WO2015105120A1 - バックコンタクト方式の太陽電池モジュール用導電性粒子、導電材料及び太陽電池モジュール - Google Patents
バックコンタクト方式の太陽電池モジュール用導電性粒子、導電材料及び太陽電池モジュール Download PDFInfo
- Publication number
- WO2015105120A1 WO2015105120A1 PCT/JP2015/050233 JP2015050233W WO2015105120A1 WO 2015105120 A1 WO2015105120 A1 WO 2015105120A1 JP 2015050233 W JP2015050233 W JP 2015050233W WO 2015105120 A1 WO2015105120 A1 WO 2015105120A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive
- solar cell
- conductive particles
- particles
- electrode
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 348
- 239000004020 conductor Substances 0.000 title claims description 66
- 229920005989 resin Polymers 0.000 claims description 59
- 239000011347 resin Substances 0.000 claims description 59
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 40
- 229910052782 aluminium Inorganic materials 0.000 claims description 39
- 229920001187 thermosetting polymer Polymers 0.000 claims description 25
- 150000001875 compounds Chemical class 0.000 claims description 22
- 239000011230 binding agent Substances 0.000 claims description 20
- 239000000758 substrate Substances 0.000 claims description 15
- 239000003795 chemical substances by application Substances 0.000 claims description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 85
- 239000010410 layer Substances 0.000 description 63
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 47
- 239000011162 core material Substances 0.000 description 47
- 239000000463 material Substances 0.000 description 43
- 239000000126 substance Substances 0.000 description 43
- 229910052759 nickel Inorganic materials 0.000 description 42
- 229920000642 polymer Polymers 0.000 description 34
- 238000006243 chemical reaction Methods 0.000 description 30
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 28
- 238000000034 method Methods 0.000 description 25
- 238000007906 compression Methods 0.000 description 24
- 230000006835 compression Effects 0.000 description 21
- 229910052802 copper Inorganic materials 0.000 description 19
- 239000010949 copper Substances 0.000 description 19
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 18
- -1 polyethylene Polymers 0.000 description 18
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 16
- 239000000178 monomer Substances 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- YGGARCQQBAOLGB-UHFFFAOYSA-N (3-prop-2-enoyloxy-1-adamantyl) prop-2-enoate Chemical compound C1C(C2)CC3CC1(OC(=O)C=C)CC2(OC(=O)C=C)C3 YGGARCQQBAOLGB-UHFFFAOYSA-N 0.000 description 12
- 229940065472 octyl acrylate Drugs 0.000 description 12
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 229910052737 gold Inorganic materials 0.000 description 9
- 239000010931 gold Substances 0.000 description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 239000002923 metal particle Substances 0.000 description 9
- 229910052700 potassium Inorganic materials 0.000 description 9
- 239000003566 sealing material Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 8
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 8
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 8
- 229910052763 palladium Inorganic materials 0.000 description 8
- 229910052709 silver Inorganic materials 0.000 description 8
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 7
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 7
- 238000007747 plating Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 239000004332 silver Substances 0.000 description 7
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000007772 electroless plating Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910000679 solder Inorganic materials 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 230000000379 polymerizing effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 239000010954 inorganic particle Substances 0.000 description 3
- 229940059574 pentaerithrityl Drugs 0.000 description 3
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 239000011135 tin Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 2
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 2
- FVCSARBUZVPSQF-UHFFFAOYSA-N 5-(2,4-dioxooxolan-3-yl)-7-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C(C(OC2=O)=O)C2C(C)=CC1C1C(=O)COC1=O FVCSARBUZVPSQF-UHFFFAOYSA-N 0.000 description 2
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- MOLCWHCSXCKHAP-UHFFFAOYSA-N adamantane-1,3-diol Chemical compound C1C(C2)CC3CC1(O)CC2(O)C3 MOLCWHCSXCKHAP-UHFFFAOYSA-N 0.000 description 2
- 125000005370 alkoxysilyl group Chemical group 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- KBLWLMPSVYBVDK-UHFFFAOYSA-N cyclohexyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCCC1 KBLWLMPSVYBVDK-UHFFFAOYSA-N 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- XXQBEVHPUKOQEO-UHFFFAOYSA-N potassium superoxide Chemical compound [K+].[K+].[O-][O-] XXQBEVHPUKOQEO-UHFFFAOYSA-N 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000007870 radical polymerization initiator Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- OVGRCEFMXPHEBL-UHFFFAOYSA-N 1-ethenoxypropane Chemical compound CCCOC=C OVGRCEFMXPHEBL-UHFFFAOYSA-N 0.000 description 1
- MEVBAGCIOOTPLF-UHFFFAOYSA-N 2-[[5-(oxiran-2-ylmethoxy)naphthalen-2-yl]oxymethyl]oxirane Chemical compound C1OC1COC(C=C1C=CC=2)=CC=C1C=2OCC1CO1 MEVBAGCIOOTPLF-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 1
- LIFHMKCDDVTICL-UHFFFAOYSA-N 6-(chloromethyl)phenanthridine Chemical compound C1=CC=C2C(CCl)=NC3=CC=CC=C3C2=C1 LIFHMKCDDVTICL-UHFFFAOYSA-N 0.000 description 1
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- QCEUXSAXTBNJGO-UHFFFAOYSA-N [Ag].[Sn] Chemical compound [Ag].[Sn] QCEUXSAXTBNJGO-UHFFFAOYSA-N 0.000 description 1
- OLXNZDBHNLWCNK-UHFFFAOYSA-N [Pb].[Sn].[Ag] Chemical compound [Pb].[Sn].[Ag] OLXNZDBHNLWCNK-UHFFFAOYSA-N 0.000 description 1
- RMKZLFMHXZAGTM-UHFFFAOYSA-N [dimethoxy(propyl)silyl]oxymethyl prop-2-enoate Chemical compound CCC[Si](OC)(OC)OCOC(=O)C=C RMKZLFMHXZAGTM-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical class C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- RJTANRZEWTUVMA-UHFFFAOYSA-N boron;n-methylmethanamine Chemical compound [B].CNC RJTANRZEWTUVMA-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- GLVVKKSPKXTQRB-UHFFFAOYSA-N ethenyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC=C GLVVKKSPKXTQRB-UHFFFAOYSA-N 0.000 description 1
- AFSIMBWBBOJPJG-UHFFFAOYSA-N ethenyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC=C AFSIMBWBBOJPJG-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- MSYLJRIXVZCQHW-UHFFFAOYSA-N formaldehyde;6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound O=C.NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 MSYLJRIXVZCQHW-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Chemical class 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920006295 polythiol Polymers 0.000 description 1
- 239000004814 polyurethane Chemical class 0.000 description 1
- 229920002635 polyurethane Chemical class 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 125000002924 primary amino group Chemical class [H]N([H])* 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910000597 tin-copper alloy Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- JRSJRHKJPOJTMS-UHFFFAOYSA-N trimethoxy(2-phenylethenyl)silane Chemical compound CO[Si](OC)(OC)C=CC1=CC=CC=C1 JRSJRHKJPOJTMS-UHFFFAOYSA-N 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 229920006305 unsaturated polyester Chemical class 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/05—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
- H01L31/0504—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
- H01L31/0516—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/022441—Electrode arrangements specially adapted for back-contact solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0236—Special surface textures
- H01L31/02366—Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0392—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
- H01L31/03926—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to conductive particles used in a back contact solar cell module.
- the present invention also relates to a back contact solar cell module conductive material using the conductive particles.
- the present invention also relates to a back contact type solar cell module using the conductive material.
- the solar cell module system includes a ribbon system and a back contact system.
- ribbon type solar cell modules have been mainly employed.
- back contact type solar cell module that can be expected to have high output and high conversion efficiency.
- the solar cell and the flexible printed circuit board are bonded together on the entire surface of the solar cell.
- Patent Document 1 a plurality of solar cells are arranged side by side in the arrangement of the modules with the back surface facing upward, and the P-type electrode and N-type electrode of adjacent solar cells are further electrically connected by an interconnector.
- stacked and integrated is disclosed.
- Patent Document 1 describes a method of connecting a wiring electrode of a flexible printed circuit board and an electrode of a solar battery cell with Cu, Ag, Au, Pt, Sn, an alloy containing these, or the like.
- one end side of the tab wire is disposed on the surface electrode of the solar battery cell via a conductive adhesive containing spherical conductive particles, and adjacent to the solar battery cell.
- There is disclosed a method for manufacturing a solar cell module including a step of connecting the tab wire to the front electrode and the back electrode by the conductive adhesive.
- a concavo-convex portion is formed on one surface in contact with the conductive adhesive.
- the average height (H) of the uneven part and the average particle diameter (D) of the conductive particles satisfy D ⁇ H.
- Patent Document 3 a base material, an aluminum wiring disposed on one surface of the base material via an adhesive layer, a solar battery cell having an electrode connected to the aluminum wiring,
- a method for manufacturing a solar cell module includes a sealing material for sealing a solar battery cell, and a translucent front plate on a surface opposite to the aluminum wiring of the sealing material.
- the manufacturing method described in Patent Document 3 includes a step of removing the oxide film of the aluminum wiring in advance by a flux, a step of applying aluminum paste solder to the aluminum wiring by printing or a dispenser, the aluminum wiring, and the sun. Connecting the electrodes of the battery cells with the aluminum paste solder.
- the aluminum paste solder includes aluminum powder and a synthetic resin.
- An object of the present invention is to provide conductive particles capable of improving the conduction reliability between electrodes in a back contact solar cell module. Moreover, the objective of this invention is providing the electrically conductive material for solar cell modules of a back contact system using the said electroconductive particle. Moreover, this invention is providing the solar cell module of a back contact system using the said electrically-conductive material.
- conductive particles used in a back contact solar cell module comprising: base material particles; and a conductive part disposed on the surface of the base material particles, part has a plurality of projections on the outer surface of the 10% compressed compressive elastic modulus of when the 1100 N / mm 2 or more and 5000N / mm 2 or less, fracture strain is 55% or more, solar back contact type Conductive particles for battery modules are provided.
- the average height of the plurality of protrusions is 50 nm or more and 800 nm or less.
- the ratio of the average height of the plurality of protrusions to the thickness of the conductive portion is 0.1 or more and 8 or less.
- the conductive particles according to the present invention electrically connect the wiring electrode and the electrode of a flexible printed circuit board having a wiring electrode on the surface or a resin film having a wiring electrode on the surface and a solar battery cell having the electrode on the surface. It is preferably used to connect to
- the wiring electrode of the flexible printed board or the resin film is an aluminum wiring electrode
- the electrode of the solar battery cell is an aluminum electrode
- a back contact solar cell module conductive material comprising the above-described back contact solar cell module conductive particles and a binder resin.
- the binder resin includes a thermosetting compound and a thermosetting agent.
- a flexible printed board having a wiring electrode on its surface or a resin film having a wiring electrode on its surface, a solar battery cell having an electrode on its surface, the flexible printed board or the resin film, and the sun
- a connecting portion that connects the battery cell, and the connecting portion includes a conductive material for a back contact solar cell module that includes the above-described back contact solar cell module conductive particles and a binder resin.
- a back contact type solar cell module that is formed and in which the wiring electrode and the electrode are electrically connected by the conductive particles.
- the back contact type solar cell module conductive particles according to the present invention include base particles and conductive portions arranged on the surfaces of the base particles, and a plurality of conductive particles on the outer surface of the conductive portions. has a projection, 10% compressed compressive elastic modulus of when the 1100 N / mm 2 or more and 5000N / mm 2 or less, since fracture strain is at least 55%, it is possible to increase the conduction reliability between electrodes .
- FIG. 1 is a cross-sectional view showing conductive particles for a solar cell module of the back contact system according to the first embodiment of the present invention.
- FIG. 2 is a cross-sectional view showing conductive particles for a solar cell module of the back contact system according to the second embodiment of the present invention.
- FIG. 3 is sectional drawing which shows the electroconductive particle for solar cell modules of the back contact system which concerns on the 3rd Embodiment of this invention.
- FIG. 4 is a cross-sectional view showing an example of a back contact solar cell module obtained using the back contact solar cell module conductive particles according to the first embodiment of the present invention.
- FIGS. 5A to 5C are cross-sectional views for explaining each step of the first manufacturing method of the back contact type solar cell module shown in FIG. 6 (a) to 6 (c) are cross-sectional views for explaining the respective steps of the second manufacturing method of the back contact type solar cell module shown in FIG.
- the back contact type solar cell module conductive particles according to the present invention include base material particles and a conductive portion disposed on the surface of the base material particles.
- the back contact solar cell module conductive particles according to the present invention have a plurality of protrusions on the outer surface of the conductive portion. Compression modulus when the solar cell module conductive particles back contact type according to the present invention was compressed 10% (10% K value) is 1100 N / mm 2 or more and 5000N / mm 2 or less.
- the conductive particle fracture strain for solar cell modules of the back contact system according to the present invention is 55% or more.
- the conduction reliability between the electrodes can be enhanced in the back contact solar cell module.
- the initial energy conversion efficiency and the energy conversion efficiency after the reliability test can be increased.
- the wiring electrode and the electrode of the flexible printed circuit board having the wiring electrode on the surface or the resin film having the wiring electrode on the surface and the solar cell having the electrode on the surface are provided. Electrically connected.
- the spacing between the electrodes can be controlled with high accuracy because the conductive particles have the base particles and the conductive portions arranged on the surfaces of the base particles. Furthermore, even when the 10% K value is in the specific range, the distance between the electrodes can be controlled with high accuracy. In addition, since the conductive particles are easily deformed in response to the change in the interval between the electrodes, the conduction reliability between the concave and convex electrodes can be improved. As a result, the initial energy conversion efficiency and the energy conversion efficiency after the reliability test can be increased.
- the conductive particles have a plurality of protrusions on the outer surface of the conductive portion, even if an oxide film is formed on the surface of the conductive portion and the surface of the electrode, the oxide film is broken through by the protrusion. For this reason, the conduction
- unevenness may exist on the surface of the electrode of the solar battery cell. Further, irregularities may also exist on the surface of the flexible printed circuit board or the wiring electrode of the resin film. For this reason, the space
- the conductive particles have a protrusion on the outer surface (conductive surface) of the conductive portion, the protrusion is embedded in the electrode. For this reason, even if an impact is applied to the solar cell module, poor connection is less likely to occur. For this reason, conduction
- the above effect can be obtained by using conductive particles having protrusions on the outer surface (conductive surface) of the conductive part in order to electrically connect the electrodes of the back contact type solar cell module.
- the present inventors For the first time by the present inventors.
- the average height of the plurality of protrusions in the conductive particles is 50 nm or more and 800 nm or less, the above-described effect is more effectively exhibited.
- the average height of the plurality of protrusions in the conductive particle is 50 nm or more and 600 nm or less, the above-described effect is more effectively exhibited.
- the present inventors have determined the importance and technical significance of the conductive particles having protrusions on the outer surface of the conductive portion. Found for the first time.
- FIG. 1 is a cross-sectional view showing conductive particles for a solar cell module of a back contact system according to the first embodiment of the present invention.
- the conductive part 23 is a conductive layer.
- the conductive portion 23 covers the surface of the base particle 22.
- the conductive portion 23 is in contact with the base particle 22.
- the conductive particle 21 is a coated particle in which the surface of the base particle 22 is coated with the conductive portion 23.
- the conductive particle 21 has a plurality of protrusions 21 a on the outer surface of the conductive portion 23.
- the conductive portion 23 has a plurality of protrusions 23a on the outer surface.
- the conductive particle 21 has a plurality of core substances 24 on the surface of the base particle 22.
- the conductive portion 23 covers the base particle 22 and the core substance 24.
- the conductive particle 21 has a plurality of protrusions 21 a on the outer surface of the conductive portion 23.
- the outer surface of the conductive portion 23 is raised by the core substance 24, and a plurality of protrusions 21a and 23a are formed.
- FIG. 2 is a cross-sectional view showing conductive particles for a solar cell module of the back contact system according to the second embodiment of the present invention.
- the conductive particles 21A and conductive portions 23A are arranged on the surface of the base particles 22.
- the conductive portion 23A is a conductive layer. Only the presence or absence of the core substance 24 is different between the conductive particles 21 and the conductive particles 21A.
- the conductive particles 21A do not have a core substance.
- the conductive particle 21A has a plurality of protrusions 21Aa on the outer surface of the conductive portion 23A.
- the conductive portion 23A has a plurality of protrusions 23Aa on the outer surface.
- the conductive portion 23A has a first portion and a second portion that is thicker than the first portion. Accordingly, the conductive portion 23A has a protrusion 23Aa on the outer surface (the outer surface of the conductive layer). A portion excluding the plurality of protrusions 21Aa and 23Aa is the first portion of the conductive portion 23A. The plurality of protrusions 21Aa and 23Aa are the second portions where the conductive portion 23A is thick.
- FIG. 3 is a cross-sectional view showing conductive particles for a solar cell module of the back contact system according to the third embodiment of the present invention.
- the 3 has the base particle 22 and the conductive part 23B arranged on the surface of the base particle 22.
- the conductive portion 23B is a conductive layer.
- the conductive portion 23B includes a first conductive portion 23Bx disposed on the surface of the base particle 22 and a second conductive portion 23By disposed on the surface of the first conductive portion 23Bx.
- the conductive particles 21B have a plurality of protrusions 21Ba on the outer surface of the conductive portion 23B.
- the conductive portion 23B has a plurality of protrusions 23Ba on the outer surface.
- the conductive particle 21B has a plurality of core substances 24 on the surface of the first conductive portion 23Bx.
- the second conductive portion 23By covers the first conductive portion 23Bx and the core substance 24.
- the substrate particles 22 and the core substance 24 are arranged with a space therebetween.
- a first conductive portion 23Bx exists between the base particle 22 and the core substance 24.
- the conductive particles 21B have a plurality of protrusions 21Ba on the outer surface of the conductive portion 23B.
- the surface of the conductive portion 23B and the second conductive portion 23By is raised by the core substance 24, and a plurality of protrusions 21Ba and 23Ba are formed.
- the conductive portion 23B may have a multilayer structure. Further, in order to form the protrusions 21Ba and 23Ba, the core material 24 is disposed on the first conductive portion 23Bx of the inner layer, and the core material 24 and the first conductive portion 23Bx are separated by the second conductive portion 23By of the outer layer. It may be coated.
- each of the conductive particles 21, 21A, and 21B has a plurality of protrusions 21a, 21Aa, and 21Ba on the outer surfaces of the conductive portions 23, 23A, and 23B.
- the conductive particles 21, 21A and 21B all have the 10% K value and the breaking strain in the specific ranges described above.
- the back contact solar cell module according to the present invention is manufactured using the conductive particles 21, 21A, 21B and the like as described above.
- the conductive particles have base particles and conductive parts arranged on the surface of the base particles, and have a plurality of protrusions on the outer surface of the conductive parts, and the conductive particles
- conductive particles other than the conductive particles 21, 21A, and 21B may be used.
- FIG. 4 is a cross-sectional view of a back contact solar cell module obtained by using the back contact solar cell module conductive particles according to an embodiment of the present invention.
- the solar cell module 1 shown in FIG. 4 includes a flexible printed circuit board 2, a solar battery cell 3, and a connection portion 4 that connects the flexible printed circuit board 2 and the solar battery cell 3.
- the connection part 4 has the 1st connection part formed with the electrically-conductive material containing the electroconductive particle 21, and the 2nd connection part formed with the connection material which does not contain an electroconductive particle.
- conductive particles 21A, 21B and the like may be used.
- the connecting portion may be formed only of a conductive material including the conductive particles 21.
- the back sheet 5 is disposed on the surface of the flexible printed board 2 opposite to the connection portion 4 side.
- a sealing material 6 is disposed on the surface opposite to the connection portion 4 side of the solar battery cell 3.
- a translucent substrate or the like may be disposed on the surface opposite to the solar cell 3 side of the sealing material 6.
- the flexible printed circuit board 2 has a plurality of wiring electrodes 2a on the surface (upper surface).
- the solar battery cell 3 has a plurality of electrodes 3a on the front surface (lower surface, back surface).
- the wiring electrode 2 a and the electrode 3 a are electrically connected by one or a plurality of conductive particles 21. Therefore, the flexible printed circuit board 2 and the solar battery cell 3 are electrically connected by the conductive particles 21.
- the first connection portion is disposed between the wiring electrode 2a and the electrode 3a.
- the second connection portion is disposed between a portion of the flexible printed board 2 where the wiring electrode 2a is not provided and a portion where the electrode 3a of the solar battery cell 3 is not provided.
- the second connection portion may be disposed between the wiring electrode 2a and the electrode 3a.
- a resin film having the wiring electrode on the surface may be used instead of the flexible printed circuit board 2 having the wiring electrode 2a on the surface.
- the solar cell module shown in FIG. 4 can be obtained, for example, through the steps shown in FIGS. 5 (a) to 5 (c) below.
- a conductive material 4A containing conductive particles 21 and a binder resin is prepared.
- the binder resin includes a thermosetting compound and a thermosetting agent, and a conductive material 4A having thermosetting properties is used.
- the conductive material 4A is also a connection material.
- the conductive material 4A is selectively placed on the wiring electrode 2a of the flexible printed board 2 (first placement step). Instead of the wiring electrode 2a of the flexible printed board 2, the conductive material 4A may be selectively disposed on the electrode 3a of the solar battery cell 3.
- the conductive material in the first arrangement step, is not uniformly applied over the flexible printed board. As much as possible, it is preferable to dispose the conductive material on the wiring electrode, and it is preferable to dispose the conductive material only on the wiring electrode. However, a conductive material may also be disposed in a portion of the flexible printed board where the wiring electrode is not provided. The smaller the conductive material arranged in the portion of the flexible printed circuit board where the wiring electrodes are not provided, the better.
- the conductive material disposed on or on the wiring electrode is preferably 70% by weight or more, more preferably 90% by weight or more, and further preferably 100% by weight (total amount).
- the conductive material may be uniformly arranged on the flexible printed circuit board or the resin film wiring electrode and on the flexible printed circuit board or the resin film where the wiring electrode is not provided. You may arrange
- the placement of the conductive material is preferably performed by printing or application by a dispenser. Therefore, the conductive material is preferably a conductive paste. However, the conductive material may be a conductive film. If a conductive film is used, the excessive flow of the conductive film after arrangement
- a solar battery cell 3 having the electrode 3a on the surface is prepared.
- the connection material 4B which does not contain electroconductive particle is prepared.
- the connecting material 4B includes a thermosetting compound and a thermosetting agent.
- the connection material 4B which does not contain electroconductive particle is arrange
- the conductive material 4A is selectively disposed on the electrode 3a of the solar battery cell 3
- a flexible printed board having the wiring electrode 2a on the surface is prepared.
- a connection material 4B that does not contain conductive particles is disposed on the surface of the flexible printed circuit board 2 on which the wiring electrodes 2a are provided (second disposing step). Note that a connection material that does not include conductive particles may not be disposed.
- the flexible printed circuit board 2 obtained in the first arrangement step and provided with the conductive material 4A is bonded to the solar battery cell 3 obtained in the second arrangement step and provided with the connection material 4B.
- the process of matching is performed. That is, as shown in FIG. 5 (c), the flexible printed circuit board 2 and the solar cell 2 are electrically connected so that the wiring electrode 2 a of the flexible printed circuit board 2 and the electrode 3 a of the solar battery cell 3 are electrically connected by the conductive particles 21.
- the battery cell 3 is bonded together (bonding process).
- a conductive material 4A including conductive particles 21 is disposed between the wiring electrode 2a and the electrode 3a.
- a connecting material 4B that does not contain conductive particles is disposed between a portion of the flexible printed circuit board 2 where the wiring electrode is not provided and a portion of the solar battery cell 3 where the electrode is not provided.
- the pressurizing pressure is preferably 9.8 ⁇ 10 4 Pa or more, and preferably 1.0 ⁇ 10 6 Pa or less.
- connection portion 4 is formed by the conductive material 4A and the connection material 4B. Moreover, the solar cell module 1 shown in FIG. 4 is obtained by arrange
- the conductive material 4A and the connection material 4B it is preferable to heat the conductive material 4A and the connection material 4B.
- the conductive material 4 ⁇ / b> A and the connection material 4 ⁇ / b> B can be cured to form the cured connection portion 4.
- the heating temperature is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, still more preferably 100 ° C. or higher, preferably 200 ° C. or lower, more preferably 170 ° C. or lower.
- the temperature of the heating is not less than the above lower limit and not more than the above upper limit, curing can be sufficiently advanced and connection reliability can be effectively increased.
- the solar cell module shown in FIG. 4 can be obtained, for example, through the steps shown in FIGS. 6 (a) to 6 (c) below.
- a flexible printed circuit board 2 having wiring electrodes 2a on its surface.
- a conductive material 4A containing conductive particles 21 and a binder resin is prepared.
- the conductive material 4A is selectively placed on the wiring electrode 2a of the flexible printed board 2 (first placement step).
- the conductive material 4A may be selectively disposed on the electrode 3a of the solar battery cell 3.
- connection material 4B that does not contain conductive particles is prepared.
- the connecting material 4B is disposed on the portion of the flexible printed board 2 where the wiring electrode 2a is not provided (second disposing step).
- the first arrangement step may be performed first, or the second arrangement step may be performed first.
- the first arrangement step and the second arrangement step may be performed simultaneously.
- a solar battery cell 3 having an electrode 3a on the surface is prepared.
- the conductive material 4A is selectively disposed on the electrode 3a of the solar battery cell 3
- the flexible printed board 2 having the wiring electrode 2a on the surface is prepared.
- the step of bonding the flexible printed circuit board 2 on which the conductive material 4A and the connection material 4B are arranged and the solar cells 3 obtained in the first and second arrangement steps is performed.
- the flexible printed circuit board 2 and the solar battery cell are connected so that the wiring electrode 2 a of the flexible printed circuit board 2 and the electrode 3 a of the solar battery cell 3 are electrically connected by the conductive particles 21. 3 are bonded together (bonding process).
- connection portion 4 is formed by the conductive material 4A and the connection material 4B. Moreover, the solar cell module 1 shown in FIG. 4 is obtained by arrange
- an electrode (wiring electrode) provided on the flexible printed circuit board or the resin film and an electrode provided on the solar battery cell a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a silver electrode, Metal electrodes such as a molybdenum electrode and a tungsten electrode can be mentioned.
- a copper electrode (copper wiring electrode) or an aluminum electrode (aluminum wiring electrode) is preferable, and an aluminum electrode (aluminum wiring electrode) is especially preferable.
- the wiring electrode provided on the flexible printed board or the resin film is an aluminum wiring electrode, or the electrode provided on the solar battery cell is an aluminum electrode.
- only one of the wiring electrode provided on the flexible printed circuit board or the resin film and the electrode provided on the solar battery cell may be formed of aluminum, both of which are aluminum. May be formed.
- the wiring electrode provided on the flexible printed circuit board or the resin film may be an aluminum wiring electrode
- the electrode provided on the solar battery cell may be an aluminum electrode.
- an aluminum electrode aluminum wiring electrode
- the effect of the present invention is further exhibited, and in particular, the effect due to the protrusion of the conductive particles is further exhibited.
- the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles.
- the substrate particles are preferably substrate particles excluding metal particles, and more preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles.
- the base material particles are preferably resin particles formed of a resin.
- the conductive particles are generally compressed after the conductive particles are arranged between the electrodes.
- the substrate particles are resin particles, the conductive particles are easily deformed by compression, and the contact area between the conductive particles and the electrode is increased. For this reason, the conduction
- the resin for forming the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; Alkylene terephthalate, polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polysulfone, polyphenylene Oxide, polyacetal, polyimide, polyamideimide, polyether ether Tons, polyethersulfone, and polymers such as obtained by polymerizing various polymerizable monomers one or more having an acrylate.
- polyolefin resins such as polyethylene, polyprop
- the monomer having the ethylenically unsaturated group may be a non-crosslinkable monomer or a crosslinkable monomer. And a polymer.
- non-crosslinkable monomer examples include styrene monomers such as styrene and ⁇ -methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylates such as meth) acrylate and isobornyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate, dis Oxy
- Unsaturated hydrocarbons such as: trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, halogen-containing monomers such as vinyl chloride, vinyl fluoride, and chlorostyrene.
- aliphatic (meth) acrylate is preferable, and cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate Dicyclopentanyl (meth) acrylate or 1,3-adamantanediol di (meth) acrylate is more preferable.
- crosslinkable monomer examples include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylates such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) cyanure And silane
- polyfunctional (meth) acrylate is preferable, and (poly) tetramethylene glycol di (meth) acrylate or 1,4-butanediol di (meth) acrylate is more preferable.
- the resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.
- the substrate particles are inorganic particles or organic-inorganic hybrid particles excluding metal particles
- examples of the inorganic material that is a material of the substrate particles include silica and carbon black.
- the inorganic substance is preferably not a metal.
- the particles formed from the silica are not particularly limited. For example, after forming a crosslinked polymer particle by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups, firing may be performed as necessary.
- grains obtained by performing are mentioned.
- the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
- the base particles are metal particles
- examples of the metal that is a material of the metal particles include silver, copper, nickel, silicon, gold, and titanium.
- the substrate particles are preferably not metal particles.
- the average particle diameter of the substrate particles is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, and particularly preferably 30 ⁇ m or less.
- the average particle diameter of the substrate particles may be 20 ⁇ m or less.
- the average particle diameter of the base material particles is preferably 10 ⁇ m or more and 30 ⁇ m or less.
- the “average particle diameter” of the base material particles indicates a number average particle diameter.
- the average particle diameter of the resin particles is obtained by observing 50 arbitrary resin particles with an electron microscope or an optical microscope and calculating an average value.
- the thickness of the conductive part is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 20 nm or more, particularly preferably 50 nm or more, preferably 1000 nm or less, more preferably 800 nm or less, still more preferably 500 nm or less, particularly preferably 400 nm or less, most preferably 300 nm or less.
- the thickness of the conductive portion indicates the thickness of the entire plurality of conductive portions.
- the conductivity of the conductive particles is further improved.
- the thickness of the conductive part is not more than the above upper limit, the difference in the coefficient of thermal expansion between the base particle and the conductive part becomes small, and the conductive part becomes difficult to peel from the base particle.
- Examples of the method for forming the conductive part on the surface of the substrate particle include a method for forming the conductive part by electroless plating and a method for forming the conductive part by electroplating.
- the conductive part preferably contains a metal.
- the metal that is the material of the conductive part is not particularly limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, tungsten, molybdenum and cadmium, and alloys thereof. Is mentioned. Further, tin-doped indium oxide (ITO) may be used as the metal. As for the said metal, only 1 type may be used and 2 or more types may be used together.
- ITO tin-doped indium oxide
- the conductive particles have a plurality of protrusions on the outer surface of the conductive part. Since the core substance is embedded in the conductive portion, protrusions can be easily formed on the outer surface of the conductive portion. An oxide film is often formed on the surface of the electrode connected by the conductive particles. When conductive particles having protrusions are used, the oxide film is effectively excluded by the protrusions by placing the conductive particles between the electrodes and pressing them. For this reason, an electrode and electroconductive particle contact more reliably and the connection resistance between electrodes becomes still lower. Furthermore, the protrusion effectively eliminates the binder resin between the conductive particles and the electrode. For this reason, the conduction
- a method for forming protrusions on the surface of the conductive particles a method of forming a conductive portion by electroless plating after attaching a core substance to the surface of the base particles, and electroless plating on the surface of the base particles Examples include a method of forming a conductive part by, attaching a core substance, and further forming a conductive part by electroless plating.
- a first conductive part is formed on the surface of the base particle, and then a core substance is disposed on the first conductive part, and then the second conductive part.
- a method of adding a core substance in the middle of forming a conductive part on the surface of the base particle a method of adding a core substance in the middle of forming a conductive part on the surface of the base particle.
- the core substance As a method for attaching the core substance to the surface of the substrate particles, a conventionally known method can be adopted. Since the core substance is embedded in the conductive portion, it is easy for the conductive portion to have a plurality of protrusions on the outer surface. However, the core substance is not necessarily used in order to form protrusions on the surfaces of the conductive particles and the conductive part. The core substance is preferably disposed inside or inside the conductive part.
- the material of the core substance includes a conductive substance and a non-conductive substance.
- the conductive material include conductive non-metals such as metals, metal oxides, and graphite, and conductive polymers.
- the conductive polymer include polyacetylene.
- the nonconductive material include silica, alumina, and zirconia. Among them, metal is preferable because conductivity can be increased and connection resistance can be effectively reduced.
- the core substance is preferably metal particles.
- Examples of the metal include gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead.
- Examples thereof include alloys composed of two or more metals such as alloys, tin-copper alloys, tin-silver alloys, tin-lead-silver alloys, and tungsten carbide. Of these, nickel, copper, silver or gold is preferable.
- the metal that is the material of the core substance may be the same as or different from the metal that is the material of the conductive part.
- the material of the core substance preferably includes nickel.
- Examples of the metal oxide include alumina, silica and zirconia.
- the shape of the core substance is not particularly limited.
- the shape of the core substance is preferably a lump.
- Examples of the core substance include a particulate lump, an agglomerate in which a plurality of fine particles are aggregated, and an irregular lump.
- the average diameter (average particle diameter) of the core substance is preferably 0.001 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 0.6 ⁇ m or less, more preferably 0.4 ⁇ m or less.
- the average diameter of the core substance may be 0.9 ⁇ m or less, or 0.2 ⁇ m or less.
- the “average diameter (average particle diameter)” of the core substance indicates a number average diameter (number average particle diameter).
- the average diameter of the core material is obtained by observing 50 arbitrary core materials with an electron microscope or an optical microscope and calculating an average value.
- the number of the protrusions per one of the conductive particles is preferably 10 or more, more preferably 200 or more, and particularly preferably 500 or more.
- the number of the protrusions may be 3 or more, or 5 or more.
- the upper limit of the number of protrusions is not particularly limited.
- the upper limit of the number of protrusions can be appropriately selected in consideration of the particle diameter of the conductive particles.
- the number of the protrusions is preferably 1500 or less, more preferably 1000 or less.
- the average height of the plurality of protrusions is preferably 50 nm or more, more preferably 200 nm or more, preferably 800 nm or less, more preferably 700 ⁇ m or less, still more preferably 600 nm or less, particularly Preferably it is 500 nm or less.
- the average height of the plurality of protrusions is particularly preferably 50 nm or more and 800 nm or less, and more preferably 50 nm or more and 600 nm or less.
- the height of the projection is a virtual line of the conductive portion (dashed line shown in FIG. 1) on the assumption that there is no projection on the line (dashed line L1 shown in FIG. 1) connecting the center of the conductive particles and the tip of the projection.
- L2 Indicates the distance from the top (on the outer surface of the spherical conductive particles assuming no projection) to the tip of the projection. That is, in FIG. 1, the distance from the intersection of the broken line L1 and the broken line L2 to the tip of the protrusion is shown.
- the ratio of the average height of the plurality of protrusions to the thickness of the conductive part is preferably 1 or more, more preferably 2 or more, preferably 7 or less, more preferably 6 or less. is there.
- the 10% K value is preferably 1300 N / mm 2 or more, more preferably 1500 N / mm 2 or more, even more preferably 1600 N / mm 2 or more, more preferably 1800 N / mm 2 or more, particularly preferably 2000N / mm 2 or more, preferably 4500N / mm 2, more preferably at most 4000 N / mm 2.
- the compression elastic modulus (10% K value) of the conductive particles can be measured as follows.
- the conductive particles are compressed under the conditions of 25 ° C., compression speed of 2.6 mN / sec, and maximum test load of 10 gf with a cylindrical indenter end face (diameter 50 ⁇ m, made of diamond).
- the load value (N) and compression displacement (mm) at this time are measured. From the measured value obtained, the compression elastic modulus can be obtained by the following formula.
- the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used.
- K value (N / mm 2 ) (3/2 1/2 ) ⁇ F ⁇ S ⁇ 3 / 2 ⁇ R ⁇ 1/2 F: Load value when the conductive particles are 10%, 30% or 50% compressively deformed (N) S: Compression displacement (mm) when conductive particles are 10%, 30% or 50% compressively deformed R: radius of conductive particles (mm)
- the above-mentioned compression elastic modulus universally and quantitatively represents the hardness of the conductive particles.
- the hardness of the conductive particles can be expressed quantitatively and uniquely.
- the fracture strain of the conductive particles is 55% or more. From the viewpoint of further improving the conduction reliability, the breaking strain of the conductive particles is preferably 60% or more, more preferably 65% or more, and further preferably 70% or more. In the case of not breaking, the breaking strain substantially exceeds 70%.
- the fracture strain can be measured as follows.
- the conductive particles are compressed under the conditions of 25 ° C., compression speed of 2.6 mN / sec, and maximum test load of 10 gf with a cylindrical indenter end face (diameter 50 ⁇ m, made of diamond). It is a value obtained from the following equation from the measured value of the compression displacement when the conductive particles are destroyed in the compression process.
- Fracture strain (%) (B / D) ⁇ 100
- B Compression displacement (mm) when the conductive particles are broken
- D Diameter of conductive particles (mm)
- the compression elastic modulus and the fracture strain can be controlled within the above ranges by the composition of the monomers constituting the base particles.
- the back contact solar cell module conductive material according to the present invention includes the above-described conductive particles and a binder resin.
- the binder resin is not particularly limited.
- As the binder resin a known insulating resin can be used.
- the binder resin, the conductive material, and the connection material include a thermoplastic component or a thermosetting component.
- the binder resin, the conductive material, and the connection material may contain a thermoplastic component or may contain a thermosetting component.
- the binder resin, the conductive material, and the connection material preferably include a thermosetting component.
- the binder resin, the conductive material, and the connection material preferably include a curable compound (thermosetting compound) that can be cured by heating and a thermosetting agent. The curable compound curable by heating and the thermosetting agent are used in an appropriate blending ratio so that the binder resin is cured.
- thermosetting compound examples include epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds.
- epoxy compounds episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds.
- the said thermosetting compound only 1 type may be used and 2 or more types may be used together.
- thermosetting agent examples include an imidazole curing agent, an amine curing agent, a phenol curing agent, a polythiol curing agent, an acid anhydride, and a thermal cation curing initiator.
- an imidazole curing agent an amine curing agent, a phenol curing agent, a polythiol curing agent, an acid anhydride, and a thermal cation curing initiator.
- the said thermosetting agent only 1 type may be used and 2 or more types may be used together.
- the content of the binder resin is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably 70% by weight or more, preferably 99.% or more. It is 99 weight% or less, More preferably, it is 99.9 weight% or less.
- the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability is further enhanced.
- the content of the conductive particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 80% by weight or less, more preferably 60% by weight or less, More preferably, it is 40% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less.
- the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conduction reliability between the electrodes is further enhanced.
- Example 1 Production of conductive particles (Production of polymer seed particle dispersion) In a separable flask, 2500 g of ion-exchanged water, 250 g of styrene, 50 g of octyl mercaptan, and 0.5 g of sodium chloride were added and stirred under a nitrogen atmosphere. Then, it heated at 70 degreeC, 2.5 g of potassium peroxide was added, and polymer seed particle
- Production of conductive particles The polymer particles were etched and washed with water. Next, polymer particles were added to 100 mL of a palladium-catalyzed solution containing 8% by weight of a palladium catalyst and stirred. Then, it filtered and wash
- the polymer particles to which palladium was adhered were stirred and dispersed in 300 mL of ion exchange water for 3 minutes to obtain a dispersion. Next, 1 g of nickel particle slurry (average particle diameter of nickel particles as a core material of 400 nm) was added to the dispersion over 3 minutes to obtain polymer particles to which the core material was adhered.
- a nickel layer was formed on the surface of the polymer particles by electroless plating. Conductive particles having a plurality of protrusions on the outer surface of the nickel layer were produced.
- the nickel layer had a thickness of 0.3 ⁇ m. The average height of the plurality of protrusions was 400 nm.
- conductive material 20 parts by weight of an epoxy compound (“EP-3300P” manufactured by ADEKA) as a thermosetting compound and an epoxy compound (“EPICLON HP- manufactured by DIC”) as a thermosetting compound 4032D ”) 15 parts by weight, an amine adduct of imidazole as a thermosetting agent (" PN-F "manufactured by Ajinomoto Fine Techno Co., Ltd.), and 1 part by weight of 2-ethyl-4-methylimidazole as a curing accelerator Part and 20 parts by weight of alumina (average particle diameter 0.5 ⁇ m) as a filler were added so that the content in 100% by weight of conductive paste from which conductive particles can be obtained was 10% by weight. Then, the electrically conductive material was obtained by stirring for 5 minutes at 2000 rpm using a planetary stirrer.
- connection material 20 parts by weight of an epoxy compound (“EP-3300P” manufactured by ADEKA) as a thermosetting compound and an epoxy compound (“EPICLON HP-4032D manufactured by DIC”) as a thermosetting compound ] 15 parts by weight, 10 parts by weight of an amine adduct of imidazole as a thermosetting agent (“PN-F” manufactured by Ajinomoto Fine Techno Co.) and 1 part by weight of 2-ethyl-4-methylimidazole as a curing accelerator And 20 parts by weight of alumina (average particle size 0.5 ⁇ m) as a filler were blended to obtain a connection material.
- an epoxy compound (“EP-3300P” manufactured by ADEKA)
- PN-F an amine adduct of imidazole
- 2-ethyl-4-methylimidazole as a curing accelerator
- 20 parts by weight of alumina (average particle size 0.5 ⁇ m) as a filler were blended to obtain
- a conductive material was selectively applied on the wiring electrode of the flexible printed board using a dispenser to partially form a conductive material layer having a thickness of 60 ⁇ m. All of the conductive material on the flexible printed circuit board was disposed on the wiring electrode. That is, the amount of the conductive material disposed on the wiring electrode was 100% by weight out of 100% by weight of the entire conductive material disposed on the flexible printed board.
- a connecting material was applied over the entire surface on the side where the electrodes of the solar battery cells were provided, thereby forming a connecting material layer having a thickness of 40 ⁇ m.
- the flexible printed circuit board and the solar battery cell were bonded so that the aluminum wiring electrode of the flexible printed circuit board and the copper electrode of the solar battery cell were electrically connected by conductive particles.
- the flexible printed circuit board and the solar battery cell were placed in a vacuum laminate for 5 minutes in an atmosphere of 150 ° C. so as to be sandwiched between the glass substrate and the EVA film.
- the conductive material layer and the connection material layer were cured by heating during laminating to form a connection portion.
- a solar cell module was obtained in which the aluminum wiring electrode of the flexible printed board and the copper electrode of the solar cell were electrically connected by conductive particles.
- Example 2 In the preparation of the polymer particles, instead of 5 g of 1,3-adamantanediol diacrylate, 95 g of octyl acrylate, and 90 g of divinylbenzene, 133 g of isobornyl acrylate, 48 g of polytetramethylene glycol diacrylate, and cyclohexyl Conductive particles were obtained in the same manner as in Example 1 except that 9 g of acrylate was used.
- the nickel layer had a thickness of 0.3 ⁇ m.
- the average height of the plurality of protrusions was 400 nm.
- a solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 3 In the preparation of the polymer particles, instead of 5 g of 1,3-adamantanediol diacrylate, 95 g of octyl acrylate, and 90 g of divinylbenzene, 133 g of isobornyl acrylate, 28 g of polytetramethylene glycol diacrylate, and cyclohexyl Conductive particles were obtained in the same manner as in Example 1 except that 29 g of acrylate was used. The nickel layer had a thickness of 0.3 ⁇ m. The average height of the plurality of protrusions was 400 nm. A solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 4 In the production of the polymer particles, instead of 5 g of 1,3-adamantanediol diacrylate, 95 g of octyl acrylate, 90 g of divinylbenzene, 133 g of isobornyl acrylate, 38 g of polytetramethylene glycol diacrylate, and cyclohexyl acrylate Conductive particles were obtained in the same manner as in Example 1 except that 19 g was used. The nickel layer had a thickness of 0.3 ⁇ m. The average height of the plurality of protrusions was 400 nm. A solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 5 Conductive particles were obtained in the same manner as in Example 1 except that the average particle diameter of the core substance was changed and the average height of the plurality of protrusions of the conductive particles was changed to 50 nm.
- the nickel layer had a thickness of 0.3 ⁇ m.
- the average height of the plurality of protrusions was 50 nm.
- a solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 6 Conductive particles were obtained in the same manner as in Example 1, except that the average particle diameter of the core substance was changed and the average height of the plurality of protrusions of the conductive particles was changed to 750 nm.
- the nickel layer had a thickness of 0.3 ⁇ m.
- the average height of the plurality of protrusions was 750 nm.
- a solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 7 A solar cell module was obtained in the same manner as in Example 1 except that the electrode of the solar cell was changed from a copper electrode to an aluminum electrode.
- Example 8 Conductive particles were obtained in the same manner as in Example 1 except that the average particle size of the polymer particles was changed to 20 ⁇ m when the polymer particles were produced.
- the nickel layer had a thickness of 0.2 ⁇ m.
- the average height of the plurality of protrusions was 400 nm.
- a solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 9 Conductive particles were obtained in the same manner as in Example 8, except that the average particle diameter of the core substance was changed and the average height of the plurality of protrusions of the conductive particles was changed to 200 nm.
- the nickel layer had a thickness of 0.2 ⁇ m.
- the average height of the plurality of protrusions was 200 nm.
- a solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 10 Conductive particles were obtained in the same manner as in Example 8, except that the average particle diameter of the core substance was changed and the average height of the plurality of protrusions of the conductive particles was changed to 600 nm.
- the nickel layer had a thickness of 0.2 ⁇ m.
- the average height of the plurality of protrusions was 600 nm.
- a solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 11 By using the polymer particles used in Example 1 to produce a nickel core material by reaction in the plating bath without using nickel particle slurry, and co-depositing the electroless nickel plating together with the produced core material, Conductive particles having a plurality of protrusions on the outer surface of the nickel layer were obtained.
- the thickness of the nickel layer of the conductive particles was 0.1 ⁇ m, and the average height of the plurality of protrusions was 250 nm. Except having used the obtained electroconductive particle, it carried out similarly to Example 1, and obtained the solar cell module.
- Example 12 In the preparation of the polymer particles, instead of 5 g of 1,3-adamantanediol diacrylate, 95 g of octyl acrylate, and 90 g of divinylbenzene, 133 g of isobornyl acrylate, 48 g of polytetramethylene glycol diacrylate, and cyclohexyl Conductive particles were obtained in the same manner as in Example 8 except that 9 g of acrylate was used.
- the nickel layer had a thickness of 0.2 ⁇ m.
- the average height of the plurality of protrusions was 400 nm.
- a solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 13 In the preparation of the polymer particles, instead of 5 g of 1,3-adamantanediol diacrylate, 95 g of octyl acrylate, and 90 g of divinylbenzene, 133 g of isobornyl acrylate, 28 g of polytetramethylene glycol diacrylate, and cyclohexyl Conductive particles were obtained in the same manner as in Example 8 except that 29 g of acrylate was used. The nickel layer had a thickness of 0.2 ⁇ m. The average height of the plurality of protrusions was 400 nm. A solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 14 In the production of the polymer particles, instead of 5 g of 1,3-adamantanediol diacrylate, 95 g of octyl acrylate, 90 g of divinylbenzene, 133 g of isobornyl acrylate, 38 g of polytetramethylene glycol diacrylate, and cyclohexyl acrylate Conductive particles were obtained in the same manner as in Example 8 except that 19 g was used. The nickel layer had a thickness of 0.3 ⁇ m. The average height of the plurality of protrusions was 400 nm. A solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 15 Conductive particles were obtained in the same manner as in Example 8 except that the thickness of the nickel layer was changed to 0.8 ⁇ m and the height of the protrusion was changed. The average height of the plurality of protrusions was 500 nm. A solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 16 Conductive particles were obtained in the same manner as in Example 8 except that the thickness of the nickel layer was changed to 0.1 ⁇ m. The average height of the plurality of protrusions was 400 nm. A solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 17 Conductive particles were obtained in the same manner as in Example 8, except that the electroconductive particles obtained in Example 8 were subjected to gold plating using electroless gold plating.
- the total thickness of the nickel layer and the gold layer was 0.25 ⁇ m (nickel layer 0.2 ⁇ m).
- the average height of the plurality of protrusions was 400 nm.
- a solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 18 Conductive particles were obtained in the same manner as in Example 8 except that the conductive particle plating layer was changed to only the copper layer.
- the copper layer had a thickness of 0.2 ⁇ m.
- the average height of the plurality of protrusions was 400 nm.
- a solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 19 Conductive particles were obtained in the same manner as in Example 17 except that the outermost layer of the plated layer of conductive particles was changed to a palladium layer.
- the total thickness of the nickel layer and the palladium layer was 0.25 ⁇ m (nickel layer 0.2 ⁇ m).
- the average height of the plurality of protrusions was 400 nm.
- a solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 20 Conductive particles were obtained in the same manner as in Example 17 except that the nickel layer, which is a plating layer of conductive particles, was changed to a copper layer, and the outermost layer, which was a plating layer, was changed to a palladium layer.
- the total thickness of the copper layer and the palladium layer was 0.25 ⁇ m (copper layer 0.2 ⁇ m).
- the average height of the plurality of protrusions was 400 nm.
- a solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 21 Conductive particles were obtained in the same manner as in Example 17 except that the outermost layer of the plated layer of conductive particles was changed to a silver layer.
- the total thickness of the nickel layer and the silver layer was 0.25 ⁇ m (nickel layer 0.2 ⁇ m).
- the average height of the plurality of protrusions was 400 nm.
- a solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 22 Conductive particles were obtained in the same manner as in Example 8, except that the thickness of the nickel layer was changed to 1.3 ⁇ m. The average height of the plurality of protrusions was 600 nm. A solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 23 Conductive particles were obtained in the same manner as in Example 8 except that the thickness of the nickel layer was changed to 0.09 ⁇ m. The average height of the plurality of protrusions was 400 nm. A solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 1 The polymer particles obtained in Example 1 were prepared. Using the polymer particles, a nickel layer was formed on the surface of the polymer particles by electroless plating to produce conductive particles. In Comparative Example 1, no protrusion was formed on the surface of the conductive portion of the conductive particle. A solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 2 A solar cell module was obtained in the same manner as in Example 1 except that the conductive material (conductive paste) was changed to the solder paste.
- Example 3 A solar cell module was obtained in the same manner as in Example 1 except that the conductive material (conductive paste) was changed to Ag paste.
- Example 6 (Comparative Example 6) In the same manner as in Example 1 except that 190 g of divinylbenzene was used instead of 5 g of 1,3-adamantanediol diacrylate, 95 g of octyl acrylate, and 90 g of divinylbenzene when the polymer particles were produced. Conductive particles were obtained. The nickel layer had a thickness of 0.3 ⁇ m. The average height of the plurality of protrusions was 400 nm. A solar cell module was obtained in the same manner as in Example 1 using the obtained conductive particles.
- Example 1 a copper electrode was used for the solar cell, and in Example 7, an aluminum electrode was used for the solar cell.
- the evaluation results based on the above criteria for the initial energy conversion efficiency and the energy conversion efficiency after the reliability test were the same, but in the aluminum electrode, the conductivity provided with the configuration of the present invention.
- the number of protrusions per single particle in Examples 1 to 23 and Comparative Examples 4 to 7 was about 300 to about 900.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Photovoltaic Devices (AREA)
- Conductive Materials (AREA)
Abstract
Description
本発明に係るバックコンタクト方式の太陽電池モジュール用導電性粒子は、基材粒子と、該基材粒子の表面上に配置された導電部とを備える。本発明に係るバックコンタクト方式の太陽電池モジュール用導電性粒子は、上記導電部の外表面に複数の突起を有する。本発明に係るバックコンタクト方式の太陽電池モジュール用導電性粒子を10%圧縮したときの圧縮弾性率(10%K値)は1100N/mm2以上、5000N/mm2以下である。本発明に係るバックコンタクト方式の太陽電池モジュール用導電性粒子破壊歪は55%以上である。
上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、金属粒子を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることがより好ましい。
F:導電性粒子が10%、30%又は50%圧縮変形したときの荷重値(N)
S:導電性粒子が10%、30%又は50%圧縮変形したときの圧縮変位(mm)
R:導電性粒子の半径(mm)
B:導電性粒子が破壊されたときの圧縮変位(mm)
D:導電性粒子の直径(mm)
本発明に係るバックコンタクト方式の太陽電池モジュール用導電材料は、上述した導電性粒子とバインダー樹脂とを含む。上記バインダー樹脂は特に限定されない。上記バインダー樹脂として、公知の絶縁性の樹脂を用いること可能である。
(1)導電性粒子の作製
(重合体シード粒子分散液の作製)
セパラブルフラスコにイオン交換水2500g、スチレン250g、オクチルメルカプタン50g、及び塩化ナトリウム0.5gを入れ、窒素雰囲気下で攪拌した。その後、70℃に加熱し、過酸化カリウム2.5gを添加し、24時間反応を行うことにより、重合体シード粒子を得た。
1,3-アダマンタンジオールジアクリレート5gと、オクチルアクリレート95gと、ジビニルベンゼン90gと、過酸化ベンゾイル2.6gと、ラウリル硫酸トリエタノールアミン10gと、エタノール130gとをイオン交換水1000gに加え、攪拌し、乳化液を得た。得られた乳化液を数回に分けて重合体シード粒子分散液に加え、12時間攪拌した。その後、ポリビニルアルコール5重量%水溶液500gを加え、85℃の窒素雰囲気下で、9時間反応を行い、重合体粒子(樹脂粒子、平均粒子径10.0μm)を得た。
上記重合体粒子をエッチングし、水洗した。次に、パラジウム触媒を8重量%含むパラジウム触媒化液100mL中に重合体粒子を添加し、攪拌した。その後、ろ過し、洗浄した。pH6の0.5重量%ジメチルアミンボラン液に重合体粒子を添加し、パラジウムが付着された重合体粒子を得た。
熱硬化性化合物であるエポキシ化合物(ADEKA社製「EP-3300P」)20重量部と、熱硬化性化合物であるエポキシ化合物(DIC社製「EPICLON HP-4032D」)15重量部と、熱硬化剤であるイミダゾールのアミンアダクト体(味の素ファインテクノ社製「PN-F」)10重量部と、硬化促進剤である2-エチル-4-メチルイミダゾール1重量部と、フィラーであるアルミナ(平均粒子径0.5μm)20重量部とを配合し、さらに導電性粒子を得られる導電ペースト100重量%中での含有量が10重量%となるように添加した後、遊星式攪拌機を用いて2000rpmで5分間攪拌することにより、導電材料を得た。
熱硬化性化合物であるエポキシ化合物(ADEKA社製「EP-3300P」)20重量部と、熱硬化性化合物であるエポキシ化合物(DIC社製「EPICLON HP-4032D」)15重量部と、熱硬化剤であるイミダゾールのアミンアダクト体(味の素ファインテクノ社製「PN-F」)10重量部と、硬化促進剤である2-エチル-4-メチルイミダゾール1重量部と、フィラーであるアルミナ(平均粒子径0.5μm)20重量部とを配合し、接続材料を得た。
アルミニウム配線電極を表面に有するフレキシブルプリント基板(L/S=300μm/300μm)を用意した。また、銅電極を表面に有する太陽電池セル(L/S=300μm/300μm)を用意した。
重合体粒子の作製の際に、1,3-アダマンタンジオールジアクリレート5gと、オクチルアクリレート95gと、ジビニルベンゼン90gとの代わりに、イソボルニルアクリレート133gと、ポリテトラメチレングリコールジアクリレート48gと、シクロヘキシルアクリレート9gとを用いたこと以外は実施例1と同様にして、導電性粒子を得た。なお、ニッケル層の厚さは0.3μmであった。複数の突起の平均高さは400nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
重合体粒子の作製の際に、1,3-アダマンタンジオールジアクリレート5gと、オクチルアクリレート95gと、ジビニルベンゼン90gとの代わりに、イソボルニルアクリレート133gと、ポリテトラメチレングリコールジアクリレート28gと、シクロヘキシルアクリレート29gとを用いたこと以外は実施例1と同様にして、導電性粒子を得た。なお、ニッケル層の厚さは0.3μmであった。複数の突起の平均高さは400nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
重合体粒子の作製の際に、1,3-アダマンタンジオールジアクリレート5gと、オクチルアクリレート95gと、ジビニルベンゼン90gの代わりに、イソボルニルアクリレート133gと、ポリテトラメチレングリコールジアクリレート38gと、シクロヘキシルアクリレート19gとを用いたこと以外は実施例1と同様にして、導電性粒子を得た。なお、ニッケル層の厚さは0.3μmであった。複数の突起の平均高さは400nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
芯物質の平均粒子径をかえて、導電性粒子の複数の突起の平均高さを50nmに変更したこと以外は実施例1と同様にして、導電性粒子を得た。なお、ニッケル層の厚さは0.3μmであった。複数の突起の平均高さは50nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
芯物質の平均粒子径をかえて、導電性粒子の複数の突起の平均高さを750nmに変更したこと以外は実施例1と同様にして、導電性粒子を得た。なお、ニッケル層の厚さは0.3μmであった。複数の突起の平均高さは750nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
太陽電池セルの電極を銅電極からアルミニウム電極に変更したこと以外は実施例1と同様にして、太陽電池モジュールを得た。
重合体粒子の作製時に、重合体粒子の平均粒子径を20μmに変更したこと以外は実施例1と同様にして、導電性粒子を得た。なお、ニッケル層の厚さは0.2μmであった。複数の突起の平均高さは400nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
芯物質の平均粒子径をかえて、導電性粒子の複数の突起の平均高さを200nmに変更したこと以外は実施例8と同様にして、導電性粒子を得た。なお、ニッケル層の厚さは0.2μmであった。複数の突起の平均高さは200nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
芯物質の平均粒子径をかえて、導電性粒子の複数の突起の平均高さを600nmに変更したこと以外は実施例8と同様にして、導電性粒子を得た。なお、ニッケル層の厚さは0.2μmであった。複数の突起の平均高さは600nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
実施例1で用いた重合体粒子を用いて、ニッケル粒子スラリーを使用せずにめっき浴内に反応によりニッケル芯物質を生成し、生成した芯物質と共に無電解ニッケルめっきを共析出させることで、ニッケル層の外表面に複数の突起を有する導電性粒子を得た。導電性粒子のニッケル層の厚さは0.1μm、複数の突起の平均高さは250nmであった。得られた導電性粒子を使用したこと以外は実施例1と同様にして太陽電池モジュールを得た。
重合体粒子の作製の際に、1,3-アダマンタンジオールジアクリレート5gと、オクチルアクリレート95gと、ジビニルベンゼン90gとの代わりに、イソボルニルアクリレート133gと、ポリテトラメチレングリコールジアクリレート48gと、シクロヘキシルアクリレート9gとを用いたこと以外は実施例8と同様にして、導電性粒子を得た。なお、ニッケル層の厚さは0.2μmであった。複数の突起の平均高さは400nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
重合体粒子の作製の際に、1,3-アダマンタンジオールジアクリレート5gと、オクチルアクリレート95gと、ジビニルベンゼン90gとの代わりに、イソボルニルアクリレート133gと、ポリテトラメチレングリコールジアクリレート28gと、シクロヘキシルアクリレート29gとを用いたこと以外は実施例8と同様にして、導電性粒子を得た。なお、ニッケル層の厚さは0.2μmであった。複数の突起の平均高さは400nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
重合体粒子の作製の際に、1,3-アダマンタンジオールジアクリレート5gと、オクチルアクリレート95gと、ジビニルベンゼン90gの代わりに、イソボルニルアクリレート133gと、ポリテトラメチレングリコールジアクリレート38gと、シクロヘキシルアクリレート19gとを用いたこと以外は実施例8と同様にして、導電性粒子を得た。なお、ニッケル層の厚さは0.3μmであった。複数の突起の平均高さは400nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
ニッケル層の厚みを0.8μmに変更したこと、並びに突起の高さを変更したこと以外は実施例8と同様にして、導電性粒子を得た。複数の突起の平均高さは500nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
ニッケル層の厚みを0.1μmに変更したこと以外は実施例8と同様にして、導電性粒子を得た。複数の突起の平均高さは400nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
実施例8で得られた導電性粒子に無電解金めっきを用いて金めっきを施したこと以外は実施例8と同様にして、導電性粒子を得た。なお、ニッケル層と金層の合計厚さは0.25μm(ニッケル層0.2μm)であった。複数の突起の平均高さは400nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
導電性粒子のめっき層を銅層のみに変更したこと以外は実施例8と同様にして、導電性粒子を得た。なお、銅層の厚さは0.2μmであった。複数の突起の平均高さは400nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
導電性粒子のめっき層の最外層をパラジウム層に変更したこと以外は実施例17と同様にして、導電性粒子を得た。なお、ニッケル層とパラジウム層の合計の厚さは0.25μm(ニッケル層0.2μm)であった。複数の突起の平均高さは400nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
導電性粒子のめっき層であるニッケル層を銅層にし、めっき層である最外層をパラジウム層に変更したこと以外は実施例17と同様にして、導電性粒子を得た。なお、銅層とパラジウム層の合計の厚さは0.25μm(銅層0.2μm)であった。複数の突起の平均高さは400nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
導電性粒子のめっき層の最外層を銀層に変更したこと以外は実施例17と同様にして、導電性粒子を得た。なお、ニッケル層と銀層の合計の厚さは0.25μm(ニッケル層0.2μm)であった。複数の突起の平均高さは400nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
ニッケル層の厚みを1.3μmに変更したこと以外は実施例8と同様にして、導電性粒子を得た。複数の突起の平均高さは600nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
ニッケル層の厚みを0.09μmに変更したこと以外は実施例8と同様にして、導電性粒子を得た。複数の突起の平均高さは400nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
実施例1で得られた重合体粒子を用意した。この重合体粒子を用いて、無電解めっき法により、重合体粒子の表面に、ニッケル層を形成し、導電性粒子を作製した。比較例1では、導電性粒子の導電部の表面に突起を形成しなかった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
導電材料(導電ペースト)をはんだペーストに変更したこと以外は実施例1と同様にして、太陽電池モジュールを得た。
導電材料(導電ペースト)をAgペーストに変更したこと以外は実施例1と同様にして、太陽電池モジュールを得た。
重合体粒子の作製の際に、1,3-アダマンタンジオールジアクリレート5gと、オクチルアクリレート95gと、ジビニルベンゼン90gとの代わりに、1,3-アダマンタンジオールジアクリレート5gと、オクチルアクリレート135gと、ジビニルベンゼン50gとを用いたこと以外は実施例1と同様にして、導電性粒子を得た。なお、ニッケル層の厚さは0.3μmであった。複数の突起の平均高さは400nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
重合体粒子の作製の際に、1,3-アダマンタンジオールジアクリレート5gと、オクチルアクリレート95gと、ジビニルベンゼン90gとの代わりに、イソボルニルアクリレート113gと、ポリテトラメチレングリコールジアクリレート68gと、シクロヘキシルアクリレート9gとを用いたこと以外は実施例1と同様にして、導電性粒子を得た。なお、ニッケル層の厚さは0.3μmであった。複数の突起の平均高さは400nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
重合体粒子の作製の際に、1,3-アダマンタンジオールジアクリレート5gと、オクチルアクリレート95gと、ジビニルベンゼン90gとの代わりに、ジビニルベンゼン190gを用いたこと以外は実施例1と同様にして、導電性粒子を得た。なお、ニッケル層の厚さは0.3μmであった。複数の突起の平均高さは400nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
重合体粒子の作製の際に、1,3-アダマンタンジオールジアクリレート5gと、オクチルアクリレート95gと、ジビニルベンゼン90gとの代わりに、ポリテトラメチレングリコールジアクリレート152gと、ジビニルベンゼン38gとを用いたこと以外は実施例1と同様にして、導電性粒子を得た。なお、ニッケル層の厚さは0.3μmであった。複数の突起の平均高さは400nmであった。得られた導電性粒子を用いて実施例1と同様にして、太陽電池モジュールを得た。
(1)導電性粒子の圧縮弾性率(10%K値)
得られた導電性粒子の圧縮弾性率(10%K値)を、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。
得られた導電性粒子の破壊歪を、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。
得られた太陽電池モジュールにおけるエネルギー変換効率を測定した。また、初期のエネルギー変換効率を下記の基準で判定した。
○○○○:エネルギー変換効率が22%を超える
○○○:エネルギー変換効率が20%を超え22%以下
○○:エネルギー変換効率が18%を超え20%以下
○:エネルギー変換効率が16%を超え18%以下
△:エネルギー変換効率が14%を超え16%以下
×:エネルギー変換効率が14%以下
得られた太陽電池モジュールについて、サイクル試験機にて、-40℃~90℃、保持時間30分、温度変化率87℃/時間のサイクル試験を200サイクル行った後、エネルギー変換効率を測定した。信頼性試験後のエネルギー変換効率を下記の基準で判定した。
○○○○:エネルギー変換効率が22%を超える
○○○:エネルギー変換効率が20%を超え22%以下
○○:エネルギー変換効率が18%を超え20%以下
○:エネルギー変換効率が16%を超え18%以下
△:エネルギー変換効率が14%を超え16%以下
×:エネルギー変換効率が14%以下
得られた太陽電池モジュールにおけるセル4つの角のフレキシブルプリント基板と太陽電池セル下部の幅の長さを測定し、下記の基準で判定した。
○:幅の最小値と最大値の差が50μm以上
△:幅の最小値と最大値の差が20μm以上50μm未満
×:幅の最小値と最大値の差が20μm未満
2…フレキシブルプリント基板
2a…配線電極
3…太陽電池セル
3a…電極
4…接続部
4A…導電材料
4B…接続材料
5…バックシート
6…封止材
21,21A,21B…導電性粒子
21a,21Aa,21Ba…突起
22…基材粒子
23,23A,23B…導電部
23a,23Aa,23Ba…突起
23Bx…第1の導電部
23By…第2の導電部
24…芯物質
Claims (8)
- バックコンタクト方式の太陽電池モジュールに用いられる導電性粒子であって、
基材粒子と、
前記基材粒子の表面上に配置された導電部とを備え、
前記導電部の外表面に複数の突起を有し、
10%圧縮したときの圧縮弾性率が1100N/mm2以上、5000N/mm2以下であり、
破壊歪が55%以上である、バックコンタクト方式の太陽電池モジュール用導電性粒子。 - 複数の前記突起の平均高さが、50nm以上、800nm以下である、請求項1に記載のバックコンタクト方式の太陽電池モジュール用導電性粒子。
- 複数の前記突起の平均高さの前記導電部の厚みに対する比が0.1以上、8以下である、請求項1又は2に記載のバックコンタクト方式の太陽電池モジュール用導電性粒子。
- 配線電極を表面に有するフレキシブルプリント基板又は配線電極を表面に有する樹脂フィルムと、電極を表面に有する太陽電池セルとの、前記配線電極と前記電極とを電気的に接続するために用いられる、請求項1~3のいずれか1項に記載のバックコンタクト方式の太陽電池モジュール用導電性粒子。
- 前記フレキシブルプリント基板又は前記樹脂フィルムの前記配線電極が、アルミニウム配線電極であるか、又は、前記太陽電池セルの前記電極がアルミニウム電極である、請求項4に記載のバックコンタクト方式の太陽電池モジュール用導電性粒子。
- 請求項1~5のいずれか1項に記載のバックコンタクト方式の太陽電池モジュール用導電性粒子と、バインダー樹脂とを含む、バックコンタクト方式の太陽電池モジュール用導電材料。
- 前記バインダー樹脂が熱硬化性化合物と熱硬化剤とを含む、請求項6に記載のバックコンタクト方式の太陽電池モジュール用導電材料。
- 配線電極を表面に有するフレキシブルプリント基板又は配線電極を表面に有する樹脂フィルムと、
電極を表面に有する太陽電池セルと、
前記フレキシブルプリント基板又は前記樹脂フィルムと前記太陽電池セルとを接続している接続部とを備え、
前記接続部が、請求項1~5のいずれか1項に記載のバックコンタクト方式の太陽電池モジュール用導電性粒子と、バインダー樹脂とを含むバックコンタクト方式の太陽電池モジュール用導電材料により形成されており、
前記配線電極と前記電極とが前記導電性粒子により電気的に接続されている、バックコンタクト方式の太陽電池モジュール。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167014878A KR20160106562A (ko) | 2014-01-08 | 2015-01-07 | 백 콘택트 방식의 태양 전지 모듈용 도전성 입자, 도전 재료 및 태양 전지 모듈 |
CN201580004075.XA CN105917418B (zh) | 2014-01-08 | 2015-01-07 | 背接触式太阳能电池模块用导电性粒子、导电材料及太阳能电池模块 |
JP2015502420A JPWO2015105120A1 (ja) | 2014-01-08 | 2015-01-07 | バックコンタクト方式の太陽電池モジュール用導電性粒子、導電材料及び太陽電池モジュール |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014001589 | 2014-01-08 | ||
JP2014-001589 | 2014-01-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015105120A1 true WO2015105120A1 (ja) | 2015-07-16 |
Family
ID=53523945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/050233 WO2015105120A1 (ja) | 2014-01-08 | 2015-01-07 | バックコンタクト方式の太陽電池モジュール用導電性粒子、導電材料及び太陽電池モジュール |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2015105120A1 (ja) |
KR (1) | KR20160106562A (ja) |
CN (1) | CN105917418B (ja) |
WO (1) | WO2015105120A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101781976B1 (ko) * | 2015-04-08 | 2017-10-23 | 한국과학기술연구원 | 나노구조 하이브리드 입자 및 그 제조방법, 그리고 상기 입자를 포함하는 장치 |
CN110660880B (zh) * | 2019-08-29 | 2021-08-10 | 泰州隆基乐叶光伏科技有限公司 | 背接触太阳能电池组件生产方法及背接触太阳能电池组件 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003313304A (ja) * | 2002-04-22 | 2003-11-06 | Sekisui Chem Co Ltd | 導電性微粒子、導電性微粒子の製造方法及び電子部品の接合材料 |
JP2011040189A (ja) * | 2009-08-07 | 2011-02-24 | Sekisui Chem Co Ltd | 導電性粒子、異方性導電材料及び接続構造体 |
JP2013030479A (ja) * | 2011-06-22 | 2013-02-07 | Sekisui Chem Co Ltd | 絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体 |
JP2013063443A (ja) * | 2011-09-15 | 2013-04-11 | Toppan Printing Co Ltd | アルミペーストはんだ、アルミ導電性部材の接合方法及び太陽電池モジュールの製造方法 |
JP2013197343A (ja) * | 2012-03-21 | 2013-09-30 | Dexerials Corp | 太陽電池モジュール及びその製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001155540A (ja) * | 1999-11-29 | 2001-06-08 | Sekisui Chem Co Ltd | 導電性微粒子、異方性導電接着剤及び導電接続構造体 |
JP2005011869A (ja) | 2003-06-17 | 2005-01-13 | Sekisui Jushi Co Ltd | 太陽電池モジュールおよびその製造方法 |
CN102723381B (zh) * | 2007-05-09 | 2015-08-19 | 日立化成株式会社 | 导电体连接用部件 |
JP4862921B2 (ja) * | 2008-07-01 | 2012-01-25 | 日立化成工業株式会社 | 回路接続材料、回路接続構造体及びその製造方法 |
JP5025825B2 (ja) * | 2010-07-28 | 2012-09-12 | 積水化学工業株式会社 | 絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体 |
WO2012043472A1 (ja) * | 2010-09-30 | 2012-04-05 | 積水化学工業株式会社 | 導電性粒子、異方性導電材料及び接続構造体 |
JP2012204388A (ja) | 2011-03-23 | 2012-10-22 | Sony Chemical & Information Device Corp | 太陽電池モジュール、太陽電池モジュールの製造方法、タブ線が巻装されたリール巻装体 |
DE102013204326A1 (de) * | 2012-03-13 | 2013-09-19 | Robert Bosch Gmbh | Solarmodul und Verfahren zur Herstellung eines solchen |
-
2015
- 2015-01-07 CN CN201580004075.XA patent/CN105917418B/zh not_active Expired - Fee Related
- 2015-01-07 KR KR1020167014878A patent/KR20160106562A/ko not_active Application Discontinuation
- 2015-01-07 JP JP2015502420A patent/JPWO2015105120A1/ja active Pending
- 2015-01-07 WO PCT/JP2015/050233 patent/WO2015105120A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003313304A (ja) * | 2002-04-22 | 2003-11-06 | Sekisui Chem Co Ltd | 導電性微粒子、導電性微粒子の製造方法及び電子部品の接合材料 |
JP2011040189A (ja) * | 2009-08-07 | 2011-02-24 | Sekisui Chem Co Ltd | 導電性粒子、異方性導電材料及び接続構造体 |
JP2013030479A (ja) * | 2011-06-22 | 2013-02-07 | Sekisui Chem Co Ltd | 絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体 |
JP2013063443A (ja) * | 2011-09-15 | 2013-04-11 | Toppan Printing Co Ltd | アルミペーストはんだ、アルミ導電性部材の接合方法及び太陽電池モジュールの製造方法 |
JP2013197343A (ja) * | 2012-03-21 | 2013-09-30 | Dexerials Corp | 太陽電池モジュール及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105917418A (zh) | 2016-08-31 |
JPWO2015105120A1 (ja) | 2017-03-23 |
CN105917418B (zh) | 2018-02-13 |
KR20160106562A (ko) | 2016-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2251910B1 (en) | Adhesive tape and solar cell module using the same | |
KR102093270B1 (ko) | 도전성 입자, 수지 입자, 도전 재료 및 접속 구조체 | |
JP6212366B2 (ja) | 導電性粒子、導電材料及び接続構造体 | |
JP2012094532A (ja) | 導電性粒子、異方性導電材料及び接続構造体 | |
WO2015037711A1 (ja) | 導電性粒子、導電材料及び接続構造体 | |
JP2013149611A (ja) | 導電性粒子、導電材料及び接続構造体 | |
WO2016063941A1 (ja) | 導電性粒子、導電材料及び接続構造体 | |
WO2015105120A1 (ja) | バックコンタクト方式の太陽電池モジュール用導電性粒子、導電材料及び太陽電池モジュール | |
WO2015105119A1 (ja) | バックコンタクト方式の太陽電池モジュール用導電性粒子、導電材料及び太陽電池モジュール | |
JP6431411B2 (ja) | 絶縁性粒子付き導電性粒子、導電材料及び接続構造体 | |
JP2014029856A (ja) | 絶縁性粒子付き導電性粒子、導電材料及び接続構造体 | |
WO2015105121A1 (ja) | バックコンタクト方式の太陽電池モジュールの製造方法 | |
JP2015233129A (ja) | バックコンタクト方式の太陽電池モジュール用の導電ペースト、並びにバックコンタクト方式の太陽電池モジュール及びその製造方法 | |
JP6445911B2 (ja) | バックコンタクト方式の太陽電池モジュールの製造方法 | |
JP2016178303A (ja) | 太陽電池モジュール用導電材料及び太陽電池モジュール | |
JP2016167594A (ja) | バックコンタクト方式の太陽電池モジュール用導電材料及び太陽電池モジュール | |
JP6345075B2 (ja) | 導電性粒子、導電材料及び接続構造体 | |
JP2016157935A (ja) | 太陽電池モジュール用導電材料及び太陽電池モジュール | |
JP6333610B2 (ja) | 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体 | |
JP6333624B2 (ja) | 接続構造体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015502420 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15735357 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167014878 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15735357 Country of ref document: EP Kind code of ref document: A1 |