す平面図である。また、図9は、実施形態2に係るセンサーユニットにおける振動伝達抑制構造を示す断面図である。
 以下、実施形態2に係るセンサーユニットの構成について、これらの図を参照して説明する。なお、実施形態1と同一の構成部位については、同一の番号を使用し、重複する説明は省略する。
 図8において、実施形態2に係るセンサーユニット100B(図9を参照)に搭載される基板15´は、上記実施形態1のセンサーユニット100における基板15(図4などを参照のこと)と概ね同じ構成を有している。実施形態2に係る基板15´の厚み方向からみた平面視において凹部31と重なる領域には、貫通孔部90が形成されている。貫通孔部90は、本実施形態では、各種慣性センサー(17x,17y,17z,18)が実装された領域の近傍に形成されているが、これに限られるものではない。貫通孔部90は、基板15´の基材のどの部分に設けられていてもよく、基板15´の外周のうち、基板15およびインナーケース20の凹部31により形成される空間に充填部材50を充填したときに、充填部材50の溢れ出しが起こると支障が生じる箇所の近傍に形成することが好ましい。
 また、貫通孔部90の形状や個数についても、図8の貫通孔部90の形状や個数に限られるものではなく、貫通孔部の形状や個数を適宜に形成することができる。好ましくは、貫通孔部90を、基板15の平面視で少なくとも一つの慣性センサーより基板15の中央側に配置するとよく、更に好ましくは、凹部31と基板15とにより形成される空間において、インナーケース20側とアウターケース1側とを連通する連通路に対して、慣性センサーを挟んだ反対側に位置するとよい。これによって、凹部31に充填部材50を入れた後に、慣性センサーなどが実装された基板15を搭載したときに、充填部材50が空間の解放部分である連通路とともに貫通孔部90側にも移動するので、基板15と凹部31とにより形成される空間に充填部材50が均等に行き渡らせることができ、充填部材50により慣性センサーを均等に覆うことができる。
 図9に示すように、基板15´をインナーケース20に搭載したセンサーモジュール25において、基板15´および凹部31により形成される空間に充填された充填部材50は、空間の容積を越えた分が貫通孔部90に収容される。この構成により、センサーモジュール25の組立工程において、工程管理が容易になったり、充填部材50が不要な部位に溢れ出してしまうなどの不具合を防止したりする効果を得ることができる。以下、図6を用いて詳細に説明する。
 図6において、センサーユニット100を製造する際には、まず、インナーケース20に基板15を搭載(接着)してセンサーモジュール25を組立て、そのセンサーモジュール25を、接合部材10を間に介してアウターケース1に収容してネジ170によりネジ止め・固定する工順がとられる。
 このセンサーユニットの組立工程における、センサーモジュール25を組立てる工程について詳述すると、まず、上述した基板15とインナーケース20とを接着する接着剤を、インナーケース20または基板15の所定の位置に塗布するとともに、インナーケース20の凹部31に充填部材50を所定量充填する。そして、インナーケース20と基板15とを位置合わせして重ね合わせ、その後、基板15とインナーケース20とを接着する接着剤、および凹部31空間に充填された充填部材50を硬化させる。
 ここで、インナーケース20の凹部31に充填する充填部材50の「所定量」は、インナーケース20に基板15´を搭載(接着)したときに、基板15および凹部31により形成される空間内に配置される各慣性センサー(17x,17y,17z,18)や他の電子部品などの隙間に充填部材50が行き渡るように充填されて、且つ、空間から外部へ溢れ出す余分な充填部材50がない量であることが望ましい。換言すれば、基板15および凹部31により形成される空間の容積から、空間内に配置される各慣性センサー(17x,17y,17z,18)およびその他の電子素子等の合計の体積を差し引いた量が「所定量」であるといえる。
 例えば、接着剤の充填量を管理して充填する工程で一般的に用いられるディスペンサーにより充填部材50の充填を行う場合、周辺の温度の変化や、充填部材50の経時的な粘度変化などにより、充填部材50の充填量が変化してしまうことによって充填量が正確に管理できなくなり、充填部材50の充填不足、または、凹部31空間から望まない部位への充填部材50の溢れ出しが起こる虞がある。本実施形態では、基板15´の厚み方向において平面視において凹部31と重なる領域に貫通孔部90が形成されているので、基板15´および凹部31により形成される空間に充填部材50を充填したときに、凹部31空間の容積を越えた過剰分の充填部材50は貫通孔部90内に収容される。つまり、上記したディスペンサーによる充填部材50吐出量の変化を予測して、基板15´の基材の厚み内における貫通孔部90内部の容積の範囲内で充填部材50の吐出量を若干多めに設定しておくことにより、充填部材50の充填不足、または、充填部材50が不要な部位に溢れ出してしまう不具合を防止することができる。
 以上述べたように、本実施形態に係る基板15´を搭載したセンサーユニット100Bによれば、実施形態1の効果に加えて、センサーユニット100Bの組立工程における充填部材50の充填量の管理がし易くなり、充填部材50によるノイズ振動の影響の抑制効果がより顕著に得られるセンサーユニット100Bを提供することができる。
 また、貫通孔部90から充填部材50の充填状態を視認することができるので、充填部材50の吐出量管理や、充填部材50の充填状態のような品質検査がし易いという効果が得られる。
 なお、本実施形態では、基板15´に貫通孔部90を設ける構成について説明したが、これに限らず、基板の厚み方向からみた平面視において凹部31と重なる領域に、凹部31と対向する側の面に開口する溝部を設ける構成としてもよい。この構成によれば、凹部31空間に収まり切らない過剰な充填部材50が溝部に収容されるので、上記貫通孔部90と概ね同様な効果を得ることができる。
 本発明は上述した実施形態に限定されず、上述した実施形態に種々の変更や改良などを加えることが可能である。変形例を以下に述べる。
 (変形例1)
 図10および図11は、変形例1に係るセンサーユニットの一態様をそれぞれ示す断面図である。
 上記実施形態では、接合部材10は、1つとして説明したが、この構成に限定するものではなく、複数個用いても良い。以下、変形例1に係るセンサーユニットについて説明する。なお、上記実施形態と同一の構成部位については、同一の番号を附し、重複する説明は省略する。
 変形例1のセンサーユニットは、例えば、図10に示すように、接合部材10に加えて、インナーケース20上部(上面)の周縁部に接合部材11をさらに配置しても良い。この場合、接合部材10は多孔質部材とし、接合部材11は断面がL字状(クランク状)でシリコーンゴム製としても良い。この構成によれば、接合部材10により防振性を確保し、接合部材11で気密性を確保するというように、材料の特性を活かした2つの部材を補完的に用いることにより、必要な防振性と気密性とを確保することができる。さらに、接合部材10,11の2ヶ所ともに接着することにより、アウターケース1に対してインナーケース20(センサーモジュール)を、より確実に接着することができる。
 また、インナーケース20上部に断面がL字状の接合部材11を配置する構成に限定するものではなく、他の部分に接合部材を配置しても良い。例えば、図11に示すように、インナーケース20の側面の周囲に溝を形成して、当該溝に接合部材12を配置することでも良い。この構成でも、同様に、必要な防振性および気密性を確保することができる。さらに、接合部材12の断面はシンプルな円形で良く、また、外から接合部材12が見えないので、美観を損なう心配もない。また、接合部材10は、底壁5において中央部よりも一段高い周縁部である第1接合面6に配置することとして説明したが、これに限定するものではなく、アウターケース1とインナーケース20とが向かい合う部分に配置する構成であれば良い。例えば、底壁5に第1接合面6を形成せずに、側壁4と底壁5とによるシンブルな構成として、底壁5の周縁部に接合部材10を直接配置することであっても良い。
 (変形例2)
 図12および図13は、変形例2に係る一態様の部分拡大断面図である。具体的には、図7のセンサーユニット100における基板15のコネクター16実装部分を上下逆にして拡大して示している。
 上記実施形態のセンサーユニット100において、基板15には、外部と接続するためのコネクター16が実装されており、インナーケース20には、コネクター16を外部に露出するための開口部21が形成されている。この構成において、コネクター16には、外部機器としての被装着装置からソケット型(メス)のコネクターが接続されるが、基板15にコネクター16の外部接続端子を半田付け等により実装すると、被装着装置が生ずるノイズ振動が、コネクター16を介してセンサーモジュールに伝播する虞がある。このような不具合を回避する構成として、例えば、図12に示すように、コネクター16を、弾性部材210を介して基板15に位置決め・固定し、コネクター16と基板15との電気的接続は、フレキシブル基板や被覆ケーブルなどのフレキシブル配線部材215を用いて行うものである。
 また、図13に示すように、基板15とコネクター16とをフレキシブル配線部材216により接続して、コネクター16の基板15に対する機械的な固定は行わない構成としてもよい。以上、述べた方法によって基板15とコネクター16との接合・接続構造とすることにより、コネクター16からノイズ振動が伝わって来る虞は低くなる。従って、検出精度の安定性、及び信頼性が高く、かつ、被装着装置との間で確実な通信動作を行うことが可能なセンサーユニット100を提供することができる。
 (変形例3)
 図14は、変形例3に係るセンサーユニットの斜視図である。なお、上記実施形態と同一の構成部位については、同一の番号を附し、重複する説明は省略する。
 図14に示すセンサーユニット100Cは、アルミニウム、亜鉛、ステンレスなどの金属を削り出して形成され、アウターケース1の外面の大部分が絶縁性の塗料により塗装された塗装面82が形成されている。塗装面82は、センサーユニット100Cの外観の装飾や、アウターケース1の表面の酸化やキズなどを抑制する表面保護、あるいは絶縁などを目的として施される。
 また、平面形状が略正方形の直方体であるアウターケース1の正方形の平面において、対角線方向に位置する2ヶ所の頂点近傍に形成されたネジ穴2の縁からその周辺部分にかけて、塗装面82の開口部であり下地の金属面が露出した露出部81が形成されている。本実施形態の露出部81は、略正方形の平面の4つのコーナー部のうち1つのコーナー部のネジ穴2周辺の領域にのみ露出部81が形成されている。この露出部81が形成されたコーナー部と平面上の対角線方向に位置するコーナー部の2ヶ所のネジ穴2に、金属製の2本のネジ70を通して、自動車などの被装着体(装置)の被装着面71にセンサーユニット100Cが固定され、使用される。
 本変形例のセンサーユニット100Cによれば、被装着体に金属製のネジ70を通して固定することにより、被装着体のグランドにセンサーユニット100Cを接地することができるので、より正確な検出結果を得ることが可能なセンサーユニット100Cを提供することができる。
 また、本変形例では、アウターケース1の略正方形の平面の4つのコーナー部のうち1つのコーナー部にのみ露出部81を設ける構成とした。これにより、露出部81を目安として、被装着体に対するセンサーユニット100Cの取り付け方向を確認することができるという効果を奏する。
 なお、露出部81をセンサーユニット100Cの取り付け方向の目安として用いる必要がなければ、露出部を、上記露出部81およびそれと対向するコーナー部にも設けて2箇所としてもよいし、その他のコーナー部を含めた3か所、あるいは4か所に設けてもよい。
 (変形例4)
 図15は、変形例4に係るセンサーユニットの分解斜視図である。
 以下、図15を主体に、適宜他の図も交えながら変形例4に係るセンサーユニットの構成について詳細に説明する。なお、上記実施形態および変形例と同一の構成部位については、同一の番号を附し、重複する説明は省略する。
 図15に示すように、センサーユニット100Dは、アウターケース1d、接合部材10、センサーモジュール25などから構成されている。換言すれば、アウターケース1dの内部3に、接合部材10を介在させて、センサーモジュール25を篏合(挿入)した構成となっている。センサーモジュール25は、インナーケース20と、基板15とから構成されている。なお、説明を解り易くするために、部位名をアウターケース、インナーケースとしているが、第1ケース、第2ケースと呼び換えても良い。
 アウターケース1dは、アルミニウムを箱状に削り出した台座である。材質は、アルミニウムに限定するものではなく、ステンレスなど他の金属や、樹脂、または、金属と樹脂の複合材などを用いても良い。アウターケース1dの外形は、前述したセンサーユニット100dの全体形状と同様に、平面形状が略正方形の直方体であり、正方形の対角線方向に位置する2ヶ所の頂点近傍に、固定部としての切欠き穴2dが形成されている。なお、切欠き穴2dに限定するものではなく、アウターケース1dの側面にフランジ(耳)を形成して、フランジ部分をネジ止めする構成としても良い。
 アウターケース1dは、外形が直方体で蓋のない箱状であり、その内部3(内側)は、底壁5と側壁4とで囲まれた内部空間(容器)となっている。内部3の平面形状は、正方形の3つの頂点部分の角を面取りした7角形であり、面取りされた3つの頂点部分のうち、2ヶ所は切欠き穴2dの位置に対応している。また、内部3の断面形状(厚さ方向)において、底壁5と側壁4との間には、底壁5よりも一段高い第1接合面6が形成されている。第1接合面6は、側壁4の一部であり、平面的に底壁5を囲ってリング状に形成された一段の階段状の部位である。
 インナーケース20は、基板15を支持する部材であり、アウターケース1dの内部3に収まる形状となっている。詳しくは、平面的には、正方形の3つの頂点部分の角を面取りした7角形であり、その中に長方形の貫通穴である開口部21が形成されている。面取りされた3つの頂点部分のうち、2ヶ所はアウターケース1dの切欠き穴2dの位置に対応している。厚さ方向(Z軸方向)は、アウターケース1dの上面7から第1接合面6までの高さよりも、低くなっている。好適例では、インナーケース20もアルミニウムを削り出して形成しているが、アウターケース1dと同様に他の材質を用いても良い。
 インナーケース20の裏面(アウターケース1d側の面)には、基板15を位置決めするための案内ピンや、支持面(いずれも図示せず)が形成されている。基板15は、当該案内ピンや、支持面にセット(位置決め搭載)されてインナーケース20の裏面に接着される。なお、基板15の詳細については後述する。インナーケース20の裏面の周縁部は、リング状の平面からなる第2接合面22となっている。第2接合面22は、平面的にアウターケース1dの第1接合面6と略同様な形状であり、インナーケース20をアウターケース1dにセットした際には、接合部材10を挟持した状態で2つの面が向い合うことになる。なお、アウターケース1dおよびインナーケース20の構造については、一例を示すものであり、この構造に限定されるものではない。
 図16は、本変形例に係るセンサーユニットの断面斜視図である。
 続いて、センサーユニット100Dの特長あるパッケージ構成の要部について、適宜、図15を交えて詳しく説明する。
 まず、基板15は、インナーケース20に対して、硬化後も柔軟性(弾性)がある接着剤(図示せず)で接着されている。好適例としては、シリコーンゴム系の接着剤を用いている。なお、シリコーンゴム系に限定するものではなく、硬化後においてアウターケース1よりも柔軟性がある接着剤であれば良く、常温硬化型、2液混合型、熱硬化型、紫外線硬化型、またはこれらの複合型であっても良い。例えば、ゴム系接着剤や、ホットメルト(ボンド)を用いて接着固定しても良い。また、コネクター16の周囲も隙間なく接着剤が塗布されているため、外気(外部)との気密性(密封性)は確保されており、外気の基板15裏側への入り込みを防止している。
 接合部材10は、図15に示すように、アウターケース1dの第1接合面6に沿ったリング状の平面形状で、1mm程度の厚さのパッキン(ガスケット)である。好適例として、専用の金型を用いてコンプレッション成型法で形成した、断面が楕円形状のパッキンを採用している。なお、断面形状は、円形状でも良いし、長方形であっても良い。好適例として自己接着性を有するシリコーンゴム製のパッキンを用いている。当該パッキンは、シリコーンゴム系の接着剤を含浸しているため、アウターケース1dの第1接合面6と、インナーケース20の第2接合面22とを接着(接合)する役割を果たす。なお、この構成に限定するものではなく、接合部材10はアウターケース1dよりも柔軟性(弾性)がある材質であれば良い。例えば、ゴムや、エラストマーを用いても良いし、スポンジのような多孔質部材を用いても良い。また、これらの材料でパッキンを形成し、組立て時に接着剤を塗布して接着性を持たせても良い。
 または、前述した基板15用の接着剤を用いても良い。例えば、インナーケース20の第2接合面22に、熱硬化型の接着剤をインクジェット法などにより塗布した後、一次(予備)硬化して半硬化状態の接合部材10を形成しておき、アウターケース1dに組込んだ後に、二次(本)硬化することでも良い。好適例では、アウターケース1d、インナーケース20ともに、熱伝導性が良いアルミニウムを用いているため、組立て後であっても、効率良く接合部材10を硬化することができる。
 図16に戻る。
 センサーモジュール25(インナーケース20)をアウターケース1dに組込むと、アウターケース1dの第1接合面6とインナーケース20の第2接合面22とで、接合部材10を挟み込んだ状態となる。詳しくは、2つの面で接合部材10を圧縮して、少し潰した状態となっている。換言すれば、第1接合面6と、接合部材10と、第2接合面22とが重なり合った構成となっている。
 ここで、図16に示すように、インナーケース20の外形と、アウターケース1dとの間には、全周に渡って一定の隙間が形成されている。換言すれば、インナーケース20と、アウターケース1dとは、接合部材10のみを介して接合されている。また、センサーモジュール25(インナーケース20)の上面の高さは、アウターケース1dの上面7よりも低くなっている。換言すれば、アウターケース1dに対して、インナーケース20が落し蓋のように篏合されている。これらの隙間や、インナーケース20の厚さの設定は、設計段階において意図的に定めている。
 以上述べたように、本変形例に係るセンサーユニット100Dによれば、以下の効果を得ることができる。
 センサーモジュール25(インナーケース20)は、アウターケース1dの内壁面に接合部材10を介して接合されている。インナーケース20は、アウターケース1dに組込んだ際に、全周に渡って一定の隙間が形成されるサイズに設定されているため、両者は、接合部材10のみを介して接合される構成となっている。
 ここで、接合部材10は、アウターケース1dよりも柔軟性(弾性)がある材質で構成されているため、アウターケース1dから伝わって来るノイズ振動を吸収(減衰)する作用を果たす。換言すれば、接合部材10は、防振性を有する防振部材としてノイズ振動がインナーケース20に及ぶことを抑制している。または、ノイズ振動を緩和する緩衝部材と言い換えても良い。特に、MEMS技術を用いた慣性センサーは、櫛歯状の電極構造などを備えた微小機械であるため、当該構造に拠る固有の共振周波数成分の振動に対して大きな反応を示し、計測結果にノイズが含まれてしまう恐れがあったが、これらの構成によれば、ノイズ振動を確実に抑制することができる。
 さらに、切削加工や、金型で精度良く形成されたアウターケース1d、接合部材10、インナーケース20を、この順番で重ねて組立てる構成であるため、従来技術のように慣性センサーを宙吊り状態とした構成とは異なり、慣性センサーを搭載した基板15(センサーモジュール25)を精度良く位置決めできる。換言すれば、慣性センサーの位置が常に安定している。また、重ねて組立てる構成は、作業し易く製造効率が良い。
 よって、センサーユニット100Dによれば、慣性センサーの位置が安定しているため信頼性が高く、防振性がある接合部材10を備えているためノイズ振動の影響を受け難く、検出精度が安定する。
 従って、信頼性が高く、検出精度の安定したセンサーユニット100Dを提供することができる。また、アルミ製のアウターケース1dに、同じくアルミ製のインナーケース20を入れ子状に篏合させる構造であるため、小型(コンパクト)で、かつ、堅牢(強固)なパッケージ構成となっている。従って、設置場所の選択肢が広く、かつ、耐久性に優れたセンサーユニット100Dを提供することができる。
 さらに、接合部材10として気密性に優れたシリコーンゴム製のパッキンを用いている。よって、接合部材10は、アウターケース1dの第1接合面6と、インナーケース20の第2接合面22とを接着するだけでなく、リング状の接合面の気密性も確保している。また、コネクター16の周囲も隙間なく接着剤が塗布されているため、インナーケース20の開口部21も気密性が確保されている。これらの構成により、センサーユニット100Dの内部は、外部からの気密性(防水性)が確保されている。よって、センサーユニット100Dの内部環境は、外部環境の影響を受け難くなり、常に略一定の安定した環境下で慣性力の測定を行うことができる。換言すれば、使用可能な環境条件が広くなる。
 従って、使用可能な環境条件が広く、信頼性が高いセンサーユニット100Dを提供することができる。なお、気密性は、前述した接合部材10用の他の材料を用いた場合であっても、同様に確保することが可能である。
 また、基板15は、インナーケース20に対して、硬化後も柔軟性がある接着剤で接着されているため、この接着剤も、インナーケース20から基板15へのノイズ振動を抑制する防振部材、緩衝部材として機能する。
 よって、接合部材10に加えて、基板の接着剤も防振部材、緩衝部材として機能するため、より効果的にノイズ振動を低減することができる。
 従って、より信頼性が高く、検出精度の安定したセンサーユニット100Dを提供することができる。
 また、基板15には、外部と接続するためのコネクター16が実装されており、インナーケース20には、コネクター16を外部に露出するための開口部21が形成されている。コネクター16には、被装着装置からソケット型(メス)のコネクターが接続されるが、配線部分はフレキシブル基板や被覆ケーブルなどの柔軟性のある配線部材が用いられるため、コネクター16からノイズ振動が伝わって来る恐れは低い。従って、検出精度の安定性、及び信頼性が高く、かつ、被装着装置との間で確実な通信動作を行うことが可能なセンサーユニット100Dを提供することができる。
 また、センサーモジュール25(インナーケース20)の上面の高さは、アウターケース1dの上面7よりも低く、落し蓋状に収納されているため、例えば、インナーケース20側を被装着装置に向けて固定する場合でも、インナーケース20が被装着面と接触しないため、ノイズ振動の伝播を防止することができる。従って、天地(上下)を反転しても使用可能な使い勝手の良いセンサーユニット100Dを提供することができる。
 (変形例5)
 図17および図18は、変形例5に係るセンサーユニットの一例を示す断面図である。
 上記変形例4では、接合部材10は、1つとして説明したが、この構成に限定するものではなく、複数個用いても良い。例えば、図17に示すように、接合部材10に加えて、インナーケース20上部(上面)の周縁部に接合部材11をさらに配置しても良い。この場合、接合部材10は多孔質部材とし、接合部材11は断面がL字状(クランク状)でシリコーンゴム製としても良い。この構成によれば、接合部材10により防振性を確保し、接合部材11で気密性を確保するというように、材料の特性を活かした2つの部材を補完的に用いることにより、必要な防振性と気密性とを確保することができる。さらに、接合部材10,11の2ヶ所ともに接着することにより、アウターケース1に対してインナーケース20(センサーモジュール)を、より確実に接着することができる。
 また、インナーケース20上部に断面がL字状の接合部材11を配置する構成に限定するものではなく、他の部分に接合部材を配置しても良い。例えば、図18に示すように、インナーケース20の側面の周囲に溝を形成して、当該溝に接合部材12を配置することでも良い。この構成でも、同様に、必要な防振性および気密性を確保することができる。さらに、接合部材12の断面はシンプルな円形で良く、また、外から接合部材12が見えないので、美観を損なう心配もない。また、接合部材10は、底壁5よりも一段高い第1接合面6に配置することとして説明したが、これに限定するものではなく、アウターケース1dとインナーケース20とが向かい合う部分に配置する構成であれば良い。例えば、第1接合面6を形成せずに、側壁4と底壁5とによるシンブルな構成として、底壁5の周縁部に接合部材10を直接配置することであっても良い。
 (変形例6)
 図19は、変形例6に係るセンサーユニットが被装着面に固定された状態を示す斜視図である。また、図20は、センサーユニットの概要を図19の被装着面側からみて示す斜視図である。まず、本変形例に係るセンサーユニット100Eの概要について説明する。なお、上記実施形態と同一の構成部位については、同一の番号を附し、重複する説明は省略する。
 図19において、センサーユニット100Eは、自動車や、ロボットなどの運動体(被装着装置)の姿勢や、挙動(慣性運動量)を検出する慣性計測装置(IMU:Inertial Measurement Unit)である。センサーユニット100Eは、3軸の加速度センサーと、3軸の角速度センサーとを備えた、いわゆる6軸モーションセンサーとして機能する。
 センサーユニット100Eは、平面形状が略正方形の直方体であり、正方形の一辺の長さが約3cmで、厚さが約1cmのサイズである。正方形の対角線方向に位置する2ヶ所の頂点近傍に、固定部としての切欠き穴2eが形成されている。この2ヶ所の切欠き穴2eに、2本のネジ70を通して、自動車などの被装着体(装置)の被装着面71に、センサーユニット100Eを固定した状態で使用する。なお、上記サイズは一例であり、部品の選定や設計変更により、例えば、スマートフォンや、デジタルカメラに搭載可能なサイズに小型化することも可能である。
 センサーユニット100Eは、被装着面71から伝わって来る自動車のエンジン振動などのノイズ振動を抑制するための特長あるパッケージ構成を採用している。この構成により、従来のセンサーユニットよりも、高い信頼性と、検出精度の安定性とを実現している。以下、この特長あるパッケージ構成について、詳しく説明する。なお、この構成は、6軸モーションセンサーを備えたIMUに限定するものではなく、慣性センサーを備えたユニット、またはデバイスであれば適用可能である。
 図20に示すように、センサーユニット100Eの表面には、開口部21が形成されている。開口部21の内部(内側)には、プラグ型(オス)のコネクター16が配置されている。コネクター16は、複数のピンを有しており、複数のピンが図20に正対して横方向に延在配置されている。なお、以下説明において、この複数のピンの延在方向をX軸方向とする。換言すれば、センサーユニット100Eの正方形状において、図20に正対して横方向となる辺の延在方向をX軸方向とする。また、正方形状においてX軸方向と直交する方向の辺の延在方向をY軸方向とする。そして、センサーユニット100Eの厚さ方向をZ軸方向として説明する。
 コネクター16には、被装着装置からソケット型(メス)のコネクター(図示せず)が接続されて、センサーユニット100Eの電力や、検出データなどの電気信号の送受信が両者間で行われる。
 センサーユニット100Eは、被装着面71(図19を参照)から伝わって来る自動車のエンジン振動などのノイズ振動を抑制するための特長あるパッケージ構成を採用している。この構成により、従来のセンサーユニットよりも、高い信頼性と、検出精度の安定性とを実現している。以下、この特長あるパッケージ構成について、詳しく説明する。なお、この構成は、6軸モーションセンサーを備えたIMUに限定するものではなく、慣性センサーを備えたユニット、またはデバイスであれば適用可能である。
 図21は、本変形例のセンサーユニット100Eを図19と同じ方向からみて示す分解斜視図である。また、図22は、センサーユニット100eにおける振動(ノイズ振動)伝達抑制構造を示す断面図である。以下、これらの図を用いて、本実施形態のセンサーユニット100eが有するノイズ振動の伝達抑制構造などについて詳細に説明する。
 図21に示すように、インナーケース20と基板15とから構成されたセンサーモジュール25と、アウターケース1eとを、接合部材を介在させて嵌合したセンサーユニット100において、センサーモジュール25と、アウターケース1eとは、締結部材としてのネジ170により締結(固定)されている。本実施形態では、締結部材として2本のネジ170が用いられているが、ネジ170の数はこの限りではない。また、2本のネジ170は、アウターケース1eに設けられた貫通孔9に底面8側から挿入され、接合部材10および基板15を挟んで、インナーケース20にネジ止め・固定されている。以上、説明したセンサーユニット100Eの各部の締結構造、および、その締結構造におけるノイズ振動の伝達抑制構造について、以下、詳細に説明する。
 図22において、アウターケース1eの底面8側には、ネジ170用の貫通孔9が設けられている。本実施形態では、アウターケース1の底面8の対角付近に2つの貫通孔9が設けられている(図21を参照)。接合部材10の貫通孔9と平面視で重なる位置には貫通孔が設けられ、インナーケース20の貫通孔9と平面視で重なる位置にはネジ穴29が形成されている。そして、アウターケース1eの貫通孔9から挿入された締結部材としてのネジ170がインナーケース20のネジ穴29にネジ締めされることにより、アウターケース1e内に、センサーモジュール25が接合部材10(弾性部材)を介して締結・固定されている。ここで、アウターケース1eの貫通孔9形成部分の底面8側には、ネジ170のネジ頭を収容する凹部が形成され、その凹部において、ネジ170がアウターケース1の貫通孔9に弾性部材310を介して挿入されている。また、締結状態のネジ170のネジ頭が底面8より外側に突出しないように凹部の深さが設定されている。
 また、図22において、アウターケース1eとセンサーモジュール25のインナーケース20との間に介在する接合部材10は、アウターケース1eの底壁5の一部としての第1接合面6に接触するとともに、第1接合面6(底壁5)から立ち上がる側壁4にも接触するように配置されている。即ち、接合部材10は、断面がL字状(クランク状)に形成されている。
 また、図22に示すように、センサーモジュール25をアウターケース1eに収納した状態において、センサーモジュール25の上面(即ち、インナーケース20の底面)27の高さは、アウターケース1eの上面7の高さより低くなっている。なお、図22に示す構成において、接合部材10が弾性部材により構成されていることから、アウターケース1eの上面7の高さに対するセンサーモジュール25の上面27の高さは、センサーユニット100Eの組み立て工程において、ネジ170の締め付けトルクによって調整することが可能である。
 以上述べたように、本変形例に係るセンサーユニット100Eによれば、以下の効果を得ることができる。
 センサーモジュール25(インナーケース20)は、アウターケース1eの底壁5の一部である第1接合面6に接合部材10を介して接合されている。インナーケース20は、アウターケース1eに組込んだ際に、全周に渡って一定の隙間が形成されるサイズに設定されているため、両者は、接合部材10のみを介して接合される構成となっている。
 ここで、接合部材10は、アウターケース1eよりも弾性率が小さい(柔軟性(がある)材質で構成されているため、アウターケース1eから伝わって来るノイズ振動を吸収(減衰)する作用を果たす。換言すれば、接合部材10は、防振性を有する防振部材としてノイズ振動がインナーケース20に及ぶことを抑制している。または、ノイズ振動を緩和する緩衝部材と言い換えても良い。特に、MEMS技術を用いた慣性センサーは、櫛歯状の電極構造などを備えた微小機械であるため、当該構造に拠る固有の共振周波数成分の振動に対して大きな反応を示し、計測結果にノイズが含まれてしまう恐れがあったが、これらの構成によれば、ノイズ振動を確実に抑制することができる。
 また、センサーモジュール25(インナーケース20)の上面27の高さは、アウターケース1eの上面7よりも低く、落し蓋状に収納されているため、例えば、インナーケース20側を被装着装置に向けて固定する場合でも、インナーケース20が被装着面と接触しないため、ノイズ振動の伝播を防止することができる。従って、天地(上下)を反転しても使用可能な使い勝手の良いセンサーユニット100Eを提供することができる。
 また、上記実施形態のセンサーユニット100Eによれば、アウターケース1eとセンサーモジュール25とは、アウターケース1eに設けられた貫通孔9から挿入されるネジ170により締結され、アウターケース1eとセンサーモジュール25との間に弾性部材としての接合部材10、および、ネジ170のネジ頭とアウターケース1eとの間に弾性部材310が配置される構成とした。
 この構成によれば、アウターケース1eとセンサーモジュール25との間に弾性を有する接合部材10および弾性部材310が配置されることにより、ネジ170によるアウターケース1eとセンサーモジュール25との締結構造において、アウターケース1eからセンサーモジュール25へのノイズ振動の伝播をより確実に抑えることができる。
 また、接合部材10は、アウターケース1eの底壁5の一部である第1接合面6とともに、その第1接合面6から立ち上がる側壁4にも接触させる構成とした。これにより、センサーモジュール25がアウターケース1eの側壁4と接触することによるノイズ振動の伝播を抑制することができるとともに、組立工程において、接合部材10をセンサーモジュール25のアウターケース1eに対する位置決めガイドとして用いることにより、組立の作業性を向上させる効果が期待できる。
 さらに、切削加工や、金型で精度良く形成されたアウターケース1e、接合部材10、インナーケース20を、この順番で重ねて組立てる構成であるため、従来技術のように慣性センサーを宙吊り状態とした構成とは異なり、慣性センサーを搭載した基板15(センサーモジュール25)を精度良く位置決めできる。換言すれば、慣性センサーの位置が常に安定している。また、重ねて組立てる構成は、作業し易く製造効率が良い。
 よって、センサーユニット100Eによれば、慣性センサーの位置が安定しているため信頼性が高く、防振性がある接合部材10を備えているためノイズ振動の影響を受け難く、検出精度が安定する。
 従って、信頼性が高く、検出精度の安定したセンサーユニット100Eを提供することができる。また、アルミ製のアウターケース1eに、同じくアルミ製のインナーケース20を入れ子状に篏合させる構造であるため、小型(コンパクト)で、かつ、堅牢(強固)なパッケージ構成となっている。従って、設置場所の選択肢が広く、かつ、耐久性に優れたセンサーユニット100Eを提供することができる。
 さらに、接合部材10として気密性に優れたシリコーンゴム製のパッキンを用いている。よって、接合部材10は、アウターケース1eの第1接合面6と、インナーケース20の第2接合面22とを接着するだけでなく、リング状の接合面の気密性も確保している。また、コネクター16の周囲も隙間なく接着剤が塗布されているため、インナーケース20の開口部21も気密性が確保されている。これらの構成により、センサーユニット100の内部は、外部からの気密性(防水性)が確保されている。よって、センサーユニット100Eの内部環境は、外部環境の影響を受け難くなり、常に略一定の安定した環境下で慣性力の測定を行うことができる。換言すれば、使用可能な環境条件が広くなる。
 従って、使用可能な環境条件が広く、信頼性が高いセンサーユニット100Eを提供することができる。なお、気密性は、前述した接合部材10用の他の材料を用いた場合であっても、同様に確保することが可能である。
 また、基板15は、インナーケース20に対して、固化状態において弾性を有する(柔軟性がある)接着剤で接着されているため、この接着剤も、インナーケース20から基板15へのノイズ振動を抑制する防振部材、緩衝部材として機能する。
 よって、接合部材10に加えて、基板の接着剤も防振部材、緩衝部材として機能するため、より効果的にノイズ振動を低減することができる。
 従って、より信頼性が高く、検出精度の安定したセンサーユニット100Eを提供することができる。
 (変形例7)
 上記実施形態2では、凹部31空間内に充填する充填部材50の充填量を適切にして、且つ、製造工程における充填量の管理をし易くするために、基板15´に貫通孔部90、または、溝部を設ける構成について説明した。これに限らず、凹部31が形成されたインナーケース20側に過剰な充填部材50を収容するスペースを設ける構成としてもよい。
 図23は、変形例7に係るセンサーユニットを示す断面図である。以下、インナーケース20側で充填部材の充填量を適切に制御し得る構造の一例について説明する。なお、なお、上記実施形態と同一の構成部位については、同一の番号を附し、重複する説明は省略する。
 図23に示す本変形例のセンサーユニット100Fは、インナーケース20の凹部31の周縁の一部に、インナーケース20の厚み方向において凹部31の凹底面よりも高い棚部31fが形成されている(図23においては、凹部31の凹底面が上に位置し、その凹底部より下に棚部が位置している)。本変形例では、センサーユニット100Fの平面視において、凹部31のコネクター16寄りの辺と、それに対向する辺とに沿って棚部31fが形成されているが、これに限らず、いずれか一方の辺に沿って棚部31fを形成してもよく、また、他の辺に沿った棚部を設ける構成としてもよい。棚部31fは、インナーケース20の凹部31の周縁の一部に形成された段差、あるいは、凹部31の深さが浅い領域ということもできる。
 なお、凹部31の周縁の一部に形成される棚部31fは、好ましくは、基板15の平面視において、少なくとも一つの慣性センサーより基板15の中央側に配置するとよく、更に好ましくは、凹部31と基板15とにより形成される空間において、インナーケース20側とアウターケース1側とを連通する連通路に対して、慣性センサーを挟んだ反対側に位置するとよい。これによって、棚部31fが設けられた凹部31に充填部材50を入れた後に、慣性センサーなどが実装された基板15を搭載したときに、充填部材50が空間の解放部分である連通路とともに棚部31fにも移動するので、基板15と凹部31とにより形成される空間に充填部材50を均等に行き渡らせることができる。
 この構成によれば、基板15と凹部31とにより形成される空間に充填される充填部材50が空間の容積よりも多くなった場合に、過剰分の充填部材50が凹部31の周縁部に設けられた棚部に収容されるので、過剰分の接着剤が望まない箇所に溢れ出すのを抑えることができ、製造工程において凹部31に充填する充填部材50の充填量の管理がし易いセンサーユニットを提供することができる。
 (電子機器)
 図24は、電子機器の一例としてのスマートフォンの外観図である。
 スマートフォン110には、上述したセンサーユニット100,100B,100Cが組込まれている。センサーユニット100,100B,100Cが検出した検出データは、スマートフォン110の制御部111に送信される。制御部111は、CPU(Central Processing Unit)を含んで構成されており、受信した検出データからスマートフォン110の姿勢や、挙動を認識して、表示画像を変化させたり、警告音や、効果音を鳴らしたり、振動モーターを駆動して本体を振動させることができる。換言すれば、スマートフォン110のモーションセンシングを行い、計測された姿勢や、挙動から、表示内容を変えたり、音や、振動などを発生させたりすることができる。特に、ゲームのアプリケーションを実行する場合には、現実に近い臨場感を味わうことができる。
 図25は、電子機器の一例としてのデジタルカメラの外観図である。
 デジタルカメラ120には、上述したセンサーユニット100,100B,100Cが組込まれている。センサーユニット100,100B,100Cが検出した検出データは、デジタルカメラ120の制御部(図示せず)に送信される。制御部は、CPUを含んで構成されており、受信した検出データからデジタルカメラ120の姿勢を検出して、検出結果に基づく制御信号を手ぶれ補正装置121に送信する。手ぶれ補正装置121は、制御信号に応じてレンズセット122内の特定のレンズを移動させて手振れ補正を行う。
 なお、スマートフォンや、デジタルカメラに限定するものではなく、携帯電話機、携帯型ゲーム機、ゲームコントローラー、カーナビゲーションシステム、ポインティングデバイス、ヘッドマウンティングディスプレイ、タブレットパソコン等の各種電子機器にも、同様にセンサーユニット100,100B,100Cが組込むことができ、同様の効果を得ることができる。
 (移動体)
 図26は、移動体の一例としての自動車130の外観図である。
 自動車130には、上述したセンサーユニット100,100B,100Cが組込まれている。センサーユニット100,100B,100Cが検出した検出データは、自動車130の車体姿勢制御装置132に送信される。車体姿勢制御装置132は、CPUを含んで構成されており、受信した検出データから自動車130の姿勢や、挙動を検出して、検出結果に基づく制御信号を車輪133のブレーキ制御装置や、サスペンション制御装置に送信する。例えば、急なハンドル操作を行ったときや、滑りやすい路面を走行中など、横滑りと認識される姿勢や、挙動が検出された場合、ブレーキ制御装置は、制御信号に従って各車輪133のブレーキをかけることにより、車両の進行方向を修正し、元の進行方向を維持するように制御する。換言すれば、車両の進行方向を保つように、ブレーキングする。
 なお、自動車に限定するものではなく、二輪車、土木・建設機械、農業機械、農場向け重機、無人機、航空機、ヘリコプター、小型潜水艦、ロボット等の各種移動体にも、同様にセンサーユニット100,100B,100Cが組込むことができ、同様の効果を得ることができる。
 以上、発明者によってなされた本発明の実施の形態について具体的に説明したが、本発明は上記した実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の変更を加えることが可能である。
 例えば、上記実施形態では、基板15に実装する各慣性センサー(17x,17y,17z,18)やその他の電子素子を、基板15および凹部31により形成される凹部31空間内に配置されるように、基板15の凹部31側の面に実装する構成とした。そして、凹部31空間内に配置された各慣性センサー(17x,17y,17z,18)やその他の電子素子などのなるべく多くの部分が充填部材50に覆われている状態にすることが望ましいことを説明した。
 これに限らず、凹部31空間に充填された充填部材50により、基板15とインナーケース20とが所定の強度以上を確保するように固定されていれば、本発明の効果は得られるので、各慣性センサーやその他の電子素子を、基板15の反対側の面(凹部31と対向する面とは反対側の面)に配置する構成としてもよい。
 また、上記実施形態では、アウターケース1とセンサーモジュール25のインナーケース20との間に介在させる接合部材10を、アウターケース1の底壁5の一部としての第1接合面6に接触するとともに、第1接合面6(底壁5)から立ち上がる側壁4にも接触するように配置させた。これに限らず、センサーモジュール25がアウターケース1の側壁4に接触しないように隙間を確保して固定することができれば、接合部材10は、アウターケース1の底壁5および底壁5の一部である第1接合面6に接触するように配置されていればよい。
 また、上記実施形態では、センサーユニット100において、外部機器などの被装着面71に装着した際に被装着面71に接触するアウターケース1の上面7は、枠状の同一である例を図示した。これに限らず、アウターケース1の被装着面71との接触部分は、被装着面71に対してセンサーユニット100が不具合のない程度に固定できればよく、例えば、複数の面に分かれた接触面であってもよい。
 1,1d,1e…アウターケース、2…固定部としてのネジ穴、3…内部、4…側壁、5…底壁、6…底壁の一部としての第1接合面、7…アウターケースの上面、9…貫通孔、10…接合部材、15,15´…基板、16…コネクター、17x,17y,17z…慣性センサーとしての角速度センサー、18…慣性センサーとしての加速度センサー、19…制御IC、20…インナーケース、21…開口部、22…第2接合面、25…センサーモジュール、27…センサーモジュールの上面、29…ネジ穴、31…凹部、32…凹部の底面、50…充填部材、70…ネジ、71…被装着面、81…露出部、82…塗装面、90…貫通孔部、100,100B,100C,100D,100E…センサーユニット、110…スマートフォン、120…デジタルカメラ、130…自動車、170…締結部材としてのネジ、210,310…弾性部材。

Claims (19)

  1.  慣性センサーと、
     前記慣性センサーを搭載したセンサーモジュールと、
     底壁と該底壁に接する側壁とを有して前記センサーモジュールを収容するアウターケースと、を備え、
     前記センサーモジュールは、前記アウターケースの前記底壁に接合部材を介して接合されていることを特徴とするセンサーユニット。
  2.  前記接合部材は、前記アウターケースよりも弾性率の小さい材料から構成されていることを特徴とする請求項1に記載のセンサーユニット。
  3.  前記アウターケースは、前記底壁と対向する一面を開口面とする箱状をなしており、前記開口面の開口部を塞ぐように前記センサーモジュールが収納され、
     前記底壁には、周縁部に中央部よりも前記開口面からの距離が小さい第1接合面が形成されており、
     前記第1接合面に接触して、前記接合部材が配置されることを特徴とする請求項2に記載のセンサーユニット。
  4.  前記センサーモジュールの露出面の前記底壁の外面からの高さは、前記アウターケースの前記開口面の前記底壁の外面からの高さより低いことを特徴とする請求項3に記載のセンサーユニット。
  5.  前記アウターケースと前記センサーモジュールとは、前記底壁に設けられた貫通孔から挿入される締結部材により締結されていることを特徴とする請求項1~4のいずれか一項に記載のセンサーユニット。
  6.  前記接合部材は、前記アウターケースの前記側壁に接触していることを特徴とする請求項1~5のいずれか一項に記載のセンサーユニット。
  7.  前記センサーモジュールは、
     前記慣性センサーと、
     前記慣性センサーが実装された基板と、
     前記基板が搭載されたインナーケースと、を含んで構成され、
     前記インナーケースにおける前記底壁と対向している側の周縁部には、前記接合部材と重なる第2接合面が形成されていることを特徴とする請求項1~6のいずれか一項に記載のセンサーユニット。
  8.  前記基板は、前記インナーケースに対して、固化状態において弾性を有する接着剤で接着されていることを特徴とする請求項7に記載のセンサーユニット。
  9.  前記基板には、外部と接続するためのコネクターが実装されており、
     前記インナーケースには、前記アウターケースの前記開口面から前記コネクターを外部に露出するように開口部が形成されていることを特徴とする請求項7または8に記載のセンサーユニット。
  10.  前記インナーケースには凹部が形成されており、前記基板の厚み方向からみた平面視において前記凹部と重なる領域に前記慣性センサーが配置されて、且つ、前記基板および前記凹部により形成される空間に充填部材が充填されていることを特徴とする請求項7~9のいずれか一項に記載のセンサーユニット。
  11.  前記慣性センサーは、前記センサーモジュールの前記空間にボディーの少なくとも一部が配置されていることを特徴とする請求項10に記載のセンサーユニット。
  12.  前記凹部の周縁の一部に、前記インナーケースの厚み方向において前記凹部の凹底面よりも高い棚部が形成されていることを特徴とする請求項10または11に記載のセンサーユニット。
  13.  前記基板の厚み方向からみた平面視において前記凹部と重なる領域に、前記凹部側に開口した溝部または貫通孔が形成されていることを特徴とする請求項10~12のいずれか一項に記載のセンサーユニット。
  14.  前記接合部材は、ゴム、エラストマー、多孔質部材、および接着剤のいずれかであることを特徴とする請求項1~13のいずれか一項に記載のセンサーユニット。
  15.  前記接合部材は、複数配置されていることを特徴とする請求項1~14のいずれか一項に記載のセンサーユニット。
  16.  前記アウターケースには、被装着体に固定するための固定部が形成されていることを特徴とする請求項1~15のいずれか一項に記載のセンサーユニット。
  17.  前記慣性センサーは、複数あり、加速度センサーと、角速度センサーとを含んでいることを特徴とする請求項1~16のいずれか一項に記載のセンサーユニット。
  18.  請求項1~17のいずれか一項に記載のセンサーユニットを備えた電子機器。
  19.  請求項1~17のいずれか一項に記載のセンサーユニットを備えた移動体。
PCT/JP2015/003525 2014-07-16 2015-07-13 センサーユニット、電子機器、および移動体 WO2016009635A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15822656.3A EP3171131A4 (en) 2014-07-16 2015-07-13 Sensor unit, electronic apparatus, and mobile body
CN201910933108.9A CN110645970B (zh) 2014-07-16 2015-07-13 传感器单元、电子设备以及移动体
CN201580033626.5A CN106662446B (zh) 2014-07-16 2015-07-13 传感器单元、电子设备以及移动体
US15/325,399 US10551194B2 (en) 2014-07-16 2015-07-13 Sensor unit, electronic apparatus, and moving body
US16/729,614 US11041723B2 (en) 2014-07-16 2019-12-30 Sensor unit, electronic apparatus, and moving body

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014145671A JP6451112B2 (ja) 2014-07-16 2014-07-16 センサーユニット、電子機器、および移動体
JP2014-145671 2014-07-16
JP2014-257001 2014-12-19
JP2014257001A JP6500423B2 (ja) 2014-12-19 2014-12-19 センサーユニット、電子機器、および移動体
JP2015-136741 2015-07-08
JP2015136741A JP6575181B2 (ja) 2015-07-08 2015-07-08 センサーユニット、電子機器、および移動体

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/325,399 A-371-Of-International US10551194B2 (en) 2014-07-16 2015-07-13 Sensor unit, electronic apparatus, and moving body
US16/729,614 Division US11041723B2 (en) 2014-07-16 2019-12-30 Sensor unit, electronic apparatus, and moving body

Publications (1)

Publication Number Publication Date
WO2016009635A1 true WO2016009635A1 (ja) 2016-01-21

Family

ID=55078143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003525 WO2016009635A1 (ja) 2014-07-16 2015-07-13 センサーユニット、電子機器、および移動体

Country Status (4)

Country Link
US (2) US10551194B2 (ja)
EP (1) EP3171131A4 (ja)
CN (2) CN106662446B (ja)
WO (1) WO2016009635A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6597069B2 (ja) * 2015-09-02 2019-10-30 セイコーエプソン株式会社 センサーユニット、電子機器、および移動体
DE102017130104A1 (de) * 2017-12-15 2019-06-19 Voith Patent Gmbh Vorrichtung zur Erkennung von Ausrichtfehlern eines Gurtförderers
JP2019145683A (ja) 2018-02-21 2019-08-29 セイコーエプソン株式会社 電子回路基板、加速度センサー、傾斜計、慣性航法装置、構造物監視装置及び移動体
JP6870635B2 (ja) 2018-03-08 2021-05-12 セイコーエプソン株式会社 慣性計測装置、移動体、携帯型電子機器、及び電子機器
JP7119455B2 (ja) 2018-03-19 2022-08-17 セイコーエプソン株式会社 センサーモジュール、計測システム、電子機器、及び移動体
JP7013991B2 (ja) * 2018-03-26 2022-02-01 セイコーエプソン株式会社 センサーユニット、移動体測位装置、携帯型電子機器、電子機器、移動体および表示装置
JP2019184453A (ja) 2018-04-12 2019-10-24 セイコーエプソン株式会社 センサーユニットおよび構造物監視装置
JP2019184452A (ja) 2018-04-12 2019-10-24 セイコーエプソン株式会社 センサーユニット、および構造物監視装置
JP6841795B2 (ja) * 2018-06-27 2021-03-10 長野計器株式会社 物理量測定装置
GB2575978A (en) * 2018-07-30 2020-02-05 Innalabs Ltd Gyroscope
DE102018216166B3 (de) * 2018-09-21 2019-10-24 Siemens Aktiengesellschaft Messaufnehmer
EP3857172B1 (de) * 2018-09-25 2023-07-05 Fraba B.V. Sensorvorrichtung
JP2020067330A (ja) * 2018-10-23 2020-04-30 セイコーエプソン株式会社 慣性センサーユニットの取り付け方法、および慣性センサーユニット
JP2020071074A (ja) * 2018-10-29 2020-05-07 セイコーエプソン株式会社 センサーユニット、電子機器および移動体
JP2020101484A (ja) * 2018-12-25 2020-07-02 セイコーエプソン株式会社 慣性センサー、電子機器および移動体
JP6545918B1 (ja) * 2019-05-22 2019-07-17 Imv株式会社 加速度センサコアユニット、加速度センサを載置する基板のたわみを防止する方法
JP7293877B2 (ja) * 2019-05-31 2023-06-20 セイコーエプソン株式会社 センサーユニット、電子機器および移動体
US11340254B2 (en) * 2019-09-30 2022-05-24 Seiko Epson Corporation Inertial measurement unit having a sensor unit that is detachable from a substrate
JP7383956B2 (ja) * 2019-09-30 2023-11-21 セイコーエプソン株式会社 慣性計測装置
JP2021067630A (ja) * 2019-10-28 2021-04-30 セイコーエプソン株式会社 慣性計測装置、電子機器および移動体
US11372018B2 (en) * 2019-11-29 2022-06-28 Seiko Epson Corporation Sensor unit, electronic apparatus, and moving object
CN111391787B (zh) * 2020-03-25 2024-09-06 沈阳中光电子有限公司 传感器结构和雨刷系统
CN113607263B (zh) * 2020-05-04 2022-06-28 新力奇有限公司 具高度方向运动感测件精准定位装置的振动量测组件
CN115461627A (zh) * 2020-05-12 2022-12-09 株式会社村田制作所 加速度检测装置
JP2022050915A (ja) * 2020-09-18 2022-03-31 セイコーエプソン株式会社 慣性計測装置
JP2023070787A (ja) 2021-11-10 2023-05-22 セイコーエプソン株式会社 慣性計測装置
CN114718986A (zh) * 2022-04-26 2022-07-08 中国电子科技集团公司第二十六研究所 电子设备全悬浮式隔振隔冲方法及结构

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432254A (ja) * 1990-05-29 1992-02-04 Hitachi Ltd 半導体パッケージ
JPH06273224A (ja) * 1993-03-18 1994-09-30 Omron Corp 振動検知センサ
JPH10178264A (ja) * 1996-12-19 1998-06-30 Matsushita Electric Ind Co Ltd フラットパッケージ型電子部品の回路基板搭載方法
JP2003028647A (ja) * 2001-07-18 2003-01-29 Murata Mfg Co Ltd 振動型センサ部品およびその製造方法およびその振動型センサ部品を用いたセンサモジュール
JP2004279373A (ja) * 2003-03-19 2004-10-07 Denso Corp 角速度検出装置
JP2006329960A (ja) * 2005-05-30 2006-12-07 Oki Electric Ind Co Ltd 半導体加速度センサ装置及びその製造方法
JP2008212751A (ja) * 2008-06-18 2008-09-18 Sophia Co Ltd 遊技機
JP2009258012A (ja) * 2008-04-18 2009-11-05 Mitsubishi Electric Corp 加速度センサ
JP2009264820A (ja) * 2008-04-23 2009-11-12 Panasonic Corp 慣性力センサ
JP2010181392A (ja) * 2008-05-13 2010-08-19 Denso Corp 力学量センサおよびその製造方法
JP2011050435A (ja) * 2009-08-31 2011-03-17 Maruhon Industry Co Ltd 遊技機用の制御基板収納ケース
WO2011040233A1 (ja) * 2009-09-29 2011-04-07 株式会社村田製作所 センサ装置
JP2012251803A (ja) * 2011-05-31 2012-12-20 Seiko Epson Corp モジュールおよび電子機器
JP2013253792A (ja) * 2012-06-05 2013-12-19 Seiko Epson Corp センサーユニット及びそれを用いた運動計測システム

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961271A (ja) * 1995-08-29 1997-03-07 Mitsubishi Electric Corp 半導体式センサ及びその製造方法
JPH1078264A (ja) 1996-09-03 1998-03-24 Mitsubishi Electric Corp 空気調和機
JP2002257552A (ja) * 2001-03-05 2002-09-11 Murata Mfg Co Ltd 物理量センサ装置
JP2006194681A (ja) 2005-01-12 2006-07-27 Denso Corp 角速度センサ装置
JP2006284551A (ja) 2005-02-23 2006-10-19 Sony Corp 振動型ジャイロセンサ
DE602006020042D1 (de) * 2005-06-09 2011-03-24 Panasonic Corp Zusammengesetzter sensor
US8018440B2 (en) * 2005-12-30 2011-09-13 Microsoft Corporation Unintentional touch rejection
JP5622347B2 (ja) * 2006-08-09 2014-11-12 セイコーエプソン株式会社 慣性センサ装置
JP2008076222A (ja) 2006-09-21 2008-04-03 Fujitsu Ltd 音叉型振動ジャイロセンサ
JP5293187B2 (ja) * 2006-11-14 2013-09-18 パナソニック株式会社 センサ
DE102007034218B4 (de) * 2007-07-23 2013-06-13 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Bildzusammensetzung
US8646332B2 (en) 2007-09-03 2014-02-11 Panasonic Corporation Inertia force sensor
EP2112471A1 (fr) * 2008-04-22 2009-10-28 Microcomponents AG Dispositif de montage pour composant électronique
DE102009016532A1 (de) * 2009-04-06 2010-10-07 Giesecke & Devrient Gmbh Verfahren zur Durchführung einer Applikation mit Hilfe eines tragbaren Datenträgers
EP2538175B1 (en) * 2010-02-18 2018-07-04 Panasonic Intellectual Property Management Co., Ltd. Angular speed sensor and composite sensor for detecting angular speed and acceleration
JP5257418B2 (ja) * 2010-07-23 2013-08-07 株式会社デンソー 防振対象部材の接続構造
JP5821289B2 (ja) 2011-05-31 2015-11-24 セイコーエプソン株式会社 保持部材、モジュールおよび電子機器
JP5935244B2 (ja) * 2011-05-31 2016-06-15 セイコーエプソン株式会社 モジュールおよび電子機器
JP5845669B2 (ja) 2011-07-11 2016-01-20 セイコーエプソン株式会社 センサーデバイスおよび電子機器
JP5919662B2 (ja) 2011-07-11 2016-05-18 セイコーエプソン株式会社 電子デバイスおよび電子機器
JP5845672B2 (ja) 2011-07-13 2016-01-20 セイコーエプソン株式会社 センサーデバイスおよび電子機器
JP2013050321A (ja) * 2011-08-30 2013-03-14 Seiko Epson Corp 物理量検出器及び電子機器
JP6065417B2 (ja) * 2012-06-08 2017-01-25 セイコーエプソン株式会社 センサーユニット並びに電子機器および運動体
JP6331266B2 (ja) * 2013-05-24 2018-05-30 セイコーエプソン株式会社 センサーユニット並びに電子機器および運動体
JP2015034755A (ja) 2013-08-09 2015-02-19 セイコーエプソン株式会社 センサーユニット、電子機器、および移動体
JP6255865B2 (ja) 2013-10-04 2018-01-10 セイコーエプソン株式会社 センサーユニット、電子機器、および移動体
JP2016034480A (ja) * 2014-07-31 2016-03-17 セイコーエプソン株式会社 報知装置、運動解析システム、報知方法、報知プログラム、運動支援方法及び運動支援装置
JP2019184452A (ja) * 2018-04-12 2019-10-24 セイコーエプソン株式会社 センサーユニット、および構造物監視装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432254A (ja) * 1990-05-29 1992-02-04 Hitachi Ltd 半導体パッケージ
JPH06273224A (ja) * 1993-03-18 1994-09-30 Omron Corp 振動検知センサ
JPH10178264A (ja) * 1996-12-19 1998-06-30 Matsushita Electric Ind Co Ltd フラットパッケージ型電子部品の回路基板搭載方法
JP2003028647A (ja) * 2001-07-18 2003-01-29 Murata Mfg Co Ltd 振動型センサ部品およびその製造方法およびその振動型センサ部品を用いたセンサモジュール
JP2004279373A (ja) * 2003-03-19 2004-10-07 Denso Corp 角速度検出装置
JP2006329960A (ja) * 2005-05-30 2006-12-07 Oki Electric Ind Co Ltd 半導体加速度センサ装置及びその製造方法
JP2009258012A (ja) * 2008-04-18 2009-11-05 Mitsubishi Electric Corp 加速度センサ
JP2009264820A (ja) * 2008-04-23 2009-11-12 Panasonic Corp 慣性力センサ
JP2010181392A (ja) * 2008-05-13 2010-08-19 Denso Corp 力学量センサおよびその製造方法
JP2008212751A (ja) * 2008-06-18 2008-09-18 Sophia Co Ltd 遊技機
JP2011050435A (ja) * 2009-08-31 2011-03-17 Maruhon Industry Co Ltd 遊技機用の制御基板収納ケース
WO2011040233A1 (ja) * 2009-09-29 2011-04-07 株式会社村田製作所 センサ装置
JP2012251803A (ja) * 2011-05-31 2012-12-20 Seiko Epson Corp モジュールおよび電子機器
JP2013253792A (ja) * 2012-06-05 2013-12-19 Seiko Epson Corp センサーユニット及びそれを用いた運動計測システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3171131A4 *

Also Published As

Publication number Publication date
US20170191832A1 (en) 2017-07-06
US20200132460A1 (en) 2020-04-30
EP3171131A4 (en) 2018-03-07
US10551194B2 (en) 2020-02-04
CN106662446B (zh) 2019-10-25
US11041723B2 (en) 2021-06-22
CN110645970A (zh) 2020-01-03
CN110645970B (zh) 2022-12-27
CN106662446A (zh) 2017-05-10
EP3171131A1 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2016009635A1 (ja) センサーユニット、電子機器、および移動体
JP6575181B2 (ja) センサーユニット、電子機器、および移動体
JP6451112B2 (ja) センサーユニット、電子機器、および移動体
JP6729774B2 (ja) センサーユニット、電子機器、および移動体
US8646332B2 (en) Inertia force sensor
JP7024349B2 (ja) センサーユニット、センサーユニットの製造方法、慣性計測装置、電子機器、および移動体
US9321627B2 (en) Electronic device, electronic module, electronic apparatus, and moving object
US9829505B2 (en) Electronic device, electronic apparatus, and moving object
JP2019035589A (ja) 物理量センサー、慣性計測ユニット、電子機器、および移動体
JP6500423B2 (ja) センサーユニット、電子機器、および移動体
CN110243343B (zh) 传感器模块、倾斜仪以及结构物监视装置
CN111751575A (zh) 惯性传感器、电子设备以及移动体
US9790083B2 (en) Vibrator, manufacturing method of vibrator, electronic device, electronic apparatus, and moving object
US11282808B2 (en) Inertial sensor, electronic instrument, vehicle, and method for manufacturing inertial sensor
JP2019190926A (ja) センサーユニット、構造物監視装置、および移動体
JP7135901B2 (ja) 慣性センサー、電子機器および移動体
JP7383978B2 (ja) 物理量センサー、電子機器および移動体
JP2017167058A (ja) 電子デバイス、電子デバイスの製造方法、電子機器および移動体
JP2021092535A (ja) センサーユニット、電子機器および移動体
JP2020197423A (ja) センサーユニット、電子機器および移動体
JP7331498B2 (ja) 慣性センサー、電子機器および移動体
US20240093994A1 (en) Inertial Measurement Device
JP2019158863A (ja) センサーモジュール、傾斜計、及び構造物監視装置
US20240093997A1 (en) Inertial Measurement Device
CN116892927A (zh) 惯性测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822656

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15325399

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015822656

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015822656

Country of ref document: EP