WO2016080400A1 - 二酸化炭素ガス分離膜及びその製造方法、並びに二酸化炭素ガス分離膜モジュール - Google Patents
二酸化炭素ガス分離膜及びその製造方法、並びに二酸化炭素ガス分離膜モジュール Download PDFInfo
- Publication number
- WO2016080400A1 WO2016080400A1 PCT/JP2015/082280 JP2015082280W WO2016080400A1 WO 2016080400 A1 WO2016080400 A1 WO 2016080400A1 JP 2015082280 W JP2015082280 W JP 2015082280W WO 2016080400 A1 WO2016080400 A1 WO 2016080400A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- gas separation
- separation membrane
- alkali metal
- resin
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 216
- 238000000926 separation method Methods 0.000 title claims abstract description 159
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 27
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title abstract description 16
- 229910002092 carbon dioxide Inorganic materials 0.000 title abstract description 9
- 239000001569 carbon dioxide Substances 0.000 title abstract description 7
- 229920005989 resin Polymers 0.000 claims abstract description 108
- 239000011347 resin Substances 0.000 claims abstract description 108
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 63
- 150000001339 alkali metal compounds Chemical class 0.000 claims abstract description 32
- -1 alkali metal bicarbonate Chemical class 0.000 claims abstract description 29
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 26
- 229920000642 polymer Polymers 0.000 claims abstract description 22
- 229920001567 vinyl ester resin Polymers 0.000 claims abstract description 17
- 235000014113 dietary fatty acids Nutrition 0.000 claims abstract description 16
- 239000000194 fatty acid Substances 0.000 claims abstract description 16
- 229930195729 fatty acid Natural products 0.000 claims abstract description 16
- 150000004665 fatty acids Chemical class 0.000 claims abstract description 16
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 14
- 229910000288 alkali metal carbonate Inorganic materials 0.000 claims abstract description 13
- 150000008041 alkali metal carbonates Chemical class 0.000 claims abstract description 13
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims abstract description 11
- 239000011248 coating agent Substances 0.000 claims description 85
- 238000000576 coating method Methods 0.000 claims description 85
- 239000007788 liquid Substances 0.000 claims description 54
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 27
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 15
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 13
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 claims description 13
- 229910000024 caesium carbonate Inorganic materials 0.000 claims description 13
- 229920001577 copolymer Polymers 0.000 claims description 11
- 239000011148 porous material Substances 0.000 claims description 11
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 claims description 7
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 7
- 239000011734 sodium Substances 0.000 claims description 5
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 claims description 4
- 239000004642 Polyimide Substances 0.000 claims description 4
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 4
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 4
- 229920001721 polyimide Polymers 0.000 claims description 4
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- 239000004695 Polyether sulfone Substances 0.000 claims description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052792 caesium Inorganic materials 0.000 claims description 3
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- 229920006393 polyether sulfone Polymers 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 239000011591 potassium Substances 0.000 claims description 3
- 229910052701 rubidium Inorganic materials 0.000 claims description 3
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 229910001854 alkali hydroxide Inorganic materials 0.000 claims 1
- 239000007789 gas Substances 0.000 description 175
- 239000010410 layer Substances 0.000 description 135
- 238000006243 chemical reaction Methods 0.000 description 16
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 16
- 239000004810 polytetrafluoroethylene Substances 0.000 description 16
- 238000006703 hydration reaction Methods 0.000 description 12
- 229920002125 Sokalan® Polymers 0.000 description 10
- 238000002844 melting Methods 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- 239000004584 polyacrylic acid Substances 0.000 description 10
- 239000007809 chemical reaction catalyst Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000000178 monomer Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- 238000001035 drying Methods 0.000 description 8
- 230000035699 permeability Effects 0.000 description 8
- BFPJYWDBBLZXOM-UHFFFAOYSA-L potassium tellurite Chemical compound [K+].[K+].[O-][Te]([O-])=O BFPJYWDBBLZXOM-UHFFFAOYSA-L 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 8
- 229920002554 vinyl polymer Polymers 0.000 description 8
- 238000004132 cross linking Methods 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000003431 cross linking reagent Substances 0.000 description 6
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 6
- 238000007127 saponification reaction Methods 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 150000007942 carboxylates Chemical group 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 125000005907 alkyl ester group Chemical group 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 239000000017 hydrogel Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000002346 layers by function Substances 0.000 description 3
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 3
- 229940117841 methacrylic acid copolymer Drugs 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- 206010016807 Fluid retention Diseases 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920002620 polyvinyl fluoride Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- CPRMKOQKXYSDML-UHFFFAOYSA-M rubidium hydroxide Chemical compound [OH-].[Rb+] CPRMKOQKXYSDML-UHFFFAOYSA-M 0.000 description 2
- 229940082569 selenite Drugs 0.000 description 2
- VOADVZVYWFSHSM-UHFFFAOYSA-L sodium tellurite Chemical compound [Na+].[Na+].[O-][Te]([O-])=O VOADVZVYWFSHSM-UHFFFAOYSA-L 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 2
- KNTOFEKUYDKHII-NYYWCZLTSA-N (2E)-2-ethylidenedecanoic acid Chemical compound CCCCCCCC\C(=C/C)C(O)=O KNTOFEKUYDKHII-NYYWCZLTSA-N 0.000 description 1
- BSUKKOMNQGNSGP-QPJJXVBHSA-N (2e)-2-ethylidenehexanoic acid Chemical compound CCCC\C(=C/C)C(O)=O BSUKKOMNQGNSGP-QPJJXVBHSA-N 0.000 description 1
- FBOKNOQEFIMYLY-RUDMXATFSA-N (2e)-2-ethylideneoctanoic acid Chemical compound CCCCCC\C(=C/C)C(O)=O FBOKNOQEFIMYLY-RUDMXATFSA-N 0.000 description 1
- XHZSXTQKJBTXME-GQCTYLIASA-N (2e)-2-ethylidenepentanoic acid Chemical compound CCC\C(=C/C)C(O)=O XHZSXTQKJBTXME-GQCTYLIASA-N 0.000 description 1
- XSYKOMJMQPJAQX-SYZQJQIISA-N (2e)-2-ethylidenetetradecanoic acid Chemical compound CCCCCCCCCCCC\C(=C/C)C(O)=O XSYKOMJMQPJAQX-SYZQJQIISA-N 0.000 description 1
- HTIMWNVASRHSBX-XDVGHUOJSA-N (2r)-2-acetamido-3-[(z)-3-chloroprop-2-enyl]sulfanylpropanoic acid Chemical compound CC(=O)N[C@H](C(O)=O)CSC\C=C/Cl HTIMWNVASRHSBX-XDVGHUOJSA-N 0.000 description 1
- KFSQJVOLYQRELE-HWKANZROSA-N (e)-2-ethylbut-2-enoic acid Chemical compound CC\C(=C/C)C(O)=O KFSQJVOLYQRELE-HWKANZROSA-N 0.000 description 1
- TYMYJUHDFROXOO-UHFFFAOYSA-N 1,3-bis(prop-2-enoxy)-2,2-bis(prop-2-enoxymethyl)propane Chemical compound C=CCOCC(COCC=C)(COCC=C)COCC=C TYMYJUHDFROXOO-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- WROUWQQRXUBECT-UHFFFAOYSA-N 2-ethylacrylic acid Chemical compound CCC(=C)C(O)=O WROUWQQRXUBECT-UHFFFAOYSA-N 0.000 description 1
- IZFHMLDRUVYBGK-UHFFFAOYSA-N 2-methylene-3-methylsuccinic acid Chemical compound OC(=O)C(C)C(=C)C(O)=O IZFHMLDRUVYBGK-UHFFFAOYSA-N 0.000 description 1
- MUZDXNQOSGWMJJ-UHFFFAOYSA-N 2-methylprop-2-enoic acid;prop-2-enoic acid Chemical compound OC(=O)C=C.CC(=C)C(O)=O MUZDXNQOSGWMJJ-UHFFFAOYSA-N 0.000 description 1
- DYYFCJRYZVHEKQ-UHFFFAOYSA-N 3-butoxycarbonylbut-3-enoic acid Chemical compound CCCCOC(=O)C(=C)CC(O)=O DYYFCJRYZVHEKQ-UHFFFAOYSA-N 0.000 description 1
- JELFVXVEOTVGKC-UHFFFAOYSA-N 3-dodecoxycarbonylbut-3-enoic acid Chemical compound CCCCCCCCCCCCOC(=O)C(=C)CC(O)=O JELFVXVEOTVGKC-UHFFFAOYSA-N 0.000 description 1
- ZPLGXBYERWJZGM-UHFFFAOYSA-N 3-hexoxycarbonylbut-3-enoic acid Chemical compound CCCCCCOC(=O)C(=C)CC(O)=O ZPLGXBYERWJZGM-UHFFFAOYSA-N 0.000 description 1
- YYPNJNDODFVZLE-UHFFFAOYSA-N 3-methylbut-2-enoic acid Chemical compound CC(C)=CC(O)=O YYPNJNDODFVZLE-UHFFFAOYSA-N 0.000 description 1
- PEJTXKFLHJIZEY-UHFFFAOYSA-N 3-octoxycarbonylbut-3-enoic acid Chemical compound CCCCCCCCOC(=O)C(=C)CC(O)=O PEJTXKFLHJIZEY-UHFFFAOYSA-N 0.000 description 1
- NEAHVGRDHLQWPP-UHFFFAOYSA-N 3-propoxycarbonylbut-3-enoic acid Chemical compound CCCOC(=O)C(=C)CC(O)=O NEAHVGRDHLQWPP-UHFFFAOYSA-N 0.000 description 1
- RTTAGBVNSDJDTE-UHFFFAOYSA-N 4-ethoxy-2-methylidene-4-oxobutanoic acid Chemical compound CCOC(=O)CC(=C)C(O)=O RTTAGBVNSDJDTE-UHFFFAOYSA-N 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000007754 air knife coating Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- ZMCUDHNSHCRDBT-UHFFFAOYSA-M caesium bicarbonate Chemical compound [Cs+].OC([O-])=O ZMCUDHNSHCRDBT-UHFFFAOYSA-M 0.000 description 1
- ABSOMGPQFXJESQ-UHFFFAOYSA-M cesium;hydroxide;hydrate Chemical compound O.[OH-].[Cs+] ABSOMGPQFXJESQ-UHFFFAOYSA-M 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- RNGFNLJMTFPHBS-UHFFFAOYSA-L dipotassium;selenite Chemical compound [K+].[K+].[O-][Se]([O-])=O RNGFNLJMTFPHBS-UHFFFAOYSA-L 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- GLVVKKSPKXTQRB-UHFFFAOYSA-N ethenyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC=C GLVVKKSPKXTQRB-UHFFFAOYSA-N 0.000 description 1
- UJRIYYLGNDXVTA-UHFFFAOYSA-N ethenyl hexadecanoate Chemical compound CCCCCCCCCCCCCCCC(=O)OC=C UJRIYYLGNDXVTA-UHFFFAOYSA-N 0.000 description 1
- LZWYWAIOTBEZFN-UHFFFAOYSA-N ethenyl hexanoate Chemical compound CCCCCC(=O)OC=C LZWYWAIOTBEZFN-UHFFFAOYSA-N 0.000 description 1
- AFSIMBWBBOJPJG-UHFFFAOYSA-N ethenyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC=C AFSIMBWBBOJPJG-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- KEDRKJFXBSLXSI-UHFFFAOYSA-M hydron;rubidium(1+);carbonate Chemical compound [Rb+].OC([O-])=O KEDRKJFXBSLXSI-UHFFFAOYSA-M 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- NZIDBRBFGPQCRY-UHFFFAOYSA-N octyl 2-methylprop-2-enoate Chemical compound CCCCCCCCOC(=O)C(C)=C NZIDBRBFGPQCRY-UHFFFAOYSA-N 0.000 description 1
- 229940065472 octyl acrylate Drugs 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 229920002800 poly crotonic acid Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- WPFGFHJALYCVMO-UHFFFAOYSA-L rubidium carbonate Chemical compound [Rb+].[Rb+].[O-]C([O-])=O WPFGFHJALYCVMO-UHFFFAOYSA-L 0.000 description 1
- 229910000026 rubidium carbonate Inorganic materials 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- PTLRDCMBXHILCL-UHFFFAOYSA-M sodium arsenite Chemical compound [Na+].[O-][As]=O PTLRDCMBXHILCL-UHFFFAOYSA-M 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- SITVSCPRJNYAGV-UHFFFAOYSA-L tellurite Chemical compound [O-][Te]([O-])=O SITVSCPRJNYAGV-UHFFFAOYSA-L 0.000 description 1
- POWFTOSLLWLEBN-UHFFFAOYSA-N tetrasodium;silicate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-][Si]([O-])([O-])[O-] POWFTOSLLWLEBN-UHFFFAOYSA-N 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/125—In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/10—Spiral-wound membrane modules
- B01D63/12—Spiral-wound membrane modules comprising multiple spiral-wound assemblies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0079—Manufacture of membranes comprising organic and inorganic components
- B01D67/00791—Different components in separate layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0079—Manufacture of membranes comprising organic and inorganic components
- B01D67/00793—Dispersing a component, e.g. as particles or powder, in another component
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1213—Laminated layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1216—Three or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1218—Layers having the same chemical composition, but different properties, e.g. pore size, molecular weight or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/14—Dynamic membranes
- B01D69/141—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
- B01D69/1411—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/14—Dynamic membranes
- B01D69/141—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
- B01D69/142—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers"
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/14—Dynamic membranes
- B01D69/141—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
- B01D69/148—Organic/inorganic mixed matrix membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/38—Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
- B01D71/381—Polyvinylalcohol
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/40—Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
- B01D71/401—Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/40—Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
- B01D71/404—Polymers based on the polymerisation of crotonic acid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F16/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
- C08F16/02—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
- C08F16/04—Acyclic compounds
- C08F16/06—Polyvinyl alcohol ; Vinyl alcohol
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
- C08L29/02—Homopolymers or copolymers of unsaturated alcohols
- C08L29/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/15—Use of additives
- B01D2323/218—Additive materials
- B01D2323/2181—Inorganic additives
- B01D2323/21817—Salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
- B01D2325/0283—Pore size
- B01D2325/02832—1-10 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
- B01D2325/0283—Pore size
- B01D2325/02833—Pore size more than 10 and up to 100 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
- B01D2325/0283—Pore size
- B01D2325/02834—Pore size more than 0.1 and up to 1 µm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/38—Hydrophobic membranes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Definitions
- the present invention relates to a gas separation membrane for separating CO 2 from a mixed gas containing at least CO 2 and water vapor, a manufacturing method thereof, a gas separation membrane module including the gas separation membrane, and the like.
- Patent Document 1 Japanese Patent Application Laid-Open No. 07-112122
- Patent Document 1 carbon dioxide separation comprising a hydrogel membrane formed by absorbing an aqueous solution containing a carbon dioxide carrier into a vinyl alcohol-acrylate copolymer having a crosslinked structure.
- Gel membranes have been proposed.
- the invention described in Patent Document 1 uses a polyacrylic acid, which has been conventionally known, by using a vinyl alcohol-acrylate copolymer as a polymer material that absorbs an aqueous solution containing a carbon dioxide carrier and hydrogels it.
- a carbon dioxide-enhanced transport membrane that can solve the problem that an electrolyte polymer such as an acid has high water absorption capability but has low strength and is difficult to be formed into a membrane, and a method for producing the same. provide.
- Patent Document 2 Japanese Patent Application Laid-Open No. 08-193156
- Patent Document 3 a CO 2 facilitated transport membrane in which a gel layer comprising a glycine and a deprotonating agent in a hydrogel membrane is supported on a heat-resistant porous membrane is disclosed. Proposed.
- An object of the present invention has excellent CO 2 selectively permeable gas separation membrane and manufacturing method thereof provided with, as well as a gas separation membrane module and the gas separation apparatus including the gas separation membrane.
- CO 2 gas separation membrane CO 2 gas separation membrane manufacturing method, CO 2 separation method, CO 2 gas separation membrane module, and CO 2 gas separation device are provided.
- a first resin which is a resin in which at least one alkali metal compound selected from the group consisting of alkali metal carbonates, alkali metal bicarbonates and alkali metal hydroxides and a polymer having a carboxyl group are crosslinked.
- a first layer (A) comprising: At least one alkali metal compound selected from the group consisting of alkali metal carbonates, alkali metal bicarbonates and alkali metal hydroxides, and a second resin which is a resin having a structural unit derived from a fatty acid vinyl ester
- a second layer (B) comprising, A hydrophobic porous membrane (C); A CO 2 gas separation membrane containing
- One surface of the first layer (A) is in contact with one surface of the second layer (B), and the other surface of the first layer (A) or the second layer.
- the basis weight of the layer not in contact with the hydrophobic porous membrane (C) is in contact with the hydrophobic porous membrane (C).
- the basis weight is the solid content per unit area of the first layer (A) or the second layer (B).
- the total content of all alkali metal compounds contained in the first layer (A) and the second layer (B) is 1 mass in total of the first resin and the second resin.
- the CO 2 gas separation membrane according to any one of [1] to [6], which is 0.5 to 20 parts by mass with respect to parts.
- the CO 2 gas separation membrane according to any one of [1] to [7], which is a hydroxide.
- hydrophobic porous membrane (C) is made of at least one material selected from the group consisting of ceramic, fluororesin, polyphenylene sulfide, polyethersulfone, and polyimide.
- a method for producing a CO 2 gas separation membrane according to any one of [1] to [11], A first coating liquid containing the alkali metal compound, the first resin, and a medium, or a second coating liquid containing the alkali metal compound, the second resin, and a medium, A first step of applying to at least one surface of the hydrophobic porous membrane (C); A second step of obtaining the first layer (A) or the second layer (B) by removing the medium from the coating obtained in the first step; The surface of the first layer (A) or the second layer (B) obtained in the second step is coated in the first step out of the first coating liquid and the second coating liquid. A third step of applying a coating liquid different from the processed coating liquid; A fourth step of obtaining the first layer (A) or the second layer (B) by removing the medium from the coating material obtained in the third step; Manufacturing method.
- [14] supplying a mixed gas containing at least CO 2 and water vapor to one side of the CO 2 gas separation membrane according to any one of [1] to [11]; Recovering CO 2 separated from the mixed gas from the other surface side of the CO 2 gas separation membrane;
- a method for separating CO 2 comprising:
- a CO 2 gas separation membrane module comprising the CO 2 gas separation membrane according to any one of [1] to [11].
- a CO 2 gas separation device comprising:
- FIG. 3 is a schematic view showing a structure of a spiral-type CO 2 gas separation membrane module using the gas separation membrane according to the present invention and provided with a partial cutout. Used in the examples is a overview diagram of a CO 2 gas separation apparatus equipped with a CO 2 gas separation membrane module.
- CO 2 gas separation membrane of the present invention the first layer of the following (A), a CO 2 gas separation membrane comprising a second layer (B) and a hydrophobic porous membrane (C).
- A Resin in which at least one alkali metal compound selected from the group consisting of alkali metal carbonates, alkali metal bicarbonates and alkali metal hydroxides and a polymer having a carboxyl group are crosslinked (first resin)
- the first layer including (B) Resin (second resin) having a structural unit derived from a vinyl ester of fatty acid and at least one alkali metal compound selected from the group consisting of alkali metal carbonates, alkali metal bicarbonates and alkali metal hydroxides
- C a hydrophobic porous membrane.
- the first resin contained in the first layer (A) is a resin in which a polymer having a carboxyl group is crosslinked.
- the first resin has a network structure by cross-linking of molecular chains of a polymer having a carboxyl group.
- the first resin is preferable for increasing the water retention of the CO 2 gas separation membrane and increasing the pressure resistance. Since a large pressure difference is applied to the CO 2 gas separation membrane as a driving force for allowing the gas to permeate the membrane, pressure resistance is required. Only 1 type may be used for 1st resin and it may use 2 or more types together.
- the polymer having a carboxyl group examples include a polymer obtained by polymerizing a monomer composition containing one or more carboxyl group-containing monomers such as acrylic acid, itaconic acid, crotonic acid, and methacrylic acid.
- carboxyl group-containing monomers such as acrylic acid, itaconic acid, crotonic acid, and methacrylic acid.
- the polymer which has a carboxyl group has a structural unit derived from acrylic acid, methacrylic acid, or derivatives thereof.
- the polymer having a carboxyl group includes polyacrylic acid that is a polymer of acrylic acid, polymethacrylic acid that is a polymer of methacrylic acid, and acrylic acid that is a copolymer of acrylic acid and methacrylic acid.
- a methacrylic acid copolymer is preferable, and polyacrylic acid is more preferable.
- the first resin may be prepared by reacting a polymer having a carboxyl group with a crosslinking agent, or a monomer having a carboxyl group or an alkyl ester group that becomes a carboxyl group by a hydrolysis reaction and a crosslinkable monomer. It may be prepared by polymerizing the body. All or part of the carboxyl groups of the first resin may be replaced with carboxylates by neutralization with metal ions. The metal ion is preferably an alkali metal cation. The timing for the neutralization reaction is preferably after the first crosslinked resin is prepared. A resin in which all or a part of the carboxyl groups of the first resin is replaced with a carboxylate also belongs to the first resin.
- Examples of the monomer having an alkyl ester group include alkyl groups having 1 to 16 carbon atoms such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, octyl acrylate, and lauryl acrylate.
- esters Crotonic acid alkyl esters having an alkyl group having 1 to 16 carbon atoms such as methyl crotonic acid, ethyl crotonic acid, propyl crotonic acid, butyl crotonic acid, hexyl crotonic acid, octyl crotonic acid, lauryl crotonic acid, etc .; methyl methacrylate , Meta Ethyl acrylic acid, propyl methacrylate, butyl methacrylate, hexyl methacrylate, octyl methacrylate, alkyl esters having an alkyl group having 1 to 16 carbon atoms such as lauryl methacrylate and the like.
- the crosslinking monomer and the crosslinking agent are not particularly limited, and conventionally known monomers can be used.
- the crosslinkable monomer include divinylbenzene, N, N′-methylenebisacrylamide, trimethylolpropane triallyl ether, pentaerythritol tetraallyl ether, and the like.
- the crosslinking agent include an epoxy crosslinking agent, a polyvalent glycidyl ether, a polyhydric alcohol, a polyvalent isocyanate, a polyvalent aziridine, a haloepoxy compound, a polyvalent aldehyde, a polyvalent amine, an organometallic crosslinking agent, and a metallic crosslinking agent. Etc.
- the crosslinkable monomer and the crosslinker preferably have alkali resistance.
- the crosslinking method conventionally known methods such as thermal crosslinking, ultraviolet crosslinking, electron beam crosslinking, radiation crosslinking, photocrosslinking, and the methods described in JP-A Nos. 2003-268809 and 7-88171 are known. Can be used.
- the timing for preparing the first crosslinked resin is not particularly limited, but it is preferably performed before mixing with the CO 2 carrier described later.
- the first resin examples include ACPEC (registered trademark, manufactured by Sumitomo Seika Co., Ltd.), Sunfresh (registered trademark, manufactured by Sanyo Kasei Co., Ltd.), and the like.
- the CO 2 gas separation membrane of the present invention includes a first layer (A), a second layer (B), and a hydrophobic porous membrane (C).
- a first layer (A) containing a first resin crosslinked with a polymer having a carboxyl group, and a hydrophobic porous membrane (C) a fatty acid
- the film forming property can be improved. Only 1 type may be used for 2nd resin and it may use 2 or more types together.
- the second resin can be obtained by partially saponifying a structural unit derived from a fatty acid vinyl ester.
- the structural unit derived from a saponified fatty acid vinyl ester is hydrophilic. It becomes the vinyl alcohol unit which shows. Therefore, if a structural unit derived from a vinyl ester of a fatty acid exhibiting hydrophobicity remains in the structure of the second resin, the structural unit derived from the vinyl ester of a fatty acid exhibiting hydrophobicity and a hydrophobic porous membrane (C )), Film defects such as pinholes are suppressed, and the film-forming property is improved.
- the degree of saponification represents what percentage of structural units derived from the fatty acid vinyl ester is saponified (hydrolyzed).
- the saponification degree is preferably in the range of 50% to less than 100%, and more preferably in the range of 60% to less than 100%.
- the degree of saponification can be adjusted with reference to conventionally known resin production methods described in JP-A-52-107096, JP-A-52-27455, JP-A-5598630, and the like.
- the second resin is derived from a vinyl ester of a fatty acid having 2 to 16 carbon atoms such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl laurate, vinyl palmitate, vinyl stearate, vinyl versatate, etc. It can have structural units.
- resins include polyvinyl alcohol, vinyl alcohol-ethylene copolymer, vinyl alcohol-acrylic acid copolymer, vinyl alcohol obtained by partially saponifying structural units derived from the above-mentioned fatty acid vinyl ester. -Methacrylic acid copolymer, vinyl alcohol-vinyl sulfonic acid copolymer and the like.
- the second resin is preferably polyvinyl alcohol or a vinyl alcohol-acrylic acid copolymer obtained by partially saponifying a structural unit derived from a fatty acid vinyl ester.
- the carboxyl group is neutralized with metal ions in the same manner as the first resin. All or part of may be replaced by carboxylate.
- the metal ion is preferably an alkali metal cation.
- a resin in which all or a part of the carboxyl groups of the second resin is replaced with a carboxylate also belongs to the second resin.
- (CO 2 carrier) CO 2 gas separation membrane of the present invention in addition to dissolving and diffusion mechanism utilizing the solubility and membrane of the diffusivity of the membrane of the gas molecules, and CO 2 carrier which reversibly react with CO 2
- High permeation selectivity of a specific gas is realized by a facilitated transport mechanism that promotes permeation of a specific gas as a reaction product with a CO 2 carrier using a so-called substance.
- Formula (1) is, in the case of using a cesium carbonate (Cs 2 CO 3) to CO 2 carrier, shows the reaction between CO 2 and CO 2 carrier.
- the reaction represented by the following formula (1) is a reversible reaction.
- the first layer (A) and the second layer (B) included in the CO 2 gas separation membrane of the present invention are at least selected from the group consisting of alkali metal carbonates, alkali metal bicarbonates and alkali metal hydroxides.
- 1 alkali metal compound hereinafter may be referred to as “CO 2 carrier”).
- this CO 2 carrier reacts with CO 2 dissolved in water in the first layer (A) and the second layer (B) to reversibly react with CO 2 . Plays the role of selective transmission.
- Each of the first layer (A) and the second layer (B) may contain only one type of CO 2 carrier, or may contain two or more types.
- the alkali metal compound (“CO 2 carrier”) contained in the first layer (A) and the second layer (B) is at least one alkali metal selected from the group consisting of sodium, potassium, rubidium and cesium. Carbonate, bicarbonate or hydroxide is preferred, and carbonate or hydroxide is more preferred. Examples of the alkali metal carbonate include sodium carbonate, potassium carbonate, rubidium carbonate, and cesium carbonate. Examples of the alkali metal bicarbonate include sodium bicarbonate, potassium bicarbonate, rubidium bicarbonate, and cesium bicarbonate. Examples of the alkali metal hydroxide include sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide.
- the alkali metal compound (“CO 2 carrier”) contained in the first layer (A) and the second layer (B) is further an alkali metal carbonate or alkali metal hydroxide exhibiting deliquescence.
- cesium carbonate or cesium hydroxide having high solubility in water is particularly preferable.
- the first resin and the second resin have an alkali metal carbonate, alkali metal bicarbonate, or alkali metal hydroxide to be added to function as a CO 2 carrier.
- the carboxyl group is preferably neutralized by an alkali metal cation constituting a CO 2 carrier.
- the first resin and the second resin in addition to the alkali metal compound derived from the CO 2 carrier, the first resin and the second resin Various alkali metal compounds such as an alkali metal compound used in the neutralization reaction of the carboxyl group possessed may be included.
- the total content of all these alkali metal compounds contained in the first layer (A) and the second layer (B) of the CO 2 gas separation membrane is 1 mass of the total amount of the first resin and the second resin. The amount is preferably 0.5 to 20 parts by mass with respect to parts.
- the total content of the alkali metal compound is less than 0.5 parts by mass with respect to 1 part by mass of the total amount of the first resin and the second resin, the desired CO 2 selective permeability may not be obtained. There is. On the other hand, when the content of the alkali metal compound exceeds 20 parts by mass with respect to 1 part by mass of the total amount of the first resin and the second resin, the film forming property may be deteriorated.
- the total content of the alkali metal compound is more preferably 1 part by mass to 15 parts by mass with respect to 1 part by mass of the total amount of the first resin and the second resin.
- the alkali metal compound contained in each of the first layer (A) and the second layer (B) may be the same or different.
- Each of the first layer (A) and the second layer (B) may contain only one kind of alkali metal compound, or may contain two or more kinds.
- the CO 2 gas separation membrane of the present invention includes a hydrophobic porous membrane having a high gas permeability that does not become a diffusion resistance of a gas component that has permeated through the membrane, as the hydrophobic porous membrane (C).
- a hydrophobic porous membrane having a high gas permeability that does not become a diffusion resistance of a gas component that has permeated through the membrane as the hydrophobic porous membrane (C).
- the layer laminated in contact with one surface of the hydrophobic porous membrane (C) is preferably the second layer (B). In this case, the first layer (A) is laminated in contact with the surface (surface) of the second layer (B) not in contact with the hydrophobic porous membrane (C).
- the operating temperature of the gas separation membrane is 100 ° C. or higher, and therefore a gas separation membrane such as a hydrophobic porous membrane (C) It is preferable that the heat resistance of the member which comprises is 100 degreeC or more.
- “Hydrophobic” means that the contact angle of water at 25 ° C. is 90 ° or more.
- Heat resistance of 100 ° C. or higher means that the shape before storage is maintained even after a member such as a porous membrane is stored at a temperature of 100 ° C. or higher for 2 hours, and can be visually confirmed by heat shrinkage or heat melting. It means no curling.
- Examples of the material constituting the hydrophobic porous membrane (C) include polyolefin resins such as polyethylene and polypropylene; fluorine-containing resins such as polytetrafluoroethylene (PTFE), polyvinyl fluoride, and polyvinylidene fluoride; polyphenylene sulfide; Ether sulfone; Polyimide; High molecular weight polyester; Heat-resistant polyamide; Aramid; Resin material such as polycarbonate; Inorganic material such as metal, glass and ceramic.
- polyolefin resins such as polyethylene and polypropylene
- fluorine-containing resins such as polytetrafluoroethylene (PTFE), polyvinyl fluoride, and polyvinylidene fluoride
- polyphenylene sulfide Ether sulfone
- Polyimide High molecular weight polyester
- Heat-resistant polyamide Aramid
- Resin material such as polycarbonate
- Inorganic material such as metal, glass and
- fluorine-containing resins such as PTFE, polyvinyl fluoride, and polyvinylidene fluoride, polyphenylene sulfide, polyether sulfone, polyimide, and ceramic are preferable.
- PTFE has a fine pore size. It is more preferable because it is easy to obtain and the porosity is high, so that the energy efficiency of the separation is good.
- the thickness of the hydrophobic porous membrane (C) is not particularly limited, but from the viewpoint of mechanical strength, it is usually preferably in the range of 10 ⁇ m to 3000 ⁇ m, more preferably in the range of 10 ⁇ m to 500 ⁇ m, and even more preferably 15 ⁇ m. It is in the range of ⁇ 150 ⁇ m.
- the average pore size (average pore size) of the pores of the hydrophobic porous membrane (C) is not particularly limited, but is preferably 10 ⁇ m or less, more preferably in the range of 0.005 ⁇ m to 1.0 ⁇ m from the viewpoint of gas permeability. is there.
- the porosity of the hydrophobic porous membrane (C) is preferably in the range of 5% to 99%, more preferably in the range of 30% to 90%, from the viewpoint of separation energy efficiency.
- the stacking order of the first layer (A) containing the first resin and the second layer (B) containing the second resin there is no limitation in the stacking order of the first layer (A) containing the first resin and the second layer (B) containing the second resin.
- one surface of the first layer (A) containing the first resin is in contact with one surface of the second layer (B) containing the second resin, and the other of the first layer (A).
- the first layer (A), the second layer (B), and the hydrophobic layer are brought into contact with either the surface of the second layer (B) or one surface of the hydrophobic porous membrane (C).
- the porous porous film (C) is laminated.
- the basis weight (unit) of the first layer (A) and the second layer (B) that is not in contact with the hydrophobic porous membrane (C) The solid content per area) is preferably larger than the basis weight of the layer in contact with the hydrophobic porous membrane (C).
- the first layer (A) containing the first resin having higher water retention than the second resin, and the second layer (B) containing the second resin ) And a hydrophobic porous membrane (C) are preferably laminated in this order.
- the first layer (A) and the second layer (B), in addition to the above CO 2 carrier, CO 2 hydration reaction catalyst may be contained.
- the CO 2 hydration reaction catalyst is a catalyst that increases the reaction rate of the CO 2 hydration reaction represented by the following formula (2). Note that the reaction represented by the following formula (2) is a reversible reaction.
- the reaction between CO 2 and the CO 2 carrier is represented by the following equation (3) as a general reaction equation. However, it is assumed that the CO 2 carrier in equation (3) is a carbonate.
- the reaction represented by the following formula (3) is a reversible reaction. Since the CO 2 hydration reaction, which is one of the elementary reaction of the reaction is slow reaction in the absence of a catalyst under conditions, by addition of a catalyst that promotes the reactions, the reaction of CO 2 and CO 2 carrier As a result, an improvement in the permeation rate of CO 2 is expected.
- the first layer (A) and the second layer (B) contain a CO 2 carrier and a CO 2 hydration reaction catalyst, the reaction between the CO 2 and the CO 2 carrier is promoted, and the CO 2 permeance is increased. And the CO 2 selective permeability is greatly improved. Since CO 2 hydration catalysts even at high CO 2 partial pressure to function effectively, also significantly improved CO 2 permeance and CO 2 selective permeability at high CO 2 partial pressure.
- the CO 2 hydration reaction catalyst preferably contains an oxo acid compound, and particularly comprises an oxo acid compound of at least one element selected from Group 14, Element 15, and Group 16 elements. It is more preferable to further include at least one of a tellurite compound, a selenite compound, an arsenite compound, and an orthosilicate compound.
- potassium tellurite K 2 TeO 3 , melting point: 465 ° C.
- sodium tellurite Na 2 TeO 3 , melting point: 710 ° C.
- lithium tellurite Li 2 O 3 Te, melting point
- potassium selenite K 2 O 3 Se, melting point: 875 ° C.
- sodium arsenite NaO 2 As, melting point: 615 ° C.
- sodium orthosilicate Na 4 O 4 Si, melting point: 1018 ° C.
- Each of the first layer (A) and the second layer (B) may contain only one type of CO 2 hydration reaction catalyst, or may contain two or more types.
- the catalyst When the melting point of the CO 2 hydration reaction catalyst is 200 ° C. or higher, the catalyst can be thermally stable and exist in a layer made of a hydrophilic resin, so that the performance of the CO 2 gas separation membrane can be improved over a long period of time. Can be maintained. If the CO 2 hydration reaction catalyst is water-soluble, the separation functional layer containing the CO 2 hydration reaction catalyst can be easily and stably produced. When a tellurite compound, an arsenite compound, or a selenite compound is used as a CO 2 hydration reaction catalyst, all of them are water-soluble and have a melting point of 200 ° C. or higher, and stable membrane performance improvement can be expected. .
- a method for producing a CO 2 gas separation membrane according to the present invention will be described.
- a first coating solution containing the alkali metal compound, a first resin that is a resin in which a polymer having a carboxyl group is crosslinked, and a medium, or the alkali metal compound and a fatty acid As a first step, a first coating solution containing the alkali metal compound, a first resin that is a resin in which a polymer having a carboxyl group is crosslinked, and a medium, or the alkali metal compound and a fatty acid.
- a second coating liquid containing a second resin, which is a resin having a structural unit derived from the vinyl ester, and a medium is applied to at least one surface of the hydrophobic porous membrane (C).
- protic polar media such as water, alcohols such as methanol, ethanol, 1-propanol and 2-propanol; toluene, Nonpolar media such as xylene and hexane; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; aprotic polar media such as N-methylpyrrolidone, N, N-dimethylacetamide and N, N-dimethylformamide. These may be used alone or in combination as a medium within a compatible range. Among these, a medium containing at least one selected from the group consisting of water, alcohols such as methanol, ethanol, 1-propanol and 2-propanol is preferable, and a medium containing water is more preferable.
- the temperature at which the coating liquid is applied to the hydrophobic porous membrane (C) may be appropriately determined according to the composition and concentration. However, if the temperature is too high, a large amount of medium evaporates from the coating liquid, resulting in a composition concentration. May change, or evaporation traces may remain in the coated product (coating layer). Therefore, the temperature is preferably room temperature or higher and 5 ° C. or lower of the boiling point of the medium used. For example, when water is used as the medium, the coating liquid is preferably applied to the hydrophobic porous membrane (C) in the temperature range of 15 ° C. to 95 ° C.
- the method for applying the coating liquid to the hydrophobic porous membrane (C) is not particularly limited.
- spin coating, bar coating, die coating, blade coating, air knife coating, gravure coating, roll coating coating, spray coating Examples include dip coating, comma roll method, kiss coat method, screen printing, and ink jet printing.
- the coating amount of the coating solution is preferably adjusted according to the type of resin contained in the coating solution.
- the weight per unit area (solid content per unit area) when applying the coating liquid containing the first resin includes 0.1 g / m 2 to 1000 g / m 2 , and 0.1 g / m 2 to 500 g.
- the basis weight of the case of coating a coating solution containing a second resin include 1g / m 2 ⁇ 1000g / m 2, is preferably 2g / m 2 ⁇ 750g / m 2, 4g / m It is more preferably 2 to 500 g / m 2 , and further preferably 5 g / m 2 to 100 g / m 2 .
- the adjustment of the basis weight can be controlled by the formation speed of the coated product (for example, the transport speed of the hydrophobic porous film (C) to which the coating liquid is applied), the concentration of the coating liquid, the discharge amount of the coating liquid, and the like.
- the medium is removed from the coating (coating layer) formed in the first step to obtain the first layer (A) or the second layer (B).
- the method for removing the medium is not particularly limited, and a conventionally known method can be used. However, a method of evaporating and removing the medium by drying the coated material by ventilating heated air or the like is preferable. For example, the coating material is carried into a ventilation drying furnace adjusted to a predetermined temperature and a predetermined humidity, and the medium is evaporated and removed from the coating material. Thereby, the first layer (A) or the second layer (B) is formed.
- the drying temperature may be appropriately determined according to the coating liquid medium and the type of the hydrophobic porous membrane (C). Usually, the temperature is preferably higher than the freezing point of the medium and lower than the melting point of the hydrophobic porous membrane (C), and generally in the range of 80 ° C to 200 ° C.
- the medium removal operation is performed until the medium contained in the coated product becomes a predetermined concentration or less. Specifically, it is performed until the content of the medium contained in the first layer (A) or the second layer (B) obtained in the second step reaches a range of 1% by weight to 34% by weight. Is preferred.
- a coating liquid different from the coating liquid applied in one step is applied.
- the method of applying the coating liquid may be different from the method of applying the coating liquid in the first step, but is preferably the same method. What is necessary is just to determine suitably the temperature at the time of apply
- the coating amount of the coating solution is preferably adjusted according to the type of resin contained in the coating solution.
- the medium is removed from the coating material (coating layer) obtained in the third step to obtain the first layer (A) or the second layer (B).
- the medium removal method may be different from the method applied to the second step, but is preferably the same as the second step.
- the drying temperature may be appropriately determined according to the medium of the coating liquid and the type of the hydrophobic porous membrane (C).
- the second coating liquid is applied to at least one surface of the hydrophobic porous membrane (C) to obtain the second layer (B) in the second step, and in the third step, the second layer the first coating liquid was coated on the surface of layer (B), the manufacturing method of the first layer (a) to obtain CO 2 gas separation membrane in the fourth step is preferred.
- the first layer (A) containing the first resin has a basis weight of 2 g / m 2 to 500 g / m 2 and contains the second resin.
- the basis weight of (B) is preferably 1 g / m 2 to 20 g / m 2 , and the basis weight of the first layer (A) containing the first resin is 10 g / m 2 to 300 g / m 2
- the basis weight of the second layer (B) containing the second resin is more preferably 2 g / m 2 to 15 g / m 2 . Further, from the viewpoint of CO 2 selective permeability, it is preferable that the basis weight of the first layer (A) is larger than the basis weight of the second layer (B).
- Ratio of the basis weight of the second layer (B) (hereinafter, simply referred to as “weight ratio”), that is, the basis weight of the second layer (B) is changed to the basis weight of the first layer (A).
- the value divided by is preferably in the range of 0.04 to 0.5, and more preferably in the range of 0.05 to 0.2.
- the CO 2 gas separation membrane module according to the present invention includes the CO 2 gas separation membrane of the present invention, and may be any of spiral type, cylindrical type, hollow fiber type, pleated type, plate & frame type, and the like. Good.
- FIG. 1 shows the structure of a spiral-type CO 2 gas separation membrane module using a CO 2 gas separation membrane according to the present invention, with a partially cutaway outline.
- the spiral-type CO 2 gas separation membrane module M shown in FIG. 1 includes a laminate 2 in which a CO 2 gas separation membrane 21, a supply-side flow path material 22, and a permeation-side flow path material 23 are stacked. It has a structure wound around the outer periphery of the formed hollow gas collecting pipe 3 a plurality of times.
- the supply-side channel material 22 and the permeation-side channel material 23 are a turbulent flow of a mixed gas containing CO 2 and water vapor to be supplied and a permeated gas that has permeated through the CO 2 gas separation membrane 21 (surface update of the membrane surface). It is preferable to have a function to increase the membrane permeation rate of CO 2 in the supply fluid and to reduce the pressure loss on the supply side as much as possible.
- the supply-side channel material 22 and the permeate-side channel material 23 preferably have a function as a spacer and a function of generating a turbulent flow in the mixed gas, so that a mesh-like material is preferably used. It is done.
- the unit cell shape of the mesh is selected from shapes such as a rhombus and a parallelogram depending on the purpose because the flow path of the mixed gas varies depending on the shape of the mesh.
- the gas separation membrane of the present invention is used under temperature conditions of 100 ° C. or higher, and therefore has heat resistance. It is preferable that it is a material,
- the material quoted as the material of the above-mentioned hydrophobic porous membrane (C) is also preferably used here.
- the CO 2 gas separation apparatus includes the CO 2 gas separation membrane module of the present invention and a gas supply unit for supplying a mixed gas containing at least CO 2 and water vapor.
- the gas supply unit includes a supply port for supplying the mixed gas containing CO 2 and water vapor on one side of the CO 2 gas separation membrane, a feed opening itself of the CO 2 gas separation membrane module Alternatively, even if the above-mentioned CO 2 gas separation membrane module is accommodated and the supply side space communicating with the supply port of the accommodated CO 2 gas separation membrane module is a container-shaped gas supply member formed therein Good.
- the supply port may be one side of the CO 2 gas separation membrane or a laminate comprising the same, may be an end of the CO 2 gas separation membrane or a laminate comprising the same.
- the supply port 24 may be one or both end faces of the CO 2 gas separation membrane 21 or the laminate 2 including the same.
- the method for separating CO 2 according to the present invention includes a step of supplying a mixed gas containing at least CO 2 and water vapor to one side of the CO 2 gas separation membrane according to the present invention, and other CO 2 gas separation membranes. Recovering CO 2 separated from the mixed gas from the front side.
- a mixed gas containing CO 2 and water vapor is supplied from the supply port 24 of the CO 2 gas separation membrane module M in the direction indicated by the arrow A, While flowing through the supply-side channel material 22, CO 2 in the mixed gas permeates the CO 2 gas separation membrane 21, and the separated CO 2 flows through the permeation-side channel material 23 and is collected in the gas collection pipe 3.
- the gas is collected from the discharge port 32 of the gas collection pipe 3.
- the remaining mixed gas from which the CO 2 has been separated that has passed through the gap in the supply-side flow path member 22 is discharged from the discharge port 25 of the CO 2 gas separation membrane module M.
- a sweep gas selected from an inert gas or the like may be supplied to the gas collection pipe 3.
- Example 1 80 g of water and 2 g of crosslinked polyacrylic acid (“Acpec HV-501” manufactured by Sumitomo Seika Co., Ltd.) were mixed with stirring. To the mixture, 9.3 g of cesium carbonate and 0.7 g of potassium tellurite were added, and further mixed by stirring to obtain a coating liquid I-1.
- Acpec HV-501 crosslinked polyacrylic acid manufactured by Sumitomo Seika Co., Ltd.
- the obtained coating liquid I-2 is applied on the surface of a hydrophobic PTFE porous membrane (“Poreflon HP-010-50” manufactured by Sumitomo Electric Fine Polymer Co., Ltd., film thickness 50 ⁇ m, average pore diameter 0.1 ⁇ m).
- a hydrophobic PTFE porous membrane (“Poreflon HP-010-50” manufactured by Sumitomo Electric Fine Polymer Co., Ltd., film thickness 50 ⁇ m, average pore diameter 0.1 ⁇ m).
- the hydrophobic PTFE porous membrane after coating was dried at a temperature of about 120 ° C. for 5 minutes or longer to obtain a resin layer I-2.
- the resin layer I-1 is laminated again by drying at a temperature of about 120 ° C.
- the basis weight of the resin layer I-1 (corresponding to the first layer (A)) is 66 g / m 2
- the basis weight of the resin layer I-2 is 5 g / m 2. 2 and the basis weight ratio is 0.076.
- Example 2 Gas separation membrane II was obtained in the same manner as in Example 1 except that in the preparation step of coating liquid I-1 of Example 1, the amount of cesium carbonate added was increased to 11.6 g to obtain coating liquid II-1.
- the basis weight of the resin layer II-1 (corresponding to the first layer (A)) is 68 g / m 2
- the basis weight of the resin layer II-2 (corresponding to the second layer (B)) is 7.6 g. / M 2
- the basis weight ratio is 0.11.
- Example 3 In the preparation step of the coating liquid I-1 of Example 1, the gas separation membrane III was obtained in the same manner as in Example 1 except that the coating liquid III-1 was obtained by increasing the amount of cesium carbonate added to 14.0 g. Got.
- the basis weight of the resin layer III-1 (corresponding to the first layer (A)) is 79 g / m 2
- the basis weight of the resin layer III-2 (corresponding to the second layer (B)) is 7.6 g. / M 2 and the basis weight ratio is 0.096.
- Example 4 80 g of water and 2 g of crosslinked polyacrylic acid (“Acpec HV-501” manufactured by Sumitomo Seika Co., Ltd.) were mixed with stirring. To the mixture, 9.3 g of cesium carbonate and 0.7 g of potassium tellurite were added, and further mixed by stirring to obtain a coating liquid IV-1.
- Acpec HV-501 crosslinked polyacrylic acid
- Copolymer of 80 g of water and vinyl alcohol and acrylic acid obtained by the production method described in Japanese Patent No. 5598630 (carboxyl group of acrylic acid moiety forms Cs salt, saponification degree: 82%) 4.2 g Were mixed with stirring. To the mixture, 9.9 g of cesium carbonate and 1.5 g of potassium tellurite were added, and further mixed by stirring to obtain a coating liquid IV-2.
- the obtained coating solution IV-1 was applied on the surface of a hydrophobic PTFE porous membrane (“Poreflon HP-010-50” manufactured by Sumitomo Electric Fine Polymer Co., Ltd., film thickness 50 ⁇ m, average pore diameter 0.1 ⁇ m).
- a hydrophobic PTFE porous membrane (“Poreflon HP-010-50” manufactured by Sumitomo Electric Fine Polymer Co., Ltd., film thickness 50 ⁇ m, average pore diameter 0.1 ⁇ m).
- the coated hydrophobic PTFE porous membrane was dried at a temperature of about 120 ° C. for 5 minutes or longer to obtain a resin layer IV-1.
- the resin layer IV-2 is laminated again by drying at a temperature of about 120 ° C.
- Example 4 unlike Examples 1 to 3, the first layer (A) is formed before the second layer (B), and the basis weight of the first layer (A) is the second. Less than the basis weight of the layer (B).
- Comparative Example 1 80 g of water, a copolymer of vinyl alcohol and acrylic acid obtained by the production method described in Japanese Patent No. 5598630 as a hydrophilic resin having a structural unit derived from an aliphatic vinyl ester (carboxyl group at the acrylic acid site) Formed Cs salt, saponification degree: 82%) 3 g, cesium carbonate 7.0 g and potassium tellurite 1.1 g were added and mixed with stirring to obtain coating solution V-2.
- the obtained coating liquid V-2 is applied on the surface of a hydrophobic PTFE porous membrane (“Poreflon HP-010-50” manufactured by Sumitomo Electric Fine Polymer Co., Ltd., film thickness 50 ⁇ m, average pore diameter 0.1 ⁇ m).
- a hydrophobic PTFE porous membrane (“Poreflon HP-010-50” manufactured by Sumitomo Electric Fine Polymer Co., Ltd., film thickness 50 ⁇ m, average pore diameter 0.1 ⁇ m).
- the coated hydrophobic PTFE porous membrane was dried at a temperature of about 120 ° C. for 5 minutes or more to produce a gas separation membrane having a CO 2 separation functional layer on the hydrophobic PTFE porous membrane.
- application and drying of the coating liquid were repeated a plurality of times to obtain a sheet-like gas separation membrane V.
- the basis weight of the gas separation membrane V (corresponding to the second layer (B)) is 100 g / m 2 .
- the obtained coating solution VI-1 is applied on the surface of a hydrophobic PTFE porous membrane (“Poreflon HP-010-50” manufactured by Sumitomo Electric Fine Polymer Co., Ltd., film thickness 50 ⁇ m, average pore diameter 0.1 ⁇ m).
- a hydrophobic PTFE porous membrane (“Poreflon HP-010-50” manufactured by Sumitomo Electric Fine Polymer Co., Ltd., film thickness 50 ⁇ m, average pore diameter 0.1 ⁇ m).
- the coated hydrophobic PTFE porous membrane was dried at a temperature of about 120 ° C. for 5 minutes or more to produce a gas separation membrane having a CO 2 separation functional layer on the hydrophobic PTFE porous membrane.
- application and drying of the coating liquid were repeated a plurality of times to obtain a sheet-like gas separation membrane VI.
- the basis weight of the gas separation membrane VI (corresponding to the first layer (A)) is 100 g / m 2 .
- the N 2 gas permeation performance was evaluated using a CO 2 gas separation apparatus including the CO 2 gas separation membrane module 51 shown in FIG. Specifically, the gas separation membranes I, IV and VI produced in Example 1, Example 4 and Comparative Example 2 were cut into appropriate sizes to form flat membranes, which were each made of stainless steel CO 2 separation.
- the membrane module 51 was fixed between the supply side 52 (corresponding to the gas supply unit described above) and the transmission side 53.
- N 2 gas at room temperature was supplied to the supply side 52 of the CO 2 gas separation membrane module 51, and the pressure on the supply side 52 was increased to 900 kPaA.
- the pressure on the transmission side 53 was adjusted to atmospheric pressure.
- the permeance of N 2 is calculated based on the time change of the pressure on the supply side 52, and the N 2 permeance [mol / (m 2 ⁇ s ⁇ kPa)] is 5 ⁇ 10 ⁇ 8 mol / (m 2 ⁇ s ⁇ kPa).
- the film forming property was evaluated for each of the 10 gas separation membrane samples prepared in Example 1, Example 4 and Comparative Example 2. The results are shown in Table 1.
- CO 2 separation was carried out using a CO 2 gas separation device provided with a CO 2 gas separation membrane module 51 shown in FIG. Specifically, the gas separation membranes I to VI produced in Examples 1 to 4 and Comparative Examples 1 to 2 are cut into appropriate sizes to form flat membranes, which are each made of a stainless steel CO 2 separation membrane module. 51 was fixed between the supply side 52 (corresponding to the gas supply unit described above) and the transmission side 53.
- the source gas (CO 2 : 34.5%, N 2 : 52.8%, H 2 O: 12.7%) is supplied to the CO 2 gas separation membrane module 51 at a flow rate of 7.03 ⁇ 10 ⁇ 2 mol / min.
- the gas was supplied to the supply side 52, and the sweep gas (H 2 O: 100%) was supplied to the permeation side 53 of the CO 2 gas separation membrane module 51 at a flow rate of 1.05 ⁇ 10 ⁇ 2 mol / min.
- H 2 O was adjusted so that water would be fed by the fixed liquid feed pumps 58 and 60, heated and evaporated, and the above mixing ratio and flow rate were obtained.
- the pressure on the supply side 52 was adjusted to 900 kPaA by a back pressure regulator 55 provided on the downstream side of the cooling trap 54 in the middle of the exhaust gas discharge path. Further, a back pressure regulator 59 is also provided between the cooling trap 56 and the gas chromatograph 57, thereby adjusting the pressure on the permeation side 53 to atmospheric pressure.
- a back pressure regulator 59 is also provided between the cooling trap 56 and the gas chromatograph 57, thereby adjusting the pressure on the permeation side 53 to atmospheric pressure.
- the CO 2 gas separation membrane module 51 and the raw material gas and the sweep gas are converted into a CO 2 gas separation membrane module.
- the piping supplied to 51 is installed in a thermostat set to a predetermined temperature. In this evaluation, the temperature of the CO 2 gas separation membrane module 51, the raw material gas, and the sweep gas was set to 110 ° C.
- Gas separation membranes of the present invention hydrogen production, decarboxylation process for large processes, such as urea production, in CO 2 permeable membrane reactor, etc., to separate the CO 2 with high selectivity transmission from a mixed gas containing CO 2 Is available for
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
アルカリ金属炭酸塩、アルカリ金属重炭酸塩及びアルカリ金属水酸化物からなる群より選ばれる少なくとも1つのアルカリ金属化合物と、脂肪酸のビニルエステルに由来する構造単位を有する樹脂である第二の樹脂とを含む第二の層(B)と、
疎水性多孔膜(C)と、
を含むCO2ガス分離膜。
前記アルカリ金属化合物と、前記第一の樹脂と、媒質とを含む第一の塗工液、又は前記アルカリ金属化合物と、前記第二の樹脂と、媒質とを含む第二の塗工液を、前記疎水性多孔膜(C)の少なくとも一方の面に塗布する第1工程と、
前記第1工程で得られた塗布物から前記媒質を除去して前記第一の層(A)又は前記第二の層(B)を得る第2工程と、
前記第2工程で得られた第一の層(A)又は第二の層(B)の面に、前記第一の塗工液及び前記第二の塗工液のうち前記第1工程で塗工した塗工液とは異なる塗工液を塗布する第3工程と、
前記第3工程で得られた塗布物から前記媒質を除去して前記第一の層(A)又は前記第二の層(B)を得る第4工程と、
を含む製造方法。
前記CO2ガス分離膜の他方面側から、前記混合気体から分離されたCO2を回収する工程と、
を含むCO2の分離方法。
少なくともCO2と水蒸気とを含む混合気体を前記CO2ガス分離膜モジュールに供給するための気体供給部と、
を備えるCO2ガス分離装置。
本発明のCO2ガス分離膜は、下記の第一の層(A)、第二の層(B)及び疎水性多孔膜(C)を含むCO2ガス分離膜である。
(A)アルカリ金属炭酸塩、アルカリ金属重炭酸塩及びアルカリ金属水酸化物からなる群より選ばれる少なくとも1つのアルカリ金属化合物と、カルボキシル基を有する重合体が架橋された樹脂(第一の樹脂)とを含む第一の層、
(B)アルカリ金属炭酸塩、アルカリ金属重炭酸塩及びアルカリ金属水酸化物からなる群より選ばれる少なくとも1つのアルカリ金属化合物と、脂肪酸のビニルエステルに由来する構造単位を有する樹脂(第二の樹脂)とを含む第二の層、及び
(C)疎水性多孔膜。
第一の層(A)に含まれる第一の樹脂は、カルボキシル基を有する重合体が架橋されている樹脂である。第一の樹脂は、カルボキシル基を有する重合体の分子鎖同士の架橋による網目構造を有している。第一の樹脂は、CO2ガス分離膜の保水性を高めるとともに、耐圧強度を高めるうえで好ましい。CO2ガス分離膜には、ガスが当該膜を透過するための推進力として大きな圧力差が印加されるため、耐圧強度が要求される。第一の樹脂は、1種のみを用いてもよいし、2種以上を併用してもよい。
本発明のCO2ガス分離膜は、第一の層(A)、第二の層(B)及び疎水性多孔膜(C)を含む。CO2ガス分離膜がカルボキシル基を有する重合体が架橋された第一の樹脂を含む第一の層(A)と、疎水性多孔膜(C)とで構成される場合と比較し、さらに脂肪酸のビニルエステルに由来する構造単位を有する第二の樹脂を含む第二の層(B)を積層することにより、製膜性を向上させることができる。第二の樹脂は、1種のみを用いてもよいし、2種以上を併用してもよい。
本発明のCO2ガス分離膜は、ガス分子の膜への溶解性と膜中の拡散性との差を利用した溶解・拡散機構に加えて、CO2と可逆的に反応するCO2キャリアと呼ばれる物質を用い、CO2キャリアとの反応生成物として特定ガスの透過を促進する促進輸送機構により、特定ガスの高い透過選択性を実現している。下記式(1)は、CO2キャリアに炭酸セシウム(Cs2CO3)を使用した場合における、CO2とCO2キャリアとの反応を示している。下記式(1)で示される反応は、可逆反応である。
本発明のCO2ガス分離膜は、疎水性多孔膜(C)として、膜透過したガス成分の拡散抵抗とならないガス透過性の高い疎水性多孔膜を備える。第一の層(A)又は第二の層(B)を多孔膜の一方面に接して積層する場合は、多孔膜として疎水性多孔膜(C)を使用することによって、第一の層(A)内又は第二の層(B)内の水分が多孔膜の細孔に浸入することが抑制されるため、CO2パーミアンスの低下を抑えることができる。疎水性多孔膜(C)の一方面に接して積層する層は、第二の層(B)であることが好ましい。この場合、第一の層(A)は、疎水性多孔膜(C)と接していない第二の層(B)の面(表面)に接して積層される。
第一の層(A)及び第二の層(B)には、上記CO2キャリアの他、CO2水和反応触媒が含有されていてもよい。
本発明に係るCO2ガス分離膜の製造方法について説明する。第1工程として、上記アルカリ金属化合物と、カルボキシル基を有する重合体が架橋された樹脂である第一の樹脂と、媒質とを含む第一の塗工液、又は、上記アルカリ金属化合物と、脂肪酸のビニルエステルに由来する構造単位を有する樹脂である第二の樹脂と、媒質とを含む第二の塗工液を、疎水性多孔膜(C)の少なくとも一方の面に塗布する。
本発明に係るCO2ガス分離膜モジュールは、上記本発明のCO2ガス分離膜を備えるものであり、スパイラル型、円筒型、中空糸型、プリーツ型、プレート&フレーム型等いずれであってもよい。図1に、本発明に係るCO2ガス分離膜を用いたスパイラル型CO2ガス分離膜モジュールの構造を、一部切り欠きを設けて概説した図で示す。
本発明に係るCO2の分離方法は、上記本発明に係るCO2ガス分離膜の一方面側に、少なくともCO2と水蒸気とを含む混合気体を供給する工程と、CO2ガス分離膜の他方面側から、前記混合気体から分離されたCO2を回収する工程とを含む。上記のような構成のスパイラル型CO2ガス分離膜モジュールMにおいては、CO2と水蒸気とを含む混合気体は、CO2ガス分離膜モジュールMの供給口24から矢印Aで示す方向に供給され、供給側流路材22を流れる間に、混合気体中のCO2がCO2ガス分離膜21を透過し、分離されたCO2は透過側流路材23を流れて集ガス管3に集積され、集ガス管3の排出口32から回収される。供給側流路材22の空隙を通過した、CO2が分離された残余の混合気体は、CO2ガス分離膜モジュールMの排出口25から排出される。集ガス管3には不活性ガス等から選ばれるスイープガスが供給されてもよい。
水80gと、架橋ポリアクリル酸(住友精化社製「アクペックHV-501」)2gとを、撹拌にて混合した。当該混合物に、炭酸セシウム9.3g、亜テルル酸カリウム0.7gを加え、さらに撹拌にて混合し、塗工液I-1を得た。
実施例1の塗工液I-1の調製工程において、加える炭酸セシウムを11.6gに増量して塗工液II-1を得たこと以外は、実施例1と同様にしてガス分離膜IIを得た。樹脂層II-1(第一の層(A)に相当)の目付け量は68g/m2であり、樹脂層II-2(第二の層(B)に相当)の目付け量は7.6g/m2であり、上記目付け量比は0.11である。
実施例1の塗工液I-1の調製工程において、加える炭酸セシウムを14.0gに増量して塗工液III-1を得たこと以外は、実施例1と同様にしてガス分離膜IIIを得た。樹脂層III-1(第一の層(A)に相当)の目付け量は79g/m2であり、樹脂層III-2(第二の層(B)に相当)の目付け量は7.6g/m2であり、上記目付け量比は0.096である。
水80gと、架橋ポリアクリル酸(住友精化社製「アクペックHV-501」)2gとを、撹拌にて混合した。当該混合物に、炭酸セシウム9.3g、亜テルル酸カリウム0.7gを加え、さらに撹拌にて混合し、塗工液IV-1を得た。
水80g、脂肪族のビニルエステルに由来する構造単位を有する親水性樹脂として特許第5598630号公報に記載の製造方法によって得られたビニルアルコールとアクリル酸との共重合体(アクリル酸部位のカルボキシル基がCs塩を形成、鹸化度:82%)3g、炭酸セシウム7.0g、亜テルル酸カリウム1.1gを加えて攪拌にて混合し、塗工液V-2を得た。
水188g、カルボキシル基を有する重合体が架橋された親水性樹脂として架橋ポリアクリル酸(住友精化社製「アクペックHV-501」)4g、水酸化セシウム-水和物9.3gを、撹拌にて混合することにより中和反応を行った。中和反応終了後、炭酸セシウム9.0g、亜テルル酸カリウム1.5g、界面活性剤(AGCセイミケミカル社製「サーフロンS-242」)1.2gを加えて混合し、塗工液VI-1を得た。
図2に示す、CO2ガス分離膜モジュール51を備えたCO2ガス分離装置を用いてN2ガス透過性能評価を行った。具体的には、実施例1、実施例4及び比較例2で作製したガス分離膜I、IV及びVIを適切な大きさにカットして平膜形状とし、これらを各々ステンレス製のCO2分離膜モジュール51の供給側52(上述の気体供給部に相当)と透過側53との間に固定した。
図2に示す、CO2ガス分離膜モジュール51を備えたCO2ガス分離装置を用いてCO2分離を行った。具体的には、実施例1~4及び比較例1~2で作製したガス分離膜I~VIを適切な大きさにカットして平膜形状とし、これらを各々ステンレス製のCO2分離膜モジュール51の供給側52(上述の気体供給部に相当)と透過側53との間に固定した。
Claims (16)
- アルカリ金属炭酸塩、アルカリ金属重炭酸塩及びアルカリ金属水酸化物からなる群より選ばれる少なくとも1つのアルカリ金属化合物と、カルボキシル基を有する重合体が架橋された樹脂である第一の樹脂とを含む第一の層(A)と、
アルカリ金属炭酸塩、アルカリ金属重炭酸塩及びアルカリ金属水酸化物からなる群より選ばれる少なくとも1つのアルカリ金属化合物と、脂肪酸のビニルエステルに由来する構造単位を有する樹脂である第二の樹脂とを含む第二の層(B)と、
疎水性多孔膜(C)と、
を含むCO2ガス分離膜。 - 前記第二の樹脂が、脂肪酸のビニルエステルを部分的に鹸化して得られるポリビニルアルコール又はビニルアルコールとアクリル酸との共重合体である請求項1に記載のCO2ガス分離膜。
- 前記第一の層(A)の一方の面と前記第二の層(B)の一方の面とが接しており、前記第一の層(A)の他方の面又は前記第二の層(B)の他方の面のいずれかと前記疎水性多孔膜(C)の一方の面とが接している請求項1又は2に記載のCO2ガス分離膜。
- 前記第一の層(A)及び前記第二の層(B)のうち、前記疎水性多孔膜(C)と接していない層の目付け量が、疎水性多孔膜(C)と接している層の目付け量よりも多い請求項3に記載のCO2ガス分離膜。
- 前記第一の層(A)、前記第二の層(B)及び前記疎水性多孔膜(C)が、この順に積層された請求項1~4のいずれか1項に記載のCO2ガス分離膜。
- 前記第一の樹脂が、アクリル酸、メタクリル酸又はそれらの誘導体に由来する構造単位を有する請求項1~5のいずれか1項に記載のCO2ガス分離膜。
- 前記第一の層(A)及び前記第二の層(B)に含まれる全てのアルカリ金属化合物の合計含有量が、前記第一の樹脂及び前記第二の樹脂の合計量1質量部に対して0.5質量部~20質量部である請求項1~6のいずれか1項に記載のCO2ガス分離膜。
- 前記第一の層(A)及び前記第二の層(B)に含まれる前記アルカリ金属化合物が、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1つのアルカリ金属の炭酸塩又は水酸化物である請求項1~7のいずれか1項に記載のCO2ガス分離膜。
- 前記第一の層(A)及び前記第二の層(B)に含まれる前記アルカリ金属化合物が、炭酸セシウム又は水酸化セシウムである請求項1~8のいずれか1項に記載のCO2ガス分離膜。
- 前記疎水性多孔膜(C)が、セラミック、含フッ素樹脂、ポリフェニレンスルフィド、ポリエーテルスルホン及びポリイミドからなる群より選ばれる少なくとも1つの材料からなる請求項1~9のいずれか1項に記載のCO2ガス分離膜。
- 前記疎水性多孔膜(C)の平均孔径が、0.005μm~1.0μmの範囲である請求項1~10のいずれか1項に記載のCO2ガス分離膜。
- 請求項1~11のいずれか1項に記載のCO2ガス分離膜の製造方法であって、
前記アルカリ金属化合物と、前記第一の樹脂と、媒質とを含む第一の塗工液、又は前記アルカリ金属化合物と、前記第二の樹脂と、媒質とを含む第二の塗工液を、前記疎水性多孔膜(C)の少なくとも一方の面に塗布する第1工程と、
前記第1工程で得られた塗布物から前記媒質を除去して前記第一の層(A)又は前記第二の層(B)を得る第2工程と、
前記第2工程で得られた第一の層(A)又は第二の層(B)の面に、前記第一の塗工液及び前記第二の塗工液のうち前記第1工程で塗工した塗工液とは異なる塗工液を塗布する第3工程と、
前記第3工程で得られた塗布物から前記媒質を除去して前記第一の層(A)又は前記第二の層(B)を得る第4工程と、
を含む製造方法。 - 前記第1工程において、前記疎水性多孔膜(C)の少なくとも一方の面に前記第二の塗工液を塗布する請求項12に記載の製造方法。
- 請求項1~11のいずれか1項に記載のCO2ガス分離膜の一方面側に、少なくともCO2と水蒸気とを含む混合気体を供給する工程と、
前記CO2ガス分離膜の他方面側から、前記混合気体から分離されたCO2を回収する工程と、
を含むCO2の分離方法。 - 請求項1~11のいずれか1項に記載のCO2ガス分離膜を備えるCO2ガス分離膜モジュール。
- 請求項15に記載のCO2ガス分離膜モジュールと、
少なくともCO2と水蒸気とを含む混合気体を前記CO2ガス分離膜モジュールに供給するための気体供給部と、
を備えるCO2ガス分離装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/527,213 US10744454B2 (en) | 2014-11-18 | 2015-11-17 | Carbon dioxide gas separation membrane, method for manufacturing same, and carbon dioxide gas separation membrane module |
EP15861252.3A EP3231501B1 (en) | 2014-11-18 | 2015-11-17 | Carbon dioxide gas separation membrane, method for manufacturing same, and carbon dioxide gas separation membrane module |
KR1020177016063A KR102404068B1 (ko) | 2014-11-18 | 2015-11-17 | 이산화탄소 가스 분리막 및 그 제조 방법과, 이산화탄소 가스 분리막 모듈 |
JP2016560243A JP6645983B2 (ja) | 2014-11-18 | 2015-11-17 | 二酸化炭素ガス分離膜及びその製造方法、並びに二酸化炭素ガス分離膜モジュール |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-233186 | 2014-11-18 | ||
JP2014233186 | 2014-11-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016080400A1 true WO2016080400A1 (ja) | 2016-05-26 |
Family
ID=56013935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/082280 WO2016080400A1 (ja) | 2014-11-18 | 2015-11-17 | 二酸化炭素ガス分離膜及びその製造方法、並びに二酸化炭素ガス分離膜モジュール |
Country Status (6)
Country | Link |
---|---|
US (1) | US10744454B2 (ja) |
EP (1) | EP3231501B1 (ja) |
JP (1) | JP6645983B2 (ja) |
KR (1) | KR102404068B1 (ja) |
TW (1) | TWI710460B (ja) |
WO (1) | WO2016080400A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170232398A1 (en) | 2014-08-11 | 2017-08-17 | Sumitomo Chemical Company, Limited | Composition for co2 gas separation membrane, co2 gas separation membrane and method for producing same, and co2 gas separation membrane module |
WO2019009000A1 (ja) * | 2017-07-03 | 2019-01-10 | 住友化学株式会社 | ガス分離膜エレメント、ガス分離膜モジュール、及びガス分離装置 |
US10744454B2 (en) | 2014-11-18 | 2020-08-18 | Sumitomo Chemical Company, Limited | Carbon dioxide gas separation membrane, method for manufacturing same, and carbon dioxide gas separation membrane module |
JP2020124684A (ja) * | 2019-02-05 | 2020-08-20 | 川崎重工業株式会社 | 空気浄化システム |
JPWO2019130470A1 (ja) * | 2017-12-27 | 2020-12-10 | 株式会社ルネッサンス・エナジー・リサーチ | Co2除去方法及び装置 |
EP3659696A4 (en) * | 2018-08-31 | 2021-08-25 | Sumitomo Chemical Company, Limited | SEPARATION MEMBRANE SHEET, SEPARATION MEMBRANE ELEMENT, SEPARATION MEMBRANE MODULE, AND PROCESS FOR PRODUCTION OF SEPARATION MEMBRANE SHEET |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10336956B2 (en) * | 2017-03-31 | 2019-07-02 | Mitsubishi Heavy Industries, Ltd. | Natural-gas purification apparatus |
JP6633595B2 (ja) | 2017-11-07 | 2020-01-22 | 住友化学株式会社 | ガス分離装置及びガス分離方法 |
US11850558B2 (en) * | 2018-09-14 | 2023-12-26 | Sumitomo Chemical Company, Limited | Composition useful for producing acidic gas separation membrane |
CN114845795A (zh) | 2019-12-20 | 2022-08-02 | 道达尔能源一技术 | 管式电化学分离单元及其制造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011183379A (ja) * | 2010-02-10 | 2011-09-22 | Fujifilm Corp | ガス分離膜、その製造方法、並びにそれを用いたガス分離方法、モジュール及び分離装置 |
WO2012014900A1 (ja) * | 2010-07-26 | 2012-02-02 | 株式会社ルネッサンス・エナジー・リサーチ | スチーム選択透過膜、及びこれを用いてスチームを混合ガスから分離する方法 |
WO2014065387A1 (ja) * | 2012-10-22 | 2014-05-01 | 住友化学株式会社 | 共重合体及び炭酸ガス分離膜 |
JP2014195762A (ja) * | 2013-03-29 | 2014-10-16 | 富士フイルム株式会社 | 酸性ガス分離用複合体の製造方法 |
JP2014195761A (ja) * | 2013-03-29 | 2014-10-16 | 富士フイルム株式会社 | 酸性ガス分離用複合体の製造方法 |
JP2015061721A (ja) * | 2013-08-23 | 2015-04-02 | 富士フイルム株式会社 | 酸性ガス分離層、酸性ガス分離層の製造方法、および、酸性ガス分離モジュール |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63126506A (ja) | 1986-11-17 | 1988-05-30 | Agency Of Ind Science & Technol | アニオン性高分子分離膜 |
JPS6470125A (en) | 1987-09-10 | 1989-03-15 | Asahi Glass Co Ltd | Separation of gas |
US5540741A (en) * | 1993-03-05 | 1996-07-30 | Bell Communications Research, Inc. | Lithium secondary battery extraction method |
EP0629411B1 (en) | 1993-06-18 | 2001-10-31 | SANYO CHEMICAL INDUSTRIES, Ltd. | Absorbent composition and disposable diaper containing the same |
JP3205168B2 (ja) | 1993-06-18 | 2001-09-04 | 三洋化成工業株式会社 | 紙おむつ用吸収剤組成物 |
JPH07102310B2 (ja) | 1993-10-19 | 1995-11-08 | 工業技術院長 | 二酸化炭素分離ゲル膜及びその製造方法 |
US5445669A (en) | 1993-08-12 | 1995-08-29 | Sumitomo Electric Industries, Ltd. | Membrane for the separation of carbon dioxide |
JP3506793B2 (ja) | 1995-01-18 | 2004-03-15 | 呉羽化学工業株式会社 | 樹脂組成物およびそれから形成されたフィルム |
US6315968B1 (en) | 1995-01-18 | 2001-11-13 | Air Products And Chemicals, Inc. | Process for separating acid gases from gaseous mixtures utilizing composite membranes formed from salt-polymer blends |
JP2879057B2 (ja) | 1995-03-10 | 1999-04-05 | 工業技術院長 | 二酸化炭素分離促進輸送膜 |
JP2813629B2 (ja) | 1996-03-29 | 1998-10-22 | 工業技術院長 | 促進輸送膜 |
US7906143B1 (en) | 1998-10-05 | 2011-03-15 | Intellipharmaceutics Corp | Controlled release pharmaceutical delivery device and process for preparation thereof |
US6541159B1 (en) | 1999-08-12 | 2003-04-01 | Reveo, Inc. | Oxygen separation through hydroxide-conductive membrane |
US9124165B2 (en) | 2001-11-14 | 2015-09-01 | Arjuna Indraeswaran Rajasingham | Axial gap electrical machine |
JP3940009B2 (ja) | 2002-03-18 | 2007-07-04 | 住友精化株式会社 | カルボキシル基含有水溶性重合体の製造方法 |
JP4965927B2 (ja) | 2006-08-01 | 2012-07-04 | 株式会社ルネッサンス・エナジー・リサーチ | Co2促進輸送膜及びその製造方法 |
JP4965928B2 (ja) | 2006-08-01 | 2012-07-04 | 株式会社ルネッサンス・エナジー・リサーチ | 二酸化炭素分離装置及び方法 |
CN103432911A (zh) | 2008-01-24 | 2013-12-11 | 株式会社新生能源研究 | Co2促进输送膜及其制造方法 |
JP5443773B2 (ja) | 2008-01-24 | 2014-03-19 | 株式会社ルネッサンス・エナジー・リサーチ | 二酸化炭素分離装置 |
EP2446029B1 (en) * | 2009-06-26 | 2016-08-10 | Novozymes North America, Inc. | Heat-stable carbonic anhydrases and their use |
US20130149771A1 (en) * | 2010-08-24 | 2013-06-13 | Novozymes A/S | Heat-Stable Persephonella Carbonic Anhydrases and Their Use |
KR101330336B1 (ko) | 2010-12-24 | 2013-11-15 | 가부시키가이샤 르네상스 에너지 리서치 | 가스 분리 장치, 멤브레인 리액터, 수소 제조 장치, 가스 분리 방법, 수소 제조 방법 |
JP2013027806A (ja) | 2011-07-27 | 2013-02-07 | Fujifilm Corp | 二酸化炭素分離膜、二酸化炭素分離膜用支持体、及びこれらの製造方法 |
JP5689765B2 (ja) | 2011-07-29 | 2015-03-25 | 富士フイルム株式会社 | 二酸化炭素分離部材、その製造方法及び二酸化炭素分離モジュール |
JP5738710B2 (ja) | 2011-07-29 | 2015-06-24 | 富士フイルム株式会社 | 二酸化炭素分離膜の製造方法及び二酸化炭素分離モジュール |
JP5553421B2 (ja) | 2011-08-01 | 2014-07-16 | 株式会社ルネッサンス・エナジー・リサーチ | Co2促進輸送膜及びその製造方法 |
WO2013036859A1 (en) * | 2011-09-07 | 2013-03-14 | Carbon Engineering Limited Partnership | Target gas capture |
JP2013111507A (ja) | 2011-11-25 | 2013-06-10 | Fujifilm Corp | ガス分離膜、その製造方法、それを用いたガス分離膜モジュール |
JP5490281B2 (ja) * | 2012-06-20 | 2014-05-14 | 富士フイルム株式会社 | 酸性ガス分離モジュール、及び酸性ガス分離システム |
KR102090864B1 (ko) | 2012-10-02 | 2020-03-18 | 가부시키가이샤 르네상스 에너지 리서치 | Co2 촉진 수송막 및 그 제조 방법 그리고 co2 분리 방법 및 장치 |
JP6046537B2 (ja) * | 2013-03-29 | 2016-12-14 | 富士フイルム株式会社 | 酸性ガス分離用複合体の製造方法および製造装置 |
JP6161124B2 (ja) * | 2013-03-29 | 2017-07-12 | 富士フイルム株式会社 | 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール |
JP6071004B2 (ja) * | 2013-03-29 | 2017-02-01 | 富士フイルム株式会社 | 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール |
WO2014157069A1 (ja) * | 2013-03-29 | 2014-10-02 | 株式会社ルネッサンス・エナジー・リサーチ | Co2促進輸送膜、その製造方法及び当該製造方法に用いられる樹脂組成物、並びに、co2分離モジュール、co2分離方法及び装置 |
WO2016024523A1 (ja) | 2014-08-11 | 2016-02-18 | 住友化学株式会社 | Co2ガス分離膜用組成物、co2ガス分離膜及びその製造方法並びにco2ガス分離膜モジュール |
US10744454B2 (en) | 2014-11-18 | 2020-08-18 | Sumitomo Chemical Company, Limited | Carbon dioxide gas separation membrane, method for manufacturing same, and carbon dioxide gas separation membrane module |
CN107614092B (zh) * | 2015-05-29 | 2020-09-15 | 住友化学株式会社 | 螺旋型酸性气体分离膜元件、酸性气体分离膜模块、以及酸性气体分离装置 |
-
2015
- 2015-11-17 US US15/527,213 patent/US10744454B2/en active Active
- 2015-11-17 EP EP15861252.3A patent/EP3231501B1/en active Active
- 2015-11-17 JP JP2016560243A patent/JP6645983B2/ja active Active
- 2015-11-17 KR KR1020177016063A patent/KR102404068B1/ko active IP Right Grant
- 2015-11-17 WO PCT/JP2015/082280 patent/WO2016080400A1/ja active Application Filing
- 2015-11-18 TW TW104138033A patent/TWI710460B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011183379A (ja) * | 2010-02-10 | 2011-09-22 | Fujifilm Corp | ガス分離膜、その製造方法、並びにそれを用いたガス分離方法、モジュール及び分離装置 |
WO2012014900A1 (ja) * | 2010-07-26 | 2012-02-02 | 株式会社ルネッサンス・エナジー・リサーチ | スチーム選択透過膜、及びこれを用いてスチームを混合ガスから分離する方法 |
WO2014065387A1 (ja) * | 2012-10-22 | 2014-05-01 | 住友化学株式会社 | 共重合体及び炭酸ガス分離膜 |
JP2014195762A (ja) * | 2013-03-29 | 2014-10-16 | 富士フイルム株式会社 | 酸性ガス分離用複合体の製造方法 |
JP2014195761A (ja) * | 2013-03-29 | 2014-10-16 | 富士フイルム株式会社 | 酸性ガス分離用複合体の製造方法 |
JP2015061721A (ja) * | 2013-08-23 | 2015-04-02 | 富士フイルム株式会社 | 酸性ガス分離層、酸性ガス分離層の製造方法、および、酸性ガス分離モジュール |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170232398A1 (en) | 2014-08-11 | 2017-08-17 | Sumitomo Chemical Company, Limited | Composition for co2 gas separation membrane, co2 gas separation membrane and method for producing same, and co2 gas separation membrane module |
US10507434B2 (en) | 2014-08-11 | 2019-12-17 | Sumitomo Chemical Company, Limited | Composition for CO2 gas separation membrane, CO2 gas separation membrane and method for producing same, and CO2 gas separation membrane module |
US10744454B2 (en) | 2014-11-18 | 2020-08-18 | Sumitomo Chemical Company, Limited | Carbon dioxide gas separation membrane, method for manufacturing same, and carbon dioxide gas separation membrane module |
WO2019009000A1 (ja) * | 2017-07-03 | 2019-01-10 | 住友化学株式会社 | ガス分離膜エレメント、ガス分離膜モジュール、及びガス分離装置 |
JPWO2019130470A1 (ja) * | 2017-12-27 | 2020-12-10 | 株式会社ルネッサンス・エナジー・リサーチ | Co2除去方法及び装置 |
EP3659696A4 (en) * | 2018-08-31 | 2021-08-25 | Sumitomo Chemical Company, Limited | SEPARATION MEMBRANE SHEET, SEPARATION MEMBRANE ELEMENT, SEPARATION MEMBRANE MODULE, AND PROCESS FOR PRODUCTION OF SEPARATION MEMBRANE SHEET |
JP2020124684A (ja) * | 2019-02-05 | 2020-08-20 | 川崎重工業株式会社 | 空気浄化システム |
Also Published As
Publication number | Publication date |
---|---|
JP6645983B2 (ja) | 2020-02-14 |
EP3231501A1 (en) | 2017-10-18 |
KR102404068B1 (ko) | 2022-05-30 |
TW201623003A (zh) | 2016-07-01 |
EP3231501A4 (en) | 2018-06-27 |
US20170333833A1 (en) | 2017-11-23 |
US10744454B2 (en) | 2020-08-18 |
TWI710460B (zh) | 2020-11-21 |
KR20170092579A (ko) | 2017-08-11 |
EP3231501C0 (en) | 2024-02-28 |
JPWO2016080400A1 (ja) | 2017-08-31 |
EP3231501B1 (en) | 2024-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016080400A1 (ja) | 二酸化炭素ガス分離膜及びその製造方法、並びに二酸化炭素ガス分離膜モジュール | |
JP6130607B2 (ja) | Co2ガス分離膜用組成物、co2ガス分離膜及びその製造方法並びにco2ガス分離膜モジュール | |
Wang et al. | Preparation, characterization and performance of sulfonated poly (styrene-ethylene/butylene-styrene) block copolymer membranes for water desalination by pervaporation | |
JP5598630B1 (ja) | 共重合体及び炭酸ガス分離膜 | |
TWI693095B (zh) | 二氧化碳分離方法及二氧化碳分離裝置 | |
JP6964070B2 (ja) | 酸性ガス分離膜及びこれを用いた酸性ガス分離方法、並びに酸性ガス分離モジュール及び酸性ガス分離装置 | |
ITMI20010384A1 (it) | Membrane idrofiliche porose | |
CN111132752B (zh) | 分离膜片、分离膜元件、分离膜模块和分离膜片的制造方法 | |
WO2019097995A1 (ja) | 酸性ガス分離膜シートの製造方法及び製造装置 | |
WO2019097994A1 (ja) | 酸性ガス分離膜シート及びその製造方法 | |
JP2016117045A (ja) | 二酸化炭素分離膜の製造方法、二酸化炭素分離膜用樹脂組成物、二酸化炭素分離膜モジュール及び二酸化炭素分離装置 | |
JP6013127B2 (ja) | ガス分離複合膜、これを用いた分離膜モジュールおよびガス分離システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15861252 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016560243 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015861252 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20177016063 Country of ref document: KR Kind code of ref document: A |