Nothing Special   »   [go: up one dir, main page]

WO2016052283A1 - 有機半導体組成物、有機薄膜トランジスタ、電子ペーパー、ディスプレイデバイス - Google Patents

有機半導体組成物、有機薄膜トランジスタ、電子ペーパー、ディスプレイデバイス Download PDF

Info

Publication number
WO2016052283A1
WO2016052283A1 PCT/JP2015/076826 JP2015076826W WO2016052283A1 WO 2016052283 A1 WO2016052283 A1 WO 2016052283A1 JP 2015076826 W JP2015076826 W JP 2015076826W WO 2016052283 A1 WO2016052283 A1 WO 2016052283A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic semiconductor
organic
general formula
independently represents
Prior art date
Application number
PCT/JP2015/076826
Other languages
English (en)
French (fr)
Inventor
季彦 松村
泰明 松下
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP15846659.9A priority Critical patent/EP3203540B1/en
Priority to JP2016551951A priority patent/JP6343678B2/ja
Publication of WO2016052283A1 publication Critical patent/WO2016052283A1/ja
Priority to US15/450,240 priority patent/US9882137B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/481Insulated gate field-effect transistors [IGFETs] characterised by the gate conductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/488Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the present invention relates to an organic semiconductor composition, an organic thin film transistor, electronic paper, and a display device.
  • organic semiconductor device having an organic semiconductor film (organic semiconductor layer) made of an organic semiconductor material is widely known.
  • organic semiconductor devices are used in various devices, and can be used for liquid crystal displays and organic EL displays because they can be imparted with particularly light weight, low cost, and flexibility.
  • Patent Document 1 discloses forming an organic semiconductor layer for an organic thin film transistor using a composition containing an organic functional material, a solvent, and an antioxidant.
  • an antioxidant contained in such a composition for example, 2,6-di-t-butyl-4-ethylphenol is disclosed.
  • Patent Document 2 discloses an organic thin film transistor in which an organic semiconductor layer is formed of a composition containing an antioxidant in order to reduce oxidative degradation of the organic semiconductor layer.
  • Patent Document 2 As an antioxidant, a hindered phenol antioxidant (trade name “Irganox 1076” manufactured by Nagase Sangyo Co., Ltd.), 2,2′-methylenebis (6 -Tert-butyl-p-cresol (manufactured by Sumitomo Chemical Co., Ltd., trade name “Sumilyzer MDP-S”) and the like are used.
  • a hindered phenol antioxidant trade name “Irganox 1076” manufactured by Nagase Sangyo Co., Ltd.
  • 2,2′-methylenebis (6 -Tert-butyl-p-cresol (manufactured by Sumitomo Chemical Co., Ltd., trade name “Sumilyzer MDP-S”) and the like are used.
  • JP 2004-88094 A Japanese Patent Laying-Open No. 2005-5582
  • One of the objects according to some embodiments of the present invention is to provide an organic semiconductor composition capable of producing an organic thin film transistor having excellent insulation reliability while suppressing a decrease in mobility, and a production using the same.
  • An organic thin film transistor may be provided.
  • Another object of some embodiments of the present invention is to provide an electronic paper and a display device including the organic thin film transistor.
  • An organic semiconductor material At least one migration inhibitor selected from a compound represented by the following general formula (I), a compound represented by the following general formula (II) and a compound represented by the following general formula (III):
  • R 1 and R 5 is —OH, —OR 26 , —SR 27 , —NHCOR 28 or —NHSO 2 R 29 , or R 3 is —SR 27 , —NHCOR 28 or —NHSO 2 R 29 .
  • R 26 to R 29 each independently represents an alkyl group or an aryl group.
  • R 6 to R 13 each represents a hydrogen atom or a substituent.
  • at least one of R 6 to R 13 is —OH, —OR 26 , —SR 27 , —NHCOR 28 , or —NHSO 2 R 29 .
  • R 26 to R 29 each independently represents an alkyl group or an aryl group.
  • R 14 and R 15 each independently represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, —OH, —OR 30 , —SR 31 , or —NR 32 R 33 .
  • R 30 to R 33 each independently represents an alkyl group or an aryl group. However, both R 14 and R 15 are not simultaneously selected from —OH, —OR 30 , —SR 31 , and —NR 32 R 33 .
  • R 14 and R 15 may combine with each other to form a ring.
  • R 16 to R 23 each independently represents a hydrogen atom, an aliphatic group, or an aromatic group.
  • R 24 and R 25 each independently represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group. However, both R 24 and R 25 are not hydrogen atoms at the same time. R 24 and R 25 may be bonded to each other to form a ring.
  • An organic semiconductor material At least one migration inhibitor selected from a compound represented by the following general formula (IV), a compound represented by the following general formula (II) and a compound represented by the following general formula (III): Containing The organic-semiconductor composition whose content of the said migration inhibitor is 30 to 500 mass% with respect to 100 mass% of said organic-semiconductor materials.
  • R 1A to R 5A each independently represents a hydrogen atom or a substituent. However, at least one of R 1A to R 5A is —OH, —OR 26 , —SR 27 , —NHCOR 28 , or —NHSO 2 R 29 . R 26 to R 29 each independently represents an alkyl group or an aryl group.
  • R 6 to R 13 each represents a hydrogen atom or a substituent. However, at least one of R 6 to R 13 is —OH, —OR 26 , —SR 27 , —NHCOR 28 , or —NHSO 2 R 29 .
  • R 26 to R 29 each independently represents an alkyl group or an aryl group.
  • R 14 and R 15 each independently represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, —OH, —OR 30 , —SR 31 , or —NR 32 R 33 .
  • R 30 to R 33 each independently represents an alkyl group or an aryl group. However, both R 14 and R 15 are not simultaneously a group selected from —OH, —OR 30 , —SR 31 , and —NR 32 R 33 .
  • R 14 and R 15 may combine with each other to form a ring.
  • R 16 to R 23 each independently represents a hydrogen atom, an aliphatic group, or an aromatic group.
  • R 24 and R 25 each independently represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group. However, both R 24 and R 25 are not hydrogen atoms at the same time. R 24 and R 25 may be bonded to each other to form a ring.
  • the organic thin-film transistor which has an organic-semiconductor layer produced using the organic-semiconductor composition in any one of said [1] thru
  • [5] Furthermore, it has a source electrode, a drain electrode, and a gate electrode, The organic thin-film transistor according to [4], wherein at least one of the source electrode, the drain electrode, and the gate electrode is made of a material containing silver.
  • [6] Electronic paper comprising the organic thin film transistor according to the above [4] or [5].
  • [7] A display device comprising the organic thin film transistor according to [4] or [5].
  • an organic semiconductor composition capable of producing an organic thin film transistor excellent in insulation reliability while suppressing a decrease in mobility, and an organic thin film transistor produced using the same can be provided.
  • the electronic paper and display device containing the said organic thin-film transistor can be provided.
  • 1 is a schematic cross-sectional view of a bottom contact type organic thin film transistor according to an embodiment of the present invention.
  • 1 is a schematic cross-sectional view of a top contact type organic thin film transistor according to an embodiment of the present invention.
  • the present invention is not limited to the following embodiments, and includes various modifications that are implemented within a range that does not change the gist of the present invention.
  • the notation that does not indicate substitution and non-substitution includes not only those having no substituent but also those having a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • An organic semiconductor composition according to an embodiment of the present invention includes an organic semiconductor material, a compound represented by the following general formula (I), a compound represented by the following general formula (II), and the following general formula: And at least one migration inhibitor selected from the compounds represented by (III).
  • the component contained in the organic-semiconductor composition of this embodiment and the component which may be contained are demonstrated in detail.
  • Organic Semiconductor Material contains an organic semiconductor material.
  • An organic semiconductor material is a material exhibiting properties as a semiconductor.
  • any known material used for forming the organic semiconductor layer of the organic transistor may be used.
  • Such an organic semiconductor material includes, for example, an organic semiconductor material that does not have a repeating unit in a chemical structure (hereinafter, also referred to as “low molecular organic semiconductor material”) and an organic semiconductor material that has a repeating unit in the chemical structure. (Hereinafter also referred to as “polymer organic semiconductor material”).
  • having no repeating unit means not having a plurality of predetermined repeating structures (structures derived from a polymerizable compound (polymer)).
  • Examples of the low-molecular organic semiconductor material include pentacenes such as 6,13-bis (triisopropylsilylethynyl) pentacene (TIPS pentacene), tetramethylpentacene, perfluoropentacene, and 5,11-bis (triethylsilylethynyl) an Anthradithiophenes such as tradithiophene (TES-ADT), 2,8-difluoro-5,11-bis (triethylsilylethynyl) anthradithiophene (diF-TES-ADT), diphenylbenzothienobenzothiophene (DPh-BTBT) ), Benzothienobenzothiophenes such as alkylbenzothienobenzothiophene (Cn-BTBT), dinaphthothienothiophenes such as alkyldinaphthothienothiophene (
  • polymer organic semiconductor material examples include polythiophenes such as poly (3-hexylthiophene) (P3RT), polyquaterthiophene (PQT), poly (3-hexylthiophene) (P3HT), and poly [2,5- And polythienothiophenes such as bis (3-dodecylthiophen-2-yl) thieno [3,2-b] thiophene] (PBTTT).
  • the number average molecular weight of the polymer organic semiconductor material is not particularly limited, but is, for example, a number average molecular weight exceeding 2000.
  • the measurement of the weight average molecular weight in this invention and a number average molecular weight is performed using GPC (gel permeation chromatography) on the following conditions.
  • an organic semiconductor layer formed using a low-molecular organic semiconductor material has higher hygroscopicity than an organic semiconductor layer formed using a high-molecular organic semiconductor material.
  • the organic semiconductor composition according to the present embodiment even when a low-molecular organic semiconductor material having high hygroscopicity is contained, migration is caused by the action of a specific migration inhibitor described later. Can be sufficiently suppressed. Therefore, the low molecular organic semiconductor material can be preferably used in that the effects of the present invention are remarkably exhibited.
  • organic-semiconductor material will not be specifically limited if the organic-semiconductor layer mentioned later can be formed, From a viewpoint that handling becomes easy etc., for example, the total mass (100 masses) of an organic-semiconductor composition %) To 0.5% to 70% by mass, and more preferably 1% to 50% by mass.
  • the organic semiconductor composition according to this embodiment includes a compound represented by the following general formula (I) (hereinafter, also referred to as “compound (I)”), a compound represented by the following general formula (II): (Hereinafter also referred to as “compound (II)”) and a compound represented by the following general formula (III) (hereinafter also referred to as “compound (III)”) To do.
  • Migration in the present invention means that a conductive substance such as metal is ionized and ions move (migration).
  • a migration inhibitor is not limited to this, it represents what has the function to suppress migration.
  • the organic semiconductor composition according to the present embodiment contains at least one migration inhibitor (hereinafter, also referred to as “specific migration inhibitor”) of the compounds (I) to (III), thereby reducing mobility.
  • at least one migration inhibitor hereinafter, also referred to as “specific migration inhibitor” of the compounds (I) to (III), thereby reducing mobility.
  • An organic thin film transistor having excellent insulation reliability can be formed while suppressing the above.
  • a mechanism for producing such an effect will be described in detail.
  • the layer formed by the organic semiconductor composition includes a layer mainly composed of the compound (III) and an organic semiconductor material. It becomes easy to form in the state which separated into the main layer. Thereby, compound (III) becomes difficult to inhibit the crystal growth of the organic semiconductor material or become a carrier trap, and the decrease in mobility of the organic thin film transistor can be suppressed.
  • the specific migration inhibitor described above may be used alone or in combination of two or more, but at least one compound selected from the compound (I) and the compound (II) and the compound (III) and the property of being easily adsorbed on the electrodes of the compounds (I) and (II) and the hydrophobic property of the compound (III) act synergistically, and mobility and insulation Reliability may be further improved.
  • R 1 to R 5 each independently represents a hydrogen atom or a substituent. Provided that at least one of R 1 and R 5 is —OH, —OR 26 , —SR 27 , —NHCOR 28 or —NHSO 2 R 29 , or R 3 is —SR 27 , —NHCOR 28 or —NHSO 2 R 29 . R 26 to R 29 each independently represents an alkyl group or an aryl group.
  • substituents examples include halogen atoms, alkyl groups (including cycloalkyl groups), alkenyl groups (including cycloalkenyl groups and bicycloalkenyl groups), alkynyl groups, aryl groups, heterocyclic groups, cyano groups, hydroxyl groups, nitro groups.
  • a halogen atom for example, a chlorine atom, a bromine atom, an iodine atom
  • An alkyl group [represents a linear, branched, or cyclic substituted or unsubstituted alkyl group; They are alkyl groups (preferably alkyl groups having 1 to 30 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, t-butyl, n-octyl, eicosyl, 2-chloroethyl, 2-cyanoethyl, 2-ethylhexyl.
  • a cycloalkyl group (preferably a substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms, such as cyclohexyl, cyclopentyl, 4-n-dodecylcyclohexyl), a bicycloalkyl group (preferably 5 to 30 carbon atoms).
  • a substituted or unsubstituted bicycloalkyl group that is, a monovalent group obtained by removing one hydrogen atom from a bicycloalkane having 5 to 30 carbon atoms, such as bicyclo [1.2.2] heptan-2-yl, Bicyclo [2.2.2] octane-3-yl), and a tricyclo structure having more ring structures. It is intended to encompass such.
  • An alkyl group (for example, an alkyl group of an alkylthio group) in the substituents described below also represents such an alkyl group. ],
  • Alkenyl group [represents a linear, branched, or cyclic substituted or unsubstituted alkenyl group. They are alkenyl groups (preferably substituted or unsubstituted alkenyl groups having 2 to 30 carbon atoms, such as vinyl, allyl, prenyl, geranyl, oleyl), cycloalkenyl groups (preferably substituted or substituted groups having 3 to 30 carbon atoms).
  • An unsubstituted cycloalkenyl group that is, a monovalent group obtained by removing one hydrogen atom of a cycloalkene having 3 to 30 carbon atoms (for example, 2-cyclopenten-1-yl, 2-cyclohexen-1-yl), Bicycloalkenyl group (a substituted or unsubstituted bicycloalkenyl group, preferably a substituted or unsubstituted bicycloalkenyl group having 5 to 30 carbon atoms, i.e., a monovalent group obtained by removing one hydrogen atom of a bicycloalkene having one double bond.
  • Bicycloalkenyl group a substituted or unsubstituted bicycloalkenyl group, preferably a substituted or unsubstituted bicycloalkenyl group having 5 to 30 carbon atoms, i.e., a monovalent group obtained by removing one hydrogen atom of a bicycloalkene having one double
  • alkynyl group preferably a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, such as ethynyl, propargyl, trimethylsilylethynyl group
  • An aryl group preferably a substituted or unsubstituted aryl group having 6 to 30 carbon atoms such as phenyl, p-tolyl, naphthyl, m-chlorophenyl, o-hexadecanoylaminophenyl
  • Heterocyclic group preferably a monovalent group obtained by removing one hydrogen atom from a 5- or 6-membered substituted or unsubstituted aromatic or non-aromatic heterocyclic compound, more preferably from 3 carbon atoms.
  • 30-membered or 6-membered aromatic heterocyclic group such as 2-furanyl, 2-thienyl, 2-pyrimidinyl, 2-benzothiazolinyl
  • An amino group preferably an amino group, a substituted or unsubstituted alkylamino group having 1 to 30 carbon atoms, a substituted or unsubstituted anilino group having 6 to 30 carbon atoms, such as amino, methylamino, dimethylamino, anilino, N-methyl-anilino, diphenylamino
  • An acylamino group preferably a formylamino group, a substituted or unsubstituted alkylcarbonylamino group having 1 to 30 carbon atoms, a substituted or unsubstituted arylcarbonylamino group having 6 to 30 carbon atoms such as formylamino, acetylamino, Pivaloylamino, lauroylamino, benzoylamino, 3,4,5-tri-n-octyloxyphenylcarbonylamino), An aminocarbonylamino group (preferably a substituted or unsubstituted
  • An alkylthio group preferably a substituted or unsubstituted alkylthio group having 1 to 30 carbon atoms, such as methylthio, ethylthio, n-hexadecylthio
  • An arylthio group preferably a substituted or unsubstituted arylthio having 6 to 30 carbon atoms, such as phenylthio, p-chlorophenylthio, m-methoxyphenylthio
  • a heterocyclic thio group preferably a substituted or unsubstituted heterocyclic thio group having 2 to 30 carbon atoms, such as 2-benzothiazolylthio, 1-phenyltetrazol-5-ylthio
  • Sulfamoyl group preferably a substituted or unsubstituted sulfamoyl group having 0 to 30 carbon atoms such as N-ethylsulfamoyl, N
  • Alkyl and arylsulfonyl groups preferably substituted or unsubstituted alkylsulfonyl groups having 1 to 30 carbon atoms, substituted or unsubstituted arylsulfonyl groups having 6 to 30 carbon atoms such as methylsulfonyl, ethylsulfonyl, phenylsulfonyl, p-methylphenylsulfonyl), Acyl group (preferably formyl group, substituted or unsubstituted alkylcarbonyl group having 2 to 30 carbon atoms, substituted or unsubstituted arylcarbonyl group having 7 to 30 carbon atoms, substituted or unsubstituted carbon group having 4 to 30 carbon atoms
  • a heterocyclic carbonyl group bonded to the carbonyl group by an atom eg, acetyl, pivaloyl, 2-chloroacetyl, stearoyl, benzo
  • a carbamoyl group (preferably a substituted or unsubstituted carbamoyl having 1 to 30 carbon atoms such as carbamoyl, N-methylcarbamoyl, N, N-dimethylcarbamoyl, N, N-di-n-octylcarbamoyl, N- (methyl Sulfonyl) carbamoyl),
  • Aryl and heterocyclic azo groups preferably substituted or unsubstituted arylazo groups having 6 to 30 carbon atoms, substituted or unsubstituted heterocyclic azo groups having 3 to 30 carbon atoms such as phenylazo, p-chlorophenylazo, 5- Ethylthio-1,3,4-thiadiazol-2-ylazo),
  • An imide group preferably N-succinimide, N-phthalimide
  • a phosphino group preferably a substituted or unsubstituted phosphino group having 2 to
  • substituents those having a hydrogen atom may be substituted with the above groups after removing this.
  • substituents include alkylcarbonylaminosulfonyl group, arylcarbonylaminosulfonyl group, alkylsulfonylaminocarbonyl group, arylsulfonylaminocarbonyl group and the like.
  • substituents include methylsulfonylaminocarbonyl, p-methylphenylsulfonylaminocarbonyl, acetylaminosulfonyl, benzoylaminosulfonyl groups and the like.
  • the “substituent” has the above meaning.
  • the terms “alkyl group” and “aryl group” are each an alkyl group which may have a substituent (that is, a substituted or unsubstituted alkyl group), a substituted group, unless otherwise specified.
  • An aryl group that may have a group (that is, a substituted or unsubstituted aryl group) is represented.
  • aliphatic group”, “aromatic group”, and “heterocyclic group”, unless otherwise specified each may have an aliphatic group (that is, a substituted group).
  • an unsubstituted aliphatic group an aromatic group that may have a substituent (that is, a substituted or unsubstituted aromatic group), or a heterocyclic group that may have a substituent (that is, a substituted or unsubstituted group).
  • Substituted heterocyclic group an alkyl group having a substituent (that is, a substituted alkyl group) excludes an alkyl group substituted with an unsubstituted alkyl group (for example, a tert-butyl group), and an unsubstituted alkyl group.
  • Substituted alkyl groups are classified as “unsubstituted alkyl groups”.
  • At least one of R 1 and R 5 is —OH, —OR 26 , —SR 27 , —NHCOR 28 or —NHSO 2 R 29 , or R 3 is —SR 27 , — NHCOR 28 or —NHSO 2 R 29 is satisfied.
  • At least one of R 1 and R 5 in the ortho position of the general formula (I) is a specific polar group (—OH, —OR 26 , —SR 27 , —NHCOR 28 or —NHSO 2 R 29 ) Since the interaction with the electrode becomes good, the insulation reliability of the organic thin film transistor is excellent.
  • At least one of R 1 and R 5 is preferably —OH or —OR 26 among the specific polar groups described above.
  • R 26 is more preferably an alkyl group, further preferably an unsubstituted alkyl group, and particularly preferably an unsubstituted alkyl group having 1 to 12 carbon atoms. Thereby, it exists in the tendency for the interaction with an electrode to become still better.
  • at least one of R 1 and R 5 in the general formula (I) is a specific polar group
  • at least one of R 2 to R 4 is preferably the above-described substituent
  • R 3 is the above-described substituent. More preferably, it is a substituent.
  • R 2 to R 4 are preferably nonpolar groups (for example, unsubstituted alkyl groups and unsubstituted aryl groups).
  • R 3 in the para position of general formula (I) is a specific polar group (—SR 27 , —NHCOR 28 or —NHSO 2 R 29 )
  • the interaction with the electrode is further improved, and the organic semiconductor Since it becomes easy to form in the state which separated from the layer which mainly has material, the mobility of the organic thin-film transistor produced with the organic-semiconductor composition will be excellent. In addition, since the oxidation potential is lowered and the metal ions are easily reduced, the insulation reliability tends to be improved.
  • R 3 is —SR 27
  • R 27 is more preferably an alkyl group.
  • R 28 and R 29 are preferably alkyl groups, more preferably unsubstituted alkyl groups, and a carbon number of 1 More preferably, it is an unsubstituted alkyl group of ⁇ 12.
  • R 6 to R 13 represent a hydrogen atom or a substituent. However, at least one of R 6 to R 13 is —OH, —OR 26 , —SR 27 , —NHCOR 28 , or —NHSO 2 R 29 .
  • R 26 to R 29 each independently represents an alkyl group or an aryl group.
  • R 14 and R 15 each independently represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, —OH, —OR 30 , —SR 31 , or —NR 32 R 33 .
  • R 30 to R 33 each independently represents an alkyl group or an aryl group. However, both R 14 and R 15 are not simultaneously a group selected from —OH, —OR 30 , —SR 31 , and —NR 32 R 33 .
  • R 14 and R 15 may combine with each other to form a ring.
  • the description in the general formula (I) can be applied, and thus the description thereof is omitted.
  • the aliphatic group include an alkyl group (including a cycloalkyl group), an alkenyl group (including a cycloalkenyl group and a bicycloalkenyl group), and an alkynyl group. Since specific examples of these groups can be applied to the description in the general formula (I), the description thereof is omitted.
  • the aromatic group include an aryl group.
  • At least one of R 6 to R 13 is —OH, —OR 26 , —SR 27 , —NHCOR 28 , or —NHSO 2 R 29 , and —OR 26 , —OH Preferably, it is preferably —OR 26 .
  • At least one of R 6 to R 13 is the specific functional group described above, but at least one of R 6 and R 13 can be satisfied from the viewpoint that insulation reliability and mobility can be satisfied at a higher level. Is preferably —OH, —OR 26 , —SR 27 , —NHCOR 28 , or —NHSO 2 R 29 , and both R 6 and R 13 are simultaneously —OH, —OR 26 , —SR 27 , —NHCOR.
  • R 26 to R 29 each independently represents an alkyl group or an aryl group, preferably an unsubstituted alkyl group or an unsubstituted aryl group, more preferably an unsubstituted alkyl group, More preferably, it is an unsubstituted alkyl group of 1 to 12.
  • R 14 and R 15 are each independently preferably a hydrogen atom, an aliphatic group or an aromatic group, more preferably a hydrogen atom, an unsubstituted aliphatic group or an unsubstituted aromatic group, More preferably, they are a hydrogen atom and an unsubstituted aliphatic group.
  • Such an aliphatic group is preferably an alkyl group, and more preferably an alkyl group having 1 to 12 carbon atoms.
  • R 14 and R 15 may be bonded to each other to form a ring, and in this case, the structure includes any one of a single bond, a double bond, and a triple bond. May be.
  • R 14 and R 15 are not both a group selected from —OH, —OR 30 , —SR 31 , —NR 32 R 33 at the same time. If both R 14 and R 15 are the above groups at the same time, at least one of insulation reliability and mobility may be lowered.
  • Specific preferred examples of the compound (II) include compounds represented by the following formulas (II-1) to (II-11).
  • “Me” represents a methyl group.
  • R 16 to R 23 each independently represents a hydrogen atom, an aliphatic group or an aromatic group.
  • R 24 and R 25 each independently represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group. However, both R 24 and R 25 are not hydrogen atoms at the same time. R 24 and R 25 may be bonded to each other to form a ring.
  • Examples of the aliphatic group in the general formula (III) include an alkyl group (including a cycloalkyl group), an alkenyl group (including a cycloalkenyl group and a bicycloalkenyl group), an alkynyl group, and the like. Since specific examples of these groups can be applied to the description in the general formula (I), the description thereof is omitted.
  • Examples of the aromatic group include an aryl group.
  • R 16 to R 23 each independently represents a hydrogen atom, an aliphatic group or an aromatic group, but is preferably a hydrogen atom, an unsubstituted aliphatic group or an unsubstituted aromatic group. Further, from the viewpoint that the insulation reliability and mobility can be satisfied at a higher level, it is preferable that both R 16 and R 23 are simultaneously a hydrogen atom, an aliphatic group or an aromatic group, It is more preferably an unsubstituted aliphatic group or an unsubstituted aromatic group, and further preferably an unsubstituted aliphatic group.
  • Such an aliphatic group is preferably an alkyl group, and more preferably an alkyl group having 1 to 12 carbon atoms.
  • R 24 and R 25 are each independently a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group, but a hydrogen atom, an unsubstituted aliphatic group, an unsubstituted aromatic group or an unsubstituted complex It is more preferably a cyclic group, and further preferably a hydrogen atom or an unsubstituted aliphatic group.
  • Such an aliphatic group is preferably an alkyl group, more preferably an alkyl group having 3 to 12 carbon atoms. Thereby, both insulation reliability and mobility can be satisfied at a high level.
  • R 24 and R 25 may be bonded to each other to form a ring, and in this case, the structure includes one of a single bond, a double bond, and a triple bond. May be.
  • both R 24 and R 25 are not hydrogen atoms at the same time.
  • both R 24 and R 25 are hydrogen atoms at the same time, the compound (III) does not have sufficient hydrophobicity, and the performance of both insulation reliability and mobility is lowered.
  • the compound (III) include compounds represented by the following formulas (III-1) to (III-11).
  • the oxidation-reduction potential in the present invention can be measured using an apparatus according to an electrochemical analyzer VMP3 (manufactured by Bio-Logic Science Instruments) according to a cyclic voltammetry method.
  • the content of the specific migration inhibitor is preferably 30% by mass to 500% by mass and more preferably 40% by mass to 300% by mass with respect to 100% by mass of the organic semiconductor material. 50 mass% or more and 200 mass% or less is more preferable.
  • the layer separation of the layer derived from the migration inhibitor and the layer derived from the organic semiconductor material is favorably generated by being 30% by mass or more. Therefore, a decrease in mobility can be suppressed.
  • the layer separation state of the layer derived from the migration inhibitor and the layer derived from the organic semiconductor material can be favorably maintained by being 500% by mass or less.
  • any of the above-mentioned compound (I), compound (II) and compound (III) can be synthesized by a conventionally known synthesis method.
  • the compound (I) is described in US Pat. No. 5,0029,674, and the compound (II) is described in Environmental Science and Technology, 1994, vol. 28, # 4 p. 573-576 and Compound (III) are described in Journal, of the America, American, Chemical, Society, 1952, vol. 74, p. It can be synthesized according to the method described in 3410, etc.
  • organic-semiconductor composition which concerns on this embodiment may contain various additives as needed in the range which does not impair the effect of this invention.
  • An example of such an additive is a polymer.
  • the polymer is added for the purpose of keeping the viscosity of the organic semiconductor composition in an appropriate range.
  • the type of polymer is not particularly limited, and a known polymer can be used.
  • polystyrene resin, acrylic resin, rubber, thermoplastic elastomer, and the like can be used.
  • a polymer compound having a benzene ring (a polymer having a monomer unit having a benzene ring group) is preferable.
  • the content of the monomer unit having a benzene ring group is not particularly limited, but is preferably 50 mol% or more, more preferably 70 mol% or more, and still more preferably 90 mol% or more in all monomer units.
  • the upper limit is not particularly limited, but is 100 mol% or less.
  • the polymer compound having a benzene ring include polystyrene, poly ( ⁇ -methylstyrene), polyvinyl cinnamate, poly (4-vinylphenyl), poly (4-methylstyrene) and the like.
  • the weight average molecular weight of the polymer is not particularly limited, but is preferably 1,000 to 2,000,000, more preferably 3,000 to 1,500,000, and even more preferably 100,000 to 1,000,000.
  • the solubility of the polymer with respect to the solvent to be used is higher than the solubility with respect to the solvent of an organic semiconductor material.
  • the content is preferably 1 to 200 parts by weight, more preferably 10 to 150 parts by weight, and more preferably 20 to 120 parts by weight with respect to 100 parts by weight of the organic semiconductor material. Is more preferable. Within the above range, the mobility and stability over time of the organic thin film transistor tend to be good.
  • the organic-semiconductor composition which concerns on this embodiment may contain a solvent from viewpoints, such as improving the applicability
  • solvents include alcohols (eg, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, butanol, etc.), ketones (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), esters ( For example, ethyl acetate, isobutyl acetate, methyl oxyacetate, ethyl 3-ethoxypropionate, propyl pyruvate, etc.), ethers (eg, ethylene glycol monomethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran, methyl cellosolve acetate, etc.), aromatic hydrocarbons (For example,
  • concentration of the organic-semiconductor material in an organic-semiconductor composition may be 0.1 to 50 mass%, and it is 1 to 10 mass%. It is preferable to add a solvent so that
  • the organic semiconductor composition according to the present embodiment may contain additives usually used for the organic semiconductor composition, such as a surfactant.
  • the organic semiconductor composition according to the present embodiment can be prepared by mixing and stirring the above-described components, and the method is not particularly limited.
  • Organic Thin Film Transistor The organic semiconductor composition described above is suitable as a composition for forming an organic semiconductor layer such as an organic thin film transistor, an organic EL and an organic thin film solar cell, and among others, as a composition for forming an organic semiconductor layer of an organic thin film transistor. Particularly preferred.
  • an organic thin film transistor organic field effect transistor, OFET
  • An organic thin film transistor according to an embodiment of the present invention includes an organic semiconductor layer manufactured using the organic semiconductor composition described above, and further includes a source electrode, a drain electrode, and a gate electrode. it can.
  • the organic thin film transistor according to the present embodiment has an organic semiconductor layer formed using the above-described organic semiconductor composition, and therefore satisfies a high level of mobility and insulation reliability.
  • FIG. 1 is a schematic cross-sectional view of a bottom contact organic thin film transistor 100 according to an embodiment of the present invention.
  • the organic thin film transistor 100 includes a substrate 10, a gate electrode 20, a gate insulating film 30, a source electrode 40, a drain electrode 42, an organic semiconductor layer 50, and a sealing layer 60.
  • the organic semiconductor layer 50 is formed using the organic semiconductor composition described above.
  • the substrate the gate electrode, the gate insulating film, the source electrode, the drain electrode, the organic semiconductor layer, the sealing layer, and the formation methods thereof will be described in detail.
  • the substrate plays a role of supporting a gate electrode, a source electrode, a drain electrode and the like which will be described later.
  • substrate is not restrict
  • the material of the plastic substrate includes a thermosetting resin (for example, epoxy resin, phenol resin, polyimide resin, polyester resin (for example, PET, PEN)) or thermoplastic resin (for example, phenoxy resin, polyether sulfone, polysulfone, Polyphenylene sulfone).
  • Examples of the material for the ceramic substrate include alumina, aluminum nitride, zirconia, silicon, silicon nitride, silicon carbide, and the like.
  • Examples of the glass substrate material include soda glass, potash glass, borosilicate glass, quartz glass, aluminum silicate glass, and lead glass.
  • Examples of the material for the gate electrode include gold (Au), silver, aluminum, copper, chromium, nickel, cobalt, titanium, platinum, magnesium, calcium, barium, sodium, and other metals; InO 2 , SnO 2 , ITO, etc.
  • Examples include conductive oxides; conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polydiacetylene; semiconductors such as silicon, germanium, and gallium arsenide; carbon materials such as fullerene, carbon nanotube, and graphite.
  • the method for forming the gate electrode is not particularly limited, and examples thereof include a method of vacuum depositing or sputtering an electrode material on a substrate, and a method of applying or printing an electrode forming composition.
  • examples of the patterning method include a photolithography method; a printing method such as ink jet printing, screen printing, offset printing, letterpress printing; and a mask vapor deposition method.
  • ⁇ Gate insulation film Materials for the gate insulating film include polymethyl methacrylate, polystyrene, polyvinylphenol, polyimide, polycarbonate, polyester, polyvinyl alcohol, polyvinyl acetate, polyurethane, polysulfone, polybenzoxazole, polysilsesquioxane, epoxy resin, phenol Examples thereof include polymers such as resins; oxides such as silicon dioxide, aluminum oxide, and titanium oxide; and nitrides such as silicon nitride. Of these materials, a polymer is preferable in view of compatibility with the organic semiconductor layer.
  • a crosslinking agent for example, melamine
  • the polymer is crosslinked and the durability of the formed gate insulating film is improved.
  • the thickness of the gate insulating film is not particularly limited, but is preferably 100 to 1000 nm.
  • the method for forming the gate insulating film is not particularly limited, and examples thereof include a method for applying a gate insulating film forming composition on a substrate on which a gate electrode is formed, and a method for depositing or sputtering a gate insulating film material. It is done.
  • the method for applying the gate insulating film forming composition is not particularly limited, and known methods (bar coating method, spin coating method, knife coating method, doctor blade method) can be used.
  • a gate insulating film forming composition When a gate insulating film forming composition is applied to form a gate insulating film, it may be heated (baked) after application for the purpose of solvent removal, crosslinking, and the like.
  • the heating conditions for forming the gate insulating film are not particularly limited, but are usually carried out at 30 to 250 ° C. (preferably 80 to 200 ° C.) for 5 to 120 minutes (preferably 5 to 60 minutes). It is preferable.
  • ⁇ Source electrode, drain electrode> Specific examples of the material of the source electrode and the drain electrode are the same as those of the gate electrode described above. Especially, it is preferable that it is a metal and it is more preferable that it is silver.
  • the method for forming the source electrode and the drain electrode is not particularly limited. For example, a method of vacuum-depositing or sputtering an electrode material on a substrate on which a gate electrode and a gate insulating film are formed, or applying or forming an electrode-forming composition Examples include a printing method. A specific example of the patterning method is the same as that of the gate electrode described above.
  • the channel length of the source electrode and the drain electrode is not particularly limited, but is preferably 5 to 30 ⁇ m.
  • the channel width of the source electrode and the drain electrode is not particularly limited, but is preferably 10 to 200 ⁇ m.
  • At least one of the source electrode, the drain electrode, and the gate electrode can be silver.
  • the electrode materials silver is easily ionized and tends to cause migration.
  • the semiconductor layer is formed using the organic semiconductor composition described above, the occurrence of migration can be sufficiently suppressed. Therefore, when silver is used as the electrode material, the effects of the present invention are particularly prominent.
  • the organic semiconductor layer is a layer formed using the organic semiconductor composition described above.
  • the thickness of the organic semiconductor layer is not particularly limited, but is preferably 10 to 200 nm.
  • a method for forming the organic semiconductor layer is not particularly limited, and examples thereof include a method of applying an organic semiconductor composition on a substrate on which a gate electrode, a gate insulating film, a source electrode, and a drain electrode are formed. .
  • coating an organic-semiconductor composition is the same as the method of apply
  • an organic semiconductor composition When an organic semiconductor composition is applied to form an organic semiconductor layer, it may be heated (baked) after application for the purpose of solvent removal, crosslinking and the like.
  • the heating conditions for forming the organic semiconductor layer are not particularly limited, but are usually carried out at 30 to 200 ° C. (preferably 30 to 120 ° C.) for 5 to 120 minutes (preferably 5 to 60 minutes). It is preferable.
  • the organic thin film transistor of the present invention preferably includes a sealing layer as the outermost layer from the viewpoint of durability.
  • a well-known sealing agent composition for sealing layer formation
  • the thickness of the sealing layer is not particularly limited, but is preferably 0.2 to 10 ⁇ m.
  • the method for forming the sealing layer is not particularly limited.
  • the composition for forming the sealing layer is applied onto the substrate on which the gate electrode, the gate insulating film, the source electrode, the drain electrode, and the organic semiconductor layer are formed.
  • the method etc. are mentioned.
  • a specific example of the method of applying the sealing layer forming composition is the same as the method of applying the gate insulating film forming composition.
  • the heating conditions for forming the sealing layer are not particularly limited, but are usually carried out at 30 to 250 ° C. (preferably 80 to 200 ° C.) for 5 to 120 minutes (preferably 5 to 60 minutes). It is preferable.
  • FIG. 2 is a schematic cross-sectional view showing a top contact type organic thin film transistor 200 according to an embodiment of the present invention.
  • the organic thin film transistor 200 includes a substrate 10, a gate electrode 20, a gate insulating film 30, a source electrode 40, a drain electrode 42, an organic semiconductor layer 50, and a sealing layer 60.
  • the organic semiconductor layer 50 is formed using the organic semiconductor composition of the present invention described above. Since the substrate, gate electrode, gate insulating film, source electrode, drain electrode, organic semiconductor layer, and sealing layer are as described above, description thereof is omitted.
  • the electronic paper and display device can have a known structure except that the above-described organic thin film transistor is used for a display unit that displays an image. Omitted. Since the organic thin film transistor described above is excellent in mobility and wiring reliability as described above, it is suitably used for various electronic devices such as electronic paper and display devices.
  • An organic semiconductor composition according to an embodiment of the present invention includes an organic semiconductor material, a compound represented by the following general formula (IV) (hereinafter also referred to as “compound (IV)”), and the above compound. (II) and at least one migration inhibitor selected from the compound (III), and the content of the migration inhibitor is 30% by mass or more and 500% by mass with respect to 100% by mass of the organic semiconductor material. It is characterized by being not more than mass%.
  • the “specific migration inhibitor” refers to a migration inhibitor selected from the compound (IV), the compound (II) and the compound (III).
  • the organic semiconductor composition according to the present embodiment (that is, the organic semiconductor composition according to the second embodiment) is a compound represented by the following general formula (IV) instead of the compound (I) described above as a migration inhibitor. Is different from the organic semiconductor composition according to the first embodiment described above in that it can be selected and that the content of the migration inhibitor is in a specific range.
  • the difference between the organic semiconductor composition according to the present embodiment and the organic semiconductor composition according to the first embodiment will be described in detail.
  • the description is abbreviate
  • the compound (IV) that can be used as the migration inhibitor according to this embodiment is a compound represented by the following general formula (IV).
  • R 1A to R 5A each independently represents a hydrogen atom or a substituent. However, at least one of R 1A to R 5A is —OH, —OR 26 , —SR 27 , —NHCOR 28 , or —NHSO 2 R 29 . R 26 to R 29 each independently represents an alkyl group or an aryl group.
  • Compound (IV) is in the para position (R 1A and R 5A ) when none of the ortho positions (R 1A and R 5A ) corresponds to —OH, —OR 26 , —SR 27 , —NHCOR 28 , or —NHSO 2 R 29. 3A ) may be a structure of —OH or —OR 26 . Specific examples of the compound having such a structure include compounds represented by the following formula (IV-1) and the following formula (IV-2). Thus, compound (IV) is different from compound (I) described above in that it includes the above-described structure.
  • the organic semiconductor composition according to the present embodiment can improve the mobility and the insulation reliability by setting the content of the migration inhibitor to a specific range described later.
  • R 1A and R 5A are —OH, —OR 26 , —SR 27 , —NHCOR 28 or —NHSO 2 R 29 , or R 3A is preferably —SR 27 , —NHCOR 28 or —NHSO 2 R 29 .
  • R 3A is preferably —SR 27 , —NHCOR 28 or —NHSO 2 R 29 .
  • the description is abbreviate
  • Preferable specific examples of the compound (IV) satisfying such conditions include compounds represented by the above formulas (I-1) to (I-16).
  • content of the specific migration inhibitor in this embodiment needs to be 30 mass% or more and 500 mass% or less with respect to 100 mass% of organic-semiconductor material, it is 40 mass% or more and 300 mass% or less. It is preferable that it is 50 mass% or more and 200 mass% or less.
  • the layer separation between the layer derived from the migration inhibitor and the layer derived from the organic semiconductor material occurs satisfactorily by being 30% by mass or more. Thus, a decrease in mobility can be suppressed.
  • the layer separation state of the layer derived from the migration inhibitor and the layer derived from the organic semiconductor material can be favorably maintained by being 500% by mass or less.
  • the content is less than 30% by mass, the layer separation between the layer derived from the migration inhibitor and the layer derived from the organic semiconductor material does not occur well, resulting in a decrease in mobility. Moreover, when it exceeds 500 mass%, the content rate of the migration inhibitor in the layer originating in an organic-semiconductor material will become high too much, and the fall of a mobility will arise.
  • Organic Thin Film Transistor The organic thin film transistor according to one embodiment of the present invention is the first except that it has a semiconductor layer produced using the organic semiconductor composition described above (that is, the organic semiconductor composition according to the second embodiment). Since it is the same as that of the organic thin-film transistor concerning embodiment, the explanation is omitted.
  • the electronic paper and display device according to an embodiment of the present invention are the same as those in the first embodiment except that the above-described organic thin film transistor (organic thin film transistor according to the second embodiment) is used for a display unit that displays an image. Since the electronic paper and display device are the same as those in FIG.
  • Organic semiconductor material a-1 TIPS pentacene (6,13-bis (triisopropylsilylethynyl) pentacene, manufactured by Sigma-Aldrich)
  • A-2 diF-TES-ADT (2,8-difluoro-5,11-bis (triethylsilylethynyl) anthradithiophene, manufactured by Sigma-Aldrich)
  • A-3 PBTTTT-C12 (poly [2,5-bis (3-dodecylthiophen-2-yl) thieno [3,2-b] thiophene], manufactured by Sigma-Aldrich)
  • B Migration inhibitor b-1: 3,5-di-tert-butyl-
  • the oxidation potential (redox potential) was measured. Specifically, a solution in which a supporting electrolyte (tetrabutylammonium perchlorate, manufactured by Tokyo Chemical Industry Co., Ltd.) and a migration inhibitor were dissolved in dimethylformamide at a concentration of 0.1 M, respectively, was analyzed using an electrochemical analyzer VMP3 (Bio-Logic The oxidation potential (the potential at which the current value reached a maximum) was measured by a cyclic voltammetry method (the following measurement conditions) using Science Instruments (manufactured by Science Instruments). The measurement conditions are as follows. The measurement results are shown in Table 1.
  • Example 1 (Preparation of organic semiconductor composition)
  • the obtained organic semiconductor composition is designated as Composition 1.
  • Al serving as a gate electrode was deposited on a glass substrate (Eagle XG: Corning) (thickness: 50 nm).
  • Au was vapor-deposited on the mask to form a source electrode and a drain electrode having a channel length of 25 ⁇ m and a channel width of 180 ⁇ m.
  • the composition 1 was spin coated thereon and baked at 140 ° C. for 15 minutes to form an organic semiconductor layer having a thickness of 100 nm.
  • Cytop CTL-107MK manufactured by AGC
  • encapsulation layer forming composition was spin-coated and baked at 140 ° C. for 20 minutes to form a 2 ⁇ m-thick sealing layer (uppermost layer).
  • An organic thin film transistor (bottom contact type) was obtained. This manufacturing method is referred to as a device manufacturing method 1.
  • Each electrode of the obtained organic thin film transistor was connected to each terminal of a manual prober connected to a semiconductor parameter analyzer (4155C, manufactured by Agilent Technologies) to evaluate a field effect transistor (FET). Specifically, field effect mobility ([cm 2 / V ⁇ sec]) was calculated by measuring drain current-gate voltage (Id-Vg) characteristics. The calculated field effect mobility is defined as ⁇ 1. Further, a comparative composition containing no migration inhibitor was prepared according to the same procedure as described above. Next, an organic thin film transistor was produced according to the same procedure as the production of the organic thin film transistor of Example 1 except that the comparative composition was used instead of the composition 1.
  • T1 / T2 was calculated from the calculated T1 and T2, and evaluated according to the following criteria. The results are shown in Table 2. From the viewpoint of insulation reliability, it is preferably A to C, more preferably A or B, and even more preferably A.
  • Example 2 An organic thin film transistor was produced in the same procedure as in Example 1 except that the following element production method 2 was carried out instead of the above-described element production method 1, and various evaluations were performed in accordance with the same procedure as in Example 1. . The results are summarized in Table 2.
  • Example 2 As shown in Table 2, it was shown that when the organic semiconductor composition of the present invention was used, the mobility and insulation reliability of the organic thin film transistor produced using the composition were good. In particular, according to the comparison of the evaluation results between Example 6 and Example 12, when a low molecular organic semiconductor material is used (Example 6), when a high molecular organic semiconductor is used (Example 12), In comparison, it was shown that the effect of the insulation reliability is more remarkably exhibited. On the other hand, none of the migration inhibitors contained in the compositions of Comparative Examples 1 to 5 correspond to the above-mentioned compounds (I) to (IV). The degree and insulation reliability were shown to be insufficient.
  • the migration inhibitor contained therein did not correspond to the above-mentioned compounds (I) to (III), and the content of the magnesium inhibitor was less than 30% by mass. It has been shown that the mobility and insulation reliability of the organic thin film transistor fabricated using this are insufficient. Further, in the composition of Comparative Example 7, the migration inhibitor contained therein does not correspond to the above-mentioned compounds (I) to (III), and the content of the magnesium inhibitor exceeds 500% by mass. Therefore, it was shown that the mobility and insulation reliability of the organic thin-film transistor produced using this were insufficient.
  • Substrate 20 Gate electrode 30: Gate insulating film 40: Source electrode 42: Drain electrode 50: Organic semiconductor layer 60: Sealing layer 100, 200: Organic thin film transistor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Thin Film Transistor (AREA)

Abstract

 本発明は、移動度の低下を抑制しつつ、絶縁信頼性に優れた有機薄膜トランジスタを作製できる有機半導体組成物、および、これを用いて作製された有機薄膜トランジスタを提供する。また、本発明は、上記有機薄膜トランジスタを含む電子ペーパーおよびディスプレイデバイスを提供する。本発明に係る有機半導体組成物は、有機半導体材料と、下記一般式(I)で表される化合物、下記一般式(II)で表される化合物および下記一般式(III)で表される化合物から選択される少なくとも一種のマイグレーション抑制剤と、を含有する。

Description

有機半導体組成物、有機薄膜トランジスタ、電子ペーパー、ディスプレイデバイス
 本発明は、有機半導体組成物、有機薄膜トランジスタ、電子ペーパー、ディスプレイデバイスに関する。
 従来から、有機半導体材料からなる有機半導体膜(有機半導体層)を有する有機半導体デバイスが広く知られている。このような有機半導体デバイスは、多様な装置に用いられており、特に軽量化、低コスト化、柔軟性に富むという性質を付与することが可能であることから、液晶ディスプレイや有機ELディスプレイに用いられる薄膜トランジスタ(TFT)、RFタグ(RFID、Radio Frequency identifier)、メモリなどの論理回路を用いる装置等に採用されている。
 このような有機半導体デバイスのうち、有機薄膜トランジスタに対する期待が高まる中で、種々の技術が提案されている。
 例えば、特許文献1には、有機機能材料と、溶剤と、酸化防止剤と、を含有する組成物を用いて、有機薄膜トランジスタ用の有機半導体層を形成することが開示されている。このような組成物に含まれる酸化防止剤としては、例えば2,6-ジ-t-ブチル-4-エチルフェノールなどが開示されている。特許文献1の組成物によれば、酸素に起因する物性変化や溶質の析出を抑制できる。
 また、特許文献2には、有機半導体層の酸化劣化を低減するために、酸化防止剤を含有する組成物で有機半導体層を形成した有機薄膜トランジスタが開示されている。より具体的には、特許文献2の実施例では、酸化防止剤として、ヒンダードフェノール系酸化防止剤(長瀬産業社製、商品名「イルガノックス1076」)や、2,2’-メチレンビス(6-tert-ブチル-p-クレゾール(住友化学社製、商品名「スミライザーMDP-S」)などが使用されている。
特開2004-88094号公報 特開2005-5582号公報
 一方で、近年、有機半導体デバイスの性能のより一層の向上が求められており、移動度の低下を抑制しつつ、電極間の絶縁信頼性をより一層向上させることが求められている。特に、電子部品の小型化、高集積化、高性能化などが要求されていることから、金属配線の微細化が進み、エレクトロマイグレーション(以下、単に「マイグレーション」ともいう。)の発生による配線信頼性の低下(すなわち、電極間の絶縁信頼性の低下)が顕著に生じやすい。
 このような中で、上記の特許文献1や特許文献2で開示されている酸化防止剤を含む組成物を用いて有機薄膜トランジスタを作製したところ、有機薄膜トランジスタの移動度や、電極間における絶縁信頼性が不十分であることが明らかとなった。
 本発明の幾つかの態様に係る目的の一つは、移動度の低下を抑制しつつ、絶縁信頼性に優れた有機薄膜トランジスタを作製することができる有機半導体組成物、および、これを用いて作製された有機薄膜トランジスタを提供することある。また、本発明の幾つかの態様に係る目的の一つは、上記有機薄膜トランジスタを含む電子ペーパーおよびディスプレイデバイスを提供することにある。
 本発明者らは、上記課題について鋭意検討した結果、所定のマイグレーション抑制剤を用いることにより、上記課題が解決できることを見出し、本発明に至った。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
 [1]
 有機半導体材料と、
 後述する一般式(I)で表される化合物、後述する一般式(II)で表される化合物および後述する一般式(III)で表される化合物から選択される少なくとも一種のマイグレーション抑制剤と、
を含有する、有機半導体組成物。
 後述する一般式(I)中、R~Rは、それぞれ独立に、水素原子または置換基を表す。ただし、RおよびRのうち少なくとも一方が-OH、-OR26、-SR27、-NHCOR28もしくは-NHSO29である、または、Rが-SR27、-NHCOR28もしくは-NHSO29である。また、R26~R29は、それぞれ独立に、アルキル基またはアリール基を表す。
 後述する一般式(II)中、R~R13は水素原子または置換基を表す。ただし、R~R13のうち少なくとも1つは、-OH、-OR26、-SR27、-NHCOR28、または-NHSO29である。R26~R29は、それぞれ独立に、アルキル基、またはアリール基を表す。R14およびR15は、それぞれ独立に、水素原子、脂肪族基、芳香族基、複素環基、-OH、-OR30、-SR31、または-NR3233を表す。また、R30~R33は、それぞれ独立に、アルキル基またはアリール基を表す。ただし、R14およびR15の両方が同時に、-OH、-OR30、-SR31、および-NR3233から選択される基であることはない。また、R14およびR15は、互いに結合して環を形成してもよい。
 後述する一般式(III)中、R16~R23は、それぞれ独立に、水素原子、脂肪族基、または芳香族基を表す。R24およびR25は、それぞれ独立に、水素原子、脂肪族基、芳香族基、または複素環基を表す。ただし、R24およびR25の両方が同時に、水素原子であることはない。また、R24およびR25は、互いに結合して環を形成してもよい。
 [2]
 有機半導体材料と、
 後述する一般式(IV)で表される化合物、後述する一般式(II)で表される化合物および後述する一般式(III)で表される化合物から選択される少なくとも一種のマイグレーション抑制剤と、
を含有し、
 上記マイグレーション抑制剤の含有量が、上記有機半導体材料100質量%に対して、30質量%以上500質量%以下である、有機半導体組成物。
 後述する一般式(IV)中、R1A~R5Aは、それぞれ独立に、水素原子または置換基を表す。ただし、R1A~R5Aのうち少なくとも1つは、-OH、-OR26、-SR27、-NHCOR28、または-NHSO29である。また、R26~R29は、それぞれ独立に、アルキル基またはアリール基を表す。
 後述する一般式(II)中、R~R13は水素原子または置換基を表す。ただし、R~R13のうち少なくとも1つは、-OH、-OR26、-SR27、-NHCOR28、または-NHSO29である。R26~R29は、それぞれ独立に、アルキル基またはアリール基を表す。R14およびR15は、それぞれ独立に、水素原子、脂肪族基、芳香族基、複素環基、-OH、-OR30、-SR31、または-NR3233を表す。また、R30~R33は、それぞれ独立に、アルキル基またはアリール基を表す。ただし、R14およびR15の両方が同時に、-OH、-OR30、-SR31、-NR3233から選択される基であることはない。また、R14およびR15は、互いに結合して環を形成してもよい。
 後述する一般式(III)中、R16~R23は、それぞれ独立に、水素原子、脂肪族基、または芳香族基を表す。R24およびR25は、それぞれ独立に、水素原子、脂肪族基、芳香族基、または複素環基を表す。ただし、R24およびR25の両方が同時に、水素原子であることはない。また、R24およびR25は、互いに結合して環を形成してもよい。
 [3]
 上記有機半導体材料の化学構造が、繰り返し単位を有さない、上記[1]または[2]に記載の有機半導体組成物。
 [4]
 上記[1]ないし[3]のいずれかに記載の有機半導体組成物を使用して作製される有機半導体層を有する、有機薄膜トランジスタ。
 [5]
 さらに、ソース電極と、ドレイン電極と、ゲート電極と、を有し、
 上記ソース電極、上記ドレイン電極および上記ゲート電極のうち、少なくとも一つの電極が、銀を含む材料で構成される、上記[4]に記載の有機薄膜トランジスタ。
 [6]
 上記[4]または[5]に記載の有機薄膜トランジスタを含む、電子ペーパー。
 [7]
 上記[4]または[5]に記載の有機薄膜トランジスタを含む、ディスプレイデバイス。
 本発明によれば、移動度の低下を抑制しつつ、絶縁信頼性に優れた有機薄膜トランジスタを作製できる有機半導体組成物、および、これを用いて作製された有機薄膜トランジスタを提供できる。また、本発明によれば、上記有機薄膜トランジスタを含む電子ペーパーおよびディスプレイデバイスを提供できる。
本発明の一実施形態に係るボトムコンタクト型の有機薄膜トランジスタの断面模式図。 本発明の一実施形態に係るトップコンタクト型の有機薄膜トランジスタの断面模式図。
 以下に本発明の好適な実施形態について説明する。以下に説明する実施形態は、本発明の一例を説明するものである。また、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含む。
 本明細書の基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 1.第1実施形態
 1.1.有機半導体組成物
 本発明の一実施形態に係る有機半導体組成物は、有機半導体材料と、下記一般式(I)で表される化合物、下記一般式(II)で表される化合物および下記一般式(III)で表される化合物から選択される少なくとも一種のマイグレーション抑制剤と、を含有することを特徴とする。
 以下、本実施形態の有機半導体組成物に含まれる成分および含まれ得る成分について、詳細に説明する。
 1.1.1.有機半導体材料
 本実施形態に係る有機半導体組成物は、有機半導体材料を含有する。有機半導体材料は、半導体としての性質を示す材料である。
 有機半導体材料としては、有機トランジスタの有機半導体層の形成に用いられる公知の材料を何れも用いてもよい。このような有機半導体材料は、例えば、化学構造中に繰り返し単位を有さない有機半導体材料(以下、「低分子有機半導体材料」ともいう。)と、化学構造中に繰り返し単位を有する有機半導体材料(以下、「高分子有機半導体材料」ともいう。)と、に分類することができる。
 なお、繰り返し単位を有さないとは、所定の繰り返し構造(重合性化合物(ポリマー)由来の構造)を複数有していないことを意味する。
 低分子有機半導体材料としては、例えば、6,13-ビス(トリイソプロピルシリルエチニル)ペンタセン(TIPSペンタセン)、テトラメチルペンタセン、パーフルオロペンタセン等のペンタセン類、5,11-ビス(トリエチルシリルエチニル)アントラジチオフェン(TES-ADT)、2,8-ジフルオロ-5,11-ビス(トリエチルシリルエチニル)アントラジチオフェン(diF-TES-ADT)等のアントラジチオフェン類、ジフェニルベンゾチエノベンゾチオフェン(DPh-BTBT)、アルキルベンゾチエノベンゾチオフェン(Cn-BTBT)等のベンゾチエノベンゾチオフェン類、アルキルジナフトチエノチオフェン(Cn-DNTT)等のジナフトチエノチオフェン類、ペリキサンテノキサンテン等のジオキサアンタントレン類、ルブレン類、C60、フェニルC61酪酸メチルエステル(PCBM)等のフラーレン類、銅フタロシアニン、フッ素化銅フタロシアニン等のフタロシアニン類などが挙げられる。
 低分子有機半導体材料の分子量としては、特に限定されるものではないが、例えば2000以下である。
 高分子有機半導体材料としては、例えば、ポリ(3-ヘキシルチオフェン)(P3RT)、ポリクアテルチオフェン(PQT)、ポリ(3-ヘキシルチオフェン)(P3HT)等のポリチオフェン類、ポリ[2,5-ビス(3-ドデシルチオフェン-2-イル)チエノ[3,2-b]チオフェン](PBTTT)等のポリチエノチオフェン類等が挙げられる。
 高分子有機半導体材料の数平均分子量としては、特に限定されるものではないが、例えば2000を超える数平均分子量である。
 なお、本発明における重量平均分子量および数平均分子量の測定は、下記条件で、GPC(ゲルパーミエーションクロマトグラフィー)を用いて行う。
装置:東ソー社製 HLC-8320GPC
カラム:東ソー社製 TSK-GEL G3000PWXL
カラム温度:35℃
流速:0.5mL/min
検量線:創和科学社製 POLY SODIUM ACRYLATE STANDARD
溶離液:リン酸二水素ナトリウム12水和物/リン酸水素二ナトリウム2水和物(34.5g/46.2g)の混合物を純水にて5000gに希釈した溶液。
 ここで、有機半導体層が吸湿した状態で電圧を印加すると、電極から金属イオンが発生しやすくなり、マイグレーションの発生が顕著になりやすい。特に、上述した有機半導体材料のうち、低分子有機半導体材料を用いて形成された有機半導体層は、高分子有機半導体材料を用いて形成された有機半導体層よりも、吸湿性が高い。このような問題に対して、本実施形態に係る有機半導体組成物によれば、吸湿性の高い低分子有機半導体材料を含有する場合であっても、後述する特定のマイグレーション抑制剤の作用によってマイグレーションの発生を十分に抑制できる。したがって、低分子有機半導体材料は、本発明の効果が顕著に表れるという点で好ましく使用できる。
 有機半導体材料の含有量は、後述する有機半導体層を形成できるのであれば特に限定されるものではないが、取扱いが容易になる等の観点から、例えば、有機半導体組成物の全質量(100質量%)に対して、0.5~70質量%が好ましく、1~50質量%がより好ましい。
 1.1.2.マイグレーション抑制剤
 本実施形態に係る有機半導体組成物は、下記一般式(I)で表される化合物(以下、「化合物(I)」ともいう。)、下記一般式(II)で表される化合物(以下、「化合物(II)」ともいう。)および下記一般式(III)で表される化合物(以下、「化合物(III)」ともいう。)から選択される少なくとも一種のマイグレーション抑制剤を含有する。
 本発明におけるマイグレーションとは、金属などの導電性物質がイオン化して、イオンが移動(マイグレーション)することを表す。マイグレーション抑制剤とは、これに限定されるものではないが、マイグレーションを抑制する機能を備えるものを表す。
 本実施形態に係る有機半導体組成物は、化合物(I)~(III)の少なくとも一種のマイグレーション抑制剤(以下、「特定のマイグレーション抑制剤」ともいう。)を含有することで、移動度の低下を抑制しつつ、絶縁信頼性に優れた有機薄膜トランジスタを形成できる。以下、このような効果を生み出すメカニズムを詳述する。
 有機薄膜トランジスタにおける有機半導体層が吸湿した状態で電圧を印加すると、電極から金属イオンが発生して、マイグレーションが生じやすくなる。特に、有機半導体層の吸湿は他の層(または空気)との界面で生じやすく、溶出した金属イオンが界面付近に移動する結果、有機半導体層の界面付近で電極に由来する金属が析出して、マイグレーションが生じる。
 一方、特許文献1に記載されているような酸化防止剤を有機半導体組成物に添加した場合、酸化防止剤と有機半導体材料との相溶性が高いため、有機半導体層の結晶成長を阻害したり、酸化防止剤自体がキャリアトラップとなり、移動度の低下を引き起こす。
 以下では、まず、化合物(I)および化合物(II)を用いた際のメカニズムについて詳述する。
 化合物(I)および化合物(II)は、多くの極性基を有することから電極との相互作用が良好であり、電極に吸着しやすい。このように電極に吸着した化合物(I)および化合物(II)が金属イオンを還元することにより、マイグレーションの発生を効果的に抑制できる。
 また、化合物(I)および(II)が有機半導体層の電極付近に存在しやすくなることから、有機半導体組成物により形成される層(有機半導体層)は、化合物(I)および化合物(II)を主体とする層と、有機半導体材料を主体とする層と、に層分離した状態で形成されやすくなる。これにより、化合物(I)および化合物(II)が有機半導体材料の結晶成長を阻害したり、キャリアトラップとなりにくくなり、有機薄膜トランジスタの移動度の低下を抑制できる。
 次に、化合物(III)を用いた際のメカニズムについて説明する。
 化合物(III)は、疎水性であるため、有機半導体層の界面(特に上方)に存在しやすい。その結果、有機半導体層の界面付近で生じやすい吸湿を抑制できるため、マイグレーションの発生を効果的に抑制できる。
 また、化合物(III)が有機半導体の界面に存在しやすくなることから、有機半導体組成物により形成される層(有機半導体層)は、化合物(III)を主体とする層と、有機半導体材料を主体とする層と、に層分離した状態で形成されやすくなる。これにより、化合物(III)が有機半導体材料の結晶成長を阻害したり、キャリアトラップとなりにくくなり、有機薄膜トランジスタの移動度の低下を抑制できる。
 上述した特定のマイグレーション抑制剤は、1種単独で用いてもよいし、2種以上併用してもよいが、化合物(I)および化合物(II)から選択される少なくとも一種の化合物と、化合物(III)と、を併用すると、化合物(I)および(II)の電極に吸着しやすいという性質と、化合物(III)の疎水性である性質と、が相乗的に作用して、移動度および絶縁信頼性が一層向上する場合がある。
Figure JPOXMLDOC01-appb-C000007
 上記一般式(I)中、R~Rは、それぞれ独立に、水素原子または置換基を表す。ただし、RおよびRのうち少なくとも一方が-OH、-OR26、-SR27、-NHCOR28もしくは-NHSO29である、または、Rが-SR27、-NHCOR28もしくは-NHSO29である。また、R26~R29は、それぞれ独立に、アルキル基またはアリール基を表す。
 上記置換基としては、ハロゲン原子、アルキル基(シクロアルキル基を含む)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基、アリールオキシ基、シリルオキシ基、複素環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ、アミノ基(アニリノ基を含む)、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルおよびアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基、スルファモイル基、スルホ基、アルキルおよびアリールスルフィニル基、アルキルおよびアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリールおよび複素環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、シリル基、またはこれらの組み合わせが挙げられる。
 さらに詳しくは、置換基としては、
ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子)、
アルキル基〔直鎖、分岐、環状の置換または無置換のアルキル基を表す。それらは、アルキル基(好ましくは炭素数1から30のアルキル基、例えば、メチル、エチル、n-プロピル、イソプロピル、t-ブチル、n-オクチル、エイコシル、2-クロロエチル、2-シアノエチル、2-エチルヘキシル)、シクロアルキル基(好ましくは、炭素数3から30の置換または無置換のシクロアルキル基、例えば、シクロヘキシル、シクロペンチル、4-n-ドデシルシクロヘキシル)、ビシクロアルキル基(好ましくは、炭素数5から30の置換または無置換のビシクロアルキル基、つまり、炭素数5から30のビシクロアルカンから水素原子を一個取り去った一価の基である。例えば、ビシクロ[1.2.2]ヘプタン-2-イル、ビシクロ[2.2.2]オクタン-3-イル)、さらに環構造が多いトリシクロ構造なども包含するものである。以下に説明する置換基の中のアルキル基(例えばアルキルチオ基のアルキル基)もこのような概念のアルキル基を表す。〕、
アルケニル基〔直鎖、分岐、環状の置換または無置換のアルケニル基を表す。それらは、アルケニル基(好ましくは炭素数2から30の置換または無置換のアルケニル基、例えば、ビニル、アリル、プレニル、ゲラニル、オレイル)、シクロアルケニル基(好ましくは、炭素数3から30の置換または無置換のシクロアルケニル基、つまり、炭素数3から30のシクロアルケンの水素原子を一個取り去った一価の基である。例えば、2-シクロペンテン-1-イル、2-シクロヘキセン-1-イル)、ビシクロアルケニル基(置換または無置換のビシクロアルケニル基、好ましくは、炭素数5から30の置換または無置換のビシクロアルケニル基、つまり二重結合を一個持つビシクロアルケンの水素原子を一個取り去った一価の基である。例えば、ビシクロ[2.2.1]ヘプト-2-エン-1-イル、ビシクロ[2.2.2]オクト-2-エン-4-イル)を包含するものである。〕、
アルキニル基(好ましくは、炭素数2から30の置換または無置換のアルキニル基、例えば、エチニル、プロパルギル、トリメチルシリルエチニル基)、
アリール基(好ましくは炭素数6から30の置換または無置換のアリール基、例えばフェニル、p-トリル、ナフチル、m-クロロフェニル、o-ヘキサデカノイルアミノフェニル)、
複素環基(好ましくは5または6員の置換または無置換の、芳香族または非芳香族の複素環化合物から一個の水素原子を取り除いた一価の基であり、さらに好ましくは、炭素数3から30の5員または6員の芳香族の複素環基である。例えば、2-フラニル、2-チエニル、2-ピリミジニル、2-ベンゾチアゾリニル)、
シアノ基、
ヒドロキシル基、
ニトロ基、
カルボキシル基、
アルコキシ基(好ましくは、炭素数1から30の置換もしくは無置換のアルコキシ基、例えば、メトキシ、エトキシ、イソプロポキシ、t-ブトキシ、n-オクチルオキシ、2-メトキシエトキシ)、
アリールオキシ基(好ましくは、炭素数6から30の置換または無置換のアリールオキシ基、例えば、フェノキシ、2-メチルフェノキシ、4-t-ブチルフェノキシ、3-ニトロフェノキシ、2-テトラデカノイルアミノフェノキシ)、
シリルオキシ基(好ましくは、炭素数3から20のシリルオキシ基、例えば、トリメチルシリルオキシ、t-ブチルジメチルシリルオキシ)、
複素環オキシ基(好ましくは、炭素数2から30の置換または無置換の複素環オキシ基、1-フェニルテトラゾール-5-オキシ、2-テトラヒドロピラニルオキシ)、
アシルオキシ基(好ましくはホルミルオキシ基、炭素数2から30の置換または無置換のアルキルカルボニルオキシ基、炭素数6から30の置換または無置換のアリールカルボニルオキシ基、例えば、ホルミルオキシ、アセチルオキシ、ピバロイルオキシ、ステアロイルオキシ、ベンゾイルオキシ、p-メトキシフェニルカルボニルオキシ)、
カルバモイルオキシ基(好ましくは、炭素数1から30の置換または無置換のカルバモイルオキシ基、例えば、N,N-ジメチルカルバモイルオキシ、N,N-ジエチルカルバモイルオキシ、モルホリノカルボニルオキシ、N,N-ジ-n-オクチルアミノカルボニルオキシ、N-n-オクチルカルバモイルオキシ)、
アルコキシカルボニルオキシ基(好ましくは、炭素数2から30の置換または無置換アルコキシカルボニルオキシ基、例えばメトキシカルボニルオキシ、エトキシカルボニルオキシ、t-ブトキシカルボニルオキシ、n-オクチルカルボニルオキシ)、
アリールオキシカルボニルオキシ基(好ましくは、炭素数7から30の置換または無置換のアリールオキシカルボニルオキシ基、例えば、フェノキシカルボニルオキシ、p-メトキシフェノキシカルボニルオキシ、p-n-ヘキサデシルオキシフェノキシカルボニルオキシ)、
アミノ基(好ましくは、アミノ基、炭素数1から30の置換または無置換のアルキルアミノ基、炭素数6から30の置換または無置換のアニリノ基、例えば、アミノ、メチルアミノ、ジメチルアミノ、アニリノ、N-メチル-アニリノ、ジフェニルアミノ)、
アシルアミノ基(好ましくは、ホルミルアミノ基、炭素数1から30の置換または無置換のアルキルカルボニルアミノ基、炭素数6から30の置換または無置換のアリールカルボニルアミノ基、例えば、ホルミルアミノ、アセチルアミノ、ピバロイルアミノ、ラウロイルアミノ、ベンゾイルアミノ、3,4,5-トリ-n-オクチルオキシフェニルカルボニルアミノ)、
アミノカルボニルアミノ基(好ましくは、炭素数1から30の置換または無置換のアミノカルボニルアミノ、例えば、カルバモイルアミノ、N,N-ジメチルアミノカルボニルアミノ、N,N-ジエチルアミノカルボニルアミノ、モルホリノカルボニルアミノ)、
アルコキシカルボニルアミノ基(好ましくは炭素数2から30の置換または無置換アルコキシカルボニルアミノ基、例えば、メトキシカルボニルアミノ、エトキシカルボニルアミノ、t-ブトキシカルボニルアミノ、n-オクタデシルオキシカルボニルアミノ、N-メチルーメトキシカルボニルアミノ)、
アリールオキシカルボニルアミノ基(好ましくは、炭素数7から30の置換または無置換のアリールオキシカルボニルアミノ基、例えば、フェノキシカルボニルアミノ、p-クロロフェノキシカルボニルアミノ、m-n-オクチルオキシフェノキシカルボニルアミノ)、
スルファモイルアミノ基(好ましくは、炭素数0から30の置換または無置換のスルファモイルアミノ基、例えば、スルファモイルアミノ、N,N-ジメチルアミノスルホニルアミノ、N-n-オクチルアミノスルホニルアミノ)、
アルキルおよびアリールスルホニルアミノ基(好ましくは炭素数1から30の置換または無置換のアルキルスルホニルアミノ、炭素数6から30の置換または無置換のアリールスルホニルアミノ、例えば、メチルスルホニルアミノ、ブチルスルホニルアミノ、フェニルスルホニルアミノ、2,3,5-トリクロロフェニルスルホニルアミノ、p-メチルフェニルスルホニルアミノ)、
メルカプト基、
アルキルチオ基(好ましくは、炭素数1から30の置換または無置換のアルキルチオ基、例えば、メチルチオ、エチルチオ、n-ヘキサデシルチオ)、
アリールチオ基(好ましくは炭素数6から30の置換または無置換のアリールチオ、例えば、フェニルチオ、p-クロロフェニルチオ、m-メトキシフェニルチオ)、
複素環チオ基(好ましくは炭素数2から30の置換または無置換の複素環チオ基、例えば、2-ベンゾチアゾリルチオ、1-フェニルテトラゾール-5-イルチオ)、
スルファモイル基(好ましくは炭素数0から30の置換または無置換のスルファモイル基、例えば、N-エチルスルファモイル、N-(3-ドデシルオキシプロピル)スルファモイル、N,N-ジメチルスルファモイル、N-アセチルスルファモイル、N-ベンゾイルスルファモイル、N-(N‘-フェニルカルバモイル)スルファモイル)、
スルホ基、
アルキルおよびアリールスルフィニル基(好ましくは、炭素数1から30の置換または無置換のアルキルスルフィニル基、炭素数6から30の置換または無置換のアリールスルフィニル基、例えば、メチルスルフィニル、エチルスルフィニル、フェニルスルフィニル、p-メチルフェニルスルフィニル)、
アルキルおよびアリールスルホニル基(好ましくは、炭素数1から30の置換または無置換のアルキルスルホニル基、炭素数6から30の置換または無置換のアリールスルホニル基、例えば、メチルスルホニル、エチルスルホニル、フェニルスルホニル、p-メチルフェニルスルホニル)、
アシル基(好ましくはホルミル基、炭素数2から30の置換または無置換のアルキルカルボニル基、炭素数7から30の置換または無置換のアリールカルボニル基、炭素数4から30の置換または無置換の炭素原子でカルボニル基と結合している複素環カルボニル基、例えば、アセチル、ピバロイル、2-クロロアセチル、ステアロイル、ベンゾイル、p-n-オクチルオキシフェニルカルボニル、2-ピリジルカルボニル、2-フリルカルボニル)、
アリールオキシカルボニル基(好ましくは、炭素数7から30の置換または無置換のアリールオキシカルボニル基、例えば、フェノキシカルボニル、o-クロロフェノキシカルボニル、m-ニトロフェノキシカルボニル、p-t-ブチルフェノキシカルボニル)、
アルコキシカルボニル基(好ましくは、炭素数2から30の置換または無置換アルコキシカルボニル基、例えば、メトキシカルボニル、エトキシカルボニル、t-ブトキシカルボニル、n-オクタデシルオキシカルボニル)、
カルバモイル基(好ましくは、炭素数1から30の置換または無置換のカルバモイル、例えば、カルバモイル、N-メチルカルバモイル、N,N-ジメチルカルバモイル、N,N-ジ-n-オクチルカルバモイル、N-(メチルスルホニル)カルバモイル)、
アリールおよび複素環アゾ基(好ましくは炭素数6から30の置換または無置換のアリールアゾ基、炭素数3から30の置換または無置換の複素環アゾ基、例えば、フェニルアゾ、p-クロロフェニルアゾ、5-エチルチオ-1,3,4-チアジアゾール-2-イルアゾ)、
イミド基(好ましくは、N-スクシンイミド、N-フタルイミド)、
ホスフィノ基(好ましくは、炭素数2から30の置換または無置換のホスフィノ基、例えば、ジメチルホスフィノ、ジフェニルホスフィノ、メチルフェノキシホスフィノ)、
ホスフィニル基(好ましくは、炭素数2から30の置換または無置換のホスフィニル基、例えば、ホスフィニル、ジオクチルオキシホスフィニル、ジエトキシホスフィニル)、
ホスフィニルオキシ基(好ましくは、炭素数2から30の置換または無置換のホスフィニルオキシ基、例えば、ジフェノキシホスフィニルオキシ、ジオクチルオキシホスフィニルオキシ)、
ホスフィニルアミノ基(好ましくは、炭素数2から30の置換または無置換のホスフィニルアミノ基、例えば、ジメトキシホスフィニルアミノ、ジメチルアミノホスフィニルアミノ)、
シリル基(好ましくは、炭素数3から30の置換または無置換のシリル基、例えば、トリメチルシリル、t-ブチルジメチルシリル、フェニルジメチルシリル)を表わす。
 上記の置換基の中で、水素原子を有するものは、これを取り去りさらに上記の基で置換されていてもよい。そのような置換基の例としては、アルキルカルボニルアミノスルホニル基、アリールカルボニルアミノスルホニル基、アルキルスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基などが挙げられる。その例としては、メチルスルホニルアミノカルボニル、p-メチルフェニルスルホニルアミノカルボニル、アセチルアミノスルホニル、ベンゾイルアミノスルホニル基などが挙げられる。
 本発明において「置換基」とは、上記の意味を表す。
 本発明において、単に「アルキル基」、「アリール基」という場合には、特に断りのない限り、それぞれ、置換基を有してもよいアルキル基(すなわち、置換もしくは無置換のアルキル基)、置換基を有してもよいアリール基(すなわち、置換もしくは無置換のアリール基)、を表すものとする。
 本発明において、単に「脂肪族基」、「芳香族基」、「複素環基」という場合には、特に断りのない限り、それぞれ、置換基を有してもよい脂肪族基(すなわち、置換もしくは無置換の脂肪族基)、置換基を有してもよい芳香族基(すなわち、置換もしくは無置換の芳香族基)、置換基を有してもよい複素環基(すなわち、置換もしくは無置換の複素環基)、を表すものとする。
 なお、置換基を有するアルキル基(すなわち、置換のアルキル基)には、無置換のアルキル基で置換されたアルキル基(例えば、tert-ブチル基など)は除くものとし、無置換のアルキル基で置換されたアルキル基は「無置換のアルキル基」に分類する。
 R26~R29におけるアルキル基およびアリール基については、それぞれ、上述した置換基におけるアルキル基およびアリール基に関する説明を適用できるので、その説明を省略する。
 化合物(I)は、RおよびRのうち少なくとも1つが-OH、-OR26、-SR27、-NHCOR28もしくは-NHSO29であること、または、Rが-SR27、-NHCOR28もしくは-NHSO29であること、を満たす。
 一般式(I)のオルト位であるRおよびRの少なくとも一方が、特定の極性基(-OH、-OR26、-SR27、-NHCOR28もしくは-NHSO29)であることで、電極との相互作用が良好になるため、有機薄膜トランジスタの絶縁信頼性が優れたものとなる。
 RおよびRのうち少なくとも1つは、上記の特定の極性基の中でも、-OHまたは-OR26であることが好ましい。また、R26としては、アルキル基であることがより好ましく、無置換のアルキル基であることがさらに好ましく、炭素数1~12の無置換のアルキル基であることが特に好ましい。これにより、電極との相互作用が一層良好になる傾向にある。
 一般式(I)のRおよびRの少なくとも一方が特定の極性基である場合には、R~Rのうち少なくとも一つが上述した置換基であることが好ましく、Rが上述した置換基であることがより好ましい。この場合、R~Rとしては、非極性基(例えば、無置換のアルキル基、無置換のアリール基)であることが好ましい。
 一般式(I)のパラ位であるRが、特定の極性基(-SR27、-NHCOR28もしくは-NHSO29)であると、電極との相互作用が一層良好になり、有機半導体材料を主体とする層と層分離した状態で形成されやすくなるため、有機半導体組成物により作製された有機薄膜トランジスタの移動度が優れたものとなる。また、酸化電位が低下して金属イオンを還元しやすくなるため、絶縁信頼性が向上する傾向にある。
 Rが-SR27である場合には、R27は、アルキル基であることがさらに好ましい。
 また、Rが-NHCOR28または-NHSO29である場合には、R28およびR29は、アルキル基であることが好ましく、無置換のアルキル基であることがより好ましく、炭素数1~12の無置換のアルキル基であることがさらに好ましい。
 上記の化合物(I)の好ましい具体例としては、下記式(I-1)~(I-16)で表される化合物が挙げられる。なお、式中「Me」はメチル基を表す。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 上記一般式(II)中、R~R13は水素原子または置換基を表す。ただし、R~R13のうち少なくとも1つは、-OH、-OR26、-SR27、-NHCOR28、または-NHSO29である。R26~R29は、それぞれ独立に、アルキル基またはアリール基を表す。R14およびR15は、それぞれ独立に、水素原子、脂肪族基、芳香族基、複素環基、-OH、-OR30、-SR31、または-NR3233を表す。また、R30~R33は、それぞれ独立に、アルキル基、または、アリール基を表す。ただし、R14およびR15の両方が同時に、-OH、-OR30、-SR31、-NR3233から選択される基であることはない。また、R14およびR15は、互いに結合して環を形成してもよい。
 一般式(II)における置換基、アルキル基、アリール基については、上述の一般式(I)における説明を適用できるので、その説明を省略する。
 脂肪族基としては、アルキル基(シクロアルキル基を含む)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基等が挙げられる。これらの基の具体例については、上述の一般式(I)における説明を適用できるので、その説明を省略する。
 芳香族基としては、アリール基等が挙げられる。アリール基の具体例については、上述の一般式(I)における説明を適用できるので、その説明を省略する。
 複素環基の具体例については、上述の一般式(I)における説明を適用できるので、その説明を省略する。
 一般式(II)においてR~R13のうち少なくとも1つは、-OH、-OR26、-SR27、-NHCOR28、または-NHSO29であるが、-OR26、-OHであることが好ましく、-OR26であることがより好ましい。
 R~R13のうち少なくとも1つは、上記の特定の官能基であるが、絶縁信頼性および移動度をより高いレベルで満たすことができるという観点から、RおよびR13のうち少なくとも一方が-OH、-OR26、-SR27、-NHCOR28、または-NHSO29であることが好ましく、RおよびR13の両方が同時に-OH、-OR26、-SR27、-NHCOR28、または-NHSO29であることがより好ましい。
 R26~R29は、それぞれ独立に、アルキル基またはアリール基を表すが、無置換のアルキル基または無置換のアリール基であることが好ましく、無置換のアルキル基であることがより好ましく、炭素数1~12の無置換のアルキル基であることがさらに好ましい。
 R14およびR15は、それぞれ独立に、水素原子、脂肪族基、芳香族基であることが好ましく、水素原子、無置換の脂肪族基、無置換の芳香族基であることがより好ましく、水素原子、無置換の脂肪族基であることがさらに好ましい。このような脂肪族基としては、アルキル基であることが好ましく、炭素数1~12のアルキル基であることがより好ましい。これにより、絶縁信頼性および移動度の両性能を高いレベルで満たすことができる。
 R14およびR15は、互いに結合して環を形成していてもよく、この場合には、その構造中に単結合、2重結合および3重結合のいずれかの結合形式を含むものであってもよい。
 ここで、R14およびR15は、両方が同時に、-OH、-OR30、-SR31、-NR3233から選択される基であることはない。R14およびR15の両方が同時に上記の基であると、絶縁信頼性および移動度の少なくとも一方が低下するおそれがある。
 上記の化合物(II)の好ましい具体例としては、下記式(II-1)~(II-11)で表される化合物が挙げられる。なお、式中「Me」はメチル基を表す。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 上記一般式(III)中、R16~R23は、それぞれ独立に、水素原子、脂肪族基または芳香族基を表す。R24およびR25は、それぞれ独立に、水素原子、脂肪族基、芳香族基または複素環基を表す。ただし、R24およびR25の両方が同時に、水素原子であることはない。また、R24およびR25は、互いに結合して環を形成してもよい。
 一般式(III)における脂肪族基としては、アルキル基(シクロアルキル基を含む)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基等が挙げられる。これらの基の具体例については、上述の一般式(I)における説明を適用できるので、その説明を省略する。
 芳香族基としては、アリール基等が挙げられる。アリール基の具体例については、上述の一般式(I)における説明を適用できるので、その説明を省略する。
 複素環基の具体例については、上述の一般式(I)における説明を適用できるので、その説明を省略する。
 R16~R23は、それぞれ独立に、水素原子、脂肪族基または芳香族基を表すが、水素原子、無置換の脂肪族基または無置換の芳香族基であることが好ましい。
 また、絶縁信頼性および移動度をより高いレベルで満たすことができるという観点から、R16およびR23の両方が同時に、水素原子、脂肪族基または芳香族基であることが好ましく、水素原子、無置換の脂肪族基または無置換の芳香族基であることがより好ましく、無置換の脂肪族基であることがさらに好ましい。このような脂肪族基としては、アルキル基であることが好ましく、炭素数1~12のアルキル基であることがより好ましい。
 R24およびR25は、それぞれ独立に、水素原子、脂肪族基、芳香族基または複素環基であるが、水素原子、無置換の脂肪族基、無置換の芳香族基または無置換の複素環基であることがより好ましく、水素原子、無置換の脂肪族基であることがさらに好ましい。このような脂肪族基としては、アルキル基であることが好ましく、炭素数3~12のアルキル基であることがより好ましい。これにより、絶縁信頼性および移動度の両性能を高いレベルで満たすことができる。
 R24およびR25は、互いに結合して環を形成していてもよく、この場合には、その構造中に単結合、2重結合および3重結合のいずれかの結合形式を含むものであってもよい。
 ここで、R24およびR25の両方が同時に、水素原子であることはない。R24およびR25の両方が同時に水素原子であると、化合物(III)が十分な疎水性を有さなくなり、絶縁信頼性および移動度の両性能が低下する。
 上記の化合物(III)の好ましい具体例としては、下記式(III-1)~(III-11)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 上述した特定のマイグレーション抑制剤のうち、酸化電位が0.4V以上1.6V以下であるものを用いることが好ましく、0.5V以上1.1V未満であるものを用いることがより好ましい。酸化還元電位が上記範囲内にあると、金属イオンを還元する能力が一層高まり、絶縁信頼性がより向上する傾向にある。また、酸化還元電位が0.4V以上であることで、マイグレーション抑制剤の加熱による分解が抑制されるので(すなわち、熱安定性に優れるので)、有機薄膜トランジスタの製造時の加熱(後述)による影響を受けにくく、その性能が良好に発揮される。
 ここで、本発明における酸化還元電位は、サイクリックボルタモメトリー法にしたがって、電子化学アナライザーVMP3(Bio-Logic Science Instruments社製)に準ずる装置を用いて測定することができる。
 上記の特定のマイグレーション抑制剤の含有量は、有機半導体材料100質量%に対して、30質量%以上500質量%以下であることが好ましく、40質量%以上300質量%以下であることがより好ましく、50質量%以上200質量%以下であることがさらに好ましい。30質量%以上であることで、有機半導体組成物を用いて有機半導体層を形成する際に、マイグレーション抑制剤に由来する層と、有機半導体材料に由来する層と、の層分離を良好に生じさせることができるので、移動度の低下を抑制できる。同様に、500質量%以下であることで、マイグレーション抑制剤に由来する層と、有機半導体材料に由来する層と、の層分離状態を良好に維持できる。
 上述の化合物(I)、化合物(II)および化合物(III)はいずれも、従来公知の合成方法によって合成することができる。例えば、化合物(I)については、米国特許第5002967号明細書、化合物(II)については、Environmental Science and Technology,1994,vol.28,#4 p.573-576、化合物(III)については、Journal of the American Chemical Society,1952,vol.74,p.3410、等に記載の方法にしたがって合成できる。
 1.1.3.その他の成分
 本実施形態に係る有機半導体組成物は、本発明の効果を損なわない範囲で、必要に応じて、各種添加剤を含有してもよい。
 このような添加剤の一つとしては、例えばポリマーが挙げられる。ポリマーは、有機半導体組成物の粘度を適正な範囲に保つことを目的の一つとして加えられる。ポリマーの種類としては、特に限定されず公知のポリマーを用いることができるが、例えば、ポリスチレン樹脂、アクリル樹脂、ゴム、熱可塑性エラストマー等を用いることができる。
 中でも、ポリマーとしては、ベンゼン環を有する高分子化合物(ベンゼン環基を有する単量体単位を有する高分子)が好ましい。ベンゼン環基を有する単量体単位の含有量は特に制限されないが、全単量体単位中、50モル%以上が好ましく、70モル%以上がより好ましく、90モル%以上がさらに好ましい。上限は特に制限されないが、100モル%以下である。
 ベンゼン環を有する高分子化合物としては、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルシンナメート、ポリ(4-ビニルフェニル)、ポリ(4-メチルスチレン)などが挙げられる。
 ポリマーの重量平均分子量は、特に制限されないが、1,000~200万が好ましく、3,000~150万がより好ましく、10万~100万がさらに好ましい。
 また、後述する溶媒を用いる場合、使用する溶媒に対するポリマーの溶解度が、有機半導材料の溶媒に対する溶解度よりも高いことが好ましい。これにより、有機薄膜トランジスタの移動度や熱安定性が良好となる傾向にある。
 ポリマーを含有する場合の含有量は、有機半導体材料100質量部に対し、1~200質量部であることが好ましく、10~150質量部であることがより好ましく、20~120質量部であることが更に好ましい。上記範囲にあると、有機薄膜トランジスタの移動度や経時安定性が良好となる傾向にある。
 また、本実施形態に係る有機半導体組成物は、これの取り扱い性を良好にしたり、塗布により有機半導体層を形成する際の塗布性を向上するなどの観点から、溶媒を含有してもよい。このような溶媒としては、例えば、アルコール類(例えば、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、ブタノールなど)、ケトン類(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなど)、エステル類(例えば、酢酸エチル、酢酸イソブチル、オキシ酢酸メチル、3-エトキシプロピオン酸エチル、ピルビン酸プロピルなど)、エーテル類(例えば、エチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、メチルセロソルブアセテートなど)、芳香族炭化水素類(例えば、トルエン、キシレン等、また、アセトニトリル、γ―ブチロラクトン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミドなど)等の有機溶媒を用いることができる。
 溶媒を添加する場合には、有機半導体組成物中の有機半導体材料の濃度が0.1質量%以上50質量%以下となるように溶媒を添加することが好ましく、1質量%以上10質量%以下となるように溶媒を添加することが好ましい。
 本実施形態に係る有機半導体組成物は、例えば、界面活性剤等、有機半導体組成物に通常用いられる添加剤を含有してもよい。
 1.1.4.調製方法
 本実施形態に係る有機半導体組成物は、上述した各成分を混合、攪拌することにより調製することができ、その方法は特に限定されるものでない。
 1.2.有機薄膜トランジスタ
 上述した有機半導体組成物は、有機薄膜トランジスタ、有機ELおよび有機薄膜太陽電池などの有機半導体層を形成する組成物として好適であり、なかでも、有機薄膜トランジスタの有機半導体層を形成する組成物として特に好適である。
 以下、上述した有機半導体組成物を用いて作製される有機薄膜トランジスタ(有機電界効果トランジスタ、OFET)について説明する。
 本発明の一実施形態に係る有機薄膜トランジスタは、上述した有機半導体組成物を使用して作製される有機半導体層を有し、さらに、ソース電極と、ドレイン電極と、ゲート電極と、を有することができる。本実施形態に係る有機薄膜トランジスタは、上述した有機半導体組成物を用いて形成された有機半導体層を有しているため、移動度および絶縁信頼性を高いレベルで満たすものである。
 本実施形態に係る有機薄膜トランジスタは、その構造は特に限定されるものでなく、例えばボトムコンタクト型やトップコンタクト型など、いずれの構造であってもよい。
 以下、本発明の一実施形態に係る有機薄膜トランジスタの図面を参照しながら説明する。図1は、本発明の一実施形態に係るボトムコンタクト型の有機薄膜トランジスタ100の断面模式図である。
 図1の例では、有機薄膜トランジスタ100は、基板10と、ゲート電極20と、ゲート絶縁膜30と、ソース電極40と、ドレイン電極42と、有機半導体層50と、封止層60を有する。ここで、有機半導体層50は、上述した有機半導体組成物を使用して形成されたものである。
 以下、基板、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、有機半導体層および封止層並びにそれぞれの形成方法について詳述する。
 <基板>
 基板は、後述するゲート電極、ソース電極、ドレイン電極などを支持する役割を果たす。
 基板の種類は特に制限されず、例えば、プラスチック基板、ガラス基板、セラミック基板などが挙げられる。なかでも、各デバイスへの適用性およびコストの観点から、ガラス基板またはプラスチック基板であることが好ましい。
 プラスチック基板の材料としては、熱硬化性樹脂(例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂(例えばPET、PEN)など)または熱可塑性樹脂(例えば、フェノキシ樹脂、ポリエーテルスルフォン、ポリスルフォン、ポリフェニレンスルフォンなど)が挙げられる。
 セラミック基板の材料としては、例えば、アルミナ、窒化アルミニウム、ジルコニア、シリコン、窒化シリコン、シリコンカーバイドなどが挙げられる。
 ガラス基板の材料としては、例えば、ソーダガラス、カリガラス、ホウケイ酸ガラス、石英ガラス、アルミケイ酸ガラス、鉛ガラスなどが挙げられる。
 <ゲート電極>
 ゲート電極の材料としては、例えば、金(Au)、銀、アルミニウム、銅、クロム、ニッケル、コバルト、チタン、白金、マグネシウム、カルシウム、バリウム、ナトリウム等の金属;InO2、SnO2、ITO等の導電性の酸化物;ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリジアセチレン等の導電性高分子;シリコン、ゲルマニウム、ガリウム砒素等の半導体;フラーレン、カーボンナノチューブ、グラファイト等の炭素材料などが挙げられる。なかでも、金属であることが好ましく、銀、アルミニウムであることがより好ましい。
 ゲート電極の厚みは特に制限されないが、20~200nmであることが好ましい。
 ゲート電極を形成する方法は特に制限されないが、例えば、基板上に、電極材料を真空蒸着またはスパッタする方法、電極形成用組成物を塗布または印刷する方法などが挙げられる。また、電極をパターニングする場合、パターニングする方法としては、例えば、フォトリソグラフィー法;インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法;マスク蒸着法などが挙げられる。
 <ゲート絶縁膜>
 ゲート絶縁膜の材料としては、ポリメチルメタクリレート、ポリスチレン、ポリビニルフェノール、ポリイミド、ポリカーボネート、ポリエステル、ポリビニルアルコール、ポリ酢酸ビニル、ポリウレタン、ポリスルフォン、ポリベンゾキサゾール、ポリシルセスキオキサン、エポキシ樹脂、フェノール樹脂等のポリマー;二酸化珪素、酸化アルミニウム、酸化チタン等の酸化物;窒化珪素等の窒化物などが挙げられる。これらの材料のうち、有機半導体層との相性から、ポリマーであることが好ましい。
 ゲート絶縁膜の材料としてポリマーを用いる場合、架橋剤(例えば、メラミン)を併用するのが好ましい。架橋剤を併用することで、ポリマーが架橋されて、形成されるゲート絶縁膜の耐久性が向上する。
 ゲート絶縁膜の膜厚は特に制限されないが、100~1000nmであることが好ましい。
 ゲート絶縁膜を形成する方法は特に制限されないが、例えば、ゲート電極が形成された基板上に、ゲート絶縁膜形成用組成物を塗布する方法、ゲート絶縁膜材料を蒸着またはスパッタする方法などが挙げられる。ゲート絶縁膜形成用組成物を塗布する方法は特に制限されず、公知の方法(バーコート法、スピンコート法、ナイフコート法、ドクターブレード法)を使用することができる。
 ゲート絶縁膜形成用組成物を塗布してゲート絶縁膜を形成する場合、溶媒除去、架橋などを目的として、塗布後に加熱(ベーク)してもよい。ゲート絶縁膜を形成する際の加熱条件としては、特に制限されないが、通常、30~250℃(好ましくは、80~200℃)にて5~120分間(好ましくは、5~60分間)実施することが好ましい。
 <ソース電極、ドレイン電極>
 ソース電極およびドレイン電極の材料の具体例は、上述したゲート電極と同じである。なかでも、金属であることが好ましく、銀であることがより好ましい。
 ソース電極およびドレイン電極を形成する方法は特に制限されないが、例えば、ゲート電極とゲート絶縁膜とが形成された基板上に、電極材料を真空蒸着またはスパッタする方法、電極形成用組成物を塗布または印刷する方法などが挙げられる。パターニング方法の具体例は、上述したゲート電極と同じである。
 ソース電極およびドレイン電極のチャネル長は特に制限されないが、5~30μmであることが好ましい。
 ソース電極およびドレイン電極のチャネル幅は特に制限されないが、10~200μmであることが好ましい。
 本実施形態に係る有機薄膜トランジスタにおいて、ソース電極、ドレイン電極およびゲート電極のうち、少なくとも一つの電極が銀であることができる。電極材料の中でも、銀はイオン化しやすく、マイグレーションの発生原因になりやすい。しかしながら、上述した有機半導体組成物を用いて半導体層を形成すれば、十分にマイグレーションの発生を抑制できる。したがって、電極材料として銀を用いる場合には、本発明の効果が特に顕著に表れる。
 <有機半導体層>
 有機半導体層は、上述した有機半導体組成物を用いて形成した層である。
 有機半導体層の厚みは特に制限されないが、10~200nmであることが好ましい。
 有機半導体層を形成する方法は特に制限されないが、例えば、ゲート電極とゲート絶縁膜とソース電極とドレイン電極とが形成された基板上に、有機半導用組成物を塗布する方法などが挙げられる。有機半導体組成物を塗布する方法の具体例は、ゲート絶縁膜形成用組成物を塗布する方法と同じである。有機半導体組成物を塗布して有機半導体層を形成する場合、溶媒除去、架橋などを目的として、塗布後に加熱(ベーク)してもよい。
 有機半導体層を形成する際の加熱条件としては、特に制限されないが、通常、30~200℃(好ましくは、30~120℃)にて5~120分間(好ましくは、5~60分間)実施することが好ましい。
 <封止層>
 本発明の有機薄膜トランジスタは、耐久性の観点から、最外層に封止層を備えるのが好ましい。封止層には公知の封止剤(封止層形成用組成物)を用いることができる。
 封止層の厚みは特に制限されないが、0.2~10μmであることが好ましい。
 封止層を形成する方法は特に制限されないが、例えば、ゲート電極とゲート絶縁膜とソース電極とドレイン電極と有機半導体層とが形成された基板上に、封止層形成用組成物を塗布する方法などが挙げられる。封止層形成用組成物を塗布する方法の具体例は、ゲート絶縁膜形成用組成物を塗布する方法と同じである。封止層形成用組成物を塗布して封止層を形成する場合、溶媒除去、架橋などを目的として、塗布後に加熱(ベーク)してもよい。
 封止層を形成する際の加熱条件としては、特に制限されないが、通常、30~250℃(好ましくは、80~200℃)にて5~120分間(好ましくは、5~60分間)実施することが好ましい。
 <その他の有機薄膜トランジスタ>
 図2は、本発明の一実施形態に係るトップコンタクト型の有機薄膜トランジスタ200を表す断面模式図である。
 図2の例では、有機薄膜トランジスタ200は、基板10と、ゲート電極20と、ゲート絶縁膜30と、ソース電極40と、ドレイン電極42と、有機半導体層50と、封止層60を有する。ここで、有機半導体層50は、上述した本発明の有機半導体組成物を用いて形成されたものである。
 基板、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、有機半導体層および封止層については上述の通りであるので、その説明を省略する。
 1.3.電子ペーパー、ディスプレイデバイス
 本発明の一実施形態に係る電子ペーパーおよびディスプレイデバイスは、画像を表示する表示部に上述の有機薄膜トランジスタが用いられる以外は、公知の構造を有することができるので、その説明を省略する。
 上述した有機薄膜トランジスタは、上述の通り、移動度および配線信頼性に優れていることから、電子ペーパーやディスプレイデバイス等の各種の電子デバイスに好適に用いられる。
 2.第2実施形態
 2.1.有機半導体組成物
 本発明の一実施形態に係る有機半導体組成物は、有機半導体材料と、下記一般式(IV)で表される化合物(以下、「化合物(IV)」ともいう。)、上記化合物(II)および上記化合物(III)から選択される少なくとも一種のマイグレーション抑制剤と、を含有し、上記マイグレーション抑制剤の含有量が、上記有機半導体材料100質量%に対して、30質量%以上500質量%以下であることを特徴とする。
 なお、本実施形態において、「特定のマイグレーション抑制剤」という場合には、化合物(IV)、化合物(II)および化合物(III)から選択されるマイグレーション抑制剤のことを指す。
 本実施形態に係る有機半導体組成物(すなわち、第2実施形態に係る有機半導体組成物)は、マイグレーション抑制剤として、上述した化合物(I)に代えて下記一般式(IV)で表される化合物を選択可能とする点、および、マイグレーション抑制剤の含有量が特定範囲であることを必須とする点において、上述した第1実施形態に係る有機半導体組成物と異なる。
 以下、本実施形態に係る有機半導体組成物について、上述した第1実施形態に係る有機半導体組成物と相違する点について詳細に説明する。なお、本相違点以外については、第1実施形態に係る有機半導体組成物と同様であるので、その説明を省略する。
 <化合物(IV)>
 本実施形態に係るマイグレーション抑制剤として使用可能な化合物(IV)は、下記一般式(IV)で表される化合物である。
Figure JPOXMLDOC01-appb-C000013
 上記一般式(IV)中、R1A~R5Aは、それぞれ独立に、水素原子または置換基を表す。ただし、R1A~R5Aのうち少なくとも1つは、-OH、-OR26、-SR27、-NHCOR28、または、-NHSO29である。また、R26~R29は、それぞれ独立に、アルキル基またはアリール基を表す。
 R26~R29におけるアルキル基、アリール基については、それぞれ、上述した置換基におけるアルキル基、アリール基に関する説明を適用できるので、その説明を省略する。
 化合物(IV)は、オルト位(R1AおよびR5A)がいずれも-OH、-OR26、-SR27、-NHCOR28、または、-NHSO29に該当しない場合に、パラ位(R3A)が-OHまたは-OR26という構造であってもよい。このような構造の化合物の具体例としては、下記式(IV-1)および下記式(IV-2)で表される化合物が挙げられる。
 このように、化合物(IV)は、上記のような構造を含むという点において、上述した化合物(I)と相違する。
Figure JPOXMLDOC01-appb-C000014
 ここで、上述した化合物(IV)のうち、パラ位が-OHまたは-OR26で置換された化合物を用いた場合、上述した化合物(I)よりも、移動度および絶縁信頼性の少なくも一方が低下する傾向にあるが、本実施形態に係る有機半導体組成物は、マイグレーション抑制剤の含有量を後述する特定範囲とすることで、移動度および絶縁信頼性を良好にすることができる。
 上述した一般式(IV)で表される化合物の中でも、R1AおよびR5Aのうち少なくとも1つが-OH、-OR26、-SR27、-NHCOR28もしくは-NHSO29であること、または、R3Aが-SR27、-NHCOR28もしくは-NHSO29であること、が好ましい。この理由および化合物(IV)としてより好ましい例などについては、上述した化合物(I)と同様であるので、その説明を省略する。
 このような条件を満たす化合物(IV)の好ましい具体例としては、上述した式(I-1)~(I-16)で表される化合物が挙げられる。
 <マイグレーション抑制剤の含有量>
 本実施形態における特定のマイグレーション抑制剤の含有量は、有機半導体材料100質量%に対して、30質量%以上500質量%以下であることが必要であるが、40質量%以上300質量%以下であることが好ましく、50質量%以上200質量%以下であることがより好ましい。30質量%以上であることで、有機半導体組成物を用いて有機半導体層を形成する際に、マイグレーション抑制剤に由来する層と、有機半導体材料に由来する層と、の層分離が良好に生じて、移動度の低下を抑制できる。同様に、500質量%以下であることで、マイグレーション抑制剤に由来する層と、有機半導体材料に由来する層と、の層分離状態を良好に維持できる。一方、30質量%未満であると、マイグレーション抑制剤に由来する層と、有機半導体材料に由来する層と、の層分離がうまく起こらず、移動度の低下が引き起こされる。また、500質量%を超えると、有機半導体材料に由来する層中でのマイグレーション抑制剤の含有率が高くなりすぎて、移動度の低下が生じてしまう。
 2.2.有機薄膜トランジスタ
 本発明の一実施形態に係る有機薄膜トランジスタは、上述した有機半導体組成物(すなわち、第2実施形態に係る有機半導体組成物)を使用して作製される半導体層を有する以外は、第1実施形態に係る有機薄膜トランジスタと同様であるので、その説明を省略する。
 2.3.電子ペーパー、ディスプレイデバイス
 本発明の一実施形態に係る電子ペーパーおよびディスプレイデバイスは、画像を表示する表示部に上述の有機薄膜トランジスタ(第2実施形態に係る有機薄膜トランジスタ)を用いる以外は、第1実施形態における電子ペーパーおよびディスプレイデバイスと同様であるので、その説明を省略する。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
 有機半導体組成物の調製にあたって、以下の有機半導体材料(a-1)~(a-4)、およびマイグレーション抑制剤(b-1)~(b-13)を準備した。
 (A)有機半導体材料
・a-1:TIPSペンタセン(6,13-ビス(トリイソプロピルシリルエチニル)ペンタセン、Sigma-Aldrich社製)
・a-2:diF-TES-ADT(2,8-ジフルオロ-5,11-ビス(トリエチルシリルエチニル)アントラジチオフェン、Sigma-Aldrich社製)
・a-3:PBTTT-C12(ポリ[2,5-ビス(3-ドデシルチオフェン-2-イル)チエノ[3,2-b]チオフェン]、Sigma-Aldrich社製)
・a-4:P3HT(ポリ(3-ヘキシルチオフェン)、Sigma-Aldrich社製)
 (B)マイグレーション抑制剤
・b-1:3,5-ジ-tert-ブチル-カテコール(東京化成社製)
・b-2:2,6-ジメトキシ-4-メチルフェノール(東京化成社製)
・b-3:2,5-ジ-tert-オクチルハイドロキノン(東京化成社製)
・b-4:2-tert-ブチル-4-メトキシフェノール(東京化成社製)
・b-5:4-アセトアミドフェノール(東京化成社製)
・b-6:3-[(4-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)チオ]プロピオン酸メチル
・b-7:2,2’-メチレンビス(6-メトキシ-p-クレゾール)
・b-8:2,2’-ブチリデンビス(6-tert-ブチル-p-クレゾール)
・b-9:2,2’-ブチリデンビス(4-エチル-6-メトキシフェノール)
・b-10:IRGANOX-1076(商品名、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリル、BASF社製)
・b-11:スミライザーMDP-S(商品名、2,2’-メチレンビス(6-tert-ブチル-p-クレゾール)、住友化学社製)
・b-12:4-アミノフェノール(東京化成社製)
・b-13:BHT(2,6-ジ-tert-ブチル-p-クレゾール、和光純薬社製)
 なお、マイグレーション抑制剤のうち、b-6~b-9については、それぞれ、次の文献に記載の方法に準じて合成を行った。すなわち、b-6については、米国特許第5002967号明細書、b-7については、Environmental Science and Technology,1994,vol.28,#4 p.573-576、
b-8については、Journal of the American Chemical Society,1952,vol.74,p.3410、b-9については、Environmental Science and Technology,1994,vol.28,#4 p.573-576、に記載の方法に準じて合成を行った。
 マイグレーション抑制剤b-1~b-13の構造式を以下に示す。
Figure JPOXMLDOC01-appb-C000015
 上記のマイグレーション抑制剤b-1~b-13について、酸化電位(酸化還元電位)を測定した。具体的には、ジメチルホルムアミドに支持電解質(過塩素酸テトラブチルアンモニウム、東京化成社製)とマイグレーション抑制剤とをそれぞれ0.1Mの濃度で溶解させた溶液について、電気化学アナライザーVMP3(Bio-Logic Science Instruments社製)を用いてサイクリックボルタモメトリー法(以下の測定条件)により酸化電位(電流値が極大になったときの電位)を測定した。測定条件は次の通りである。また、測定結果を表1に示す。
・作用電極:グラッシーカーボン電極
・対極:白金電極
・参照電極:KCl 飽和カロメル電極
・測定温度:25℃
・走査速度:10mV/s
・走査範囲:0V~1.5V
Figure JPOXMLDOC01-appb-T000016
 <実施例1>
 (有機半導体組成物の調製)
 上記有機半導体材料a-1と上記マイグレーション抑制剤b-1とをトルエンに溶解させて(有機半導体材料a-1/マイグレーション抑制剤b-1=100質量部/50質量部、有機半導体材料の濃度:1.5質量%)、有機半導体組成物を調製した。得られた有機半導体組成物を組成物1とする。
(有機薄膜トランジスタの作製(素子作製方法1))
 ガラス基板(イーグルXG:コーニング社製)上に、ゲート電極となるAlを蒸着した(厚み:50nm)。その上にゲート絶縁膜用組成物(ポリビニルフェノール/メラミン=1質量部/1質量部のPGMEA(プロピレングリコールモノメチルエーテルアセテート)溶液(溶液濃度:2質量%))をスピンコートし、150℃で60分間ベークを行い、膜厚400nmのゲート絶縁膜を形成した。その上にAuをマスク蒸着し、チャネル長25μm、チャネル幅180μmのソース電極およびドレイン電極を形成した。その上に上記組成物1をスピンコートし、140℃で15分間ベークを行い、厚み100nmの有機半導体層を形成した。その上にCytop CTL-107MK(AGC社製)(封止層形成用組成物)をスピンコートし、140℃で20分間ベークを行い、厚み2μmの封止層(最上層)を形成して、有機薄膜トランジスタ(ボトムコンタクト型)を得た。
 本作製方法を素子作製方法1とする。
 <移動度の評価>
 得られた有機薄膜トランジスタの各電極と、半導体パラメータ・アナライザ(4155C、Agilent Technologies社製)に接続されたマニュアルプローバの各端子とを接続して、電界効果トランジスタ(FET)の評価を行なった。具体的には、ドレイン電流-ゲート電圧(Id‐Vg)特性を測定することにより電界効果移動度([cm/V・sec])を算出した。算出した電界効果移動度をμ1とする。
 また、上記と同様の手順に従って、マイグレーション抑制剤を含有しない比較用組成物を調製した。次に、組成物1の代わりに上記比較用組成物を用いた以外は、実施例1の有機薄膜トランジスタの作製と同様の手順に従って、有機薄膜トランジスタを作製した。得られた有機薄膜トランジスタについて、上記μ1と同様の手順に従って、電界効果移動度を算出した。算出した電界効果移動度をμ2とする。
 算出したμ1とμ2からμ1/μ2を求め、以下の基準に従って評価した。結果を表2に示す。実用上、移動度の観点から、A~Cであることが好ましく、AまたはBであることがより好ましく、Aであることがさらに好ましい。
・A:μ1/μ2≧0.8
・B:0.8>μ1/μ2≧0.5
・C:0.5>μ1/μ2≧0.1
・D:0.1>μ1/μ2
 <絶縁信頼性の評価>
 得られた有機薄膜トランジスタについて、EHS-221MD(エスペック社製)を用いて、以下の条件により寿命試験を行い、ソース/ドレイン電極間の抵抗値が1×10Ωになるまでの時間を測定した。測定した時間をT1とする。
・温度:60℃
・湿度:60%RH
・圧力:1.0atm
・ドレイン電圧:-40V
・ソース/ドレイン電極間電圧:20V
 また、上述した移動度の評価と同様の手順に従って、マイグレーション抑制剤を含有しない比較用組成物を使用した有機薄膜トランジスタを作製した。得られた有機薄膜トランジスタについて、上記T1と同様の手順に従って、ソース/ドレイン電極間の抵抗値が1×10Ωになるまでの時間を測定した。測定した時間をT2とする。
 算出したT1とT2からT1/T2を求め、以下の基準に従って評価した。結果を表2に示す。絶縁信頼性の観点から、A~Cであることが好ましく、AまたはBであることがより好ましく、Aであることがさらに好ましい。
・A:T1/T2≧5
・B:5>T1/T2≧2
・C:2>T1/T2>1
・D:0.1≧T1/T2
<実施例2>
 上述した素子作製方法1の代わりに、以下の素子作製方法2を実施した以外は、実施例1と同様の手順で有機薄膜トランジスタを作製し、実施例1と同様の手順に従い、各種評価を行った。結果を表2にまとめて示す。
(有機薄膜トランジスタの作製(素子作製方法2))
 ガラス基板(イーグルXG:コーニング製)上に、ゲート電極となるAlを蒸着した(膜厚50nm)。その上にゲート絶縁膜用組成物(ポリビニルフェノール/メラミン=1質量部/1質量部のPGMEA溶液(溶液濃度:2質量%))をスピンコートし、150℃で60分間ベークし、膜厚400nmの絶縁膜を形成した。絶縁膜上に、調製した組成物1をスピンコートし、140℃で15分間ベークを行い、膜厚100nmの有機半導体層を形成した。次に、有機半導体層上にAgをマスク蒸着し、チャネル長25μm、チャネル幅180μmのソース電極およびドレイン電極を形成した。その上にCytop CTL-107MK(AGC社製)をスピンコートし、140℃で20分間ベークし、膜厚2μmの封止層を形成して、有機薄膜トランジスタ(トップコンタクト型)を作製した。本作製方法を素子作製方法2とする。
<実施例3~12、比較例1~7>
 実施例3~12、比較例1~7に係る各組成物については、有機半導体材料およびマイグレーション抑制剤の種類、配合比を表2および表3に示すようにした以外は、組成物1の調製方法と同様にして調製した。
 実施例3~12、比較例1~7に係る各組成物を用いて、表2および表3に示すように、素子作製方法1または素子作製方法2に従って、有機薄膜トランジスタを作製し、各種評価を実施した。結果を表2および表3にまとめて示す。
 なお、上記評価を実施する際、比較用組成物中の有機半導体材料として、実施例1~3ではa-1、実施例4~10ではa-2、実施例11ではa-3、実施例12ではa-4、比較例1および2ではa-1、比較例3および4ではa-2、比較例5ではa-3、比較例6および7ではa-1を使用した。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 表2に示すように、本発明の有機半導体組成物を使用した場合には、これを用いて作製された有機薄膜トランジスタの移動度および絶縁信頼性が良好であることが示された。
 特に、実施例6と実施例12との評価結果の比較によれば、低分子有機半導体材料を用いた場合には(実施例6)、高分子有機半導体を用いた場合(実施例12)と比べて、絶縁信頼性の効果がより顕著に発揮されることが示された。
 一方、比較例1~比較例5の組成物に含まれるマイグーション抑制剤はいずれも、上述した化合物(I)~(IV)に該当しないため、これを用いて作製された有機薄膜トランジスタの移動度および絶縁信頼性は不十分であることが示された。
 また、比較例6の組成物は、これに含まれるマイグレーション抑制剤が上述した化合物(I)~(III)に該当せず、かつ、マグレーション抑制剤の含有量が30質量%未満であったため、これを用いて作製された有機薄膜トランジスタの移動度および絶縁信頼性が不十分であることが示された。
 また、比較例7の組成物は、これに含まれるマイグレーション抑制剤が上述した化合物(I)~(III)に該当せず、かつ、マグレーション抑制剤の含有量が500質量%を超えるものであったため、これを用いて作製された有機薄膜トランジスタの移動度および絶縁信頼性が不十分であることが示された。
 10:基板
 20:ゲート電極
 30:ゲート絶縁膜
 40:ソース電極
 42:ドレイン電極
 50:有機半導体層
 60:封止層
 100,200:有機薄膜トランジスタ

Claims (7)

  1.  有機半導体材料と、
     下記一般式(I)で表される化合物、下記一般式(II)で表される化合物および下記一般式(III)で表される化合物から選択される少なくとも一種のマイグレーション抑制剤と、
    を含有する、有機半導体組成物。
    Figure JPOXMLDOC01-appb-C000001

    上記一般式(I)中、R~Rは、それぞれ独立に、水素原子または置換基を表す。ただし、RおよびRのうち少なくとも一方が-OH、-OR26、-SR27、-NHCOR28もしくは-NHSO29である、または、Rが-SR27、-NHCOR28もしくは-NHSO29である。また、R26~R29は、それぞれ独立に、アルキル基またはアリール基を表す。
    Figure JPOXMLDOC01-appb-C000002

    上記一般式(II)中、R~R13は水素原子または置換基を表す。ただし、R~R13のうち少なくとも1つは、-OH、-OR26、-SR27、-NHCOR28、または-NHSO29である。R26~R29は、それぞれ独立に、アルキル基、またはアリール基を表す。R14およびR15は、それぞれ独立に、水素原子、脂肪族基、芳香族基、複素環基、-OH、-OR30、-SR31、または-NR3233を表す。また、R30~R33は、それぞれ独立に、アルキル基またはアリール基を表す。ただし、R14およびR15の両方が同時に、-OH、-OR30、-SR31、および-NR3233から選択される基であることはない。また、R14およびR15は、互いに結合して環を形成してもよい。
    Figure JPOXMLDOC01-appb-C000003

    上記一般式(III)中、R16~R23は、それぞれ独立に、水素原子、脂肪族基、または芳香族基を表す。R24およびR25は、それぞれ独立に、水素原子、脂肪族基、芳香族基、または複素環基を表す。ただし、R24およびR25の両方が同時に、水素原子であることはない。また、R24およびR25は、互いに結合して環を形成してもよい。
  2.  有機半導体材料と、
     下記一般式(IV)で表される化合物、下記一般式(II)で表される化合物および下記一般式(III)で表される化合物から選択される少なくとも一種のマイグレーション抑制剤と、
    を含有し、
     前記マイグレーション抑制剤の含有量が、前記有機半導体材料100質量%に対して、30質量%以上500質量%以下である、有機半導体組成物。
    Figure JPOXMLDOC01-appb-C000004

    上記一般式(IV)中、R1A~R5Aは、それぞれ独立に、水素原子または置換基を表す。ただし、R1A~R5Aのうち少なくとも1つは、-OH、-OR26、-SR27、-NHCOR28、または-NHSO29である。また、R26~R29は、それぞれ独立に、アルキル基またはアリール基を表す。
    Figure JPOXMLDOC01-appb-C000005

    上記一般式(II)中、R~R13は水素原子または置換基を表す。ただし、R~R13のうち少なくとも1つは、-OH、-OR26、-SR27、-NHCOR28、または-NHSO29である。R26~R29は、それぞれ独立に、アルキル基またはアリール基を表す。R14およびR15は、それぞれ独立に、水素原子、脂肪族基、芳香族基、複素環基、-OH、-OR30、-SR31、または-NR3233を表す。また、R30~R33は、それぞれ独立に、アルキル基またはアリール基を表す。ただし、R14およびR15の両方が同時に、-OH、-OR30、-SR31、-NR3233から選択される基であることはない。また、R14およびR15は、互いに結合して環を形成してもよい。
    Figure JPOXMLDOC01-appb-C000006

    上記一般式(III)中、R16~R23は、それぞれ独立に、水素原子、脂肪族基、または芳香族基を表す。R24およびR25は、それぞれ独立に、水素原子、脂肪族基、芳香族基、または複素環基を表す。ただし、R24およびR25の両方が同時に、水素原子であることはない。また、R24およびR25は、互いに結合して環を形成してもよい。
  3.  前記有機半導体材料の化学構造が、繰り返し単位を有さない、請求項1または請求項2に記載の有機半導体組成物。
  4.  請求項1ないし請求項3のいずれか1項に記載の有機半導体組成物を使用して作製される有機半導体層を有する、有機薄膜トランジスタ。
  5.  さらに、ソース電極と、ドレイン電極と、ゲート電極と、を有し、
     前記ソース電極、前記ドレイン電極および前記ゲート電極のうち、少なくとも一つの電極が、銀を含む材料で構成される、請求項4に記載の有機薄膜トランジスタ。
  6.  請求項4または請求項5に記載の有機薄膜トランジスタを含む、電子ペーパー。
  7.  請求項4または請求項5に記載の有機薄膜トランジスタを含む、ディスプレイデバイス。
PCT/JP2015/076826 2014-09-30 2015-09-24 有機半導体組成物、有機薄膜トランジスタ、電子ペーパー、ディスプレイデバイス WO2016052283A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15846659.9A EP3203540B1 (en) 2014-09-30 2015-09-24 Organic semiconductor composition, organic thin film transistor, electronic paper, and display device
JP2016551951A JP6343678B2 (ja) 2014-09-30 2015-09-24 有機半導体組成物、有機薄膜トランジスタ、電子ペーパー、ディスプレイデバイス
US15/450,240 US9882137B2 (en) 2014-09-30 2017-03-06 Organic semiconductor composition, organic thin film transistor, electronic paper, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014201428 2014-09-30
JP2014-201428 2014-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/450,240 Continuation US9882137B2 (en) 2014-09-30 2017-03-06 Organic semiconductor composition, organic thin film transistor, electronic paper, and display device

Publications (1)

Publication Number Publication Date
WO2016052283A1 true WO2016052283A1 (ja) 2016-04-07

Family

ID=55630323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076826 WO2016052283A1 (ja) 2014-09-30 2015-09-24 有機半導体組成物、有機薄膜トランジスタ、電子ペーパー、ディスプレイデバイス

Country Status (5)

Country Link
US (1) US9882137B2 (ja)
EP (1) EP3203540B1 (ja)
JP (1) JP6343678B2 (ja)
TW (1) TWI667226B (ja)
WO (1) WO2016052283A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147773A1 (ja) * 2015-03-13 2016-09-22 富士フイルム株式会社 有機半導体膜形成用組成物、有機薄膜トランジスタ、電子ペーパー、および、ディスプレイデバイス

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11603343B2 (en) 2020-09-02 2023-03-14 Ankh Life Sciences Limited Inhibition of DYRK1A kinase

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005017033A1 (ja) * 2003-08-13 2005-02-24 Zeon Corporation 架橋性樹脂組成物およびその樹脂成形体
JP2008244363A (ja) * 2007-03-28 2008-10-09 Seiko Epson Corp 薄膜トランジスタ、電子回路、表示装置および電子機器
WO2012039294A1 (ja) * 2010-09-21 2012-03-29 三井金属鉱業株式会社 電極箔および有機デバイス
WO2013154078A1 (ja) * 2012-04-10 2013-10-17 旭硝子株式会社 非線形光学材料用組成物、塗布用組成物、非線形光学材料、光導波路および光制御デバイス
WO2014189116A1 (ja) * 2013-05-23 2014-11-27 富士フイルム株式会社 有機半導体組成物および有機薄膜トランジスタならびに電子ペーパーおよびディスプレイデバイス
WO2014196482A1 (ja) * 2013-06-07 2014-12-11 富士フイルム株式会社 ゲート絶縁膜形成用組成物、有機薄膜トランジスタ、電子ペーパー、ディスプレイデバイス

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004088094A (ja) 2002-07-01 2004-03-18 Seiko Epson Corp 組成物、成膜方法及び成膜装置、電気光学装置及びその製造方法、有機エレクトロルミネッセンス装置及びその製造方法、デバイス及びその製造方法、電子機器
JP2005005582A (ja) 2003-06-13 2005-01-06 Minolta Co Ltd 有機半導体電界効果トランジスタ
JP4239999B2 (ja) * 2005-05-11 2009-03-18 セイコーエプソン株式会社 膜パターンの形成方法、膜パターン、デバイス、電気光学装置、及び電子機器
JP2008244362A (ja) * 2007-03-28 2008-10-09 Seiko Epson Corp 半導体装置の製造方法、半導体装置、半導体回路、電気光学装置および電子機器
US9543521B2 (en) * 2011-11-15 2017-01-10 Basf Se Organic semiconductor device and process for its production
WO2014189114A1 (ja) * 2013-05-23 2014-11-27 富士フイルム株式会社 有機半導体組成物および有機薄膜トランジスタならびに電子ペーパーおよびディスプレイデバイス
JP6224472B2 (ja) * 2013-10-24 2017-11-01 富士フイルム株式会社 導電膜形成用組成物、導電膜、有機薄膜トランジスタ、電子ペーパー、ディスプレイデバイスおよび配線板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005017033A1 (ja) * 2003-08-13 2005-02-24 Zeon Corporation 架橋性樹脂組成物およびその樹脂成形体
JP2008244363A (ja) * 2007-03-28 2008-10-09 Seiko Epson Corp 薄膜トランジスタ、電子回路、表示装置および電子機器
WO2012039294A1 (ja) * 2010-09-21 2012-03-29 三井金属鉱業株式会社 電極箔および有機デバイス
WO2013154078A1 (ja) * 2012-04-10 2013-10-17 旭硝子株式会社 非線形光学材料用組成物、塗布用組成物、非線形光学材料、光導波路および光制御デバイス
WO2014189116A1 (ja) * 2013-05-23 2014-11-27 富士フイルム株式会社 有機半導体組成物および有機薄膜トランジスタならびに電子ペーパーおよびディスプレイデバイス
WO2014196482A1 (ja) * 2013-06-07 2014-12-11 富士フイルム株式会社 ゲート絶縁膜形成用組成物、有機薄膜トランジスタ、電子ペーパー、ディスプレイデバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3203540A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147773A1 (ja) * 2015-03-13 2016-09-22 富士フイルム株式会社 有機半導体膜形成用組成物、有機薄膜トランジスタ、電子ペーパー、および、ディスプレイデバイス
US10510965B2 (en) 2015-03-13 2019-12-17 Fujifilm Corporation Composition for forming organic semiconductor film, organic thin film transistor, electronic paper, and display device

Also Published As

Publication number Publication date
JP6343678B2 (ja) 2018-06-13
US9882137B2 (en) 2018-01-30
TWI667226B (zh) 2019-08-01
EP3203540A1 (en) 2017-08-09
EP3203540B1 (en) 2018-08-29
EP3203540A4 (en) 2017-09-13
TW201613847A (en) 2016-04-16
US20170179387A1 (en) 2017-06-22
JPWO2016052283A1 (ja) 2017-05-25

Similar Documents

Publication Publication Date Title
EP3007214B1 (en) Composition for forming gate insulating film, organic thin film transistor, electronic paper, and display device
US10138385B2 (en) Conductive film forming composition, conductive film, organic thin film transistor, electronic paper, display device, and wiring board
US10510965B2 (en) Composition for forming organic semiconductor film, organic thin film transistor, electronic paper, and display device
US9929348B2 (en) Organic semiconductor composition comprising organic semiconductor material and polymer compound
JP6343678B2 (ja) 有機半導体組成物、有機薄膜トランジスタ、電子ペーパー、ディスプレイデバイス
US10008301B2 (en) Organic semiconductor composition, organic thin-film transistor, electronic paper, and display device
EP3029749B1 (en) Organic semiconductor composition, organic thin film transistor, electronic paper and display device
JP6259527B2 (ja) 有機電子デバイス、有機薄膜トランジスタ、電子ペーパー、ディスプレイデバイス
WO2015046523A1 (ja) 有機半導体組成物、有機薄膜トランジスタ、電子ペーパー、ディスプレイデバイス
JP6043000B2 (ja) 導電膜形成用組成物、導電膜、有機薄膜トランジスタ、電子ペーパー、ディスプレイデバイスおよび配線板
US20160230033A1 (en) Conductive film forming composition, conductive film, organic thin film transistor, electronic paper, display device, and wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551951

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015846659

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015846659

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE