Nothing Special   »   [go: up one dir, main page]

WO2015114873A1 - 動力分割式無段変速装置 - Google Patents

動力分割式無段変速装置 Download PDF

Info

Publication number
WO2015114873A1
WO2015114873A1 PCT/JP2014/073612 JP2014073612W WO2015114873A1 WO 2015114873 A1 WO2015114873 A1 WO 2015114873A1 JP 2014073612 W JP2014073612 W JP 2014073612W WO 2015114873 A1 WO2015114873 A1 WO 2015114873A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuously variable
variable transmission
gear
planetary gear
speed
Prior art date
Application number
PCT/JP2014/073612
Other languages
English (en)
French (fr)
Inventor
恭太 松本
Original Assignee
ダイハツ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイハツ工業株式会社 filed Critical ダイハツ工業株式会社
Publication of WO2015114873A1 publication Critical patent/WO2015114873A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H37/0846CVT using endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/088Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft
    • F16H2037/0886Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft with switching means, e.g. to change ranges

Definitions

  • the present invention relates to a continuously variable transmission mechanism, a constant transmission mechanism, and a power split type continuously variable transmission apparatus including a planetary gear mechanism for synthesis that combines outputs of both transmission mechanisms.
  • a continuously variable transmission mechanism for example, a belt-type continuously variable transmission mechanism that allows the input rotation from the engine to be continuously variable, and the input rotation is shifted at a predetermined gear ratio.
  • Some of them have a constant speed change mechanism (for example, a gear mechanism) that transmits to the output side of the continuously variable speed change mechanism, and a synthesizing planetary gear mechanism that combines and outputs the rotations from both mechanisms.
  • a continuously variable transmission mode in which the input rotation from the engine is transmitted only to the continuously variable transmission mechanism, and a power split mode in which the transmission is divided and transmitted to the continuously variable transmission mechanism and the constant transmission mechanism. The switching is performed as appropriate according to the driving state of the vehicle (see, for example, Patent Document 1).
  • the speed is changed at a normal belt ratio (lowest speed ratio to highest speed ratio).
  • the power split mode is established by selectively operating the fastening element and the fixed element.
  • the planetary gear mechanism makes a difference, so that the ring gear rotates at an increased or reduced speed. Therefore, the total transmission ratio width is expanded as compared with the case of only belt driving.
  • the maximum transmission ratio or the lowest transmission ratio of the belt-type continuously variable transmission mechanism is set to the transmission ratio of the constant transmission mechanism.
  • the speed must be greatly increased or decreased, and it is difficult to secure the arrangement space. As a result, there is a problem that the apparatus becomes larger.
  • the present invention has been made in view of the above-described conventional situation, and can increase the gear ratio width while avoiding the enlargement of the arrangement space of the constant transmission mechanism and the enlargement of the device, and the structure of the mode switching mechanism can be simplified. It is an object to provide a power split type continuously variable transmission.
  • a continuously variable transmission mechanism capable of continuously shifting an input rotation, a constant transmission mechanism that shifts the input rotation at a predetermined transmission ratio and transmits the input rotation to an output side of the continuously variable transmission mechanism,
  • a planetary gear mechanism for synthesis that combines the output rotation of the continuously variable transmission mechanism and the rotation transmitted by the constant transmission mechanism, and the continuously variable transmission mode in which the input rotation is transmitted only to the continuously variable transmission mechanism;
  • the constant speed change mechanism is provided on the input side of the continuously variable speed change mechanism, and has a speed change planetary gear mechanism that increases or decreases an input rotation and transmits the rotation to the synthesis planetary gear mechanism.
  • the planetary gear mechanism for speed change has a wet brake for fixing a ring gear or a sun gear.
  • the planetary gear mechanism for speed change is characterized in that the input rotation is input to a carrier and the ring gear is fixed by the wet brake to increase the speed from the sun gear and output.
  • the planetary gear mechanism for speed change is characterized in that the input rotation is input to a carrier and the sun gear is fixed by the wet brake to increase the speed from a ring gear for output.
  • the constant speed change mechanism has a structure having a speed change planetary gear mechanism
  • the input rotation can be transmitted to the output side of the continuously variable speed change mechanism by increasing or decreasing the speed.
  • the gear ratio width of the entire apparatus can be increased while avoiding the expansion of the arrangement space and the enlargement of the apparatus.
  • the power split mode can be achieved by fixing the ring gear or sun gear with the wet brake of the continuously variable transmission mechanism for shifting, and the clutch drum, centrifugal hydraulic canceller, hydraulic oil for mode switching with the conventional wet clutch
  • the oil passage configuration in the seal member and the rotating shaft can be eliminated, and the structure can be simplified.
  • the input rotation can be output from the sun gear at an increased speed by inputting the input rotation to the carrier and fixing the ring gear, and in the third aspect of the present invention, the input rotation is performed.
  • the carrier and fixing the sun gear By inputting to the carrier and fixing the sun gear, it is possible to increase the output from the ring gear and output the gear ratio, thereby realizing an increase in the gear ratio width of the entire apparatus.
  • FIG. 1 is a configuration diagram of a power split continuously variable transmission according to Embodiment 1 of the present invention.
  • FIG. FIG. 3 is a velocity diagram of a planetary gear mechanism for shifting of the continuously variable transmission according to the first embodiment.
  • FIG. 3 is a velocity diagram of a synthesis planetary gear mechanism of the continuously variable transmission according to the first embodiment.
  • FIG. 3 is a cross-sectional development view of the continuously variable transmission according to the first embodiment. It is a block diagram of the power division type continuously variable transmission which concerns on Example 2 of this invention. It is a speed diagram of the planetary gear mechanism for shifting of the continuously variable transmission according to the second embodiment.
  • FIG. 6 is a cross-sectional development view of a shifting planetary gear mechanism portion of the continuously variable transmission according to the second embodiment.
  • FIG. 1 to 4 are views for explaining a continuously variable transmission according to Embodiment 1 of the present invention.
  • reference numeral 1 denotes a power split type continuously variable transmission for an automobile.
  • the continuously variable transmission 1 is a belt type in which engine rotation is input via a torque converter 2 and the input rotation is continuously and continuously variable.
  • a continuously variable transmission mechanism 10 a constant transmission mechanism 13 that shifts the input rotation at a predetermined transmission ratio and transmits it to the output side of the belt-type continuously variable transmission mechanism 10, and an output rotation of the belt-type continuously variable transmission mechanism 10.
  • a synthesizing planetary gear mechanism 15 for synthesizing the transmission rotation of the constant speed change mechanism 13;
  • An engine crankshaft 2e is connected to the drive plate 2a of the torque converter 2, and an input shaft 5 is connected to the turbine runner 2b.
  • a forward drive unit 9 is disposed on the input shaft 5.
  • the forward drive unit 9 includes a forward drive gear 9a rotatably mounted on the input shaft 5 and a forward clutch 9b that couples or releases the forward drive gear 9a to or from the input shaft 5. Yes.
  • An idler shaft 8 is disposed in parallel with the input shaft 5.
  • An idler gear 8a that meshes with a reverse input gear 5a fixed to the distal end portion 5 'of the input shaft 5 is fixed to the base end portion 8' of the idler shaft 8, and the distal end portion 8 of the idler shaft 8 is fixed.
  • a reverse drive unit 12 is disposed at ′′.
  • the reverse drive unit 12 is connected to a reverse drive gear 12a rotatably attached to the idler shaft 8, and the reverse drive gear 12a is coupled to the idler shaft 8 so as to be able to transmit a rotational force, or is released to be relatively rotatable. And a reverse clutch 12b.
  • the belt type continuously variable transmission mechanism 10 includes a drive pulley shaft 6 disposed in parallel with the input shaft 5 and a driven pulley shaft 7 having a left portion 7 'and a right portion 7' '.
  • the output gear 7b of the driven pulley shaft 7 meshes with the input gear 16a of the differential mechanism 16.
  • the drive pulley shaft 6 has a forward input gear 6a meshed with a forward drive gear 9a of the input shaft 5 fixed to an input-side base end portion 6 ', and a drive pulley 19 attached to an output-side distal end portion 6 ′′. Is attached, and a reverse driven gear 6 c is fixed to the opposite side of the drive pulley 19.
  • the reverse drive gear 12a meshes with the reverse drive gear 6c.
  • a driven pulley 20 is attached to the driven pulley shaft 7, and the driven pulley 20 is connected to the driving pulley 19 through a metal belt 11.
  • the drive pulley 19 is movable in the axial direction relative to the pulley shaft 6 on the input side of the drive pulley shaft 6 and a fixed pulley half 19a integrally formed on the opposite side of the drive pulley shaft 6.
  • the movable pulley half 19b is mounted so as to be capable of transmitting rotational force, and an oil chamber 19c is formed on the back side of the movable pulley half 19b, that is, on the forward clutch unit 9 side.
  • the oil chamber 19c By supplying hydraulic pressure to the oil chamber 19c, the movable pulley half 19b moves forward, and the effective pulley diameter of the drive pulley 19 increases and changes to the high speed side.
  • the driven pulley 20 includes a fixed pulley half 20a formed integrally with the driven pulley shaft 7 and a movable pulley half 20b mounted so as to be movable in the axial direction and transmit rotational force. And an oil chamber 20c formed on the back side of the movable pulley half 20b. By supplying hydraulic pressure to the oil chamber 20c, the movable pulley half 20b moves forward, and the effective pulley diameter of the driven pulley 20 increases and changes to the low speed side.
  • the synthetic planetary gear mechanism 15 has a sun gear 15a fixed to the left portion 7 'of the driven pulley shaft 7 and is rotatable on a carrier 15b supported relative to the right portion 7' 'of the driven pulley shaft 7.
  • the pinion gear 15c supported by the pinion gear 15c is engaged with the sun gear 15a
  • the ring gear 15d engaged with the pinion gear 15c is fixed to the right portion 7 '' of the pulley shaft 7.
  • the ring gear 15d is connected to or released from the left portion 7 'of the driven pulley shaft 7 by a clutch 15f.
  • a driven sprocket 15e is formed on the carrier 15b, and the driven sprocket 15e is connected to a drive gear 14b of the constant speed change mechanism 13 by a chain 17.
  • the constant speed change mechanism 13 includes a speed change planetary gear mechanism 14 disposed on the input side of the drive pulley shaft 6 from the drive pulley 19.
  • the planetary gear mechanism 14 for shifting has a sun gear 14a rotatably supported on the drive pulley shaft 6, a pinion gear 14c rotatably supported by a carrier 14e fixed to the drive pulley shaft 6, and the pinion gear 14c is supported by the sun gear 14a.
  • the ring gear 14f is meshed with the pinion gear 14c so as to be relatively rotatable.
  • the ring gear 14f is fixed to the transmission case by a wet brake 14d, or is rotatably released.
  • the drive gear 14b is formed on the sun gear 14a.
  • the continuously variable transmission mode or the power split mode is selected and controlled according to the engine speed, vehicle speed, and the like.
  • the forward clutch 9b is turned on
  • the reverse clutch 12b is turned off
  • the brake 14d is turned off
  • the clutch 15f is turned on.
  • the engine is rotated from the input shaft 5 to the forward drive gear 9a and forward. Is transmitted only to the drive pulley shaft 6 via the input gear 6a, and is shifted by the belt-type continuously variable transmission mechanism 10, and is differentially transmitted from the left portion 7 'of the driven pulley shaft 7 via the clutch 15f and the right portion 7 ". It is transmitted from the mechanism 16 to the drive wheel.
  • the input rotation from the torque converter 2 is divided and transmitted to the belt type continuously variable transmission mechanism 10 and the constant transmission mechanism 13.
  • the brake 14d is turned on and the clutch 15f is turned off, and the input rotation is accelerated by the shifting planetary gear mechanism 14 and transmitted to the synthesizing planetary gear mechanism 15 via the chain 17, where the belt type It is combined with the output rotation from the continuously variable transmission mechanism 10 and output to the differential mechanism 16.
  • the ring gear 14f is fixed by a brake 14d, and the input rotation is input to the carrier 14e, and is accelerated and output from the sun gear 14a (see FIG. 2).
  • the speed increasing ratio of the speed changing planetary gear mechanism 14 is the same as the speed ratio of the belt type continuously variable transmission mechanism 10, and as shown in FIG. Is switched to the power split mode when is the highest gear ratio.
  • the belt-type continuously variable transmission mechanism 10 is shifted to the lowest gear ratio from this state, the output rotational speed of the ring gear 15d of the composing planetary gear mechanism 15 increases, and the gear ratio width increases accordingly.
  • the constant speed change mechanism 13 has the structure including the speed change planetary gear mechanism 14. Therefore, the input rotation can be accelerated and transmitted to the synthesizing planetary gear mechanism 15. Compared to a conventional device in which the speed change mechanism is constituted by a gear mechanism, the gear ratio width of the entire device can be increased toward the highest gear ratio while reducing the arrangement space.
  • the gear ratio of the belt-type continuously variable transmission mechanism 10 is the highest gear ratio
  • the power split mode is switched to, and in this state, the belt-type continuously variable transmission mechanism 10 is switched to the lowest speed.
  • the gear ratio becomes high accordingly, and when the belt-type continuously variable transmission mechanism 10 is at the lowest gear ratio, the highest gear ratio is achieved as a unit.
  • the power split mode can be set by fixing the ring gear 14f with the wet brake 14d of the planetary gear mechanism 14 for speed change, and the clutch drum, centrifugal hydraulic canceller, hydraulic oil for mode switching with the conventional wet clutch can be made.
  • the oil passage configuration in the seal member and the rotating shaft can be eliminated, and the structure can be simplified.
  • the required transmission torque capacity of the wet brake 14d can be reduced, the number of friction members can be reduced accordingly, the cost can be reduced, and the transmission efficiency can be improved.
  • FIGS. 5 to 7 are views for explaining a power split type continuously variable transmission according to Embodiment 2 of the present invention, in which the same reference numerals as those in FIGS. 1 to 4 denote the same or corresponding parts.
  • the sun gear 14a is rotatably supported by the drive pulley shaft 6, and the pinion gear 14c rotatably supported by the carrier 14e fixed to the drive pulley shaft 6 is the sun gear.
  • the ring gear 14f is engaged with the pinion gear 14c so as to be relatively rotatable, and a drive gear 14b is formed on the ring gear 14f.
  • the sun gear 14a is fixed to the transmission case by a wet brake 14d or is released to be rotatable.
  • the input rotation from the torque converter 2 is divided and transmitted to the belt-type continuously variable transmission mechanism 10 and the constant transmission mechanism 13, and is accelerated by the shifting planetary gear mechanism 14 '. Then, it is transmitted to the planetary gear mechanism 15 for synthesis via the chain 17.
  • the shifting planetary gear mechanism 14 ' the sun gear 14a is fixed by the brake 14d, and the input rotation is input to the carrier 14e and accelerated from the ring gear 14f (see FIG. 6).
  • the same effect as the first embodiment can be obtained.
  • the drive gear 14b is formed on the outer peripheral portion of the ring gear 14f.
  • the shaft length of the planetary gear mechanism 14 'for shifting can be shortened. Can be configured compactly.
  • FIGS. 8 to 10 are diagrams for explaining a third embodiment of the present invention, in which the same reference numerals as those in FIGS. 1 and 2 indicate the same or corresponding parts.
  • the sun gear 14a is fixed to the drive pulley shaft 6, the carrier 14e is rotatably supported on the drive pulley shaft 6, and is rotatably supported on the carrier 14e.
  • the pinion gear 14c meshes with the sun gear 14a, and the ring gear 14f meshing with the pinion gear 14c is fixed to the transmission case by a wet brake 14d or is rotatably released.
  • a driving gear 14b is formed on the carrier 14e.
  • the input rotation from the torque converter 2 is divided and transmitted to the belt-type continuously variable transmission mechanism 10 and the constant transmission mechanism 13 and decelerated by the planetary gear mechanism 14 ′′ for transmission. And output to the synthesizing planetary gear mechanism 15 via the chain 17. That is, in the planetary gear mechanism for speed change 14 ′′, the ring gear 14f is fixed by the brake 14d, and the input rotation is input to the sun gear 14a and is decelerated and output from the carrier 14e (see FIG. 9).
  • the mode is switched to the power split mode.
  • the gear shifts to the high gear ratio side the rotational speed of the ring gear 15d decreases, and the gear ratio becomes low accordingly, and when the belt-type continuously variable transmission mechanism 10 is at the highest gear ratio, the unit becomes the lowest gear ratio.
  • the speed ratio width of the entire apparatus can be increased to the lowest speed ratio side while avoiding an increase in the arrangement space.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

動力分割式無段変速装置(1)は、入力回転を連続的に変速可能の無段変速機構(10)と、入力回転を所定変速比で変速して無段変速機構(10)の出力側に伝達する一定変速機構(13)と、前記無段変速機構(10)の出力回転と一定変速機構(13)により伝達された回転とを合成する合成用遊星歯車機構(15)とを備えている。一定変速機構(13)は、無段変速機構(10)の入力側に設けられ、入力回転を増速又は減速して合成用遊星歯車機構(15)に伝達する変速用遊星歯車機構(14)を有し、該変速用遊星歯車機構(14)は、リングギヤ(14f)を固定する湿式ブレーキ(14d)を有する。この構成により、一定変速機構の配置スペースの拡大を回避しつつ変速比幅をより大きくでき、またモード切替機構の構造を簡素化できる動力分割式無段変速装置が実現する。

Description

動力分割式無段変速装置
本発明は、無段変速機構、一定変速機構、及び該両変速機構の出力を合成する合成用遊星歯車機構を備えた動力分割式無段変速装置に関する。
従来の動力分割式無段変速装置として、エンジンからの入力回転を無段階に変速可能とする無段変速機構(例えばベルト式無段変速機構)と、前記入力回転を所定の変速比で変速して無段変速機構の出力側に伝達する一定変速機構(例えばギヤ機構)と、該両機構からの回転を合成して出力する合成用遊星歯車機構とを備えたものがある。この種の無段変速装置では、エンジンからの入力回転を前記無段変速機構のみに伝達する無段変速モードと、該無段変速機構及び一定変速機構に分割して伝達する動力分割モードとを、車両の運転状態に応じて適宜切り替えるようにしている(例えば特許文献1参照)。
前記動力分割式無段変速装置における前記無段変速モードでは、通常のベルトレシオ(最ロー変速比~最ハイ変速比)で変速する。そしてこのベルトレシオが最ハイ変速比又は最ロー変速比のとき締結要素や固定要素を選択的に作動させることにより、前記動力分割モードとなる。この動力分割モードにおいて、ベルトレシオを最ハイ変速比から最ロー変速比に又は最ロー変速比から最ハイ変速比に変速すると遊星歯車機構が差動することにより、リングギヤが増速回転又は減速回転するので、トータルの変速比幅はベルト駆動のみの場合よりも拡大される。
ところで前記従来の動力分割式無段変速装置において、トータルの変速比幅を拡大するためには、前記一定変速機構の変速比を前記ベルト式無段変速機構の最ハイ変速比又は最ロー変速比と同じにする必要があり、大きく増速又は減速しなければならず、配置スペースの確保が困難であり、その結果装置が大型化する問題がある。
またモード切替機構として湿式クラッチを用いた場合、クラッチドラム,遠心油圧キャンセラ,クラッチ作動油のシール部材が必要となり、また回転軸内に油路を形成することが必要となり、構造が複雑になるという問題がある。
特許4552376号公報
本発明は、前記従来の状況に鑑みてなされたもので、一定変速機構の配置スペースの拡大ひいては装置の大型化を回避しつつ変速比幅を大きくでき、またモード切替機構の構造を簡素化できる動力分割式無段変速装置を提供することを課題としている。
本発明の第1の態様は、入力回転を連続的に変速可能の無段変速機構と、入力回転を所定変速比で変速して無段変速機構の出力側に伝達する一定変速機構と、前記無段変速機構の出力回転と一定変速機構により伝達された回転とを合成する合成用遊星歯車機構とを備え、入力回転が、前記無段変速機構のみに伝達される無段変速モードと、前記一定変速機構と前記無段変速機構との両方に分割して伝達される動力分割モードとに切り替え可能の動力分割式無段変速装置において、
前記一定変速機構が、前記無段変速機構の入力側に設けられ、入力回転を増速又は減速して前記合成用遊星歯車機構に伝達する変速用遊星歯車機構を有し、
該変速用遊星歯車機構は、リングギヤ又はサンギヤを固定する湿式ブレーキを有することを特徴としている。
本発明の第2の態様は、第1の態様による動力分割式無段変速装置において、
前記変速用遊星歯車機構は、前記入力回転を、キャリアに入力すると共に前記湿式ブレーキでリングギヤを固定することにより、サンギヤから増速して出力することを特徴としている。
本発明の第3の態様は、第1の態様による記載の動力分割式無段変速装置において、
前記変速用遊星歯車機構は、前記入力回転を、キャリアに入力すると共に前記湿式ブレーキでサンギヤを固定することにより、リングギヤから増速して出力することを特徴としている。
本発明の第1の態様では、一定変速機構を、変速用遊星歯車機構を有する構造としたので、入力回転を増速又は減速して前記無段変速機構の出力側に伝達することができ、配置スペースの拡大、ひいては装置の大型化を回避しつつ装置全体の変速比幅を大きくできる。
また、変速用無段変速機構の湿式ブレーキでリングギヤ又はサンギヤを固定することにより動力分割モードにすることができ、従来の湿式クラッチでモード切替えを行う場合のクラッチドラム,遠心油圧キャンセラ,作動油用シール部材及び回転軸内の油路構成を不要にでき、構造を簡素化できる。
本発明の第2の態様では、入力回転を、キャリアに入力すると共にリングギヤを固定することにより、サンギヤから増速して出力することができ、また本発明の第3の態様では、入力回転を、キャリアに入力すると共にサンギヤを固定することにより、リングギヤから増速して出力することができ、装置全体の変速比幅の拡大を実現できる。
 本発明の目的、特徴、局面、及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の実施例1に係る動力分割式無段変速装置の構成図である。 前記実施例1に係る無段変速装置の変速用遊星歯車機構の速度線図である。 前記実施例1に係る無段変速装置の合成用遊星歯車機構の速度線図である。 前記実施例1に係る無段変速装置の断面展開図である。 本発明の実施例2に係る動力分割式無段変速装置の構成図である。 前記実施例2に係る無段変速装置の変速用遊星歯車機構の速度線図である。 前記実施例2に係る無段変速装置の変速用遊星歯車機構部分の断面展開図である。 本発明の実施例3に係る無段変速装置の変速様遊星歯車機構部分の構成図である。 前記実施例3に係る変速用遊星歯車機構の速度線図である。 前記実施例3に係る合成用遊星歯車機構の速度線図である。
以下、本発明の実施形態を添付図面に沿って説明する。
図1~図4は本発明の実施例1に係る無段変速装置を説明するための図である。
図において、1は自動車用動力分割式無段変速装置であり、該無段変速装置1は、エンジン回転がトルクコンバータ2を介して入力され、該入力回転を連続的無段階に変速するベルト式無段変速機構10と、前記入力回転を所定変速比で変速して前記ベルト式無段変速機構10の出力側に伝達する一定変速機構13と、前記ベルト式無段変速機構10の出力回転と一定変速機構13の伝達回転とを合成する合成用遊星歯車機構15とを有する。
前記トルクコンバータ2の、ドライブプレート2aにはエンジンのクランクシャフト2eが接続され、タービンランナ2bには入力軸5が接続されている。この入力軸5には、前進駆動ユニット9が配設されている。この前進駆動ユニット9は前記入力軸5に回転可能に装着された前進用駆動ギヤ9aと、該前進用駆動ギヤ9aを入力軸5に対して結合又は解放する前進用クラッチ9bとで構成されている。
また、前記入力軸5と平行にアイドラ軸8が配設されている。このアイドラ軸8の、基端部8′には前記入力軸5の先端部5′に固定された後進入力ギヤ5aが噛合するアイドラギヤ8aが固定されており、また、アイドラ軸8の先端部8′′には後進駆動ユニット12が配設されている。
前記後進駆動ユニット12はアイドラ軸8に回転可能に装着された後進用駆動ギヤ12aと、該後進用駆動ギヤ12aをアイドラ軸8に対して回転力伝達可能に結合し、または相対回転可能に解放させる後進用クラッチ12bとで構成されている。
前記ベルト式無段変速機構10は、前記入力軸5と平行に配置された駆動プーリ軸6と、左部7′と右部7′′とを有する従動プーリ軸7とを備えている。なお、前記従動プーリ軸7の出力ギヤ7bは、差動機構16の入力ギヤ16aに噛合している。
前記駆動プーリ軸6の、入力側基端部6′には前記入力軸5の前進用駆動ギヤ9aが噛合する前進用入力ギヤ6aが固定され、出力側先端部6′′には駆動プーリ19が装着されており、該駆動プーリ19の反入力側には後進用従動ギヤ6cが固定されている。この後進用従動ギヤ6cに前記アイドラ軸8の後進用駆動ギヤ12aが噛合している。
前記従動プーリ軸7には、従動プーリ20が装着されており、該従動プーリ20は金属ベルト11を介して前記駆動プーリ19に連結されている。
ここで前記駆動プーリ19は、前記駆動プーリ軸6の反入力側に一体形成された固定プーリ半体19aと、該駆動プーリ軸6の入力側に該プーリ軸6に対して軸方向移動可能にかつ回転力伝達可能に装着された可動プーリ半体19bと、該可動プーリ半体19bの裏側、つまり前記前進用クラッチユニット9側に形成された油室19cとを有する。該油室19cに油圧を供給することにより該可動プーリ半体19bが前進し、該駆動プーリ19は、有効巻き径が拡大し、高速側に変化する。
また、前記従動プーリ20は、前記従動プーリ軸7に一体形成された固定プーリ半体20aと、該従動プーリ軸7の軸方向移動可能にかつ回転力伝達可能に装着された可動プーリ半体20bと有し、該可動プーリ半体20bの裏側に形成された油室20cとを有する。該油室20cに油圧を供給することにより該可動プーリ半体20bが前進し、該従動プーリ20は、有効巻き径が拡大し、低速側に変化する。
また、前記合成用遊星歯車機構15は、従動プーリ軸7の左部7′にサンギヤ15aを固定し、従動プーリ軸7の右部7′′に相対回転自在に支持されたキャリア15bに回転自在に支持されたピニオンギヤ15cを前記サンギヤ15aに噛合させ、該ピニオンギヤ15cに噛合するリングギヤ15dを前記プーリ軸7の右部7′′に固定した構成となっている。また前記リングギヤ15dはクラッチ15fにより従動プーリ軸7の左部7′に結合又は解放される構造となっている。
そして前記キャリア15bには従動スプロケット15eが形成されており、該従動スプロケット15eは、前記一定変速機構13の駆動ギヤ14bにチェーン17で連結されている。
前記一定変速機構13は、前記駆動プーリ軸6の前記駆動プーリ19より入力側に配設された変速用遊星歯車機構14を備えている。この変速用遊星歯車機構14は、駆動プーリ軸6にサンギヤ14aを回転自在に支持させ、駆動プーリ軸6に固定されたキャリア14eによりピニオンギヤ14cを回転自在に支持し、該ピニオンギヤ14cを前記サンギヤ14aに噛合させると共に、該ピニオンギヤ14cにリングギヤ14fを相対回転自在に噛合させている。
そして前記リングギヤ14fは湿式ブレーキ14dにより変速機ケースに固定され、あるいは回転可能に解放される。また前記サンギヤ14aに前記駆動ギヤ14bが形成されている。
本実施例装置1では、エンジン回転数,車速等に応じて無段変速モード又は動力分割モ-ドが選択制御される。無段変速モードでの前進走行時には、前進用クラッチ9bオン、後進用クラッチ12bオフ、ブレ-キ14dオフ、クラッチ15fオンとされ、これによりエンジン回転が入力軸5から前進用駆動ギヤ9a及び前進用入力ギヤ6aを介して駆動プーリ軸6のみに伝達され、ベルト式無段変速機構10で変速され、従動プーリ軸7の左部7′からクラッチ15f及び右部7′′を介して差動機構16から駆動輪に伝達される。
一方、後進走行時には、前進用クラッチ9bオフ、後進用クラッチ12bオン、ブレ-キ14dオフ、クラッチ15fオンとされ、これによりエンジン回転が入力軸5からアイドラ軸8で反転され、後進用駆動ギヤ12a,後進用従動ギヤ6cを介して駆動プーリ軸6に伝達され、ベルト式無段変速機構10,従動プーリ軸7,クラッチ15f及び差動機構16を介して駆動輪に伝達される。
また、動力分割モ-ドでは、トルクコンバータ2からの入力回転はベルト式無段変速機構10と一定変速機構13とに分割して伝達される。具体的にはブレ-キ14dオン,クラッチ15fオフとされ、前記入力回転は変速用遊星歯車機構14で増速され、チェーン17を介して合成用遊星歯車機構15に伝達され、ここでベルト式無段変速機構10からの出力回転と合成されて差動機構16に出力される。
詳細には、前記変速用遊星歯車機構14では、リングギヤ14fがブレーキ14dで固定され、前記入力回転はキャリア14eに入力され、サンギヤ14aから増速されて出力される(図2参照)。
この場合の変速用遊星歯車機構14の増速比は前記ベルト式無段変速機構10の変速比と同じ値になっており、図3に示すように、ベルト式無段変速機構10の変速比が最ハイ変速比のときに前記動力分割モードに切り替えられる。この状態からベルト式無段変速機構10が最ロー変速比側に変速されるに伴って合成用遊星歯車機構15のリングギヤ15dの出力回転速度が高くなり、それだけ変速比幅が大きくなる。
このように本実施例1では、一定変速機構13を、変速用遊星歯車機構14を有する構造としたので、入力回転を増速して前記合成用遊星歯車機構15に伝達することができ、一定変速機構をギヤ機構により構成した従来装置に比較して配置スペースを小さくしつつ装置全体の変速比幅を最ハイ変速比側に大きくできる。
より具体的には、上述のように、ベルト式無段変速機構10の変速比が最ハイ変速比の時に前記動力分割モードに切り替えられ、この状態でベルト式無段変速機構10が最ロー変速比側に変速されるにつれてリングギヤ15dの回転速度が高くなり、それだけ変速比がハイ側となり、ベルト式無段変速機構10が最ロー変速比の時にユニットとして最ハイ変速比となる。
また、変速用遊星歯車機構14の湿式ブレーキ14dでリングギヤ14fを固定することにより動力分割モードにすることができ、従来の湿式クラッチでモード切替えを行う場合のクラッチドラム,遠心油圧キャンセラ,作動油用シール部材及び回転軸内の油路構成を不要にでき、構造を簡素化できる。
また湿式ブレーキ14dの必要な伝達トルク容量を小さくでき、それだけ摩擦部材の数を削減でき、コストを低減できると共に伝達効率を向上できる。
図5~図7は本発明の実施例2に係る動力分割式無段変速装置を説明するための図であり、図中、図1~図4と同一符号は同一又は相当部分を示す。
本実施例2における変速用遊星歯車機構14′は、駆動プーリ軸6にサンギヤ14aを回転自在に支持させ、駆動プーリ軸6に固定されたキャリア14eにより回転自在に支持されたピニオンギヤ14cを前記サンギヤ14aに噛合させると共に、該ピニオンギヤ14cにリングギヤ14fを相対回転自在に噛合させる、また該リングギヤ14fに駆動ギヤ14bが形成されている。また前記サンギヤ14aは湿式ブレーキ14dにより変速機ケースに固定され、あるいは回転可能に解放される。
本実施例2における動力分割モ-ドでは、トルクコンバータ2からの入力回転はベルト式無段変速機構10と一定変速機構13とに分割して伝達され、変速用遊星歯車機構14′で増速され、チェーン17を介して合成用遊星歯車機構15に伝達される。前記変速用遊星歯車機構14′では、サンギヤ14aがブレーキ14dで固定され、前記入力回転はキャリア14eに入力され、リングギヤ14fから増速されて出力される(図6参照)。
本実施例2においても前記実施例1と同様の作用効果が得られる。また本実施例2の場合は、図に示すように、駆動ギヤ14bをリングギヤ14fの外周部分に形成しており、これにより場合は該変速用遊星歯車機構14′の軸長を短縮でき、装置をコンパクトに構成できる。
図8~図10は本発明の実施例3を説明するための図であり、図中、図1,図2と同一符号は同一又は相当部分を示す。
本実施例3における変速用遊星歯車機構14′′では、サンギヤ14aは駆動プーリ軸6に固定され、キャリア14eは駆動プーリ軸6に回転自在に支持され、該キャリア14eに回転自在に支持されたピニオンギヤ14cは前記サンギヤ14aに噛合し、該ピニオンギヤ14cに噛合するリングギヤ14fは湿式ブレーキ14dにより変速機ケースに固定され、あるいは回転可能に解放される。また前記キャリア14eに駆動ギヤ14bが形成されている。
本実施例3における動力分割モ-ドでは、トルクコンバータ2からの入力回転はベルト式無段変速機構10と一定変速機構13とに分割して伝達され、変速用遊星歯車機構14′′で減速されて出力され、チェーン17を介して合成用遊星歯車機構15に伝達される。即ち、前記変速用遊星歯車機構14′′では、リングギヤ14fはブレーキ14dで固定され、前記入力回転は、サンギヤ14aに入力され、キャリア14eから減速されて出力される(図9参照)。
本実施例3では、図10に示すように、ベルト式無段変速機構10の変速比が最ロー変速比の時に前記動力分割モードに切り替えられ、この状態でベルト式無段変速機構10が最ハイ変速比側に変速されるにつれてリングギヤ15dの回転速度が低くなり、それだけ変速比がロー側となり、ベルト式無段変速機構10が最ハイ変速比の時にユニットとして最ロー変速比となる。
このように本実施例3においては、配置スペースの拡大を回避しつつ装置全体の変速比幅を最ロー変速比側に大きくできる。
本出願は、2014年1月31日に日本国に本出願人により出願された特願2014-017765号に基づくものであり、その全内容は参照により本出願に組み込まれる。
本発明の特定の実施の形態についての上記説明は、例示を目的として提示したものである。それらは、網羅的であったり、記載した形態そのままに本発明を制限したりすることを意図したものではない。数多くの変形や変更が、上記の記載内容に照らして可能であることは当業者に自明である。
1  動力分割式無段変速装置
10  ベルト式無段変速機構(無段変速機構)
13  一定変速機構
14  変速用遊星歯車機構
14a  サンギヤ
14d  湿式ブレーキ
14f  リングギヤ
15  合成用遊星歯車機構

Claims (3)

  1. 入力回転を連続的に変速可能の無段変速機構と、入力回転を所定変速比で変速して無段変速機構の出力側に伝達する一定変速機構と、前記無段変速機構の出力回転と一定変速機構により伝達された回転とを合成する合成用遊星歯車機構とを備え、
    入力回転が、前記無段変速機構のみに伝達される無段変速モードと、前記一定変速機構と前記無段変速機構との両方に分割して伝達される動力分割モードとに切り替え可能であり、
    前記一定変速機構が、前記無段変速機構の入力側に設けられ、入力回転を増速又は減速して前記合成用遊星歯車機構に伝達する変速用遊星歯車機構を有し、
    該変速用遊星歯車機構は、リングギヤ又はサンギヤを固定する湿式ブレーキを有する
    動力分割式無段変速装置。
  2. 請求項1に記載の動力分割式無段変速装置において、
    前記変速用遊星歯車機構は、前記入力回転を、キャリアに入力すると共に前記湿式ブレーキでリングギヤを固定することにより、サンギヤから増速して出力する
    動力分割式無段変速装置。
  3. 請求項1に記載の動力分割式無段変速装置において、
    前記変速用遊星歯車機構は、前記入力回転を、キャリアに入力すると共に前記湿式ブレーキでサンギヤを固定することにより、リングギヤから増速して出力する
    動力分割式無段変速装置。
PCT/JP2014/073612 2014-01-31 2014-09-08 動力分割式無段変速装置 WO2015114873A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-017765 2014-01-31
JP2014017765A JP6332985B2 (ja) 2014-01-31 2014-01-31 動力分割式無段変速装置

Publications (1)

Publication Number Publication Date
WO2015114873A1 true WO2015114873A1 (ja) 2015-08-06

Family

ID=53756473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073612 WO2015114873A1 (ja) 2014-01-31 2014-09-08 動力分割式無段変速装置

Country Status (2)

Country Link
JP (1) JP6332985B2 (ja)
WO (1) WO2015114873A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6494573B2 (ja) * 2016-08-25 2019-04-03 ダイハツ工業株式会社 オイル供給構造
JP6618959B2 (ja) * 2017-06-30 2019-12-11 ダイハツ工業株式会社 オイル供給構造

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2866377B2 (ja) * 1986-05-06 1999-03-08 アイシン・エィ・ダブリュ株式会社 無段変速機
JP2002005259A (ja) * 2000-06-16 2002-01-09 Toyota Motor Corp 無段変速機
JP2005016613A (ja) * 2003-06-25 2005-01-20 Suzuki Motor Corp 無段変速機
JP2005517140A (ja) * 2002-02-07 2005-06-09 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト パワースプリット式自動変速機のギヤ比制御方法並びにパワースプリット式自動変速機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2866377B2 (ja) * 1986-05-06 1999-03-08 アイシン・エィ・ダブリュ株式会社 無段変速機
JP2002005259A (ja) * 2000-06-16 2002-01-09 Toyota Motor Corp 無段変速機
JP2005517140A (ja) * 2002-02-07 2005-06-09 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト パワースプリット式自動変速機のギヤ比制御方法並びにパワースプリット式自動変速機
JP2005016613A (ja) * 2003-06-25 2005-01-20 Suzuki Motor Corp 無段変速機

Also Published As

Publication number Publication date
JP6332985B2 (ja) 2018-05-30
JP2015145682A (ja) 2015-08-13

Similar Documents

Publication Publication Date Title
JP5800088B2 (ja) 車両用動力伝達装置
JP5340336B2 (ja) 自動変速機
WO2013176208A1 (ja) 車両用動力伝達装置
WO2013175582A1 (ja) 車両用動力伝達装置
JP5325754B2 (ja) 無段変速機
JP2008196670A (ja) ブレーキバンドを用いた前後進切換え機構
JP2016070479A (ja) 車両用無段変速機
WO2015114873A1 (ja) 動力分割式無段変速装置
JP2015031312A (ja) 動力伝達機構
JP2008002550A (ja) 動力伝達装置
JP6594084B2 (ja) 動力分割式無段変速機
JP2016080108A (ja) 変速機
KR101316426B1 (ko) 차량용 무단 변속기의 후진 기어 구조
JP5821700B2 (ja) ドライブトレーン
JP6365246B2 (ja) 自動変速機
JP5790575B2 (ja) 変速機
JP2004245329A (ja) 動力伝達装置
JP4072531B2 (ja) パワースプリット型無段変速装置
JP6351556B2 (ja) 動力分割式無段変速機
JP6533084B2 (ja) 動力分割式無段変速装置
JP6205265B2 (ja) 無段変速装置
KR101349498B1 (ko) 차량용 3단 무단 변속기
JP6474661B2 (ja) 車両用動力伝達装置
JP5686343B2 (ja) 車両用無段変速装置
JP3172997U (ja) 変速装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880695

Country of ref document: EP

Kind code of ref document: A1