Nothing Special   »   [go: up one dir, main page]

WO2015178089A1 - シリンダ装置 - Google Patents

シリンダ装置 Download PDF

Info

Publication number
WO2015178089A1
WO2015178089A1 PCT/JP2015/058423 JP2015058423W WO2015178089A1 WO 2015178089 A1 WO2015178089 A1 WO 2015178089A1 JP 2015058423 W JP2015058423 W JP 2015058423W WO 2015178089 A1 WO2015178089 A1 WO 2015178089A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
passage
side chamber
pipe
piston
Prior art date
Application number
PCT/JP2015/058423
Other languages
English (en)
French (fr)
Inventor
貴之 小川
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Priority to CN201580026532.5A priority Critical patent/CN106460885B/zh
Priority to EP15796490.9A priority patent/EP3115620B1/en
Priority to KR1020167032706A priority patent/KR20160145187A/ko
Priority to US15/310,307 priority patent/US20170218984A1/en
Priority to CA2948789A priority patent/CA2948789A1/en
Publication of WO2015178089A1 publication Critical patent/WO2015178089A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1428Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1433End caps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/149Fluid interconnections, e.g. fluid connectors, passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/18Combined units comprising both motor and pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/185Bitubular units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/185Bitubular units
    • F16F9/187Bitubular units with uni-directional flow of damping fluid through the valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3235Constructional features of cylinders
    • F16F9/3257Constructional features of cylinders in twin-tube type devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/26Supply reservoir or sump assemblies

Definitions

  • the present invention relates to a cylinder device.
  • Patent Document 1 discloses a shock absorber that is a conventional cylinder device.
  • the shock absorber includes a cylinder, a piston, a piston rod, an outer cylinder, a lid member, a rod guide, a tank, and a communication path.
  • the piston is slidably inserted into the cylinder.
  • the piston divides the inside of the cylinder into a rod side chamber and a piston side chamber.
  • the piston rod is connected to the piston.
  • This shock absorber is a double cylinder type, and the outer cylinder is located outside the cylinder.
  • the lid member closes one end of the cylinder and the outer cylinder.
  • the rod guide has a through hole through which the piston rod is inserted. This rod guide closes the other end of the cylinder and the outer cylinder.
  • the tank is formed in the gap between the cylinder and the outer cylinder. This tank stores hydraulic oil.
  • the communication passage communicates the piston side chamber and the rod side chamber.
  • the communication path has a first path, a second path, and a connection path.
  • the first passage is provided in the lid member.
  • the first passage forms a first communication port having one end communicating with the piston side chamber and the other end facing the tank.
  • the second passage is provided in the rod guide.
  • the second passage forms a second communication port with one end communicating with the rod side chamber and the other end facing the tank.
  • the connection path is constituted by a pipe that connects the first passage and the second passage.
  • the pipe is connected to the first communication port and the second communication port by inserting both ends. This piping is arranged in the tank.
  • This shock absorber secures water tightness by interposing packing between both ends of the pipe and each of the first communication port and the second communication port. Since this shock absorber is disposed in a tank in which the piping through which the hydraulic oil flows is formed in the gap between the cylinder and the outer cylinder, it is used when being disposed between the body of the railway vehicle and the bogie. It is possible to prevent the piping from being damaged by a stepping stone or the like.
  • the cylinder device includes a double cylinder type shock absorber, a supply passage, a pump, a first passage, a first on-off valve, a second passage, and a second on-off valve.
  • the tank of this cylinder device is filled with fluid such as hydraulic oil and gas.
  • the supply passage communicates the tank and the rod side chamber.
  • the pump is provided in the middle of the supply passage.
  • the first passage communicates the rod side chamber and the piston side chamber.
  • the first on-off valve is provided in the middle of the first passage.
  • the second passage communicates the piston side chamber and the tank.
  • the second on-off valve is provided in the middle of the second passage.
  • This cylinder device can control the thrust to a desired value by adjusting the pressure of the rod side chamber by controlling the opening and closing of the first on-off valve and the second on-off valve while driving the pump.
  • the shock absorber disclosed in Patent Document 1 is reciprocated in the axial direction by the piping disposed in the tank due to vibration when it is used as a vibration control device between the body of the railway vehicle and the carriage. For this reason, the packing interposed between both ends of the pipe and each of the first communication port and the second communication port may be worn away by long-term use, and the water tightness may be impaired. Further, even if the shock absorber disclosed in Patent Document 1 is applied to the cylinder device of Patent Document 2, similarly, both ends of the pipe, the first communication port, and the second communication port are respectively used by long-term use. There is a risk of impairing the water tightness between the two.
  • the present invention has been made in view of the above-described conventional situation, and an object to be solved is to provide a cylinder device that can be used satisfactorily for a long period of time.
  • the cylinder device of the present invention includes a cylinder, a piston, an outer cylinder, a tank, and piping.
  • the piston is slidably inserted into the cylinder.
  • the piston partitions the inside of the cylinder into a rod side chamber and a piston side chamber.
  • the outer cylinder is disposed outside the cylinder and covers the cylinder.
  • the tank is formed in a gap between the cylinder and the outer cylinder, and stores the working fluid.
  • the piping constitutes a part of a passage through which the working fluid supplied to and discharged from the rod side chamber or the piston side chamber passes. This pipe is formed such that the outer diameter of one end is larger than the outer diameter of the other end. Moreover, this piping is arrange
  • This cylinder device has a pipe in which the outer diameter of one end is formed larger than the outer diameter of the other end.
  • This pipe has a larger pressure receiving area of pressure received from the working fluid in the passage at one end having a larger outer diameter than the outer diameter of the other end. For this reason, when this pipe receives the pressure of the working fluid in the passage, the force from one end portion to the other end portion wins, moves to the other end portion side, and the state is maintained. In this way, this cylinder device maintains the state where the pipe does not reciprocate in the axial direction but moves to the other end side even if it vibrates. Can be prevented from being damaged.
  • the cylinder device of the present invention can be used satisfactorily for a long time.
  • FIG. 1 is a circuit diagram of a cylinder device according to Embodiment 1.
  • FIG. 1 is a cross-sectional view showing a main part of Example 1.
  • FIG. It is a side view which shows the cylinder apparatus of Example 1.
  • FIG. 4 is a cross-sectional view taken along the line XX in FIG. 3.
  • It is a circuit diagram of the cylinder apparatus of Example 2.
  • It is a circuit diagram of the buffer of Example 3.
  • Embodiments 1 to 3 embodying the cylinder device of the present invention will be described with reference to the drawings.
  • the cylinder device includes a cylinder 1, a piston 7, a piston rod 10, an outer cylinder 11, a lid member 12, a rod guide 20, and a flow path forming member 22 (see FIG. 2). , A tank 25, a pump 17, a first check valve C1, a first on-off valve V1 as an on-off valve, and a first pipe 30.
  • the cylinder device also includes a second on-off valve V2, a second check valve C2, an orifice 24, a third check valve C3, and a relief valve V3.
  • the cylinder device includes a first passage T1, a second passage T2, a third passage T3, a fourth passage T4, a fifth passage T5, a sixth passage T6, and a discharge passage T7 as passages through which the working fluid passes. Is formed.
  • Cylinder 1 has a cylindrical shape. As shown in FIG. 2, the cylinder 1 has a tip member 2 attached to one end (hereinafter, in FIG. 2, the end of the cylinder 1 positioned on the right side is referred to as “one end of (cylinder 1)”. The end portion of the cylinder 1 located on the left side is referred to as “the other end portion of the (cylinder 1)”.
  • the tip member 2 has an insertion portion 3, a flange portion 4, and a projection portion 5.
  • the insertion portion 3 has a disk shape and has an outer diameter slightly smaller than the inner diameter of the cylinder 1.
  • the flange portion 4 is a disk shape formed continuously with the insertion portion 3, and has the same outer diameter as the outer diameter of the cylinder 1.
  • the flange portion 4 is locked to the end portion of the cylinder 1 in a state where the insertion portion 3 is inserted into the cylinder 1.
  • the protrusion 5 has a cylindrical shape and protrudes from the center of the flange 4.
  • the tip member 2 has a flow path 6 that passes through the centers of the insertion portion 3, the flange portion 4, and the projection portion 5.
  • the insertion portion 3 has a single groove formed on the same outer peripheral surface, and a packing P1 is fitted in this groove. For this reason, the tip member 2 is inserted into the end of the cylinder 1 in a watertight state.
  • the piston 7 has a substantially cylindrical shape and has an outer diameter slightly smaller than the inner diameter of the cylinder 1.
  • the piston 7 has a single groove 7A formed on the same outer peripheral surface, and a packing P2 is fitted in the groove 7A.
  • the piston 7 is slidably inserted into the cylinder 1 and divides the inside of the cylinder 1 into a rod side chamber 8 and a piston side chamber 9.
  • the rod side chamber 8 and the piston side chamber 9 are filled with hydraulic oil which is a working fluid.
  • the piston 7 has a fourth passage T ⁇ b> 4 that communicates the piston side chamber 9 and the rod side chamber 8.
  • the fourth passage T4 is provided with a second check valve C2 on the way.
  • the second check valve C ⁇ b> 2 allows the hydraulic oil to flow from the piston side chamber 9 to the rod side chamber 8, and prevents the hydraulic oil from flowing from the rod side chamber 8 to the piston side chamber 9.
  • the piston rod 10 has a cylindrical shape, and one end portion passes through the center of the piston 7 and is connected to the piston 7 (hereinafter, it is positioned on the right side in FIG. 2).
  • the end of the piston rod 10 is referred to as “one end of the piston rod 10”, and the end of the piston rod 10 located on the left side is referred to as “the other end of the piston rod 10”.
  • the piston rod 10 is provided with a bracket B1 for attaching to the railcar or the like at the other end.
  • the outer cylinder 11 is formed of a first outer cylinder 11A and a second outer cylinder 11B connected to the first outer cylinder 11A, as shown in FIG. 11 A of 1st outer cylinders are cylindrical shapes, and an internal diameter and an outer diameter are constant.
  • the second outer cylinder 11B one end portion whose diameter is reduced to an outer diameter slightly smaller than the inner diameter of the first outer cylinder 11A is inserted inside the first outer cylinder 11A and joined by welding (hereinafter referred to as “the second outer cylinder 11B”).
  • the end of the second outer cylinder 11B located on the right side is referred to as “one end of the (second outer cylinder 11B)”, and the end of the second outer cylinder 11B located on the left is “( The other end of the second outer cylinder 11B).
  • the second outer cylinder 11B has the same inner diameter and outer diameter as the first outer cylinder 11A except for the reduced diameter portion.
  • the outer cylinder 11 is located outside the cylinder 1 and is arranged coaxially with the cylinder 1.
  • the lid member 12 includes a lid main body 13, a connecting portion 14, and a bracket B2.
  • the lid body 13 is formed with a recess 15 into which one end of the cylinder 1 is inserted.
  • the recess 15 has a circular cross section perpendicular to the depth direction (left and right direction in FIG. 2), and has an inner diameter slightly larger than the outer diameter of the cylinder 1.
  • the recess 15 has a fifth passage T5 opened at the center of the bottom surface.
  • the protrusion 5 of the tip member attached to the cylinder 1 is fitted into the fifth passage T5 that is open to the bottom surface of the recess 15.
  • the fifth passage T5 communicates with a tank 25 described later. That is, the fifth passage T ⁇ b> 5 communicates the piston side chamber 9 and the tank 25.
  • the fifth passage T5 is provided with a third check valve C3 on the way.
  • the third check valve C ⁇ b> 3 allows the hydraulic oil to flow from the tank 25 to the piston side chamber 9 and prevents the hydraulic oil from flowing from the piston side chamber 9 to the tank 25.
  • the outer peripheral wall 16 that forms the recess 15 of the lid body 13 is substantially cylindrical.
  • the outer peripheral wall portion 16 is inserted between the one end portion of the outer cylinder 11 and the cylinder 1 at the distal end portion.
  • the lid body 13 and the outer cylinder 11 are joined by welding. That is, the lid body 13 closes one end of the cylinder 1 and the outer cylinder 11.
  • the lid body 13 forms a first communication port R1 into which one end of a first pipe 30 to be described later is inserted (hereinafter, the end of the first pipe 30 located on the right side in FIG.
  • the end of the first pipe 30 located on the left side is referred to as “the other end of the (first pipe 30)”.
  • the first communication port R1 communicates with a pump 17 provided outside via a passage formed in the lid body 13 (see FIG. 1).
  • the connecting portion 14 extends from the center of the side surface of the lid body 13 on the opposite side to the cylinder 1.
  • the bracket B2 is provided at the distal end of the connecting portion 14, and is used for attaching to a railway vehicle or the like.
  • the rod guide 20 has a first ring portion 20A and a second ring portion 20B formed continuously with the first ring portion 20A.
  • the first ring portion 20A and the second ring portion 20B have a substantially cylindrical shape, and a through hole 21 extends through the center.
  • the first ring portion 20A has a smaller outer diameter than the second ring portion 20B.
  • the piston rod 10 is inserted through the through hole 21.
  • the first ring portion 20 ⁇ / b> A has an outer diameter slightly smaller than the inner diameter of the cylinder 1 and is inserted into the other end of the cylinder 1.
  • the second ring portion 20B has an outer diameter slightly smaller than the inner diameter of the outer cylinder 11, and is inserted into the second outer cylinder 11B.
  • the rod guide 20 closes the other end of the cylinder 1 and the outer cylinder 11.
  • a groove is formed on the same inner peripheral surface of the through hole 21, and a packing P3 is fitted in this groove.
  • the piston rod 10 is slidably inserted into the through hole 21 of the rod guide 20 in a watertight state.
  • the flow path forming member 22 has a substantially cylindrical shape.
  • the flow path forming member 22 is in contact with the outer peripheral surface of the first ring portion 20 ⁇ / b> A of the rod guide 20 and the inner peripheral surface of the other end of the cylinder 1, and the inner peripheral surface of the outer cylinder 11. And an outer peripheral surface.
  • the flow path forming member 22 is externally fitted to the first ring portion 20 ⁇ / b> A of the rod guide 20 and the other end of the cylinder 1, and is accommodated in the outer cylinder 11. That is, the flow path forming member 22 is provided between the cylinder 1 and the outer cylinder 11.
  • the rod guide 20 has a groove formed on the same outer peripheral surface of the first ring portion 20A, and a packing P4 is fitted in the groove.
  • the flow path forming member 22 and the rod guide 20 are fitted in a watertight manner.
  • the flow path forming member 22 is formed with a groove on the same peripheral surface of the inner peripheral surface of the portion that is in contact with the outer peripheral surface of the cylinder 1, and a packing P5 is fitted into the groove. For this reason, the flow path forming member 22 and the cylinder 1 are fitted in a watertight manner.
  • the flow path forming member 22 forms a second communication port R2 into which the other end of the first pipe 30 described later is inserted.
  • the second communication port R ⁇ b> 2 communicates with the rod side chamber 8 through a passage 23 formed in the flow path forming member 22.
  • the flow path forming member 22 forms therein a sixth passage T ⁇ b> 6 branched from a passage 23 that communicates the second communication port R ⁇ b> 2 and the rod side chamber 8.
  • the sixth passage T6 is provided with an orifice 24 in the middle.
  • the sixth passage T ⁇ b> 6 communicates the rod side chamber 8 and the tank 25.
  • the tank 25 is formed by being surrounded by the cylinder 1, the outer cylinder 11, the lid member 12, and the flow path forming member 22, and stores hydraulic oil. That is, the tank 25 is formed in the gap between the cylinder 1 and the outer cylinder 11.
  • the tank 25 is filled with gas in addition to hydraulic oil.
  • the first pipe 30 includes a pipe main body 31, a first insertion member 32, and a second insertion member 33.
  • the pipe body 31 extends in a straight line, and the inner diameter and the outer diameter are constant.
  • One end of the first insertion member 32 is inserted into the first communication port R1 (hereinafter, in FIG. 2, the end of the first insertion member 32 located on the right side is referred to as “(of the first insertion member 32)”. This is referred to as “one end portion”, and the end portion of the first insertion member 32 located on the left side is referred to as “the other end portion (of the first insertion member 32)”.
  • the first insertion member 32 is connected to the other end by inserting one end of the pipe body 31 (hereinafter, the end of the pipe body 31 located on the right side in FIG.
  • the one end of the main body 31 is referred to as “the one end”, and the end of the pipe main body 31 located on the left side is referred to as “the other end (of the main pipe 31)”.
  • the first insertion member 32 has an annular shape whose outer shape is larger than the outer diameter of the pipe body 31 and has a constant outer diameter over the entire length.
  • channel is formed on the same periphery of the outer peripheral surface of one edge part, and packing P6 is engage
  • the first insertion member 32 is inserted in a watertight manner with the first communication port R1.
  • the first insertion member 32 has a groove formed on the same peripheral surface of the inner peripheral surface of the other end, and a packing P7 is fitted in this groove. For this reason, the 1st insertion member 32 and the piping main body 31 are connected in the watertight form.
  • the second insertion member 33 is connected to one end by inserting the other end of the pipe body 31 (hereinafter, the end of the second insertion member 32 located on the right side in FIG. 2) the one end of the second insertion member 32 ”, and the end of the second insertion member 32 located on the left side is referred to as“ the other end (of the second insertion member 32) ”.
  • the second insertion member 33 has the other end inserted into the second communication port R2.
  • the second insertion member 33 is formed such that the outer diameter of one end is substantially equal to the outer diameter of the first insertion member 32 and the outer diameter of the other end is smaller than the outer diameter of the first insertion member 32. .
  • the first pipe 30 is formed such that the outer diameter of the end portion connecting the first insertion member 32 is larger than the outer diameter of the end portion connecting the second insertion member 33.
  • the second insertion member 33 has a stepped portion 33A in which the outer diameter of one end is larger than the outer diameter of the other end.
  • the step 33A is a contact portion that contacts the end surface of the flow path forming member 22 that forms the opening end 22A of the second communication port R2 when the second insertion member 33 is inserted into the second communication port R2. .
  • the second insertion member 33 has a groove formed on the same circumference of the outer peripheral surface of the other end, and a packing P8 is fitted in this groove. For this reason, the second insertion member 33 and the second communication port R2 are inserted in a watertight manner. Further, the second insertion member 33 is formed with a groove on the same peripheral surface of the inner peripheral surface of one end portion, and a packing P9 is fitted in this groove. For this reason, the 2nd insertion member 33 and the piping main body 31 are connected watertight.
  • the first piping 30 is shorter than the distance between the back side end surface 13B of the first communication port R1 and the back side end surface 22B of the second communication port R2 in consideration of the tolerance and assembly error of each component, and is connected to the first communication port R1. It is formed longer than the interval between the opening end portion 13A of the mouth R1 and the opening end portion 22A of the second communication port R2. For this reason, the 1st piping 30 can move to an axial direction in the state which inserted the 1st insertion member 32 in 1st communication port R1, and inserted the 2nd insertion member 33 in 2nd communication port R2.
  • the first pipe 30 has one end inserted into the first communication port R1 formed in the lid main body 13 of the lid member 12, and the other end formed in the flow path forming member 22. It is inserted into the two communication ports R2 and disposed in the tank 25.
  • the first passage T1 communicates the tank 25 and the rod side chamber 8 as shown in FIG.
  • a part of the first passage T1 is constituted by the first pipe 30.
  • the first passage T1 has a passage 26 and an external passage 27.
  • the passage 26 is formed in the lid main body 13 of the lid member 12, and communicates with the first communication port R1 and opens to the outside.
  • the external passage 27 communicates the tank 25 and the passage 26.
  • the pump 17 is provided in the external passage 27 of the first passage T1, and is disposed outside the lid member 12 (see FIGS. 1 and 3).
  • the pump 17 is driven by a motor 18 and can send hydraulic oil from the tank 25 to the rod side chamber 8.
  • the first check valve C ⁇ b> 1 is provided in the external passage 27 on the downstream side of the pump 17.
  • the first check valve C1 allows the hydraulic oil to flow from the tank 25 toward the rod side chamber 8 through the first passage T1, and prevents the oil from flowing from the rod side chamber 8 toward the tank 25.
  • the second passage T2 communicates the piston side chamber 9 and the tank 25.
  • the second passage T ⁇ b> 2 has a passage 28 and an external passage 29.
  • the passage 28 is formed in the lid main body 13 of the lid member 12 and communicates with the piston side chamber 9 and opens to the outside.
  • the external passage 29 communicates the tank 25 and the passage 28.
  • the first on-off valve V1 is provided in the external passage 29 of the second passage T2, and is disposed outside the lid member 12 (see FIGS. 1 and 3).
  • the first on-off valve V1 is an electromagnetic on-off valve, and a valve 41 that opens and closes the second passage T2, a spring 42 that applies an elastic force in a direction in which the valve 41 is opened, and a valve 41 that is closed.
  • a solenoid (solenoid) 43 that imparts thrust in the direction of the movement.
  • the third passage T3 branches the external passage 27 downstream from the first check valve C1 provided in the external passage 27 of the first passage T1, and is a first opening / closing provided in the external passage 29 of the second passage T2. It joins the external passage 29 upstream from the valve V1.
  • the second on-off valve V2 is provided in the middle of the third passage T3 and is disposed outside the lid member 12 (see FIGS. 1 and 3).
  • the second on-off valve V2 is an electromagnetic on-off valve.
  • the valve 44 opens and closes the third passage T3, the spring 45 applies elastic force in the direction of opening the valve 44, and the direction of closing the valve 44. And a solenoid 46 for applying thrust.
  • the discharge passage T7 branches the third passage T3 upstream from the second on-off valve V2 provided in the third passage T3, and the external passage upstream from the pump 17 provided in the external passage 27 of the first passage T1. 27. That is, the discharge passage T7 is connected to the external passage 27 so as to bypass the pump 17 and the first check valve C1 provided in the external passage 27 of the first passage T1.
  • the relief valve V3 is provided in the discharge passage T7.
  • the relief valve V3 is a proportional electromagnetic relief valve.
  • the valve 47 opens and closes the discharge passage T7, the spring 48 applies elastic force in the direction of closing the valve 47, and the thrust in the direction of opening the valve 47. And a proportional solenoid 49 to be applied.
  • the relief valve V3 can adjust the valve opening pressure by adjusting the amount of current flowing through the proportional solenoid 49. That is, in the relief valve V3, when the pressure in the rod side chamber 8 exceeds the valve opening pressure, the resultant force of the thrust resulting from this pressure and the thrust from the proportional solenoid 49 is applied to the elasticity of the spring 48 applied in the direction of closing the valve 47. The force is overcome and the discharge passage T7 is opened.
  • the relief valve V3 has the minimum valve opening pressure when the amount of current supplied to the proportional solenoid 49 is maximized, and the valve opening pressure is maximized when no current is supplied to the proportional solenoid 49.
  • this cylinder device can release air from the cylinder 1.
  • the first on-off valve V1, the second on-off valve V2, and the relief valve V3 of the cylinder device are closed. In this state, the cylinder device is expanded and contracted. If it does in this way, as for this cylinder device, hydraulic oil circulates in order of rod side chamber 8, 6th passage T6, tank 25, 5th passage T5, piston side chamber 9, 4th passage T4, and rod side chamber 8.
  • the cylinder device can discharge the hydraulic oil that may be mixed with gas to the tank 25 and can suck the hydraulic oil that is not likely to be mixed with gas into the cylinder 1. In this way, this cylinder device can release air from the cylinder 1.
  • the air in the rod side chamber 8 is guided to the tank 25 by the orifice 24 installed so as to be on the upper side. Therefore, when this cylinder device functions as an actuator or a damper, the orifice 24 becomes a resistance and the flow rate passing through the sixth passage T6 is greatly limited, and the loss of the hydraulic oil passing through the sixth passage T6 is minimized. It is supposed to stay on.
  • this cylinder device can function as a damper, as will be described below.
  • the first on-off valve V1 and the second on-off valve V2 of the cylinder device are closed. Then, in this cylinder device, the rod side chamber 8, the tank 25, and the piston side chamber 9 communicate with each other through the fourth passage T4, the first passage T1 via the discharge passage T7, and the fifth passage T5.
  • the fourth passage T4, the discharge passage T7, and the fifth passage T5 of this cylinder device are set so that the hydraulic oil flows in one direction. For this reason, when the cylinder device is extended by an external force, the hydraulic oil in the cylinder 1 is returned to the tank 25 via the fourth passage T4 and the first passage T1 via the discharge passage T7. In this cylinder device, hydraulic oil that is insufficient in the cylinder 1 is supplied from the tank 25 into the cylinder 1 via the fifth passage T5. Further, when the cylinder device is contracted by an external force, the hydraulic oil that has entered the piston rod 10 is returned to the tank 25 through the first passage T1 through the discharge passage T7.
  • this cylinder device is a pressure control valve that adjusts the pressure in the cylinder 1 to the valve opening pressure when the relief valve V3 becomes a resistance against the hydraulic fluid flowing in the discharge passage T7 when expanding and contracting by an external force. Function as. For this reason, the cylinder device functions as a damper.
  • this cylinder device can generate a desired thrust in the extending direction, as will be described below.
  • the first on-off valve V1 of the cylinder device is closed, and the second on-off valve V2 is opened.
  • the pump 18 is driven by rotating the motor 18 at a predetermined rotational speed in accordance with the expansion / contraction state of the cylinder device, and hydraulic oil is supplied from the tank 25 into the cylinder 1.
  • the hydraulic oil is supplied in a state where the rod side chamber 8 and the piston side chamber 9 communicate with each other, the cylinder device 7 is pushed and extended in the direction of the rod side chamber 8 (left direction in FIG. 1). Demonstrate direction thrust.
  • this cylinder device when the pressure in the rod side chamber 8 and the piston side chamber 9 exceeds the valve opening pressure of the relief valve V3, the relief valve V3 is opened and the hydraulic oil is supplied to the tank 25 via the discharge passage T7 and the external passage 27. Returned.
  • the pressure in the rod side chamber 8 and the piston side chamber 9 corresponds to the valve opening pressure of the relief valve V3. That is, this cylinder device can control the pressure in the rod side chamber 8 and the piston side chamber 9 with the amount of current applied to the relief valve V3.
  • the pressure in the rod side chamber 8 and the piston side chamber 9 controlled by the amount of current applied to the relief valve V3 is multiplied by the difference in pressure receiving area between the piston side chamber 9 side and the rod side chamber 8 side in the piston 7.
  • the thrust of the value can be exhibited in the extension direction.
  • this cylinder device can exert a desired thrust in the contraction direction, as will be described next.
  • the first on-off valve V1 of the cylinder device is opened, and the second on-off valve V2 is closed.
  • the pump 18 is driven by rotating the motor 18 at a predetermined rotational speed according to the expansion / contraction state of the cylinder device, and the hydraulic oil is supplied from the tank 25 into the rod side chamber 8.
  • the piston 7 moves toward the piston side chamber 9.
  • this cylinder device can control the pressure in the rod side chamber 8 with the amount of current applied to the relief valve V3. Therefore, the cylinder device can exert a thrust in a contracting direction by multiplying the pressure receiving area of the piston 7 on the rod side chamber 8 side by the pressure of the rod side chamber 8 controlled by the amount of current applied to the relief valve V3. .
  • This cylinder device includes a cylinder 1, a piston 7, an outer cylinder 11, a tank 25, and a first pipe 30.
  • the piston 7 is slidably inserted into the cylinder 1.
  • the piston 7 partitions the inside of the cylinder 1 into a rod side chamber 8 and a piston side chamber 9.
  • the outer cylinder 11 is disposed outside the cylinder 1 and covers the cylinder 1.
  • the tank 25 is formed in a gap between the cylinder 1 and the outer cylinder 11 and stores hydraulic oil.
  • the first pipe 30 constitutes a part of the first passage T ⁇ b> 1 through which the hydraulic oil supplied to and discharged from the rod side chamber 8 passes.
  • the outer diameter of the end portion connecting the first insertion member 32 is larger than the outer diameter of the end portion connecting the second insertion member 33.
  • the first pipe 30 is disposed in the tank 25.
  • This cylinder device includes a first pipe 30 in which the outer diameter of the end connected to the first insertion member 32 is larger than the outer diameter of the end connected to the second insertion member 33. That is, in the first pipe 30, the pressure receiving area of the pressure received from the hydraulic oil filled in the first passage T ⁇ b> 1 that constitutes a part of the first pipe 30 is greater than the end where the second insertion member 33 is connected. Also, the end where the first insertion member 32 is connected is larger. For this reason, when the first piping 30 receives the pressure of the hydraulic oil in the first passage T1, the force from the first insertion member 32 toward the second insertion member 33 wins and moves to the second insertion member 33 side. To do.
  • this 1st piping 30 is in the state which the step part (contact part) 33A of the 2nd insertion member 33 contact
  • the first pipe 30 does not reciprocate in the axial direction even if it vibrates. Therefore, the connecting portion between the both ends of the first pipe 30 and the first communication port R1 and the second communication port R2. Can prevent water-tightness from being impaired by wear.
  • the cylinder device of Example 1 can be used satisfactorily for a long time.
  • the first pipe 30 includes a pipe main body 31, a first insertion member 32, and a second insertion member 33.
  • the pipe body 31 extends in a straight line, and the inner diameter and the outer diameter are constant.
  • the first insertion member 32 is connected to one end of the pipe body 31.
  • the second insertion member 33 is connected to the other end of the pipe body 31.
  • the first insertion member 32 and the second insertion member 33 have an outer diameter larger than the outer diameter of the pipe body 31.
  • the outer diameter of the first insertion member 32 is larger than the outer diameter of the second insertion member 33.
  • the cylinder device when used as a vibration damping device for a railway vehicle body, the cylinder device is arranged so that the central axis of the cylinder 1 is in the horizontal direction.
  • the first pipe 30 is arranged along the vicinity of the oil level of the hydraulic oil in the tank 25.
  • the first pipe 30 has a wave quenching action of waves generated in the hydraulic oil in the tank 25 by the vibration of the cylinder device.
  • the first communication port R1 through which the first pipe 30 communicates is provided at a position avoiding the inlet 19 provided in the tank 25 of the first passage T1.
  • the cylinder device of the second embodiment does not include the first pipe 30 that constitutes a part of the first passage T ⁇ b> 1 that connects the tank 25 and the rod side chamber 8, and the piston side chamber 9 and the tank
  • the second embodiment is different from the first embodiment in that the second pipe 40 in which a part of the second passage T2 that communicates with the tank 25 is disposed in the tank 25 is configured.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the second pipe 40 has the same structure as the first pipe 30 of the first embodiment, and includes a pipe body 31, a first insertion member 32, and a second insertion member 33.
  • the second pipe 40 also has one end of the first insertion member 32 inserted into the first communication port R1 formed in the lid main body 113 of the lid member 12, and the other end of the second insertion member 33 is inserted. It is inserted into the second communication port R ⁇ b> 2 formed in the flow path forming member 22 and arranged in the tank 25.
  • the second pipe 40 constitutes a part of the second passage T2.
  • the first passage T1 communicates with the tank 25 and the rod side chamber 8.
  • the first passage T1 communicates with the tank 25 and is formed in the lid main body 113 of the lid member 12. One end communicates with the passage 126 communicated with the tank 25 and the rod side chamber 8, and opens to the outside on the rod guide 120 side.
  • An external passage 127 that communicates with the passage 123 is provided.
  • the second passage T ⁇ b> 2 communicates the piston side chamber 9 and the tank 25. Part of the second passage T2 is constituted by the second pipe 40.
  • the second passage T ⁇ b> 2 has an external passage 82 that communicates with the second communication port R ⁇ b> 2 and communicates the passage 81 that opens to the outside on the rod guide 120 side and the tank 25.
  • the discharge passage T7 is connected so as to bypass the pump 17 and the first check valve C1 in the first passage T1.
  • This cylinder device includes a cylinder 1, a piston 7, an outer cylinder 11, a tank 25, and a second pipe 40.
  • the piston 7 is slidably inserted into the cylinder 1.
  • the piston 7 partitions the inside of the cylinder 1 into a rod side chamber 8 and a piston side chamber 9.
  • the outer cylinder 11 is disposed outside the cylinder 1 and covers the cylinder 1.
  • the tank 25 is formed in a gap between the cylinder 1 and the outer cylinder 11 and stores hydraulic oil.
  • the second pipe 40 constitutes a part of the second passage T ⁇ b> 2 through which the hydraulic oil supplied to and discharged from the piston side chamber 9 passes.
  • the outer diameter of the end portion connecting the first insertion member 32 is larger than the outer diameter of the end portion connecting the second insertion member 33.
  • the second pipe 40 is disposed in the tank 25.
  • This cylinder device includes a second pipe 40 in which the outer diameter of the end connected to the first insertion member 32 is larger than the outer diameter of the end connected to the second insertion member 33. That is, in the second pipe 40, the pressure receiving area of the pressure received from the hydraulic oil filled in the second passage T2 that constitutes a part of the second pipe 40 is greater than the end where the second insertion member 33 is connected. Also, the end where the first insertion member 32 is connected is larger. For this reason, when the second piping 40 receives the pressure of the hydraulic oil in the second passage T2, the force from the first insertion member 32 toward the second insertion member 33 wins and moves to the second insertion member 33 side. To do.
  • this 2nd piping 40 has the state which the step part (contact part) 33A of the 2nd insertion member 33 contact
  • the second pipe 40 does not reciprocate in the axial direction even if it vibrates. Therefore, the connecting portion between the both ends of the second pipe 40 and the first communication port R1 and the second communication port R2. Can prevent water-tightness from being impaired by wear.
  • the cylinder device of Example 2 can also be used well for a long period of time.
  • the shock absorber as the cylinder device according to the third embodiment includes a cylinder 1, a piston 7, a piston rod 10, an outer cylinder 11, a lid member 212, a rod guide 220, a tank 25, a communication path T ⁇ b> 8, Three pipes 50 are provided.
  • the cylinder 1, the piston 7, the piston rod 10, the outer cylinder 11, and the tank 25 have the same structure as that of the first embodiment.
  • the lid member 212 and the rod guide 220 have the same structure as that of the first embodiment except for the passages through which the hydraulic oil flows.
  • the third pipe 50 has the same structure as the first pipe 30 of the first embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals and detailed description thereof is omitted.
  • the communication passage T8 communicates the rod side chamber 8 and the piston side chamber 9 with each other. That is, the communication passage T8 is a second internal passage that opens to the outside through the first internal passage 51, the third pipe 50, and the first communication port R1 that communicate between the rod side chamber 8 and the second communication port R2. 52, an external passage 53, and a third internal passage 54 which is provided in the lid member 212 so as to communicate with the external passage 53 and communicate with the piston-side chamber 9 via a check valve C4.
  • the check valve C4 allows the hydraulic oil to flow from the rod side chamber 8 toward the piston side chamber 9, and prevents the hydraulic oil from flowing from the piston side chamber 9 toward the rod side chamber 8.
  • the third internal passage 54 branches and communicates with the tank 25.
  • 3rd piping 50 is the same structure as the 1st piping 30 of Example 1, and has the piping main body 31, the 1st insertion member 32, and the 2nd insertion member 33.
  • FIG. The third pipe 50 also has one end of the first insertion member 32 inserted into the first communication port R1 formed in the lid body 13 of the lid member 212, and the other end of the second insertion member 33 is inserted. It is inserted into the second communication port R ⁇ b> 2 formed in the flow path forming member 22 and arranged in the tank 25.
  • the third pipe 50 constitutes a part of the communication path T8.
  • the external passage 53 is provided with a first on-off valve V4 and a first damping valve V5 in this order from the rod side chamber 8 toward the piston side chamber 9.
  • the first on-off valve V4 is an electromagnetic on-off valve.
  • the valve 61 opens and closes the external passage, the spring 62 applies elastic force in the direction to open the valve 61, and the thrust in the direction to close the valve 61.
  • a solenoid 63 to be applied.
  • This shock absorber has a bypass passage 55 that bypasses the first on-off valve V4 and the first damping valve V5 and communicates with the external passage 53.
  • the bypass passage 55 is provided with a second damping valve V6.
  • This shock absorber includes a cylinder 1, a piston 7, an outer cylinder 11, a tank 25, and a third pipe 50.
  • the piston 7 is slidably inserted into the cylinder 1.
  • the piston 7 partitions the inside of the cylinder 1 into a rod side chamber 8 and a piston side chamber 9.
  • the outer cylinder 11 is disposed outside the cylinder 1 and covers the cylinder 1.
  • the tank 25 is formed in a gap between the cylinder 1 and the outer cylinder 11 and stores hydraulic oil.
  • the third pipe 50 constitutes a part of the communication passage T8 through which the hydraulic oil supplied to and discharged from the rod side chamber 8 and the piston side chamber 9 passes.
  • the outer diameter of the end portion connecting the first insertion member 32 is larger than the outer diameter of the end portion connecting the second insertion member 33.
  • the third pipe 50 is disposed in the tank 25.
  • the shock absorber includes a third pipe 50 in which the outer diameter of the end connected to the first insertion member 32 is larger than the outer diameter of the end connected to the second insertion member 33. That is, in the third pipe 50, the pressure receiving area of the pressure received from the hydraulic oil filled in the communication path T8 that constitutes a part of the third pipe 50 is larger than the end portion where the second insertion member 33 is connected. The end where the first insertion member 32 is connected is larger. For this reason, when the pressure of the hydraulic oil in the communication passage T8 is received, the third pipe 50 has a superior force from the first insertion member 32 toward the second insertion member 33 and moves toward the second insertion member 33. .
  • this 3rd piping 50 has the state which the step part (contact part) 33A of the 2nd insertion member 33 contact
  • the third pipe 50 does not reciprocate in the axial direction even if it vibrates. Therefore, the connecting portion between the both ends of the third pipe 50 and the first communication port R1 and the second communication port R2. Can prevent water-tightness from being impaired by wear.
  • the shock absorber of Example 3 can be used well for a long period of time.
  • the present invention is not limited to the first to third embodiments described with reference to the above description and drawings.
  • the following embodiments are also included in the technical scope of the present invention.
  • the first to third pipes are formed by the pipe main body, the first insertion member, and the second insertion member, but may be formed only by the pipe members having different outer diameters at both ends. .
  • the insertion member may be attached to only one end of the pipe body, and the outer diameters at both ends may be made different.
  • the cylinder device and the shock absorber are filled with hydraulic oil, but other liquids may be filled.
  • the cylinder device or the shock absorber of the first to third embodiments can be applied to a vibration damping device other than the vehicle body of a railway vehicle.
  • the first on-off valve may be omitted and the second damping valve may be an on-off valve.
  • the shock absorber normally closes the on-off valve, and when extended by an external force, the hydraulic oil passes through the first damping valve, and when the on-off valve is opened, the hydraulic oil freely passes through the bypass passage. Will do.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Actuator (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

 長期間、良好に使用することができるシリンダ装置を提供する。 シリンダ装置は、シリンダ(1)、ピストン(7)、外筒(11)、タンク(25)、及び第1配管(30)を備えている。ピストン(7)はシリンダ(1)内に摺動自在に挿入されている。ピストン(7)はシリンダ(1)内をロッド側室(8)とピストン側室(9)とに区画している。外筒(11)は、シリンダ(1)の外側に配置され、シリンダ(1)を覆っている。タンク(25)は、シリンダ(1)と外筒(11)との隙間に形成され、作動流体を貯留する。第1配管(30)は、ロッド側室(8)又はピストン側室(9)へ給排される作動流体が通過する第1通路(T1)の一部を構成している。この第1配管(30)は一方の端部の外径を他方の端部の外径より大きく形成している。また、この第1配管(30)はタンク(25)内に配置されている。

Description

[規則26に基づく補充 02.04.2015] シリンダ装置
 本発明はシリンダ装置に関するものである。
 特許文献1は従来のシリンダ装置である緩衝器を開示している。この緩衝器は、シリンダ(cylinder)、ピストン(piston)、ピストンロッド(piston rod)、外筒、蓋部材、ロッドガイド(rod guide)、タンク(tank)、及び連通路を備えている。ピストンはシリンダ内に摺動自在に挿入されている。このピストンはシリンダ内をロッド側室(rod side chamber)とピストン側室(piston side chamber)とに区画している。ピストンロッドはピストンに連結している。この緩衝器は、複筒式であり、外筒がシリンダの外側に位置している。蓋部材はシリンダ及び外筒の一方の端部を閉塞している。ロッドガイドはピストンロッドを挿通する貫通孔を貫設している。このロッドガイドはシリンダ及び外筒の他方の端部を閉塞している。タンクはシリンダと外筒との隙間に形成されている。このタンクは作動油を貯留している。連通路はピストン側室とロッド側室とを連通している。この連通路は、第1通路、第2通路、及び連結路を有している。第1通路は蓋部材に設けられている。この第1通路は、一端がピストン側室に連通し、他端がタンクに臨む第1連通口を形成している。第2通路はロッドガイドに設けられている。この第2通路は、一端がロッド側室に連通し、他端がタンクに臨む第2連通口を形成している。連結路は第1通路と第2通路とを連結する配管で構成されている。配管は第1連通口と第2連通口とに両端を挿入して連結されている。この配管はタンク内に配置されている。この緩衝器は、配管の両端と、第1連通口及び第2連通口の夫々との間にパッキン(packing)を介在させて水密性を確保している。この緩衝器は、作動油が流通する配管がシリンダと外筒との隙間に形成されたタンク内に配置されているため、鉄道車両の車体と台車との間に配置して使用された場合等に飛び石等によって配管が損傷することを防止することができる。
 また、特許文献2の図4に従来のシリンダ装置が開示されている。このシリンダ装置は、複筒式の緩衝器、供給通路、ポンプ(pump)、第1通路、第1開閉弁、第2通路、及び第2開閉弁を備えている。このシリンダ装置のタンクは作動油等の流体と気体が充填されている。供給通路はタンクとロッド側室とを連通している。ポンプは供給通路の途中に設けられている。第1通路はロッド側室とピストン側室とを連通している。第1開閉弁は第1通路の途中に設けられている。第2通路はピストン側室とタンクとを連通している。第2開閉弁は第2通路の途中に設けられている。このシリンダ装置は、ポンプを駆動しつつ、第1開閉弁及び第2開閉弁を開閉制御してロッド側室の圧力を調整し、推力を所望の値に制御することができる。
特開2008-25694号公報 特開2010-65797号公報
 しかし、特許文献1の緩衝器は、鉄道車両の車体と台車との間に配置して制振装置として使用された場合等、振動によってタンク内に配置した配管が軸方向に往復移動する。このため、配管の両端と、第1連通口及び第2連通口の夫々との間に介在させたパッキンが長期間の使用によって摩耗し、水密性を損なうおそれがある。また、特許文献2のシリンダ装置に特許文献1に開示された緩衝器を適用したとしても、同様に、長期間の使用によって、配管の両端と、第1連通口及び第2連通口の夫々との間の水密性を損なうおそれがある。
 本発明は、上記従来の実情に鑑みてなされたものであって、長期間、良好に使用することができるシリンダ装置を提供することを解決すべき課題としている。
 本発明のシリンダ装置は、シリンダ、ピストン、外筒、タンク、及び配管を備えている。ピストンはシリンダ内に摺動自在に挿入されている。ピストンはシリンダ内をロッド側室とピストン側室とに区画している。外筒は、シリンダの外側に配置され、シリンダを覆っている。タンクは、シリンダと外筒との隙間に形成され、作動流体を貯留する。配管は、ロッド側室又はピストン側室へ給排される作動流体が通過する通路の一部を構成している。この配管は一方の端部の外径を他方の端部の外径より大きく形成している。また、この配管はタンク内に配置されている。
 このシリンダ装置は一方の端部の外径を他方の端部の外径よりも大きく形成した配管を備えている。この配管は他方の端部の外径よりも外径の大きい一方の端部の方が通路内の作動流体から受ける圧力の受圧面積が大きい。このため、この配管は、通路内の作動流体の圧力を受けると、一方の端部から他方の端部に向けた力が勝り、他方の端部側に移動し、その状態が保持される。このように、このシリンダ装置は、振動しても配管が軸方向に往復移動せずに他方の端部側に移動した状態が保持されるため、配管の両端部の連結箇所が摩耗によって水密性を損なうことを防止することができる。
 したがって、本発明のシリンダ装置は、長期間、良好に使用することができる。
実施例1のシリンダ装置の回路図である。 実施例1の要部を示す断面図である。 実施例1のシリンダ装置を示す側面図である。 図3の矢視X-X断面図である。 実施例2のシリンダ装置の回路図である。 実施例3の緩衝器の回路図である。
 本発明のシリンダ装置を具体化した実施例1~3について、図面を参照しつつ説明する。
<実施例1>
 実施例1のシリンダ装置は、図1及び図2に示すように、シリンダ1、ピストン7、ピストンロッド10、外筒11、蓋部材12、ロッドガイド20、流路形成部材22(図2参照)、タンク25、ポンプ17、第1逆止弁C1、開閉弁である第1開閉弁V1、及び第1配管30を備えている。また、シリンダ装置は、第2開閉弁V2、第2逆止弁C2、オリフィス(orifice)24、第3逆止弁C3、及びリリーフ弁(relief valve)V3を備えている。また、このシリンダ装置は、作動流体が通過する通路として、第1通路T1、第2通路T2、第3通路T3、第4通路T4、第5通路T5、第6通路T6、及び排出通路T7が形成されている。
 シリンダ1は円筒形状である。シリンダ1は、図2に示すように、一方の端部に先端部材2が取り付けられている(以下、図2において、右側に位置するシリンダ1の端部を「(シリンダ1の)一方の端部」といい、左側に位置するシリンダ1の端部を「(シリンダ1の)他方の端部」という。)。先端部材2は、挿入部3、鍔部4、及び突起部5を有している。挿入部3は、円盤状であり、シリンダ1の内径よりわずかに小さい外径を有している。鍔部4は、挿入部3に連続して形成された円盤状であり、シリンダ1の外径と同じ外径を有している。鍔部4は挿入部3がシリンダ1内に挿入された状態でシリンダ1の端部に係止している。突起部5は、円筒状であり、鍔部4の中心から突出ている。先端部材2は、挿入部3、鍔部4、及び突起部5の中心を貫通する流路6を有している。挿入部3は、同一外周面に一条の溝が形成され、この溝にパッキンP1が嵌め込まれている。このため、先端部材2はシリンダ1の端部に水密状態で挿入されている。
 ピストン7は、略円柱形状であり、シリンダ1の内径よりも僅かに小さい外径を有している。ピストン7は、同一外周面に一条の溝7Aが形成され、この溝7AにパッキンP2が嵌め込まれている。ピストン7は、シリンダ1内に摺動自在に挿入され、シリンダ1内をロッド側室8とピストン側室9とに区画している。ロッド側室8及びピストン側室9は作動流体である作動油が充填されている。ピストン7は、図1に示すように、ピストン側室9とロッド側室8とを連通する第4通路T4が形成されている。第4通路T4は途中に第2逆止弁C2を設けている。第2逆止弁C2は、作動油がピストン側室9からロッド側室8に流通することを許容し、ロッド側室8からピストン側室9に流通することを阻止している。
 ピストンロッド10は、図1及び図2に示すように、円柱形状であり、一方の端部がピストン7の中心を貫通してピストン7に連結している(以下、図2において、右側に位置するピストンロッド10の端部を「(ピストンロッド10の)一方の端部」といい、左側に位置するピストンロッド10の端部を「(ピストンロッド10の)他方の端部」という。)。ピストンロッド10は他方の端部に鉄道車両等に取り付けるためのブラケット(bracket)B1が設けられている。
 外筒11は、図2に示すように、第1外筒11Aと、第1外筒11Aに連結した第2外筒11Bとから形成されている。第1外筒11Aは、円筒形状であり、内径及び外径が一定である。第2外筒11Bは、第1外筒11Aの内径よりわずかに小さい外径に縮径された一方の端部が、第1外筒11Aの内側に挿入され、溶接によって結合されている(以下、図2において、右側に位置する第2外筒11Bの端部を「(第2外筒11Bの)一方の端部」といい、左側に位置する第2外筒11Bの端部を「(第2外筒11Bの)他方の端部」という。)。第2外筒11Bは縮径された部分を除いて第1外筒11Aと同じ内径及び外径である。外筒11は、シリンダ1の外側に位置し、シリンダ1と同軸に配置されている。
 蓋部材12は、蓋本体13、連結部14、及びブラケットB2を有している。蓋本体13はシリンダ1の一方の端部を挿入する窪み15が形成されている。窪み15は、深さ方向(図2において左右方向)に直交する断面が円形状であり、内径がシリンダ1の外径よりも僅かに大きい。窪み15は底面の中心部に第5通路T5が開口している。シリンダ1に取り付けられた先端部材の突起部5が窪み15の底面に開口している第5通路T5に嵌り込んでいる。第5通路T5は後述するタンク25に連通している。つまり、第5通路T5はピストン側室9とタンク25とを連通している。第5通路T5は途中に第3逆止弁C3が設けられている。第3逆止弁C3は、作動油がタンク25からピストン側室9に流通することを許容し、ピストン側室9からタンク25に流通することを阻止している。
 蓋本体13の窪み15を形成する外周壁部16は略円筒状である。外周壁部16は先端部が外筒11の一方の端部とシリンダ1との間に挿入されている。蓋本体13と外筒11とは溶接によって結合されている。つまり、蓋本体13はシリンダ1及び外筒11の一方の端部を閉塞している。蓋本体13は後述する第1配管30の一方の端部が挿入される第1連通口R1を形成している(以下、図2において、右側に位置する第1配管30の端部を「(第1配管30の)一方の端部」といい、左側に位置する第1配管30の端部を「(第1配管30の)他方の端部」という。)。第1連通口R1は蓋本体13内に形成された通路を介して外部に設けられたポンプ17に連通している(図1参照)。連結部14はシリンダ1とは反対側の蓋本体13の側面の中心部から延びている。ブラケットB2は、連結部14の先端に設けられ、鉄道車両等に取り付けるために利用される。
 ロッドガイド20は、第1環部20Aと、第1環部20Aに連続して形成された第2環部20Bとを有している。第1環部20Aと第2環部20Bは、略円筒形状であり、中心を貫通孔21が貫設している。第1環部20Aは第2環部20Bよりも外径が小さい。貫通孔21はピストンロッド10が挿通している。第1環部20Aは、先端部がシリンダ1の内径よりも僅かに小さい外径であり、シリンダ1の他方の端部に挿入されている。第2環部20Bは、外径が外筒11の内径よりも僅かに小さく、第2外筒11B内に挿入されている。このように、ロッドガイド20はシリンダ1及び外筒11の他方の端部を閉塞している。第2環部20Bは、貫通孔21の同一内周面に溝が形成されており、この溝にパッキンP3が嵌め込まれている。これによって、ピストンロッド10はロッドガイド20の貫通孔21に水密状態で摺動自在に挿入されている。
 流路形成部材22は略円筒形状である。この流路形成部材22は、ロッドガイド20の第1環部20Aの外周面、及びシリンダ1の他方の端部の外周面に当接する内周面と、外筒11の内周面に当接する外周面とを有している。流路形成部材22は、ロッドガイド20の第1環部20A及びシリンダ1の他方の端部に外嵌し、外筒11内に収納されている。つまり、流路形成部材22はシリンダ1と外筒11との間に設けられている。ロッドガイド20は、第1環部20Aの外周面の同一周面上に溝が形成され、この溝にパッキンP4が嵌め込まれている。このため、流路形成部材22とロッドガイド20とは水密状に嵌合している。また、流路形成部材22は、シリンダ1の外周面に当接する部分の内周面の同一周面上に溝が形成され、この溝にパッキンP5が嵌め込まれている。このため、流路形成部材22とシリンダ1とは水密状に嵌合している。
 流路形成部材22は後述する第1配管30の他方の端部が挿入される第2連通口R2を形成している。第2連通口R2は、流路形成部材22内に形成された通路23を介して、ロッド側室8に連通している。流路形成部材22は、図1に示すように、第2連通口R2とロッド側室8とを連通する通路23から分岐した第6通路T6を内部に形成している。第6通路T6は途中にオリフィス24を設けている。第6通路T6はロッド側室8とタンク25とを連通している。
 タンク25は、図2に示すように、シリンダ1と外筒11と蓋部材12と流路形成部材22に囲まれて形成されており、作動油を貯留している。つまり、タンク25はシリンダ1と外筒11との隙間に形成されている。タンク25は作動油の他に気体が充填されている。
 第1配管30は、配管本体31、第1挿入部材32、及び第2挿入部材33を有している。配管本体31は、一直線上に延び、内径及び外径が一定である。第1挿入部材32は一方の端部を第1連通口R1に挿入している(以下、図2において、右側に位置する第1挿入部材32の端部を「(第1挿入部材32の)一方の端部」といい、左側に位置する第1挿入部材32の端部を「(第1挿入部材32の)他方の端部」という。)。また、第1挿入部材32は他方の端部に配管本体31の一方の端部を挿入して連結している(以下、図2において、右側に位置する配管本体31の端部を「(配管本体31の)一方の端部」といい、左側に位置する配管本体31の端部を「(配管本体31の)他方の端部」という。)。第1挿入部材32は、外形が配管本体31の外径よりも大きい円環状であり、全長にわたって一定の外径を有している。第1挿入部材32は、一方の端部の外周面の同一円周上に溝が形成され、この溝にパッキンP6が嵌め込まれている。このため、第1挿入部材32は第1連通口R1と水密状に挿入されている。また、第1挿入部材32は、他方の端部の内周面の同一周面上に溝が形成され、この溝にパッキンP7が嵌め込まれている。このため、第1挿入部材32と配管本体31とは水密状に連結されている。
 第2挿入部材33は一方の端部に配管本体31の他方の端部を挿入して連結している(以下、図2において、右側に位置する第2挿入部材32の端部を「(第2挿入部材32の)一方の端部」といい、左側に位置する第2挿入部材32の端部を「(第2挿入部材32の)他方の端部」という。)。また、第2挿入部材33は他方の端部を第2連通口R2に挿入している。第2挿入部材33は、一方の端部の外径が第1挿入部材32の外径と略等しく、他方の端部の外径が第1挿入部材32の外径よりも小さく形成されている。つまり、第1配管30は第1挿入部材32を連結した端部の外径が第2挿入部材33を連結した端部の外径よりも大きく形成されている。また、第2挿入部材33は、一方の端部の外径が他方の端部の外径よりも大きく、段部33Aが形成されている。この段部33Aは、第2挿入部材33を第2連通口R2に挿入した際、第2連通口R2の開口端部22Aを形成する流路形成部材22の端面に当接する当接部である。
 第2挿入部材33は、他方の端部の外周面の同一円周上に溝が形成され、この溝にパッキンP8が嵌め込まれている。このため、第2挿入部材33と第2連通口R2とは水密状に挿入されている。また、第2挿入部材33は、一方の端部の内周面の同一周面上に溝が形成され、この溝にパッキンP9が嵌め込まれている。このため、第2挿入部材33と配管本体31とは水密状に連結されている。
 第1配管30は、各部品の公差及び組立誤差を考慮して、第1連通口R1の奥側端面13Bと第2連通口R2の奥側端面22Bとの間隔よりも短く、かつ第1連通口R1の開口端部13Aと第2連通口R2の開口端部22Aとの間隔よりも長く形成している。このため、第1配管30は、第1挿入部材32を第1連通口R1に挿入し、第2挿入部材33を第2連通口R2に挿入した状態で、軸方向に移動することができる。このように、第1配管30は、一方の端部を蓋部材12の蓋本体13に形成された第1連通口R1に挿入し、他方の端部を流路形成部材22に形成された第2連通口R2に挿入して、タンク25内に配置されている。
 第1通路T1は、図1に示すように、タンク25とロッド側室8とを連通している。第1通路T1は、その一部を第1配管30が構成している。第1通路T1は通路26と外部通路27とを有している。通路26は、蓋部材12の蓋本体13内に形成され、第1連通口R1に連通して外部に開口している。外部通路27はタンク25と通路26とを連通している。ポンプ17は、第1通路T1の外部通路27に設けられ、蓋部材12の外部に配置されている(図1、図3参照)。ポンプ17は、モータ(motor)18によって駆動され、タンク25からロッド側室8へ作動油を送ることができる。第1逆止弁C1はポンプ17より下流側の外部通路27に設けられている。第1逆止弁C1は、第1通路T1を作動油がタンク25からロッド側室8に向けて流れることを許容し、ロッド側室8からタンク25に向けて流れることを阻止している。
 第2通路T2はピストン側室9とタンク25とを連通している。第2通路T2は通路28と外部通路29とを有している。通路28は、蓋部材12の蓋本体13内に形成され、ピストン側室9に連通して外部に開口している。外部通路29はタンク25と通路28とを連通している。第1開閉弁V1は、第2通路T2の外部通路29に設けられ、蓋部材12の外部に配置されている(図1、図3参照)。第1開閉弁V1は、電磁式開閉弁であり、第2通路T2を開閉するバルブ(valve)41と、バルブ41を開弁する方向に弾性力を付与するばね42と、バルブ41を閉弁する方向に推力を付与するソレノイド(solenoid)43とを有している。
 第3通路T3は、第1通路T1の外部通路27に設けられた第1逆止弁C1より下流側で外部通路27を分岐し、第2通路T2の外部通路29に設けられた第1開閉弁V1より上流側の外部通路29に合流している。第2開閉弁V2は、第3通路T3の途中に設けられ、蓋部材12の外部に配置されている(図1、図3参照)。第2開閉弁V2は、電磁式開閉弁であり、第3通路T3を開閉するバルブ44と、バルブ44を開弁する方向に弾性力を付与するばね45と、バルブ44を閉弁する方向に推力を付与するソレノイド46とを有している。
 排出通路T7は、第3通路T3に設けられた第2開閉弁V2より上流側で第3通路T3を分岐し、第1通路T1の外部通路27に設けられたポンプ17より上流側で外部通路27に合流している。つまり、排出通路T7は第1通路T1の外部通路27に設けられたポンプ17及び第1逆止弁C1を迂回するように外部通路27に連結されている。リリーフ弁V3は排出通路T7に設けられている。リリーフ弁V3は、比例電磁式リリーフ弁であり、排出通路T7を開閉するバルブ47と、バルブ47を閉弁する方向に弾性力を付与するばね48と、バルブ47を開弁する方向に推力を付与する比例ソレノイド49とを有している。このリリーフ弁V3は比例ソレノイド49に流れる電流量を調整することで開弁圧を調整することができる。つまり、リリーフ弁V3はロッド側室8の圧力が開弁圧を越えると、この圧力に起因する推力と比例ソレノイド49による推力との合力が、バルブ47を閉弁する方向に付与されたばね48の弾性力に打ち勝ち、排出通路T7を開放する。このリリーフ弁V3は、比例ソレノイド49に供給する電流量を最大にすると開弁圧が最小になり、比例ソレノイド49に全く電流を供給しないと開弁圧が最大になる。
 このシリンダ装置は、次に説明するように、シリンダ1内のエア抜きを行うことができる。
 このシリンダ装置の第1開閉弁V1、第2開閉弁V2、及びリリーフ弁V3を閉弁させる。この状態でシリンダ装置を伸縮作動させる。このようにすると、このシリンダ装置は、ロッド側室8、第6通路T6、タンク25、第5通路T5、ピストン側室9、第4通路T4、ロッド側室8の順に作動油が循環する。これによって、このシリンダ装置は、気体が混入している可能性がある作動油をタンク25へ排出して、気体が混入しているおそれがない作動油をシリンダ1へ吸込ませることができる。このようにして、このシリンダ装置はシリンダ1内のエア抜きを行うことができる。第6通路T6は、上側になるように設置されたオリフィス24によって、ロッド側室8のエアがタンク25に導かれる。このため、このシリンダ装置は、アクチュエータ又はダンパとして機能させる場合、オリフィス24が抵抗になって第6通路T6を通過する流量が大きく制限され、第6通路T6を作動油が通過するロスを最小限に留めるようになっている。
 また、このシリンダ装置は、次に説明するように、ダンパとして機能させることができる。
 このシリンダ装置の第1開閉弁V1、及び第2開閉弁V2を閉弁させる。すると、このシリンダ装置は、第4通路T4、排出通路T7を経由した第1通路T1、及び第5通路T5によって、ロッド側室8、タンク25、及びピストン側室9が数珠つなぎに連通する。
 このシリンダ装置の第4通路T4、排出通路T7、及び第5通路T5は、作動油が一方向に流通するように設定されている。このため、このシリンダ装置は、外力によって伸長すると、シリンダ1内の作動油が、第4通路T4、及び排出通路T7を経由した第1通路T1を介してタンク25へ戻される。また、このシリンダ装置は、シリンダ1内で足りなくなる作動油が第5通路T5を介してタンク25からシリンダ1内へ供給される。また、このシリンダ装置は、外力によって収縮すると、ピストンロッド10が進入した分の作動油が、排出通路T7を経由した第1通路T1を介してタンク25へ戻される。このように、このシリンダ装置は、外力によって伸縮する際、排出通路T7内を流通する作動油に対してリリーフ弁V3が抵抗になってシリンダ1内の圧力を開弁圧に調整する圧力制御弁として機能する。このため、シリンダ装置はダンパとして機能する。
 また、このシリンダ装置は、次に説明するように、伸長方向に所望する推力を発生させることができる。
 このシリンダ装置の第1開閉弁V1を閉弁して、第2開閉弁V2を開弁する。そして、シリンダ装置の伸縮状況に応じてモータ18を所定の回転数で回転させてポンプ17を駆動し、タンク25からシリンダ1内へ作動油を供給する。このように、このシリンダ装置は、ロッド側室8とピストン側室9とが連通した状態で作動油が供給されると、ピストン7がロッド側室8方向(図1における左方向)に押されて、伸長方向の推力を発揮する。このシリンダ装置は、ロッド側室8及びピストン側室9の圧力がリリーフ弁V3の開弁圧を上回ると、リリーフ弁V3が開弁して作動油が排出通路T7及び外部通路27を介してタンク25へ戻される。このように、このシリンダ装置はロッド側室8及びピストン側室9の圧力がリリーフ弁V3の開弁圧に対応する。つまり、このシリンダ装置はロッド側室8及びピストン側室9の圧力をリリーフ弁V3に与える電流量で制御することができる。このため、このシリンダ装置は、ピストン7におけるピストン側室9側とロッド側室8側の受圧面積の差に、リリーフ弁V3に与える電流量で制御されたロッド側室8及びピストン側室9の圧力を乗じた値の推力を伸長方向に発揮することができる。
 また、このシリンダ装置は、次に説明するように、収縮方向に所望する推力を発揮させることができる。
 このシリンダ装置の第1開閉弁V1を開弁して、第2開閉弁V2を閉弁する。そして、シリンダ装置の伸縮状況に応じてモータ18を所定の回転数で回転させてポンプ17を駆動し、タンク25からロッド側室8内へ作動油を供給する。このように、このシリンダ装置は、第2通路T2を介してピストン側室9とタンク25とが連通した状態でロッド側室8にタンク25から作動油が供給されると、ピストン7がピストン側室9方向(図1における右方向)に押されて、収縮方向の推力を発揮する。上述したように、このシリンダ装置はロッド側室8の圧力をリリーフ弁V3に与える電流量で制御することができる。このため、シリンダ装置は、ピストン7におけるロッド側室8側の受圧面積に、リリーフ弁V3に与える電流量で制御されたロッド側室8の圧力を乗じた値の推力を収縮方向に発揮することができる。
 このシリンダ装置は、シリンダ1、ピストン7、外筒11、タンク25、及び第1配管30を備えている。ピストン7はシリンダ1内に摺動自在に挿入されている。ピストン7はシリンダ1内をロッド側室8とピストン側室9とに区画している。外筒11は、シリンダ1の外側に配置され、シリンダ1を覆っている。タンク25は、シリンダ1と外筒11との隙間に形成され、作動油を貯留している。第1配管30は、ロッド側室8へ給排される作動油が通過する第1通路T1の一部を構成している。第1配管30は第1挿入部材32を連結した端部の外径が第2挿入部材33を連結した端部の外径よりも大きい。第1配管30はタンク25内に配置されている。
 このシリンダ装置は第1挿入部材32を連結した端部の外径が第2挿入部材33を連結した端部の外径よりも大きい第1配管30を備えている。つまり、この第1配管30は、第1配管30が一部を構成している第1通路T1に充填された作動油から受ける圧力の受圧面積が、第2挿入部材33を連結した端部よりも第1挿入部材32を連結した端部の方が大きい。このため、この第1配管30は、第1通路T1内の作動油の圧力を受けると、第1挿入部材32から第2挿入部材33に向けた力が勝り、第2挿入部材33側に移動する。そして、この第1配管30は、第2挿入部材33の段部(当接部)33Aが第2連通口R2の開口端部22Aを形成する流路形成部材22の端面に当接した状態に保持される。このように、このシリンダ装置は、振動しても第1配管30が軸方向に往復移動しないため、第1配管30の両端部と、第1連通口R1、第2連通口R2との連結箇所が摩耗によって水密性を損なうことを防止することができる。
 したがって、実施例1のシリンダ装置は、長期間、良好に使用することができる。
 また、第1配管30は、配管本体31と、第1挿入部材32と、第2挿入部材33とを有している。配管本体31は、一直線上に延び、内径及び外径が一定である。第1挿入部材32は配管本体31の一方の端部に連結されている。第2挿入部材33は配管本体31の他方の端部に連結されている。第1挿入部材32と第2挿入部材33とは、配管本体31の外径よりも大きい外径である。また、第1挿入部材32の外径が第2挿入部材33の外径よりも大きい。このように、第1配管30を構成することによって、シリンダ装置は、配管本体31を細くすることができる。このため、シリンダ装置は、外筒11とシリンダ1との隙間を小さくして外筒11を細くし、小型化を図ることができる。
 また、シリンダ装置は鉄道車両の車体の制振装置として使用される場合、シリンダ1の中心軸が水平方向になるように配置される。このように配置されたシリンダ装置は、図4に示すように、第1配管30がタンク25内の作動油の油面高さ付近に沿って配置される。このため、このシリンダ装置は第1配管30がシリンダ装置の振動によってタンク25内の作動油に生じる波の消波作用を有している。また、第1配管30が連通する第1連通口R1は第1通路T1のタンク25に設けられた流入口19を避けた位置に設けられている。
<実施例2>
 実施例2のシリンダ装置は、図5に示すように、タンク25とロッド側室8とを連通する第1通路T1の一部を構成する第1配管30が存在せず、かつピストン側室9とタンク25とを連通する第2通路T2の一部をタンク25内に配置した第2配管40が構成している点が実施例1と相違する。実施例1と同一の構成は同一の符号を付して、詳細な説明を省略する。
 第2配管40は、実施例1の第1配管30と同一の構造であり、配管本体31、第1挿入部材32、及び第2挿入部材33を有している。また、第2配管40も、第1挿入部材32の一方の端部を蓋部材12の蓋本体113に形成された第1連通口R1に挿入し、第2挿入部材33の他方の端部を流路形成部材22に形成された第2連通口R2に挿入し、タンク25内に配置されている。第2配管40は第2通路T2の一部を構成している。
 第1通路T1はタンク25とロッド側室8とを連通している。第1通路T1は、タンク25に連通し、蓋部材12の蓋本体113内に形成され、一端がタンク25に連通した通路126と、ロッド側室8に連通し、ロッドガイド120側で外部に開口した通路123とを連通する外部通路127を有している。第2通路T2は、ピストン側室9とタンク25とを連通している。第2通路T2は、その一部を第2配管40が構成している。第2通路T2は、第2連通口R2に連通してロッドガイド120側で外部に開口した通路81とタンク25とを連通する外部通路82を有している。排出通路T7は第1通路T1のポンプ17及び第1逆止弁C1を迂回するように連結されている。
 このシリンダ装置は、シリンダ1、ピストン7、外筒11、タンク25、及び第2配管40を備えている。ピストン7はシリンダ1内に摺動自在に挿入されている。ピストン7はシリンダ1内をロッド側室8とピストン側室9とに区画している。外筒11は、シリンダ1の外側に配置され、シリンダ1を覆っている。タンク25は、シリンダ1と外筒11との隙間に形成され、作動油を貯留している。第2配管40は、ピストン側室9へ給排される作動油が通過する第2通路T2の一部を構成している。第2配管40は第1挿入部材32を連結した端部の外径が第2挿入部材33を連結した端部の外径よりも大きい。第2配管40はタンク25内に配置されている。
 このシリンダ装置は第1挿入部材32を連結した端部の外径が第2挿入部材33を連結した端部の外径よりも大きい第2配管40を備えている。つまり、この第2配管40は、第2配管40が一部を構成している第2通路T2に充填された作動油から受ける圧力の受圧面積が、第2挿入部材33を連結した端部よりも第1挿入部材32を連結した端部の方が大きい。このため、この第2配管40は、第2通路T2内の作動油の圧力を受けると、第1挿入部材32から第2挿入部材33に向けた力が勝り、第2挿入部材33側に移動する。そして、この第2配管40は、第2挿入部材33の段部(当接部)33Aが第2連通口R2の開口端部22Aを形成する流路形成部材22の端面に当接した状態が保持される。このように、このシリンダ装置は、振動しても第2配管40が軸方向に往復移動しないため、第2配管40の両端部と、第1連通口R1、第2連通口R2との連結箇所が摩耗によって水密性を損なうことを防止することができる。
 したがって、実施例2のシリンダ装置も、長期間、良好に使用することができる。
<実施例3>
 実施例3のシリンダ装置である緩衝器は、図6に示すように、シリンダ1、ピストン7、ピストンロッド10、外筒11、蓋部材212、ロッドガイド220、タンク25、連通路T8、及び第3配管50を備えている。シリンダ1、ピストン7、ピストンロッド10、外筒11、及びタンク25は、実施例1と同じ構造を有している。また、蓋部材212、及びロッドガイド220は、作動油が流通する各通路を除いて実施例1と同じ構造を有している。さらに、第3配管50は実施例1の第1配管30と同じ構造を有している。実施例1と同じ構成は同じ符号を付して、詳細な説明を省略する。
 連通路T8はロッド側室8とピストン側室9とを連通している。つまり、連通路T8は、ロッド側室8と第2連通口R2との間を連通する第1内部通路51、第3配管50、第1連通口R1に連通して外部に開口した第2内部通路52、外部通路53、及び外部通路53に連通して蓋部材212内に設けられ、逆止弁C4を介してピストン側室9に連通する第3内部通路54とを有している。逆止弁C4は、作動油がロッド側室8からピストン側室9に向けて流れることを許容し、ピストン側室9からロッド側室8に向けて流れることを阻止している。第3内部通路54は分岐してタンク25に連通している。
 第3配管50は、実施例1の第1配管30と同一の構造であり、配管本体31、第1挿入部材32、及び第2挿入部材33を有している。また、第3配管50も、第1挿入部材32の一方の端部を蓋部材212の蓋本体13に形成された第1連通口R1に挿入し、第2挿入部材33の他方の端部を流路形成部材22に形成された第2連通口R2に挿入し、タンク25内に配置されている。第3配管50は連通路T8の一部を構成している。
 外部通路53は、ロッド側室8からピストン側室9に向けて、第1開閉弁V4と、第1減衰弁V5とをこの順に設けている。第1開閉弁V4は、電磁式開閉弁であり、外部通路を開閉するバルブ61と、バルブ61を開弁する方向に弾性力を付与するばね62と、バルブ61を閉弁する方向に推力を付与するソレノイド63とを有している。この緩衝器は、第1開閉弁V4と第1減衰弁V5を迂回して外部通路53に連通する迂回通路55を有している。迂回通路55は第2減衰弁V6を設けている。
 この緩衝器は、通常、第1開閉弁V4を閉弁しておき、外力によって伸長すると、ロッド側室8内の作動油が連通路T8、迂回通路55、及び第2減衰弁V6を経由してシリンダ1内へ供給される。この緩衝器は、外力によって伸長する際、第1開閉弁V4を開弁すると、第1減衰弁V5、及び第2減衰弁V6に作動油が通過する。このようにして、緩衝器は減衰力を調整することができる。
 この緩衝器は、シリンダ1、ピストン7、外筒11、タンク25、及び第3配管50を備えている。ピストン7はシリンダ1内に摺動自在に挿入されている。ピストン7はシリンダ1内をロッド側室8とピストン側室9とに区画している。外筒11は、シリンダ1の外側に配置され、シリンダ1を覆っている。タンク25は、シリンダ1と外筒11との隙間に形成され、作動油を貯留している。第3配管50は、ロッド側室8及びピストン側室9へ給排される作動油が通過する連通路T8の一部を構成している。第3配管50は第1挿入部材32を連結した端部の外径が第2挿入部材33を連結した端部の外径よりも大きい。第3配管50はタンク25内に配置されている。
 この緩衝器は、第1挿入部材32を連結した端部の外径が第2挿入部材33を連結した端部の外径よりも大きい第3配管50を備えている。つまり、この第3配管50は、第3配管50が一部を構成している連通路T8に充填された作動油から受ける圧力の受圧面積が、第2挿入部材33を連結した端部よりも第1挿入部材32を連結した端部の方が大きい。このため、この第3配管50は、連通路T8内の作動油の圧力を受けると、第1挿入部材32から第2挿入部材33に向けた力が勝り、第2挿入部材33側に移動する。そして、この第3配管50は、第2挿入部材33の段部(当接部)33Aが第2連通口R2の開口端部22Aを形成する流路形成部材22の端面に当接した状態が保持される。このように、このシリンダ装置は、振動しても第3配管50が軸方向に往復移動しないため、第3配管50の両端部と、第1連通口R1、第2連通口R2との連結箇所が摩耗によって水密性を損なうことを防止することができる。
 したがって、実施例3の緩衝器も、長期間、良好に使用することができる。
 本発明は上記記述及び図面によって説明した実施例1~3に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
(1)実施例1~3では、第1~3配管を配管本体、第1挿入部材、及び第2挿入部材で形成したが、両端の外径が相違する管部材のみで形成してもよい。また、配管本体の一方の端部のみ挿入部材を取り付けて、両端の外径を相違させてもよい。
(2)実施例1~3では、シリンダ装置及び緩衝器に作動油を充填したが、他の液体を充填してもよい。
(3)実施例1~3のシリンダ装置又は緩衝器は鉄道車両の車体以外の制振装置に適用することができる。
(4)実施例3において、第1開閉弁をなくして第2減衰弁を開閉弁にしてもよい。この場合、緩衝器は、通常、開閉弁を閉弁しておき、外力によって伸長すると、第1減衰弁を作動油が通過し、開閉弁を開弁すると、迂回通路を作動油が自由に通過することになる。
 1…シリンダ、7…ピストン、8…ロッド側室、9…ピストン側室、10…ピストンロッド、11…外筒、12,112,212…蓋部材、17…ポンプ、20,120,220…ロッドガイド、21…(ロッドガイドの)貫通孔、22…流路形成部材、25…タンク、30…第1配管(配管)、31…配管本体、32,33…挿入部材(32…第1挿入部材、33…第2挿入部材)、33A…(第2挿入部材の)段部(当接部)、40…第2配管(配管)、50…第3配管(配管)、R1…第1連通口、R2…第2連通口、T1,T2,T8…通路(T1…第1通路、T2…第2通路、T8…連通路)、V1…第1開閉弁(開閉弁)

Claims (9)

  1.  シリンダ装置であって、
     シリンダと、
     前記シリンダ内に摺動自在に挿入され、前記シリンダ内をロッド側室とピストン側室とに区画したピストンと、
     前記シリンダの外側に配置され、前記シリンダを覆う外筒と、
     前記シリンダと前記外筒との隙間に形成され、作動流体を貯留するタンクと、
     前記ロッド側室又は前記ピストン側室へ給排される前記作動流体が通過する通路の一部を構成し、一方の端部の外径を他方の端部の外径より大きく形成して前記タンク内に配置した配管と、
     を備えていることを特徴とするシリンダ装置。
  2.  前記配管は、
     配管本体と、
     前記配管本体の少なくとも一端に連結し、前記配管本体の外径よりも大きい外径である挿入部材と、
     を有していることを特徴とする請求項1記載のシリンダ装置。
  3.  前記シリンダの一方の端部と前記外筒の一方の端部を閉塞し、前記タンク内に開口して前記配管の一方の端部を挿入した第1連通口が形成された蓋部材と、
     一方の端部が前記ピストンに連結したピストンロッドと、
     前記外筒の他方の端部及び前記シリンダの他方の端部を閉塞し、前記ピストンロッドを移動自在に挿通するロッドガイドと、
     前記シリンダと前記外筒との間に設けられて前記ロッドガイドに連結し、前記タンク内に開口して前記配管の他方の端部を挿入した第2連通口が形成された流路形成部材と、
     を備えていることを特徴とする請求項1記載のシリンダ装置。
  4.  前記配管は長さが前記第1連通口の奥側端面と前記第2連通口の奥側端面との間隔より短いことを特徴とする請求項3記載のシリンダ装置。
  5.  前記配管は外径が小さい方の端部に前記蓋部材又は前記流路形成部材に当接する当接部を有していることを特徴とする請求項3記載のシリンダ装置。
  6.  前記通路は前記ロッド側室と前記タンクとを連通する第1通路を有し、
     前記配管は前記第1通路の一部を構成していることを特徴とする請求項1記載のシリンダ装置。
  7.  前記通路は前記ピストン側室と前記タンクとを連通する第2通路を有し、
     前記配管は前記第2通路の一部を構成していることを特徴とする請求項1記載のシリンダ装置。
  8.  前記通路は前記ロッド側室と前記ピストン側室とを連通する連通路を有し、
     前記配管は前記連通路の一部を構成していることを特徴とする請求項1記載のシリンダ装置。
  9.  前記通路は、前記ロッド側室と前記タンクとを連通する第1通路と、前記ピストン側室と前記タンクとを連通する第2通路と、前記ロッド側室と前記ピストン側室とを連通する連通路とを有し、
     前記第1通路の途中に設けられ、前記シリンダに前記作動流体を供給するポンプと、
     前記第2通路の途中に設けられ、前記第2通路を開閉する開閉弁と、
     を備えていることを特徴とする請求項1記載のシリンダ装置。
PCT/JP2015/058423 2014-05-23 2015-03-20 シリンダ装置 WO2015178089A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580026532.5A CN106460885B (zh) 2014-05-23 2015-03-20 气缸装置
EP15796490.9A EP3115620B1 (en) 2014-05-23 2015-03-20 Cylinder device
KR1020167032706A KR20160145187A (ko) 2014-05-23 2015-03-20 실린더 장치
US15/310,307 US20170218984A1 (en) 2014-05-23 2015-03-20 Cylinder device
CA2948789A CA2948789A1 (en) 2014-05-23 2015-03-20 Cylinder device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014106892A JP6306940B2 (ja) 2014-05-23 2014-05-23 シリンダ装置
JP2014-106892 2014-05-23

Publications (1)

Publication Number Publication Date
WO2015178089A1 true WO2015178089A1 (ja) 2015-11-26

Family

ID=54553766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058423 WO2015178089A1 (ja) 2014-05-23 2015-03-20 シリンダ装置

Country Status (6)

Country Link
US (1) US20170218984A1 (ja)
JP (1) JP6306940B2 (ja)
KR (1) KR20160145187A (ja)
CN (1) CN106460885B (ja)
CA (1) CA2948789A1 (ja)
WO (1) WO2015178089A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6397220B2 (ja) * 2014-05-12 2018-09-26 Kyb株式会社 シリンダ装置
CN107407214A (zh) * 2015-02-27 2017-11-28 斗山英维高株式会社 工程机械的启动辅助装置
JP6925029B2 (ja) * 2017-05-30 2021-08-25 Jpn株式会社 筋力トレーニング器具用油圧ダンパ
CN108591168B (zh) * 2018-05-29 2020-09-29 海达门控有限公司 一种闭门器用双向恒压撑杆
DE102019206455B4 (de) * 2019-05-06 2024-11-14 Zf Friedrichshafen Ag Schwingungsdämpfer mit zwei verstellbaren Dämpfventileinrichtungen
KR102402059B1 (ko) * 2020-08-11 2022-05-26 용정현 속도 조절용 댐퍼 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754899A (ja) * 1993-08-16 1995-02-28 Tokico Ltd 減衰力調整式油圧緩衝器
JPH10169695A (ja) * 1996-12-12 1998-06-23 Yamaha Motor Co Ltd 減衰力可変制御式緩衝器
JP2009287666A (ja) * 2008-05-29 2009-12-10 East Japan Railway Co 横置きシリンダ装置
JP2012013119A (ja) * 2010-06-30 2012-01-19 Kyb Co Ltd 減衰バルブ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1281050A (fr) * 1960-06-09 1962-01-08 Armstrong Patents Co Ltd Perfectionnements aux amortisseurs de chocs
US3815361A (en) * 1971-03-22 1974-06-11 G Manini Device for operating hinged closures
JP4795882B2 (ja) * 2006-07-20 2011-10-19 カヤバ工業株式会社 緩衝器
JP5364323B2 (ja) 2008-09-12 2013-12-11 カヤバ工業株式会社 シリンダ装置
JP5793346B2 (ja) * 2011-05-31 2015-10-14 日立オートモティブシステムズ株式会社 シリンダ装置
CN202348825U (zh) * 2011-11-28 2012-07-25 宁波佳尔灵气动机械有限公司 一种双行程气缸
CN202790286U (zh) * 2012-09-21 2013-03-13 邵阳市通达汽车零部件制造有限公司 拉伸气弹簧

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754899A (ja) * 1993-08-16 1995-02-28 Tokico Ltd 減衰力調整式油圧緩衝器
JPH10169695A (ja) * 1996-12-12 1998-06-23 Yamaha Motor Co Ltd 減衰力可変制御式緩衝器
JP2009287666A (ja) * 2008-05-29 2009-12-10 East Japan Railway Co 横置きシリンダ装置
JP2012013119A (ja) * 2010-06-30 2012-01-19 Kyb Co Ltd 減衰バルブ

Also Published As

Publication number Publication date
CA2948789A1 (en) 2015-11-26
JP6306940B2 (ja) 2018-04-04
JP2015222108A (ja) 2015-12-10
KR20160145187A (ko) 2016-12-19
CN106460885A (zh) 2017-02-22
CN106460885B (zh) 2019-09-06
US20170218984A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
WO2015178089A1 (ja) シリンダ装置
JP5710048B2 (ja) デジタルバルブを備えたダンパー
JP6363934B2 (ja) シリンダ装置
US9863494B2 (en) Suspension damper
JP6336822B2 (ja) シリンダ装置
JP2011075060A (ja) 減衰力調整式緩衝器
KR101773238B1 (ko) 완충기의 감쇠 밸브
JP6397220B2 (ja) シリンダ装置
JP2006038098A (ja) 油圧緩衝器
US10578185B2 (en) Shock absorber
JPH1113815A (ja) 油圧緩衝器
JP5116451B2 (ja) 油圧緩衝器
JP4895974B2 (ja) 複筒型緩衝器
WO2018047647A1 (ja) 減衰弁およびシリンダ装置
JP2014062643A (ja) 油圧緩衝器
JP5678348B2 (ja) 減衰力調整式緩衝器
CN103228945B (zh) 阻尼筒
EP3115620B1 (en) Cylinder device
JP5369058B2 (ja) 減衰バルブ
JP2019183979A (ja) 鉄道車両用ダンパ
JP7141322B2 (ja) 油圧装置
JP2010101351A (ja) 液圧緩衝器
JP2006307943A (ja) 油圧制御弁
JP2019152252A (ja) ダンパ
JP2019183978A (ja) 鉄道車両用ダンパ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796490

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015796490

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015796490

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2948789

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15310307

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167032706

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE