WO2016059689A1 - 放電加工機の電源装置 - Google Patents
放電加工機の電源装置 Download PDFInfo
- Publication number
- WO2016059689A1 WO2016059689A1 PCT/JP2014/077460 JP2014077460W WO2016059689A1 WO 2016059689 A1 WO2016059689 A1 WO 2016059689A1 JP 2014077460 W JP2014077460 W JP 2014077460W WO 2016059689 A1 WO2016059689 A1 WO 2016059689A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- smoothing capacitor
- power supply
- electrode
- discharge
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 107
- 238000009499 grossing Methods 0.000 claims abstract description 91
- 238000007599 discharging Methods 0.000 claims abstract description 4
- 230000002159 abnormal effect Effects 0.000 abstract description 6
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 230000006866 deterioration Effects 0.000 abstract description 5
- 230000000087 stabilizing effect Effects 0.000 abstract description 2
- 230000001052 transient effect Effects 0.000 abstract 1
- 238000003754 machining Methods 0.000 description 18
- 230000008859 change Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/02—Conversion of AC power input into DC power output without possibility of reversal
- H02M7/04—Conversion of AC power input into DC power output without possibility of reversal by static converters
- H02M7/06—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
Definitions
- the present invention relates to a power supply device for an electric discharge machine that applies a voltage between an electrode and a workpiece and processes the workpiece using a discharge phenomenon generated between the electrodes.
- a DC voltage power supply is used as the power supply of the electric discharge machining apparatus, and this DC voltage power supply is configured such that a commercial AC power supply is rectified by a rectifier and smoothed by a smoothing capacitor.
- a commercial AC power supply is rectified by a rectifier and smoothed by a smoothing capacitor.
- Patent Document 1 As a means for suppressing the above-described output voltage fluctuation of the DC voltage power supply, there is a method of connecting a stabilized power supply to the outside of the power supply device of the electric discharge machine, Generally, it is very expensive and requires a place for installation. As another method for stabilizing the processing, there is a method disclosed in Patent Document 1 below.
- a constant machining current is controlled by a switching system circuit at the time of rough machining that handles a large current to always supply a constant machining current pulse, and a resistance machining circuit at the time of finishing machining that handles a small current. Is operated, a constant machining current pulse is supplied with a constant DC power supply voltage maintained by pulse width modulation (PWM) control even if the commercial power supply voltage fluctuates. Thereby, stable electric discharge machining can be realized.
- PWM pulse width modulation
- a DC power supply is generated by disturbance such as fluctuations in commercial power supply voltage by selecting an appropriate capacity for the smoothing capacitor for pulse width modulation control used for power supply control. Even when the voltage increases or decreases, it is possible to quickly return to the predetermined voltage.
- the peak value of the machining current becomes constant when the DC power supply voltage is kept constant, but the discharge frequency changes depending on the state of the discharge gap, and the current flowing within the unit time varies.
- an increase in current flowing in a unit time due to temporary concentrated discharge causes deterioration of arc and flatness, and abnormal wear of electrodes.
- the present invention has been made in view of the above, and it is possible to suppress an increase in current flowing in a unit time due to temporary concentrated discharge, and to suppress deterioration of arc and flatness, and abnormal consumption of electrodes. It aims at obtaining the power supply device of an electric discharge machine.
- the present invention provides a DC voltage converter that rectifies an AC power source and outputs a DC voltage, and a smoothing capacitor that applies a voltage between the electrode and the workpiece.
- a constant voltage control unit that makes the smoothing capacitor constant by performing pulse width modulation control on the basis of the DC voltage, and is connected between the smoothing capacitor and the electrode, from the smoothing capacitor to the electrode.
- a current limiting resistor for limiting the current flowing to the capacitor, and the capacity of the smoothing capacitor is a predetermined voltage set for the smoothing capacitor to determine the amount of charge used for discharging during one discharge duration. It is characterized by being smaller than the divided value.
- the power supply device for an electric discharge machine is capable of suppressing an increase in current flowing in a unit time due to temporary concentrated discharge and suppressing deterioration of arc and flatness and abnormal consumption of electrodes. Play.
- FIG. 6 is a diagram illustrating an example of a variable capacitance smoothing capacitor according to the third embodiment.
- FIG. 1 is a diagram illustrating a schematic configuration of an electric discharge machine 100 according to the first embodiment of the present invention.
- the electric discharge machine 100 includes a power supply device 110 of an electric discharge machine connected to a commercial AC power supply 101, an electrode 1, and a workpiece 2 that is an object of electric discharge machining.
- a power supply device 110 for an electric discharge machine includes a DC voltage conversion unit 102 that rectifies a commercial AC power supply 101 by a rectifier and outputs a DC voltage, and a constant voltage control unit that is connected to the DC voltage conversion unit 102 and converts the DC voltage to a constant voltage.
- a smoothing capacitor 5 for constant voltage control connected to the constant voltage control unit 103, and a current limiting resistor switching unit having a current limiting resistor for limiting the current flowing from the smoothing capacitor 5 to the electrode 1 for electric discharge machining 104.
- the current limiting resistance switching unit 104 can switch the current limiting resistance and is connected to the electrode 1.
- One end of the smoothing capacitor 5 is connected to the current limiting resistance switching unit 104, and the other end of the smoothing capacitor 5 is connected to the workpiece 2.
- the smoothing capacitor 5 is subjected to pulse width modulation control so as to have a predetermined voltage by the constant voltage control unit 103, and functions as a power source that generates a discharge by applying a voltage between the electrode 1 and the workpiece 2.
- FIG. 2 is a diagram showing in detail an example of the circuit configuration of the power supply device 110 of the electric discharge machine shown in FIG. 1 according to the first embodiment.
- components given the same reference numerals as those in FIG. 1 are the same components.
- the DC voltage conversion unit 102 includes a rectifier 3 that rectifies the commercial AC power supply 101 and a capacitor 4 that is connected in parallel to the rectifier 3 in order to smooth the rectifier 3.
- the constant voltage control unit 103 includes a discharge resistor 13 connected in parallel to the smoothing capacitor 5, a capacitor 6 connected in parallel to the DC voltage conversion unit 102, and a driving method connected between the smoothing capacitor 5 and the capacitor 6.
- the smoothing capacitor 5, the discharge resistor 13, the capacitor 6, the rectifying diode 19, and the switching element 8 are all connected to the workpiece 2 through the switching element 10 described later.
- the current limiting resistor switching unit 104 includes a current limiting resistor 14 for limiting a discharge current, a rectifying diode 17, a switching element 11 connected between the current limiting resistor 14 and the rectifying diode 17, Is provided.
- the electric discharge machine 100 further includes a switching element 10 connected between the workpiece 2 and the switching element 8, a rectifying diode 18 connected between the workpiece 2 and the smoothing capacitor 5, and a reactor.
- Switching element 9 and rectifying diode 16 connected in series between 12 and electrode 1, and rectifying diode 15 connected between switching element 9 and rectifying diode 16 and switching element 10.
- the electric discharge machine 100 further includes a detection unit 30 that detects the voltage V C1 across the smoothing capacitor 5.
- the detection unit 30 switches the ON state or the OFF state of the switching elements 7 and 8 based on the magnitude relationship between the detected both-end voltage V C1 and a predetermined set voltage V 0 .
- This circuit operates as a first drive system that supplies constant machining current pulses by constant current control of the switching system circuit for rough machining that requires a current of several tens of amperes or more. Even if the voltage of the commercial AC power supply 101 fluctuates for finishing processing that requires a current of ampere or less, a constant DC power supply voltage is maintained by pulse width modulation control and a constant current pulse for finishing processing is supplied.
- Two drive systems In the first embodiment, this second driving method is used.
- FIG. 3 shows a circuit diagram in which an operation loop according to the second driving method in the circuit shown in FIG. 2 is added.
- the electromagnetic switch 20 and the switching element 9 are in the OFF state during any of the voltage no-load period, the discharge duration period, and the rest period, and the switching element 10 Is in the ON state.
- the voltage no-load period is a period in which a voltage is applied between the electrode 1 and the work piece 2 but in an insulated state and no discharge is generated.
- the discharge duration is a period in which a voltage is applied between the electrode 1 and the workpiece 2 and a discharge is actually generated.
- the rest period is a period in which no voltage is applied between the electrode 1 and the workpiece 2.
- the switching elements 7 and 8 are turned on or off by the detection unit 30 that detects the voltage V C1 across the smoothing capacitor 5 during any of the voltage no-load period, the discharge duration period, and the rest period. The state is switched.
- the detection unit 30 turns on both the switching elements 7 and 8, and direct current is generated along the loop (1) indicated by the broken line in FIG. A current is passed from the voltage conversion unit 102 to the reactor 12, and energy is stored in the coil of the reactor 12 as a magnetic flux.
- the detection unit 30 turns off both the switching elements 7 and 8 and follows the loop (2) path indicated by the one-dot chain line in FIG.
- the smoothing capacitor 5 is charged with the current from the reactor 12.
- the voltage of the both-end voltage V C1 is increased and controlled so as to be kept close to the set voltage V 0 .
- the carrier frequency is constant, that is, the period is constant. Then, the ratio between the ON period and the OFF period of the switching elements 7 and 8 within a certain period is changed.
- pulse width modulation control is performed in which the duty of the ON period and OFF period of the switching elements 7 and 8 is changed.
- the duty referred to here is, for example, the ratio of the ON period to one cycle including the ON period and the OFF period. Generally, a maximum value and a minimum value are set as the duty value.
- the smoothing capacitor 5 that is controlled so that the voltage V C1 at both ends always maintains a constant set voltage V 0 is used as a power source, and the switching element 11 is in the ON state only during the voltage no-load period and the discharge duration period.
- a voltage is applied between the electrode 1 and the workpiece 2 when the switching element 11 is in the ON state.
- the timing at which discharge occurs in a state where a voltage is applied is a natural phenomenon and cannot be predicted. Therefore, the period during which the switching element 11 is in the ON state is divided into a voltage no-load period and a discharge duration period.
- a finishing current pulse having a constant current peak corresponding to the value of the current limiting resistor 14 is output.
- the switching element 11 is controlled by control means (not shown) based on the voltage between the electrode 1 and the workpiece 2, that is, the inter-electrode voltage V.
- control means By detecting that the inter-electrode voltage V decreases after the switching element 11 is turned on, the control means can detect that discharge has occurred. Therefore, the control means turns off the switching element 11 so that the discharge duration becomes a predetermined period each time. That is, the control means can make the discharge duration constant by switching the switching element 11 from the ON state to the OFF state in a certain period from the occurrence of the discharge.
- the discharge duration can be set to the same length in each discharge and is usually set to 500 ⁇ sec or less.
- the control means can control the suspension period to be constant by setting the period during which the switching element 11 is in the OFF state to a predetermined period.
- FIG. 4 shows the operation of the switching elements 7 and 8, the operation of the switching element 11, the time of the voltage V C1 across the smoothing capacitor 5 in the comparative example in which the capacity of the smoothing capacitor 5 is several hundred ⁇ F or more in the circuit configuration of FIG. It is a figure which shows the time change of a change, the time change of the voltage V between electrodes, and the electric current between the electrode 1 and the workpiece 2, ie, the electric current I between electrodes.
- FIG. 4 also shows in what state the interelectrode voltage V is a voltage no-load period, a discharge duration period, and a rest period.
- the voltage V C1 across the smoothing capacitor 5 can be kept constant by the pulse width modulation control as described above. .
- the voltage V C1 across the smoothing capacitor 5 can be kept constant even when the capacity of the smoothing capacitor 5 is 100 ⁇ F. Therefore, in FIG. 4, even if the voltage of the commercial AC power supply 101 fluctuates, the constant both-end voltage V C1 is maintained by pulse width modulation control, and a current pulse for finishing with a constant interelectrode current I is output. Therefore, the uniformity of the current pulse is maintained in any power supply environment.
- the discharge frequency and the frequency of concentrated discharge change due to factors other than the power supply environment such as the type and state of the machining fluid, machining shape, and machining area.
- the discharge frequency is the number of discharge durations that occur in one second, and is a value proportional to the frequency of discharge.
- the capacity of the smoothing capacitor 5 is made smaller than the value obtained by dividing the charge amount Q used in the discharge for one discharge duration by the set voltage V 0 of the smoothing capacitor 5.
- a predetermined set voltage V 0 with respect to the voltage V C1 across the smoothing capacitor 5 is set as a value unique to the electric discharge machine 100.
- the capacitance of the smoothing capacitor 5 is reduced to about several thousand pF such as 1000 pF.
- the smoothing capacitor 5 may be removed. That is, the capacity of the smoothing capacitor 5 may be zero. Even when the smoothing capacitor 5 is removed, that is, when the capacitance of the smoothing capacitor 5 is set to 0, a capacitance on the order of pF can be generated as a stray capacitance.
- the second drive is performed by making the capacity of the smoothing capacitor 5 smaller than the value obtained by dividing the charge amount Q used in the discharge for one discharge duration by the set voltage V 0 of the smoothing capacitor 5. It has been confirmed by experiments that the circuit operation can be changed without changing the system.
- FIG. 5 shows the operation of the switching elements 7 and 8, the operation of the switching element 11, the time change of the voltage V C1 across the smoothing capacitor 5 in the first embodiment in which the capacity of the smoothing capacitor 5 is reduced in the circuit configuration of FIG. It is a figure which shows the time change of the voltage V between electrodes, and the electric current between the electrode 1 and the workpiece 2, ie, the time change of the electric current I between electrodes.
- the smoothing capacitor 5 has a value that is less than the value obtained by dividing the charge amount Q used in the discharge for one discharge duration by the set voltage V 0 of the smoothing capacitor 5.
- the charge of the smoothing capacitor 5 is easily charged and discharged. Since the carrier frequency of the pulse width modulation control of the switching elements 7 and 8 is constant, the capacitance of the smoothing capacitor 5 is reduced even if the duty of the ON period and OFF period of the switching elements 7 and 8 is varied to the maximum or the minimum. Charge / discharge of the electric charge of the smoothing capacitor 5 cannot follow the change of the discharge frequency during processing. As a result, as shown in FIG. 5, the voltage V C1 across the smoothing capacitor 5 changes because the set voltage V 0 cannot be maintained, and as a result, the voltage V between the electrodes also changes.
- the interval at which the discharge duration occurs is long and the discharge frequency f is low, but the interval at which the discharge duration occurs gradually decreases and the discharge frequency f tends to be high. Therefore, in FIG. 5, the voltage V C1 across the smoothing capacitor 5 changes from a state higher than the set voltage V 0 to a low state in accordance with a temporal trend in which the discharge frequency f changes from a low state to a high state. Accordingly, the interelectrode voltage V also changes from a high state to a low state. Since the circuit shown in FIG.
- the 2 is a resistance processing circuit using the current limiting resistor 14, the tendency of the change in the interelectrode voltage V is reflected in the interelectrode current I as it is.
- the interpolar current I is large when f is low, and the interpolar current I is small when the discharge frequency f is high.
- FIG. 6 is a diagram showing the relationship between the discharge frequency f on the horizontal axis and the interelectrode voltage V on the vertical axis.
- the capacitance of the smoothing capacitor 5 is set to several hundreds ⁇ F or more, which is sufficiently higher than the value obtained by dividing the charge amount Q used for discharge in one discharge duration by the set voltage V 0 of the smoothing capacitor 5.
- the interelectrode voltage V is constant regardless of the discharge frequency f, as shown by the broken line in FIG.
- the interelectrode voltage V is low when the discharge frequency f is high, and the interelectrode voltage V is high when the discharge frequency f is low.
- the interelectrode voltage V decreases when the discharge frequency f is high, thereby reducing the interelectrode current I.
- the discharge frequency f is low, the interelectrode voltage V is decreased. Increases the inter-electrode current I.
- FIG. FIG. 7 is a diagram illustrating a schematic configuration of an electric discharge machine 200 according to the second embodiment of the present invention.
- the electric discharge machine 200 has a mechanism for adjusting the relative distance between the electrode 1 and the workpiece 2 based on the interelectrode voltage V.
- the electric discharge machine 200 further includes an axis control unit 105 that performs position control of an axis that calculates an average value of the interelectrode voltage V and adjusts a relative distance between the electrode 1 and the workpiece 2.
- the configuration of the electric discharge machine 200 other than the axis control unit 105 is the same as that of the electric discharge machine 100 of FIG.
- the axis control unit 105 has a function of obtaining an interelectrode voltage V between the electrode 1 and the workpiece 2 and obtaining a time average value of the interelectrode voltage V during a predetermined period.
- the length of the time averaged period is a period depending on the speed of axis control, such as 20 to 30 msec.
- the axis control unit 105 performs control so that the workpiece 2 and the workpiece 2 are close to each other. This stabilizes the frequency of discharge, that is, the discharge frequency f.
- the capacity Q of the smoothing capacitor 5 is further divided by the set voltage V 0 of the smoothing capacitor 5 by the amount of charge Q used for discharging for one discharge duration. Make the value smaller than By reducing the capacity of the smoothing capacitor 5 and causing the shaft control unit 105 to function, the inter-electrode voltage V is lowered when the discharge frequency f is high, so that the average voltage is lowered to escape the shaft, and when the discharge frequency f is low, As the voltage V increases, the average voltage increases and the shaft can be driven.
- the control effect of the axis control unit 105 can be combined with the effect of avoiding the concentrated discharge in a short time range by reducing the capacity of the smoothing capacitor 5, the control to quickly reach the desired discharge frequency f can be performed. It becomes possible. That is, according to the second embodiment, the effect of avoiding the concentrated discharge obtained in the first embodiment can be realized in a longer time range.
- FIG. 8 is a diagram illustrating an example of a smoothing capacitor having a variable capacitance.
- the smoothing capacitor 50 is configured by connecting capacitors 51 to 54 in parallel, and switches 61 to 64 are connected to the capacitors 51 to 54, respectively.
- Each of the switches 61 to 64 is a switching element such as a relay or an electromagnetic switch.
- the capacitors 51 to 54 may all have the same capacity, but they do not necessarily have to be the same.
- the capacities of the capacitors 51 to 54 may all be smaller than the value obtained by dividing the charge amount Q due to one discharge by the set voltage V 0 of the smoothing capacitor 50, but at least one of the capacities of the capacitors 51 to 54. It suffices if the charge amount Q due to one discharge is smaller than a value obtained by dividing the charge amount Q by the set voltage V 0 of the smoothing capacitor 50.
- FIG. 9 is a diagram showing the relationship between the discharge frequency f and the interelectrode voltage V in the third embodiment.
- the capacity of the smoothing capacitor 50 becomes smaller from A to D in FIG. An example of realizing such a situation is shown below.
- A is a state in which all the switches 61 to 64 are in the ON state, and the capacity of the smoothing capacitor 50 is the sum of the respective capacities of the capacitors 51 to 54.
- B is a state in which the switch 64 is turned off and the switches 61 to 63 are all turned on, and the capacitance of the smoothing capacitor 50 is the sum of the capacitances of the capacitors 51 to 53.
- C is a state in which the switches 63 and 64 are turned off and the switches 61 and 62 are turned on, and the capacitance of the smoothing capacitor 50 is the sum of the capacitances of the capacitors 51 and 52.
- D is a state in which the switches 62 to 64 are turned off and only the switch 61 is turned on, and the capacity of the smoothing capacitor 50 becomes the capacity of the capacitor 51.
- the capacitance of the smoothing capacitor 50 at A is larger than the value obtained by dividing the charge amount Q due to one discharge by the set voltage V 0 of the smoothing capacitor 50, but the capacitance of the smoothing capacitor 50 at D is the charge amount Q due to one discharge. Is smaller than the value obtained by dividing by the set voltage V 0 of the smoothing capacitor 50.
- the smoothing capacitor 5 is replaced with the variable capacitance smoothing capacitor 50 shown in FIG. 8, and the capacitance is changed using means such as the switches 61 to 64.
- the change width of the interelectrode voltage V depending on the discharge frequency f. That is, according to the third embodiment, in addition to obtaining the effects obtained in the first and second embodiments, the degree of the effects can be controlled.
- the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Rectifiers (AREA)
- Generation Of Surge Voltage And Current (AREA)
Abstract
放電加工機の電源装置(110)は、交流電源を整流して直流電圧を出力する直流電圧変換部(102)と、電極(1)と被加工物(2)との間に電圧を印加する平滑コンデンサ(5)と、前記直流電圧に基づいて、前記平滑コンデンサをパルス幅変調制御することにより定電圧化する定電圧制御部(103)と、前記平滑コンデンサと前記電極との間に接続されて、前記平滑コンデンサから前記電極へ流れる電流を制限する電流制限抵抗切換部(104)と、を備え、前記平滑コンデンサの容量は、1回の放電持続期間の放電で使用される電荷量を前記平滑コンデンサに対して予め定められた設定電圧で除算した値よりも小さい。放電加工機の電源装置(110)は、一時的な集中放電による単位時間内に流れる電流増加を抑制し、アークおよび平坦度の悪化、電極の異常消耗を抑制することが可能になる。
Description
本発明は、電極と被加工物との間に電圧をかけて、両者の極間に発生する放電現象を利用して被加工物を加工する放電加工機の電源装置に関する。
放電加工装置の電源は直流電圧電源を用いるのが一般的であり、この直流電圧電源は、商用交流電源を整流器によって整流し、平滑コンデンサによって平滑化するという構成になっている。このような構成の直流電圧電源を用いた場合、直流電圧電源の出力電圧は商用交流電源の電圧変動の影響を受け、結果として安定した加工結果を得られなくなってしまうという問題があった。
直流電圧電源の上述したような出力電圧変動を抑制する手段としては、安定化電源を放電加工機の電源装置の外部に接続する方法があるが、電源容量の大きい放電加工装置の安定化電源は一般に非常に高価な上、設置場所も必要となる。加工を安定化させる別の方法として、以下の特許文献1に示される方法がある。特許文献1に示される放電加工装置においては、大電流を扱う荒加工時にはスイッチング方式回路を定電流制御して常に一定の加工電流パルスを供給し、小電流を扱う仕上げ加工時において抵抗式加工回路が動作する場合には、商用電源電圧が変動してもパルス幅変調(PWM:Pulse Width Modulation)制御により一定の直流電源電圧を保って一定の加工電流パルスを供給する。これにより安定した放電加工を実現することができる。
特許文献1に示される電源装置の制御回路においては、電源制御に使用されているパルス幅変調制御用の平滑コンデンサに適切な容量を選定することで、商用電源電圧の変動などの外乱により直流電源電圧が増減した場合においても速やかに既定の電圧に戻すことが可能となる。
直流電源電圧が一定に保たれることで加工電流のピーク値は一定となるが、放電間隙の状態により放電周波数が変化し、単位時間内に流れる電流は変動する。特に、仕上げ加工時には、一時的な集中放電による単位時間内に流れる電流の増加によってアークおよび平坦度の悪化、電極の異常消耗が発生してしまう。
本発明は、上記に鑑みてなされたものであって、一時的な集中放電による単位時間内に流れる電流増加を抑制し、アークおよび平坦度の悪化、電極の異常消耗を抑制することが可能な放電加工機の電源装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、交流電源を整流して直流電圧を出力する直流電圧変換部と、電極と被加工物との間に電圧を印加する平滑コンデンサと、前記直流電圧に基づいて、前記平滑コンデンサをパルス幅変調制御することにより定電圧化する定電圧制御部と、前記平滑コンデンサと前記電極との間に接続されて、前記平滑コンデンサから前記電極へ流れる電流を制限する電流制限用抵抗と、を備え、前記平滑コンデンサの容量は、1回の放電持続期間の放電で使用される電荷量を前記平滑コンデンサに対して予め定められた設定電圧で除算した値よりも小さいことを特徴とする。
本発明にかかる放電加工機の電源装置は、一時的な集中放電による単位時間内に流れる電流増加を抑制し、アークおよび平坦度の悪化、電極の異常消耗を抑制することが可能になるという効果を奏する。
以下に、本発明の実施の形態にかかる放電加工機の電源装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1にかかる放電加工機100の概略構成を示す図である。放電加工機100は、商用交流電源101に接続された放電加工機の電源装置110と、電極1と、放電加工の対象である被加工物2とを備える。
図1は、本発明の実施の形態1にかかる放電加工機100の概略構成を示す図である。放電加工機100は、商用交流電源101に接続された放電加工機の電源装置110と、電極1と、放電加工の対象である被加工物2とを備える。
放電加工機の電源装置110は、商用交流電源101を整流器によって整流して直流電圧を出力する直流電圧変換部102と、直流電圧変換部102に接続され直流電圧を定電圧化する定電圧制御部103と、定電圧制御部103に接続される定電圧制御用の平滑コンデンサ5と、放電加工のために平滑コンデンサ5から電極1へ流れる電流を制限する電流制限用抵抗を有する電流制限抵抗切換部104と、を備える。
電流制限抵抗切換部104は、電流制限用抵抗を切り替えることが可能であり、電極1に接続されている。平滑コンデンサ5の一端は電流制限抵抗切換部104に接続され、平滑コンデンサ5の他端は被加工物2に接続されている。平滑コンデンサ5は、定電圧制御部103によって予め定めた電圧を有するようにパルス幅変調制御され、電極1と被加工物2との間に電圧を印加して放電を発生させる電源として機能する。
図2は、実施の形態1にかかる図1に示した放電加工機の電源装置110の回路構成の一例を詳細に示した図である。図2において、図1と同一符号を付した構成要素は同じ構成要素である。
直流電圧変換部102は、商用交流電源101を整流する整流器3と、整流器3を平滑化するため整流器3に並列接続されたコンデンサ4と、を備える。
定電圧制御部103は、平滑コンデンサ5に並列接続された放電抵抗13と、直流電圧変換部102に並列接続されたコンデンサ6と、平滑コンデンサ5とコンデンサ6との間に接続された駆動方式を切り換えるための電磁開閉器20と、整流用ダイオード19と、コンデンサ6と整流用ダイオード19との間に接続されたスイッチング素子7と、スイッチング素子7および整流用ダイオード19に接続されたリアクトル12と、リアクトル12と整流用ダイオード19との間に接続されたスイッチング素子8と、平滑コンデンサ5とリアクトル12との間に接続された整流用ダイオード21と、を備える。また、平滑コンデンサ5、放電抵抗13、コンデンサ6、整流用ダイオード19、およびスイッチング素子8はそれぞれの一端が全て、後述するスイッチング素子10を介して被加工物2へと接続されている。
電流制限抵抗切換部104は、放電電流を制限するための電流制限用抵抗14と、整流用ダイオード17と、電流制限用抵抗14と整流用ダイオード17との間に接続されたスイッチング素子11と、を備える。
放電加工機100は、さらに、被加工物2とスイッチング素子8との間に接続されたスイッチング素子10と、被加工物2と平滑コンデンサ5との間に接続された整流用ダイオード18と、リアクトル12と電極1との間に直列に接続されたスイッチング素子9および整流用ダイオード16と、スイッチング素子9および整流用ダイオード16とスイッチング素子10の間に接続された整流用ダイオード15と、を備える。放電加工機100は、さらに、平滑コンデンサ5の両端電圧VC1を検出する検出部30を備える。検出部30は、検出した両端電圧VC1と予め定められた設定電圧V0との大小関係に基づいて、スイッチング素子7および8のON状態またはOFF状態を切り替える。
図2に示した回路の動作を以下に説明する。この回路は動作方式として、数十アンペア、またはそれ以上の電流を必要とする荒加工用にスイッチング方式回路を定電流制御して常に一定の加工電流パルスを供給する第一の駆動方式と、数アンペアあるいはそれ以下の電流を必要とする仕上げ加工用に商用交流電源101の電圧が変動してもパルス幅変調制御により一定の直流電源電圧を保ち、一定の仕上げ加工用の電流パルスを供給する第二の駆動方式と、を有する。実施の形態1ではこの第二の駆動方式を使用する。
図2に示した回路における第二の駆動方式による動作ループを追記した回路図を図3に示す。第二の駆動方式においては、電圧無負荷期間中、放電持続期間中、および休止期間中のいずれの期間中においても、電磁開閉器20およびスイッチング素子9はOFF状態になっており、スイッチング素子10はON状態になっている。電圧無負荷期間は、電極1と被加工物2との間に電圧が印加されているものの絶縁状態にあって放電が発生していない期間である。放電持続期間は、電極1と被加工物2との間に電圧が印加されていて実際に放電が発生している期間である。休止期間は、電極1と被加工物2との間に電圧が印加されていない期間である。
また、スイッチング素子7および8は、電圧無負荷期間中、放電持続期間中および休止期間中のいずれの期間中においても、平滑コンデンサ5の両端電圧VC1を検出する検出部30によりON状態またはOFF状態が切り替えられる。
平滑コンデンサ5の両端電圧VC1が設定電圧V0を上回っている場合は、検出部30はスイッチング素子7および8を共にON状態とし、図3において破線で示したループ(1)の経路で直流電圧変換部102からリアクトル12に電流を流し、リアクトル12のコイルに磁束としてエネルギーが蓄えられる。
平滑コンデンサ5の両端電圧VC1が設定電圧V0を下回っている場合は、検出部30はスイッチング素子7および8を共にOFF状態とし、図3において一点鎖線で示したループ(2)の経路でリアクトル12からの電流で平滑コンデンサ5を充電する。これにより両端電圧VC1の電圧を上昇させて設定電圧V0に近づけ一定に保つように制御している。
このパルス幅変調制御ではキャリア周波数は一定、即ち、周期は一定である。そして、一定の周期内のスイッチング素子7および8のON期間とOFF期間の比を変化させる。即ち、スイッチング素子7および8のON期間とOFF期間のデューティを変化させて動作するパルス幅変調制御が実行される。ちなみに、ここで言うデューティは、例えば、ON期間とOFF期間とを合わせた1周期に対するON期間の比である。一般に、デューティの値には最大値および最小値が設定されている。従って、両端電圧VC1が設定電圧V0を上回っている場合にスイッチング素子7および8を常時ON状態にし続けること、或いは両端電圧VC1が設定電圧V0を下回っている場合にスイッチング素子7および8を常時OFF状態にし続けることは出来ない。
上記のように両端電圧VC1が常に一定の設定電圧V0を保つような制御が行われている平滑コンデンサ5を電源とし、電圧無負荷期間中および放電持続期間中だけスイッチング素子11をON状態にする。上述したように第二の駆動方式においてスイッチング素子10はON状態になっているので、スイッチング素子11がON状態になることにより、電極1と被加工物2との間に電圧が印加されるが、電圧が印加された状態での放電が発生するタイミングは自然現象なので予測出来ない。従って、スイッチング素子11がON状態である期間は、電圧無負荷期間中と放電持続期間中とに分けられる。そして、放電持続期間中は、電流制限用抵抗14の値に応じた一定電流ピークの仕上げ加工用電流パルスが出力される。
電極1と被加工物2との間の電圧、即ち極間電圧Vに基づいて図示せぬ制御手段によりスイッチング素子11は制御されている。スイッチング素子11がON状態になった後に極間電圧Vが低下することを検出することにより、制御手段は放電が発生したことを検知できる。従って、制御手段は、放電持続期間が毎回予め定めた期間になるようにスイッチング素子11をOFF状態にする。即ち、制御手段は、放電の発生から一定の期間でスイッチング素子11をON状態からOFF状態に切り替えることにより放電持続期間を一定にすることができる。放電持続期間は、毎回の放電において同じ長さの期間に設定することが可能であり、通常500μsec以下に設定される。さらに、制御手段はスイッチング素子11がOFF状態である期間を予め定めた期間とすることにより休止期間も一定に制御することができる。
図4は、図2の回路構成において平滑コンデンサ5の容量を数百μF以上にした比較例における、スイッチング素子7および8の動作、スイッチング素子11の動作、平滑コンデンサ5の両端電圧VC1の時間変化、極間電圧Vの時間変化、および電極1と被加工物2との間の電流、即ち極間電流Iの時間変化を示す図である。図4には、極間電圧Vがどのような状態のときが、電圧無負荷期間、放電持続期間、および休止期間であるかも示してある。
平滑コンデンサ5の容量を数百μF以上にした場合、前述したようにパルス幅変調制御によって平滑コンデンサ5の両端電圧VC1を一定に保つことが可能であることが実験的に明らかとなっている。平滑コンデンサ5の両端電圧VC1を一定に保つことは、平滑コンデンサ5の容量が100μFでも可能である。従って、図4においては、商用交流電源101の電圧が変動してもパルス幅変調制御により一定の両端電圧VC1が保たれ、一定の極間電流Iの仕上げ加工用の電流パルスが出力されるため、あらゆる電源環境において電流パルスの均一性は保たれる。
しかし、一方で実際の加工においてはその他に加工液の種類および状態、加工形状および加工面積など電源環境以外の要因により放電周波数および集中放電の発生頻度は変化してしまうため、加工結果の均一性を保つこと或いは異常放電を回避することは、電流パルスにおける極間電流Iの均一性だけでは困難であるという問題がある。ここで放電周波数とは、一秒間に発生する放電持続期間の回数であり、放電の頻度に比例する値である。
そこで、実施の形態1においては、1回の放電持続期間の放電で使用される電荷量Qを平滑コンデンサ5の設定電圧V0で除算した値よりも平滑コンデンサ5の容量を小さくする。平滑コンデンサ5の両端電圧VC1に対して予め定められた設定電圧V0は、放電加工機100に固有の値として設定される。具体的には、平滑コンデンサ5の容量を1000pFといった数千pF程度まで小さくする。さらに言えば、平滑コンデンサ5を除去してもよい。即ち、平滑コンデンサ5の容量を0にしてもよい。平滑コンデンサ5を除去した場合、即ち平滑コンデンサ5の容量を0にした場合であっても、浮遊容量としてpFオーダーの容量は生じ得る。
上述のように、平滑コンデンサ5の容量を1回の放電持続期間の放電で使用される電荷量Qを平滑コンデンサ5の設定電圧V0で除算した値よりも小さくすることにより、第二の駆動方式のままで回路動作を変えることが可能となることが実験により確認できた。
図5は、図2の回路構成において平滑コンデンサ5の容量を小さくした実施の形態1における、スイッチング素子7および8の動作、スイッチング素子11の動作、平滑コンデンサ5の両端電圧VC1の時間変化、極間電圧Vの時間変化、および電極1と被加工物2との間の電流、即ち極間電流Iの時間変化を示す図である。
実施の形態1にかかる放電加工機100の電源装置においては、1回の放電持続期間の放電で使用される電荷量Qを平滑コンデンサ5の設定電圧V0で除算した値よりも平滑コンデンサ5の容量を小さくしたことにより、平滑コンデンサ5の電荷が充放電しやすくなる。スイッチング素子7および8のパルス幅変調制御のキャリア周波数は一定なので、スイッチング素子7および8のON期間とOFF期間のデューティを最大あるいは最小に可変しても、平滑コンデンサ5の容量を小さくしたことにより加工中の放電周波数の変化に平滑コンデンサ5の電荷の充放電が追従できなくなる。その結果、図5に示すように平滑コンデンサ5の両端電圧VC1は設定電圧V0を維持出来なくなって変化し、結果として極間電圧Vも変化する。
図5において、当初は放電持続期間が発生する間隔が長く放電周波数fが低い状態であるが、次第に放電持続期間が発生する間隔が短くなり放電周波数fが高い状態になる傾向がみられる。従って、図5においては、放電周波数fが低い状態から高い状態へと変化する時間的な傾向に従って、平滑コンデンサ5の両端電圧VC1が設定電圧V0より高い状態から低い状態へと変化しており、それに伴い極間電圧Vも高い状態から低い状態へと変化している。実施の形態1にかかる図2に示した回路は、電流制限用抵抗14による抵抗式加工回路であるため、極間電圧Vの変化の傾向はそのまま極間電流Iに反映されるので、放電周波数fが低い状態では極間電流Iは大きく、放電周波数fが高い状態では極間電流Iは小さくなる。
図6は、横軸を放電周波数f、縦軸を極間電圧Vとして両者の関係を示す図である。比較例のように平滑コンデンサ5の容量を数百μF以上にして、1回の放電持続期間の放電で使用される電荷量Qを平滑コンデンサ5の設定電圧V0で除算した値よりも十分に大きくした場合は、図6の破線に示すように、放電周波数fによらず極間電圧Vは一定である。しかし、実施の形態1のように平滑コンデンサ5の容量を1回の放電持続期間の放電で使用される電荷量Qを平滑コンデンサ5の設定電圧V0で除算した値よりも小さくした場合は、図6の実線に示すように、放電周波数fが高い時には極間電圧Vが低くなり、放電周波数fが低い時には極間電圧Vが高くなる。
実施の形態1にかかる放電加工機の電源装置110によれば、放電周波数fが高い時には極間電圧Vが低くなることで極間電流Iが減少し、放電周波数fが低い時には極間電圧Vが高くなることで極間電流Iを増大させる。これにより、一時的な集中放電によって放電周波数fが高くなった場合であっても、極間電流Iの時間平均値の増加を抑制することが可能となる。即ち、一時的な集中放電による極間電流Iの時間平均値の増加を抑制することで加工エネルギーの均一化が図れ、アークおよび平坦度の悪化、電極1の異常消耗を抑制することが可能となる。
実施の形態2.
図7は、本発明の実施の形態2にかかる放電加工機200の概略構成を示す図である。放電加工機200は実施の形態1の図1の放電加工機100と異なり、極間電圧Vに基づいて電極1と被加工物2との間の相対距離を調節する機構を有している。具体的には、放電加工機200は、極間電圧Vの平均値を求めて電極1と被加工物2との間の相対距離を調節する軸の位置制御を行う軸制御部105をさらに備える。放電加工機200の軸制御部105以外の構成は実施の形態1の図1の放電加工機100と同様である。
図7は、本発明の実施の形態2にかかる放電加工機200の概略構成を示す図である。放電加工機200は実施の形態1の図1の放電加工機100と異なり、極間電圧Vに基づいて電極1と被加工物2との間の相対距離を調節する機構を有している。具体的には、放電加工機200は、極間電圧Vの平均値を求めて電極1と被加工物2との間の相対距離を調節する軸の位置制御を行う軸制御部105をさらに備える。放電加工機200の軸制御部105以外の構成は実施の形態1の図1の放電加工機100と同様である。
軸制御部105は、電極1と被加工物2との間の極間電圧Vを取得して、予め定めた期間の極間電圧Vの時間平均値を求める機能を有する。時間平均をとる期間の長さは、20~30msecといった軸制御のスピードの依存した期間となる。そして、求めた時間平均値が予め定めた基準値より低い場合、即ち放電が発生し易い場合は、電極1と被加工物2との間の距離が近くなっているので軸を逃がす、即ち電極1と被加工物2とを離すように軸制御部105は制御を行う。他方、求めた時間平均値が予め定めた基準値より高い場合、即ち放電が発生し難い場合は、電極1と被加工物2との間の距離が離れているので軸を追い込む、即ち電極1と被加工物2とを近づけるように軸制御部105は制御を行う。これにより放電の発生頻度、即ち放電周波数fの安定化を図っている。
実施の形態2にかかる放電加工機200の電源装置においては、さらに、平滑コンデンサ5の容量を1回の放電持続期間の放電で使用される電荷量Qを平滑コンデンサ5の設定電圧V0で除算した値よりも小さくする。平滑コンデンサ5の容量を小さくして軸制御部105を機能させることにより、放電周波数fが高い時には極間電圧Vが低くなることで平均電圧が下がって軸を逃がし、放電周波数fが低い時には極間電圧Vが高くなることで平均電圧が上がって軸を追い込むことが可能となる。
即ち、平滑コンデンサ5の容量を小さくしたことによる短い時間レンジでの集中放電の回避効果に、軸制御部105の制御効果を組み合わせることができるので、素早く所望の放電周波数fになるような制御が可能となる。即ち、実施の形態2によれば、実施の形態1で得られた集中放電の回避効果をより長い時間レンジで実現することが可能となる。
実施の形態3.
実施の形態3においては、実施の形態1および2にかかる放電加工機100および200において、平滑コンデンサ5を図8に示すような容量可変な平滑コンデンサ50に置き換える。即ち、平滑コンデンサの容量を可変にする。図8は、容量が可変な平滑コンデンサの一例を示す図である。平滑コンデンサ50は、コンデンサ51~54を並列接続して構成されており、コンデンサ51~54のそれぞれにスイッチ61~64が接続されている。スイッチ61~64のそれぞれは、リレー或いは電磁開閉器といったスイッチング素子である。
実施の形態3においては、実施の形態1および2にかかる放電加工機100および200において、平滑コンデンサ5を図8に示すような容量可変な平滑コンデンサ50に置き換える。即ち、平滑コンデンサの容量を可変にする。図8は、容量が可変な平滑コンデンサの一例を示す図である。平滑コンデンサ50は、コンデンサ51~54を並列接続して構成されており、コンデンサ51~54のそれぞれにスイッチ61~64が接続されている。スイッチ61~64のそれぞれは、リレー或いは電磁開閉器といったスイッチング素子である。
コンデンサ51~54の容量は全て同一であってもよいが、必ずしも全て同一でなくても構わない。コンデンサ51~54のそれぞれの容量は全て1回の放電による電荷量Qを平滑コンデンサ50の設定電圧V0で除算した値よりも小さくてもよいが、コンデンサ51~54の容量の少なくともいずれか1つが1回の放電による電荷量Qを平滑コンデンサ50の設定電圧V0で除算した値よりも小さければ構わない。
図9は、実施の形態3における放電周波数fと極間電圧Vとの関係を示す図である。図9のAからDになるに従って平滑コンデンサ50の容量は小さくなってゆく。このような状況を実現する一例を以下に示す。
Aはスイッチ61~64を全てON状態にした状態であり、平滑コンデンサ50の容量はコンデンサ51~54のそれぞれの容量を合計した値になる。Bはスイッチ64をOFF状態にして、スイッチ61~63を全てON状態にした状態であり、平滑コンデンサ50の容量はコンデンサ51~53のそれぞれの容量を合計した値になる。Cはスイッチ63および64をOFF状態にして、スイッチ61および62をON状態にした状態であり、平滑コンデンサ50の容量はコンデンサ51および52のそれぞれの容量を合計した値になる。Dはスイッチ62~64をOFF状態にして、スイッチ61のみをON状態にした状態であり、平滑コンデンサ50の容量はコンデンサ51の容量になる。
Aにおける平滑コンデンサ50の容量は1回の放電による電荷量Qを平滑コンデンサ50の設定電圧V0で除算した値よりも大きいが、Dにおける平滑コンデンサ50の容量は1回の放電による電荷量Qを平滑コンデンサ50の設定電圧V0で除算した値よりも小さくなっている。
上述したように実施の形態1および2にかかる放電加工機の電源装置110において、平滑コンデンサ5を図8の容量可変な平滑コンデンサ50に置き換えてスイッチ61~64といった手段を用いて容量を変化させることにより、放電周波数fに依存した極間電圧Vの変化幅を制御することが可能になる。即ち、実施の形態3によれば、実施の形態1および2で得られる効果が得られることに加えて、当該効果の程度を制御することも可能になる。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 電極、2 被加工物、3 整流器、4,6 コンデンサ、5 平滑コンデンサ、7,8,9,10,11 スイッチング素子、12 リアクトル、13 放電抵抗、14 電流制限用抵抗、15,16,17,18,19,21 整流用ダイオード、20 電磁開閉器、30 検出部、100,200 放電加工機、101 商用交流電源、102 直流電圧変換部、103 定電圧制御部、104 電流制限抵抗切換部、105 軸制御部、110 放電加工機の電源装置。
Claims (4)
- 交流電源を整流して直流電圧を出力する直流電圧変換部と、
電極と被加工物との間に電圧を印加する平滑コンデンサと、
前記直流電圧に基づいて、前記平滑コンデンサをパルス幅変調制御することにより定電圧化する定電圧制御部と、
前記平滑コンデンサと前記電極との間に接続されて、前記平滑コンデンサから前記電極へ流れる電流を制限する電流制限用抵抗と、
を備え、
前記平滑コンデンサの容量は、1回の放電持続期間の放電で使用される電荷量を前記平滑コンデンサに対して予め定められた設定電圧で除算した値よりも小さい
ことを特徴とする放電加工機の電源装置。 - 前記電極と前記被加工物との間の極間電圧に基づいて、前記電極と前記被加工物との間の相対距離を調節する軸の制御を行う軸制御部をさらに備える
ことを特徴とする請求項1に記載の放電加工機の電源装置。 - 前記平滑コンデンサの容量は可変である
ことを特徴とする請求項1または2に記載の放電加工機の電源装置。 - 前記平滑コンデンサの容量は0である
ことを特徴とする請求項1または2に記載の放電加工機の電源装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015531395A JPWO2016059689A1 (ja) | 2014-10-15 | 2014-10-15 | 放電加工機の電源装置 |
PCT/JP2014/077460 WO2016059689A1 (ja) | 2014-10-15 | 2014-10-15 | 放電加工機の電源装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/077460 WO2016059689A1 (ja) | 2014-10-15 | 2014-10-15 | 放電加工機の電源装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016059689A1 true WO2016059689A1 (ja) | 2016-04-21 |
Family
ID=55746259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/077460 WO2016059689A1 (ja) | 2014-10-15 | 2014-10-15 | 放電加工機の電源装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2016059689A1 (ja) |
WO (1) | WO2016059689A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57194823A (en) * | 1981-05-26 | 1982-11-30 | Mitsubishi Electric Corp | Electrospark machining device |
JPS6138819A (ja) * | 1984-07-31 | 1986-02-24 | Hitachi Seiko Ltd | ワイヤカツト放電加工用電源装置 |
JPS61188021A (ja) * | 1985-02-18 | 1986-08-21 | Techno Fine Houden Gijutsu Kenkyusho:Kk | 放電加工の放電ギヤツプ距離サ−ボ方法及び装置 |
JPH01164520A (ja) * | 1987-12-17 | 1989-06-28 | Stanley Electric Co Ltd | 電解仕上げ装置におけるワーク位置合わせ方法 |
JP2005153078A (ja) * | 2003-11-26 | 2005-06-16 | Mitsutoyo Corp | 放電パルス電源回路 |
WO2005102578A1 (ja) * | 2004-04-19 | 2005-11-03 | Mitsubishi Denki Kabushiki Kaisha | 放電加工機の電源装置及び電源制御方法 |
JP2006263871A (ja) * | 2005-03-24 | 2006-10-05 | Tochigi Prefecture | マイクロプラズマ発生用ディスクの微細穴あけ加工方法 |
-
2014
- 2014-10-15 JP JP2015531395A patent/JPWO2016059689A1/ja active Pending
- 2014-10-15 WO PCT/JP2014/077460 patent/WO2016059689A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57194823A (en) * | 1981-05-26 | 1982-11-30 | Mitsubishi Electric Corp | Electrospark machining device |
JPS6138819A (ja) * | 1984-07-31 | 1986-02-24 | Hitachi Seiko Ltd | ワイヤカツト放電加工用電源装置 |
JPS61188021A (ja) * | 1985-02-18 | 1986-08-21 | Techno Fine Houden Gijutsu Kenkyusho:Kk | 放電加工の放電ギヤツプ距離サ−ボ方法及び装置 |
JPH01164520A (ja) * | 1987-12-17 | 1989-06-28 | Stanley Electric Co Ltd | 電解仕上げ装置におけるワーク位置合わせ方法 |
JP2005153078A (ja) * | 2003-11-26 | 2005-06-16 | Mitsutoyo Corp | 放電パルス電源回路 |
WO2005102578A1 (ja) * | 2004-04-19 | 2005-11-03 | Mitsubishi Denki Kabushiki Kaisha | 放電加工機の電源装置及び電源制御方法 |
JP2006263871A (ja) * | 2005-03-24 | 2006-10-05 | Tochigi Prefecture | マイクロプラズマ発生用ディスクの微細穴あけ加工方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016059689A1 (ja) | 2017-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9114472B2 (en) | Arc welding control method and arc welding apparatus | |
US10259062B2 (en) | Pulse and gap control for electrical discharge machining equipment | |
KR101681120B1 (ko) | 와이어 방전 가공용 전원 장치 | |
KR20150070209A (ko) | 용접 동작의 입열을 제어하기 위한 방법 및 시스템 | |
US9446465B2 (en) | Wire electric-discharge machining apparatus | |
US9533365B2 (en) | Electric discharge machining apparatus | |
US10493553B2 (en) | Arc welding control method | |
US20190337080A1 (en) | Arc welding control method | |
JPWO2009096025A1 (ja) | 放電加工装置および放電加工方法 | |
JP5642810B2 (ja) | 放電加工用電源装置 | |
US10239144B2 (en) | Welding device | |
WO2016059689A1 (ja) | 放電加工機の電源装置 | |
KR102099988B1 (ko) | 전원 장치 및 아크 가공용 전원 장치 | |
JP2014012323A (ja) | ワイヤ放電加工装置 | |
JP2019140714A (ja) | パルス電源装置 | |
JP2012200781A (ja) | 静電蓄勢式溶接電源の充電制御方法および静電蓄勢式溶接電源 | |
KR102518789B1 (ko) | 아크 용접 제어 방법 | |
CN108247178B (zh) | 交流脉冲电弧焊接的输出控制方法 | |
JP6377427B2 (ja) | アーク溶接制御方法 | |
JP6770384B2 (ja) | 電力変換装置 | |
JP2016022507A (ja) | パルスアーク溶接制御方法 | |
US11929668B2 (en) | DC pulse power supply device and magnetic saturation reset method for DC pulse power supply device | |
JP2984664B2 (ja) | 放電加工装置 | |
JP2014110710A (ja) | 溶接電源装置 | |
JP2011200918A (ja) | 交流非消耗電極アーク溶接制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015531395 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14904126 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14904126 Country of ref document: EP Kind code of ref document: A1 |