Nothing Special   »   [go: up one dir, main page]

WO2016080400A1 - 二酸化炭素ガス分離膜及びその製造方法、並びに二酸化炭素ガス分離膜モジュール - Google Patents

二酸化炭素ガス分離膜及びその製造方法、並びに二酸化炭素ガス分離膜モジュール Download PDF

Info

Publication number
WO2016080400A1
WO2016080400A1 PCT/JP2015/082280 JP2015082280W WO2016080400A1 WO 2016080400 A1 WO2016080400 A1 WO 2016080400A1 JP 2015082280 W JP2015082280 W JP 2015082280W WO 2016080400 A1 WO2016080400 A1 WO 2016080400A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas separation
separation membrane
alkali metal
resin
Prior art date
Application number
PCT/JP2015/082280
Other languages
English (en)
French (fr)
Inventor
雄大 太田
尚人 大久保
岡田 治
伸彰 花井
鵬 顔
八里 清原
Original Assignee
住友化学株式会社
株式会社ルネッサンス・エナジー・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 株式会社ルネッサンス・エナジー・リサーチ filed Critical 住友化学株式会社
Priority to US15/527,213 priority Critical patent/US10744454B2/en
Priority to EP15861252.3A priority patent/EP3231501B1/en
Priority to KR1020177016063A priority patent/KR102404068B1/ko
Priority to JP2016560243A priority patent/JP6645983B2/ja
Publication of WO2016080400A1 publication Critical patent/WO2016080400A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/12Spiral-wound membrane modules comprising multiple spiral-wound assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00791Different components in separate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00793Dispersing a component, e.g. as particles or powder, in another component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1218Layers having the same chemical composition, but different properties, e.g. pore size, molecular weight or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/142Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/404Polymers based on the polymerisation of crotonic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F16/04Acyclic compounds
    • C08F16/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2181Inorganic additives
    • B01D2323/21817Salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/028321-10 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a gas separation membrane for separating CO 2 from a mixed gas containing at least CO 2 and water vapor, a manufacturing method thereof, a gas separation membrane module including the gas separation membrane, and the like.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 07-112122
  • Patent Document 1 carbon dioxide separation comprising a hydrogel membrane formed by absorbing an aqueous solution containing a carbon dioxide carrier into a vinyl alcohol-acrylate copolymer having a crosslinked structure.
  • Gel membranes have been proposed.
  • the invention described in Patent Document 1 uses a polyacrylic acid, which has been conventionally known, by using a vinyl alcohol-acrylate copolymer as a polymer material that absorbs an aqueous solution containing a carbon dioxide carrier and hydrogels it.
  • a carbon dioxide-enhanced transport membrane that can solve the problem that an electrolyte polymer such as an acid has high water absorption capability but has low strength and is difficult to be formed into a membrane, and a method for producing the same. provide.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 08-193156
  • Patent Document 3 a CO 2 facilitated transport membrane in which a gel layer comprising a glycine and a deprotonating agent in a hydrogel membrane is supported on a heat-resistant porous membrane is disclosed. Proposed.
  • An object of the present invention has excellent CO 2 selectively permeable gas separation membrane and manufacturing method thereof provided with, as well as a gas separation membrane module and the gas separation apparatus including the gas separation membrane.
  • CO 2 gas separation membrane CO 2 gas separation membrane manufacturing method, CO 2 separation method, CO 2 gas separation membrane module, and CO 2 gas separation device are provided.
  • a first resin which is a resin in which at least one alkali metal compound selected from the group consisting of alkali metal carbonates, alkali metal bicarbonates and alkali metal hydroxides and a polymer having a carboxyl group are crosslinked.
  • a first layer (A) comprising: At least one alkali metal compound selected from the group consisting of alkali metal carbonates, alkali metal bicarbonates and alkali metal hydroxides, and a second resin which is a resin having a structural unit derived from a fatty acid vinyl ester
  • a second layer (B) comprising, A hydrophobic porous membrane (C); A CO 2 gas separation membrane containing
  • One surface of the first layer (A) is in contact with one surface of the second layer (B), and the other surface of the first layer (A) or the second layer.
  • the basis weight of the layer not in contact with the hydrophobic porous membrane (C) is in contact with the hydrophobic porous membrane (C).
  • the basis weight is the solid content per unit area of the first layer (A) or the second layer (B).
  • the total content of all alkali metal compounds contained in the first layer (A) and the second layer (B) is 1 mass in total of the first resin and the second resin.
  • the CO 2 gas separation membrane according to any one of [1] to [6], which is 0.5 to 20 parts by mass with respect to parts.
  • the CO 2 gas separation membrane according to any one of [1] to [7], which is a hydroxide.
  • hydrophobic porous membrane (C) is made of at least one material selected from the group consisting of ceramic, fluororesin, polyphenylene sulfide, polyethersulfone, and polyimide.
  • a method for producing a CO 2 gas separation membrane according to any one of [1] to [11], A first coating liquid containing the alkali metal compound, the first resin, and a medium, or a second coating liquid containing the alkali metal compound, the second resin, and a medium, A first step of applying to at least one surface of the hydrophobic porous membrane (C); A second step of obtaining the first layer (A) or the second layer (B) by removing the medium from the coating obtained in the first step; The surface of the first layer (A) or the second layer (B) obtained in the second step is coated in the first step out of the first coating liquid and the second coating liquid. A third step of applying a coating liquid different from the processed coating liquid; A fourth step of obtaining the first layer (A) or the second layer (B) by removing the medium from the coating material obtained in the third step; Manufacturing method.
  • [14] supplying a mixed gas containing at least CO 2 and water vapor to one side of the CO 2 gas separation membrane according to any one of [1] to [11]; Recovering CO 2 separated from the mixed gas from the other surface side of the CO 2 gas separation membrane;
  • a method for separating CO 2 comprising:
  • a CO 2 gas separation membrane module comprising the CO 2 gas separation membrane according to any one of [1] to [11].
  • a CO 2 gas separation device comprising:
  • FIG. 3 is a schematic view showing a structure of a spiral-type CO 2 gas separation membrane module using the gas separation membrane according to the present invention and provided with a partial cutout. Used in the examples is a overview diagram of a CO 2 gas separation apparatus equipped with a CO 2 gas separation membrane module.
  • CO 2 gas separation membrane of the present invention the first layer of the following (A), a CO 2 gas separation membrane comprising a second layer (B) and a hydrophobic porous membrane (C).
  • A Resin in which at least one alkali metal compound selected from the group consisting of alkali metal carbonates, alkali metal bicarbonates and alkali metal hydroxides and a polymer having a carboxyl group are crosslinked (first resin)
  • the first layer including (B) Resin (second resin) having a structural unit derived from a vinyl ester of fatty acid and at least one alkali metal compound selected from the group consisting of alkali metal carbonates, alkali metal bicarbonates and alkali metal hydroxides
  • C a hydrophobic porous membrane.
  • the first resin contained in the first layer (A) is a resin in which a polymer having a carboxyl group is crosslinked.
  • the first resin has a network structure by cross-linking of molecular chains of a polymer having a carboxyl group.
  • the first resin is preferable for increasing the water retention of the CO 2 gas separation membrane and increasing the pressure resistance. Since a large pressure difference is applied to the CO 2 gas separation membrane as a driving force for allowing the gas to permeate the membrane, pressure resistance is required. Only 1 type may be used for 1st resin and it may use 2 or more types together.
  • the polymer having a carboxyl group examples include a polymer obtained by polymerizing a monomer composition containing one or more carboxyl group-containing monomers such as acrylic acid, itaconic acid, crotonic acid, and methacrylic acid.
  • carboxyl group-containing monomers such as acrylic acid, itaconic acid, crotonic acid, and methacrylic acid.
  • the polymer which has a carboxyl group has a structural unit derived from acrylic acid, methacrylic acid, or derivatives thereof.
  • the polymer having a carboxyl group includes polyacrylic acid that is a polymer of acrylic acid, polymethacrylic acid that is a polymer of methacrylic acid, and acrylic acid that is a copolymer of acrylic acid and methacrylic acid.
  • a methacrylic acid copolymer is preferable, and polyacrylic acid is more preferable.
  • the first resin may be prepared by reacting a polymer having a carboxyl group with a crosslinking agent, or a monomer having a carboxyl group or an alkyl ester group that becomes a carboxyl group by a hydrolysis reaction and a crosslinkable monomer. It may be prepared by polymerizing the body. All or part of the carboxyl groups of the first resin may be replaced with carboxylates by neutralization with metal ions. The metal ion is preferably an alkali metal cation. The timing for the neutralization reaction is preferably after the first crosslinked resin is prepared. A resin in which all or a part of the carboxyl groups of the first resin is replaced with a carboxylate also belongs to the first resin.
  • Examples of the monomer having an alkyl ester group include alkyl groups having 1 to 16 carbon atoms such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, octyl acrylate, and lauryl acrylate.
  • esters Crotonic acid alkyl esters having an alkyl group having 1 to 16 carbon atoms such as methyl crotonic acid, ethyl crotonic acid, propyl crotonic acid, butyl crotonic acid, hexyl crotonic acid, octyl crotonic acid, lauryl crotonic acid, etc .; methyl methacrylate , Meta Ethyl acrylic acid, propyl methacrylate, butyl methacrylate, hexyl methacrylate, octyl methacrylate, alkyl esters having an alkyl group having 1 to 16 carbon atoms such as lauryl methacrylate and the like.
  • the crosslinking monomer and the crosslinking agent are not particularly limited, and conventionally known monomers can be used.
  • the crosslinkable monomer include divinylbenzene, N, N′-methylenebisacrylamide, trimethylolpropane triallyl ether, pentaerythritol tetraallyl ether, and the like.
  • the crosslinking agent include an epoxy crosslinking agent, a polyvalent glycidyl ether, a polyhydric alcohol, a polyvalent isocyanate, a polyvalent aziridine, a haloepoxy compound, a polyvalent aldehyde, a polyvalent amine, an organometallic crosslinking agent, and a metallic crosslinking agent. Etc.
  • the crosslinkable monomer and the crosslinker preferably have alkali resistance.
  • the crosslinking method conventionally known methods such as thermal crosslinking, ultraviolet crosslinking, electron beam crosslinking, radiation crosslinking, photocrosslinking, and the methods described in JP-A Nos. 2003-268809 and 7-88171 are known. Can be used.
  • the timing for preparing the first crosslinked resin is not particularly limited, but it is preferably performed before mixing with the CO 2 carrier described later.
  • the first resin examples include ACPEC (registered trademark, manufactured by Sumitomo Seika Co., Ltd.), Sunfresh (registered trademark, manufactured by Sanyo Kasei Co., Ltd.), and the like.
  • the CO 2 gas separation membrane of the present invention includes a first layer (A), a second layer (B), and a hydrophobic porous membrane (C).
  • a first layer (A) containing a first resin crosslinked with a polymer having a carboxyl group, and a hydrophobic porous membrane (C) a fatty acid
  • the film forming property can be improved. Only 1 type may be used for 2nd resin and it may use 2 or more types together.
  • the second resin can be obtained by partially saponifying a structural unit derived from a fatty acid vinyl ester.
  • the structural unit derived from a saponified fatty acid vinyl ester is hydrophilic. It becomes the vinyl alcohol unit which shows. Therefore, if a structural unit derived from a vinyl ester of a fatty acid exhibiting hydrophobicity remains in the structure of the second resin, the structural unit derived from the vinyl ester of a fatty acid exhibiting hydrophobicity and a hydrophobic porous membrane (C )), Film defects such as pinholes are suppressed, and the film-forming property is improved.
  • the degree of saponification represents what percentage of structural units derived from the fatty acid vinyl ester is saponified (hydrolyzed).
  • the saponification degree is preferably in the range of 50% to less than 100%, and more preferably in the range of 60% to less than 100%.
  • the degree of saponification can be adjusted with reference to conventionally known resin production methods described in JP-A-52-107096, JP-A-52-27455, JP-A-5598630, and the like.
  • the second resin is derived from a vinyl ester of a fatty acid having 2 to 16 carbon atoms such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl laurate, vinyl palmitate, vinyl stearate, vinyl versatate, etc. It can have structural units.
  • resins include polyvinyl alcohol, vinyl alcohol-ethylene copolymer, vinyl alcohol-acrylic acid copolymer, vinyl alcohol obtained by partially saponifying structural units derived from the above-mentioned fatty acid vinyl ester. -Methacrylic acid copolymer, vinyl alcohol-vinyl sulfonic acid copolymer and the like.
  • the second resin is preferably polyvinyl alcohol or a vinyl alcohol-acrylic acid copolymer obtained by partially saponifying a structural unit derived from a fatty acid vinyl ester.
  • the carboxyl group is neutralized with metal ions in the same manner as the first resin. All or part of may be replaced by carboxylate.
  • the metal ion is preferably an alkali metal cation.
  • a resin in which all or a part of the carboxyl groups of the second resin is replaced with a carboxylate also belongs to the second resin.
  • (CO 2 carrier) CO 2 gas separation membrane of the present invention in addition to dissolving and diffusion mechanism utilizing the solubility and membrane of the diffusivity of the membrane of the gas molecules, and CO 2 carrier which reversibly react with CO 2
  • High permeation selectivity of a specific gas is realized by a facilitated transport mechanism that promotes permeation of a specific gas as a reaction product with a CO 2 carrier using a so-called substance.
  • Formula (1) is, in the case of using a cesium carbonate (Cs 2 CO 3) to CO 2 carrier, shows the reaction between CO 2 and CO 2 carrier.
  • the reaction represented by the following formula (1) is a reversible reaction.
  • the first layer (A) and the second layer (B) included in the CO 2 gas separation membrane of the present invention are at least selected from the group consisting of alkali metal carbonates, alkali metal bicarbonates and alkali metal hydroxides.
  • 1 alkali metal compound hereinafter may be referred to as “CO 2 carrier”).
  • this CO 2 carrier reacts with CO 2 dissolved in water in the first layer (A) and the second layer (B) to reversibly react with CO 2 . Plays the role of selective transmission.
  • Each of the first layer (A) and the second layer (B) may contain only one type of CO 2 carrier, or may contain two or more types.
  • the alkali metal compound (“CO 2 carrier”) contained in the first layer (A) and the second layer (B) is at least one alkali metal selected from the group consisting of sodium, potassium, rubidium and cesium. Carbonate, bicarbonate or hydroxide is preferred, and carbonate or hydroxide is more preferred. Examples of the alkali metal carbonate include sodium carbonate, potassium carbonate, rubidium carbonate, and cesium carbonate. Examples of the alkali metal bicarbonate include sodium bicarbonate, potassium bicarbonate, rubidium bicarbonate, and cesium bicarbonate. Examples of the alkali metal hydroxide include sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide.
  • the alkali metal compound (“CO 2 carrier”) contained in the first layer (A) and the second layer (B) is further an alkali metal carbonate or alkali metal hydroxide exhibiting deliquescence.
  • cesium carbonate or cesium hydroxide having high solubility in water is particularly preferable.
  • the first resin and the second resin have an alkali metal carbonate, alkali metal bicarbonate, or alkali metal hydroxide to be added to function as a CO 2 carrier.
  • the carboxyl group is preferably neutralized by an alkali metal cation constituting a CO 2 carrier.
  • the first resin and the second resin in addition to the alkali metal compound derived from the CO 2 carrier, the first resin and the second resin Various alkali metal compounds such as an alkali metal compound used in the neutralization reaction of the carboxyl group possessed may be included.
  • the total content of all these alkali metal compounds contained in the first layer (A) and the second layer (B) of the CO 2 gas separation membrane is 1 mass of the total amount of the first resin and the second resin. The amount is preferably 0.5 to 20 parts by mass with respect to parts.
  • the total content of the alkali metal compound is less than 0.5 parts by mass with respect to 1 part by mass of the total amount of the first resin and the second resin, the desired CO 2 selective permeability may not be obtained. There is. On the other hand, when the content of the alkali metal compound exceeds 20 parts by mass with respect to 1 part by mass of the total amount of the first resin and the second resin, the film forming property may be deteriorated.
  • the total content of the alkali metal compound is more preferably 1 part by mass to 15 parts by mass with respect to 1 part by mass of the total amount of the first resin and the second resin.
  • the alkali metal compound contained in each of the first layer (A) and the second layer (B) may be the same or different.
  • Each of the first layer (A) and the second layer (B) may contain only one kind of alkali metal compound, or may contain two or more kinds.
  • the CO 2 gas separation membrane of the present invention includes a hydrophobic porous membrane having a high gas permeability that does not become a diffusion resistance of a gas component that has permeated through the membrane, as the hydrophobic porous membrane (C).
  • a hydrophobic porous membrane having a high gas permeability that does not become a diffusion resistance of a gas component that has permeated through the membrane as the hydrophobic porous membrane (C).
  • the layer laminated in contact with one surface of the hydrophobic porous membrane (C) is preferably the second layer (B). In this case, the first layer (A) is laminated in contact with the surface (surface) of the second layer (B) not in contact with the hydrophobic porous membrane (C).
  • the operating temperature of the gas separation membrane is 100 ° C. or higher, and therefore a gas separation membrane such as a hydrophobic porous membrane (C) It is preferable that the heat resistance of the member which comprises is 100 degreeC or more.
  • “Hydrophobic” means that the contact angle of water at 25 ° C. is 90 ° or more.
  • Heat resistance of 100 ° C. or higher means that the shape before storage is maintained even after a member such as a porous membrane is stored at a temperature of 100 ° C. or higher for 2 hours, and can be visually confirmed by heat shrinkage or heat melting. It means no curling.
  • Examples of the material constituting the hydrophobic porous membrane (C) include polyolefin resins such as polyethylene and polypropylene; fluorine-containing resins such as polytetrafluoroethylene (PTFE), polyvinyl fluoride, and polyvinylidene fluoride; polyphenylene sulfide; Ether sulfone; Polyimide; High molecular weight polyester; Heat-resistant polyamide; Aramid; Resin material such as polycarbonate; Inorganic material such as metal, glass and ceramic.
  • polyolefin resins such as polyethylene and polypropylene
  • fluorine-containing resins such as polytetrafluoroethylene (PTFE), polyvinyl fluoride, and polyvinylidene fluoride
  • polyphenylene sulfide Ether sulfone
  • Polyimide High molecular weight polyester
  • Heat-resistant polyamide Aramid
  • Resin material such as polycarbonate
  • Inorganic material such as metal, glass and
  • fluorine-containing resins such as PTFE, polyvinyl fluoride, and polyvinylidene fluoride, polyphenylene sulfide, polyether sulfone, polyimide, and ceramic are preferable.
  • PTFE has a fine pore size. It is more preferable because it is easy to obtain and the porosity is high, so that the energy efficiency of the separation is good.
  • the thickness of the hydrophobic porous membrane (C) is not particularly limited, but from the viewpoint of mechanical strength, it is usually preferably in the range of 10 ⁇ m to 3000 ⁇ m, more preferably in the range of 10 ⁇ m to 500 ⁇ m, and even more preferably 15 ⁇ m. It is in the range of ⁇ 150 ⁇ m.
  • the average pore size (average pore size) of the pores of the hydrophobic porous membrane (C) is not particularly limited, but is preferably 10 ⁇ m or less, more preferably in the range of 0.005 ⁇ m to 1.0 ⁇ m from the viewpoint of gas permeability. is there.
  • the porosity of the hydrophobic porous membrane (C) is preferably in the range of 5% to 99%, more preferably in the range of 30% to 90%, from the viewpoint of separation energy efficiency.
  • the stacking order of the first layer (A) containing the first resin and the second layer (B) containing the second resin there is no limitation in the stacking order of the first layer (A) containing the first resin and the second layer (B) containing the second resin.
  • one surface of the first layer (A) containing the first resin is in contact with one surface of the second layer (B) containing the second resin, and the other of the first layer (A).
  • the first layer (A), the second layer (B), and the hydrophobic layer are brought into contact with either the surface of the second layer (B) or one surface of the hydrophobic porous membrane (C).
  • the porous porous film (C) is laminated.
  • the basis weight (unit) of the first layer (A) and the second layer (B) that is not in contact with the hydrophobic porous membrane (C) The solid content per area) is preferably larger than the basis weight of the layer in contact with the hydrophobic porous membrane (C).
  • the first layer (A) containing the first resin having higher water retention than the second resin, and the second layer (B) containing the second resin ) And a hydrophobic porous membrane (C) are preferably laminated in this order.
  • the first layer (A) and the second layer (B), in addition to the above CO 2 carrier, CO 2 hydration reaction catalyst may be contained.
  • the CO 2 hydration reaction catalyst is a catalyst that increases the reaction rate of the CO 2 hydration reaction represented by the following formula (2). Note that the reaction represented by the following formula (2) is a reversible reaction.
  • the reaction between CO 2 and the CO 2 carrier is represented by the following equation (3) as a general reaction equation. However, it is assumed that the CO 2 carrier in equation (3) is a carbonate.
  • the reaction represented by the following formula (3) is a reversible reaction. Since the CO 2 hydration reaction, which is one of the elementary reaction of the reaction is slow reaction in the absence of a catalyst under conditions, by addition of a catalyst that promotes the reactions, the reaction of CO 2 and CO 2 carrier As a result, an improvement in the permeation rate of CO 2 is expected.
  • the first layer (A) and the second layer (B) contain a CO 2 carrier and a CO 2 hydration reaction catalyst, the reaction between the CO 2 and the CO 2 carrier is promoted, and the CO 2 permeance is increased. And the CO 2 selective permeability is greatly improved. Since CO 2 hydration catalysts even at high CO 2 partial pressure to function effectively, also significantly improved CO 2 permeance and CO 2 selective permeability at high CO 2 partial pressure.
  • the CO 2 hydration reaction catalyst preferably contains an oxo acid compound, and particularly comprises an oxo acid compound of at least one element selected from Group 14, Element 15, and Group 16 elements. It is more preferable to further include at least one of a tellurite compound, a selenite compound, an arsenite compound, and an orthosilicate compound.
  • potassium tellurite K 2 TeO 3 , melting point: 465 ° C.
  • sodium tellurite Na 2 TeO 3 , melting point: 710 ° C.
  • lithium tellurite Li 2 O 3 Te, melting point
  • potassium selenite K 2 O 3 Se, melting point: 875 ° C.
  • sodium arsenite NaO 2 As, melting point: 615 ° C.
  • sodium orthosilicate Na 4 O 4 Si, melting point: 1018 ° C.
  • Each of the first layer (A) and the second layer (B) may contain only one type of CO 2 hydration reaction catalyst, or may contain two or more types.
  • the catalyst When the melting point of the CO 2 hydration reaction catalyst is 200 ° C. or higher, the catalyst can be thermally stable and exist in a layer made of a hydrophilic resin, so that the performance of the CO 2 gas separation membrane can be improved over a long period of time. Can be maintained. If the CO 2 hydration reaction catalyst is water-soluble, the separation functional layer containing the CO 2 hydration reaction catalyst can be easily and stably produced. When a tellurite compound, an arsenite compound, or a selenite compound is used as a CO 2 hydration reaction catalyst, all of them are water-soluble and have a melting point of 200 ° C. or higher, and stable membrane performance improvement can be expected. .
  • a method for producing a CO 2 gas separation membrane according to the present invention will be described.
  • a first coating solution containing the alkali metal compound, a first resin that is a resin in which a polymer having a carboxyl group is crosslinked, and a medium, or the alkali metal compound and a fatty acid As a first step, a first coating solution containing the alkali metal compound, a first resin that is a resin in which a polymer having a carboxyl group is crosslinked, and a medium, or the alkali metal compound and a fatty acid.
  • a second coating liquid containing a second resin, which is a resin having a structural unit derived from the vinyl ester, and a medium is applied to at least one surface of the hydrophobic porous membrane (C).
  • protic polar media such as water, alcohols such as methanol, ethanol, 1-propanol and 2-propanol; toluene, Nonpolar media such as xylene and hexane; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; aprotic polar media such as N-methylpyrrolidone, N, N-dimethylacetamide and N, N-dimethylformamide. These may be used alone or in combination as a medium within a compatible range. Among these, a medium containing at least one selected from the group consisting of water, alcohols such as methanol, ethanol, 1-propanol and 2-propanol is preferable, and a medium containing water is more preferable.
  • the temperature at which the coating liquid is applied to the hydrophobic porous membrane (C) may be appropriately determined according to the composition and concentration. However, if the temperature is too high, a large amount of medium evaporates from the coating liquid, resulting in a composition concentration. May change, or evaporation traces may remain in the coated product (coating layer). Therefore, the temperature is preferably room temperature or higher and 5 ° C. or lower of the boiling point of the medium used. For example, when water is used as the medium, the coating liquid is preferably applied to the hydrophobic porous membrane (C) in the temperature range of 15 ° C. to 95 ° C.
  • the method for applying the coating liquid to the hydrophobic porous membrane (C) is not particularly limited.
  • spin coating, bar coating, die coating, blade coating, air knife coating, gravure coating, roll coating coating, spray coating Examples include dip coating, comma roll method, kiss coat method, screen printing, and ink jet printing.
  • the coating amount of the coating solution is preferably adjusted according to the type of resin contained in the coating solution.
  • the weight per unit area (solid content per unit area) when applying the coating liquid containing the first resin includes 0.1 g / m 2 to 1000 g / m 2 , and 0.1 g / m 2 to 500 g.
  • the basis weight of the case of coating a coating solution containing a second resin include 1g / m 2 ⁇ 1000g / m 2, is preferably 2g / m 2 ⁇ 750g / m 2, 4g / m It is more preferably 2 to 500 g / m 2 , and further preferably 5 g / m 2 to 100 g / m 2 .
  • the adjustment of the basis weight can be controlled by the formation speed of the coated product (for example, the transport speed of the hydrophobic porous film (C) to which the coating liquid is applied), the concentration of the coating liquid, the discharge amount of the coating liquid, and the like.
  • the medium is removed from the coating (coating layer) formed in the first step to obtain the first layer (A) or the second layer (B).
  • the method for removing the medium is not particularly limited, and a conventionally known method can be used. However, a method of evaporating and removing the medium by drying the coated material by ventilating heated air or the like is preferable. For example, the coating material is carried into a ventilation drying furnace adjusted to a predetermined temperature and a predetermined humidity, and the medium is evaporated and removed from the coating material. Thereby, the first layer (A) or the second layer (B) is formed.
  • the drying temperature may be appropriately determined according to the coating liquid medium and the type of the hydrophobic porous membrane (C). Usually, the temperature is preferably higher than the freezing point of the medium and lower than the melting point of the hydrophobic porous membrane (C), and generally in the range of 80 ° C to 200 ° C.
  • the medium removal operation is performed until the medium contained in the coated product becomes a predetermined concentration or less. Specifically, it is performed until the content of the medium contained in the first layer (A) or the second layer (B) obtained in the second step reaches a range of 1% by weight to 34% by weight. Is preferred.
  • a coating liquid different from the coating liquid applied in one step is applied.
  • the method of applying the coating liquid may be different from the method of applying the coating liquid in the first step, but is preferably the same method. What is necessary is just to determine suitably the temperature at the time of apply
  • the coating amount of the coating solution is preferably adjusted according to the type of resin contained in the coating solution.
  • the medium is removed from the coating material (coating layer) obtained in the third step to obtain the first layer (A) or the second layer (B).
  • the medium removal method may be different from the method applied to the second step, but is preferably the same as the second step.
  • the drying temperature may be appropriately determined according to the medium of the coating liquid and the type of the hydrophobic porous membrane (C).
  • the second coating liquid is applied to at least one surface of the hydrophobic porous membrane (C) to obtain the second layer (B) in the second step, and in the third step, the second layer the first coating liquid was coated on the surface of layer (B), the manufacturing method of the first layer (a) to obtain CO 2 gas separation membrane in the fourth step is preferred.
  • the first layer (A) containing the first resin has a basis weight of 2 g / m 2 to 500 g / m 2 and contains the second resin.
  • the basis weight of (B) is preferably 1 g / m 2 to 20 g / m 2 , and the basis weight of the first layer (A) containing the first resin is 10 g / m 2 to 300 g / m 2
  • the basis weight of the second layer (B) containing the second resin is more preferably 2 g / m 2 to 15 g / m 2 . Further, from the viewpoint of CO 2 selective permeability, it is preferable that the basis weight of the first layer (A) is larger than the basis weight of the second layer (B).
  • Ratio of the basis weight of the second layer (B) (hereinafter, simply referred to as “weight ratio”), that is, the basis weight of the second layer (B) is changed to the basis weight of the first layer (A).
  • the value divided by is preferably in the range of 0.04 to 0.5, and more preferably in the range of 0.05 to 0.2.
  • the CO 2 gas separation membrane module according to the present invention includes the CO 2 gas separation membrane of the present invention, and may be any of spiral type, cylindrical type, hollow fiber type, pleated type, plate & frame type, and the like. Good.
  • FIG. 1 shows the structure of a spiral-type CO 2 gas separation membrane module using a CO 2 gas separation membrane according to the present invention, with a partially cutaway outline.
  • the spiral-type CO 2 gas separation membrane module M shown in FIG. 1 includes a laminate 2 in which a CO 2 gas separation membrane 21, a supply-side flow path material 22, and a permeation-side flow path material 23 are stacked. It has a structure wound around the outer periphery of the formed hollow gas collecting pipe 3 a plurality of times.
  • the supply-side channel material 22 and the permeation-side channel material 23 are a turbulent flow of a mixed gas containing CO 2 and water vapor to be supplied and a permeated gas that has permeated through the CO 2 gas separation membrane 21 (surface update of the membrane surface). It is preferable to have a function to increase the membrane permeation rate of CO 2 in the supply fluid and to reduce the pressure loss on the supply side as much as possible.
  • the supply-side channel material 22 and the permeate-side channel material 23 preferably have a function as a spacer and a function of generating a turbulent flow in the mixed gas, so that a mesh-like material is preferably used. It is done.
  • the unit cell shape of the mesh is selected from shapes such as a rhombus and a parallelogram depending on the purpose because the flow path of the mixed gas varies depending on the shape of the mesh.
  • the gas separation membrane of the present invention is used under temperature conditions of 100 ° C. or higher, and therefore has heat resistance. It is preferable that it is a material,
  • the material quoted as the material of the above-mentioned hydrophobic porous membrane (C) is also preferably used here.
  • the CO 2 gas separation apparatus includes the CO 2 gas separation membrane module of the present invention and a gas supply unit for supplying a mixed gas containing at least CO 2 and water vapor.
  • the gas supply unit includes a supply port for supplying the mixed gas containing CO 2 and water vapor on one side of the CO 2 gas separation membrane, a feed opening itself of the CO 2 gas separation membrane module Alternatively, even if the above-mentioned CO 2 gas separation membrane module is accommodated and the supply side space communicating with the supply port of the accommodated CO 2 gas separation membrane module is a container-shaped gas supply member formed therein Good.
  • the supply port may be one side of the CO 2 gas separation membrane or a laminate comprising the same, may be an end of the CO 2 gas separation membrane or a laminate comprising the same.
  • the supply port 24 may be one or both end faces of the CO 2 gas separation membrane 21 or the laminate 2 including the same.
  • the method for separating CO 2 according to the present invention includes a step of supplying a mixed gas containing at least CO 2 and water vapor to one side of the CO 2 gas separation membrane according to the present invention, and other CO 2 gas separation membranes. Recovering CO 2 separated from the mixed gas from the front side.
  • a mixed gas containing CO 2 and water vapor is supplied from the supply port 24 of the CO 2 gas separation membrane module M in the direction indicated by the arrow A, While flowing through the supply-side channel material 22, CO 2 in the mixed gas permeates the CO 2 gas separation membrane 21, and the separated CO 2 flows through the permeation-side channel material 23 and is collected in the gas collection pipe 3.
  • the gas is collected from the discharge port 32 of the gas collection pipe 3.
  • the remaining mixed gas from which the CO 2 has been separated that has passed through the gap in the supply-side flow path member 22 is discharged from the discharge port 25 of the CO 2 gas separation membrane module M.
  • a sweep gas selected from an inert gas or the like may be supplied to the gas collection pipe 3.
  • Example 1 80 g of water and 2 g of crosslinked polyacrylic acid (“Acpec HV-501” manufactured by Sumitomo Seika Co., Ltd.) were mixed with stirring. To the mixture, 9.3 g of cesium carbonate and 0.7 g of potassium tellurite were added, and further mixed by stirring to obtain a coating liquid I-1.
  • Acpec HV-501 crosslinked polyacrylic acid manufactured by Sumitomo Seika Co., Ltd.
  • the obtained coating liquid I-2 is applied on the surface of a hydrophobic PTFE porous membrane (“Poreflon HP-010-50” manufactured by Sumitomo Electric Fine Polymer Co., Ltd., film thickness 50 ⁇ m, average pore diameter 0.1 ⁇ m).
  • a hydrophobic PTFE porous membrane (“Poreflon HP-010-50” manufactured by Sumitomo Electric Fine Polymer Co., Ltd., film thickness 50 ⁇ m, average pore diameter 0.1 ⁇ m).
  • the hydrophobic PTFE porous membrane after coating was dried at a temperature of about 120 ° C. for 5 minutes or longer to obtain a resin layer I-2.
  • the resin layer I-1 is laminated again by drying at a temperature of about 120 ° C.
  • the basis weight of the resin layer I-1 (corresponding to the first layer (A)) is 66 g / m 2
  • the basis weight of the resin layer I-2 is 5 g / m 2. 2 and the basis weight ratio is 0.076.
  • Example 2 Gas separation membrane II was obtained in the same manner as in Example 1 except that in the preparation step of coating liquid I-1 of Example 1, the amount of cesium carbonate added was increased to 11.6 g to obtain coating liquid II-1.
  • the basis weight of the resin layer II-1 (corresponding to the first layer (A)) is 68 g / m 2
  • the basis weight of the resin layer II-2 (corresponding to the second layer (B)) is 7.6 g. / M 2
  • the basis weight ratio is 0.11.
  • Example 3 In the preparation step of the coating liquid I-1 of Example 1, the gas separation membrane III was obtained in the same manner as in Example 1 except that the coating liquid III-1 was obtained by increasing the amount of cesium carbonate added to 14.0 g. Got.
  • the basis weight of the resin layer III-1 (corresponding to the first layer (A)) is 79 g / m 2
  • the basis weight of the resin layer III-2 (corresponding to the second layer (B)) is 7.6 g. / M 2 and the basis weight ratio is 0.096.
  • Example 4 80 g of water and 2 g of crosslinked polyacrylic acid (“Acpec HV-501” manufactured by Sumitomo Seika Co., Ltd.) were mixed with stirring. To the mixture, 9.3 g of cesium carbonate and 0.7 g of potassium tellurite were added, and further mixed by stirring to obtain a coating liquid IV-1.
  • Acpec HV-501 crosslinked polyacrylic acid
  • Copolymer of 80 g of water and vinyl alcohol and acrylic acid obtained by the production method described in Japanese Patent No. 5598630 (carboxyl group of acrylic acid moiety forms Cs salt, saponification degree: 82%) 4.2 g Were mixed with stirring. To the mixture, 9.9 g of cesium carbonate and 1.5 g of potassium tellurite were added, and further mixed by stirring to obtain a coating liquid IV-2.
  • the obtained coating solution IV-1 was applied on the surface of a hydrophobic PTFE porous membrane (“Poreflon HP-010-50” manufactured by Sumitomo Electric Fine Polymer Co., Ltd., film thickness 50 ⁇ m, average pore diameter 0.1 ⁇ m).
  • a hydrophobic PTFE porous membrane (“Poreflon HP-010-50” manufactured by Sumitomo Electric Fine Polymer Co., Ltd., film thickness 50 ⁇ m, average pore diameter 0.1 ⁇ m).
  • the coated hydrophobic PTFE porous membrane was dried at a temperature of about 120 ° C. for 5 minutes or longer to obtain a resin layer IV-1.
  • the resin layer IV-2 is laminated again by drying at a temperature of about 120 ° C.
  • Example 4 unlike Examples 1 to 3, the first layer (A) is formed before the second layer (B), and the basis weight of the first layer (A) is the second. Less than the basis weight of the layer (B).
  • Comparative Example 1 80 g of water, a copolymer of vinyl alcohol and acrylic acid obtained by the production method described in Japanese Patent No. 5598630 as a hydrophilic resin having a structural unit derived from an aliphatic vinyl ester (carboxyl group at the acrylic acid site) Formed Cs salt, saponification degree: 82%) 3 g, cesium carbonate 7.0 g and potassium tellurite 1.1 g were added and mixed with stirring to obtain coating solution V-2.
  • the obtained coating liquid V-2 is applied on the surface of a hydrophobic PTFE porous membrane (“Poreflon HP-010-50” manufactured by Sumitomo Electric Fine Polymer Co., Ltd., film thickness 50 ⁇ m, average pore diameter 0.1 ⁇ m).
  • a hydrophobic PTFE porous membrane (“Poreflon HP-010-50” manufactured by Sumitomo Electric Fine Polymer Co., Ltd., film thickness 50 ⁇ m, average pore diameter 0.1 ⁇ m).
  • the coated hydrophobic PTFE porous membrane was dried at a temperature of about 120 ° C. for 5 minutes or more to produce a gas separation membrane having a CO 2 separation functional layer on the hydrophobic PTFE porous membrane.
  • application and drying of the coating liquid were repeated a plurality of times to obtain a sheet-like gas separation membrane V.
  • the basis weight of the gas separation membrane V (corresponding to the second layer (B)) is 100 g / m 2 .
  • the obtained coating solution VI-1 is applied on the surface of a hydrophobic PTFE porous membrane (“Poreflon HP-010-50” manufactured by Sumitomo Electric Fine Polymer Co., Ltd., film thickness 50 ⁇ m, average pore diameter 0.1 ⁇ m).
  • a hydrophobic PTFE porous membrane (“Poreflon HP-010-50” manufactured by Sumitomo Electric Fine Polymer Co., Ltd., film thickness 50 ⁇ m, average pore diameter 0.1 ⁇ m).
  • the coated hydrophobic PTFE porous membrane was dried at a temperature of about 120 ° C. for 5 minutes or more to produce a gas separation membrane having a CO 2 separation functional layer on the hydrophobic PTFE porous membrane.
  • application and drying of the coating liquid were repeated a plurality of times to obtain a sheet-like gas separation membrane VI.
  • the basis weight of the gas separation membrane VI (corresponding to the first layer (A)) is 100 g / m 2 .
  • the N 2 gas permeation performance was evaluated using a CO 2 gas separation apparatus including the CO 2 gas separation membrane module 51 shown in FIG. Specifically, the gas separation membranes I, IV and VI produced in Example 1, Example 4 and Comparative Example 2 were cut into appropriate sizes to form flat membranes, which were each made of stainless steel CO 2 separation.
  • the membrane module 51 was fixed between the supply side 52 (corresponding to the gas supply unit described above) and the transmission side 53.
  • N 2 gas at room temperature was supplied to the supply side 52 of the CO 2 gas separation membrane module 51, and the pressure on the supply side 52 was increased to 900 kPaA.
  • the pressure on the transmission side 53 was adjusted to atmospheric pressure.
  • the permeance of N 2 is calculated based on the time change of the pressure on the supply side 52, and the N 2 permeance [mol / (m 2 ⁇ s ⁇ kPa)] is 5 ⁇ 10 ⁇ 8 mol / (m 2 ⁇ s ⁇ kPa).
  • the film forming property was evaluated for each of the 10 gas separation membrane samples prepared in Example 1, Example 4 and Comparative Example 2. The results are shown in Table 1.
  • CO 2 separation was carried out using a CO 2 gas separation device provided with a CO 2 gas separation membrane module 51 shown in FIG. Specifically, the gas separation membranes I to VI produced in Examples 1 to 4 and Comparative Examples 1 to 2 are cut into appropriate sizes to form flat membranes, which are each made of a stainless steel CO 2 separation membrane module. 51 was fixed between the supply side 52 (corresponding to the gas supply unit described above) and the transmission side 53.
  • the source gas (CO 2 : 34.5%, N 2 : 52.8%, H 2 O: 12.7%) is supplied to the CO 2 gas separation membrane module 51 at a flow rate of 7.03 ⁇ 10 ⁇ 2 mol / min.
  • the gas was supplied to the supply side 52, and the sweep gas (H 2 O: 100%) was supplied to the permeation side 53 of the CO 2 gas separation membrane module 51 at a flow rate of 1.05 ⁇ 10 ⁇ 2 mol / min.
  • H 2 O was adjusted so that water would be fed by the fixed liquid feed pumps 58 and 60, heated and evaporated, and the above mixing ratio and flow rate were obtained.
  • the pressure on the supply side 52 was adjusted to 900 kPaA by a back pressure regulator 55 provided on the downstream side of the cooling trap 54 in the middle of the exhaust gas discharge path. Further, a back pressure regulator 59 is also provided between the cooling trap 56 and the gas chromatograph 57, thereby adjusting the pressure on the permeation side 53 to atmospheric pressure.
  • a back pressure regulator 59 is also provided between the cooling trap 56 and the gas chromatograph 57, thereby adjusting the pressure on the permeation side 53 to atmospheric pressure.
  • the CO 2 gas separation membrane module 51 and the raw material gas and the sweep gas are converted into a CO 2 gas separation membrane module.
  • the piping supplied to 51 is installed in a thermostat set to a predetermined temperature. In this evaluation, the temperature of the CO 2 gas separation membrane module 51, the raw material gas, and the sweep gas was set to 110 ° C.
  • Gas separation membranes of the present invention hydrogen production, decarboxylation process for large processes, such as urea production, in CO 2 permeable membrane reactor, etc., to separate the CO 2 with high selectivity transmission from a mixed gas containing CO 2 Is available for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 アルカリ金属炭酸塩、アルカリ金属重炭酸塩及びアルカリ金属水酸化物からなる群より選ばれる少なくとも1つのアルカリ金属化合物とカルボキシル基を有する重合体が架橋された樹脂である第一の樹脂とを含む第一の層(A)、少なくとも1つの上記アルカリ金属化合物と脂肪酸のビニルエステルに由来する構造単位を有する樹脂である第二の樹脂とを含む第二の層(B)、及び疎水性多孔膜(C)を含むCOガス分離膜及びその製造方法、並びにそれを含む二酸化炭素ガス分離膜モジュールが提供される。

Description

二酸化炭素ガス分離膜及びその製造方法、並びに二酸化炭素ガス分離膜モジュール
 本発明は、少なくともCOと水蒸気とを含む混合ガスからCOを分離するためのガス分離膜及びその製造方法、並びに当該ガス分離膜を含むガス分離膜モジュール等に関する。
 水素製造又は尿素製造等の大規模プラントで合成される合成ガス、天然ガス、排ガス等からCOを分離するプロセスとして、省エネルギー化を実現できることから、ガス膜分離プロセスが近年注目されている。
 上記ガス膜分離プロセスで用いられるガス分離膜としては、これまで種々の分離膜が提案されている。例えば、特開平07-112122号公報(特許文献1)では、二酸化炭素キャリヤーを含む水溶液を架橋構造を有するビニルアルコール-アクリル酸塩共重合体に吸収させて形成したハイドロゲル膜からなる二酸化炭素分離ゲル膜が提案されている。特許文献1に記載の発明は、二酸化炭素キャリヤーを含む水溶液を吸収させ、ハイドロゲル化させる高分子材料として、ビニルアルコール-アクリル酸塩共重合体を用いることにより、従来から知られているポリアクリル酸等の電解質高分子が有する、吸水能力は高いものの強度が弱く、膜状に成形することが困難であるという問題を解決し、実用に供することのできる二酸化炭素促進輸送膜及びその製造方法を提供する。
 ハイドロゲル化させる高分子材料にポリアクリル酸を利用したガス分離膜として、特開平08-193156号公報(特許文献2)では、ポリアクリル酸と所定当量の脂肪族アミンとの反応混合物から構成される樹脂組成物で形成されたCO分離フィルムが提案されている。特開2013-049048号公報(特許文献3)では、グリシンと脱プロトン化剤とをハイドロゲル膜に含んで構成されるゲル層を、耐熱性の多孔膜に担持させたCO促進輸送膜が提案されている。
特開平07-112122号公報 特開平08-193156号公報 特開2013-049048号公報
 しかしながら、これまで提案されているガス分離膜は、CO透過性能(パーミアンス)及びCO選択性が未だ十分には満足できるものではなかった。
 本発明の目的は、優れたCO選択透過性を備えたガス分離膜及びその製造方法、並びに当該ガス分離膜を含むガス分離膜モジュール及びガス分離装置を提供することにある。
 本発明によれば、以下に示すCOガス分離膜、COガス分離膜の製造方法、COの分離方法、COガス分離膜モジュール及びCOガス分離装置が提供される。
 [1] アルカリ金属炭酸塩、アルカリ金属重炭酸塩及びアルカリ金属水酸化物からなる群より選ばれる少なくとも1つのアルカリ金属化合物と、カルボキシル基を有する重合体が架橋された樹脂である第一の樹脂とを含む第一の層(A)と、
 アルカリ金属炭酸塩、アルカリ金属重炭酸塩及びアルカリ金属水酸化物からなる群より選ばれる少なくとも1つのアルカリ金属化合物と、脂肪酸のビニルエステルに由来する構造単位を有する樹脂である第二の樹脂とを含む第二の層(B)と、
 疎水性多孔膜(C)と、
を含むCOガス分離膜。
 [2] 前記第二の樹脂が、脂肪酸のビニルエステルを部分的に鹸化して得られるポリビニルアルコール又はビニルアルコールとアクリル酸との共重合体である[1]に記載のCOガス分離膜。
 [3] 前記第一の層(A)の一方の面と前記第二の層(B)の一方の面とが接しており、前記第一の層(A)の他方の面又は前記第二の層(B)の他方の面のいずれかと前記疎水性多孔膜(C)の一方の面とが接している[1]又は[2]に記載のCOガス分離膜。
 [4] 前記第一の層(A)及び前記第二の層(B)のうち、前記疎水性多孔膜(C)と接していない層の目付け量が、疎水性多孔膜(C)と接している層の目付け量よりも多い[3]に記載のCOガス分離膜。目付け量とは、前記第一の層(A)又は前記第二の層(B)の単位面積当たりの固形分量である。
 [5] 前記第一の層(A)、前記第二の層(B)及び前記疎水性多孔膜(C)が、この順に積層された[1]~[4]のいずれかに記載のCOガス分離膜。
 [6] 前記第一の樹脂が、アクリル酸、メタクリル酸又はそれらの誘導体に由来する構造単位を有する[1]~[5]のいずれかに記載のCOガス分離膜。
 [7] 前記第一の層(A)及び前記第二の層(B)に含まれる全てのアルカリ金属化合物の合計含有量が、前記第一の樹脂及び前記第二の樹脂の合計量1質量部に対して0.5質量部~20質量部である[1]~[6]のいずれかに記載のCOガス分離膜。
 [8] 前記第一の層(A)及び前記第二の層(B)に含まれる前記アルカリ金属化合物が、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1つのアルカリ金属の炭酸塩又は水酸化物である[1]~[7]のいずれかに記載のCOガス分離膜。
 [9] 前記第一の層(A)及び前記第二の層(B)に含まれる前記アルカリ金属化合物が、炭酸セシウム又は水酸化セシウムである[1]~[8]のいずれかに記載のCOガス分離膜。
 [10] 前記疎水性多孔膜(C)が、セラミック、含フッ素樹脂、ポリフェニレンスルフィド、ポリエーテルスルホン及びポリイミドからなる群より選ばれる少なくとも1つの材料からなる[1]~[9]のいずれかに記載のCOガス分離膜。
 [11] 前記疎水性多孔膜(C)の平均孔径が、0.005μm~1.0μmの範囲である[1]~[10]のいずれかに記載のCOガス分離膜。
 [12] [1]~[11]のいずれかに記載のCOガス分離膜の製造方法であって、
 前記アルカリ金属化合物と、前記第一の樹脂と、媒質とを含む第一の塗工液、又は前記アルカリ金属化合物と、前記第二の樹脂と、媒質とを含む第二の塗工液を、前記疎水性多孔膜(C)の少なくとも一方の面に塗布する第1工程と、
 前記第1工程で得られた塗布物から前記媒質を除去して前記第一の層(A)又は前記第二の層(B)を得る第2工程と、
 前記第2工程で得られた第一の層(A)又は第二の層(B)の面に、前記第一の塗工液及び前記第二の塗工液のうち前記第1工程で塗工した塗工液とは異なる塗工液を塗布する第3工程と、
 前記第3工程で得られた塗布物から前記媒質を除去して前記第一の層(A)又は前記第二の層(B)を得る第4工程と、
を含む製造方法。
 [13] 前記第1工程において、前記疎水性多孔膜(C)の少なくとも一方の面に前記第二の塗工液を塗布する[12]に記載の製造方法。
 [14] [1]~[11]のいずれかに記載のCOガス分離膜の一方面側に、少なくともCOと水蒸気とを含む混合気体を供給する工程と、
 前記COガス分離膜の他方面側から、前記混合気体から分離されたCOを回収する工程と、
を含むCOの分離方法。
 [15] [1]~[11]のいずれかに記載のCOガス分離膜を備えるCOガス分離膜モジュール。
 [16] [15]に記載のCOガス分離膜モジュールと、
 少なくともCOと水蒸気とを含む混合気体を前記COガス分離膜モジュールに供給するための気体供給部と、
を備えるCOガス分離装置。
 本発明によれば、優れたCO選択透過性を備えたガス分離膜及びその製造方法、並びに当該ガス分離膜を含むガス分離膜モジュール及びガス分離装置を提供することができる。
本発明に係るガス分離膜を用いたスパイラル型COガス分離膜モジュールの構造を示す、一部切り欠きを設けた概説図である。 実施例で用いる、COガス分離膜モジュールを備えたCOガス分離装置の概説図である。
 <COガス分離膜及びその製造方法>
 本発明のCOガス分離膜は、下記の第一の層(A)、第二の層(B)及び疎水性多孔膜(C)を含むCOガス分離膜である。
(A)アルカリ金属炭酸塩、アルカリ金属重炭酸塩及びアルカリ金属水酸化物からなる群より選ばれる少なくとも1つのアルカリ金属化合物と、カルボキシル基を有する重合体が架橋された樹脂(第一の樹脂)とを含む第一の層、
(B)アルカリ金属炭酸塩、アルカリ金属重炭酸塩及びアルカリ金属水酸化物からなる群より選ばれる少なくとも1つのアルカリ金属化合物と、脂肪酸のビニルエステルに由来する構造単位を有する樹脂(第二の樹脂)とを含む第二の層、及び
(C)疎水性多孔膜。
 (第一の樹脂)
 第一の層(A)に含まれる第一の樹脂は、カルボキシル基を有する重合体が架橋されている樹脂である。第一の樹脂は、カルボキシル基を有する重合体の分子鎖同士の架橋による網目構造を有している。第一の樹脂は、COガス分離膜の保水性を高めるとともに、耐圧強度を高めるうえで好ましい。COガス分離膜には、ガスが当該膜を透過するための推進力として大きな圧力差が印加されるため、耐圧強度が要求される。第一の樹脂は、1種のみを用いてもよいし、2種以上を併用してもよい。
 カルボキシル基を有する重合体としては、アクリル酸、イタコン酸、クロトン酸、メタクリル酸等のカルボキシル基含有単量体を1種又は2種以上含む単量体組成物を重合してなる重合体が挙げられ、具体的には、ポリアクリル酸、ポリイタコン酸、ポリクロトン酸、ポリメタクリル酸、アクリル酸-メタクリル酸共重合体、アクリル酸-メタクリル酸メチル共重合体、メタクリル酸-メタクリル酸メチル共重合体等が挙げられる。中でも、カルボキシル基を有する重合体は、アクリル酸、メタクリル酸又はそれらの誘導体に由来する構造単位を有することが好ましい。具体的には、カルボキシル基を有する重合体は、アクリル酸の重合体であるポリアクリル酸、メタクリル酸の重合体であるポリメタクリル酸、アクリル酸とメタクリル酸との共重合体であるアクリル酸-メタクリル酸共重合体であることが好ましく、ポリアクリル酸であることがより好ましい。
 第一の樹脂は、カルボキシル基を有する重合体を架橋剤と反応させて調製してもよいし、カルボキシル基又は加水分解反応によりカルボキシル基となるアルキルエステル基を有する単量体と架橋性単量体とを重合させて調製してもよい。第一の樹脂が有するカルボキシル基は、金属イオンにより中和することでそれらの全て又は一部がカルボキシラートに置き換わっていてもよい。上記金属イオンは、アルカリ金属カチオンであることが好ましい。上記中和反応のタイミングとしては、架橋された第一の樹脂を調製した後が好ましい。第一の樹脂が有するカルボキシル基の全て又は一部がカルボキシラートに置き換わった樹脂も第一の樹脂に属する。
 上記アルキルエステル基を有する単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸へキシル、アクリル酸オクチル、アクリル酸ラウリル等の炭素数1~16のアルキル基を有するアクリル酸アルキルエステル;イタコン酸メチル、イタコン酸エチル、イタコン酸プロピル、イタコン酸ブチル、イタコン酸へキシル、イタコン酸オクチル、イタコン酸ラウリル等の炭素数1~16のアルキル基を有するイタコン酸アルキルエステル;クロトン酸メチル、クロトン酸エチル、クロトン酸プロピル、クロトン酸ブチル、クロトン酸へキシル、クロトン酸オクチル、クロトン酸ラウリル等の炭素数1~16のアルキル基を有するクロトン酸アルキルエステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸へキシル、メタクリル酸オクチル、メタクリル酸ラウリル等の炭素数1~16のアルキル基を有するメタクリル酸アルキルエステル等が挙げられる。
 上記架橋性単量体及び上記架橋剤としては、特に限定はなく、従来公知のものが使用できる。上記架橋性単量体としては、例えば、ジビニルベンゼン、N,N’-メチレンビスアクリルアミド、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールテトラアリルエーテル等が挙げられる。上記架橋剤としては、例えば、エポキシ架橋剤、多価グリシジルエーテル、多価アルコール、多価イソシアネート、多価アジリジン、ハロエポキシ化合物、多価アルデヒド、多価アミン、有機金属系架橋剤、金属系架橋剤等が挙げられる。上記架橋性単量体及び上記架橋剤は、耐アルカリ性を有することが好ましい。架橋方法としては、熱架橋、紫外線架橋、電子線架橋、放射線架橋、光架橋等や、特開2003-268009号公報、特開平7-88171号公報に記載されている方法等、従来公知の手法が使用できる。架橋された第一の樹脂を調製するタイミングとしては、特に限定はないが、後述するCOキャリアと混合する前に実施することが好ましい。
 第一の樹脂として、市販品を使用することができる。ポリアクリル酸が架橋された樹脂としては、例えば、アクペック(登録商標、住友精化社製)、サンフレッシュ(登録商標、三洋化成社製)等が挙げられる。
 (第二の樹脂)
 本発明のCOガス分離膜は、第一の層(A)、第二の層(B)及び疎水性多孔膜(C)を含む。COガス分離膜がカルボキシル基を有する重合体が架橋された第一の樹脂を含む第一の層(A)と、疎水性多孔膜(C)とで構成される場合と比較し、さらに脂肪酸のビニルエステルに由来する構造単位を有する第二の樹脂を含む第二の層(B)を積層することにより、製膜性を向上させることができる。第二の樹脂は、1種のみを用いてもよいし、2種以上を併用してもよい。
 第二の樹脂は、脂肪酸のビニルエステルに由来する構造単位を部分的に鹸化することで得られるものであることができ、この場合、鹸化された脂肪酸のビニルエステルに由来する構造単位は親水性を示すビニルアルコール単位となる。したがって、第二の樹脂の構造に疎水性を示す脂肪酸のビニルエステルに由来する構造単位が残存していると、この疎水性を示す脂肪酸のビニルエステルに由来する構造単位と疎水性多孔膜(C)との親和性によりピンホール等の膜欠陥が抑制され、製膜性が向上する。ここで、鹸化度とは、脂肪酸のビニルエステルに由来する構造単位の内の何%が鹸化(加水分解)されているかを表す。鹸化度としては、50%以上100%未満の範囲が好ましく、60%以上100%未満の範囲がより好ましい。鹸化度の調整は、特開昭52-107096号公報、特開昭52-27455号公報、特許第5598630号公報等に記載されている従来公知の樹脂製造法を参考に実施することができる。
 第二の樹脂は、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、ラウリン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、バーサチック酸ビニル等の炭素数2~16の脂肪酸のビニルエステルに由来する構造単位を有することができる。このような樹脂としては、上記脂肪酸のビニルエステルに由来する構造単位を部分的に鹸化して得られた、ポリビニルアルコール、ビニルアルコール-エチレン共重合体、ビニルアルコール-アクリル酸共重合体、ビニルアルコール-メタクリル酸共重合体、ビニルアルコール-ビニルスルホン酸共重合体等が挙げられる。中でも、第二の樹脂は、脂肪酸のビニルエステルに由来する構造単位を部分的に鹸化して得られた、ポリビニルアルコール又はビニルアルコール-アクリル酸共重合体であることが好ましい。
 第二の樹脂として、カルボキシル基を有する重合体、例えばビニルアルコール-アクリル酸共重合体等を用いる場合、上記カルボキシル基は、第一の樹脂と同様に、金属イオンにより中和することにより、それらの全て又は一部がカルボキシラートに置き換わっていてもよい。金属イオンは、アルカリ金属カチオンであることが好ましい。第二の樹脂が有するカルボキシル基の全て又は一部がカルボキシラートに置き換わった樹脂も第二の樹脂に属する。
 (COキャリア)
 本発明のCOガス分離膜は、ガス分子の膜への溶解性と膜中の拡散性との差を利用した溶解・拡散機構に加えて、COと可逆的に反応するCOキャリアと呼ばれる物質を用い、COキャリアとの反応生成物として特定ガスの透過を促進する促進輸送機構により、特定ガスの高い透過選択性を実現している。下記式(1)は、COキャリアに炭酸セシウム(CsCO)を使用した場合における、COとCOキャリアとの反応を示している。下記式(1)で示される反応は、可逆反応である。
Figure JPOXMLDOC01-appb-M000001
 本発明のCOガス分離膜が備える第一の層(A)及び第二の層(B)は、アルカリ金属炭酸塩、アルカリ金属重炭酸塩及びアルカリ金属水酸化物からなる群より選ばれる少なくとも1つのアルカリ金属化合物(以下、「COキャリア」と記す場合がある。)を含む。このCOキャリアは、上記式(1)に示されるように、第一の層(A)及び第二の層(B)において水に溶解したCOと可逆的に反応することでCOを選択透過する役割を果たしている。第一の層(A)及び第二の層(B)はそれぞれ、COキャリアを1種のみ含んでいてもよいし、2種以上含んでいてもよい。
 第一の層(A)及び第二の層(B)に含まれる前記アルカリ金属化合物(「COキャリア」)は、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1つのアルカリ金属の炭酸塩、重炭酸塩又は水酸化物であることが好ましく、炭酸塩又は水酸化物であることがより好ましい。アルカリ金属炭酸塩としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、及び炭酸セシウム等が挙げられる。アルカリ金属重炭酸塩としては、例えば、重炭酸ナトリウム、重炭酸カリウム、重炭酸ルビジウム、及び重炭酸セシウム等が挙げられる。アルカリ金属水酸化物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、及び水酸化セシウム等が挙げられる。
 第一の層(A)及び第二の層(B)に含まれる前記アルカリ金属化合物(「COキャリア」)は、潮解性を示すアルカリ金属炭酸塩又はアルカリ金属水酸化物であることがさらに好ましく、水への溶解度が高い炭酸セシウム又は水酸化セシウムであることが特に好ましい。
 COパーミアンスをさらに向上させる観点からは、添加するアルカリ金属炭酸塩、アルカリ金属重炭酸塩又はアルカリ金属水酸化物をCOキャリアとして機能させるために、第一の樹脂及び第二の樹脂が有するカルボキシル基は、COキャリアを構成するアルカリ金属のカチオンにより中和されていることが好ましい。
 本発明のCOガス分離膜が備える第一の層(A)及び第二の層(B)には、COキャリアに由来するアルカリ金属化合物のほか、第一の樹脂及び第二の樹脂が有するカルボキシル基の中和反応に用いられたアルカリ金属化合物等、種々のアルカリ金属化合物が含まれ得る。COガス分離膜の第一の層(A)及び第二の層(B)に含まれるこれら全てのアルカリ金属化合物の合計含有量は、第一の樹脂及び第二の樹脂の合計量1質量部に対して0.5質量部~20質量部であることが好ましい。アルカリ金属化合物の合計含有量が、第一の樹脂及び第二の樹脂の合計量1質量部に対して0.5質量部未満であると、所期のCO選択透過性が得られないおそれがある。一方、アルカリ金属化合物の含有量が、第一の樹脂及び第二の樹脂の合計量1質量部に対して20質量部を超えると、製膜性が悪くなるおそれがある。アルカリ金属化合物の合計含有量は、より好ましくは、第一の樹脂及び第二の樹脂の合計量1質量部に対して1質量部~15質量部である。
 第一の層(A)及び第二の層(B)それぞれに含まれるアルカリ金属化合物は、同種であっても異種であってもよい。また、第一の層(A)及び第二の層(B)はそれぞれ、アルカリ金属化合物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。
 (疎水性多孔膜)
 本発明のCOガス分離膜は、疎水性多孔膜(C)として、膜透過したガス成分の拡散抵抗とならないガス透過性の高い疎水性多孔膜を備える。第一の層(A)又は第二の層(B)を多孔膜の一方面に接して積層する場合は、多孔膜として疎水性多孔膜(C)を使用することによって、第一の層(A)内又は第二の層(B)内の水分が多孔膜の細孔に浸入することが抑制されるため、COパーミアンスの低下を抑えることができる。疎水性多孔膜(C)の一方面に接して積層する層は、第二の層(B)であることが好ましい。この場合、第一の層(A)は、疎水性多孔膜(C)と接していない第二の層(B)の面(表面)に接して積層される。
 本発明のCOガス分離膜の適用が想定される水素製造、尿素製造等のプロセスでは、ガス分離膜の使用温度が100℃以上となるため、疎水性多孔膜(C)等のガス分離膜を構成する部材の耐熱性は、100℃以上であることが好ましい。
 「疎水性」とは25℃における水の接触角が90°以上であることを意味する。「100℃以上の耐熱性」とは、多孔膜等の部材を100℃以上の温度条件下に2時間保存した後も保存前の形態が維持され、熱収縮又は熱溶融による目視で確認し得るカールが生じないことを意味する。
 疎水性多孔膜(C)を構成する材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル、ポリフッ化ビニリデン等の含フッ素樹脂;ポリフェニレンスルフィド;ポリエーテルスルホン;ポリイミド;高分子量ポリエステル;耐熱性ポリアミド;アラミド;ポリカーボネート等の樹脂材料;金属、ガラス、セラミック等の無機材料等が挙げられる。これらの中でも、撥水性と耐熱性の面から、PTFE、ポリフッ化ビニル、ポリフッ化ビニリデン等の含フッ素樹脂、ポリフェニレンスルフィド、ポリエーテルスルホン、ポリイミド、セラミックが好ましく、さらには、PTFEが、微小孔径を得やすいこと、気孔率を高くできるために分離のエネルギー効率が良いこと等の理由からより好ましい。
 疎水性多孔膜(C)の厚さに特に限定はないが、機械的強度の観点からは、通常、10μm~3000μmの範囲が好ましく、より好ましくは10μm~500μmの範囲であり、さらに好ましくは15μm~150μmの範囲である。
 疎水性多孔膜(C)の細孔の平均孔径(平均細孔径)に特に限定はないが、ガス透過性の観点から、10μm以下が好ましく、より好ましくは0.005μm~1.0μmの範囲である。疎水性多孔膜(C)の空孔率は、分離のエネルギー効率の観点から、5%~99%の範囲が好ましく、より好ましくは30%~90%の範囲である。
 本発明のCOガス分離膜において、第一の樹脂を含む第一の層(A)と第二の樹脂を含む第二の層(B)の積層順に限定はない。例えば、第一の樹脂を含む第一の層(A)の一方の面と第二の樹脂を含む第二の層(B)の一方の面とが接し、第一の層(A)の他方の面又は第二の層(B)の他方の面のいずれかと疎水性多孔膜(C)の一方の面とが接して、第一の層(A)、第二の層(B)及び疎水性多孔膜(C)が積層される。この場合、COの透過性能(パーミアンス)の観点から、第一の層(A)及び第二の層(B)のうち、疎水性多孔膜(C)と接していない層の目付け量(単位面積当たりの固形分量)は、疎水性多孔膜(C)と接している層の目付け量よりも多いことが好ましい。また、COの透過性能(パーミアンス)の観点から、第二の樹脂よりも保水性の高い第一の樹脂を含む第一の層(A)、第二の樹脂を含む第二の層(B)、疎水性多孔膜(C)の順に積層されていることが好ましい。
 (添加剤)
 第一の層(A)及び第二の層(B)には、上記COキャリアの他、CO水和反応触媒が含有されていてもよい。
 前記CO水和反応触媒は、下記式(2)に示すCO水和反応の反応速度を増加させる触媒である。なお、下記式(2)で示される反応は、可逆反応である。
Figure JPOXMLDOC01-appb-M000002
 COとCOキャリアとの反応は、総括反応式としては、下記式(3)のように示される。但し、式(3)ではCOキャリアが炭酸塩である場合を想定している。下記式(3)で示される反応は、可逆反応である。当該反応の素反応の1つである上記CO水和反応が無触媒条件下では遅い反応であるので、触媒の添加により当該素反応を促進させることで、COとCOキャリアとの反応を促進させることができ、結果として、COの透過速度の向上が期待される。
Figure JPOXMLDOC01-appb-M000003
 したがって、第一の層(A)及び第二の層(B)にCOキャリアとCO水和反応触媒とが含まれると、COとCOキャリアとの反応が促進され、COパーミアンス及びCO選択透過性が大幅に向上する。高CO分圧下においてもCO水和反応触媒が有効に機能するため、高CO分圧下におけるCOパーミアンス及びCO選択透過性も大幅に向上する。
 CO水和反応触媒は、オキソ酸化合物を含むことが好ましく、特に、14族元素、15族元素、及び、16族元素の中から選択される少なくとも1つの元素のオキソ酸化合物を含んで構成されることが好ましく、さらには亜テルル酸化合物、亜セレン酸化合物、亜ヒ酸化合物、及び、オルトケイ酸化合物の内の少なくとも1つを含んで構成されることがより好ましい。より具体的には、亜テルル酸カリウム(KTeO、融点:465℃)、亜テルル酸ナトリウム(NaTeO、融点:710℃)、亜テルル酸リチウム(LiTe、融点:約750℃)、亜セレン酸カリウム(KSe、融点:875℃)、亜ヒ酸ナトリウム(NaOAs、融点:615℃)、オルトケイ酸ナトリウム(NaSi、融点:1018℃)等が好適に使用される。これらの中でも、より好ましくは亜テルル酸化合物であり、さらに好ましくは亜テルル酸カリウム又は亜テルル酸ナトリウムである。第一の層(A)及び第二の層(B)はそれぞれ、CO水和反応触媒を1種のみ含んでいてもよいし、2種以上含んでいてもよい。
 CO水和反応触媒の融点が200℃以上であると、当該触媒が熱的に安定して親水性樹脂からなる層内に存在し得るため、COガス分離膜の性能を長期に亘って維持できる。CO水和反応触媒が水溶性であれば、CO水和反応触媒を含む分離機能層の作製が容易且つ安定的に行える。CO水和反応触媒として、亜テルル酸化合物、亜ヒ酸化合物、又は、亜セレン酸化合物を使用した場合、何れも水溶性で融点が200℃以上であり、安定した膜性能改善が期待できる。
 (COガス分離膜の製造方法)
 本発明に係るCOガス分離膜の製造方法について説明する。第1工程として、上記アルカリ金属化合物と、カルボキシル基を有する重合体が架橋された樹脂である第一の樹脂と、媒質とを含む第一の塗工液、又は、上記アルカリ金属化合物と、脂肪酸のビニルエステルに由来する構造単位を有する樹脂である第二の樹脂と、媒質とを含む第二の塗工液を、疎水性多孔膜(C)の少なくとも一方の面に塗布する。
 第一の塗工液1と第二の塗工液を調製するために使用する媒質としては、水、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコールなどのプロトン性極性媒質;トルエン、キシレン、ヘキサン等の無極性媒質;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン、N-メチルピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等の非プロトン性極性媒質等が挙げられる。これらを単独、又は相溶する範囲で複数混合して媒質として用いることができる。これらの中でも、水、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコールからなる群から選ばれる少なくとも1つが含まれる媒質が好ましく、より好ましくは水が含まれる媒質である。
 塗工液を疎水性多孔膜(C)に塗布する際の温度は、組成や濃度に応じて適宜決定すればよいが、温度が高すぎると塗工液から媒質が多量に蒸発して組成濃度が変化したり、塗布物(塗布層)に蒸発痕が残ったりするおそれがあるので、室温以上であり、且つ、使用媒質の沸点の5℃以下の温度範囲であることが好ましい。例えば、媒質として水を用いた場合には、15℃~95℃の温度範囲で塗工液を疎水性多孔膜(C)に塗布することが好ましい。
 塗工液を疎水性多孔膜(C)に塗布する方法としては、特に制限はなく、例えばスピンコート法、バー塗布、ダイコート塗布、ブレード塗布、エアナイフ塗布、グラビアコート、ロールコーティング塗布、スプレー塗布、ディップ塗布、コンマロール法、キスコート法、スクリーン印刷、インクジェット印刷等が挙げられる。塗工液の塗布量は、塗工液に含まれる樹脂の種類に応じて調整することが好ましい。第一の樹脂を含む塗工液を塗布する場合の目付け量(単位面積当たりの固形分量)としては、0.1g/m~1000g/mが挙げられ、0.1g/m~500g/mであることが好ましく、0.5g/m~300g/mであることがより好ましく、1g/m~100g/mであることがさらに好ましい。第二の樹脂を含む塗工液を塗布する場合の目付け量としては、1g/m~1000g/mが挙げられ、2g/m~750g/mであることが好ましく、4g/m~500g/mであることがより好ましく、5g/m~100g/mであることがさらに好ましい。目付け量の調整は、塗布物の形成速度(例えば、塗工液が塗布される疎水性多孔膜(C)の搬送速度)や塗工液の濃度、塗工液の吐出量等で制御できる。
 第2工程として、第1工程で形成した塗布物(塗布層)から媒質を除去して第一の層(A)又は第二の層(B)を得る。媒質の除去方法に特に限定はなく、従来公知の方法を用いることができるが、加熱された空気等を通風させることにより塗布物を乾燥させて媒質を蒸発除去する方法が好ましい。例えば、所定温度及び所定湿度に調整された通風乾燥炉に塗布物を搬入して、塗布物から媒質を蒸発除去する。これにより第一の層(A)又は第二の層(B)が形成される。
 乾燥温度は、塗工液の媒質及び疎水性多孔膜(C)の種類に応じて適宜決定すればよい。通常、媒質の凝固点よりも高く且つ疎水性多孔膜(C)の融点よりも低い温度とするのが好ましく、一般に、80℃~200℃の範囲が好適である。
 媒質除去操作は、塗布物に含まれる媒質が所定濃度以下になるまで行う。具体的には、第2工程で得られた第一の層(A)又は第二の層(B)に含まれる媒質の含有率が、1重量%~34重量%の範囲に達するまで行うことが好ましい。
 第3工程として、第2工程で得られた第一の層(A)又は第二の層(B)の面(表面)に、第一の塗工液及び第二の塗工液のうち第1工程で塗布した塗工液とは異なる塗工液を塗布する。塗工液を塗布する方法は、第1工程で塗工液を塗布した方法と異なっていてもよいが、同じ方法であることが好ましい。第3工程において塗工液を塗布する際の温度は、第1工程において塗工液を塗布する際と同様に、塗布する塗工液の組成や濃度に応じて適宜決定すればよい。塗工液の塗布量は、第1工程と同様に、塗工液に含まれる樹脂の種類に応じて調整することが好ましい。
 第4工程として、第3工程で得られた塗布物(塗布層)から媒質を除去して第一の層(A)又は第二の層(B)を得る。媒質の除去方法は、第2工程に適用した方法と異なっていてもよいが、第2工程と同じことが好ましい。乾燥温度は、第2工程と同様に、塗工液の媒質及び疎水性多孔膜(C)の種類に応じて適宜決定すればよい。
 第1工程において、疎水性多孔膜(C)の少なくとも一方の面に第二の塗工液を塗布し、第2工程において第二の層(B)を得、第3工程において、第二の層(B)の面に第一の塗工液を塗布し、第4工程において第一の層(A)を得るCOガス分離膜の製造方法が好ましい。この場合、CO選択透過性の観点から、第一の樹脂を含む第一の層(A)の目付け量が2g/m~500g/mであり第二の樹脂を含む第二の層(B)の目付け量が1g/m~20g/mであることが好ましく、第一の樹脂を含む第一の層(A)の目付け量が10g/m~300g/mであり第二の樹脂を含む第二の層(B)の目付け量が2g/m~15g/mであることがより好ましい。また、CO選択透過性の観点から、第一の層(A)の目付け量が第二の層(B)の目付け量より多いことが好ましく、第一の層(A)の目付け量に対する第二の層(B)の目付け量の比(以下、単に「目付け量比」ということがある。)、すなわち、第二の層(B)の目付け量を第一の層(A)の目付け量で除した値は、0.04~0.5の範囲内であることが好ましく、0.05~0.2の範囲内であることがより好ましい。
 <COガス分離膜モジュール及びCOガス分離装置>
 本発明に係るCOガス分離膜モジュールは、上記本発明のCOガス分離膜を備えるものであり、スパイラル型、円筒型、中空糸型、プリーツ型、プレート&フレーム型等いずれであってもよい。図1に、本発明に係るCOガス分離膜を用いたスパイラル型COガス分離膜モジュールの構造を、一部切り欠きを設けて概説した図で示す。
 図1に示すスパイラル型COガス分離膜モジュールMは、COガス分離膜21と供給側流路材22と透過側流路材23とが積層された積層体2が、複数の穴31が形成された中空の集ガス管3の外周に複数回巻き付けられた構造を有する。供給側流路材22と透過側流路材23とは、供給されるCOと水蒸気とを含む混合気体及びCOガス分離膜21を透過した透過ガスの乱流(膜面の表面更新)を促進して供給流体中のCOの膜透過速度を増加させる機能と、供給側の圧損をできるだけ小さくする機能とが備わっていることが好ましい。供給側流路材22及び透過側流路材23としては、スペーサーとしての機能と、混合気体に乱流を生じさせる機能とを備えていることが好ましいことから、網目状のものが好適に用いられる。網目の単位格子の形状は、網目の形状により混合気体の流路が変わることから、目的に応じて、例えば、菱形、平行四辺形等の形状から選択して用いられる。供給側流路材22及び透過側流路材23を構成する材料は、特に限定はないが、本発明のガス分離膜が100℃以上の温度条件下で使用されることから、耐熱性を有する材料であることが好ましく、前述の疎水性多孔膜(C)の材料として挙げた材料がここでも同様に好ましく用いられる。
 本発明に係るCOガス分離装置は、上記本発明のCOガス分離膜モジュールと、少なくともCOと水蒸気とを含む混合気体を供給するための気体供給部とを備える。気体供給部は、COと水蒸気とを含む混合気体をCOガス分離膜の一方面側に供給するための供給口を含んでおり、上記COガス分離膜モジュールの供給口自体であってもよく、上記COガス分離膜モジュールが収容され、収容されたCOガス分離膜モジュールの供給口と連通する供給側空間がその内部に形成される容器形状のガス供給用部材であってもよい。上記供給口は、COガス分離膜又はこれを含む積層体の一方面であってもよく、COガス分離膜又はこれを含む積層体の端面であってもよい。例えば、図1に示すスパイラル型COガス分離膜モジュールMにおいて、供給口24は、COガス分離膜21又はこれを含む積層体2の一方又は両方の端面であってもよい。
 <COの分離方法>
 本発明に係るCOの分離方法は、上記本発明に係るCOガス分離膜の一方面側に、少なくともCOと水蒸気とを含む混合気体を供給する工程と、COガス分離膜の他方面側から、前記混合気体から分離されたCOを回収する工程とを含む。上記のような構成のスパイラル型COガス分離膜モジュールMにおいては、COと水蒸気とを含む混合気体は、COガス分離膜モジュールMの供給口24から矢印Aで示す方向に供給され、供給側流路材22を流れる間に、混合気体中のCOがCOガス分離膜21を透過し、分離されたCOは透過側流路材23を流れて集ガス管3に集積され、集ガス管3の排出口32から回収される。供給側流路材22の空隙を通過した、COが分離された残余の混合気体は、COガス分離膜モジュールMの排出口25から排出される。集ガス管3には不活性ガス等から選ばれるスイープガスが供給されてもよい。
 以下、本発明を実施例によりさらに詳しく説明するが本発明はこれらの例に何ら限定されるものではない。
 (実施例1)
 水80gと、架橋ポリアクリル酸(住友精化社製「アクペックHV-501」)2gとを、撹拌にて混合した。当該混合物に、炭酸セシウム9.3g、亜テルル酸カリウム0.7gを加え、さらに撹拌にて混合し、塗工液I-1を得た。
 水80gと、特許第5598630号公報に記載の製造方法によって得られたビニルアルコールとアクリル酸との共重合体(アクリル酸部位のカルボキシル基がCs塩を形成、鹸化度:82%)4.2gとを、撹拌にて混合した。当該混合物に、炭酸セシウム9.9g、亜テルル酸カリウム1.5gを加え、さらに撹拌にて混合して塗工液I-2を得た。
 次に、得られた塗工液I-2を、疎水性PTFE多孔膜(住友電工ファインポリマー社製「ポアフロンHP-010-50」、膜厚50μm、平均細孔径0.1μm)の面上に塗布した後、塗布後の疎水性PTFE多孔膜を温度120℃程度で5分間以上乾燥させて樹脂層I-2を得た。その後、樹脂層I-2の面上に塗工液I-1を塗布した後、再度、温度120℃程度で5分間以上乾燥させることで樹脂層I-1を積層し、疎水性PTFE多孔膜上にCOの分離機能層を備えるシート状のガス分離膜Iを得た。樹脂層I-1(第一の層(A)に相当)の目付け量は66g/mであり、樹脂層I-2(第二の層(B)に相当)の目付け量は5g/mであり、上記目付け量比は0.076である。
 (実施例2)
 実施例1の塗工液I-1の調製工程において、加える炭酸セシウムを11.6gに増量して塗工液II-1を得たこと以外は、実施例1と同様にしてガス分離膜IIを得た。樹脂層II-1(第一の層(A)に相当)の目付け量は68g/mであり、樹脂層II-2(第二の層(B)に相当)の目付け量は7.6g/mであり、上記目付け量比は0.11である。
 (実施例3)
 実施例1の塗工液I-1の調製工程において、加える炭酸セシウムを14.0gに増量して塗工液III-1を得たこと以外は、実施例1と同様にしてガス分離膜IIIを得た。樹脂層III-1(第一の層(A)に相当)の目付け量は79g/mであり、樹脂層III-2(第二の層(B)に相当)の目付け量は7.6g/mであり、上記目付け量比は0.096である。
 (実施例4)
 水80gと、架橋ポリアクリル酸(住友精化社製「アクペックHV-501」)2gとを、撹拌にて混合した。当該混合物に、炭酸セシウム9.3g、亜テルル酸カリウム0.7gを加え、さらに撹拌にて混合し、塗工液IV-1を得た。
 水80gと、特許第5598630号公報に記載の製造方法によって得られたビニルアルコールとアクリル酸との共重合体(アクリル酸部位のカルボキシル基がCs塩を形成、鹸化度:82%)4.2gとを、撹拌にて混合した。当該混合物に、炭酸セシウム9.9g、亜テルル酸カリウム1.5gを加え、さらに撹拌にて混合して塗工液IV-2を得た。
 次に、得られた塗工液IV-1を、疎水性PTFE多孔膜(住友電工ファインポリマー社製「ポアフロンHP-010-50」、膜厚50μm、平均細孔径0.1μm)の面上に塗布した後、塗布後の疎水性PTFE多孔膜を温度120℃程度で5分間以上乾燥させて樹脂層IV-1を得た。その後、樹脂層IV-1の面上に塗工液IV-2を塗布した後、再度、温度120℃程度で5分間以上乾燥させることで樹脂層IV-2を積層し、疎水性PTFE多孔膜上にCOの分離機能層を備えるシート状のガス分離膜IVを得た。樹脂層IV-1(第一の層(A)に相当)の目付け量は33g/mであり、樹脂層IV-2(第二の層(B)に相当)の目付け量は60g/mであり、上記目付け量比は1.8である。実施例4では、実施例1~3とは異なり、第一の層(A)が第二の層(B)より先に形成されており、第一の層(A)の目付け量が第二の層(B)の目付け量より少ない。
 (比較例1)
 水80g、脂肪族のビニルエステルに由来する構造単位を有する親水性樹脂として特許第5598630号公報に記載の製造方法によって得られたビニルアルコールとアクリル酸との共重合体(アクリル酸部位のカルボキシル基がCs塩を形成、鹸化度:82%)3g、炭酸セシウム7.0g、亜テルル酸カリウム1.1gを加えて攪拌にて混合し、塗工液V-2を得た。
 次に、得られた塗工液V-2を、疎水性PTFE多孔膜(住友電工ファインポリマー社製「ポアフロンHP-010-50」、膜厚50μm、平均細孔径0.1μm)の面上に塗布した後、塗布後の疎水性PTFE多孔膜を温度120℃程度で5分間以上乾燥させて、疎水性PTFE多孔膜上にCOの分離機能層を備えるガス分離膜を作製した。さらに、塗工液の塗布と乾燥を複数回繰り返し、シート状のガス分離膜Vを得た。ガス分離膜V(第二の層(B)に相当)の目付け量は100g/mである。
 (比較例2)
 水188g、カルボキシル基を有する重合体が架橋された親水性樹脂として架橋ポリアクリル酸(住友精化社製「アクペックHV-501」)4g、水酸化セシウム-水和物9.3gを、撹拌にて混合することにより中和反応を行った。中和反応終了後、炭酸セシウム9.0g、亜テルル酸カリウム1.5g、界面活性剤(AGCセイミケミカル社製「サーフロンS-242」)1.2gを加えて混合し、塗工液VI-1を得た。
 次に、得られた塗工液VI-1を、疎水性PTFE多孔膜(住友電工ファインポリマー社製「ポアフロンHP-010-50」、膜厚50μm、平均細孔径0.1μm)の面上に塗布した後、塗布後の疎水性PTFE多孔膜を温度120℃程度で5分間以上乾燥させて、疎水性PTFE多孔膜上にCOの分離機能層を備えるガス分離膜を作製した。さらに、塗工液の塗布と乾燥を複数回繰り返し、シート状のガス分離膜VIを得た。ガス分離膜VI(第一の層(A)に相当)の目付け量は100g/mである。
 (製膜性の評価)
 図2に示す、COガス分離膜モジュール51を備えたCOガス分離装置を用いてNガス透過性能評価を行った。具体的には、実施例1、実施例4及び比較例2で作製したガス分離膜I、IV及びVIを適切な大きさにカットして平膜形状とし、これらを各々ステンレス製のCO分離膜モジュール51の供給側52(上述の気体供給部に相当)と透過側53との間に固定した。
 室温のNガスをCOガス分離膜モジュール51の供給側52に供給し、供給側52の圧力を900kPaAにまで昇圧した。また、透過側53の圧力を大気圧に調整した。供給側52の圧力の時間変化に基づいてNのパーミアンスを算出し、Nのパーミアンス〔mol/(m・s・kPa)〕が5×10-8mol/(m・s・kPa)以下であれば合格とした。実施例1、実施例4及び比較例2で作製したガス分離膜各10サンプルについて製膜性を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 (CO分離性能の評価)
 図2に示す、COガス分離膜モジュール51を備えたCOガス分離装置を用いてCO分離を行った。具体的には、実施例1~4及び比較例1~2で作製したガス分離膜I~VIを適切な大きさにカットして平膜形状とし、これらを各々ステンレス製のCO分離膜モジュール51の供給側52(上述の気体供給部に相当)と透過側53との間に固定した。
 原料ガス(CO:34.5%、N:52.8%、HO:12.7%)を7.03×10-2mol/minの流量でCOガス分離膜モジュール51の供給側52に供給し、スイープガス(HO:100%)を1.05×10-2mol/minの流量でCOガス分離膜モジュール51の透過側53に供給した。ここで、HOは、水を定量送液ポンプ58及び60でそれぞれ送入し、加熱して蒸発させて、上記混合比率及び流量となるように調整した。供給側52の圧力は、排気ガスの排出路の途中の冷却トラップ54の下流側に設けられた背圧調整器55によって900kPaAに調整した。また、冷却トラップ56とガスクロマトグラフ57の間にも背圧調整器59が設けられており、これによって透過側53の圧力を大気圧に調整した。透過側53から排出されたスイープガス中の水蒸気を冷却トラップ56で除去した後のガス流量をガスクロマトグラフ57の分析結果に基づいて定量することにより、透過ガスに含まれるCO及びNそれぞれのパーミアンス〔mol/(m・s・kPa)〕を算出し、その比より選択性(COの選択透過性)を求めた。結果を表2に示す。
 図示していないが、COガス分離膜モジュール51、原料ガス及びスイープガスの温度を一定に維持するために、COガス分離膜モジュール51と、原料ガス及びスイープガスをCOガス分離膜モジュール51に供給する配管は、所定の温度に設定した恒温槽内に設置されている。本評価は、COガス分離膜モジュール51、原料ガス及びスイープガスの温度を110℃として実施した。
Figure JPOXMLDOC01-appb-T000005
 本発明に係るガス分離膜は、水素製造、尿素製造等の大規模プロセスの脱炭酸工程、CO透過型メンブレンリアクター等において、COを含む混合気体から高い選択透過率でCOを分離するために利用可能である。
 2 積層体、3 集ガス管、M スパイラル型COガス分離膜モジュール、21 COガス分離膜、22 供給側流路材、23 透過側流路材、24 供給口、25 排出口、31 穴、32 排出口、50 COガス分離膜、51 COガス分離膜モジュール、52 COガス分離膜モジュールの供給側、53 COガス分離膜モジュール透過側、54,56 冷却トラップ、55,59 背圧調整器、57 ガスクロマトグラフ、58,60 送液ポンプ。

Claims (16)

  1.  アルカリ金属炭酸塩、アルカリ金属重炭酸塩及びアルカリ金属水酸化物からなる群より選ばれる少なくとも1つのアルカリ金属化合物と、カルボキシル基を有する重合体が架橋された樹脂である第一の樹脂とを含む第一の層(A)と、
     アルカリ金属炭酸塩、アルカリ金属重炭酸塩及びアルカリ金属水酸化物からなる群より選ばれる少なくとも1つのアルカリ金属化合物と、脂肪酸のビニルエステルに由来する構造単位を有する樹脂である第二の樹脂とを含む第二の層(B)と、
     疎水性多孔膜(C)と、
    を含むCOガス分離膜。
  2.  前記第二の樹脂が、脂肪酸のビニルエステルを部分的に鹸化して得られるポリビニルアルコール又はビニルアルコールとアクリル酸との共重合体である請求項1に記載のCOガス分離膜。
  3.  前記第一の層(A)の一方の面と前記第二の層(B)の一方の面とが接しており、前記第一の層(A)の他方の面又は前記第二の層(B)の他方の面のいずれかと前記疎水性多孔膜(C)の一方の面とが接している請求項1又は2に記載のCOガス分離膜。
  4.  前記第一の層(A)及び前記第二の層(B)のうち、前記疎水性多孔膜(C)と接していない層の目付け量が、疎水性多孔膜(C)と接している層の目付け量よりも多い請求項3に記載のCOガス分離膜。
  5.  前記第一の層(A)、前記第二の層(B)及び前記疎水性多孔膜(C)が、この順に積層された請求項1~4のいずれか1項に記載のCOガス分離膜。
  6.  前記第一の樹脂が、アクリル酸、メタクリル酸又はそれらの誘導体に由来する構造単位を有する請求項1~5のいずれか1項に記載のCOガス分離膜。
  7.  前記第一の層(A)及び前記第二の層(B)に含まれる全てのアルカリ金属化合物の合計含有量が、前記第一の樹脂及び前記第二の樹脂の合計量1質量部に対して0.5質量部~20質量部である請求項1~6のいずれか1項に記載のCOガス分離膜。
  8.  前記第一の層(A)及び前記第二の層(B)に含まれる前記アルカリ金属化合物が、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1つのアルカリ金属の炭酸塩又は水酸化物である請求項1~7のいずれか1項に記載のCOガス分離膜。
  9.  前記第一の層(A)及び前記第二の層(B)に含まれる前記アルカリ金属化合物が、炭酸セシウム又は水酸化セシウムである請求項1~8のいずれか1項に記載のCOガス分離膜。
  10.  前記疎水性多孔膜(C)が、セラミック、含フッ素樹脂、ポリフェニレンスルフィド、ポリエーテルスルホン及びポリイミドからなる群より選ばれる少なくとも1つの材料からなる請求項1~9のいずれか1項に記載のCOガス分離膜。
  11.  前記疎水性多孔膜(C)の平均孔径が、0.005μm~1.0μmの範囲である請求項1~10のいずれか1項に記載のCOガス分離膜。
  12.  請求項1~11のいずれか1項に記載のCOガス分離膜の製造方法であって、
     前記アルカリ金属化合物と、前記第一の樹脂と、媒質とを含む第一の塗工液、又は前記アルカリ金属化合物と、前記第二の樹脂と、媒質とを含む第二の塗工液を、前記疎水性多孔膜(C)の少なくとも一方の面に塗布する第1工程と、
     前記第1工程で得られた塗布物から前記媒質を除去して前記第一の層(A)又は前記第二の層(B)を得る第2工程と、
     前記第2工程で得られた第一の層(A)又は第二の層(B)の面に、前記第一の塗工液及び前記第二の塗工液のうち前記第1工程で塗工した塗工液とは異なる塗工液を塗布する第3工程と、
     前記第3工程で得られた塗布物から前記媒質を除去して前記第一の層(A)又は前記第二の層(B)を得る第4工程と、
    を含む製造方法。
  13.  前記第1工程において、前記疎水性多孔膜(C)の少なくとも一方の面に前記第二の塗工液を塗布する請求項12に記載の製造方法。
  14.  請求項1~11のいずれか1項に記載のCOガス分離膜の一方面側に、少なくともCOと水蒸気とを含む混合気体を供給する工程と、
     前記COガス分離膜の他方面側から、前記混合気体から分離されたCOを回収する工程と、
    を含むCOの分離方法。
  15.  請求項1~11のいずれか1項に記載のCOガス分離膜を備えるCOガス分離膜モジュール。
  16.  請求項15に記載のCOガス分離膜モジュールと、
     少なくともCOと水蒸気とを含む混合気体を前記COガス分離膜モジュールに供給するための気体供給部と、
    を備えるCOガス分離装置。
PCT/JP2015/082280 2014-11-18 2015-11-17 二酸化炭素ガス分離膜及びその製造方法、並びに二酸化炭素ガス分離膜モジュール WO2016080400A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/527,213 US10744454B2 (en) 2014-11-18 2015-11-17 Carbon dioxide gas separation membrane, method for manufacturing same, and carbon dioxide gas separation membrane module
EP15861252.3A EP3231501B1 (en) 2014-11-18 2015-11-17 Carbon dioxide gas separation membrane, method for manufacturing same, and carbon dioxide gas separation membrane module
KR1020177016063A KR102404068B1 (ko) 2014-11-18 2015-11-17 이산화탄소 가스 분리막 및 그 제조 방법과, 이산화탄소 가스 분리막 모듈
JP2016560243A JP6645983B2 (ja) 2014-11-18 2015-11-17 二酸化炭素ガス分離膜及びその製造方法、並びに二酸化炭素ガス分離膜モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-233186 2014-11-18
JP2014233186 2014-11-18

Publications (1)

Publication Number Publication Date
WO2016080400A1 true WO2016080400A1 (ja) 2016-05-26

Family

ID=56013935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082280 WO2016080400A1 (ja) 2014-11-18 2015-11-17 二酸化炭素ガス分離膜及びその製造方法、並びに二酸化炭素ガス分離膜モジュール

Country Status (6)

Country Link
US (1) US10744454B2 (ja)
EP (1) EP3231501B1 (ja)
JP (1) JP6645983B2 (ja)
KR (1) KR102404068B1 (ja)
TW (1) TWI710460B (ja)
WO (1) WO2016080400A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170232398A1 (en) 2014-08-11 2017-08-17 Sumitomo Chemical Company, Limited Composition for co2 gas separation membrane, co2 gas separation membrane and method for producing same, and co2 gas separation membrane module
WO2019009000A1 (ja) * 2017-07-03 2019-01-10 住友化学株式会社 ガス分離膜エレメント、ガス分離膜モジュール、及びガス分離装置
US10744454B2 (en) 2014-11-18 2020-08-18 Sumitomo Chemical Company, Limited Carbon dioxide gas separation membrane, method for manufacturing same, and carbon dioxide gas separation membrane module
JP2020124684A (ja) * 2019-02-05 2020-08-20 川崎重工業株式会社 空気浄化システム
JPWO2019130470A1 (ja) * 2017-12-27 2020-12-10 株式会社ルネッサンス・エナジー・リサーチ Co2除去方法及び装置
EP3659696A4 (en) * 2018-08-31 2021-08-25 Sumitomo Chemical Company, Limited SEPARATION MEMBRANE SHEET, SEPARATION MEMBRANE ELEMENT, SEPARATION MEMBRANE MODULE, AND PROCESS FOR PRODUCTION OF SEPARATION MEMBRANE SHEET

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10336956B2 (en) * 2017-03-31 2019-07-02 Mitsubishi Heavy Industries, Ltd. Natural-gas purification apparatus
JP6633595B2 (ja) 2017-11-07 2020-01-22 住友化学株式会社 ガス分離装置及びガス分離方法
US11850558B2 (en) * 2018-09-14 2023-12-26 Sumitomo Chemical Company, Limited Composition useful for producing acidic gas separation membrane
CN114845795A (zh) 2019-12-20 2022-08-02 道达尔能源一技术 管式电化学分离单元及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183379A (ja) * 2010-02-10 2011-09-22 Fujifilm Corp ガス分離膜、その製造方法、並びにそれを用いたガス分離方法、モジュール及び分離装置
WO2012014900A1 (ja) * 2010-07-26 2012-02-02 株式会社ルネッサンス・エナジー・リサーチ スチーム選択透過膜、及びこれを用いてスチームを混合ガスから分離する方法
WO2014065387A1 (ja) * 2012-10-22 2014-05-01 住友化学株式会社 共重合体及び炭酸ガス分離膜
JP2014195762A (ja) * 2013-03-29 2014-10-16 富士フイルム株式会社 酸性ガス分離用複合体の製造方法
JP2014195761A (ja) * 2013-03-29 2014-10-16 富士フイルム株式会社 酸性ガス分離用複合体の製造方法
JP2015061721A (ja) * 2013-08-23 2015-04-02 富士フイルム株式会社 酸性ガス分離層、酸性ガス分離層の製造方法、および、酸性ガス分離モジュール

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126506A (ja) 1986-11-17 1988-05-30 Agency Of Ind Science & Technol アニオン性高分子分離膜
JPS6470125A (en) 1987-09-10 1989-03-15 Asahi Glass Co Ltd Separation of gas
US5540741A (en) * 1993-03-05 1996-07-30 Bell Communications Research, Inc. Lithium secondary battery extraction method
EP0629411B1 (en) 1993-06-18 2001-10-31 SANYO CHEMICAL INDUSTRIES, Ltd. Absorbent composition and disposable diaper containing the same
JP3205168B2 (ja) 1993-06-18 2001-09-04 三洋化成工業株式会社 紙おむつ用吸収剤組成物
JPH07102310B2 (ja) 1993-10-19 1995-11-08 工業技術院長 二酸化炭素分離ゲル膜及びその製造方法
US5445669A (en) 1993-08-12 1995-08-29 Sumitomo Electric Industries, Ltd. Membrane for the separation of carbon dioxide
JP3506793B2 (ja) 1995-01-18 2004-03-15 呉羽化学工業株式会社 樹脂組成物およびそれから形成されたフィルム
US6315968B1 (en) 1995-01-18 2001-11-13 Air Products And Chemicals, Inc. Process for separating acid gases from gaseous mixtures utilizing composite membranes formed from salt-polymer blends
JP2879057B2 (ja) 1995-03-10 1999-04-05 工業技術院長 二酸化炭素分離促進輸送膜
JP2813629B2 (ja) 1996-03-29 1998-10-22 工業技術院長 促進輸送膜
US7906143B1 (en) 1998-10-05 2011-03-15 Intellipharmaceutics Corp Controlled release pharmaceutical delivery device and process for preparation thereof
US6541159B1 (en) 1999-08-12 2003-04-01 Reveo, Inc. Oxygen separation through hydroxide-conductive membrane
US9124165B2 (en) 2001-11-14 2015-09-01 Arjuna Indraeswaran Rajasingham Axial gap electrical machine
JP3940009B2 (ja) 2002-03-18 2007-07-04 住友精化株式会社 カルボキシル基含有水溶性重合体の製造方法
JP4965927B2 (ja) 2006-08-01 2012-07-04 株式会社ルネッサンス・エナジー・リサーチ Co2促進輸送膜及びその製造方法
JP4965928B2 (ja) 2006-08-01 2012-07-04 株式会社ルネッサンス・エナジー・リサーチ 二酸化炭素分離装置及び方法
CN103432911A (zh) 2008-01-24 2013-12-11 株式会社新生能源研究 Co2促进输送膜及其制造方法
JP5443773B2 (ja) 2008-01-24 2014-03-19 株式会社ルネッサンス・エナジー・リサーチ 二酸化炭素分離装置
EP2446029B1 (en) * 2009-06-26 2016-08-10 Novozymes North America, Inc. Heat-stable carbonic anhydrases and their use
US20130149771A1 (en) * 2010-08-24 2013-06-13 Novozymes A/S Heat-Stable Persephonella Carbonic Anhydrases and Their Use
KR101330336B1 (ko) 2010-12-24 2013-11-15 가부시키가이샤 르네상스 에너지 리서치 가스 분리 장치, 멤브레인 리액터, 수소 제조 장치, 가스 분리 방법, 수소 제조 방법
JP2013027806A (ja) 2011-07-27 2013-02-07 Fujifilm Corp 二酸化炭素分離膜、二酸化炭素分離膜用支持体、及びこれらの製造方法
JP5689765B2 (ja) 2011-07-29 2015-03-25 富士フイルム株式会社 二酸化炭素分離部材、その製造方法及び二酸化炭素分離モジュール
JP5738710B2 (ja) 2011-07-29 2015-06-24 富士フイルム株式会社 二酸化炭素分離膜の製造方法及び二酸化炭素分離モジュール
JP5553421B2 (ja) 2011-08-01 2014-07-16 株式会社ルネッサンス・エナジー・リサーチ Co2促進輸送膜及びその製造方法
WO2013036859A1 (en) * 2011-09-07 2013-03-14 Carbon Engineering Limited Partnership Target gas capture
JP2013111507A (ja) 2011-11-25 2013-06-10 Fujifilm Corp ガス分離膜、その製造方法、それを用いたガス分離膜モジュール
JP5490281B2 (ja) * 2012-06-20 2014-05-14 富士フイルム株式会社 酸性ガス分離モジュール、及び酸性ガス分離システム
KR102090864B1 (ko) 2012-10-02 2020-03-18 가부시키가이샤 르네상스 에너지 리서치 Co2 촉진 수송막 및 그 제조 방법 그리고 co2 분리 방법 및 장치
JP6046537B2 (ja) * 2013-03-29 2016-12-14 富士フイルム株式会社 酸性ガス分離用複合体の製造方法および製造装置
JP6161124B2 (ja) * 2013-03-29 2017-07-12 富士フイルム株式会社 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール
JP6071004B2 (ja) * 2013-03-29 2017-02-01 富士フイルム株式会社 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール
WO2014157069A1 (ja) * 2013-03-29 2014-10-02 株式会社ルネッサンス・エナジー・リサーチ Co2促進輸送膜、その製造方法及び当該製造方法に用いられる樹脂組成物、並びに、co2分離モジュール、co2分離方法及び装置
WO2016024523A1 (ja) 2014-08-11 2016-02-18 住友化学株式会社 Co2ガス分離膜用組成物、co2ガス分離膜及びその製造方法並びにco2ガス分離膜モジュール
US10744454B2 (en) 2014-11-18 2020-08-18 Sumitomo Chemical Company, Limited Carbon dioxide gas separation membrane, method for manufacturing same, and carbon dioxide gas separation membrane module
CN107614092B (zh) * 2015-05-29 2020-09-15 住友化学株式会社 螺旋型酸性气体分离膜元件、酸性气体分离膜模块、以及酸性气体分离装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183379A (ja) * 2010-02-10 2011-09-22 Fujifilm Corp ガス分離膜、その製造方法、並びにそれを用いたガス分離方法、モジュール及び分離装置
WO2012014900A1 (ja) * 2010-07-26 2012-02-02 株式会社ルネッサンス・エナジー・リサーチ スチーム選択透過膜、及びこれを用いてスチームを混合ガスから分離する方法
WO2014065387A1 (ja) * 2012-10-22 2014-05-01 住友化学株式会社 共重合体及び炭酸ガス分離膜
JP2014195762A (ja) * 2013-03-29 2014-10-16 富士フイルム株式会社 酸性ガス分離用複合体の製造方法
JP2014195761A (ja) * 2013-03-29 2014-10-16 富士フイルム株式会社 酸性ガス分離用複合体の製造方法
JP2015061721A (ja) * 2013-08-23 2015-04-02 富士フイルム株式会社 酸性ガス分離層、酸性ガス分離層の製造方法、および、酸性ガス分離モジュール

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170232398A1 (en) 2014-08-11 2017-08-17 Sumitomo Chemical Company, Limited Composition for co2 gas separation membrane, co2 gas separation membrane and method for producing same, and co2 gas separation membrane module
US10507434B2 (en) 2014-08-11 2019-12-17 Sumitomo Chemical Company, Limited Composition for CO2 gas separation membrane, CO2 gas separation membrane and method for producing same, and CO2 gas separation membrane module
US10744454B2 (en) 2014-11-18 2020-08-18 Sumitomo Chemical Company, Limited Carbon dioxide gas separation membrane, method for manufacturing same, and carbon dioxide gas separation membrane module
WO2019009000A1 (ja) * 2017-07-03 2019-01-10 住友化学株式会社 ガス分離膜エレメント、ガス分離膜モジュール、及びガス分離装置
JPWO2019130470A1 (ja) * 2017-12-27 2020-12-10 株式会社ルネッサンス・エナジー・リサーチ Co2除去方法及び装置
EP3659696A4 (en) * 2018-08-31 2021-08-25 Sumitomo Chemical Company, Limited SEPARATION MEMBRANE SHEET, SEPARATION MEMBRANE ELEMENT, SEPARATION MEMBRANE MODULE, AND PROCESS FOR PRODUCTION OF SEPARATION MEMBRANE SHEET
JP2020124684A (ja) * 2019-02-05 2020-08-20 川崎重工業株式会社 空気浄化システム

Also Published As

Publication number Publication date
JP6645983B2 (ja) 2020-02-14
EP3231501A1 (en) 2017-10-18
KR102404068B1 (ko) 2022-05-30
TW201623003A (zh) 2016-07-01
EP3231501A4 (en) 2018-06-27
US20170333833A1 (en) 2017-11-23
US10744454B2 (en) 2020-08-18
TWI710460B (zh) 2020-11-21
KR20170092579A (ko) 2017-08-11
EP3231501C0 (en) 2024-02-28
JPWO2016080400A1 (ja) 2017-08-31
EP3231501B1 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
WO2016080400A1 (ja) 二酸化炭素ガス分離膜及びその製造方法、並びに二酸化炭素ガス分離膜モジュール
JP6130607B2 (ja) Co2ガス分離膜用組成物、co2ガス分離膜及びその製造方法並びにco2ガス分離膜モジュール
Wang et al. Preparation, characterization and performance of sulfonated poly (styrene-ethylene/butylene-styrene) block copolymer membranes for water desalination by pervaporation
JP5598630B1 (ja) 共重合体及び炭酸ガス分離膜
TWI693095B (zh) 二氧化碳分離方法及二氧化碳分離裝置
JP6964070B2 (ja) 酸性ガス分離膜及びこれを用いた酸性ガス分離方法、並びに酸性ガス分離モジュール及び酸性ガス分離装置
ITMI20010384A1 (it) Membrane idrofiliche porose
CN111132752B (zh) 分离膜片、分离膜元件、分离膜模块和分离膜片的制造方法
WO2019097995A1 (ja) 酸性ガス分離膜シートの製造方法及び製造装置
WO2019097994A1 (ja) 酸性ガス分離膜シート及びその製造方法
JP2016117045A (ja) 二酸化炭素分離膜の製造方法、二酸化炭素分離膜用樹脂組成物、二酸化炭素分離膜モジュール及び二酸化炭素分離装置
JP6013127B2 (ja) ガス分離複合膜、これを用いた分離膜モジュールおよびガス分離システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016560243

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015861252

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177016063

Country of ref document: KR

Kind code of ref document: A