WO2015125600A1 - 放射線治療用動体追跡装置、放射線治療用照射領域決定装置および放射線治療装置 - Google Patents
放射線治療用動体追跡装置、放射線治療用照射領域決定装置および放射線治療装置 Download PDFInfo
- Publication number
- WO2015125600A1 WO2015125600A1 PCT/JP2015/052967 JP2015052967W WO2015125600A1 WO 2015125600 A1 WO2015125600 A1 WO 2015125600A1 JP 2015052967 W JP2015052967 W JP 2015052967W WO 2015125600 A1 WO2015125600 A1 WO 2015125600A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- treatment
- unit
- image
- dimensional
- treatment target
- Prior art date
Links
- 238000001959 radiotherapy Methods 0.000 title claims description 50
- 230000029058 respiratory gaseous exchange Effects 0.000 claims abstract description 33
- 238000011282 treatment Methods 0.000 claims description 143
- 230000000241 respiratory effect Effects 0.000 claims description 96
- 238000003860 storage Methods 0.000 claims description 37
- 230000005855 radiation Effects 0.000 claims description 21
- 238000012545 processing Methods 0.000 claims description 8
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 239000003086 colorant Substances 0.000 claims description 4
- 238000012937 correction Methods 0.000 claims description 4
- 230000001225 therapeutic effect Effects 0.000 claims description 3
- 206010028980 Neoplasm Diseases 0.000 abstract description 38
- 239000003550 marker Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 238000013170 computed tomography imaging Methods 0.000 description 9
- 238000002594 fluoroscopy Methods 0.000 description 9
- 238000003384 imaging method Methods 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 6
- 239000002184 metal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000011328 necessary treatment Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/103—Treatment planning systems
- A61N5/1037—Treatment planning systems taking into account the movement of the target, e.g. 4D-image based planning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/103—Treatment planning systems
- A61N5/1039—Treatment planning systems using functional images, e.g. PET or MRI
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1077—Beam delivery systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
- A61N2005/1061—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
Definitions
- the present invention relates to a radiotherapy moving body tracking device, a radiotherapy irradiation area determination device, and a radiotherapy device used for radiotherapy in which treatment is performed by irradiating a patient with a treatment beam.
- the moving body tracking device means a device that tracks the position of a moving body by target tracking that tracks (tracks) a target that is a moving body that moves with the patient's breathing or the like.
- a radiotherapy apparatus having a configuration in which a metal marker is arranged in the vicinity of a tumor, the position of the marker is detected by an X-ray fluoroscope, and irradiation of therapeutic radiation is controlled (Patent Document). 1).
- markerless tracking has also been proposed, which can be used instead of markers by recognizing the position of a specific part such as a tumor and omitting the insertion of the marker into the patient's body. Has been.
- Patent Document 2 a method of creating a radiation treatment plan using 4D CT image data that is a collection of 3D images taken at different times has been proposed (see Patent Document 2).
- the present invention has been made to solve the above-described problems, and provides a moving body tracking device for radiation therapy and a radiation therapy device capable of easily setting parameters when executing target tracking. The purpose.
- the present invention has been made to solve the above problems, and provides an irradiation region determination device and a radiation treatment device for radiation therapy that can easily specify the position and shape of a treatment target site accompanying a patient's body movement.
- the second purpose is to provide it.
- 1st invention is the moving body tracking apparatus used for the radiotherapy which treats by irradiating a treatment beam with respect to a patient, The position of the treatment object part in a reference
- An X-ray image information acquisition unit that acquires, from the storage unit, three-dimensional X-ray image data including a two-dimensional X-ray image data group of a region including a region;
- An X-ray image deformation amount calculation unit that calculates a deformation amount of a two-dimensional X-ray image including a treatment target region between different respiratory phases by executing image registration, and a reference respiration acquired from the storage unit Based on the position of the treatment target part in the phase and the deformation amount of the two-dimensional X-ray image including the treatment target part between different respiratory phases calculated by the X-ray image deformation amount calculation unit
- the parameter is the number of templates acquired during one cycle of respiration and / or a threshold used for template matching.
- the third invention relates to the number of templates acquired during one cycle of breathing and / or the number of templates acquired during one cycle of breathing when the threshold used for template matching is changed, and An image processing unit is provided for graphically displaying the relationship between the threshold value used for template matching and the error value on the display unit.
- the image processing unit is a two-dimensional representation in which the number of templates acquired during one cycle of breathing and the threshold used for template matching are expressed in different colors on the vertical axis and the horizontal axis.
- a color map is graphically displayed on the display unit.
- a fifth invention is a treatment for storing a shape of a treatment target part in a reference respiratory phase and four-dimensional CT image data including a three-dimensional CT image data group of a region including the treatment target parts in a plurality of continuous respiratory phases.
- the sixth invention is a radiotherapy apparatus including the moving body tracking device according to the first to fifth inventions.
- a seventh invention relates to a treatment beam irradiation area determination device used in a radiotherapy apparatus that performs treatment by irradiating a patient with a treatment beam, and a shape of a treatment target site in a reference respiratory phase
- a treatment plan acquisition unit that acquires, from a storage unit, 4D CT image data including a 3D CT image data group of a region including a treatment target site in a respiratory phase, and the 4D CT image data acquired from the storage unit
- a CT image deformation amount calculation unit that calculates a deformation amount of a three-dimensional CT image including a region to be treated between different respiratory phases, and a reference respiratory phase acquired from the storage unit
- the shape of the treatment target part and a three-dimensional CT image including the treatment target part between different respiratory phases calculated by the CT image deformation amount calculation unit Based on the shape amount, a shape calculation unit that calculates the shape of the treatment target site in each respiratory phase, and the treatment beam irradiation region based on the shape of the treatment target site in each respiratory
- the eighth invention is a radiotherapy apparatus comprising the radiation treatment irradiation region determining apparatus according to the seventh invention.
- the number of templates acquired during one breathing period as a parameter, the threshold used for template matching, the position of the treatment target site in each respiratory phase calculated by the position calculation unit, and the template matching unit It is possible to easily recognize the relationship between the error value and the position of the treatment target site in each respiratory phase specified by the graphic display.
- FIG. 4 is a schematic diagram of a two-dimensional color map displayed graphically on the display unit 34.
- FIG. 4 is a schematic diagram of a two-dimensional color map displayed graphically on the display unit 34.
- FIG. 1 is a schematic diagram of a radiotherapy apparatus according to the present invention
- FIG. 2 is a block diagram showing its main control system.
- the radiation irradiation unit 35 and the X-ray imaging unit 36 constituting the radiation therapy apparatus are independent devices, and each has a control unit.
- the general configuration is shown in a block diagram.
- the configuration excluding the storage unit 30, the radiation irradiation unit 35, the CT imaging apparatus 37, the treatment planning apparatus 38, etc. is the radiotherapy moving object tracking apparatus or radiotherapy apparatus according to the present invention.
- An irradiation area determination device is configured.
- This radiotherapy apparatus includes a treatment table 27 on which a patient 57 is placed.
- the treatment table 27 can move and rotate in six axis directions.
- the radiotherapy apparatus further includes a radiation irradiation unit 35 including a horizontal irradiation port 21 and a vertical irradiation port 22 for emitting radiation such as X-rays and electron beams.
- the radiotherapy apparatus also includes a pair of X-ray tubes 25 and 26 and a pair of X-ray detectors 23 and 24 for measuring X-rays irradiated from these X-ray tubes 25 and 26 and passing through a patient 57.
- the X-ray imaging part 36 provided with these is provided.
- this radiotherapy apparatus is connected to a CT imaging apparatus 37 that performs CT imaging of the patient 57, a treatment planning apparatus 38 that creates a treatment plan for the patient 57, a hospital system, and the like via a network.
- a storage unit 30 for storing data, an input unit 33 including a keyboard and a mouse, and a display unit 34 including a liquid crystal display panel are provided. The entire radiotherapy apparatus is controlled by the control unit 10.
- the horizontal irradiation port 21 and the vertical irradiation port 22 are fixed in the examination room.
- the X-ray detector 24 can move between an imaging position on the front surface of the horizontal irradiation port 21 facing the X-ray tube 26 and the patient 57 and a retreat position separated from the horizontal irradiation port 21.
- the X-ray detector 23 can move between an imaging position on the front surface of the vertical irradiation port 22 facing the X-ray tube 25 and the patient 57 and a retracted position separated from the vertical irradiation port 22. Yes.
- the CT imaging device 37 is for obtaining a CT image including an affected part of the patient 57 by performing three-dimensional CT imaging of the patient 57 prior to performing radiotherapy.
- the CT image captured by the CT imaging device 37 is sent to the treatment planning device 38, and the treatment planning device 38 converts the patient data read from the storage unit 30 and the three-dimensional CT image captured by the CT imaging device 37. Based on this, a treatment plan is created.
- the three-dimensional CT imaging of the patient 57 is executed at least during one cycle of the patient 57 breathing.
- 4D CT image data consisting of a 3D CT image data group of a region including a treatment target part in a plurality of continuous respiratory phases, together with the shape of the treatment target part in the reference respiratory phase, as a part of the treatment plan, It is stored in the treatment plan storage unit 31 in the storage unit 30.
- X-ray fluoroscopy acquisition of an X-ray image by the X-ray imaging unit 36 (X-ray imaging or X-ray fluoroscopy can be adopted for the patient 57 is described below as X-ray fluoroscopy).
- This fluoroscopy for the patient 57 is performed at least during one cycle of the patient's 57 breathing.
- the three-dimensional X-ray image data composed of the two-dimensional X-ray image data group of the region including the treatment target site in a plurality of continuous respiratory phases is stored in the storage unit 30 together with the position of the treatment target site in the reference respiratory phase. It is stored in the line image information storage unit 32.
- the control unit 10 described above calculates a CT image deformation amount calculation unit 11 that calculates a deformation amount of a three-dimensional CT image including a treatment target region between different respiratory phases, and calculates a shape of the treatment target region in each respiratory phase.
- X-ray image deformation amount calculation that calculates a deformation amount of a two-dimensional X-ray image including a treatment target region between different respiratory phases, and a shape calculation unit 12, an irradiation region determination unit 13 that determines a treatment beam irradiation region
- the position calculation unit 15 that calculates the position of the treatment target site in each respiratory phase, the template matching unit 16 that specifies the position of the treatment target site in each respiratory phase by template matching, and the position calculation unit 15
- the position of the treatment target part in each respiratory phase is compared with the position of the treatment target part in each respiratory phase specified by the template matching unit 16.
- a comparison unit 17 that identifies these error values, a correction unit 18 that corrects parameters based on the error values, and an image processing unit that
- control unit 10 includes a treatment plan acquisition unit 41 that acquires the shape of the treatment target site in the four-dimensional CT data and the reference respiratory phase from the treatment plan storage unit 31, and a three-dimensional X-ray image from the X-ray image information storage unit 32.
- An X-ray image information acquisition unit 42 that acquires data and the position of a treatment target site in a reference respiratory phase, and a radiation irradiation control unit 43 that controls the radiation irradiation unit 35 to emit radiation as a treatment beam.
- FIG. 3 is a flowchart showing the basic steps of radiation therapy.
- the patient 57 When performing radiotherapy, after the patient 57 enters the room (step S1), the patient 57 is positioned (step S2). If the patient 57 is positioned at a position suitable for treatment, preparation for target tracking is performed (step S3). Thereafter, the radiation irradiation unit 35 receives a command from the radiation irradiation control unit 43 and irradiates radiation as a treatment beam (step S4). When the necessary treatment is completed, the patient 57 leaves the room (step S5).
- FIG. 4 is a flowchart showing the target tracking preparation process.
- the case where the treatment target site is the tumor of the patient 57 will be described.
- the treatment plan acquisition unit 41 in the control unit 10 acquires treatment plan information from the treatment plan storage unit 31 in the storage unit 30 (step S31).
- This treatment plan information is recorded in RT-DICOM (Digital Imaging and Communication in Medicine).
- RT-DICOM Digital Imaging and Communication in Medicine
- the shape of the tumor to be treated and the four-dimensional CT image data are acquired from this treatment plan information.
- the four-dimensional CT image data is data including a three-dimensional CT image data group of a region including a tumor in a plurality of continuous respiratory phases.
- the data of the organ shape including the tumor may be acquired together, and the tumor shape or the like may be superimposed on the CT data of the reference respiratory phase, and the operator may confirm this.
- the CT image deformation amount calculation unit 11 performs image registration on the four-dimensional CT image data acquired from the treatment plan storage unit 31 to thereby perform three-dimensional CT including tumors between different respiratory phases.
- the deformation amount of the image is calculated (step S32). More specifically, the amount of deformation (3D-Vector) of the CT image data between the respiratory phases is calculated by performing nonlinear registration on the CT image data at each respiratory phase.
- the shape calculation unit 12 includes tumors in the reference respiratory phase stored in the treatment plan storage unit 31 in the storage unit 30 and tumors between different respiratory phases calculated by the CT image deformation amount calculation unit 11 3 Based on the deformation amount of the dimensional CT image, the shape of the tumor in each respiratory phase is calculated (step S33).
- step S34 the calculated shape of the tumor on the three-dimensional CT image in each respiratory phase is superimposed and displayed, and the operator confirms the shape of each respiratory phase and corrects it if necessary.
- the irradiation region determination unit 13 creates a region to which the shape of the treatment target part in each respiratory phase and a margin accompanying respiratory movement are added, and determines an irradiation region synchronized with the respiration of the treatment beam by the radiation irradiation unit 35. (Step S35). Treatment beam irradiation using template matching described later is executed in this irradiation region.
- FIG. 5 is an explanatory diagram showing an irradiation region synchronized with respiration.
- the shape of the tumor in each respiratory phase has been calculated previously.
- an area in which a margin area 101 accompanying respiratory movement is added to a gating window 100 that is an area to be irradiated with a therapeutic beam is irradiated in synchronization with respiration. Determine as an area.
- the X-ray image information acquisition unit 42 in the control unit 10 acquires X-ray image information from the X-ray image information storage unit 32 in the storage unit 30 (step S36). Then, from this X-ray image information, the position of the tumor to be treated and the three-dimensional X-ray image data are acquired.
- the three-dimensional X-ray image data is data composed of a two-dimensional X-ray image data group of a region including a tumor in a plurality of continuous respiratory phases.
- the X-ray image deformation amount calculation unit 14 performs image registration on the three-dimensional X-ray image data acquired from the X-ray image information storage unit 32, thereby including tumors between different respiratory phases.
- a deformation amount of the two-dimensional X-ray image is calculated (step S37). More specifically, by performing nonlinear registration on the X-ray image data in each respiratory phase, the deformation amount (2D-Vector) of the X-ray image data between the respiratory phases is calculated.
- the position calculation unit 15 includes tumors in the reference respiratory phase stored in the X-ray image information storage unit 32 and tumors between different respiratory phases calculated by the X-ray image deformation amount calculation unit 14 2 Based on the deformation amount of the dimensional X-ray image, the position of the tumor in each respiratory phase is calculated (step S38).
- the template matching unit 16 sets initial values of parameters for template matching (step S39).
- this parameter in this embodiment, the number of templates acquired during one cycle of respiration and a threshold used for template matching are adopted.
- a parameter of how many templates are created during one cycle of breathing of the patient 57 is employed.
- this template an image including a metal marker is used when performing marker tracking, and an image including a specific part (tumor) used instead of the marker is used when performing markerless tracking. Is done.
- Target tracking is executed by performing template matching using a plurality of created templates.
- a threshold used for template matching is adopted as the second parameter.
- This threshold is the trust used in template matching, which is the degree of matching between a template and a marker or a target that is a specific part when a template matching is performed. Refers to degrees.
- the template matching unit 16 performs tracking by acquiring an X-ray image of a region including a tumor that is a treatment target site (not particularly limited, but in this example, X-ray fluoroscopy) under the set parameters.
- the X-ray image was acquired over a plurality of successive respiratory phases in the region including the tumor (not particularly limited, but in this example X-ray fluoroscopy) (step S40)
- the position of the treatment target site in each respiratory phase is specified (step S41).
- FIG. 6 is an explanatory diagram showing this template matching operation.
- an image used for template matching is indicated by a symbol M.
- an image of the specific site such as a tumor is used as the image M.
- an image of a metal marker is used as the image M.
- images 80a, 80b, 80c... 80n including the image M are obtained by continuously seeing through the images of the patient 57.
- images 80a, 80b, 80c... 80n including the image M are obtained by performing fluoroscopy at a frame rate of about 30 fps (Frames Per Second), for example, for a period of one breath or more in the patient 57.
- the image M portion is extracted from the images 80a, 80b, 80c... 80n including these images M to obtain template images 81a, 81b, 81c.
- the acquired image M is sequentially deformed as shown in FIG.
- the number of template images 81a, 81b, 81c,... 81n created during one breath period at this time is one of the parameters described above.
- the region including the image M is seen through at a frame rate of about 30 fps.
- template matching is performed using a plurality of template images 81a, 81b, 81c,... 81n for the region 83 including the image M in the image 82 acquired at regular intervals. That is, all of the plurality of template images 81a, 81b, 81c,... 81n are sequentially matched with respect to the region 83 including the image M in the image 82 acquired at regular intervals.
- any one of the plurality of template images 81a, 81b, 81c,... 81n exceeds a preset threshold for matching, it is determined that matching is successful. If some of the template images 81a, 81b, 81c,... 81n exceed the threshold value, the template image with the highest matching degree is selected as the template image that has been matched. recognize.
- the threshold used for template matching at this time is one of the parameters described above. *
- the comparison unit 17 compares the position of the tumor in each respiratory phase calculated by the position calculation unit 15 with the position of the treatment target site in each respiratory phase specified by the template matching unit 16, and an error occurs.
- a value is calculated (step S42).
- the correction unit 18 changes the above two parameters (step S44), and then repeats steps S41 to S43. That is, a template is created by changing the number of templates acquired during one breathing cycle as a parameter and a threshold value used for template matching, and using this template, it is acquired continuously by fluoroscopy first.
- An error value for each parameter is calculated by repeating the template matching operation for the obtained X-ray image a plurality of times while changing the parameter.
- the image processing unit 19 causes the display unit 34 to graphically display a two-dimensional color map expressing the error values in different colors (Step S45).
- FIG. 7 and 8 are schematic diagrams of a two-dimensional color map graphically displayed on the display unit 34.
- FIG. 7 and 8 show two-dimensional color maps in directions orthogonal to each other (directions corresponding to the detection direction by the X-ray detector 23 and the detection direction by the X-ray detector 24 in FIG. 1).
- the difference in color is schematically expressed by hatching.
- the vertical axis indicates the number of templates created during one respiratory cycle of the patient 57
- the horizontal axis indicates the threshold used for template matching.
- the color band B in these drawings a region where the error increases as it goes upward is shown.
- the mutually orthogonal straight lines shown in the two-dimensional color map indicate that the intersection is the region with the smallest error. These two straight lines are displayed based on the calculation result by the comparison unit 17. The two straight lines may be designated by the operator.
- the target tracking preparation step (step S3) including setting of the treatment beam irradiation area, parameter optimization, and template creation is completed.
- the treatment beam irradiation (step S4) described above is executed using a template based on the treatment beam irradiation region and the optimized parameters obtained in the target tracking preparation step.
- the present invention is not limited to the above-described embodiment, and can be modified as follows. That is, until the error value between the position of the tumor in each respiratory phase calculated by the position calculating unit 15 and the position of the treatment target site in each respiratory phase specified by the template matching unit 16 is within the allowable range, the correcting unit 18 is described above. After changing the two parameters, S41 to S43 are repeated. If the error value between the position of the tumor in each respiratory phase calculated by the position calculating unit 15 and the position of the treatment target site in each respiratory phase specified by the template matching unit 16 is within an allowable range, the parameter is automatically set. decide.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Biophysics (AREA)
- High Energy & Nuclear Physics (AREA)
- Pulmonology (AREA)
- Optics & Photonics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Radiation-Therapy Devices (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
11 CT画像変形量算出部
12 形状算出部
13 照射領域決定部
14 X線画像変形量算出部
15 位置算出部
16 テンプレートマッチング部
17 比較部
18 補正部
19 画像処理部
21 水平照射ポート
22 垂直照射ポート
23 X線検出器
24 X線検出器
25 X線管
26 X線管
27 治療台
31 治療計画記憶部
32 X線画像情報記憶部
34 表示部
35 放射線照射部
36 X線撮影部
37 CT撮影装置
38 治療計画装置
41 治療計画取得部
42 X線画像情報取得部
43 放射線照射制御部
57 患者
80a~80n 透視により取得された画像
81a~81n テンプレート画像
82 透視により取得された画像
83 画像Mが含まれる領域
100 ゲーティングウインドウ
101 呼吸性移動に伴うマージン領域
102 各呼吸位相の腫瘍の位置
Claims (8)
- 患者に対して治療ビームを照射することにより治療を行う放射線治療に用いられる動体追跡装置において、
基準呼吸位相における治療対象部位の位置と、連続する複数の呼吸位相における治療対象部位を含む領域の2次元のX線画像データ群からなる3次元X線画像データとを記憶部から取得するX線画像情報取得部と、
前記記憶部から取得した3次元X線画像データに対して画像レジストレーションを実行することにより、異なる呼吸位相間での治療対象部位を含む2次元のX線画像の変形量を算出するX線画像変形量算出部と、
前記記憶部から取得した基準呼吸位相における治療対象部位の位置と、前記X線画像変形量算出部により算出した異なる呼吸位相間での治療対象部位を含む2次元X線画像の変形量とに基づいて、各呼吸位相における治療対象部位の位置を算出する位置算出部と、
治療対象部位を含む領域を連続する複数の呼吸位相にわたってX線画像を取得するとともに、テンプレートマッチングのためのパラメータを設定してトラッキングを実行するときのテンプレートを作成し、連続して取得されたX線画像に対してテンプレートマッチングを実行することにより各呼吸位相における治療対象部位の位置を特定する動作を、前記パラメータを変更して複数回実行するテンプレートマッチング部と、
前記位置算出部により算出した各呼吸位相における治療対象部位の位置と、前記テンプレートマッチング部により特定した各呼吸位相における治療対象部位の位置とを比較することにより、各パラメータ毎のそれらの誤差値を特定する比較部と、
を備えたことを特徴とする放射線治療用動体追跡装置。 - 請求項1に記載の放射線治療用動体追跡装置において、
前記パラメータは、呼吸の1周期間に取得するテンプレートの数、および/または、テンプレートマッチングに使用する閾値である放射線治用動体追跡療装置。 - 請求項2に記載の放射線治療用動体追跡装置において、
呼吸の1周期間に取得するテンプレートの数、および/または、テンプレートマッチングに使用する閾値を変化させたときの、それらの呼吸の1周期間に取得するテンプレートの数、および/または、テンプレートマッチングに使用する閾値と、前記誤差値との関係を、表示部にグラフィック表示させるための画像処理部を備える放射線治療用動体追跡装置。 - 請求項3に記載の放射線治療用動体追跡装置において、
前記画像処理部は、呼吸の1周期間に取得するテンプレートの数とテンプレートマッチングに使用する閾値とを縦軸と横軸とし、前記誤差値を異なる色で表現した2次元カラーマップを、前記表示部にグラフィック表示させる放射線治療用動体追跡装置。 - 請求項1に記載の放射線治療用動体追跡装置において、
基準呼吸位相における治療対象部位の形状と、連続する複数の呼吸位相における治療対象部位を含む領域の3次元のCT画像データ群からなる4次元CT画像データとを記憶部から取得する治療計画取得部と、
前記記憶部から取得した4次元CT画像データに対して画像レジストレーションを実行することにより、異なる呼吸位相間での治療対象部位を含む3次元のCT画像の変形量を算出するCT画像変形量算出部と、
前記記憶部から取得した基準呼吸位相における治療対象部位の形状と、前記CT画像変形量算出部により算出した異なる呼吸位相間での治療対象部位を含む3次元CT画像の変形量とに基づいて、各呼吸位相における治療対象部位の形状を算出する形状算出部と、
前記形状算出部により算出した各呼吸位相における治療対象部位の形状に基づいて、治療ビームの照射領域を決定する照射領域決定部と、
前記照射領域決定部で決定した治療ビームの照射領域と、前記テンプレートマッチング部において、前記比較部により特定した誤差値に基づいて補正した後のパラメータを使用してテンプレートマッチングを実行して得た治療対象部位の位置とを利用して、治療ビーム照射部に治療ビームを照射させる治療ビーム照射制御部と、
をさらに備える放射線治療用動体追跡装置。 - 請求項1から請求項5のいずれかに記載の放射線治療用動体追跡装置を備えた放射線治療装置。
- 患者に対して治療ビームを照射することにより治療を行う放射線治療装置に用いられる治療ビームの照射領域決定装置において、
基準呼吸位相における治療対象部位の形状と、連続する複数の呼吸位相における治療対象部位を含む領域の3次元のCT画像データ群からなる4次元CT画像データとを記憶部から取得する治療計画取得部と、
前記記憶部から取得した4次元CT画像データに対して画像レジストレーションを実行することにより、異なる呼吸位相間での治療対象部位を含む3次元のCT画像の変形量を算出するCT画像変形量算出部と、
前記記憶部から取得した基準呼吸位相における治療対象部位の形状と、前記CT画像変形量算出部により算出した異なる呼吸位相間での治療対象部位を含む3次元CT画像の変形量とに基づいて、各呼吸位相における治療対象部位の形状を算出する形状算出部と、
前記形状算出部により算出した各呼吸位相における治療対象部位の形状に基づいて、治療ビームの照射領域を決定する照射領域決定部と、
を備えたことを特徴とする放射線治療用照射領域決定装置。 - 請求項7に記載の放射線治療用照射領域決定装置を備えた放射線治療装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016504018A JP6351017B2 (ja) | 2014-02-24 | 2015-02-03 | 放射線治療用動体追跡装置、放射線治療用照射領域決定装置および放射線治療装置 |
CN201580010263.3A CN106029171B (zh) | 2014-02-24 | 2015-02-03 | 放射线治疗用运动物体跟踪装置、放射线治疗用照射区域决定装置以及放射线治疗装置 |
US15/118,614 US9724540B2 (en) | 2014-02-24 | 2015-02-03 | Moving-body tracking device for radiation therapy, irradiation region determining device for radiation therapy, and radiation therapy device |
US15/646,164 US9956427B2 (en) | 2014-02-24 | 2017-07-11 | Moving-body tracking device for radiation therapy, irradiation region determining device for radiation therapy, and radiation therapy device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-032888 | 2014-02-24 | ||
JP2014032888 | 2014-02-24 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/118,614 A-371-Of-International US9724540B2 (en) | 2014-02-24 | 2015-02-03 | Moving-body tracking device for radiation therapy, irradiation region determining device for radiation therapy, and radiation therapy device |
US15/646,164 Division US9956427B2 (en) | 2014-02-24 | 2017-07-11 | Moving-body tracking device for radiation therapy, irradiation region determining device for radiation therapy, and radiation therapy device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015125600A1 true WO2015125600A1 (ja) | 2015-08-27 |
Family
ID=53878111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/052967 WO2015125600A1 (ja) | 2014-02-24 | 2015-02-03 | 放射線治療用動体追跡装置、放射線治療用照射領域決定装置および放射線治療装置 |
Country Status (4)
Country | Link |
---|---|
US (2) | US9724540B2 (ja) |
JP (1) | JP6351017B2 (ja) |
CN (1) | CN106029171B (ja) |
WO (1) | WO2015125600A1 (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018506349A (ja) * | 2015-01-28 | 2018-03-08 | エレクタ、インク.Elekta, Inc. | 適応型放射線療法に対する移動する標的の3次元位置特定 |
JP2018079011A (ja) * | 2016-11-15 | 2018-05-24 | 株式会社島津製作所 | X線透視方法およびx線透視装置 |
JP2018089065A (ja) * | 2016-12-01 | 2018-06-14 | 株式会社島津製作所 | X線透視装置 |
WO2018159775A1 (ja) | 2017-03-03 | 2018-09-07 | 国立大学法人筑波大学 | 対象追跡装置 |
JP2018153299A (ja) * | 2017-03-16 | 2018-10-04 | 東芝エネルギーシステムズ株式会社 | 被検体の位置決め装置、被検体の位置決め方法、被検体の位置決めプログラムおよび放射線治療システム |
WO2019008826A1 (ja) * | 2017-07-06 | 2019-01-10 | 株式会社島津製作所 | 放射線撮影装置および放射線画像検出方法 |
JP2019013449A (ja) * | 2017-07-06 | 2019-01-31 | 株式会社島津製作所 | 放射線撮影装置および放射線画像検出方法 |
KR20190074975A (ko) * | 2017-12-20 | 2019-06-28 | 도시바 에너지시스템즈 가부시키가이샤 | 의용 장치 및 의용 장치의 제어 방법 |
JP2019107392A (ja) * | 2017-12-20 | 2019-07-04 | 国立研究開発法人量子科学技術研究開発機構 | 医用装置、医用装置の制御方法およびプログラム |
JP2020518363A (ja) * | 2017-05-03 | 2020-06-25 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 体積変調アーク療法(vmat)計画の視覚化 |
EP3710109A4 (en) * | 2016-11-21 | 2021-06-30 | Asto CT, Inc. | THREE-DIMENSIONAL TRACKING OF A TARGET IN A BODY |
CN113573776A (zh) * | 2020-02-14 | 2021-10-29 | 西安大医集团股份有限公司 | 图像引导方法、装置、放疗设备和计算机存储介质 |
JP2022174220A (ja) * | 2016-06-22 | 2022-11-22 | ビューレイ・テクノロジーズ・インコーポレイテッド | 磁気共鳴容積イメージング |
US12017088B2 (en) | 2018-07-09 | 2024-06-25 | National University Corporation Hokkaido University | Radiotherapy device and radiotherapy method |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106061376B (zh) * | 2014-03-03 | 2020-07-28 | 瓦里安医疗系统公司 | 用于患者位置监测的系统和方法 |
JP6533991B2 (ja) * | 2016-02-16 | 2019-06-26 | 東芝エネルギーシステムズ株式会社 | 医用画像処理装置、方法、プログラム及び放射線治療装置 |
JP6849966B2 (ja) * | 2016-11-21 | 2021-03-31 | 東芝エネルギーシステムズ株式会社 | 医用画像処理装置、医用画像処理方法、医用画像処理プログラム、動体追跡装置および放射線治療システム |
EP3375485A1 (en) * | 2017-03-17 | 2018-09-19 | Koninklijke Philips N.V. | Image-guided radiation therapy |
CN110678224B (zh) * | 2017-06-19 | 2022-05-13 | 深圳市奥沃医学新技术发展有限公司 | 利用放疗设备对靶点跟踪照射的装置及放疗设备 |
WO2018232566A1 (zh) * | 2017-06-19 | 2018-12-27 | 深圳市奥沃医学新技术发展有限公司 | 利用放疗设备确定目标靶点位置的方法、装置和放疗设备 |
JP6806655B2 (ja) * | 2017-10-10 | 2021-01-06 | 株式会社日立製作所 | 放射線撮像装置、画像データ処理装置及び画像処理プログラム |
KR101977381B1 (ko) * | 2017-12-15 | 2019-05-10 | 한국생산기술연구원 | 방사선 치료 장치의 제어 장치 및 방법 |
US11151726B2 (en) * | 2018-01-10 | 2021-10-19 | Canon Medical Systems Corporation | Medical image processing apparatus, X-ray diagnostic apparatus, and medical image processing method |
JP7311859B2 (ja) * | 2019-03-25 | 2023-07-20 | 株式会社日立製作所 | 動体追跡装置とそれを備えた放射線治療システム、プログラム、および動体の追跡方法 |
JP7252847B2 (ja) * | 2019-07-08 | 2023-04-05 | 株式会社日立製作所 | 動体追跡装置および放射線治療システム、ならびに動体追跡装置の作動方法 |
JP7330833B2 (ja) * | 2019-09-20 | 2023-08-22 | 株式会社日立製作所 | 放射線撮像装置および放射線治療装置 |
CN111388880B (zh) * | 2020-03-20 | 2022-06-14 | 上海联影医疗科技股份有限公司 | 一种弧形放射治疗校验方法、装置、设备及存储介质 |
DE102022203903B3 (de) | 2022-04-21 | 2023-05-25 | Siemens Healthcare Gmbh | Verfahren zur Bereitstellung eines Bestrahlungsplans, Vorrichtung zur Ermittlung und Vorrichtung zur Anwendung des Bestrahlungsplans |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3053389B1 (ja) * | 1998-12-03 | 2000-06-19 | 三菱電機株式会社 | 動体追跡照射装置 |
JP2002210029A (ja) * | 2001-01-19 | 2002-07-30 | Mitsubishi Electric Corp | 放射線治療装置 |
JP2013529509A (ja) * | 2010-06-23 | 2013-07-22 | ヴァリアン メディカル システムズ インターナショナル アーゲー | 高度な構造生成および編集のためのメカニズム |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4360817B2 (ja) * | 2002-10-18 | 2009-11-11 | 株式会社日立メディコ | 放射線断層撮影装置 |
US10279196B2 (en) | 2006-09-28 | 2019-05-07 | Accuray Incorporated | Radiation treatment planning using four-dimensional imaging data |
DE102006051919B4 (de) * | 2006-10-31 | 2016-09-01 | Siemens Healthcare Gmbh | Verfahren zum Bereitstellen eines 3D-Röntgenbilddatensatzes des Herzens eines Patienten |
US8422631B2 (en) * | 2007-12-07 | 2013-04-16 | Mitsubishi Heavy Industries, Ltd. | Radiation therapy planning apparatus and radiation therapy planning method |
US8064642B2 (en) * | 2008-01-10 | 2011-11-22 | Accuray Incorporated | Constrained-curve correlation model |
US8494236B2 (en) * | 2009-10-07 | 2013-07-23 | Siemens Aktiengesellschaft | System and method for cardiac segmentation in MR-cine data using inverse consistent non-rigid registration |
US10311585B2 (en) | 2010-06-23 | 2019-06-04 | Varian Medical Systems International Ag | Mechanism for advanced structure generation and editing |
US9401051B2 (en) | 2010-06-23 | 2016-07-26 | Varian Medical Systems International Ag | Mechanism for dynamically propagating real-time alterations of medical images |
US20110321073A1 (en) | 2010-06-23 | 2011-12-29 | Yarvis Mark D | Techniques for customization |
CN102068271B (zh) * | 2011-02-22 | 2012-04-18 | 南方医科大学 | 一种基于呼吸相位的胸部或腹部ct图像的回顾性分类方法 |
JP5575022B2 (ja) * | 2011-03-18 | 2014-08-20 | 三菱重工業株式会社 | 放射線治療装置制御装置、その処理方法、及びプログラム |
FR2985899B1 (fr) * | 2012-01-24 | 2015-04-17 | Gen Electric | Traitement d'images de radiologie interventionnelles par analyse de l'ecg |
CN103222874B (zh) * | 2012-01-31 | 2016-12-07 | Ge医疗系统环球技术有限公司 | 拣选ct切片图像的方法和构建ct三维图像的方法 |
US9418468B2 (en) * | 2013-01-07 | 2016-08-16 | Centralesupelec | Method and device for elastic registration between a two-dimensional digital image and a slice of a three-dimensional volume with overlapping content |
-
2015
- 2015-02-03 WO PCT/JP2015/052967 patent/WO2015125600A1/ja active Application Filing
- 2015-02-03 US US15/118,614 patent/US9724540B2/en not_active Expired - Fee Related
- 2015-02-03 CN CN201580010263.3A patent/CN106029171B/zh not_active Expired - Fee Related
- 2015-02-03 JP JP2016504018A patent/JP6351017B2/ja active Active
-
2017
- 2017-07-11 US US15/646,164 patent/US9956427B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3053389B1 (ja) * | 1998-12-03 | 2000-06-19 | 三菱電機株式会社 | 動体追跡照射装置 |
JP2002210029A (ja) * | 2001-01-19 | 2002-07-30 | Mitsubishi Electric Corp | 放射線治療装置 |
JP2013529509A (ja) * | 2010-06-23 | 2013-07-22 | ヴァリアン メディカル システムズ インターナショナル アーゲー | 高度な構造生成および編集のためのメカニズム |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018506349A (ja) * | 2015-01-28 | 2018-03-08 | エレクタ、インク.Elekta, Inc. | 適応型放射線療法に対する移動する標的の3次元位置特定 |
JP7318083B2 (ja) | 2016-06-22 | 2023-07-31 | ビューレイ・テクノロジーズ・インコーポレイテッド | 磁気共鳴容積イメージング |
JP2022174220A (ja) * | 2016-06-22 | 2022-11-22 | ビューレイ・テクノロジーズ・インコーポレイテッド | 磁気共鳴容積イメージング |
JP2018079011A (ja) * | 2016-11-15 | 2018-05-24 | 株式会社島津製作所 | X線透視方法およびx線透視装置 |
US11295449B2 (en) | 2016-11-21 | 2022-04-05 | Asto CT, Inc. | Three-dimensional tracking of a target in a body |
EP3710109A4 (en) * | 2016-11-21 | 2021-06-30 | Asto CT, Inc. | THREE-DIMENSIONAL TRACKING OF A TARGET IN A BODY |
US10702713B2 (en) | 2016-12-01 | 2020-07-07 | Shimadzu Corporation | X-ray fluoroscopic apparatus |
JP2018089065A (ja) * | 2016-12-01 | 2018-06-14 | 株式会社島津製作所 | X線透視装置 |
JPWO2018159775A1 (ja) * | 2017-03-03 | 2020-03-19 | 国立大学法人 筑波大学 | 対象追跡装置 |
WO2018159775A1 (ja) | 2017-03-03 | 2018-09-07 | 国立大学法人筑波大学 | 対象追跡装置 |
US11328434B2 (en) | 2017-03-03 | 2022-05-10 | University Of Tsukuba | Object tracking device |
JP2018153299A (ja) * | 2017-03-16 | 2018-10-04 | 東芝エネルギーシステムズ株式会社 | 被検体の位置決め装置、被検体の位置決め方法、被検体の位置決めプログラムおよび放射線治療システム |
JP7120584B2 (ja) | 2017-03-16 | 2022-08-17 | 東芝エネルギーシステムズ株式会社 | 被検体の位置決め装置、被検体の位置決め方法、被検体の位置決めプログラムおよび放射線治療システム |
JP2021094460A (ja) * | 2017-03-16 | 2021-06-24 | 東芝エネルギーシステムズ株式会社 | 被検体の位置決め装置、被検体の位置決め方法、被検体の位置決めプログラムおよび放射線治療システム |
JP7370864B2 (ja) | 2017-05-03 | 2023-10-30 | コーニンクレッカ フィリップス エヌ ヴェ | 体積変調アーク療法(vmat)計画の視覚化 |
JP2020518363A (ja) * | 2017-05-03 | 2020-06-25 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 体積変調アーク療法(vmat)計画の視覚化 |
JP6999895B2 (ja) | 2017-07-06 | 2022-01-19 | 株式会社島津製作所 | 放射線撮影装置および放射線画像検出方法 |
JP2019013450A (ja) * | 2017-07-06 | 2019-01-31 | 株式会社島津製作所 | 放射線撮影装置および放射線画像検出方法 |
WO2019008826A1 (ja) * | 2017-07-06 | 2019-01-10 | 株式会社島津製作所 | 放射線撮影装置および放射線画像検出方法 |
JP2019013449A (ja) * | 2017-07-06 | 2019-01-31 | 株式会社島津製作所 | 放射線撮影装置および放射線画像検出方法 |
KR102188381B1 (ko) | 2017-12-20 | 2020-12-08 | 도시바 에너지시스템즈 가부시키가이샤 | 의용 장치 및 의용 장치의 제어 방법 |
JP7264389B2 (ja) | 2017-12-20 | 2023-04-25 | 国立研究開発法人量子科学技術研究開発機構 | 医用装置、医用装置の制御方法およびプログラム |
JP2019107392A (ja) * | 2017-12-20 | 2019-07-04 | 国立研究開発法人量子科学技術研究開発機構 | 医用装置、医用装置の制御方法およびプログラム |
KR20190074975A (ko) * | 2017-12-20 | 2019-06-28 | 도시바 에너지시스템즈 가부시키가이샤 | 의용 장치 및 의용 장치의 제어 방법 |
US12017088B2 (en) | 2018-07-09 | 2024-06-25 | National University Corporation Hokkaido University | Radiotherapy device and radiotherapy method |
CN113573776A (zh) * | 2020-02-14 | 2021-10-29 | 西安大医集团股份有限公司 | 图像引导方法、装置、放疗设备和计算机存储介质 |
US11883684B2 (en) | 2020-02-14 | 2024-01-30 | Our United Corporation | Image-guided method, radio therapy device, and computer storage medium |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015125600A1 (ja) | 2017-03-30 |
US9956427B2 (en) | 2018-05-01 |
CN106029171A (zh) | 2016-10-12 |
US20170312544A1 (en) | 2017-11-02 |
US9724540B2 (en) | 2017-08-08 |
US20170043184A1 (en) | 2017-02-16 |
CN106029171B (zh) | 2019-01-22 |
JP6351017B2 (ja) | 2018-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6351017B2 (ja) | 放射線治療用動体追跡装置、放射線治療用照射領域決定装置および放射線治療装置 | |
JP6785485B2 (ja) | X線透視装置 | |
KR102187814B1 (ko) | 의용 장치, 및 의용 장치의 제어 방법 | |
JP6181459B2 (ja) | 放射線治療システム | |
DE102014219667B3 (de) | Verfahren zur Auswahl eines Aufnahmebereiches und System zur Auswahl eines Aufnahmebereichs | |
US20160166329A1 (en) | Tomographic imaging for interventional tool guidance | |
JP6964309B2 (ja) | 放射線治療用追跡装置 | |
CN108601629A (zh) | 外科手术期间减少辐射暴露的3d可视化 | |
US10733792B2 (en) | Method and apparatus for user guidance for the choice of a two-dimensional angiographic projection | |
JP2016116659A (ja) | 医用画像処理装置、治療システム、医用画像処理方法、および医用画像処理プログラム | |
US20170236326A1 (en) | Method and Apparatus for User Guidance for the Choice of a Two-Dimensional Angiographic Projection | |
EP3135203B1 (en) | Systems and methods of image acquisition for surgical instrument reconstruction | |
TWI510221B (zh) | X射線透視裝置 | |
JP6815586B2 (ja) | 医用画像処理装置、および治療システム | |
JP2015195970A (ja) | X線診断装置 | |
JP6249972B2 (ja) | 粒子線治療システム | |
JP7000795B2 (ja) | 放射線撮影装置 | |
JP2018042831A (ja) | 医用画像処理装置、治療システム、および医用画像処理プログラム | |
JP2018153277A (ja) | X線透視装置 | |
JP6354936B2 (ja) | 放射線治療装置および画像処理装置 | |
JP6115641B2 (ja) | X線透視装置およびx線透視方法 | |
EP3579756B1 (en) | Iso-centering in c-arm computer tomography | |
JP6380237B2 (ja) | 放射線透視装置 | |
JP7279336B2 (ja) | X線撮影装置 | |
JP7172850B2 (ja) | 位置決め装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15751777 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016504018 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15118614 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15751777 Country of ref document: EP Kind code of ref document: A1 |