Nothing Special   »   [go: up one dir, main page]

WO2015186752A1 - 集電体用金属箔、集電体及び集電体用金属箔の製造方法 - Google Patents

集電体用金属箔、集電体及び集電体用金属箔の製造方法 Download PDF

Info

Publication number
WO2015186752A1
WO2015186752A1 PCT/JP2015/066085 JP2015066085W WO2015186752A1 WO 2015186752 A1 WO2015186752 A1 WO 2015186752A1 JP 2015066085 W JP2015066085 W JP 2015066085W WO 2015186752 A1 WO2015186752 A1 WO 2015186752A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal foil
current collector
active material
roughening
concave portion
Prior art date
Application number
PCT/JP2015/066085
Other languages
English (en)
French (fr)
Inventor
公一 芦澤
徹也 本居
敦史 小石川
寧 船戸
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to US15/316,086 priority Critical patent/US10418636B2/en
Priority to CN201580025706.6A priority patent/CN106415903B/zh
Priority to KR1020167035737A priority patent/KR20170018342A/ko
Priority to JP2016525215A priority patent/JP6535662B2/ja
Publication of WO2015186752A1 publication Critical patent/WO2015186752A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D33/00Special measures in connection with working metal foils, e.g. gold foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B3/00Presses characterised by the use of rotary pressing members, e.g. rollers, rings, discs
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/08Deposition of black chromium, e.g. hexavalent chromium, CrVI
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a current collector metal foil, a current collector, and a method for producing a current collector metal foil.
  • Current collectors used for devices such as secondary batteries and capacitors are configured by fixing an electrode active material to the surface of a metal foil.
  • a negative electrode current collector of a lithium ion secondary battery is prepared by applying a slurry in which a negative electrode active material made of carbon powder, a binder, a conductive agent, and the like are mixed and dispersed in a solvent to a metal foil. After forming, the coating layer is dried to remove the solvent. Thereafter, in order to increase the in-layer density of the negative electrode active material, a crimping process is performed as necessary. In this way, a negative electrode current collector having an active material-containing layer on the surface of the metal foil can be produced.
  • the adhesion between the metal foil and the active material in the current collector greatly affects the performance of the device. That is, if the active material falls off from the metal foil, it causes problems such as a decrease in capacity, a decrease in charge / discharge characteristics, or a short circuit between electrodes, causing a decrease in device performance. In addition, when the active material is easily removed from the metal foil, it may be difficult to maintain the performance of the device for a long period of time.
  • Patent Document 1 discloses that at least one surface has an average roughness Ra of 0.3 ⁇ m to 1.5 ⁇ m and a maximum height Ry of 0.5 ⁇ m to 5.0 ⁇ m according to JIS B 0601: 1994.
  • An aluminum foil for a current collector is disclosed.
  • the metal foil produced by the prior art is not yet sufficiently close to the active material, and the current situation is that further improvement is desired.
  • the adhesion between the metal foil and the active material tends to decrease.
  • the present invention has been made in view of the above-described background, and provides a current collector metal foil capable of maintaining good performance over a long period of time, a method for producing the same, and a current collector using the metal foil. It is something to try.
  • One aspect of the present invention is a metal foil for a current collector having a roughened at least one surface, A large number of concave portions having a bottom surface portion and an edge portion surrounding the bottom surface portion and protruding from the bottom surface portion are present on the roughened surface, In the current collector metallic foil, wherein the average L ave of Feret diameter of the concave portion is 0.5 ⁇ m or more 50 ⁇ m or less.
  • Another aspect of the present invention is a current collector having an active material-containing layer on the roughened surface of the current collector metal foil, and is an average of two active materials contained in the active material-containing layer.
  • the current collector has a secondary particle diameter d ave of 0.5 ⁇ m or more and 50 ⁇ m or less.
  • Still another aspect of the present invention is to form a chromium plating film having a large number of projections by plating the roughened surface of at least one of the pair of rolls, and then the above-described chromium plating film Prepare in advance a pair of roughening rolls that flattened the top of the convex portion, By performing a transfer process of transferring the surface shape of the roughening roll by passing one or more passes of the metal foil between the pair of roughening rolls, the bottom surface portion that is depressed from the surroundings and the bottom surface portion are surrounded.
  • a concave portion is formed in a large number on the surface having an edge portion which is raised than the bottom surface, roughening of the metal foil so that the average L ave of Feret diameter of the concave portion is 0.5 ⁇ m or more 50 ⁇ m or less In the manufacturing method of the metal foil for collectors characterized by performing.
  • the current collector metal foil (hereinafter, also referred to as “metal foil” as appropriate) has a concave portion having a bottom surface portion and an edge portion surrounding the bottom surface portion and raised from the bottom surface portion. has large number roughened surface, the average L ave of Feret diameter of the concave portion is 0.5 ⁇ m or more 50 ⁇ m or less. Active material particles having a size comparable to the size of the concave portion are likely to fit in the concave portion having the specific shape and size. In the state where the active material particles are fitted in the concave portions, the region where the edge portions and the active material particles are in contact with each other is easily formed in a linear form, and therefore the active material particles are peeled off from the metal foil. It becomes difficult to do. Therefore, the metal foil can improve the adhesion of the active material and can make it difficult to peel off the active material.
  • the metal foil can reduce the contact resistance with the active material.
  • the metal foil is difficult to peel off the active material and can reduce the contact resistance with the active material. Therefore, the metal foil can maintain a good electrical connection with the active material over a long period of time.
  • the current collector has the active material-containing layer on the roughened surface of the metal foil, and the average secondary particle diameter d ave of the active material contained in the active material-containing layer is It is 0.5 ⁇ m or more and 50 ⁇ m or less. Therefore, the current collector can easily fit the particles of the active material into the concave portion, can suppress the peeling of the active material-containing layer, and can reduce the contact resistance between the active material and the metal foil. it can. Moreover, devices such as secondary batteries and capacitors using the current collector as an electrode can easily reduce the electrode resistance due to the low contact resistance. As a result, the charge / discharge characteristics of the device can be improved, and charge / discharge can be performed at a high rate. In addition, a device using the current collector can maintain high performance over a long period because of the high adhesion described above.
  • the manufacturing method of the said metal foil for collectors can produce the said metal foil by transcribe
  • the manufacturing method can control the surface shape of the metal foil with good reproducibility by using a technique called transfer. Therefore, as long as the surface shape of the roughening roll is managed, the shape and arrangement of the concave portions can be easily uniformed over the entire length of the metal foil. As a result, the metal foil having excellent quality can be easily produced.
  • the process of transferring the surface shape of the roughening roll can be easily incorporated into the conventional metal foil manufacturing process, the metal foil manufacturing method can be simplified and produced. Can be improved.
  • FIG. 2 is a partial cross-sectional view taken along line II-II in FIG. 1.
  • the partial cross section figure which shows an example of the surface of the rolling roll which performed the roughening process in an Example.
  • the partial cross section figure which shows an example of the roll surface in which the chromium plating film
  • the partial cross section figure which shows an example of the roughening roll surface produced by crushing the top part of the chromium plating film
  • FIG. 11 is a partial cross-sectional view taken along the line XI-XI in FIG. 10.
  • Metal foil for current collector As the material of the metal foil, metals conventionally used for current collectors can be employed. For example, as the metal foil used for the positive electrode current collector of a lithium ion secondary battery or a lithium ion capacitor, aluminum, stainless steel, or the like can be used. Moreover, as metal foil used for the negative electrode current collector, copper, copper alloy, stainless steel, nickel, iron, or the like can be used. As the metal foil used for the current collector of the electric double layer capacitor, aluminum, copper, copper alloy, stainless steel, nickel, iron, or the like can be used for any of the positive electrode current collector and the negative electrode current collector.
  • the “aluminum” includes an aluminum alloy.
  • copper alloys include Cu-Sn (copper-tin), Cu-Ag (copper-silver), Cu-Zn (copper-zinc), Cu-Cr (copper-chromium), Cu-Zr.
  • a copper alloy such as (copper-zirconium) can be used.
  • stainless steel SUS304 stainless steel alloy, SUS316 stainless steel alloy, etc. can be used, for example.
  • the metal foil is preferably made of aluminum, copper or a copper alloy. These metals have high corrosion resistance when used for a positive electrode current collector. Further, these metals are suitable because they are not easily embrittled by being doped with lithium ions contained in the electrolyte when used for a negative electrode current collector such as a lithium ion secondary battery. Moreover, since these metals usually have high conductivity, they are suitable for applications in which charging and discharging are performed at a high rate. In addition, since stainless steel has a lower electrical conductivity than aluminum or the like, it is not suitable for applications in which charging / discharging at a high rate is performed. However, a metal foil made of stainless steel can be an excellent current collector in a device that requires laser welding, for example, because it has a manufacturing advantage such that laser welding is possible in the process of manufacturing the device.
  • the metal foil is made of copper or a copper alloy, and is particularly preferably used for the negative electrode.
  • a negative electrode current collector using a metal foil made of copper or a copper alloy has been difficult to improve the adhesion with the active material-containing layer, which has been a factor of deteriorating the life of secondary batteries and capacitors.
  • the said metal foil can improve adhesiveness with an active material content layer as mentioned above, it can maintain the outstanding charging / discharging characteristic over a long period of time. As a result, the lifetime of the secondary battery or capacitor can be improved.
  • the metal foil preferably has a thickness of 5 to 35 ⁇ m.
  • the metal foil has a thickness of 5 ⁇ m or more, cracks or the like are less likely to occur when the concave portion is formed on the surface, and it is easy to contribute to the improvement of the adhesion of the active material.
  • the thickness is set to 35 ⁇ m or less, the volume and weight of the metal foil can be made relatively small, and the device incorporating the current collector can be more easily reduced in size and weight.
  • the metal foil preferably has a thickness of 8 to 18 ⁇ m.
  • the metal foil may be roughened only on one surface, or both surfaces may be roughened.
  • the concave portions present in large numbers on the roughened surface have a bottom surface portion and an edge portion surrounding the bottom surface portion. That is, the concave portion has a crater shape partitioned by a closed curved edge portion. In this way, the active material particles are easy to fit into the concave portion having a crater shape. Since the active material particles fitted in the concave portions are supported by the edge portions existing on the outer edges of the concave portions, the regions where the edge portions and the active material particles are in contact with each other are easily formed in a linear manner. . Therefore, as described above, the adhesion of the active material can be improved and the contact resistance between the active material and the metal foil can be reduced.
  • the average L ave of Feret diameter of the concave portion is 0.5 ⁇ m or more 50 ⁇ m or less.
  • the average L ave of Feret diameter is determined as follows. First, the surface of the metal foil is observed with a microscope at a magnification of 2000 to obtain an image of the surface. Then, in the image, sets the Y-axis orthogonal to the X-axis and the X-axis virtually, for each of the recessed portions present in the image, the length L x and the Y-axis direction of the X-axis direction length The length L y is calculated. Values and values obtained by averaging the values of L y of all L x obtained as described above and the average L ave of Feret diameter.
  • the above processing may be performed using an image analysis device or the like.
  • an image of the surface of the metal foil was obtained with a microscope “VHX-5000” manufactured by Keyence Corporation, and L ave was calculated using an image analysis apparatus attached to the apparatus. Note that the directions of the X axis and the Y axis that are virtually set in the above method are not particularly limited.
  • the area occupied by the concave portion on the roughened surface can be appropriately set according to desired characteristics, the type of active material to be used, and the like. For example, when an active material having an average secondary particle diameter d ave of 0.5 ⁇ m or more and 50 ⁇ m or less is used, the area ratio of the bottom surface portion to the surface of the metal foil is set to 30 to 90%, thereby improving adhesion. The improvement effect and the contact resistance reduction effect can be sufficiently obtained.
  • each concave-shaped part shall be the height from the lowest point of a bottom face part to the highest point of an edge part.
  • the active material particles are likely to come into contact with the bottom surface portion, and as a result, the active material particles are easily lifted from the edge portion. Therefore, when the ratio of the shallow concave portion increases, the active material particles are less likely to fit into the concave portion, and the effect of improving the adhesion and the effect of reducing the contact resistance may be insufficient. From the viewpoint of avoiding such a problem, it is more preferable that 90% or more of the concave portions have a depth of 0.5 ⁇ m or more.
  • the concave portion can have a shape such as a substantially circular shape or a substantially oval shape in a top view. Further, the concave portions may be arranged irregularly or may be arranged regularly in a lattice shape.
  • said substantially circular shape or substantially elliptical shape includes geometrically defined perfect circles and ellipses, and includes shapes distorted to such a degree that these shapes can be recognized as circular or elliptical as a general sense. .
  • the edge portion of the concave portion has a substantially arc shape when viewed from above. That is, it is preferable that the concave portion has a substantially circular or elliptical crater shape, or a shape in which these shapes overlap. In this case, in the state where the active material particles are fitted in the concave portion, the area of the region where the edge portion and the active material particles are in contact with each other tends to be wider. Therefore, the metal foil can further improve the adhesion of the active material and can further reduce the contact resistance.
  • the metal foil can be produced by using a pair of roughening rolls prepared in advance and performing a transfer step of transferring the surface shape of the roughening roll to the metal foil.
  • the pair of roughening rolls are subjected to a roughening treatment on at least one of the rolls, and then a plating treatment is performed on the roughened surface to form a chromium plating film having a large number of projections, and then the chromium plating film It can produce by crushing the top part of the convex part.
  • a roll used for preparation of a roughening roll an embossing roll and a rolling roll can be used, for example.
  • the roughening treatment and the formation of the chromium plating film may be performed on only one of the pair of rolls or on both rolls.
  • the surface roughening treatment of the roll can be performed by a technique such as sand blasting, liquid honing, shot peening, electric discharge machining, laser dull machining, and fine powder spraying.
  • a technique such as sand blasting, liquid honing, shot peening, electric discharge machining, laser dull machining, and fine powder spraying.
  • the following various mechanical methods, chemical methods, and physical methods can be employed.
  • the mechanical method include a method in which the foil surface is rubbed with abrasive paper such as emery paper, or the foil surface is roughened using blasting such as sand blasting.
  • Examples of the chemical method include a method of etching with an acid or the like.
  • Examples of the physical method include a method of roughening the surface by colliding ions such as sputtering. These methods may be used alone or in combination of two or more.
  • the surface of the roll is subjected to chrome plating to form a chrome plating film.
  • the chromium plating treatment can be performed by a conventionally known method and conditions such as an electroplating method.
  • the chromium plating film formed on the surface of the roll has a large number of convex portions protruding in a substantially spherical shape.
  • the shape corresponding to the concave part which exhibits a crater shape can be formed.
  • a method of crushing the top portion for example, there is a method of rolling a metal foil using the roll. That is, since the top is crushed by a load when rolling the metal foil, a flat surface can be formed on the top.
  • the material of the metal foil used for the process which crushes a top part is not specifically limited. As described above, a pair of the roughening rolls can be obtained.
  • the shape of the convex portion is that of the metal foil. Transferred to the surface.
  • a concave portion can be formed on the surface of the metal foil and roughened.
  • the number of passes through which the metal foil passes between the pair of roughening rolls can be appropriately set according to the characteristics of the metal foil to be obtained. That is, by increasing the number of times the metal foil is passed between the pair of roughening rolls, more concave portions can be formed.
  • the current collector has an active material-containing layer containing an active material on the roughened surface of the metal foil.
  • the average secondary particle diameter d ave of the active material is preferably 0.5 ⁇ m or more and 50 ⁇ m or less.
  • the active material particles have a particle size equivalent to the size of the concave portion or a particle size slightly larger than the concave portion, the active material particles are easily fitted into the concave portion.
  • the active material-containing layer contains a large number of active material particles having a particle size equivalent to the size of the concave portion, thereby improving adhesion.
  • the average secondary particle diameter dave of an active material be the value of the particle diameter (D50) from which the cumulative frequency becomes 50% by volume percentage in the particle size distribution acquired using the laser diffraction type particle size distribution measuring apparatus.
  • the active material-containing layer contains at least an active material and a binder, and a conductive aid may be used as necessary.
  • a conventionally known active material such as a simple substance such as silicon, tin, or germanium, an oxide or alloy thereof, a carbon material, lithium titanate, or the like.
  • the binder for example, polyvinylidene fluoride (PVDF), a water-soluble acrylic binder, styrene butadiene rubber, or the like can be used.
  • PVDF polyvinylidene fluoride
  • a conductive support agent carbon black, artificial graphite, ketjen black, acetylene black, carbon fiber etc. can be used, for example.
  • An active material-containing layer can be formed by dispersing these raw materials in a solvent such as N-methyl-2-pyrrolidone (NMP) or water, coating the surface of the metal foil, and then drying by heating. it can.
  • a thickener such as carboxymethyl cellulose or methyl cellulose may be used in combination.
  • An active material such as 4 can be used.
  • the binder, the conductive additive, the solvent, and the thickener the same materials as those for the negative electrode described above can be used.
  • the current collector can be used for devices such as a sodium secondary battery, an electric double layer capacitor, and a lithium ion capacitor in addition to the above-described lithium ion secondary battery.
  • a known active material-containing layer corresponding to the device may be provided on the metal foil.
  • the current collector metal foil 1 includes a concave portion 4 (see FIGS. 1 and 2) having a bottom surface portion 2 that is recessed from the periphery and an edge portion 3 that surrounds the bottom surface portion 2 and is raised from the bottom surface portion 2. There are many on both surfaces.
  • the current collector metal foil 1 performs a transfer step of transferring the surface shape of the roughening roll 6 by passing the metal foil one or more passes between a pair of roughening rolls 6 (see FIG. 5) prepared in advance. This was produced. Then, the collector was produced by forming an active material content layer on both surfaces of metal foil 1 for current collectors. Below, the metal foil 1 for electrical power collectors and the more detailed structure and manufacturing method of an electrical power collector are demonstrated.
  • Example 1 A pair of roughening rolls 6 was prepared in advance by the following procedure. First, a pair of rolling rolls 60 were subjected to shot dull processing using projected grid particles having a particle diameter of 40 ⁇ m, and the surfaces 600 of both rolling rolls 60 were roughened as shown in FIG. Next, the surface 600 of the rolling roll 60 was subjected to a chromium plating process to form a chromium plating film 61. The chromium plating treatment was carried out in a Sargent bath containing 250 g / L of chromic anhydride and 2.5 g / L of sulfuric acid under the conditions of a temperature of 50 ° C. and a current density of 30 A / dm 2 .
  • the film thickness of the chromium plating film 61 was 5 ⁇ m. As shown in FIG. 4, the chromium plating film 61 has a large number of substantially spherical convex portions 610 by preferentially adhering to the pointed portion of the surface 600.
  • the surface shape of the roughening roll 6 was transferred between the obtained pair of roughening rolls 6 through a rolled copper foil made of tough pitch copper and having a thickness of 10 ⁇ m.
  • a metal foil E1 having a large number of concave portions 4 on both surfaces of the rolled copper foil was obtained.
  • the average L ave of Feret diameter of the concave portion 4 in the metal foil E1 is 6.3 [mu] m, the depth of the concave portion 4 was 1.9 ⁇ m in the deepest ones.
  • the depth of each concave portion 4 and the maximum depth of the concave portion 4 were calculated as follows. First, the concave portion 4 was observed at a magnification of 500 times with a laser microscope (OLYMPUS, “OLS3000”) to obtain a cross-sectional profile. Next, the lowest point in the bottom surface portion 2 and the highest point in the edge portion 3 were determined from the obtained cross-sectional profile, and the difference was defined as the depth of each concave portion 4. Moreover, the maximum value of the depth in the ten concave portions 4 selected at random was set as the maximum depth of the concave portions 4.
  • Example 2 A pair of roughening rolls 6 was prepared in the same manner as in Example 1 except that the rolling load in the step of crushing the particle size of the projected grid particles and the top of the chromium plating film 61 was changed to the conditions shown in Table 1. Using the obtained roughening roll 6, the surface shape was transferred to a rolled copper foil having a thickness of 10 ⁇ m under the same conditions as in Example 1 to obtain a metal foil E2.
  • the average L ave of Feret diameter of the concave portion 4 in the metal foil E2 is 10.1, the depth of the concave portion 4 was 2.0 ⁇ m in the deepest ones.
  • Example 3 A pair of roughening rolls 6 was prepared in the same manner as in Example 1 except that the rolling load in the step of crushing the particle size of the projected grid particles and the top of the chromium plating film 61 was changed to the conditions shown in Table 1. Using the obtained roughening roll 6, the surface shape was transferred to a rolled copper foil having a thickness of 10 ⁇ m under the same conditions as in Example 1 to obtain a metal foil E3.
  • FIG. 6 an SEM (scanning electron microscope) image of the roughened surface of the metal foil E3 is shown in FIG.
  • the roughened surface of the metal foil E3 is formed with a number of concave portions 4 having a substantially circular shape, a substantially elliptical shape, or a shape in which these are overlapped.
  • the average L ave of Feret diameter of the concave portion 4 in the metal foil E3 is 22.2Myuemu, the depth of the concave portion 4 was 2.1 ⁇ m in the deepest ones.
  • Example 4 A pair of roughening rolls 6 was prepared in the same manner as in Example 1 except that the rolling load in the step of crushing the particle size of the projected grid particles and the top of the chromium plating film 61 was changed to the conditions shown in Table 1. Using the obtained roughening roll 6, the surface shape was transferred to a rolled copper foil having a thickness of 10 ⁇ m in the same manner as in Example 1 to obtain a metal foil E4. The average L ave of Feret diameter of the concave portion 4 in the metal foil E4 is 2.4 [mu] m, the depth of the concave portion 4 was 1.7 ⁇ m in the deepest ones.
  • Example 5 A pair of roughening rolls 6 was prepared in the same manner as in Example 1 except that the rolling load in the step of crushing the particle size of the projected grid particles and the top of the chromium plating film 61 was changed to the conditions shown in Table 1. Using the roughened roll 6 thus obtained, the surface shape was transferred to a rolled copper foil having a thickness of 10 ⁇ m in the same manner as in Example 1 to obtain a metal foil E5.
  • the average L ave of Feret diameter of the concave portion 4 in the metal foil E5 is 43.0Myuemu, the depth of the concave portion 4 was 2.2 ⁇ m in the deepest ones.
  • Example 6 A pair of roughening rolls 6 was prepared in the same manner as in Example 1 except that the rolling load in the step of crushing the particle size of the projected grid particles and the top of the chromium plating film 61 was changed to the conditions shown in Table 1. Using the obtained roughening roll 6, the surface shape was transferred to a rolled copper foil having a thickness of 10 ⁇ m in the same manner as in Example 1 to obtain a metal foil E6.
  • the average L ave of Feret diameter of the concave portion 4 in the metal foil E6 is 6.3 [mu] m, the depth of the concave portion 4 was 2.8 ⁇ m in the deepest ones.
  • Comparative Example 1 As the metal foil C1 of Comparative Example 1, a rolled copper foil having a thickness of 10 ⁇ m made of tough pitch copper, which does not transfer the surface shape of the roughening roll 6, was used. On the surface of the metal foil C1 to which the surface shape of the roughening roll 6 is not transferred, as shown in the SEM image shown in FIG. There is no concave portion 4 presenting. The depth of the oil pit was 1.2 ⁇ m at the deepest.
  • Example 2 A pair of roughening rolls 6 was prepared in the same manner as in Example 1 except that the rolling load in the step of crushing the particle size of the projected grid particles and the top of the chromium plating film 61 was changed to the conditions shown in Table 1. Using the obtained roughening roll 6, the surface shape was transferred to a rolled copper foil having a thickness of 10 ⁇ m in the same manner as in Example 1 to obtain a metal foil C2.
  • the average L ave of Feret diameter of the concave portion 4 in the metal foil C2 is 0.2 [mu] m, the depth of the concave portion 4 was 1.6 ⁇ m in the deepest ones.
  • Example 3 A pair of roughening rolls 6 was prepared in the same manner as in Example 1 except that the rolling load in the step of crushing the particle size of the projected grid particles and the top of the chromium plating film 61 was changed to the conditions shown in Table 1. Using the obtained roughening roll 6, the surface shape was transferred to a rolled copper foil having a thickness of 10 ⁇ m in the same manner as in Example 1 to obtain a metal foil C3.
  • the average L ave of Feret diameter of the concave portion 4 in the metal foil C3 is 58.2Myuemu, the depth of the concave portion 4 was 2.2 ⁇ m in the deepest ones.
  • Example 7 A pair of roughening rolls 6 was prepared in advance by the following procedure. First, a pair of rolling rolls 60 were subjected to shot dull processing using projected grid particles having a particle diameter of 40 ⁇ m, and the surfaces 600 of both rolling rolls 60 were roughened. Next, a chrome plating process was performed on the surface 600 of the rolling roll 60 using the same conditions as in Example 1 to form a chrome plating film 61. Thereafter, the pair of rolling rolls 60 on which the chrome plating film 61 is formed are used as work rolls, and an electrolytic copper foil having a thickness of 10 ⁇ m configured as a double-sided glossy foil for batteries is rolled over a length of 300 m under a rolling load of 1300 MPa. The process which crushes the top part of the convex part 610 in the chromium plating film 61 was performed. The roughening roll 6 was produced by the above.
  • the surface shape of the roughening roll 6 was transferred between the obtained pair of roughening rolls 6 through an electrolytic copper foil having a thickness of 10 ⁇ m configured as a double-sided glossy foil for batteries.
  • a metal foil E7 having a large number of concave portions 4 on both surfaces of the electrolytic copper foil was obtained.
  • the average L ave of Feret diameter of the concave portion 4 in the metal foil E7 is 6.5 [mu] m, the depth of the concave portion 4 was 1.9 ⁇ m in the deepest ones.
  • Comparative Example 4 As the metal foil C4 of Comparative Example 4, an electrolytic copper foil having a thickness of 10 ⁇ m configured as a double-sided glossy foil for a battery that does not transfer the surface shape of the roughening roll 6 was used. A large number of oil pits exist on the surface of the metal foil C4, and the depth thereof is 1.3 ⁇ m at the deepest. In addition, the recessed part 4 which exhibits a crater shape does not exist in the surface of metal foil C4.
  • Example 8 A pair of roughening rolls 6 was prepared in advance by the following procedure. First, the pair of rolling rolls 60 were subjected to shot dull processing using projected grid particles having a particle diameter of 57 ⁇ m, and the surfaces 600 of both the rolling rolls 60 were roughened. Next, a chrome plating process was performed on the surface 600 of the rolling roll 60 using the same conditions as in Example 1 to form a chrome plating film 61. Thereafter, a SUS (stainless steel) foil made of SUS304 stainless steel alloy (hereinafter abbreviated as “SUS304 alloy”) as a pair of rolling rolls 60 on which a chromium plating film 61 is formed is used as a rolling load. Rolling was performed over a length of 300 m under the condition of 1300 MPa, and the top of the convex portion 610 in the chromium plating film 61 was crushed. The roughening roll 6 was produced by the above.
  • the surface shape of the roughening roll 6 was transferred between the obtained pair of roughening rolls 6 through a 10 ⁇ m thick SUS foil made of SUS304 alloy.
  • a metal foil E8 having a large number of concave portions 4 on both surfaces of the SUS foil was obtained.
  • the average L ave of Feret diameter of the concave portion 4 in the metal foil E8 is 8.7 .mu.m, the depth of the concave portion 4 was 1.8 ⁇ m in the deepest ones.
  • Comparative Example 5 As the metal foil C5 of Comparative Example 5, a 10 ⁇ m thick SUS foil made of SUS304 alloy that does not transfer the surface shape of the roughening roll 6 was used. A large number of oil pits exist on the surface of the metal foil C5, and the depth thereof is 1.3 ⁇ m at the deepest. In addition, the recessed part 4 which exhibits a crater shape does not exist in the surface of metal foil C5.
  • Example 9 A pair of roughening rolls 6 was prepared in advance by the following procedure. First, a pair of rolling rolls 60 were subjected to shot dull processing using projected grid particles having a particle diameter of 40 ⁇ m, and the surfaces 600 of both rolling rolls 60 were roughened. Next, a chrome plating process was performed on the surface 600 of the rolling roll 60 using the same conditions as in Example 1 to form a chrome plating film 61.
  • a 15 ⁇ m thick Al (aluminum) foil made of JIS A 1235 alloy is rolled over a length of 300 m under the condition of a rolling load of 1300 MPa, The process which crushes the top part of the convex part 610 in the chromium plating film 61 was performed.
  • the roughening roll 6 was produced by the above.
  • the surface shape of the roughening roll 6 was transferred between the obtained pair of roughening rolls 6 through a 15 ⁇ m thick Al foil made of JIS A 1235 alloy.
  • a metal foil E9 having a large number of concave portions 4 on both surfaces of the Al foil was obtained.
  • the roughened surface of the metal foil E9 shown in FIG. 8 has a large number of concave parts having a substantially circular shape, a substantially elliptical shape, or a shape in which these are connected in a top view, like the metal foil E3 (FIG. 6). 4 is formed. Further, it can be understood that in the region 8 where the concave portion 4 is not formed, there are rolling marks, oil pits and the like at the time of foil rolling, and the shape before transfer is maintained.
  • the average L ave of Feret diameter of the concave portion 4 in the metal foil E9 is 5.2 .mu.m, the depth of the concave portion 4 was 1.8 ⁇ m in the deepest ones.
  • Example 10 A pair of roughening rolls 6 were produced in the same manner as in Example 9 except that the rolling load in the step of crushing the particle size of the projected grid particles and the top of the chromium plating film 61 was changed to the conditions shown in Table 3. Using the obtained roughening roll 6, the surface shape was transferred to an Al foil having a thickness of 15 ⁇ m under the same conditions as in Example 9 to obtain a metal foil E10.
  • the average L ave of Feret diameter of the concave portion 4 in the metal foil E10 is 12.4, the depth of the concave portion 4 was 2.1 ⁇ m in the deepest ones.
  • Example 11 A pair of roughening rolls 6 were produced in the same manner as in Example 9 except that the rolling load in the step of crushing the particle size of the projected grid particles and the top of the chromium plating film 61 was changed to the conditions shown in Table 3. Using the obtained roughening roll 6, the surface shape was transferred to an Al foil having a thickness of 15 ⁇ m under the same conditions as in Example 9 to obtain a metal foil E11.
  • the average L ave of Feret diameter of the concave portion 4 in the metal foil E11 is 24.1Myuemu, the depth of the concave portion 4 was 2.1 ⁇ m in the deepest ones.
  • Example 12 A pair of roughening rolls 6 were produced in the same manner as in Example 9 except that the rolling load in the step of crushing the particle size of the projected grid particles and the top of the chromium plating film 61 was changed to the conditions shown in Table 3. Using the obtained roughening roll 6, the surface shape was transferred to an Al foil having a thickness of 15 ⁇ m under the same conditions as in Example 9 to obtain a metal foil E12. The average ferret diameter of the concave portion 4 in the metal foil E12 was 2.3 ⁇ m, and the depth of the concave portion 4 was 1.6 ⁇ m at the deepest.
  • Example 13 A pair of roughening rolls 6 were produced in the same manner as in Example 9 except that the rolling load in the step of crushing the particle size of the projected grid particles and the top of the chromium plating film 61 was changed to the conditions shown in Table 3. Using the obtained roughening roll 6, the surface shape was transferred to an Al foil having a thickness of 15 ⁇ m under the same conditions as in Example 9 to obtain a metal foil E13.
  • the average L ave of Feret diameter of the concave portion 4 in the metal foil E13 is 48.1Myuemu, the depth of the concave portion 4 was 2.2 ⁇ m in the deepest ones.
  • Comparative Example 6 As the metal foil C6 of Comparative Example 6, an Al foil having a thickness of 15 ⁇ m that did not transfer the surface shape of the roughening roll 6 was used. On the surface of the metal foil C6 on which the surface shape of the roughening roll 6 is not transferred, as shown in the SEM image shown in FIG. 9, there are rolling marks and a large number of oil pits during foil rolling. There is no concave portion 4 presenting. The depth of the oil pit was 1.2 ⁇ m at the deepest.
  • Example 7 A pair of roughening rolls 6 were produced in the same manner as in Example 9 except that the rolling load in the step of crushing the particle size of the projected grid particles and the top of the chromium plating film 61 was changed to the conditions shown in Table 3. Using the obtained roughening roll 6, the surface shape was transferred to an Al foil having a thickness of 15 ⁇ m under the same conditions as in Example 9 to obtain a metal foil C7.
  • the average L ave of Feret diameter of the concave portion 4 in the metal foil C7 are 0.3 [mu] m, the depth of the concave portion 4 was 1.6 ⁇ m in the deepest ones.
  • Example 8 A pair of roughening rolls 6 were produced in the same manner as in Example 9 except that the rolling load in the step of crushing the particle size of the projected grid particles and the top of the chromium plating film 61 was changed to the conditions shown in Table 3. Using the obtained roughening roll 6, the surface shape was transferred to an Al foil having a thickness of 15 ⁇ m under the same conditions as in Example 9 to obtain a current collector metal foil C8.
  • the average L ave of Feret diameter of the concave portion 4 in the metal foil C8 is 61.4Myuemu, the depth of the concave portion 4 was 2.1 ⁇ m in the deepest ones.
  • Example 14 A pair of roughening rolls 6 was prepared in advance by the following procedure. First, the pair of rolling rolls 60 were subjected to shot dull processing using projected grid particles having a particle diameter of 57 ⁇ m, and the surfaces 600 of both the rolling rolls 60 were roughened. Next, a chrome plating process was performed on the surface 600 of the rolling roll 60 using the same conditions as in Example 1 to form a chrome plating film 61. Thereafter, a pair of rolling rolls 60 on which the chromium plating film 61 is formed are used as work rolls, and a SUS (stainless steel) foil made of SUS304 alloy is rolled over a length of 300 m under a rolling load of 1300 MPa. The process which crushes the top part of the convex part 610 in the plating film 61 was performed. The roughening roll 6 was produced by the above.
  • the surface shape of the roughening roll 6 was transferred between the obtained pair of roughening rolls 6 through a 15 ⁇ m thick SUS foil made of SUS304 alloy.
  • a metal foil E14 having a large number of concave portions 4 on both surfaces of the SUS foil was obtained.
  • the average L ave of Feret diameter of the concave portion 4 in the metal foil E14 is 8.5 .mu.m, the depth of the concave portion 4 was 1.8 ⁇ m in the deepest ones.
  • Comparative Example 9 As the metal foil C9 of Comparative Example 9, a 15 ⁇ m thick SUS foil made of a SUS304 alloy that does not transfer the surface shape of the roughening roll 6 was used. Many oil pits existed on the surface of the metal foil C9, and the depth was 1.3 ⁇ m at the deepest. In addition, the recessed part 4 which exhibits a crater shape does not exist in the surface of metal foil C9.
  • the composition of the slurry Na, Nb and Nc was as follows.
  • the average secondary particle diameter of the negative electrode active material is a particle having a cumulative frequency of 50% in a particle size distribution obtained using a laser diffraction particle size distribution analyzer (“SALD-3100” manufactured by Shimadzu Corporation). This is the value of the diameter (D50).
  • Negative electrode active material slurry
  • Negative electrode active material Artificial graphite powder (average secondary particle size 7.2 ⁇ m) 97 parts by mass
  • Binder 1.5 parts by mass of styrene butadiene rubber
  • Thickener 1.5 parts by mass of carboxymethyl cellulose
  • Solvent water
  • Binder 1.5 parts by mass of styrene butadiene rubber
  • Thickener 1.5 parts by mass of carboxymethyl cellulose
  • Solvent water
  • Negative electrode active material slurry Nc Negative electrode active material: Artificial graphite powder (average secondary particle size 25.5 ⁇ m) 97 parts by mass Binder: 1.5 parts by mass of styrene butadiene rubber Thickener: 1.5 parts by mass of carboxymethyl cellulose Solvent: water
  • Test cell A lithium metal having an active area of 2.8 cm 2 (1.4 cm ⁇ 2.0 cm) was used as the positive electrode, and a specimen having an active area of 2.8 cm 2 (1.4 cm ⁇ 2.0 cm) was used as the negative electrode.
  • a beaker cell was prepared.
  • the electrolytic solution a solution in which LiPF 6 was dissolved in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 so as to have a concentration of 1 mol / dm 3 was used.
  • two porous polypropylene sheets having a thickness of 480 ⁇ m were stacked as a separator between the positive electrode and the negative electrode.
  • a lithium metal foil having a thickness of 100 ⁇ m was disposed on the edge between the two polypropylene sheets that does not face the positive electrode and the negative electrode. This lithium metal foil functions as a reference electrode for measuring the polarization state of the negative electrode and the positive electrode.
  • the capacity retention rate was calculated by dividing the discharge capacity at the 100th cycle obtained from the above cycle test by the discharge capacity at the first cycle. Further, after the cycle test was completed, the test cell was disassembled, the test body (negative electrode current collector) was taken out, and the adhesion state of the active material-containing layer was visually observed. These results are shown in Table 2.
  • capacitance maintenance factor shown in Table 2 is the value computed using the discharge capacity per mass of the active material content layer of a negative electrode.
  • Adhesion state of active material-containing layer mean the following states.
  • a + Active material containing layer is attached to the metal foil and no peeling is observed
  • C Peeling of the active material-containing layer was observed, Active material containing layer less than half the initial amount is attached to the specimen
  • the equilibrium component and the ohmic component were separated by the current pause method.
  • Equilibrium components include electrode reaction resistance, diffusion resistance, and separator ion diffusion, which cannot be separated, but can be interpreted as factors related to the electrode reaction rate.
  • the ohmic component indicates a resistance related to electron conduction or ionic conduction, such as a resistance of a material or an electrolytic solution, or a contact resistance of each interface. Record the discharge time required from the start of discharge until 1/10 of the cell capacity is discharged in the second charge / discharge cycle, and measure the electrode resistance by the current pause method using the discharge time in the 100th discharge. The equilibrium component and the ohmic component were calculated based on the obtained measurement curve. The results are shown in Table 2.
  • the current suspension method was performed in accordance with the description of “Practical evaluation technology of lithium ion battery / capacitor” (Shizumi Yada, Technical Information Association (2006)).
  • the compositions of the slurry Pa, Pb and Pc were as follows.
  • the average secondary particle size of the positive electrode active material is the cumulative frequency in the particle size distribution obtained using a laser diffraction particle size distribution analyzer (“SALD-3100” manufactured by Shimadzu Corporation) in the same manner as the negative electrode active material.
  • the particle diameter (D50) is 50% as a percentage.
  • Positive electrode active material lithium cobaltate powder (average secondary particle size 7.0 ⁇ m) 90 parts by mass
  • Binder PVDF (polyvinylidene fluoride) 5 parts by mass
  • Conductive aid acetylene black 5 parts by mass
  • Solvent NMP
  • Positive electrode active material lithium cobaltate powder (average secondary particle size 12.5 ⁇ m) 97 parts by mass
  • Binder PVDF (polyvinylidene fluoride) 5 parts by mass
  • Conductive aid acetylene black 5 parts by mass
  • Solvent NMP
  • Positive electrode active material lithium cobaltate powder (average secondary particle size 26.3 ⁇ m) 97 parts by mass
  • Binder PVDF (polyvinylidene fluoride) 5 parts by mass
  • Conductive aid acetylene black 5 parts by mass
  • Solvent NMP
  • any one of the slurry Pa, Pb, or Pc is applied to one side of each metal foil, and dried at a temperature of 100 ° C. for 10 minutes to form an active material-containing layer, and specimens 41 to 70 shown in Table 4 are formed. Was made.
  • Test cell A specimen having an active area of 2.8 cm 2 (1.4 cm ⁇ 2.0 cm) was used as the positive electrode, and lithium metal having an active area of 2.8 cm 2 (1.4 cm ⁇ 2.0 cm) was used as the negative electrode. A beaker cell was prepared. Others are the same as the test cell used for evaluation of the negative electrode current collector.
  • the capacity retention rate was calculated by dividing the discharge capacity at the 100th cycle obtained from the above cycle test by the discharge capacity at the first cycle. Moreover, after the cycle test was completed, the test cell was disassembled, the test body (positive electrode current collector) was taken out, and the adhesion state of the active material-containing layer was visually observed. These results are shown in Table 4.
  • the negative electrode current collector average L ave of Feret diameter of the concave portion 4 is manufactured by using a metal foil E1-E8 is 0.5 ⁇ m or more 50 ⁇ m or less (specimens 1 ⁇ No. 24) showed a high capacity retention rate with almost no decrease in capacity even after repeated charge / discharge cycles.
  • the specimens 1 to 24 showed excellent adhesion with almost no peeling of the active material-containing layer after completion of the cycle test.
  • the adhesion was improved by the active material particles 7 being fitted into the concave portions 4. That is, in the negative electrode current collector using the metal foils E1 to E8, since the particle diameters of the concave portion 4 and the active material particles 7 are substantially equal, the active material particles 7 are concave portions as shown in FIGS. 4 is easy to fit.
  • the active material particles 7 fitted in the concave portions 4 are considered to have high adhesion because the region A that contacts the edge portion 3 is continuously formed in a linear shape.
  • Negative electrode current collector using a metal foil E6 (Specimens 16-18), because L ave of the recessed portion 4 is in the range specified above, a high capacity retention rate, and good adhesion of the active material-containing layer It showed low contact resistance.
  • the metal foil E6 since the maximum depth of the concave portion 4 is deeper than the metal foils E1 to E5 made of the same material (rolled copper foil), the elongation is reduced, and troubles such as foil breakage occur in the manufacturing process. did. From the viewpoint of avoiding such a problem, when the metal foil 1 is made of copper or a copper alloy, it is more preferable that the maximum depth of the concave portion 4 is 2.5 ⁇ m or less.
  • the metal foil E8 has the same degree of elongation as the metal foil E6, but has a high strength because it is a SUS foil. Therefore, troubles such as foil breakage did not occur in the metal foil E8.
  • the negative electrode current collector (test bodies 25 to 39) using the metal foils C1 to C5 has a significantly reduced capacity due to repeated charge / discharge cycles, exhibits a low capacity retention rate, and has an active material after completion of the cycle test. Peeling of the containing layer was observed.
  • the positive electrode current collector produced using the metal foils E9 to E14 and the metal foils C6 to C9 has a capacity retention ratio and an adhesion state of the active material containing layer after the cycle test. There was no significant difference. This indicates that the Al foil and the SUS foil have high adhesiveness with the active material-containing layer, and thus no difference due to the presence or absence of the concave portion 4 was observed.
  • the metal foil E9 ⁇ E13 having a L ave of the specified range the ohmic component is smaller than metal foil C6 ⁇ C8 with L ave outside the above specified range. This is considered to be because the difference in contact area between the metal foil and the active material particles 7 appears as a difference in contact resistance (ohmic component) because the conductivity of the Al foil is lower than that of the copper foil. Since the positive electrode current collector using the metal foils E9 to E13 has a low contact resistance, it is suitable for applications in which a high rate discharge is performed at a high charge / discharge rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Metal Rolling (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 集電体用金属箔1は、少なくとも一方の表面が粗面化されている。粗面化された表面には、底面部2と、底面部2を取り囲み、底面部2よりも隆起したエッジ部3とを有する凹状部4が多数存在している。凹状部4のフェレー径の平均Laveは0.5μm以上50μm以下である。集電体用金属箔1は、リチウムイオン二次電池、ナトリウム二次電池、電気二重層キャパシタまたはリチウムイオンキャパシタ用の電極集電体として好適である。

Description

集電体用金属箔、集電体及び集電体用金属箔の製造方法
 本発明は、集電体用金属箔、集電体及び集電体用金属箔の製造方法に関する。
 二次電池やキャパシタ等のデバイスに用いられる集電体は、電極活物質を金属箔の表面に固定することにより構成されている。
 例えば、リチウムイオン二次電池の負極集電体は、炭素粉末からなる負極活物質、結着剤及び導電剤等を溶媒に混合して分散させたスラリーを金属箔に塗布して塗工層を形成した後、塗工層を乾燥させて溶媒を除去する。その後、負極活物質の層内密度を増大させるために、必要に応じて圧着工程を行う。このようにして、金属箔の表面に活物質含有層を有する負極集電体を作製することができる。
 集電体における金属箔と活物質との密着性は、デバイスの性能に大きく影響する。即ち、活物質が金属箔から脱落すると、容量の低下、充放電特性の低下あるいは電極間の短絡などの問題を招き、デバイスの性能を低下させる原因となる。また、活物質が金属箔から脱落し易い場合には、デバイスの性能を長期間に亘って維持することが困難となるおそれがある。
 金属箔と活物質との密着性を改善する方法として、金属箔の表面を粗面化する方法が知られている。例えば、特許文献1には、少なくとも一方の表面の粗さとしてJIS B 0601:1994による平均粗さRaが0.3μm以上1.5μm以下で最大高さRyが0.5μm以上5.0μm以下である、集電体用アルミニウム箔が開示されている。
特開平11-162470号公報
 しかしながら、従来技術により製造される金属箔は、活物質との密着性が未だ十分ではなく、更なる改良が望まれているのが現状である。とりわけ、粉状の活物質を用いる場合には、金属箔と活物質との密着性が低下しやすい。
 本発明は、上記の背景に鑑みてなされたものであり、長期間に亘って良好な性能を維持できる集電体用金属箔及びその製造方法、並びに上記金属箔を用いた集電体を提供しようとするものである。
 本発明の一態様は、少なくとも一方の表面が粗面化された集電体用金属箔であって、
 底面部と、該底面部を取り囲み、該底面部よりも隆起したエッジ部とを有する凹状部が上記粗面化された表面に多数存在しており、
 上記凹状部のフェレー径の平均Laveが0.5μm以上50μm以下であることを特徴とする集電体用金属箔にある。
 本発明の他の態様は、上記集電体用金属箔の粗面化された表面上に活物質含有層を有する集電体であって、上記活物質含有層に含まれる活物質の平均二次粒子径daveが0.5μm以上50μm以下であることを特徴とする集電体にある。
 本発明の更に他の態様は、一対のロールにおける少なくとも一方のロールの粗面化表面にめっき処理を施すことにより多数の凸部を有するクロムめっき膜を形成し、その後、該クロムめっき膜における上記凸部の頂部を潰して平坦面を形成した一対の粗面化ロールを予め準備し、
 一対の上記粗面化ロールの間に金属箔を1パス以上通して上記粗面化ロールの表面形状を転写する転写工程を行うことにより、周囲よりも陥没した底面部と、該底面部を取り囲み、該底面部よりも隆起したエッジ部とを有する凹状部を表面に多数形成し、上記凹状部のフェレー径の平均Laveが0.5μm以上50μm以下となるように上記金属箔の粗面化を行うことを特徴とする集電体用金属箔の製造方法にある。
 上記集電体用金属箔(以下、適宜「金属箔」ということがある。)は、底面部と、該底面部を取り囲み、該底面部よりも隆起したエッジ部とを有する凹状部を上記粗面化された表面に多数有しており、上記凹状部のフェレー径の平均Laveが0.5μm以上50μm以下である。上記特定の形状及び寸法を有する上記凹状部には、上記凹状部の寸法と同程度の寸法を有する活物質の粒子が嵌まりやすい。そして、上記凹状部に活物質粒子が嵌った状態においては、上記エッジ部と活物質粒子とが当接する領域が線状に連続して形成されやすくなるため、活物質粒子が上記金属箔から剥離しにくくなる。それ故、上記金属箔は、活物質の密着性を向上させることができ、活物質を剥離しにくくすることができる。
 また、上記凹状部に活物質粒子が嵌った状態においては、上記エッジ部と活物質粒子とが当接する領域の面積が従来の金属箔に比べて広い。それ故、上記金属箔は、活物質との間の接触抵抗を低減することができる。
 以上のように、上記金属箔は、活物質が剥離しにくく、かつ、活物質との間の接触抵抗を低減することができる。それ故、上記金属箔は、活物質との間の良好な電気的接続を長期間に亘って維持することができる。
 また、上記集電体は、上記金属箔の粗面化された表面上に上記活物質含有層を有しており、上記活物質含有層に含まれる活物質の平均二次粒子径daveが0.5μm以上50μm以下である。そのため、上記集電体は、上記凹状部に上記活物質の粒子が嵌り易く、上記活物質含有層の剥離を抑制できると共に、活物質と上記金属箔との間の接触抵抗を低減することができる。また、上記集電体を電極として用いた二次電池やキャパシタ等のデバイスは、上記の低い接触抵抗に由来して電極抵抗を容易に低減することができる。その結果、デバイスの充放電特性を向上させ、高率での充放電を行うことができる。また、上記集電体を用いたデバイスは、上述した高い密着性のため、長期間に亘って高い性能を維持することが可能である。
 また、上記集電体用金属箔の製造方法は、一対の上記粗面化ロールの表面形状を転写することにより、上記金属箔を作製することができる。上記製造方法は、転写という技法を用いることにより、上記金属箔の表面形状を再現性よく制御することができる。そのため、上記粗面化ロールの表面形状を管理さえすれば、金属箔の全長において上記凹状部の形態及び配置を容易に均一化させることができる。その結果、優れた品質を有する上記金属箔を容易に作製することができる。また、上記粗面化ロールの表面形状を転写する工程は、従来の金属箔の製造工程に容易に組み込むことが可能であるため、上記金属箔の製造方法を簡略化することができると共に、生産性を向上させることができる。
実施例における、金属箔の凹部に活物質粒子が嵌まった状態の一例を示す上面図。 図1のII-II線一部矢視断面図。 実施例における、粗面化処理を施した圧延ロール表面の一例を示す一部断面図。 実施例における、粗面化処理の後、クロムめっき膜を形成した圧延ロール表面の一例を示す一部断面図。 実施例における、クロムめっき膜の頂部を潰すことにより作製された粗面化ロール表面の一例を示す一部断面図。 実施例3における、凹状部を有する金属箔E3の表面のSEM像。 比較例1における、凹状部を有さない金属箔C1の表面のSEM像。 実施例9における、凹状部を有する金属箔E9の表面のSEM像。 比較例6における、凹状部を有さない金属箔C6の表面のSEM像。 実施例における、クレーター状の凹部を有さない金属箔に活物質粒子が付着した状態の一例を示す上面図。 図10のXI-XI線一部矢視断面図。
[集電体用金属箔]
 上記金属箔の材質としては、従来集電体に用いられている金属を採用することができる。例えば、リチウムイオン二次電池またはリチウムイオンキャパシタの正極集電体に用いる金属箔としては、アルミニウムまたはステンレス鋼等を用いることができる。また、負極集電体に用いる金属箔としては、銅、銅合金、ステンレス鋼、ニッケルまたは鉄等を用いることができる。また、電気二重層キャパシタの集電体に用いる金属箔としては、正極集電体及び負極集電体のいずれにもアルミニウム、銅、銅合金、ステンレス鋼、ニッケルまたは鉄等を用いることができる。なお、上記の「アルミニウム」には、アルミニウム合金が含まれる。
 具体的に、アルミニウムとしては、1000系アルミニウム合金、3000系アルミニウム合金及び8000系アルミニウム合金等を用いることができる。また、銅としては、無酸素銅、タフピッチ銅等を用いることができる。また、銅合金としては、Cu-Sn(銅-スズ)系、Cu-Ag(銅-銀)系、Cu-Zn(銅-亜鉛)系、Cu-Cr(銅-クロム)系、Cu-Zr(銅-ジルコニウム)系等の銅合金を用いることができる。また、ステンレス鋼としては、例えば、SUS304ステンレス鋼合金、SUS316ステンレス鋼合金等を用いることができる。
 上記金属箔は、アルミニウム、銅または銅合金より構成されていることが好ましい。これらの金属は、正極集電体に用いる場合に高い耐食性を有する。また、これらの金属は、リチウムイオン二次電池等の負極集電体に用いる場合に、電解液に含まれるリチウムイオンがドープされることによる脆化が起こりにくいため、好適である。また、これらの金属は、通常、高い導電性を有するため、高率での充放電を行う用途に好適である。なお、ステンレス鋼は、アルミニウム等に比べて導電率が低いため、高率での充放電を行う用途には不向きである。しかしながら、ステンレス鋼よりなる金属箔は、デバイスを製造する過程においてレーザー溶接が可能等の製造上のメリットがあるため、例えばレーザー溶接が必要なデバイスにおいては優れた集電体となり得る。
 また、上記金属箔は、銅または銅合金よりなり、負極に用いられることが特に好ましい。従来、銅や銅合金よりなる金属箔を用いた負極集電体は、活物質含有層との密着性を高めることが困難であり、二次電池やキャパシタの寿命が劣化する要因となっていた。一方、上記金属箔は、上述したように活物質含有層との密着性を高めることができるため、優れた充放電特性を長期間に亘って維持することができる。その結果、二次電池やキャパシタの寿命を向上させることができる。
 上記金属箔は、5~35μmの厚みを有することが好ましい。上記金属箔は、5μm以上の厚みを有することにより、表面に凹状部を形成する際に亀裂等が生じにくくなり、活物質の密着性の向上に寄与し易くなる。また、上記厚みを35μm以下にすることにより、上記金属箔の体積や重量を比較的小さくすることができ、上記集電体を組み込むデバイスの小型化、軽量化をより容易に行うことができる。同様の観点から、上記金属箔は、8~18μmの厚みを有することがより好ましい。
 上記金属箔は、一方の表面のみが粗面化されていてもよく、両方の表面が粗面化されていてもよい。粗面化された表面に多数存在する凹状部は、上述したように、底面部及び底面部を取り囲むエッジ部を有している。即ち、凹状部は、閉曲線状のエッジ部により区画されたクレーター状を呈している。このようにクレーター状を呈する凹状部には、活物質粒子が嵌り易い。そして、凹状部に嵌った状態の活物質粒子は、凹状部の外縁に存在するエッジ部により支持されるため、エッジ部と活物質粒子とが当接する領域が線状に連続して形成されやすい。それ故、上述したように、活物質の密着性を向上させると共に、活物質と金属箔との間の接触抵抗を低減することができる。
 凹状部のフェレー径の平均Laveは、0.5μm以上50μm以下である。フェレー径の平均Laveは、以下のようにして求める。まず、金属箔表面を顕微鏡により倍率2000倍で観察し、表面の画像を取得する。次いで、上記画像中に、X軸及びX軸に直交するY軸を仮想的に設定し、上記画像中に存在する個々の凹状部について、X軸方向の長さLx及びY軸方向の長さLyを算出する。以上により得られた全てのLxの値及びLyの値を平均した値をフェレー径の平均Laveとする。以上の処理は、画像解析装置等を用いて行っても良い。本願においては、金属箔表面の画像をキーエンス社製マイクロスコープ「VHX-5000」により取得し、当該装置に付属する画像解析装置を用いてLaveの算出を行った。なお、上記の方法において仮想的に設定されるX軸及びY軸の向きは特に限定されない。
 粗面化された表面における凹状部の占有面積は、所望の特性や使用する活物質の種類等に応じて適宜設定することができる。例えば、平均二次粒子径daveが0.5μm以上50μm以下である活物質を用いる場合には、上記金属箔の表面に占める底面部の面積比率を30~90%とすることにより、密着性向上の効果及び接触抵抗低減の効果を十分に得ることができる。
 また、多数の凹状部のうち、90%以上の凹状部が2.5μm以下の深さを有していることが好ましい。ここで、個々の凹状部の深さは、底面部の最下点からエッジ部の最上点までの高さとする。
 凹状部の深さが過度に深い場合には、上記金属箔の厚みが局所的に薄くなるため、局所的に金属箔の強度が低下する。そのため、深い凹状部の割合が多くなると、亀裂の発生等の問題を招くおそれがある。かかる問題は、凹状部の深さの分布を上述のように制御することにより回避することができる。
 一方、凹状部の深さが過度に浅い場合には、活物質粒子が底面部に当接しやすくなる結果、活物質粒子がエッジ部から浮き上がり易くなる。そのため、浅い凹状部の割合が多くなると、活物質粒子が凹状部に嵌りにくくなり、密着性向上の効果や接触抵抗低減の効果が不十分となるおそれがある。かかる問題を回避する観点から、90%以上の凹状部が0.5μm以上の深さを有していることがより好ましい。
 個々の凹状部の形態及び配置は、種々の態様をとることができる。例えば、凹状部は、上面視において、略円形や略楕円形等の形状とすることができる。また、凹状部は、不規則に配置されていても良く、格子状に規則正しく配置されていてもよい。なお、上記の略円形や略楕円形とは、幾何学的に定義される真円及び楕円を含み、これらの形状を一般的な感覚として円形あるいは楕円形と認識できる程度に歪めた形状を含む。
 凹状部は、上面視において、エッジ部の少なくとも一部が略円弧状を呈していることが好ましい。即ち、凹状部は、略円形や略楕円形のクレーター状、または、これらの形状が重なってなる形状等を呈していることが好ましい。この場合には、凹状部に活物質粒子が嵌った状態において、エッジ部と活物質粒子とが当接する領域の面積がより広くなりやすい。それ故、上記金属箔は、活物質の密着性をより向上させることができると共に、接触抵抗をより低減することができる。
[集電体用金属箔の製造方法]
 上記金属箔は、予め準備した一対の粗面化ロールを用い、粗面化ロールの表面形状を金属箔に転写する転写工程を行うことにより作製することができる。
(粗面化ロールの準備)
 一対の粗面化ロールは、少なくとも一方のロールに粗面化処理を施した後、粗面化表面にめっき処理を施して多数の凸部を有するクロムめっき膜を形成し、その後、クロムめっき膜における凸部の頂部を潰すことにより作製できる。粗面化ロールの作製に用いられるロールとしては、例えば、エンボスロールや圧延ロールを用いることができる。粗面化処理及びクロムめっき膜の形成は、一対のロールのうち一方のロールのみに行っても良く、両方のロールに行っても良い。
 ロールの粗面化処理は、例えば、サンドブラスト、液体ホーニング、ショットピーニング、放電加工、レーザダル加工、微粉末溶射などの手法により行うことができる。また、上述の方法以外の方法として、例えば下記の各種の機械的方法、化学的方法、物理的方法を採用することもできる。機械的方法としては、箔表面をエメリー紙等の研磨紙で擦ったり、サンドブラスト等のブラスト加工を用いて箔表面を粗面化する方法などが挙げられる。また、化学的方法としては、酸等によりエッチングする方法などが挙げられる。また、物理的方法としては、スパッタリング等、イオンを衝突させて表面を粗面化する方法などが挙げられる。これらの方法は、1種または2種以上併用してもよい。
 粗面化処理の後、ロールの表面にクロムめっき処理を施し、クロムめっき膜を形成する。クロムめっき処理は、例えば電気めっき法等の従来公知の方法及び条件により実施することができる。
 ロールの表面に形成されたクロムめっき膜は、略球面状に突出した凸部を多数有している。この凸部の頂部を潰すことにより、クレーター状を呈する凹状部に対応した形状を形成することができる。上記頂部を潰す方法としては、例えば、上記ロールを用いて金属箔の圧延を行う方法がある。即ち、金属箔を圧延する際の荷重によって上記頂部が潰れるため、上記頂部に平坦面を形成することができる。なお、頂部を潰す工程に用いられる金属箔の材質は、特に限定されることは無い。以上により、一対の上記粗面化ロールを得ることができる。
(転写工程)
 上記のようにして得られた一対の粗面化ロールの間に金属箔を1パス以上通して粗面化ロールの表面形状を転写する工程を行うことにより、上記凸部の形状が金属箔の表面に転写される。その結果、金属箔の表面に凹状部を形成し、粗面化することができる。転写工程において、金属箔を一対の粗面化ロールの間に通すパス数は、得ようとする金属箔の特性に応じて適宜設定することができる。即ち、金属箔を一対の粗面化ロールの間に通す回数を増やすことにより、より多数の凹状部を形成することができる。
[集電体]
 上記金属箔を用いた集電体の構成例を以下に説明する。集電体は、上記金属箔の粗面化された表面に、活物質を含有する活物質含有層を有している。活物質の平均二次粒子径daveは、0.5μm以上50μm以下であることが好ましい。活物質粒子は、凹状部の寸法と同等の粒径または凹状部よりもわずかに大きい粒径を有する場合に凹状部に嵌り易くなる。上記特定の範囲の平均二次粒子径daveを有する活物質を用いることにより、凹状部の寸法と同等の粒径を有する活物質粒子が活物質含有層に多数含まれるため、密着性向上の効果及び接触抵抗低減の効果を十分に得ることができる。なお、活物質の平均二次粒子径daveは、レーザー回折式粒度分布測定装置を用いて取得した粒度分布における、累積度数が体積百分率で50%となる粒子径(D50)の値とする。
 活物質含有層は、活物質及び結着剤を少なくとも含んでおり、必要に応じて導電助剤を用いてもよい。例えば、上記集電体をリチウムイオン二次電池の負極用に構成する場合には、珪素、スズまたはゲルマニウム等の単体、これらの酸化物若しくは合金、炭素材料、チタン酸リチウム等の従来公知の活物質を用いることができる。また、結着剤としては、例えばポリフッ化ビニリデン(PVDF)、水溶性アクリル系バインダー、スチレンブタジエンラバー等を用いることができる。また、導電助剤としては、例えばカーボンブラック、人造黒鉛、ケッチェンブラック、アセチレンブラック、炭素繊維等を用いることができる。
 これらの原料をN-メチル-2-ピロリドン(NMP)や水等の溶媒に分散させ、上記金属箔の表面に塗布した後、加熱して乾燥させることにより、活物質含有層を形成することができる。なお、上記分散液の粘度を調整するために、カルボキシメチルセルロースやメチルセルロース等の増粘剤を併用しても良い。
 また、上記集電体をリチウムイオン二次電池の正極用に構成する場合には、LiCoO2、LiMn24、LiMnO2、LiNiO2、LiCo1/3Ni1/3Mn1/3、LiFePO4等の活物質を用いることができる。結着剤、導電助剤、溶媒及び増粘剤としては、上述した負極用の場合と同様の物質を用いることができる。
 上記集電体は、上述したリチウムイオン二次電池の他、ナトリウム二次電池、電気二重層キャパシタ、リチウムイオンキャパシタ等のデバイスに用いることも可能である。上記集電体をリチウムイオン二次電池以外のデバイスに用いる場合には、デバイスに応じた公知の活物質含有層を上記金属箔上に設ければよい。
 上記集電体用金属箔及び上記集電体の実施例を、以下に説明する。集電体用金属箔1は、周囲よりも陥没した底面部2と、底面部2を取り囲み、底面部2よりも隆起したエッジ部3とを有する凹状部4(図1及び図2参照)を両表面に多数有している。
 集電体用金属箔1は、予め準備した一対の粗面化ロール6(図5参照)の間に金属箔を1パス以上通して粗面化ロール6の表面形状を転写する転写工程を行うことにより作製した。その後、集電体用金属箔1の両表面に活物質含有層を形成することにより、集電体を作製した。以下に、集電体用金属箔1及び集電体のより詳細な構成及び製造方法を説明する。
(実施例1)
 一対の粗面化ロール6を、以下の手順により予め準備した。まず、一対の圧延ロール60に粒径40μmの投射グリッド粒子を用いてショットダル加工を施し、両方の圧延ロール60の表面600を図3に示すように粗面化した。次いで、圧延ロール60の表面600にクロムめっき処理を施し、クロムめっき膜61を形成した。クロムめっき処理は、無水クロム酸250g/L及び硫酸2.5g/Lを含むサージェント浴にて実施し、温度50℃、電流密度30A/dm2の条件で行った。クロムめっき膜61の膜厚は5μmとした。図4に示すように、クロムめっき膜61は、表面600の尖った部分に優先的に付着することにより、略球面状の凸部610を多数有していた。
 その後、クロムめっき膜61を形成した一対の圧延ロール60をワークロールとして、タフピッチ銅よりなる厚さ10μmの圧延銅箔を圧延荷重1300MPaの条件で長さ300mに亘って圧延した。これにより、図4に示した凸部610の頂部が潰れ、図5に示すように平坦面611が形成された。以上により、粗面化ロール6を作製した。
 その後、得られた一対の粗面化ロール6の間にタフピッチ銅よりなる厚さ10μmの圧延銅箔を通して粗面化ロール6の表面形状を転写した。以上により、圧延銅箔の両表面に多数の凹状部4を有する金属箔E1を得た。金属箔E1における凹状部4のフェレー径の平均Laveは6.3μmであり、凹状部4の深さは、最も深いもので1.9μmであった。
 なお、本願において、個々の凹状部4の深さ及び凹状部4の最大深さは、以下のようにして算出した。まず、レーザー顕微鏡(オリンパス社製、「OLS3000」)を用いて凹状部4を倍率500倍にて観察し、断面プロファイルを取得した。次いで、得られた断面プロファイルから底面部2における最も低い点及びエッジ部3における最も高い点を決定し、その差を個々の凹状部4の深さとした。また、無作為に選択した10箇所の凹状部4における深さの最大値を凹状部4の最大深さとした。
(実施例2)
 投射グリッド粒子の粒径及びクロムめっき膜61の頂部を潰す工程における圧延荷重を表1に示す条件に変更した以外は、実施例1と同様にして一対の粗面化ロール6を作製した。得られた粗面化ロール6を用い、実施例1と同様の条件により厚さ10μmの圧延銅箔に表面形状を転写して金属箔E2を得た。金属箔E2における凹状部4のフェレー径の平均Laveは10.1μmであり、凹状部4の深さは、最も深いもので2.0μmであった。
(実施例3)
 投射グリッド粒子の粒径及びクロムめっき膜61の頂部を潰す工程における圧延荷重を表1に示す条件に変更した以外は、実施例1と同様にして一対の粗面化ロール6を作製した。得られた粗面化ロール6を用い、実施例1と同様の条件により厚さ10μmの圧延銅箔に表面形状を転写して金属箔E3を得た。
 多数の凹状部を有する金属箔1の例として、金属箔E3の粗面化された表面のSEM(走査型電子顕微鏡)像を図6に示す。図6より知られるように、金属箔E3の粗面化された表面には、略円形、略楕円形あるいはこれらが重なった形状を有する多数の凹状部4が形成されている。また、凹状部4が形成されていない領域8には箔圧延時の圧延痕やオイルピット等が存在しており、転写前の形状を維持していることが理解できる。
 金属箔E3における凹状部4のフェレー径の平均Laveは22.2μmであり、凹状部4の深さは、最も深いもので2.1μmであった。
(実施例4)
 投射グリッド粒子の粒径及びクロムめっき膜61の頂部を潰す工程における圧延荷重を表1に示す条件に変更した以外は、実施例1と同様にして一対の粗面化ロール6を作製した。得られた粗面化ロール6を用い、実施例1と同様にして厚さ10μmの圧延銅箔に表面形状を転写して金属箔E4を得た。金属箔E4における凹状部4のフェレー径の平均Laveは2.4μmであり、凹状部4の深さは、最も深いもので1.7μmであった。
(実施例5)
 投射グリッド粒子の粒径及びクロムめっき膜61の頂部を潰す工程における圧延荷重を表1に示す条件に変更した以外は、実施例1と同様にして一対の粗面化ロール6を作製した。得られた粗面化ロール6を用い、実施例1と同様にして厚さ10μmの圧延銅箔に表面形状を転写して金属箔E5を得た。金属箔E5における凹状部4のフェレー径の平均Laveは43.0μmであり、凹状部4の深さは、最も深いもので2.2μmであった。
(実施例6)
 投射グリッド粒子の粒径及びクロムめっき膜61の頂部を潰す工程における圧延荷重を表1に示す条件に変更した以外は、実施例1と同様にして一対の粗面化ロール6を作製した。得られた粗面化ロール6を用い、実施例1と同様にして厚さ10μmの圧延銅箔に表面形状を転写して金属箔E6を得た。金属箔E6における凹状部4のフェレー径の平均Laveは6.3μmであり、凹状部4の深さは、最も深いもので2.8μmであった。
(比較例1)
 比較例1の金属箔C1としては、粗面化ロール6の表面形状を転写していない、タフピッチ銅よりなる厚さ10μmの圧延銅箔を用いた。粗面化ロール6の表面形状が転写されていない金属箔C1の表面には、図7に示すSEM像のように、箔圧延時の圧延痕及び多数のオイルピットが存在しており、クレーター状を呈する凹状部4は存在していない。なお、オイルピットの深さは、最も深いもので1.2μmであった。
(比較例2)
 投射グリッド粒子の粒径及びクロムめっき膜61の頂部を潰す工程における圧延荷重を表1に示す条件に変更した以外は、実施例1と同様にして一対の粗面化ロール6を作製した。得られた粗面化ロール6を用い、実施例1と同様にして厚さ10μmの圧延銅箔に表面形状を転写して金属箔C2を得た。金属箔C2における凹状部4のフェレー径の平均Laveは0.2μmであり、凹状部4の深さは、最も深いもので1.6μmであった。
(比較例3)
 投射グリッド粒子の粒径及びクロムめっき膜61の頂部を潰す工程における圧延荷重を表1に示す条件に変更した以外は、実施例1と同様にして一対の粗面化ロール6を作製した。得られた粗面化ロール6を用い、実施例1と同様にして厚さ10μmの圧延銅箔に表面形状を転写して金属箔C3を得た。金属箔C3における凹状部4のフェレー径の平均Laveは58.2μmであり、凹状部4の深さは、最も深いもので2.2μmであった。
(実施例7)
 一対の粗面化ロール6を、以下の手順により予め準備した。まず、一対の圧延ロール60に粒径40μmの投射グリッド粒子を用いてショットダル加工を施し、両方の圧延ロール60の表面600を粗面化した。次いで、実施例1と同じ条件を用いて圧延ロール60の表面600にクロムめっき処理を施し、クロムめっき膜61を形成した。その後、クロムめっき膜61を形成した一対の圧延ロール60をワークロールとして、電池用両面光沢箔として構成された厚さ10μmの電解銅箔を圧延荷重1300MPaの条件で長さ300mに亘って圧延し、クロムめっき膜61における凸部610の頂部を潰す処理を行った。以上により、粗面化ロール6を作製した。
 その後、得られた一対の粗面化ロール6の間に、電池用両面光沢箔として構成された厚さ10μmの電解銅箔を通して粗面化ロール6の表面形状を転写した。以上により、電解銅箔の両表面に多数の凹状部4を有する金属箔E7を得た。金属箔E7における凹状部4のフェレー径の平均Laveは6.5μmであり、凹状部4の深さは、最も深いもので1.9μmであった。
(比較例4)
 比較例4の金属箔C4としては、粗面化ロール6の表面形状を転写していない、電池用両面光沢箔として構成された厚さ10μmの電解銅箔を用いた。金属箔C4の表面には多数のオイルピットが存在しており、その深さは、最も深いもので1.3μmであった。なお、金属箔C4の表面には、クレーター状を呈する凹状部4は存在していない。
(実施例8)
 一対の粗面化ロール6を、以下の手順により予め準備した。まず、一対の圧延ロール60に粒径57μmの投射グリッド粒子を用いてショットダル加工を施し、両方の圧延ロール60の表面600を粗面化した。次いで、実施例1と同じ条件を用いて圧延ロール60の表面600にクロムめっき処理を施し、クロムめっき膜61を形成した。その後、クロムめっき膜61を形成した一対の圧延ロール60をワークロールとして、SUS304ステンレス鋼合金(以下、「SUS304合金」と略記する。)よりなる厚さ10μmのSUS(ステンレス鋼)箔を圧延荷重1300MPaの条件で長さ300mに亘って圧延し、クロムめっき膜61における凸部610の頂部を潰す処理を行った。以上により、粗面化ロール6を作製した。
 その後、得られた一対の粗面化ロール6の間に、SUS304合金よりなる厚さ10μmのSUS箔を通して粗面化ロール6の表面形状を転写した。以上により、SUS箔の両表面に多数の凹状部4を有する金属箔E8を得た。金属箔E8における凹状部4のフェレー径の平均Laveは8.7μmであり、凹状部4の深さは、最も深いもので1.8μmであった。
(比較例5)
 比較例5の金属箔C5としては、粗面化ロール6の表面形状を転写していない、SUS304合金よりなる厚さ10μmのSUS箔を用いた。金属箔C5の表面には多数のオイルピットが存在しており、その深さは、最も深いもので1.3μmであった。なお、金属箔C5の表面には、クレーター状を呈する凹状部4は存在していない。
(実施例9)
 一対の粗面化ロール6を、以下の手順により予め準備した。まず、一対の圧延ロール60に粒径40μmの投射グリッド粒子を用いてショットダル加工を施し、両方の圧延ロール60の表面600を粗面化した。次いで、実施例1と同じ条件を用いて圧延ロール60の表面600にクロムめっき処理を施し、クロムめっき膜61を形成した。その後、クロムめっき膜61を形成した一対の圧延ロール60をワークロールとして、JIS A 1235合金よりなる厚さ15μmのAl(アルミニウム)箔を圧延荷重1300MPaの条件で長さ300mに亘って圧延し、クロムめっき膜61における凸部610の頂部を潰す処理を行った。以上により、粗面化ロール6を作製した。
 その後、得られた一対の粗面化ロール6の間に、JIS A 1235合金よりなる厚さ15μmのAl箔を通して粗面化ロール6の表面形状を転写した。以上により、Al箔の両表面に多数の凹状部4を有する金属箔E9を得た。
 図8に示す金属箔E9の粗面化された表面には、金属箔E3(図6)等と同様に、上面視において略円形、略楕円形あるいはこれらが連なった形状を有する多数の凹状部4が形成されている。また、凹状部4が形成されていない領域8には箔圧延時の圧延痕やオイルピット等が存在しており、転写前の形状を維持していることが理解できる。
 金属箔E9における凹状部4のフェレー径の平均Laveは5.2μmであり、凹状部4の深さは、最も深いもので1.8μmであった。
(実施例10)
 投射グリッド粒子の粒径及びクロムめっき膜61の頂部を潰す工程における圧延荷重を表3に示す条件に変更した以外は、実施例9と同様にして一対の粗面化ロール6を作製した。得られた粗面化ロール6を用い、実施例9と同様の条件により厚さ15μmのAl箔に表面形状を転写して金属箔E10を得た。金属箔E10における凹状部4のフェレー径の平均Laveは12.4μmであり、凹状部4の深さは、最も深いもので2.1μmであった。
(実施例11)
 投射グリッド粒子の粒径及びクロムめっき膜61の頂部を潰す工程における圧延荷重を表3に示す条件に変更した以外は、実施例9と同様にして一対の粗面化ロール6を作製した。得られた粗面化ロール6を用い、実施例9と同様の条件により厚さ15μmのAl箔に表面形状を転写して金属箔E11を得た。金属箔E11における凹状部4のフェレー径の平均Laveは24.1μmであり、凹状部4の深さは、最も深いもので2.1μmであった。
(実施例12)
 投射グリッド粒子の粒径及びクロムめっき膜61の頂部を潰す工程における圧延荷重を表3に示す条件に変更した以外は、実施例9と同様にして一対の粗面化ロール6を作製した。得られた粗面化ロール6を用い、実施例9と同様の条件により厚さ15μmのAl箔に表面形状を転写して金属箔E12を得た。金属箔E12における凹状部4のフェレー径の平均は2.3μmであり、凹状部4の深さは、最も深いもので1.6μmであった。
(実施例13)
 投射グリッド粒子の粒径及びクロムめっき膜61の頂部を潰す工程における圧延荷重を表3に示す条件に変更した以外は、実施例9と同様にして一対の粗面化ロール6を作製した。得られた粗面化ロール6を用い、実施例9と同様の条件により厚さ15μmのAl箔に表面形状を転写して金属箔E13を得た。金属箔E13における凹状部4のフェレー径の平均Laveは48.1μmであり、凹状部4の深さは、最も深いもので2.2μmであった。
(比較例6)
 比較例6の金属箔C6としては、粗面化ロール6の表面形状を転写していない、厚さ15μmのAl箔を用いた。粗面化ロール6の表面形状が転写されていない金属箔C6の表面には、図9に示すSEM像のように、箔圧延時の圧延痕及び多数のオイルピットが存在しており、クレーター状を呈する凹状部4は存在していない。なお、オイルピットの深さは、最も深いもので1.2μmであった。
(比較例7)
 投射グリッド粒子の粒径及びクロムめっき膜61の頂部を潰す工程における圧延荷重を表3に示す条件に変更した以外は、実施例9と同様にして一対の粗面化ロール6を作製した。得られた粗面化ロール6を用い、実施例9と同様の条件により厚さ15μmのAl箔に表面形状を転写して金属箔C7を得た。金属箔C7における凹状部4のフェレー径の平均Laveは0.3μmであり、凹状部4の深さは、最も深いもので1.6μmであった。
(比較例8)
 投射グリッド粒子の粒径及びクロムめっき膜61の頂部を潰す工程における圧延荷重を表3に示す条件に変更した以外は、実施例9と同様にして一対の粗面化ロール6を作製した。得られた粗面化ロール6を用い、実施例9と同様の条件により厚さ15μmのAl箔に表面形状を転写して集電体用金属箔C8を得た。金属箔C8における凹状部4のフェレー径の平均Laveは61.4μmであり、凹状部4の深さは、最も深いもので2.1μmであった。
(実施例14)
 一対の粗面化ロール6を、以下の手順により予め準備した。まず、一対の圧延ロール60に粒径57μmの投射グリッド粒子を用いてショットダル加工を施し、両方の圧延ロール60の表面600を粗面化した。次いで、実施例1と同じ条件を用いて圧延ロール60の表面600にクロムめっき処理を施し、クロムめっき膜61を形成した。その後、クロムめっき膜61を形成した一対の圧延ロール60をワークロールとして、SUS304合金よりなる厚さ15μmのSUS(ステンレス鋼)箔を圧延荷重1300MPaの条件で長さ300mに亘って圧延し、クロムめっき膜61における凸部610の頂部を潰す処理を行った。以上により、粗面化ロール6を作製した。
 その後、得られた一対の粗面化ロール6の間に、SUS304合金よりなる厚さ15μmのSUS箔を通して粗面化ロール6の表面形状を転写した。以上により、SUS箔の両表面に多数の凹状部4を有する金属箔E14を得た。金属箔E14における凹状部4のフェレー径の平均Laveは8.5μmであり、凹状部4の深さは、最も深いもので1.8μmであった。
(比較例9)
 比較例9の金属箔C9としては、粗面化ロール6の表面形状を転写していない、SUS304合金よりなる厚さ15μmのSUS箔を用いた。金属箔C9の表面には多数のオイルピットが存在しており、その深さは、最も深いもので1.3μmであった。なお、金属箔C9の表面には、クレーター状を呈する凹状部4は存在していない。
 次に、上記のようにして得られた金属箔E1~E14及び金属箔C1~C9の機械特性及び集電体に用いた場合の特性を評価した。
[機械特性]
 JIS C 6515:1998に規定された方法に準じて引張試験を行い、各金属箔の引張強さ及び伸びを測定した。その結果を表1及び表3に示す。
[負極集電体の特性]
 金属箔E1~E8及び金属箔C1~C5を用いて、以下の手順により、表1に示すリチウムイオン二次電池用の負極集電体(試験体1~39)を準備した。その後、各試験体の電極抵抗及び充放電サイクル特性を評価した。
(負極集電体の作製)
 まず、負極活物質、結着剤及び増粘剤を溶媒に分散させた3種の負極活物質スラリーNa、Nb、Ncを作製した。スラリーNa、Nb及びNcの組成は以下の通りとした。なお、負極活物質の平均二次粒子径は、レーザー回折式粒度分布測定装置(島津製作所製「SALD-3100」)を用いて取得した粒度分布における、累積度数が体積百分率で50%となる粒子径(D50)の値である。
・負極活物質スラリーNa
 負極活物質:人造黒鉛粉末(平均二次粒子径7.2μm) 97質量部
 結着剤:スチレンブタジエンラバー 1.5質量部
 増粘剤:カルボキシメチルセルロース 1.5質量部
 溶媒:水
・負極活物質スラリーNb
 負極活物質:人造黒鉛粉末(平均二次粒子径13.7μm) 97質量部
 結着剤:スチレンブタジエンラバー 1.5質量部
 増粘剤:カルボキシメチルセルロース 1.5質量部
 溶媒:水
・負極活物質スラリーNc
 負極活物質:人造黒鉛粉末(平均二次粒子径25.5μm) 97質量部
 結着剤:スチレンブタジエンラバー 1.5質量部
 増粘剤:カルボキシメチルセルロース 1.5質量部
 溶媒:水
 次に、各金属箔の片面にスラリーNa、NbまたはNcのいずれかを塗布し、100℃の温度で10分間乾燥させることにより活物質含有層を形成させ、表2に示す試験体1~39を作製した。
(試験用セル)
 正極として2.8cm2の作用面積(1.4cm×2.0cm)を有するリチウム金属を用い、負極として2.8cm2の作用面積(1.4cm×2.0cm)を有する試験体を用いたビーカーセルを作製した。なお、電解液としては、エチレンカーボネートとジエチルカーボネートとを体積比1:1で混合した溶媒に、濃度が1mol/dm3となるようにLiPF6を溶解させた溶液を用いた。また、正極と負極との間には、セパレータとして、厚さ480μmの多孔ポリプロピレンシートを2枚重ねて配置した。更に、2枚のポリプロピレンシートの間における正極及び負極に面しない端縁部に、厚さ100μmのリチウム金属箔を配置した。このリチウム金属箔は、負極と正極との分極状態を測定するための参照極として機能する。
(充放電サイクル特性の評価)
 上記の試験用セルを用い、充放電を100サイクル繰り返すサイクル試験を行い、各サイクルにおける放電容量を測定した。サイクル試験における1サイクル目の充電は、充電レートが0.05CAに到達するまで0.0Vの定電圧で充電した後、充電レートを0.1CAに固定した定電流で10時間の充電を行い、その後充電を停止した。次いで、放電レートを0.1CAに固定した定電流で放電を行い、セル電圧が1.5Vに到達した時点で放電を停止し、サイクルを完了した。なお、充放電レートの単位である「CA」は、充放電時の電流値(A)を試験用セルの公称容量(Ah)で除することにより得られる値である。
 2サイクル目以降のサイクルにおいては、充電レートが0.05CAに到達するまで0.0Vの定電圧で充電した後、充電レートを0.2CAに固定した定電流で5時間の充電を行い、その後充電を停止した。次いで、放電レートを0.2CAに固定した定電流で放電を行い、セル電圧が1.5Vに到達した時点で放電を停止し、サイクルを完了した。
 上記のサイクル試験より得られた100サイクル目の放電容量を1サイクル目の放電容量で除することにより、容量維持率を算出した。また、サイクル試験が完了した後に試験用セルを解体して試験体(負極集電体)を取り出し、活物質含有層の付着状態を目視により観察した。これらの結果を表2に示す。なお、表2に示す容量維持率は、負極の活物質含有層の質量当たり放電容量を用いて算出した値である。
 また、表2において、「活物質含有層の付着状態」の欄に示した記号は、以下の状態を意味する。
 A+:活物質含有層が金属箔に付着しており、剥離が見られない状態
 A:活物質含有層の剥離が見られたが、初期量の80%以上の活物質含有層が試験体に付着している状態
 B:活物質含有層の剥離が見られたが、初期量の半分以上の活物質含有層が試験体に付着している状態
 C:活物質含有層の剥離が見られ、初期量の半分未満の活物質含有層が試験体に付着している状態
(電極抵抗測定)
 電流休止法により、負極集電体の内部抵抗のうち、平衡成分とオーム成分とを分離した。平衡成分には電極の反応抵抗、拡散抵抗及びセパレータイオン拡散が含まれ、その分離はできないが、電極反応速度に関わる因子と解釈できる。また、オーム成分は材料や電解液の抵抗や各界面の接触抵抗など、電子伝導やイオン伝導に関わる抵抗を示す。
 充放電の2サイクル目において放電開始時からセル容量の1/10が放電するまでに要した放電時間を記録し、100サイクル目の放電において、上記放電時間を用いて電流休止法による電極抵抗測定を行い、得られた測定曲線に基づいて平衡成分及びオーム成分を算出した。その結果を表2に示す。
 なお、電流休止法は、「リチウムイオン電池・キャパシタの実践評価技術」(矢田静邦、技術情報協会(2006))の記載に準じて行った。
[正極集電体の特性]
 金属箔E9~E14及び金属箔C6~C9を用いて、以下の手順により、表1に示すリチウムイオン二次電池用の正極集電体(試験体41~70)を準備した。その後、各試験体の電極抵抗及び充放電サイクル特性を評価した。
(正極集電体の作製)
 まず、正極活物質、結着剤及び導電助剤を溶媒に分散させた3種の正極活物質スラリーPa、Pb、Pcを作製した。スラリーPa、Pb及びPcの組成は以下の通りとした。なお、正極活物質の平均二次粒子径は、負極活物質と同様に、レーザー回折式粒度分布測定装置(島津製作所製「SALD-3100」)を用いて取得した粒度分布における、累積度数が体積百分率で50%となる粒子径(D50)の値である。
・正極活物質スラリーPa
 正極活物質:コバルト酸リチウム粉末(平均二次粒子径7.0μm) 90質量部
 結着剤:PVDF(ポリフッ化ビニリデン) 5質量部
 導電助剤:アセチレンブラック 5質量部
 溶媒:NMP
・正極活物質スラリーPb
 正極活物質:コバルト酸リチウム粉末(平均二次粒子径12.5μm) 97質量部
 結着剤:PVDF(ポリフッ化ビニリデン) 5質量部
 導電助剤:アセチレンブラック 5質量部
 溶媒:NMP
・正極活物質スラリーPc
 正極活物質:コバルト酸リチウム粉末(平均二次粒子径26.3μm) 97質量部
 結着剤:PVDF(ポリフッ化ビニリデン) 5質量部
 導電助剤:アセチレンブラック 5質量部
 溶媒:NMP
 次に、各金属箔の片面にスラリーPa、PbまたはPcのいずれかを塗布し、100℃の温度で10分間乾燥させることにより活物質含有層を形成させ、表4に示す試験体41~70を作製した。
(試験用セル)
 正極として2.8cm2の作用面積(1.4cm×2.0cm)を有する試験体を用い、負極として2.8cm2の作用面積(1.4cm×2.0cm)を有するリチウム金属を用いたビーカーセルを作製した。その他は負極集電体の評価に用いた試験用セルと同様である。
(充放電サイクル特性の評価)
 上記の試験用セルを用い、充放電を100サイクル繰り返すサイクル試験を行い、各サイクルにおける放電容量を測定した。サイクル試験における1サイクル目の充電は、充電レートが0.05CAに到達するまで4.0Vの定電圧で充電した後、充電レートを0.1CAに固定した定電流で10時間の充電を行い、その後充電を停止した。次いで、放電レートを0.1CAに固定した定電流で放電を行い、セル電圧が2.5Vに到達した時点で放電を停止し、サイクルを完了した。
 2サイクル目以降のサイクルにおいては、充電レートが0.05CAに到達するまで4.0Vの定電位で充電した後、充電レートを0.2CAに固定した定電流で5時間の充電を行い、その後充電を停止した。次いで、放電レートを0.2CAに固定した定電流で放電を行い、電位が2.5Vに到達した時点で放電を停止し、サイクルを完了した。
 上記のサイクル試験より得られた100サイクル目の放電容量を1サイクル目の放電容量で除することにより、容量維持率を算出した。また、サイクル試験が完了した後に試験用セルを解体して試験体(正極集電体)を取り出し、活物質含有層の付着状態を目視により観察した。これらの結果を表4に示す。
 なお、表4において、「活物質含有層の付着状態」の欄に示した記号は、表2と同様である。また、表4に示す容量維持率は、負極の活物質含有層の質量当たり放電容量を用いて算出した値である。
(電極抵抗測定)
 負極集電体と同様に、電流休止法により、正極集電体の内部抵抗のうち平衡成分とオーム成分とを分離した。その結果を表4に示す。
 表1及び表2より知られるように、凹状部4のフェレー径の平均Laveが0.5μm以上50μm以下である金属箔E1~E8を用いて作製された負極集電体(試験体1~24)は、充放電サイクルを繰り返しても容量の低下がほとんど見られず、高い容量維持率を示した。また、試験体1~24は、サイクル試験完了後に活物質含有層の剥離がほとんど見られず、優れた密着性を示した。
 これは、金属箔E1~E8を用いた負極集電体においては、活物質粒子7が凹状部4に嵌まることにより密着性が向上したためと考えられる。即ち、金属箔E1~E8を用いた負極集電体は、凹状部4と活物質粒子7の粒径が略同等であるため、図1及び図2に示すように活物質粒子7が凹状部4に嵌まり易い。そして、凹状部4に嵌まり込んだ活物質粒子7は、エッジ部3と当接する領域Aが線状に連続して形成されるため、高い密着性を有すると考えられる。
 金属箔E6を用いた負極集電体(試験体16~18)は、凹状部4のLaveが上記特定の範囲内であるため、高い容量維持率、活物質含有層の良好な密着性及び低い接触抵抗を示した。しかしながら、金属箔E6は、同じ材質(圧延銅箔)よりなる金属箔E1~E5に比べて凹状部4の最大深さが深いため、伸びが低下し、作製過程において箔切れなどのトラブルが発生した。かかる問題を回避する観点から、金属箔1を銅または銅合金より構成する場合には、凹状部4の最大深さを2.5μm以下とすることがより好ましい。なお、金属箔E8は、金属箔E6と同程度の伸びを有するが、SUS箔であるために強度が高い。それ故、金属箔E8においては、箔切れ等のトラブルは発生しなかった。
 一方、金属箔C1~C5を用いた負極集電体(試験体25~39)は、充放電サイクルの繰り返しによって容量が顕著に低下し、低い容量維持率を示すと共に、サイクル試験完了後に活物質含有層の剥離が見られた。
 これは、金属箔C1~C5における凹状部4のLaveが上記特定の範囲外であるために、活物質粒子7が凹状部4に嵌らず、密着性が低下したためと考えられる。即ち、図10及び図11に示すように、これらの金属箔9は、活物質粒子7の粒径に対して凹状部4が小さすぎるため、活物質粒子7が凹状部4に嵌りにくい。それ故、密着性が低いと考えられる。また、図10及び図11に示すような状態においては、活物質粒子7が金属箔9に当接する領域Aが点状となるため、接触抵抗が高くなると考えられる。
 なお、銅箔を用いた負極集電体(試験体1~21、試験体25~36)においては、凹状部4の有無による接触抵抗(オーム成分)の差は見られなかった。これは、金属箔が導電性の高い銅より構成されているために、金属箔と活物質粒子7との接触面積の差が接触抵抗の差として表れなかったことが原因と考えられる。
 表3及び表4より知られるように、金属箔E9~E14及び金属箔C6~C9を用いて作製された正極集電体は、サイクル試験後における容量維持率及び活物質含有層の付着状態に顕著な差は見られなかった。これは、Al箔及びSUS箔は活物質含有層との密着性が高いために、凹状部4の有無による差が見られなかったことを示している。
 一方、接触抵抗の観点からは、上記特定の範囲のLaveを有する金属箔E9~E13は、上記特定の範囲外のLaveを有する金属箔C6~C8に比べてオーム成分が小さくなった。これは、Al箔の導電率が銅箔に比べて低いため、金属箔と活物質粒子7との接触面積の差が接触抵抗(オーム成分)の差として表われたことが原因と考えられる。金属箔E9~E13を用いた正極集電体は、接触抵抗が低いため、充放電レートを高くして高率放電を行う用途に好適である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (7)

  1.  少なくとも一方の表面が粗面化された集電体用金属箔であって、
     底面部と、該底面部を取り囲み、該底面部よりも隆起したエッジ部とを有する凹状部が上記粗面化された表面に多数存在しており、
     上記凹状部のフェレー径の平均Laveが0.5μm以上50μm以下であることを特徴とする集電体用金属箔。
  2.  多数の上記凹状部のうち、90%以上の上記凹状部が2.5μm以下の深さを有していることを特徴とする請求項1に記載の集電体用金属箔。
  3.  上面視において、上記エッジ部の少なくとも一部が略円弧状を呈していることを特徴とする請求項1または2に記載の集電体用金属箔。
  4.  上記集電体用金属箔は、銅または銅合金よりなり、負極に用いられることを特徴とする請求項1~3のいずれか1項に記載の集電体用金属箔。
  5.  上記集電体用金属箔は、リチウムイオン二次電池、ナトリウム二次電池、電気二重層キャパシタまたはリチウムイオンキャパシタ用の電極集電体として用いられることを特徴とする請求項1~4のいずれか1項に記載の集電体用金属箔。
  6.  請求項1~5のいずれか1項に記載の集電体用金属箔の粗面化された表面上に活物質含有層を有する集電体であって、上記活物質含有層に含まれる活物質の平均二次粒子径daveが0.5μm以上50μm以下であることを特徴とする集電体。
  7.  一対のロールにおける少なくとも一方のロールの粗面化表面にめっき処理を施すことにより多数の凸部を有するクロムめっき膜を形成し、その後、該クロムめっき膜における上記凸部の頂部を潰して平坦面を形成した一対の粗面化ロールを予め準備し、
     一対の上記粗面化ロールの間に金属箔を1パス以上通して上記粗面化ロールの表面形状を転写する転写工程を行うことにより、周囲よりも陥没した底面部と、該底面部を取り囲み、該底面部よりも隆起したエッジ部とを有する凹状部を表面に多数形成し、上記凹状部のフェレー径の平均Laveが0.5μm以上50μm以下となるように上記金属箔の粗面化を行うことを特徴とする集電体用金属箔の製造方法。
PCT/JP2015/066085 2014-06-06 2015-06-03 集電体用金属箔、集電体及び集電体用金属箔の製造方法 WO2015186752A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/316,086 US10418636B2 (en) 2014-06-06 2015-06-03 Current-collector metal foil, current collector, and current-collector-metal-foil manufacturing method
CN201580025706.6A CN106415903B (zh) 2014-06-06 2015-06-03 集电体用金属箔、集电体及集电体用金属箔的制造方法
KR1020167035737A KR20170018342A (ko) 2014-06-06 2015-06-03 집전체용 금속박, 집전체 및 집전체용 금속박의 제조 방법
JP2016525215A JP6535662B2 (ja) 2014-06-06 2015-06-03 集電体用金属箔の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-117769 2014-06-06
JP2014117769 2014-06-06

Publications (1)

Publication Number Publication Date
WO2015186752A1 true WO2015186752A1 (ja) 2015-12-10

Family

ID=54766820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066085 WO2015186752A1 (ja) 2014-06-06 2015-06-03 集電体用金属箔、集電体及び集電体用金属箔の製造方法

Country Status (5)

Country Link
US (1) US10418636B2 (ja)
JP (1) JP6535662B2 (ja)
KR (1) KR20170018342A (ja)
CN (1) CN106415903B (ja)
WO (1) WO2015186752A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039332A1 (ja) * 2017-08-23 2019-02-28 富士フイルム株式会社 金属箔、金属箔の製造方法、二次電池用負極および二次電池用正極
WO2021065173A1 (ja) * 2019-09-30 2021-04-08 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2022131188A1 (ja) * 2020-12-15 2022-06-23 三菱瓦斯化学株式会社 水性組成物、これを用いたステンレス鋼表面の粗化処理方法、ならびに粗化ステンレス鋼の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6612592B2 (ja) * 2015-11-12 2019-11-27 ローランドディー.ジー.株式会社 箔転写装置で使用するデータを作成するためのプログラム、箔転写装置、箔転写方法
CN109860511A (zh) * 2019-01-21 2019-06-07 湖北锂诺新能源科技有限公司 一种连续箔材涂膜和极片涂布制备方法
CN115803478A (zh) * 2020-07-16 2023-03-14 东洋钢钣株式会社 电解铁箔
CN114243024B (zh) * 2021-11-17 2023-09-05 荣烯新材(北京)科技有限公司 一种石墨烯毛化集流体的制备方法及其制备设备
CN114300654B (zh) * 2021-12-31 2023-06-09 四川启睿克科技有限公司 一种均匀分布的三维锂合金负极及其制备方法
WO2023130204A1 (zh) * 2022-01-04 2023-07-13 宁德时代新能源科技股份有限公司 二次电池、电池模块、电池包和用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135368A (ja) * 1997-10-29 1999-05-21 Asahi Glass Co Ltd 電気二重層キャパシタ用集電体及び電気二重層キャパシタ
JP2005158397A (ja) * 2003-11-25 2005-06-16 Ngk Spark Plug Co Ltd リチウム電池およびその製造方法
JP2005310502A (ja) * 2004-04-20 2005-11-04 Sanyo Electric Co Ltd 化学電池用電極の製造方法及び電池
JP2013110049A (ja) * 2011-11-24 2013-06-06 Mitsubishi Alum Co Ltd リチウムイオン二次電池の正極集電体用箔、及び、リチウムイオン二次電池
WO2013128685A1 (ja) * 2012-02-28 2013-09-06 住友軽金属工業株式会社 集電体用アルミニウム箔及びその製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855136A (en) 1971-11-15 1974-12-17 Kaiser Aluminium Chem Corp Dispersion for hot rolling aluminum products
DE2732009C3 (de) 1977-07-15 1982-03-25 Estel Hoesch Werke Ag, 4600 Dortmund Verfahren zum elektrostatischen Aufbringen einer ölhaltigen Oberflächenschutzschicht auf bandförmiges Feinstblech
LU86531A1 (fr) * 1986-07-28 1988-02-02 Centre Rech Metallurgique Produit metallique presentant une brillance apres peinture amelioree et procedes pour sa fabrication
JP2880418B2 (ja) * 1994-12-27 1999-04-12 川崎製鉄株式会社 ステンレス鋼用冷間圧延機の補助ロールおよびその表面加工方法
JP3258249B2 (ja) 1996-12-25 2002-02-18 日本ケミコン株式会社 電解コンデンサ用アルミニウム電極箔
US6195251B1 (en) 1997-10-29 2001-02-27 Asahi Glass Company Ltd. Electrode assembly and electric double layer capacitor having the electrode assembly
JP3444769B2 (ja) 1997-11-25 2003-09-08 東洋アルミニウム株式会社 集電体用アルミニウム箔とその製造方法、集電体、二次電池および電気二重層コンデンサ
JP2000044797A (ja) 1998-04-06 2000-02-15 Kuraray Co Ltd 液晶ポリマ―フィルムと積層体及びそれらの製造方法並びに多層実装回路基板
JP4875808B2 (ja) 2001-08-07 2012-02-15 パナソニック株式会社 積層型二次電池
JP4210556B2 (ja) 2003-06-09 2009-01-21 東洋アルミニウム株式会社 アルミニウム箔の製造方法
JP4516761B2 (ja) * 2004-01-20 2010-08-04 富士フイルム株式会社 アルミニウム板エンボス加工用ロール
JP2008258137A (ja) 2006-11-15 2008-10-23 Matsushita Electric Ind Co Ltd 非水系二次電池用集電体、並びにそれを使用した非水系二次電池用電極板および非水系二次電池
JP2008159297A (ja) 2006-12-21 2008-07-10 Matsushita Electric Ind Co Ltd アルミニウム箔の脱脂方法およびアルミニウム箔、ならびにそれからなる電池用極板芯材および電池用極板、ならびにそれらを用いたリチウムイオン二次電池
JP2008282797A (ja) 2007-04-12 2008-11-20 Panasonic Corp 非水二次電池用集電体、およびその製造方法
BRPI0809283A2 (pt) * 2007-04-18 2014-09-02 Industrie De Nora Spa Eletrodos com superfície mecanicamente tornada áspera para aplicações eletroquímicas
JP5369385B2 (ja) 2007-04-23 2013-12-18 パナソニック株式会社 リチウムイオン二次電池およびその製造方法並びに製造装置
KR101141820B1 (ko) * 2007-10-30 2012-05-07 파나소닉 주식회사 전지용 집전체, 그 제조방법, 및 비수계 이차전지
DE112009004308B4 (de) 2008-12-25 2021-02-04 Kobe Steel, Ltd. Schmieröl zur Verwendung in Warmwalzöl und Verwendung des Warmwalzöls in einem Verfahren zur Herstellung von warmgewalztem Blech
JP5324911B2 (ja) 2008-12-26 2013-10-23 住友軽金属工業株式会社 リチウムイオン電池電極集電体用アルミニウム合金箔
TWI432615B (zh) 2009-02-13 2014-04-01 Furukawa Electric Co Ltd A metal foil, a method for manufacturing the same, an insulating substrate, and a wiring substrate
JP2011165637A (ja) * 2010-01-12 2011-08-25 Kobe Steel Ltd 正極集電体、その製造方法およびリチウムイオン電池用正極体
JP5226027B2 (ja) 2010-03-31 2013-07-03 Jx日鉱日石金属株式会社 リチウムイオン電池集電体用銅箔
KR101823187B1 (ko) 2010-12-27 2018-01-29 후루카와 덴키 고교 가부시키가이샤 리튬이온 이차전지, 그 이차전지용 전극, 그 이차전지의 전극용 전해 동박
BR112014001159A2 (pt) * 2011-07-19 2017-02-21 3M Innovative Properties Co camadas múltiplas sequenciais para redirecionamento de luz do dia

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135368A (ja) * 1997-10-29 1999-05-21 Asahi Glass Co Ltd 電気二重層キャパシタ用集電体及び電気二重層キャパシタ
JP2005158397A (ja) * 2003-11-25 2005-06-16 Ngk Spark Plug Co Ltd リチウム電池およびその製造方法
JP2005310502A (ja) * 2004-04-20 2005-11-04 Sanyo Electric Co Ltd 化学電池用電極の製造方法及び電池
JP2013110049A (ja) * 2011-11-24 2013-06-06 Mitsubishi Alum Co Ltd リチウムイオン二次電池の正極集電体用箔、及び、リチウムイオン二次電池
WO2013128685A1 (ja) * 2012-02-28 2013-09-06 住友軽金属工業株式会社 集電体用アルミニウム箔及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039332A1 (ja) * 2017-08-23 2019-02-28 富士フイルム株式会社 金属箔、金属箔の製造方法、二次電池用負極および二次電池用正極
JPWO2019039332A1 (ja) * 2017-08-23 2020-07-27 富士フイルム株式会社 金属箔、金属箔の製造方法、二次電池用負極および二次電池用正極
WO2021065173A1 (ja) * 2019-09-30 2021-04-08 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2022131188A1 (ja) * 2020-12-15 2022-06-23 三菱瓦斯化学株式会社 水性組成物、これを用いたステンレス鋼表面の粗化処理方法、ならびに粗化ステンレス鋼の製造方法

Also Published As

Publication number Publication date
KR20170018342A (ko) 2017-02-17
JP6535662B2 (ja) 2019-06-26
CN106415903B (zh) 2019-10-25
JPWO2015186752A1 (ja) 2017-05-25
US10418636B2 (en) 2019-09-17
CN106415903A (zh) 2017-02-15
US20170092955A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
WO2015186752A1 (ja) 集電体用金属箔、集電体及び集電体用金属箔の製造方法
JP2008103132A (ja) リチウムイオン電池の集電体用アルミニウム箔及びそれを用いたリチウムイオン電池
US9685662B2 (en) Electrode material, electrode material manufacturing method, electrode, and secondary battery
JP2018142431A (ja) 硫化物全固体電池用負極、及び、硫化物全固体電池、並びに当該硫化物全固体電池の製造方法
WO2013018898A1 (ja) リチウムイオン二次電池の負極材製造方法及びリチウムイオン二次電池用負極材
JP2010043333A (ja) 正極集電体用アルミニウム箔
TW201320454A (zh) 具有被覆層之金屬箔與其製造方法、二次電池用電極及其製造方法與鋰離子二次電池
JP5144821B1 (ja) 電極材料の製造方法
JP2010027304A (ja) 正極集電体用アルミニウム箔
WO2013061890A1 (ja) 電極材料、電極、二次電池、および電極材料の製造方法
KR102299094B1 (ko) 리튬 이온 전지 집전체용 압연 구리박 및 리튬 이온 전지
KR102643400B1 (ko) 리튬 이온 전지 집전체용 압연 구리박 및 리튬 이온 전지
JP7153148B1 (ja) 電解銅箔、電極及びそれを備えるリチウムイオン電池
CN115198319B (zh) 电解铜箔及包含所述电解铜箔的电极与锂离子电池
WO2022210654A1 (ja) 集電体用鋼箔、電極、及び、電池
JP7377326B1 (ja) 電解銅箔及び電極とそれを用いたリチウムイオン電池
TWI773613B (zh) 電解銅箔及包含其之電極和鋰離子電池
JP5140779B1 (ja) 電極材料
CN117344357A (zh) 电解铜箔及包含其的电极和锂离子电池
JP2024004433A (ja) 電解銅箔及び電極とそれを用いたリチウムイオン電池
TW201943134A (zh) 鋰離子電池集電體用軋製銅箔及鋰離子電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525215

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15316086

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167035737

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15803941

Country of ref document: EP

Kind code of ref document: A1