Nothing Special   »   [go: up one dir, main page]

WO2015037423A1 - リニアモータの制御装置、及び制御方法 - Google Patents

リニアモータの制御装置、及び制御方法 Download PDF

Info

Publication number
WO2015037423A1
WO2015037423A1 PCT/JP2014/072152 JP2014072152W WO2015037423A1 WO 2015037423 A1 WO2015037423 A1 WO 2015037423A1 JP 2014072152 W JP2014072152 W JP 2014072152W WO 2015037423 A1 WO2015037423 A1 WO 2015037423A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic pole
pole position
linear motor
current
mover
Prior art date
Application number
PCT/JP2014/072152
Other languages
English (en)
French (fr)
Inventor
野村 祐樹
孝之 名取
秀矢 中山
Original Assignee
Thk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社 filed Critical Thk株式会社
Priority to DE112014004187.4T priority Critical patent/DE112014004187B4/de
Priority to CN201480049919.8A priority patent/CN105531919B/zh
Priority to US15/021,389 priority patent/US9509245B2/en
Publication of WO2015037423A1 publication Critical patent/WO2015037423A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors

Definitions

  • the present invention relates to a linear motor control device and a control method.
  • This application claims priority based on Japanese Patent Application No. 2013-190961 filed in Japan on September 13, 2013, the contents of which are incorporated herein by reference.
  • the linear motor has a relative positional relationship (magnetic pole position) between a plurality of coils provided on either the mover or the stator and a driving magnet provided on the other of the mover or the stator. If energization is not performed, thrust according to the thrust constant of the linear motor cannot be generated.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a linear motor control device and a control method capable of improving the accuracy of detecting the magnetic pole position.
  • the current magnetic pole position of the linear motor is included in any of the plurality of sections obtained by dividing the magnetic pole position from 0 ° to 360 °.
  • a section estimation unit that estimates the movement based on the moving direction of the mover by a plurality of pulse energizations, and a predetermined first from the minimum value or the maximum value of the section estimated by the section estimation unit toward the other Conducting pulse energization while changing the estimated magnetic pole position according to the amount of change, and reducing the magnetic pole position by making the estimated magnetic pole position closer to the current magnetic pole position based on the movement of the mover when pulsed DC excitation is performed while changing the estimated magnetic pole position close to the part by a second change amount smaller than the first change amount, and the movement amount of the mover is obtained and acquired every time the estimated magnetic pole position is changed.
  • a magnetic pole position detection unit that determines that the estimated magnetic pole position matches the current magnetic pole position when the moved amount matches the movement amount corresponding to
  • the magnetic pole position narrowing portion is different in the moving direction of the mover in two successive pulse energizations. In this case, or when the mover moves by one pulse energization and the mover does not move by the other pulse energization, it is determined that the narrowing of the estimated magnetic pole position to the current magnetic pole position is completed.
  • the magnetic pole position detection unit is configured such that the moving direction of the mover is different in two successive pulse energizations. And in the continuous two pulse energization, the mover does not move in the current pulse energization, the mover moves in the previous pulse energization, and the mover moves in reverse after the previous pulse energization, and The mover moves by the current pulse energization in two consecutive pulse energies, and does not move by the previous pulse energization, and the mover moves by the current pulse energization in two consecutive pulse energies.
  • the estimated magnetic pole position is increased by the second change amount. Whether to excitation flow, the estimated magnetic pole position switches whether to DC excitation while decreasing by the second variation amount.
  • the control method performed by the control device for controlling the linear motor is the current magnetic pole of the linear motor in any of a plurality of sections obtained by dividing the magnetic pole position from 0 ° to 360 °.
  • the estimated magnetic pole position is changed by changing the estimated magnetic pole position brought close in the magnetic pole position narrowing step by a second change amount smaller than the first change amount.
  • the amount of movement of the mover is acquired each time the movement is performed, and when the acquired amount of movement matches the amount of movement corresponding to the second change
  • the range where the current magnetic pole position of the linear motor is present is narrowed down by using pulse energization with reduced movement of the mover, and the estimated magnetic pole position narrowed down is the first. 2
  • the excitation amount is changed by the amount of change and the estimated movement of the mover and the amount of movement of the second change amount each time the estimated magnetic pole position is changed, Since it is determined that the magnetic pole position matches, the accuracy of detecting the magnetic pole position can be improved.
  • FIG. 1 is a schematic block diagram showing the control device 10 for the linear motor 21 according to the present embodiment.
  • the control device 10 generates a moving field that moves linearly by causing a three-phase armature current to flow through the U, V, and W phase coils provided in the linear motor 21, and moves the mover of the linear motor 21. Move linearly with respect to the stator.
  • the d-axis and q-axis can be adjusted using the dq coordinate system of rotating coordinates.
  • the dq conversion converts the fixed part (stator) and the rotating part (movable element) of the motor into a rotating orthogonal coordinate system, and the coordinate system is the dq coordinate system.
  • the q axis is a phase shift advanced by ⁇ / 2 with respect to the d axis.
  • the d-axis is generally taken in the direction of the magnetic flux generated by the magnetic field.
  • the dq coordinate is a rotational coordinate.
  • FIG. 2 is a diagram showing an equivalent circuit of the permanent magnet synchronous motor in the dq coordinate system.
  • v d is a d-axis armature voltage
  • v q is a q-axis armature voltage
  • id is the d-axis armature current
  • i q is the q-axis armature current
  • ⁇ f is the number of armature winding flux linkages
  • R is the armature winding resistance
  • L is the self-inductance of the armature winding.
  • the d-axis armature current id is generally controlled to be 0 from the viewpoint of motor efficiency. In order to control the currents i d and i q in this way, it is necessary to control the d-axis armature voltage v d and the q-axis armature voltage v q in order to control these currents. Further, it is necessary to grasp the positions of the d axis and the q axis.
  • the control device 10 includes a phase calculator 101, a speed calculator 102, a position calculator 103, a position controller 104, a speed controller 105, a vector rotator / three-phase two-phase converter 106, a d-axis current controller 107, q
  • a shaft current controller 108, a vector rotator / two-phase / three-phase converter 109, a power converter 110, a current transformer 111, and an initial magnetic pole position setter 112 are provided.
  • the amount of movement of the mover of the linear motor 21 is input to the phase calculator 101 from an encoder 22 attached to the linear motor 21.
  • the phase calculator 101 sets the magnetic pole position ⁇ re (d-axis position, electrical angle) of the linear motor 21 based on the initial magnetic pole position and the movement amount input from the encoder 22. Is calculated.
  • the phase calculator 101 inputs the calculated magnetic pole position to the vector rotator / three-phase / two-phase converter 106 and the vector rotator / two-phase / three-phase converter 109.
  • the moving amount of the mover of the linear motor 21 is input from the encoder 22 to the speed calculator 102.
  • the speed calculator 102 calculates the moving speed of the mover based on the moving amount of the mover input after the initial magnetic pole position is set.
  • the speed calculator 102 inputs the calculated moving speed ⁇ rm to the speed controller 105.
  • the amount of movement of the mover of the linear motor 21 is input from the encoder 22 to the position calculator 103.
  • the position calculator 103 calculates the position of the mover based on the amount of movement of the mover input after the initial magnetic pole position is set.
  • the position calculator 103 inputs the calculated mover position ⁇ rm to the position controller 104.
  • the position controller 104 receives a position command value ⁇ * rm from a host controller (not shown), and receives a mover position ⁇ rm from the position calculator 103.
  • the position controller 104 calculates a speed command value ⁇ * rm based on a deviation between the input position command value ⁇ * rm and the input position ⁇ rm .
  • the position controller 104 inputs the calculated speed command value ⁇ * rm to the speed controller 105.
  • the speed controller 105 receives the speed command value ⁇ * rm from the position controller 104 and the moving speed ⁇ rm from the speed calculator 102.
  • the speed controller 105 calculates the q-axis current command value i * q based on the deviation between the input speed command value ⁇ * rm and the input moving speed ⁇ rm .
  • the speed controller 105 inputs the calculated q-axis current command value i * q to the q-axis current controller 108.
  • the value i w is entered.
  • the electric angle (magnetic pole position) ⁇ re calculated by the phase calculator 101 is input to the vector rotator / three-phase / two-phase converter 106.
  • the vector rotator / three-phase two-phase converter 106 inputs the calculated d-axis current id to the d-axis current controller 107.
  • the vector rotator / three-phase / two-phase converter 106 inputs the calculated q-axis current i q to the q-axis current controller 108.
  • d-axis current controller 107 based on a deviation between d-axis current i d and the d-axis current command i * d is inputted from the vector rotator, three-phase to two-phase converter 106, the d-axis voltage command value V * d is calculated.
  • the d-axis current controller 107 inputs the calculated d-axis voltage command value V * d to the vector rotator / two-phase / three-phase converter 109.
  • the q-axis current controller 108 calculates a deviation between the q-axis current i q input from the vector rotator / three-phase two-phase converter 106 and the q-axis current command value i * q input from the speed controller 105. Based on this, the q-axis voltage command value V * q is calculated. The q-axis current controller 108 inputs the calculated q-axis voltage command value V * q to the vector rotator / two-phase / three-phase converter 109.
  • the d-axis voltage command value V * d is input from the d-axis current controller 107 and the q-axis voltage command value V * q is input from the q-axis current controller 108 to the vector rotator / two-phase / three-phase converter 109.
  • the electrical angle ⁇ re is input from the phase calculator 101.
  • the vector rotator / two-phase / three-phase converter 109 calculates the three-phase voltage command values V * u and V from the d-axis voltage command value V * d and the q-axis voltage command value V * q based on the electrical angle ⁇ re. * V and V * w are calculated.
  • the vector rotator / two-phase three-phase converter 109 inputs the calculated three-phase voltage command values V * u , V * v , and V * w to the power converter 110.
  • the power converter 110 is a power supply voltage supplied from an external power supply based on the three-phase voltage command values V * u , V * v , V * w input from the vector rotator / two-phase three-phase converter 109. Is applied to the U, V, and W phase coils of the linear motor 21. Thereby, the current flowing through the linear motor 21 is controlled to control the linear motor 21.
  • the current transformer 111 measures the current flowing through the U-phase and V-phase coils of the linear motor 21 and outputs the measurement result to the vector rotator / three-phase two-phase converter 106.
  • Initial magnetic pole position setter 112 the q ⁇ -axis current to 0, and the d ⁇ axis current i d, to operate the linear motor 21 to generate thrust.
  • the initial magnetic pole position setting unit 112 detects the magnetic pole position and sets the initial magnetic pole position based on the operation of the linear motor 21 obtained via the encoder 22. When the initial magnetic pole position is set, the position controller 104 and the speed controller 105 do not operate.
  • FIGS. 3 to 6 are flowcharts of processing for setting the initial magnetic pole position performed by the control device 10 according to the present embodiment.
  • the initial magnetic pole position setting unit 112 sets the d ⁇ -axis magnetic pole position (electricity The angle ⁇ re and the estimated magnetic pole position are set to 180 ° (step S101), and a motor operation subroutine is executed (step S102).
  • the initial magnetic pole position setting unit 112 sets a current value that is (1 / n) times the rated current as an initial value of the energization current value as an initial value of the current that flows in the motor operation subroutine when setting the d ⁇ -axis magnetic pole position.
  • n is 8
  • the initial value of the energization current value is set to a current value that is 1/8 of the rated current.
  • n is determined in advance based on the time until the mover starts moving due to the thrust generated in the linear motor 21.
  • FIG. 7 is a flowchart of a motor operation subroutine performed by the control device 10 in the present embodiment.
  • the initial magnetic pole position setting unit 112 controls the vector rotator / two-phase / three-phase converter 109 to generate U, V, and W phase voltages corresponding to the d ⁇ axis magnetic pole position.
  • the linear motor 21 is applied with pulses for a predetermined minute time to the U, V, and W phases of the linear motor 21, and the linear motor 21 is pulsed (step S201).
  • the minute time a minimum time from when an electric current is made to flow through each coil until when an electric current actually flows through each coil to generate thrust is set.
  • the minute time is set to 10 milliseconds, for example.
  • the initial magnetic pole position setting unit 112 determines whether or not the mover has moved due to the energization in step S201 based on the moving amount of the mover detected by the encoder 22 (step S202), and the mover has moved. In the case (step S202: YES), the motor operation subroutine is terminated, and the process returns to the step next to the step that called (executed) the motor operation subroutine.
  • step S201 If the mover has not moved due to energization in step S201 (step S202: NO), the initial magnetic pole position setting unit 112 determines whether or not the current energization current value is twice or more than the rated current. (Step S203) When the energization current value is more than twice the rated current (Step S203: YES), the motor operation subroutine is terminated, and the process returns to the step following the step that called (executed) the motor operation subroutine. .
  • step S203 If the current energizing current value is not twice or more than the rated current (step S203: NO), the initial magnetic pole position setting unit 112 changes the energizing current value to twice the current energizing current value (step S204). The processing is returned to step S201, and the processing from step S201 to step S204 is repeated.
  • the voltages of the U, V, and W phases corresponding to the set d ⁇ axis magnetic pole position are applied to the coils of the U, V, and W phases, respectively, so that 1 / n times the rated current, 2 / N times,... Energization with twice the current is sequentially performed until the mover moves.
  • the initial magnetic pole position setting unit 112 determines whether or not the direction in which the linear motor 21 is operated by the motor operation subroutine (step S102), that is, the direction in which the mover is moved is a predetermined direction (+ direction) ( Step S103).
  • the predetermined direction is, for example, a direction in which the magnetic pole position (electrical angle) increases.
  • step S102 If the direction in which the linear motor 21 is operated in step S102 is the + direction (step S103: YES), the initial magnetic pole position setting unit 112 sets the d ⁇ -axis magnetic pole position to 90 ° and sets the energization current value to the rated current. 1 / n times (step S104).
  • the initial magnetic pole position setting unit 112 executes a motor operation subroutine (step S105).
  • the motor operation subroutine executed in step S105 and the motor operation subroutine in the following description are the same as the motor operation subroutine described with reference to FIG.
  • the initial magnetic pole position setting unit 112 determines whether or not the direction in which the linear motor 21 is operated is the + direction by the motor operation subroutine (step S105) (step S106).
  • step S106 determines whether the direction in which the linear motor 21 is operated in the determination in step S106 is the + direction (step S106: YES). If the direction in which the linear motor 21 is operated in the determination in step S106 is the + direction (step S106: YES), the initial magnetic pole position setting unit 112 sets the d ⁇ -axis magnetic pole position to 0 ° and sets the energization current value. It is set to 1 / n times the rated current (step S107), and the process proceeds to step S151 (FIG. 4). On the other hand, when the direction in which the linear motor 21 is operated is not the + direction in the determination in step S106 (step S106: NO), the initial magnetic pole position setting unit 112 sets the d ⁇ magnetic pole position to 90 ° and sets the energization current value. Is set to 1 / n times the rated current (step S108), and the process proceeds to step S151 (FIG. 4).
  • step S102 If the direction in which the linear motor 21 has operated in step S102 is not the + direction (step S103: NO), the initial magnetic pole position setting unit 112 sets the d ⁇ -axis magnetic pole position to 270 ° and sets the energization current value to the rated current. Is set to 1 / n times (step S109). The initial magnetic pole position setting unit 112 executes a motor operation subroutine (step S110).
  • the initial magnetic pole position setting unit 112 determines whether or not the direction in which the linear motor 21 is operated is the + direction by the motor operation subroutine (step S110) (step S111).
  • step S110 If the direction in which the linear motor 21 is operated in the determination in step S110 is the + direction (step S111: YES), the initial magnetic pole position setting unit 112 sets the d ⁇ -axis magnetic pole position to 180 ° and sets the energization current value. It is set to 1 / n times the rated current (step S112), and the process proceeds to step S151 (FIG. 4).
  • step S111 when the direction in which the linear motor 21 is operated is not the + direction in the determination in step S110 (step S111: NO), the initial magnetic pole position setting unit 112 sets 270 ° as the d ⁇ -axis magnetic pole position, The value is set to 1 / n times the rated current (step S113), and the process proceeds to step S151 (FIG. 4).
  • the initial magnetic pole position setting unit 112 executes a motor operation subroutine (step S151), and subsequently increases the d ⁇ magnetic pole position by + 5 ° (first variation), and the energization current value is reduced to 1 / n times the rated current.
  • the setting is made (step S152), and a motor operation subroutine is executed (step S153).
  • the initial magnetic pole position setting unit 112 determines whether or not the linear motor 21 has moved in the previous motor operation subroutine (step S154). When the linear motor 21 has moved in the previous motor operation subroutine (step S154: YES), the initial magnetic pole position setting unit 112 determines whether or not the linear motor 21 has moved in the current motor operation subroutine (step S155). .
  • step S155 When the linear motor 21 has moved in the current motor operation subroutine (step S155: YES), the initial magnetic pole position setting unit 112 determines the direction in which the linear motor 21 has moved in the previous motor operation subroutine and the current motor operation subroutine. It is determined whether or not the direction in which the linear motor 21 has moved is the same (step S156).
  • step S156 When the linear motor 21 has moved in the same direction in the previous time and this time (step S156: YES), the initial magnetic pole position setting unit 112 increases the d ⁇ -axis magnetic pole position by + 5 ° and sets the energization current value to the rated current. 1 / n times is set (step S157), a motor operation subroutine is executed (step S158), and the process returns to step S154.
  • step S156: NO the initial magnetic pole position setting unit 112 performs DC excitation at the current d ⁇ -axis magnetic pole position (step S159), The process proceeds to step S171 (FIG. 5).
  • step S155 If it is determined in step S155 that the linear motor 21 is not moving in the current motor operation subroutine (step S155: NO), the initial magnetic pole position setting unit 112 determines that the linear motor 21 is not energized after stopping energization in the previous motor operation subroutine. It is determined whether or not it has moved in the reverse direction (step S160).
  • step S160 When moving in the reverse direction after stopping energization (step S160: YES), the initial magnetic pole position setting unit 112 performs DC excitation at the current d ⁇ -axis magnetic pole position (step S159), and the process is performed in step S171 (FIG. Go to 5).
  • step S160: NO when the energization is stopped and the actuator does not move in the reverse direction (step S160: NO), the initial magnetic pole position setting unit 112 performs DC excitation at the current d ⁇ -axis magnetic pole position (step S161), and the process is performed in step S181. Proceed to (FIG. 6).
  • step S154 If it is determined in step S154 that the linear motor 21 has not moved in the previous motor operation subroutine (step S154: NO), the initial magnetic pole position setting unit 112 determines whether or not the linear motor 21 has moved in the current motor operation subroutine. Determination is made (step S162).
  • step S162 When the linear motor 21 is not moving in the current motor operation subroutine (step S162: NO), the initial magnetic pole position setting unit 112 increases the d ⁇ -axis magnetic pole position by + 5 ° and sets the energization current value to 1 / R of the rated current. It is set to n times (step S163), a motor operation subroutine is executed (step S164), and the process returns to step S154.
  • step S162 when the linear motor 21 is moving in the current motor operation subroutine (step S162: YES), the initial magnetic pole position setting unit 112 performs direct current excitation at the current d ⁇ -axis magnetic pole position (step S161), and performs processing. The process proceeds to step S181 (FIG. 6).
  • the initial magnetic pole position setting unit 112 decreases the d ⁇ -axis magnetic pole position by ⁇ E (second variation) and performs direct current excitation at the d ⁇ -axis magnetic pole position (FIG. 5).
  • the change amount ⁇ E of the magnetic pole position is a predetermined change amount, and is determined according to the detection resolution of the encoder 22, the control resolution of the control device 10, and the like.
  • the initial magnetic pole position setting unit 112 acquires the amount of movement of the linear motor 21 by the direct current excitation in step S171, that is, the amount of movement of the mover (step S172).
  • the initial magnetic pole position setting unit 112 determines whether or not the movement amount acquired in step S172 matches the distance corresponding to the change amount ⁇ E (step S173).
  • the distance corresponding to the change amount ⁇ E is the distance that the mover of the linear motor 21 moves when the d ⁇ -axis magnetic pole position changes from E to (E + ⁇ E).
  • step S173: YES When the movement amount matches the distance corresponding to the change amount ⁇ E (step S173: YES), the initial magnetic pole position setting unit 112 determines that the mover of the linear motor 21 is positioned at the current d ⁇ -axis magnetic pole position, and Is set as the initial magnetic pole position of the linear motor 21 (step S174), and the process of setting the initial magnetic pole position is terminated. On the other hand, when the movement amount does not coincide with the distance corresponding to the change amount ⁇ E (step S173: NO), the initial magnetic pole position setting unit 112 returns the processing to step S171 and repeats the processing from step S171 to step S173. Do.
  • the initial magnetic pole position setting unit 112 After the direct current excitation in step S161 (FIG. 4), the initial magnetic pole position setting unit 112 increases the d ⁇ -axis magnetic pole position by ⁇ E and performs direct current excitation at the d ⁇ -axis magnetic pole position (FIG. 6. step S181).
  • the magnetic pole position setting unit 112 acquires the amount of movement of the linear motor 21 by the direct current excitation in step S181, that is, the amount of movement of the mover (step S182).
  • the initial magnetic pole position setting unit 112 determines whether or not the movement amount acquired in step S182 matches the distance corresponding to the change amount ⁇ E (step S183), and the movement amount matches the distance corresponding to the change amount ⁇ E. If so (step S183: YES), it is determined that the mover of the linear motor 21 is positioned at the current d ⁇ magnetic pole position, and the current d ⁇ -axis magnetic pole position is set as the initial magnetic pole position of the linear motor 21 (step S184). Then, the process of setting the initial magnetic pole position is terminated.
  • step S183: NO when the movement amount does not coincide with the distance corresponding to the change amount ⁇ E (step S183: NO), the initial magnetic pole position setting unit 112 returns the processing to step S181 and repeats the processing from step S181 to step S183. Do.
  • the control device 10 performs the process from step S101 to step S113 on the actual d-axis magnetic pole position of the linear motor 21, thereby changing the angle from 0 ° to 90 °, 90 ° to 180 °, 180 °. It is estimated which of the four sections from 270 ° to 270 °, 270 ° to 360 ° (0 °).
  • the control device 10 sets the minimum value in the estimated section to the d ⁇ -axis magnetic pole position, performs pulse energization while shifting the d ⁇ -axis magnetic pole position by a predetermined amount (for example, by 5 °), and performs two consecutive pulse energizations.
  • the magnetic pole position is narrowed down to bring the d ⁇ -axis magnetic pole position closer to the actual d-axis magnetic pole position.
  • the linear motor 21 determines whether there is an external force acting on the mover, and if there is an external force, which direction is relative to the moving direction of the mover. judge.
  • the control device 10 determines whether to perform DC excitation while increasing or decreasing a predetermined change amount ⁇ E with respect to the d ⁇ -axis magnetic pole position according to the presence or absence of an external force or the direction of the external force. To do.
  • the control device 10 performs DC excitation while changing the d ⁇ -axis magnetic pole position by the change amount ⁇ E, and each time the DC excitation is performed, the movement amount of the mover of the linear motor 21 matches the movement amount corresponding to the change amount ⁇ E. If they match, it is determined that the actual d-axis magnetic pole position of the linear motor 21 matches the d ⁇ -axis magnetic pole position. That is, the actual d-axis magnetic pole position is detected.
  • the control device 10 can detect the d-axis magnetic pole position of the linear motor 21 with high accuracy, and can improve the accuracy of controlling the linear motor 21. Further, since the control device 10 performs DC excitation after estimating the section where the actual d-axis magnetic pole position of the linear motor 21 exists, when the DC excitation is performed, the mover of the linear motor 21 is moved. The moving distance can be suppressed. Further, when DC excitation is performed, the d ⁇ -axis magnetic pole position is changed little by little ( ⁇ E), so that the distance that the mover moves can be further suppressed.
  • the d-axis magnetic pole position can be detected without doing so.
  • FIGS. 8A, 8B and 8C are diagrams illustrating an installation example of the linear motor 21 that is a target of setting the initial magnetic pole position.
  • FIG. 8A shows a state where the rod-type linear motor 21 is installed horizontally and no external force is applied to the mover (rod).
  • FIG. 8B shows a state in which the rod-type linear motor 21 is installed vertically and a biasing member such as a spring is attached to the upper end in the vertical direction of the mover to balance the weight of the rod.
  • FIG. 8C shows the case where the rod-type linear motor 21 is installed vertically as in FIG.
  • pulse energization is performed at the d ⁇ -axis magnetic pole position 180 ° (step S101). , S102). With this pulse energization, the linear motor 21 moves in the + direction (step S103: YES), and pulse energization is performed at the d ⁇ -axis magnetic pole position 90 ° (steps S104 and S105).
  • step S106 YES
  • step S107 and S151 the pulse energization is performed again.
  • pulse energization is performed at 5 ° by increasing the d ⁇ -axis magnetic pole position by + 5 ° (steps S152 and S153).
  • the linear motor 21 was moved in the previous pulse energization (pulse current at d ⁇ magnetic pole position 0 °) (step S154: YES), and also in current pulse energization (pulse current energization at d ⁇ axis magnetic pole position 5 °). Since the linear motor 21 is moving (step S155: YES) and both are moving in the same direction (step S156: YES), a pulse energization is performed at 10 ° by further increasing the d ⁇ -axis magnetic pole position by + 5 °. (Steps S157 and S158), the process returns to Step S154.
  • the linear motor 21 was moved by the previous pulse energization (pulse energization at the d ⁇ -axis magnetic pole position of 5 °) (step S154: YES), and the current pulse energization (pulse energization at the d ⁇ -axis magnetic pole position of 10 °) Although the linear motor 21 is moving (step S155: YES), since it is moving in a different direction (step S156: NO), DC excitation is performed at the current d ⁇ -axis magnetic pole position of 10 ° (step S159).
  • step S171 direct current excitation is performed at a d ⁇ -axis magnetic pole position 9 ° which is reduced by ⁇ E (for example, 1 °) from the current d ⁇ -axis magnetic pole position (step S171), and the mover of the linear motor 21 is output from the output of the encoder 22. Is obtained (step S172). Since the mover is drawn to the d ⁇ -axis magnetic pole position 10 ° by the DC excitation at the d ⁇ -axis magnetic pole position 10 °, the mover is moved to the d ⁇ -axis magnetic pole by the DC excitation at the d ⁇ -axis magnetic pole position 9 °. The position will move by 1 °.
  • the control device 10 sets the current d ⁇ -axis magnetic pole position 9 ° to the actual d-axis magnetic pole of the linear motor 21.
  • the position is set (step S174), and control of the linear motor 21 is started.
  • FIG. 9A and 9B are diagrams illustrating an installation example of the linear motor 21 that is a target of setting the initial magnetic pole position.
  • FIG. 9A shows a state where the rod-type linear motor 21 is installed vertically and the mover is stationary at the lowest side of the movable range due to its own weight.
  • FIG. 9B a rod-type linear motor 21 is installed vertically, a biasing member such as a spring is attached to the upper end of the mover in the vertical direction, and is lifted upward in the vertical direction, and rests on the uppermost side of the movable range.
  • the upward direction in the vertical direction is the + direction of the d-axis magnetic pole position
  • FIG. 9B shows the downward direction in the vertical direction is the + direction of the d-axis magnetic pole position.
  • 9A and 9B show a case where the actual d-axis magnetic pole position of the linear motor 21 is 8 °.
  • pulse energization is performed at a d ⁇ -axis magnetic pole position of 180 ° (steps S101 and S102).
  • the linear motor 21 moves in the + direction (step S103: YES), and pulse energization is performed at the d ⁇ -axis magnetic pole position 90 ° (steps S104 and S105).
  • step S106 YES
  • step S107 and S151 the pulse energization is performed again.
  • pulse energization is performed at 5 ° by increasing the d ⁇ -axis magnetic pole position by + 5 ° (steps S152 and S153).
  • the mover has already reached the end of the movable range. And cannot move toward the d ⁇ -axis magnetic pole position of 5 °.
  • step S154 In the previous pulse energization (pulse energization at d ⁇ -axis magnetic pole position 0 °), the linear motor 21 did not move (step S154: NO), and current pulse energization (pulse energization at d ⁇ -axis magnetic pole position 5 °)
  • step S162 the linear motor 21 is not moving (step S162: NO), and the pulse energization is further performed at 10 ° by increasing the d ⁇ -axis magnetic pole position by + 5 ° (steps S163 and S164), and the process proceeds to step S154.
  • the linear motor 21 was not moved by the previous pulse energization (pulse energization at d ⁇ -axis magnetic pole position 5 °) (step S154: NO), and current pulse energization (pulse energization at d ⁇ -axis magnetic pole position 10 °) Since the linear motor 21 is moving (step S162: YES), DC excitation is performed at the current d ⁇ -axis magnetic pole position of 10 ° (step S161).
  • step S181 DC excitation is performed at the d ⁇ -axis magnetic pole position 11 °, which is obtained by increasing the current d ⁇ -axis magnetic pole position by ⁇ E (for example, 1 °) (step S181), and the mover of the linear motor 21 is output from the output of the encoder 22. Is obtained (step S182). Since the mover is pulled into the d ⁇ -axis magnetic pole position 10 ° by the DC excitation at the d ⁇ -axis magnetic pole position 10 °, the mover is moved to the d ⁇ -axis magnetic pole by the DC excitation at the d ⁇ -axis magnetic pole position 11 °. The position will move by 1 °.
  • the control device 10 sets the current d ⁇ -axis magnetic pole position 11 ° to the actual d-axis magnetic pole of the linear motor 21.
  • the position is set (step S184), and control of the linear motor 21 is started.
  • the control device 10 sets the d ⁇ -axis magnetic pole position by a predetermined amount ( ⁇ E) on the basis of the estimated d ⁇ -axis magnetic pole position.
  • DC excitation is performed while changing, and when the amount of movement ⁇ X and the predetermined amount ( ⁇ E) correspond to each other, it is determined that the actual d-axis magnetic pole position matches the d ⁇ -axis magnetic pole position.
  • the initial magnetic pole position can be set.
  • the minimum value in the estimated section is set to the d ⁇ -axis magnetic pole.
  • the configuration of setting the position (steps S107, S108, S112, S113) and narrowing down the magnetic pole position has been described.
  • the present invention is not limited to this, and the magnetic pole position may be narrowed down using the maximum value in the estimated section as the d ⁇ -axis magnetic pole position.
  • steps S152, S157, and S163, and 1 ° in steps S171 and S181 are examples, and may be different angles (variations).
  • the amount of change (second change amount) in steps S171 and S181 is determined to be smaller than the amount of change (first change amount) in steps S152, S157, and S163.
  • the d-axis magnetic pole position from 0 ° to 360 ° is divided into four sections at intervals of 90 °.
  • the present invention is not limited to this, and it may be divided into three sections with 120 ° intervals or six sections with 60 ° intervals.
  • the control device 10 in the above-described embodiment may have a computer system inside.
  • the process of setting the initial magnetic pole position described above is stored in a computer-readable recording medium in the form of a program, and the above process is performed by the computer reading and executing this program.
  • the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Linear Motors (AREA)

Abstract

リニアモータの制御装置(10)は、0°から360°までの磁極位置を分割した複数の区間のいずれにかリニアモータの現在の磁極位置が含まれるかを複数回のパルス通電による可動子の移動方向に基づいて推定する区間推定部と、区間推定部が推定した区間の最小値又は最大値のいずれか一方から他方に向かって所定の第1変化量で推定磁極位置を変化させながらパルス通電を行い、パルス通電をした際の可動子の動きに基づいて現在の磁極位置に推定磁極位置を近づける磁極位置絞り込み部と、磁極位置絞り込み部が近づけた推定磁極位置を第1変化量より小さい第2変化量で変化させながら直流励磁を行い、推定磁極位置を変化させる度に可動子の移動量を取得し、取得した移動量が第2変化量に対応する移動量と一致した場合に、推定磁極位置と現在の磁極位置が一致したと判定する磁極位置検出部とを備える。

Description

リニアモータの制御装置、及び制御方法
 本発明は、リニアモータの制御装置、及び制御方法に関する。
 本願は、2013年9月13日に、日本に出願された特願2013-190961号に基づき優先権を主張し、その内容をここに援用する。
 リニアモータは、可動子又は固定子のいずれか一方に設けられている複数のコイルと、可動子又は固定子の他方に設けられている駆動用磁石との相対的な位置関係(磁極位置)に応じた通電をしないと、リニアモータの推力定数に応じた推力を発生させることができない。
 そこで、リニアモータの駆動を開始する際には、固定子に対する可動子の位置を把握する必要がある。例えば、リニアモータの駆動を開始する際に、予め定められた磁極位置に対応する電流を一定時間、リニアモータに印加することで当該磁極位置に可動子を引き込むこと(直流励磁)が行われている(特許文献1)。
特開平5-015179号公報
 予め定められた電気角に対して180°ずれた磁極位置に可動子が位置している場合には、当該磁極位置に対応する電流をリニアモータに印加しても可動子を引き込む推力を発生させることができず、当該磁極位置に可動子を引き込むことができない可能性がある。また、可動子に対して作用する外力が存在する場合、磁極位置に対応する電流をリニアモータに印加しても、磁極位置に可動子を引き込めない可能性がある。このような場合には、磁極位置を把握することができず、所定の推力を発生させたり、所定の位置へ移動させたりする制御を精度よく行うことができない可能性がある。
 本発明は、上記問題を解決すべくなされたもので、その目的は、磁極位置を検出する精度を向上させることができるリニアモータの制御装置、及び制御方法を提供する。
 本発明の第の一態様によれば、リニアモータを制御する制御装置は、0°から360°までの磁極位置を分割した複数の区間のいずれにか前記リニアモータの現在の磁極位置が含まれるかを複数回のパルス通電による可動子の移動方向に基づいて推定する区間推定部と、前記区間推定部が推定した区間の最小値又は最大値のいずれか一方から他方に向かって所定の第1変化量で推定磁極位置を変化させながらパルス通電を行い、パルス通電をした際の前記可動子の動きに基づいて前記現在の磁極位置に推定磁極位置を近づける磁極位置絞り込み部と、前記磁極位置絞り込み部が近づけた推定磁極位置を前記第1変化量より小さい第2変化量で変化させながら直流励磁を行い、推定磁極位置を変化させる度に前記可動子の移動量を取得し、取得した移動量が前記第2変化量に対応する移動量と一致した場合に、推定磁極位置と前記現在の磁極位置が一致したと判定する磁極位置検出部とを備える。
 本発明の第二の態様によれば、第一の態様に係るリニアモータの制御装置において、前記磁極位置絞り込み部は、連続する2回のパルス通電において、前記可動子の動く方向が異なっている場合、又は、一方のパルス通電で前記可動子が動き他方のパルス通電で前記可動子が動かない場合に推定磁極位置を前記現在の磁極位置に近づける絞り込みが完了したと判定する。
 本発明の第三の態様によれば、第二の態様に係るリニアモータの制御装置において、前記磁極位置検出部は、連続する2回のパルス通電において前記可動子の動く方向が異なっている場合、及び、連続する2回のパルス通電において今回のパルス通電で前記可動子が動かず前回のパルス通電で前記可動子が動き、前回のパルス通電の後に前記可動子が逆に動いた場合と、連続する2回のパルス通電において今回のパルス通電で前記可動子が動き前回のパルス通電で前記可動子が動かない場合、及び、連続する2回のパルス通電において今回のパルス通電で前記可動子が動かず前回のパルス通電で前記可動子が動き、前回のパルス通電の後に前記可動子が逆に動かなかった場合とにおいて、推定磁極位置を前記第2変化量ずつ増加させながら直流励磁を行うか、推定磁極位置を前記第2変化量ずつ減少させながら直流励磁を行うかを切り替える。
 本発明の第四の態様によれば、リニアモータを制御する制御装置が行う制御方法は、0°から360°までの磁極位置を分割した複数の区間のいずれにか前記リニアモータの現在の磁極位置が含まれるかを複数回のパルス通電による可動子の移動方向に基づいて推定する区間推定ステップと、前記区間推定ステップにおいて推定した区間の最小値又は最大値のいずれか一方から他方に向かって所定の第1変化量で推定磁極位置を変化させながらパルス通電を行い、パルス通電をした際の前記可動子の動きに基づいて前記現在の磁極位置に推定磁極位置を近づける磁極位置絞り込みステップと、前記磁極位置絞り込みステップで近づけた推定磁極位置を前記第1変化量より小さい第2変化量で変化させながら直流励磁を行い、推定磁極位置を変化させる度に前記可動子の移動量を取得し、取得した移動量が前記第2変化量に対応する移動量と一致した場合に、推定磁極位置と前記現在の磁極位置が一致したと判定する磁極位置検出ステップとを有する。
 上記したリニアモータの制御装置、及び制御方法によれば、可動子の移動量を抑えたパルス通電を用いてリニアモータの現在の磁極位置が存在する範囲を絞り込み、絞り込まれた推定磁極位置を第2変化量で変化させながら直流励磁を行い、推定磁極位置を変化させる度に取得した可動子の移動量と第2変化量の移動量とが一致した場合に推定磁極位置とリニアモータの現在の磁極位置とが一致したと判定するので、磁極位置を検出する精度を向上させることができる。
本実施形態によるリニアモータ21の制御装置10を示す概略ブロック図である。 d-q座標系における永久磁石同期モータの等価回路を示す図である。 同実施形態における制御装置10が行う初期磁極位置を設定する処理の第1のフローチャートである。 同実施形態における制御装置10が行う初期磁極位置を設定する処理の第2のフローチャートである。 同実施形態における制御装置10が行う初期磁極位置を設定する処理の第3のフローチャートである。 同実施形態における制御装置10が行う初期磁極位置を設定する処理の第4のフローチャートである。 同実施形態において制御装置10が行うモータ動作サブルーチンのフローチャートである。 初期磁極位置の設定の対象となるリニアモータ21の設置例1を示す図である。 初期磁極位置の設定の対象となるリニアモータ21の設置例1を示す図である。 初期磁極位置の設定の対象となるリニアモータ21の設置例1を示す図である。 初期磁極位置の設定の対象となるリニアモータ21の設置例2を示す図である。 初期磁極位置の設定の対象となるリニアモータ21の設置例2を示す図である。
 以下、図面を参照して、本発明の実施形態におけるリニアモータの制御装置、及び制御方法を説明する。図1は、本実施形態によるリニアモータ21の制御装置10を示す概略ブロック図である。制御装置10は、リニアモータ21に備えられているU、V、W相のコイルに三相電機子電流を流すことによって直線的に移動する移動界磁を発生させ、リニアモータ21の可動子を固定子に対して直線的に移動させる。
 界磁が直線的に移動する可動コイル型永久磁石同期リニアモータでも、界磁が回転する回転界磁型同期モータと同様に、回転座標のd-q座標系を用いてd軸及びq軸の電機子電流を制御する。モータの固定された部分(固定子)と回転する部分(可動子)とをともに回転する直交座標系へ変換するのがd-q変換であり、その座標系がd-q座標系である。q軸はd軸に対してπ/2進んだ移相である。永久磁石同期モータの場合、d軸は磁界の作る磁束の方向に採るのが一般的であり、回転界磁型永久磁石同期モータではd-q座標は回転座標になる。
 図2は、d-q座標系における永久磁石同期モータの等価回路を示す図である。同図において、vはd軸電機子電圧であり、vはq軸電機子電圧である。iはd軸電機子電流であり、iはq軸電機子電流である。φは電機子巻線鎖交磁束数であり、Rは電機子巻線抵抗であり、Lは電機子巻線の自己インダクタンスである。q軸電機子電流を用いると永久磁石同期モータの推力Tは次式で表される。
  T=pφ・i
 永久磁石同期モータの場合、電機子巻線鎖交磁束数φfは変動がないから、q軸電機子電流iを制御することで推力を制御できる。ここでは、d軸電機子電流iは一般的にモータ効率の観点から0になるように制御される。電流i、iをこのように制御するには、これらの電流を制御するにはd軸電機子電圧v及びq軸電機子電圧vを制御する必要がある。また、d軸とq軸との位置を把握する必要がある。このとき、リニアモータ21における実際のd-q座標と、制御装置10において把握しているd^-q^座標(真値)とにずれが生じると、リニアモータ21の制御に誤差が生じるため、d^-q^座標を精度良く取得する必要がある。
 図1に戻り、制御装置10の構成について説明する。制御装置10は、位相算出器101、速度算出器102、位置算出器103、位置制御器104、速度制御器105、ベクトル回転器・3相2相変換器106、d軸電流制御器107、q軸電流制御器108、ベクトル回転器・2相3相変換器109、電力変換器110、変流器111、及び、初期磁極位置設定器112を備えている。
 位相算出器101には、リニアモータ21に取り付けられているエンコーダ22からリニアモータ21の可動子の移動量が入力される。位相算出器101は、初期磁極位置の設定が行われると、初期磁極位置とエンコーダ22から入力される移動量とに基づいて、リニアモータ21の磁極位置θre(d軸の位置、電気角)を算出する。位相算出器101は、算出した磁極位置をベクトル回転器・3相2相変換器106及びベクトル回転器・2相3相変換器109に入力する。
 速度算出器102には、エンコーダ22からリニアモータ21の可動子の移動量が入力される。速度算出器102は、初期磁極位置の設定が行われた後に入力される可動子の移動量に基づいて、可動子の移動速度を算出する。速度算出器102は、算出した移動速度ωrmを速度制御器105に入力する。
 位置算出器103には、エンコーダ22からリニアモータ21の可動子の移動量が入力される。位置算出器103は、初期磁極位置の設定が行われた後に入力される可動子の移動量に基づいて、可動子の位置を算出する。位置算出器103は、算出した可動子の位置θrmを位置制御器104に入力する。
 位置制御器104には、上位制御装置(不図示)から位置指令値θ rmが入力され、位置算出器103から可動子の位置θrmが入力される。位置制御器104は、入力される位置指令値θ rmと、入力される位置θrmとの偏差に基づいて速度指令値ω rmを算出する。位置制御器104は、算出した速度指令値ω rmを速度制御器105に入力する。
 速度制御器105は、位置制御器104から速度指令値ω rmが入力され、速度算出器102から移動速度ωrmが入力される。速度制御器105は、入力される速度指令値ω rmと、入力される移動速度ωrmとの偏差に基づいてq軸電流指令値i を算出する。速度制御器105は、算出したq軸電流指令値i をq軸電流制御器108に入力する。
 ベクトル回転器・3相2相変換器106には、変流器111から入力される三相帰還電流値i、iと、当該電流値i及びiから算出される三相帰還電流値iとが入力される。また、ベクトル回転器・3相2相変換器106には、位相算出器101が算出する電気角(磁極位置)θreが入力される。ベクトル回転器・3相2相変換器106は、電気角θreに基づいて、三相帰還電流値i、i、iからd軸電流i及びq軸電流iを算出する。ベクトル回転器・3相2相変換器106は、算出したd軸電流iをd軸電流制御器107に入力する。ベクトル回転器・3相2相変換器106は、算出したq軸電流iをq軸電流制御器108に入力する。
 d軸電流制御器107は、ベクトル回転器・3相2相変換器106から入力されるd軸電流iとd軸電流指令i との偏差に基づいて、d軸電圧指令値V を算出する。
 d軸電流制御器107は、算出したd軸電圧指令値V をベクトル回転器・2相3相変換器109に入力する。
 q軸電流制御器108は、ベクトル回転器・3相2相変換器106から入力されるq軸電流iと、速度制御器105から入力されるq軸電流指令値iqとの偏差に基づいて、q軸電圧指令値V を算出する。q軸電流制御器108は、算出したq軸電圧指令値V をベクトル回転器・2相3相変換器109に入力する。
 ベクトル回転器・2相3相変換器109には、d軸電流制御器107からd軸電圧指令値V が入力され、q軸電流制御器108からq軸電圧指令値V が入力され、位相算出器101から電気角θreが入力される。ベクトル回転器・2相3相変換器109は、電気角θreに基づいて、d軸電圧指令値V とq軸電圧指令値V とから三相電圧指令値V 、V 、V を算出する。ベクトル回転器・2相3相変換器109は、算出した三相電圧指令値V 、V 、V を電力変換器110に入力する。
 電力変換器110は、ベクトル回転器・2相3相変換器109から入力される三相電圧指令値V 、V 、V に基づいて、外部の電源から供給される電源電圧の電圧を変換して、リニアモータ21のU、V、W相それぞれのコイルに印加する。これにより、リニアモータ21に流れる電流を制御して、リニアモータ21の制御を行う。
 変流器111は、リニアモータ21のU相及びV相のコイルに流れる電流を測定し、測定結果をベクトル回転器・3相2相変換器106に出力する。
 初期磁極位置設定器112は、q^軸電流を0にし、d^軸電流をiにして、推力を発生させてリニアモータ21を動作させる。初期磁極位置設定器112は、エンコーダ22を介して得られるリニアモータ21の動作に基づいて、磁極位置を検出して初期磁極位置を設定する。初期磁極位置を設定している際には、位置制御器104及び速度制御器105は動作しない。
 本実施形態における制御装置10による初期磁極位置を設定する処理について、図3から図7を参照して説明する。図3から図6は、本実施形態における制御装置10が行う初期磁極位置を設定する処理のフローチャートである。制御装置10において、電源の供給が開始されたり、上位制御装置からの指示を受けたりして初期磁極位置の設定が開始されると、初期磁極位置設定器112は、d^軸磁極位置(電気角θre、推定磁極位置)を180°に設定し(ステップS101)、モータ動作サブルーチンを実行する(ステップS102)。初期磁極位置設定器112は、d^軸磁極位置を設定する際に、モータ動作サブルーチンにおいて流す電流の初期値として、定格電流の(1/n)倍の電流値を通電電流値の初期値として設定する。nは例えば8であり、通電電流値の初期値を定格電流の1/8の電流値とする。またnはリニアモータ21において発生する推力によって可動子が動き出すまでの時間などに基づいて予め定められる。
 ここで、モータ動作サブルーチンにおける処理を説明する。図7は、本実施形態において制御装置10が行うモータ動作サブルーチンのフローチャートである。モータ動作サブルーチンが開始されると、初期磁極位置設定器112は、ベクトル回転器・2相3相変換器109を制御して、d^軸磁極位置に対応するU、V、W相の電圧をリニアモータ21のU,V,W相それぞれのコイルに予め定められた微小時間の間印加して、リニアモータ21にパルス通電する(ステップS201)。微小時間には、各コイルに電流を流そうとしてから実際に各コイルに電流が流れて推力が発生するまでの最小時間が設定される。微小時間は、例えば10ミリ秒に設定される。
 初期磁極位置設定器112は、エンコーダ22が検出する可動子の移動量に基づいて、ステップS201の通電により可動子が移動したか否かを判定し(ステップS202)、可動子が移動していた場合(ステップS202:YES)、モータ動作サブルーチンを終了し、モータ動作サブルーチンを呼び出した(実行した)ステップの次のステップにリターンする。
 また、ステップS201の通電により可動子が移動していない場合(ステップS202:NO)、初期磁極位置設定器112は、現在の通電電流値が定格電流の2倍以上であるか否かを判定し(ステップS203)、通電電流値が定格電流の2倍以上である場合(ステップS203:YES)、モータ動作サブルーチンを終了し、モータ動作サブルーチンを呼び出した(実行した)ステップの次のステップにリターンする。
 また、現在の通電電流値が定格電流の2倍以上でない場合(ステップS203:NO)、初期磁極位置設定器112は、通電電流値を現在の通電電流値の2倍に変更し(ステップS204)、処理をステップS201に戻して、ステップS201からステップS204間での処理を繰り返して行う。
 モータ動作サブルーチンでは、設定されているd^軸磁極位置に対応するU、V、W相それぞれの電圧をU、V、W相それぞれのコイルに印加して、定格電流の1/n倍、2/n倍、…、2倍の電流よる通電を可動子が移動するまで順に行う。
 図3では、初期磁極位置を設定する処理の説明を続ける。
 モータ動作サブルーチン(ステップS102)によりリニアモータ21が動作した方向、すなわち可動子が移動した方向が、予め定められた方向(+方向)であるか否かを初期磁極位置設定器112は判定する(ステップS103)。予め定められた方向は、例えば、磁極位置(電気角)が増加する方向である。
 ステップS102においてリニアモータ21が動作した方向が+方向であった場合(ステップS103:YES)、初期磁極位置設定器112は、d^軸磁極位置を90°に設定し、通電電流値を定格電流の1/n倍に設定する(ステップS104)。初期磁極位置設定器112は、モータ動作サブルーチンを実行する(ステップS105)。ステップS105において実行するモータ動作サブルーチン、及び以下の説明におけるモータ動作サブルーチンは、前述の図7を用いて説明したモータ動作サブルーチンと同じである。
 初期磁極位置設定器112は、モータ動作サブルーチン(ステップS105)によりリニアモータ21が動作した方向が+方向であるか否かを判定する(ステップS106)。
 ステップS106の判定においてリニアモータ21が動作した方向が+方向であった場合(ステップS106:YES)、初期磁極位置設定器112は、d^軸磁極位置を0°に設定し、通電電流値を定格電流の1/n倍に設定し(ステップS107)、処理をステップS151(図4)に進める。
 一方、ステップS106の判定においてリニアモータ21が動作した方向が+方向でなかった場合(ステップS106:NO)、初期磁極位置設定器112は、d^磁極位置を90°に設定し、通電電流値を定格電流の1/n倍に設定し(ステップS108)、処理をステップS151(図4)に進める。
 ステップS102においてリニアモータ21が動作した方向が+方向でなかった場合(ステップS103:NO)、初期磁極位置設定器112は、d^軸磁極位置を270°に設定し、通電電流値を定格電流の1/n倍に設定する(ステップS109)。初期磁極位置設定器112は、モータ動作サブルーチンを実行する(ステップS110)。
 初期磁極位置設定器112は、モータ動作サブルーチン(ステップS110)によりリニアモータ21が動作した方向が+方向であるか否かを判定する(ステップS111)。
 ステップS110の判定においてリニアモータ21が動作した方向が+方向であった場合(ステップS111:YES)、初期磁極位置設定器112は、d^軸磁極位置を180°に設定し、通電電流値を定格電流の1/n倍に設定し(ステップS112)、処理をステップS151(図4)に進める。
 一方、ステップS110の判定においてリニアモータ21が動作した方向が+方向でなかった場合(ステップS111:NO)、初期磁極位置設定器112は、d^軸磁極位置に270°を設定し、通電電流値を定格電流の1/n倍に設定し(ステップS113)、処理をステップS151(図4)に進める。
 初期磁極位置設定器112は、モータ動作サブルーチンを実行し(ステップS151)、続いてd^磁極位置を+5°(第1変化量)増加させるとともに、通電電流値を定格電流の1/n倍に設定し(ステップS152)、モータ動作サブルーチンを実行する(ステップS153)。
 初期磁極位置設定器112は、前回のモータ動作サブルーチンにおいてリニアモータ21が動いたか否かを判定する(ステップS154)。
 前回のモータ動作サブルーチンにおいてリニアモータ21が動いていた場合(ステップS154:YES)、初期磁極位置設定器112は、今回のモータ動作サブルーチンにおいてリニアモータ21が動いたか否かを判定する(ステップS155)。
 今回のモータ動作サブルーチンにおいてリニアモータ21が動いていた場合(ステップS155:YES)、初期磁極位置設定器112は、前回のモータ動作サブルーチンにおいてリニアモータ21が動いた方向と、今回のモータ動作サブルーチンにおいてリニアモータ21が動いた方向とが同じか否かを判定する(ステップS156)。
 前回と今回とにおいてリニアモータ21が同じ方向に動いていた場合(ステップS156:YES)、初期磁極位置設定器112は、d^軸磁極位置を+5°増加させるとともに、通電電流値を定格電流の1/n倍に設定し(ステップS157)、モータ動作サブルーチンを実行し(ステップS158)、処理をステップS154に戻す。
 一方、前回と今回とにおいてリニアモータ21が同じ方向に動いていない場合(ステップS156:NO)、初期磁極位置設定器112は、現在のd^軸磁極位置で直流励磁を行い(ステップS159)、処理をステップS171(図5)に進める。
 ステップS155の判定において、今回のモータ動作サブルーチンにおいてリニアモータ21が動いていない場合(ステップS155:NO)、初期磁極位置設定器112は、前回のモータ動作サブルーチンにおいて通電を停止した後にリニアモータ21が逆方向に動いたか否かを判定する(ステップS160)。
 通電を停止した後に逆方向に動いていた場合(ステップS160:YES)、初期磁極位置設定器112は、現在のd^軸磁極位置で直流励磁を行い(ステップS159)、処理をステップS171(図5)に進める。
 一方、通電を停止した後に逆方向に動いていない場合(ステップS160:NO)、初期磁極位置設定器112は、現在のd^軸磁極位置で直流励磁を行い(ステップS161)、処理をステップS181(図6)に進める。
 ステップS154の判定において、前回のモータ動作サブルーチンにおいてリニアモータ21が動いていない場合(ステップS154:NO)、初期磁極位置設定器112は、今回のモータ動作サブルーチンにおいてリニアモータ21が動いたか否かを判定する(ステップS162)。
 今回のモータ動作サブルーチンにおいてリニアモータ21が動いていない場合(ステップS162:NO)、初期磁極位置設定器112は、d^軸磁極位置を+5°増加させるとともに、通電電流値を定格電流の1/n倍に設定し(ステップS163)、モータ動作サブルーチンを実行し(ステップS164)、処理をステップS154に戻す。
 一方、今回のモータ動作サブルーチンにおいてリニアモータ21が動いていた場合(ステップS162:YES)、初期磁極位置設定器112は、現在のd^軸磁極位置で直流励磁を行い(ステップS161)、処理をステップS181(図6)に進める。
 ステップS159(図4)における直流励磁の後に、初期磁極位置設定器112は、d^軸磁極位置をΔE(第2変化量)減少させて、d^軸磁極位置で直流励磁を行う(図5.ステップS171)。磁極位置の変化量ΔEは、予め定められた変化量であり、エンコーダ22の検出分解能や、制御装置10の制御分解能などに応じて定められる。初期磁極位置設定器112は、ステップS171の直流励磁によりリニアモータ21が動いた量、すなわち可動子の移動量を取得する(ステップS172)。
 初期磁極位置設定器112は、ステップS172において取得した移動量が、変化量ΔEに対応する距離と一致するか否かを判定する(ステップS173)。変化量ΔEに対応する距離とは、d^軸磁極位置がEから(E+ΔE)変化した場合に、リニアモータ21の可動子が移動する距離のことである。
 移動量が変化量ΔEに対応する距離と一致する場合(ステップS173:YES)、初期磁極位置設定器112は、現在のd^軸磁極位置にリニアモータ21の可動子が位置すると判断し、現在のd^軸磁極位置をリニアモータ21の初期磁極位置として設定し(ステップS174)、初期磁極位置を設定する処理を終了させる。
 一方、移動量が変化量ΔEに対応する距離と一致しない場合(ステップS173:NO)、初期磁極位置設定器112は、処理をステップS171に戻して、ステップS171からステップS173までの処理を繰り返して行う。
 ステップS161(図4)における直流励磁の後に、初期磁極位置設定器112は、d^軸磁極位置をΔE増加させて、d^軸磁極位置で直流励磁を行い(図6.ステップS181)、初期磁極位置設定器112は、ステップS181の直流励磁によりリニアモータ21が動いた量、すなわち可動子の移動量を取得する(ステップS182)。
 初期磁極位置設定器112は、ステップS182において取得した移動量が、変化量ΔEに対応する距離と一致するか否かを判定し(ステップS183)、移動量が変化量ΔEに対応する距離と一致する場合(ステップS183:YES)、現在のd^磁極位置にリニアモータ21の可動子が位置すると判断し、現在のd^軸磁極位置をリニアモータ21の初期磁極位置に設定し(ステップS184)、初期磁極位置を設定する処理を終了させる。
 一方、移動量が変化量ΔEに対応する距離と一致しない場合(ステップS183:NO)、初期磁極位置設定器112は、処理をステップS181に戻して、ステップS181からステップS183までの処理を繰り返して行う。
 以上説明したように、制御装置10は、リニアモータ21の実際のd軸磁極位置をステップS101からステップS113までの処理を行うことにより、0°から90°まで、90°から180°まで、180°から270°まで、270°から360°(0°)までの4つの区間のうちいずれにあるかを推定する。制御装置10は、推定した区間における最小値をd^軸磁極位置に設定し、所定の量(例えば5°ずつ)d^軸磁極位置をずらしながらパルス通電を行い、連続する2回のパルス通電におけるリニアモータ21の動きに基づいて、実際のd軸磁極位置にd^軸磁極位置を近づける磁極位置絞り込みを行う。
このとき、リニアモータ21の動きに基づいて、可動子に対して作用している外力があるか否か、また外力がある場合には可動子の移動方向に対していずれの方向であるかを判定する。
 制御装置10は、外力の有無、又は外力の方向に応じて、d^軸磁極位置に対して所定の変化量ΔEを増加させながら直流励磁をするか、減少させながら直流励磁をするかを決定する。制御装置10は、d^軸磁極位置を変化量ΔEで変化させながら直流励磁を行い、直流励磁を行う都度、リニアモータ21の可動子の移動量が変化量ΔEに対応した移動量と一致するか否かを判定して、一致した場合にリニアモータ21の実際のd軸磁極位置と、d^軸磁極位置とが一致したと判定する。すなわち、実際のd軸磁極位置を検出する。
 これにより、制御装置10は、リニアモータ21のd軸磁極位置を精度良く検出することができ、リニアモータ21を制御する精度を向上させることができる。また、制御装置10は、リニアモータ21の実際のd軸磁極位置の存在する区間を推定した後に、直流励磁を行うようにしているので、直流励磁を行った際にリニアモータ21の可動子が動く距離を抑えることができる。また、直流励磁を行う際には、d^軸磁極位置を少しずつ(ΔE)変化させるので、可動子が動く距離を更に抑えることができる。また、d^軸磁極位置をΔEずつ変化させながら、エンコーダ22が検出する移動量とΔEに対応する移動量とを比較することにより、直流励磁を開始したときの実際のd軸磁極位置に依存することなくd軸磁極位置の検出を行うことができる。
 本実施形態における制御装置10による初期磁極位置の設定例を図8A、図8Bおよび図8C、及び図9Aおよび図9Bを参照して説明する。図8A、図8Bおよび図8Cは、初期磁極位置の設定の対象となるリニアモータ21の設置例を示す図である。図8Aは、ロッド型のリニアモータ21を水平に設置し、可動子(ロッド)に外力が作用していない状態を示している。図8Bは、ロッド型のリニアモータ21を垂直に設置し、可動子の垂直方向上側の端部にバネなどの付勢部材を取り付けてロッドの自重と釣り合っている状態を示している。図8Cは、図8Bと同様に、ロッド型のリニアモータ21を垂直に設置した場合を示しているが、リニアモータ21の向きが異なっている。図8Bは垂直方向上向きがd軸磁極位置の+方向になっているのに対して、図8Cは垂直方向下向きがd軸磁極位置の+方向になっている。また、図8A~図8Cのいずれにおいても、リニアモータ21の実際のd軸磁極位置は8°である場合を示している。
 図8A、図8Bおよび図8Cに示した状態にあるリニアモータ21に対して制御装置10が初期磁極位置の設定を開始すると、d^軸磁極位置180°でのパルス通電が行われる(ステップS101、S102)。このパルス通電でリニアモータ21が+方向に動き(ステップS103:YES)、d^軸磁極位置90°でのパルス通電が行われる(ステップS104、S105)。今回のパルス通電でもリニアモータ21が+方向に動き(ステップS106:YES)、d^軸磁極位置が0°に設定され、再度パルス通電が行われる(ステップS107、S151)。
 次に、d^軸磁極位置を+5°増加させた5°でのパルス通電が行われる(ステップS152、S153)。前回のパルス通電(d^磁極位置0°でのパルス通電)においてリニアモータ21が動いており(ステップS154:YES)、今回のパルス通電(d^軸磁極位置5°でのパルス通電)においてもリニアモータ21が動いており(ステップS155:YES)、ともに同じ方向に動いているので(ステップS156:YES)、更にd^軸磁極位置を+5°増加させた10°でのパルス通電が行われ(ステップS157、S158)、処理がステップS154に戻る。
 前回のパルス通電(d^軸磁極位置5°でのパルス通電)でリニアモータ21が動いており(ステップS154:YES)、今回のパルス通電(d^軸磁極位置10°でのパルス通電)でもリニアモータ21が動いているが(ステップS155:YES)、異なる方向に動いているので(ステップS156:NO)、現在のd^軸磁極位置10°での直流励磁が行われる(ステップS159)。
 続いて、現在のd^軸磁極位置からΔE(例えば1°)減少させたd^軸磁極位置9°での直流励磁が行われ(ステップS171)、エンコーダ22の出力からリニアモータ21の可動子の移動量ΔXを取得する(ステップS172)。d^軸磁極位置10°での直流励磁により、可動子がd^軸磁極位置10°に引き込まれているので、d^軸磁極位置9°での直流励磁により、可動子がd^軸磁極位置1°分移動することになる。すなわち、ΔEに対応する移動量と移動量ΔXとが一致することになり(ステップS173:YES)、制御装置10は、現在のd^軸磁極位置9°をリニアモータ21の実際のd軸磁極位置として設定し(ステップS174)、リニアモータ21の制御を開始する。
 図9Aおよび図9Bは、初期磁極位置の設定の対象となるリニアモータ21の設置例を示す図である。
図9Aは、ロッド型のリニアモータ21を垂直に設置し、可動子が自重により可動範囲の最も下側で静止している状態を示している。図9Bは、ロッド型のリニアモータ21を垂直に設置し、可動子の垂直方向上側の端部にバネなどの付勢部材を取り付けて鉛直方向上向きに引き上げ、可動範囲の最も上側で静止している状態を示している。図9Aは垂直方向上向きがd軸磁極位置の+方向になっているのに対して、図9Bは垂直方向下向きがd軸磁極位置の+方向になっている。また、図9A及び図9Bのいずれにおいても、リニアモータ21の実際のd軸磁極位置は8°である場合を示している。
 図9Aおよび図9Bに示した状態にあるリニアモータ21に対して制御装置10が初期磁極位置の設定を開始すると、d^軸磁極位置180°値のパルス通電が行われる(ステップS101、S102)。このパルス通電でリニアモータ21が+方向に動き(ステップS103:YES)、d^軸磁極位置90°でのパルス通電が行われる(ステップS104、S105)。今回のパルス通電でもリニアモータ21が+方向に動き(ステップS106:YES)、d^軸磁極位置が0°に設定され、再度パルス通電が行われる(ステップS107、S151)。
 次に、d^軸磁極位置を+5°増加させた5°でのパルス通電が行われるが(ステップS152、S153)、図9Aおよび図9Bに示すように可動子は既に可動範囲の端に達しており、d^軸磁極位置5°に向かって動くことはできない。前回のパルス通電(d^軸磁極位置0°でのパルス通電)においてリニアモータ21は動いておらず(ステップS154:NO)、今回のパルス通電(d^軸磁極位置5°でのパルス通電)においてもリニアモータ21は動いていないので(ステップS162:NO)、更にd^軸磁極位置を+5°増加させた10°でのパルス通電が行われ(ステップS163、S164)、処理がステップS154に戻る。
 前回のパルス通電(d^軸磁極位置5°でのパルス通電)でリニアモータ21が動いておらず(ステップS154:NO)、今回のパルス通電(d^軸磁極位置10°でのパルス通電)でリニアモータ21が動いているので(ステップS162:YES)、現在のd^軸磁極位置10°での直流励磁が行われる(ステップS161)。
 続いて、現在のd^軸磁極位をΔE(例えば1°)増加させたd^軸磁極位置11°での直流励磁が行われ(ステップS181)、エンコーダ22の出力からリニアモータ21の可動子の移動量ΔXを取得する(ステップS182)。d^軸磁極位置10°での直流励磁により、可動子がd^軸磁極位置10°に引き込まれているので、d^軸磁極位置11°での直流励磁により、可動子がd^軸磁極位置1°分移動することになる。すなわち、ΔEに対応する移動量と移動量ΔXとが一致することになり(ステップS183:YES)、制御装置10は、現在のd^軸磁極位置11°をリニアモータ21の実際のd軸磁極位置として設定し(ステップS184)、リニアモータ21の制御を開始する。
 このように、可動子が自重や外力によって可動範囲の端にある場合においても、制御装置10は、推定したd^軸磁極位置を基準にして所定の量(ΔE)ずつd^軸磁極位置を変化させながら直流励磁を行い、そのときの移動量ΔXと所定の量(ΔE)とが対応するときに、実際のd軸磁極位置とd^軸磁極位置とが一致していると判定して、初期磁極位置の設定を行うことができる。これにより、リニアモータ21に外力が作用している場合においても、制御装置10は、リニアモータ21のd軸磁極位置を精度良く検出することができ、リニアモータ21を制御する精度を向上させることができる。
 本実施形態の制御装置10においては、初期磁極位置を設定する処理のステップS101からステップS113で実際のd軸磁極位置が存在する区間を推定した後に、推定した区間における最小値をd^軸磁極位置に設定し(ステップS107、S108、S112、S113)、磁極位置の絞り込みを行う構成について説明した。しかし、これに限ることなく、推定した区間における最大値をd^軸磁極位置として磁極位置の絞り込みを行うようにしてもよい。この場合、ステップS152、S157、S163における+5°の増加(第1変化量の増加)を-5°の減少に代え、ステップS171におけるΔEの減少(第2変化量の減少)をΔEの増加に代え、ステップS181におけるΔEの増加をΔEの減少に代えることになる。
 また、本実施形態の初期磁極位置を設定する処理における、ステップS152、S157、S163における5°や、ステップS171、S181における1°は、一例であり、異なる角度(変化量)であってもよい。ただし、ステップS171、S181における変化量(第2変化量)は、ステップS152、S157、S163における変化量(第1変化量)より小さい値が定められる。
 また、本実施形態の初期磁極位置を設定する処理におけるd軸磁極位置が存在する区間を推定する際に、0°から360°までのd軸磁極位置を90°間隔の4つの区間に分ける場合について説明した。しかし、これに限ることなく、120°間隔の3区間や、60°間隔の6区間などに分けるようにしてもよい。
 上述の実施形態における制御装置10は内部に、コンピュータシステムを有していてもよい。その場合、上述した初期磁極位置を設定する処理過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われることになる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
 モータを駆動する際に、可動子の磁極位置を把握することが不可欠な用途にも適用できる。
 10…制御装置
 21…リニアモータ

Claims (4)

  1.  リニアモータを制御する制御装置であって、
     0°から360°までの磁極位置を分割した複数の区間のいずれかに前記リニアモータの現在の磁極位置が含まれるかを複数回のパルス通電による可動子の移動方向に基づいて推定する区間推定部と、
     前記区間推定部が推定した区間の最小値又は最大値のいずれか一方から他方に向かって所定の第1変化量で推定磁極位置を変化させながらパルス通電を行い、パルス通電をした際の前記可動子の動きに基づいて前記現在の磁極位置に推定磁極位置を近づける磁極位置絞り込み部と、
     前記磁極位置絞り込み部が近づけた推定磁極位置を前記第1変化量より小さい第2変化量で変化させながら直流励磁を行い、推定磁極位置を変化させる度に前記可動子の移動量を取得し、取得した移動量が前記第2変化量に対応する移動量と一致した場合に、推定磁極位置と前記現在の磁極位置が一致したと判定する磁極位置検出部と
     を備えるリニアモータの制御装置。
  2.  請求項1に記載のリニアモータの制御装置において、
     前記磁極位置絞り込み部は、
     連続する2回のパルス通電において、前記可動子の動く方向が異なっている場合、又は、一方のパルス通電で前記可動子が動き他方のパルス通電で前記可動子が動かない場合に推定磁極位置を前記現在の磁極位置に近づける絞り込みが完了したと判定する
    リニアモータの制御装置。
  3.  請求項2に記載のリニアモータの制御装置において、
     前記磁極位置検出部は、
     連続する2回のパルス通電において前記可動子の動く方向が異なっている場合、及び、連続する2回のパルス通電において今回のパルス通電で前記可動子が動かず前回のパルス通電で前記可動子が動き、前回のパルス通電の後に前記可動子が逆に動いた場合と、
     連続する2回のパルス通電において今回のパルス通電で前記可動子が動き前回のパルス通電で前記可動子が動かない場合、及び、連続する2回のパルス通電において今回のパルス通電で前記可動子が動かず前回のパルス通電で前記可動子が動き、前回のパルス通電の後に前記可動子が逆に動かなかった場合とにおいて、
     推定磁極位置を前記第2変化量ずつ増加させながら直流励磁を行うか、推定磁極位置を前記第2変化量ずつ減少させながら直流励磁を行うかを切り替えるリニアモータの制御装置。
  4.  リニアモータを制御する制御装置が行う制御方法であって、
     0°から360°までの磁極位置を分割した複数の区間のいずれかに前記リニアモータの現在の磁極位置が含まれるかを複数回のパルス通電による可動子の移動方向に基づいて推定する区間推定ステップと、
     前記区間推定ステップにおいて推定した区間の最小値又は最大値のいずれか一方から他方に向かって所定の第1変化量で推定磁極位置を変化させながらパルス通電を行い、パルス通電をした際の前記可動子の動きに基づいて前記現在の磁極位置に推定磁極位置を近づける磁極位置絞り込みステップと、
     前記磁極位置絞り込みステップで近づけた推定磁極位置を前記第1変化量より小さい第2変化量で変化させながら直流励磁を行い、推定磁極位置を変化させる度に前記可動子の移動量を取得し、取得した移動量が前記第2変化量に対応する移動量と一致した場合に、推定磁極位置と前記現在の磁極位置が一致したと判定する磁極位置検出ステップと
     を有する制御方法。
PCT/JP2014/072152 2013-09-13 2014-08-25 リニアモータの制御装置、及び制御方法 WO2015037423A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112014004187.4T DE112014004187B4 (de) 2013-09-13 2014-08-25 Regelvorrichtung und Regelverfahren für einen Linearmotor
CN201480049919.8A CN105531919B (zh) 2013-09-13 2014-08-25 线性电动机的控制装置及控制方法
US15/021,389 US9509245B2 (en) 2013-09-13 2014-08-25 Control device and control method for linear motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013190961A JP5820446B2 (ja) 2013-09-13 2013-09-13 リニアモータの制御装置、及び制御方法
JP2013-190961 2013-09-13

Publications (1)

Publication Number Publication Date
WO2015037423A1 true WO2015037423A1 (ja) 2015-03-19

Family

ID=52665537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072152 WO2015037423A1 (ja) 2013-09-13 2014-08-25 リニアモータの制御装置、及び制御方法

Country Status (6)

Country Link
US (1) US9509245B2 (ja)
JP (1) JP5820446B2 (ja)
CN (1) CN105531919B (ja)
DE (1) DE112014004187B4 (ja)
TW (1) TWI625927B (ja)
WO (1) WO2015037423A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017034893A (ja) * 2015-08-04 2017-02-09 Thk株式会社 リニアアクチュエータの制御装置及び制御方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6966344B2 (ja) * 2018-02-01 2021-11-17 株式会社日立産機システム 磁極位置推定方法及び制御装置
CN112514237B (zh) * 2018-08-08 2024-07-16 日本电产株式会社 位置推断方法、马达控制装置以及马达系统
JP6739683B1 (ja) * 2019-06-06 2020-08-12 三菱電機株式会社 モータ制御装置
CN114762242A (zh) * 2019-12-27 2022-07-15 松下知识产权经营株式会社 直线电动机系统
CN112204560B (zh) 2020-05-07 2024-04-26 株式会社Jsol 计算机程序、模拟方法和模拟装置
JP7514136B2 (ja) * 2020-07-30 2024-07-10 キヤノン株式会社 搬送装置、制御装置及び制御方法
TWI760228B (zh) * 2021-05-20 2022-04-01 台達電子工業股份有限公司 馬達控制方法
CN115459663A (zh) 2021-05-20 2022-12-09 台达电子工业股份有限公司 马达控制方法
JP2023028748A (ja) 2021-08-20 2023-03-03 オムロン株式会社 搬送システム、及び保持装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515179A (ja) * 1991-07-03 1993-01-22 Shinko Electric Co Ltd 同期電動機の起動方法
JP2001078487A (ja) * 1999-09-07 2001-03-23 Fanuc Ltd 同期電動機のロータ磁極位置検出方法
JP2005151752A (ja) * 2003-11-18 2005-06-09 Fanuc Ltd 磁極位置検出装置
WO2007114058A1 (ja) * 2006-03-31 2007-10-11 Thk Co., Ltd. 永久磁石同期モータの磁極位置検出方法
JP2013115878A (ja) * 2011-11-25 2013-06-10 Thk Co Ltd リニアモータ制御装置、及び制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3805336B2 (ja) 2003-10-22 2006-08-02 ファナック株式会社 磁極位置検出装置及び方法
JP4263582B2 (ja) 2003-11-17 2009-05-13 本田技研工業株式会社 ブラシレスモータ制御装置
JP4816645B2 (ja) 2005-09-26 2011-11-16 株式会社安川電機 Ac同期モータの初期磁極位置推定装置
JP2010035287A (ja) 2008-07-25 2010-02-12 Hitachi Ltd 円筒型リニアモータ及びそれを用いた電磁サスペンション及び電動パワーステアリング装置
JP5206619B2 (ja) 2009-08-04 2013-06-12 株式会社デンソー ブラシレス三相直流モータの駆動方法及び駆動制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515179A (ja) * 1991-07-03 1993-01-22 Shinko Electric Co Ltd 同期電動機の起動方法
JP2001078487A (ja) * 1999-09-07 2001-03-23 Fanuc Ltd 同期電動機のロータ磁極位置検出方法
JP2005151752A (ja) * 2003-11-18 2005-06-09 Fanuc Ltd 磁極位置検出装置
WO2007114058A1 (ja) * 2006-03-31 2007-10-11 Thk Co., Ltd. 永久磁石同期モータの磁極位置検出方法
JP2013115878A (ja) * 2011-11-25 2013-06-10 Thk Co Ltd リニアモータ制御装置、及び制御方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017034893A (ja) * 2015-08-04 2017-02-09 Thk株式会社 リニアアクチュエータの制御装置及び制御方法
WO2017022588A1 (ja) * 2015-08-04 2017-02-09 Thk株式会社 リニアアクチュエータの制御装置及び制御方法
CN107852122A (zh) * 2015-08-04 2018-03-27 Thk株式会社 线性致动器的控制装置以及控制方法
KR20180037189A (ko) * 2015-08-04 2018-04-11 티에치케이 가부시끼가이샤 리니어 액추에이터의 제어 장치 및 제어 방법
TWI704761B (zh) * 2015-08-04 2020-09-11 日商Thk股份有限公司 線性致動器之控制裝置及控制方法
US10972036B2 (en) 2015-08-04 2021-04-06 Thk Co., Ltd. Device and method for controlling linear actuator
KR102590969B1 (ko) * 2015-08-04 2023-10-18 티에치케이 가부시끼가이샤 리니어 액추에이터의 제어 장치 및 제어 방법

Also Published As

Publication number Publication date
CN105531919B (zh) 2017-05-03
JP2015057030A (ja) 2015-03-23
US9509245B2 (en) 2016-11-29
DE112014004187T5 (de) 2016-06-02
TW201526520A (zh) 2015-07-01
CN105531919A (zh) 2016-04-27
TWI625927B (zh) 2018-06-01
JP5820446B2 (ja) 2015-11-24
DE112014004187B4 (de) 2023-03-16
US20160226417A1 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
JP5820446B2 (ja) リニアモータの制御装置、及び制御方法
JP5781235B2 (ja) 同期機制御装置
JP4928855B2 (ja) 同期機のセンサレス制御装置
TWI458251B (zh) 線性同步電動機控制方法及控制裝置
JP6488626B2 (ja) モータ制御装置、モータシステム、モータ制御プログラム
JP5224372B2 (ja) 永久磁石同期モータの磁極位置検出方法
JP5177133B2 (ja) モータ制御装置
JP2015080344A (ja) 電動機の駆動装置
JP5743344B2 (ja) 同期電動機の制御装置
JP2009153347A (ja) 同期電動機の制御装置
JP2019022403A (ja) 電動機用インバータ回路の評価装置および評価方法
JP6541887B2 (ja) 回転電機の制御装置
JP2020005404A (ja) 電力変換装置
JP5625008B2 (ja) 電力変換装置、電動機駆動システム、搬送機、昇降装置
JP5479094B2 (ja) 同期モータの制御方法及び制御装置
JP7147296B2 (ja) モータ制御装置
JP7501190B2 (ja) 交流同期モータの磁極位置推定装置及び制御装置
JP2019187178A (ja) モータ制御装置
JP6278857B2 (ja) 同期電動機の磁極位置推定装置および磁極位置推定方法
JP7585845B2 (ja) モータ制御装置
WO2022172472A1 (ja) モータ制御装置
JP2019161875A (ja) モータ制御装置
JP6923801B2 (ja) 誘導電動機のオブザーバ制御装置
JP2022123717A (ja) モータ制御装置
Yang et al. Sensorless Control of a Single-Phase Switched Reluctance Motor Using Residual Flux

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480049919.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843272

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15021389

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014004187

Country of ref document: DE

Ref document number: 1120140041874

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14843272

Country of ref document: EP

Kind code of ref document: A1