WO2015037423A1 - リニアモータの制御装置、及び制御方法 - Google Patents
リニアモータの制御装置、及び制御方法 Download PDFInfo
- Publication number
- WO2015037423A1 WO2015037423A1 PCT/JP2014/072152 JP2014072152W WO2015037423A1 WO 2015037423 A1 WO2015037423 A1 WO 2015037423A1 JP 2014072152 W JP2014072152 W JP 2014072152W WO 2015037423 A1 WO2015037423 A1 WO 2015037423A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic pole
- pole position
- linear motor
- current
- mover
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/06—Linear motors
- H02P25/064—Linear motors of the synchronous type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/06—Rotor flux based control involving the use of rotor position or rotor speed sensors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/06—Linear motors
Definitions
- the present invention relates to a linear motor control device and a control method.
- This application claims priority based on Japanese Patent Application No. 2013-190961 filed in Japan on September 13, 2013, the contents of which are incorporated herein by reference.
- the linear motor has a relative positional relationship (magnetic pole position) between a plurality of coils provided on either the mover or the stator and a driving magnet provided on the other of the mover or the stator. If energization is not performed, thrust according to the thrust constant of the linear motor cannot be generated.
- the present invention has been made to solve the above problems, and an object of the present invention is to provide a linear motor control device and a control method capable of improving the accuracy of detecting the magnetic pole position.
- the current magnetic pole position of the linear motor is included in any of the plurality of sections obtained by dividing the magnetic pole position from 0 ° to 360 °.
- a section estimation unit that estimates the movement based on the moving direction of the mover by a plurality of pulse energizations, and a predetermined first from the minimum value or the maximum value of the section estimated by the section estimation unit toward the other Conducting pulse energization while changing the estimated magnetic pole position according to the amount of change, and reducing the magnetic pole position by making the estimated magnetic pole position closer to the current magnetic pole position based on the movement of the mover when pulsed DC excitation is performed while changing the estimated magnetic pole position close to the part by a second change amount smaller than the first change amount, and the movement amount of the mover is obtained and acquired every time the estimated magnetic pole position is changed.
- a magnetic pole position detection unit that determines that the estimated magnetic pole position matches the current magnetic pole position when the moved amount matches the movement amount corresponding to
- the magnetic pole position narrowing portion is different in the moving direction of the mover in two successive pulse energizations. In this case, or when the mover moves by one pulse energization and the mover does not move by the other pulse energization, it is determined that the narrowing of the estimated magnetic pole position to the current magnetic pole position is completed.
- the magnetic pole position detection unit is configured such that the moving direction of the mover is different in two successive pulse energizations. And in the continuous two pulse energization, the mover does not move in the current pulse energization, the mover moves in the previous pulse energization, and the mover moves in reverse after the previous pulse energization, and The mover moves by the current pulse energization in two consecutive pulse energies, and does not move by the previous pulse energization, and the mover moves by the current pulse energization in two consecutive pulse energies.
- the estimated magnetic pole position is increased by the second change amount. Whether to excitation flow, the estimated magnetic pole position switches whether to DC excitation while decreasing by the second variation amount.
- the control method performed by the control device for controlling the linear motor is the current magnetic pole of the linear motor in any of a plurality of sections obtained by dividing the magnetic pole position from 0 ° to 360 °.
- the estimated magnetic pole position is changed by changing the estimated magnetic pole position brought close in the magnetic pole position narrowing step by a second change amount smaller than the first change amount.
- the amount of movement of the mover is acquired each time the movement is performed, and when the acquired amount of movement matches the amount of movement corresponding to the second change
- the range where the current magnetic pole position of the linear motor is present is narrowed down by using pulse energization with reduced movement of the mover, and the estimated magnetic pole position narrowed down is the first. 2
- the excitation amount is changed by the amount of change and the estimated movement of the mover and the amount of movement of the second change amount each time the estimated magnetic pole position is changed, Since it is determined that the magnetic pole position matches, the accuracy of detecting the magnetic pole position can be improved.
- FIG. 1 is a schematic block diagram showing the control device 10 for the linear motor 21 according to the present embodiment.
- the control device 10 generates a moving field that moves linearly by causing a three-phase armature current to flow through the U, V, and W phase coils provided in the linear motor 21, and moves the mover of the linear motor 21. Move linearly with respect to the stator.
- the d-axis and q-axis can be adjusted using the dq coordinate system of rotating coordinates.
- the dq conversion converts the fixed part (stator) and the rotating part (movable element) of the motor into a rotating orthogonal coordinate system, and the coordinate system is the dq coordinate system.
- the q axis is a phase shift advanced by ⁇ / 2 with respect to the d axis.
- the d-axis is generally taken in the direction of the magnetic flux generated by the magnetic field.
- the dq coordinate is a rotational coordinate.
- FIG. 2 is a diagram showing an equivalent circuit of the permanent magnet synchronous motor in the dq coordinate system.
- v d is a d-axis armature voltage
- v q is a q-axis armature voltage
- id is the d-axis armature current
- i q is the q-axis armature current
- ⁇ f is the number of armature winding flux linkages
- R is the armature winding resistance
- L is the self-inductance of the armature winding.
- the d-axis armature current id is generally controlled to be 0 from the viewpoint of motor efficiency. In order to control the currents i d and i q in this way, it is necessary to control the d-axis armature voltage v d and the q-axis armature voltage v q in order to control these currents. Further, it is necessary to grasp the positions of the d axis and the q axis.
- the control device 10 includes a phase calculator 101, a speed calculator 102, a position calculator 103, a position controller 104, a speed controller 105, a vector rotator / three-phase two-phase converter 106, a d-axis current controller 107, q
- a shaft current controller 108, a vector rotator / two-phase / three-phase converter 109, a power converter 110, a current transformer 111, and an initial magnetic pole position setter 112 are provided.
- the amount of movement of the mover of the linear motor 21 is input to the phase calculator 101 from an encoder 22 attached to the linear motor 21.
- the phase calculator 101 sets the magnetic pole position ⁇ re (d-axis position, electrical angle) of the linear motor 21 based on the initial magnetic pole position and the movement amount input from the encoder 22. Is calculated.
- the phase calculator 101 inputs the calculated magnetic pole position to the vector rotator / three-phase / two-phase converter 106 and the vector rotator / two-phase / three-phase converter 109.
- the moving amount of the mover of the linear motor 21 is input from the encoder 22 to the speed calculator 102.
- the speed calculator 102 calculates the moving speed of the mover based on the moving amount of the mover input after the initial magnetic pole position is set.
- the speed calculator 102 inputs the calculated moving speed ⁇ rm to the speed controller 105.
- the amount of movement of the mover of the linear motor 21 is input from the encoder 22 to the position calculator 103.
- the position calculator 103 calculates the position of the mover based on the amount of movement of the mover input after the initial magnetic pole position is set.
- the position calculator 103 inputs the calculated mover position ⁇ rm to the position controller 104.
- the position controller 104 receives a position command value ⁇ * rm from a host controller (not shown), and receives a mover position ⁇ rm from the position calculator 103.
- the position controller 104 calculates a speed command value ⁇ * rm based on a deviation between the input position command value ⁇ * rm and the input position ⁇ rm .
- the position controller 104 inputs the calculated speed command value ⁇ * rm to the speed controller 105.
- the speed controller 105 receives the speed command value ⁇ * rm from the position controller 104 and the moving speed ⁇ rm from the speed calculator 102.
- the speed controller 105 calculates the q-axis current command value i * q based on the deviation between the input speed command value ⁇ * rm and the input moving speed ⁇ rm .
- the speed controller 105 inputs the calculated q-axis current command value i * q to the q-axis current controller 108.
- the value i w is entered.
- the electric angle (magnetic pole position) ⁇ re calculated by the phase calculator 101 is input to the vector rotator / three-phase / two-phase converter 106.
- the vector rotator / three-phase two-phase converter 106 inputs the calculated d-axis current id to the d-axis current controller 107.
- the vector rotator / three-phase / two-phase converter 106 inputs the calculated q-axis current i q to the q-axis current controller 108.
- d-axis current controller 107 based on a deviation between d-axis current i d and the d-axis current command i * d is inputted from the vector rotator, three-phase to two-phase converter 106, the d-axis voltage command value V * d is calculated.
- the d-axis current controller 107 inputs the calculated d-axis voltage command value V * d to the vector rotator / two-phase / three-phase converter 109.
- the q-axis current controller 108 calculates a deviation between the q-axis current i q input from the vector rotator / three-phase two-phase converter 106 and the q-axis current command value i * q input from the speed controller 105. Based on this, the q-axis voltage command value V * q is calculated. The q-axis current controller 108 inputs the calculated q-axis voltage command value V * q to the vector rotator / two-phase / three-phase converter 109.
- the d-axis voltage command value V * d is input from the d-axis current controller 107 and the q-axis voltage command value V * q is input from the q-axis current controller 108 to the vector rotator / two-phase / three-phase converter 109.
- the electrical angle ⁇ re is input from the phase calculator 101.
- the vector rotator / two-phase / three-phase converter 109 calculates the three-phase voltage command values V * u and V from the d-axis voltage command value V * d and the q-axis voltage command value V * q based on the electrical angle ⁇ re. * V and V * w are calculated.
- the vector rotator / two-phase three-phase converter 109 inputs the calculated three-phase voltage command values V * u , V * v , and V * w to the power converter 110.
- the power converter 110 is a power supply voltage supplied from an external power supply based on the three-phase voltage command values V * u , V * v , V * w input from the vector rotator / two-phase three-phase converter 109. Is applied to the U, V, and W phase coils of the linear motor 21. Thereby, the current flowing through the linear motor 21 is controlled to control the linear motor 21.
- the current transformer 111 measures the current flowing through the U-phase and V-phase coils of the linear motor 21 and outputs the measurement result to the vector rotator / three-phase two-phase converter 106.
- Initial magnetic pole position setter 112 the q ⁇ -axis current to 0, and the d ⁇ axis current i d, to operate the linear motor 21 to generate thrust.
- the initial magnetic pole position setting unit 112 detects the magnetic pole position and sets the initial magnetic pole position based on the operation of the linear motor 21 obtained via the encoder 22. When the initial magnetic pole position is set, the position controller 104 and the speed controller 105 do not operate.
- FIGS. 3 to 6 are flowcharts of processing for setting the initial magnetic pole position performed by the control device 10 according to the present embodiment.
- the initial magnetic pole position setting unit 112 sets the d ⁇ -axis magnetic pole position (electricity The angle ⁇ re and the estimated magnetic pole position are set to 180 ° (step S101), and a motor operation subroutine is executed (step S102).
- the initial magnetic pole position setting unit 112 sets a current value that is (1 / n) times the rated current as an initial value of the energization current value as an initial value of the current that flows in the motor operation subroutine when setting the d ⁇ -axis magnetic pole position.
- n is 8
- the initial value of the energization current value is set to a current value that is 1/8 of the rated current.
- n is determined in advance based on the time until the mover starts moving due to the thrust generated in the linear motor 21.
- FIG. 7 is a flowchart of a motor operation subroutine performed by the control device 10 in the present embodiment.
- the initial magnetic pole position setting unit 112 controls the vector rotator / two-phase / three-phase converter 109 to generate U, V, and W phase voltages corresponding to the d ⁇ axis magnetic pole position.
- the linear motor 21 is applied with pulses for a predetermined minute time to the U, V, and W phases of the linear motor 21, and the linear motor 21 is pulsed (step S201).
- the minute time a minimum time from when an electric current is made to flow through each coil until when an electric current actually flows through each coil to generate thrust is set.
- the minute time is set to 10 milliseconds, for example.
- the initial magnetic pole position setting unit 112 determines whether or not the mover has moved due to the energization in step S201 based on the moving amount of the mover detected by the encoder 22 (step S202), and the mover has moved. In the case (step S202: YES), the motor operation subroutine is terminated, and the process returns to the step next to the step that called (executed) the motor operation subroutine.
- step S201 If the mover has not moved due to energization in step S201 (step S202: NO), the initial magnetic pole position setting unit 112 determines whether or not the current energization current value is twice or more than the rated current. (Step S203) When the energization current value is more than twice the rated current (Step S203: YES), the motor operation subroutine is terminated, and the process returns to the step following the step that called (executed) the motor operation subroutine. .
- step S203 If the current energizing current value is not twice or more than the rated current (step S203: NO), the initial magnetic pole position setting unit 112 changes the energizing current value to twice the current energizing current value (step S204). The processing is returned to step S201, and the processing from step S201 to step S204 is repeated.
- the voltages of the U, V, and W phases corresponding to the set d ⁇ axis magnetic pole position are applied to the coils of the U, V, and W phases, respectively, so that 1 / n times the rated current, 2 / N times,... Energization with twice the current is sequentially performed until the mover moves.
- the initial magnetic pole position setting unit 112 determines whether or not the direction in which the linear motor 21 is operated by the motor operation subroutine (step S102), that is, the direction in which the mover is moved is a predetermined direction (+ direction) ( Step S103).
- the predetermined direction is, for example, a direction in which the magnetic pole position (electrical angle) increases.
- step S102 If the direction in which the linear motor 21 is operated in step S102 is the + direction (step S103: YES), the initial magnetic pole position setting unit 112 sets the d ⁇ -axis magnetic pole position to 90 ° and sets the energization current value to the rated current. 1 / n times (step S104).
- the initial magnetic pole position setting unit 112 executes a motor operation subroutine (step S105).
- the motor operation subroutine executed in step S105 and the motor operation subroutine in the following description are the same as the motor operation subroutine described with reference to FIG.
- the initial magnetic pole position setting unit 112 determines whether or not the direction in which the linear motor 21 is operated is the + direction by the motor operation subroutine (step S105) (step S106).
- step S106 determines whether the direction in which the linear motor 21 is operated in the determination in step S106 is the + direction (step S106: YES). If the direction in which the linear motor 21 is operated in the determination in step S106 is the + direction (step S106: YES), the initial magnetic pole position setting unit 112 sets the d ⁇ -axis magnetic pole position to 0 ° and sets the energization current value. It is set to 1 / n times the rated current (step S107), and the process proceeds to step S151 (FIG. 4). On the other hand, when the direction in which the linear motor 21 is operated is not the + direction in the determination in step S106 (step S106: NO), the initial magnetic pole position setting unit 112 sets the d ⁇ magnetic pole position to 90 ° and sets the energization current value. Is set to 1 / n times the rated current (step S108), and the process proceeds to step S151 (FIG. 4).
- step S102 If the direction in which the linear motor 21 has operated in step S102 is not the + direction (step S103: NO), the initial magnetic pole position setting unit 112 sets the d ⁇ -axis magnetic pole position to 270 ° and sets the energization current value to the rated current. Is set to 1 / n times (step S109). The initial magnetic pole position setting unit 112 executes a motor operation subroutine (step S110).
- the initial magnetic pole position setting unit 112 determines whether or not the direction in which the linear motor 21 is operated is the + direction by the motor operation subroutine (step S110) (step S111).
- step S110 If the direction in which the linear motor 21 is operated in the determination in step S110 is the + direction (step S111: YES), the initial magnetic pole position setting unit 112 sets the d ⁇ -axis magnetic pole position to 180 ° and sets the energization current value. It is set to 1 / n times the rated current (step S112), and the process proceeds to step S151 (FIG. 4).
- step S111 when the direction in which the linear motor 21 is operated is not the + direction in the determination in step S110 (step S111: NO), the initial magnetic pole position setting unit 112 sets 270 ° as the d ⁇ -axis magnetic pole position, The value is set to 1 / n times the rated current (step S113), and the process proceeds to step S151 (FIG. 4).
- the initial magnetic pole position setting unit 112 executes a motor operation subroutine (step S151), and subsequently increases the d ⁇ magnetic pole position by + 5 ° (first variation), and the energization current value is reduced to 1 / n times the rated current.
- the setting is made (step S152), and a motor operation subroutine is executed (step S153).
- the initial magnetic pole position setting unit 112 determines whether or not the linear motor 21 has moved in the previous motor operation subroutine (step S154). When the linear motor 21 has moved in the previous motor operation subroutine (step S154: YES), the initial magnetic pole position setting unit 112 determines whether or not the linear motor 21 has moved in the current motor operation subroutine (step S155). .
- step S155 When the linear motor 21 has moved in the current motor operation subroutine (step S155: YES), the initial magnetic pole position setting unit 112 determines the direction in which the linear motor 21 has moved in the previous motor operation subroutine and the current motor operation subroutine. It is determined whether or not the direction in which the linear motor 21 has moved is the same (step S156).
- step S156 When the linear motor 21 has moved in the same direction in the previous time and this time (step S156: YES), the initial magnetic pole position setting unit 112 increases the d ⁇ -axis magnetic pole position by + 5 ° and sets the energization current value to the rated current. 1 / n times is set (step S157), a motor operation subroutine is executed (step S158), and the process returns to step S154.
- step S156: NO the initial magnetic pole position setting unit 112 performs DC excitation at the current d ⁇ -axis magnetic pole position (step S159), The process proceeds to step S171 (FIG. 5).
- step S155 If it is determined in step S155 that the linear motor 21 is not moving in the current motor operation subroutine (step S155: NO), the initial magnetic pole position setting unit 112 determines that the linear motor 21 is not energized after stopping energization in the previous motor operation subroutine. It is determined whether or not it has moved in the reverse direction (step S160).
- step S160 When moving in the reverse direction after stopping energization (step S160: YES), the initial magnetic pole position setting unit 112 performs DC excitation at the current d ⁇ -axis magnetic pole position (step S159), and the process is performed in step S171 (FIG. Go to 5).
- step S160: NO when the energization is stopped and the actuator does not move in the reverse direction (step S160: NO), the initial magnetic pole position setting unit 112 performs DC excitation at the current d ⁇ -axis magnetic pole position (step S161), and the process is performed in step S181. Proceed to (FIG. 6).
- step S154 If it is determined in step S154 that the linear motor 21 has not moved in the previous motor operation subroutine (step S154: NO), the initial magnetic pole position setting unit 112 determines whether or not the linear motor 21 has moved in the current motor operation subroutine. Determination is made (step S162).
- step S162 When the linear motor 21 is not moving in the current motor operation subroutine (step S162: NO), the initial magnetic pole position setting unit 112 increases the d ⁇ -axis magnetic pole position by + 5 ° and sets the energization current value to 1 / R of the rated current. It is set to n times (step S163), a motor operation subroutine is executed (step S164), and the process returns to step S154.
- step S162 when the linear motor 21 is moving in the current motor operation subroutine (step S162: YES), the initial magnetic pole position setting unit 112 performs direct current excitation at the current d ⁇ -axis magnetic pole position (step S161), and performs processing. The process proceeds to step S181 (FIG. 6).
- the initial magnetic pole position setting unit 112 decreases the d ⁇ -axis magnetic pole position by ⁇ E (second variation) and performs direct current excitation at the d ⁇ -axis magnetic pole position (FIG. 5).
- the change amount ⁇ E of the magnetic pole position is a predetermined change amount, and is determined according to the detection resolution of the encoder 22, the control resolution of the control device 10, and the like.
- the initial magnetic pole position setting unit 112 acquires the amount of movement of the linear motor 21 by the direct current excitation in step S171, that is, the amount of movement of the mover (step S172).
- the initial magnetic pole position setting unit 112 determines whether or not the movement amount acquired in step S172 matches the distance corresponding to the change amount ⁇ E (step S173).
- the distance corresponding to the change amount ⁇ E is the distance that the mover of the linear motor 21 moves when the d ⁇ -axis magnetic pole position changes from E to (E + ⁇ E).
- step S173: YES When the movement amount matches the distance corresponding to the change amount ⁇ E (step S173: YES), the initial magnetic pole position setting unit 112 determines that the mover of the linear motor 21 is positioned at the current d ⁇ -axis magnetic pole position, and Is set as the initial magnetic pole position of the linear motor 21 (step S174), and the process of setting the initial magnetic pole position is terminated. On the other hand, when the movement amount does not coincide with the distance corresponding to the change amount ⁇ E (step S173: NO), the initial magnetic pole position setting unit 112 returns the processing to step S171 and repeats the processing from step S171 to step S173. Do.
- the initial magnetic pole position setting unit 112 After the direct current excitation in step S161 (FIG. 4), the initial magnetic pole position setting unit 112 increases the d ⁇ -axis magnetic pole position by ⁇ E and performs direct current excitation at the d ⁇ -axis magnetic pole position (FIG. 6. step S181).
- the magnetic pole position setting unit 112 acquires the amount of movement of the linear motor 21 by the direct current excitation in step S181, that is, the amount of movement of the mover (step S182).
- the initial magnetic pole position setting unit 112 determines whether or not the movement amount acquired in step S182 matches the distance corresponding to the change amount ⁇ E (step S183), and the movement amount matches the distance corresponding to the change amount ⁇ E. If so (step S183: YES), it is determined that the mover of the linear motor 21 is positioned at the current d ⁇ magnetic pole position, and the current d ⁇ -axis magnetic pole position is set as the initial magnetic pole position of the linear motor 21 (step S184). Then, the process of setting the initial magnetic pole position is terminated.
- step S183: NO when the movement amount does not coincide with the distance corresponding to the change amount ⁇ E (step S183: NO), the initial magnetic pole position setting unit 112 returns the processing to step S181 and repeats the processing from step S181 to step S183. Do.
- the control device 10 performs the process from step S101 to step S113 on the actual d-axis magnetic pole position of the linear motor 21, thereby changing the angle from 0 ° to 90 °, 90 ° to 180 °, 180 °. It is estimated which of the four sections from 270 ° to 270 °, 270 ° to 360 ° (0 °).
- the control device 10 sets the minimum value in the estimated section to the d ⁇ -axis magnetic pole position, performs pulse energization while shifting the d ⁇ -axis magnetic pole position by a predetermined amount (for example, by 5 °), and performs two consecutive pulse energizations.
- the magnetic pole position is narrowed down to bring the d ⁇ -axis magnetic pole position closer to the actual d-axis magnetic pole position.
- the linear motor 21 determines whether there is an external force acting on the mover, and if there is an external force, which direction is relative to the moving direction of the mover. judge.
- the control device 10 determines whether to perform DC excitation while increasing or decreasing a predetermined change amount ⁇ E with respect to the d ⁇ -axis magnetic pole position according to the presence or absence of an external force or the direction of the external force. To do.
- the control device 10 performs DC excitation while changing the d ⁇ -axis magnetic pole position by the change amount ⁇ E, and each time the DC excitation is performed, the movement amount of the mover of the linear motor 21 matches the movement amount corresponding to the change amount ⁇ E. If they match, it is determined that the actual d-axis magnetic pole position of the linear motor 21 matches the d ⁇ -axis magnetic pole position. That is, the actual d-axis magnetic pole position is detected.
- the control device 10 can detect the d-axis magnetic pole position of the linear motor 21 with high accuracy, and can improve the accuracy of controlling the linear motor 21. Further, since the control device 10 performs DC excitation after estimating the section where the actual d-axis magnetic pole position of the linear motor 21 exists, when the DC excitation is performed, the mover of the linear motor 21 is moved. The moving distance can be suppressed. Further, when DC excitation is performed, the d ⁇ -axis magnetic pole position is changed little by little ( ⁇ E), so that the distance that the mover moves can be further suppressed.
- the d-axis magnetic pole position can be detected without doing so.
- FIGS. 8A, 8B and 8C are diagrams illustrating an installation example of the linear motor 21 that is a target of setting the initial magnetic pole position.
- FIG. 8A shows a state where the rod-type linear motor 21 is installed horizontally and no external force is applied to the mover (rod).
- FIG. 8B shows a state in which the rod-type linear motor 21 is installed vertically and a biasing member such as a spring is attached to the upper end in the vertical direction of the mover to balance the weight of the rod.
- FIG. 8C shows the case where the rod-type linear motor 21 is installed vertically as in FIG.
- pulse energization is performed at the d ⁇ -axis magnetic pole position 180 ° (step S101). , S102). With this pulse energization, the linear motor 21 moves in the + direction (step S103: YES), and pulse energization is performed at the d ⁇ -axis magnetic pole position 90 ° (steps S104 and S105).
- step S106 YES
- step S107 and S151 the pulse energization is performed again.
- pulse energization is performed at 5 ° by increasing the d ⁇ -axis magnetic pole position by + 5 ° (steps S152 and S153).
- the linear motor 21 was moved in the previous pulse energization (pulse current at d ⁇ magnetic pole position 0 °) (step S154: YES), and also in current pulse energization (pulse current energization at d ⁇ axis magnetic pole position 5 °). Since the linear motor 21 is moving (step S155: YES) and both are moving in the same direction (step S156: YES), a pulse energization is performed at 10 ° by further increasing the d ⁇ -axis magnetic pole position by + 5 °. (Steps S157 and S158), the process returns to Step S154.
- the linear motor 21 was moved by the previous pulse energization (pulse energization at the d ⁇ -axis magnetic pole position of 5 °) (step S154: YES), and the current pulse energization (pulse energization at the d ⁇ -axis magnetic pole position of 10 °) Although the linear motor 21 is moving (step S155: YES), since it is moving in a different direction (step S156: NO), DC excitation is performed at the current d ⁇ -axis magnetic pole position of 10 ° (step S159).
- step S171 direct current excitation is performed at a d ⁇ -axis magnetic pole position 9 ° which is reduced by ⁇ E (for example, 1 °) from the current d ⁇ -axis magnetic pole position (step S171), and the mover of the linear motor 21 is output from the output of the encoder 22. Is obtained (step S172). Since the mover is drawn to the d ⁇ -axis magnetic pole position 10 ° by the DC excitation at the d ⁇ -axis magnetic pole position 10 °, the mover is moved to the d ⁇ -axis magnetic pole by the DC excitation at the d ⁇ -axis magnetic pole position 9 °. The position will move by 1 °.
- the control device 10 sets the current d ⁇ -axis magnetic pole position 9 ° to the actual d-axis magnetic pole of the linear motor 21.
- the position is set (step S174), and control of the linear motor 21 is started.
- FIG. 9A and 9B are diagrams illustrating an installation example of the linear motor 21 that is a target of setting the initial magnetic pole position.
- FIG. 9A shows a state where the rod-type linear motor 21 is installed vertically and the mover is stationary at the lowest side of the movable range due to its own weight.
- FIG. 9B a rod-type linear motor 21 is installed vertically, a biasing member such as a spring is attached to the upper end of the mover in the vertical direction, and is lifted upward in the vertical direction, and rests on the uppermost side of the movable range.
- the upward direction in the vertical direction is the + direction of the d-axis magnetic pole position
- FIG. 9B shows the downward direction in the vertical direction is the + direction of the d-axis magnetic pole position.
- 9A and 9B show a case where the actual d-axis magnetic pole position of the linear motor 21 is 8 °.
- pulse energization is performed at a d ⁇ -axis magnetic pole position of 180 ° (steps S101 and S102).
- the linear motor 21 moves in the + direction (step S103: YES), and pulse energization is performed at the d ⁇ -axis magnetic pole position 90 ° (steps S104 and S105).
- step S106 YES
- step S107 and S151 the pulse energization is performed again.
- pulse energization is performed at 5 ° by increasing the d ⁇ -axis magnetic pole position by + 5 ° (steps S152 and S153).
- the mover has already reached the end of the movable range. And cannot move toward the d ⁇ -axis magnetic pole position of 5 °.
- step S154 In the previous pulse energization (pulse energization at d ⁇ -axis magnetic pole position 0 °), the linear motor 21 did not move (step S154: NO), and current pulse energization (pulse energization at d ⁇ -axis magnetic pole position 5 °)
- step S162 the linear motor 21 is not moving (step S162: NO), and the pulse energization is further performed at 10 ° by increasing the d ⁇ -axis magnetic pole position by + 5 ° (steps S163 and S164), and the process proceeds to step S154.
- the linear motor 21 was not moved by the previous pulse energization (pulse energization at d ⁇ -axis magnetic pole position 5 °) (step S154: NO), and current pulse energization (pulse energization at d ⁇ -axis magnetic pole position 10 °) Since the linear motor 21 is moving (step S162: YES), DC excitation is performed at the current d ⁇ -axis magnetic pole position of 10 ° (step S161).
- step S181 DC excitation is performed at the d ⁇ -axis magnetic pole position 11 °, which is obtained by increasing the current d ⁇ -axis magnetic pole position by ⁇ E (for example, 1 °) (step S181), and the mover of the linear motor 21 is output from the output of the encoder 22. Is obtained (step S182). Since the mover is pulled into the d ⁇ -axis magnetic pole position 10 ° by the DC excitation at the d ⁇ -axis magnetic pole position 10 °, the mover is moved to the d ⁇ -axis magnetic pole by the DC excitation at the d ⁇ -axis magnetic pole position 11 °. The position will move by 1 °.
- the control device 10 sets the current d ⁇ -axis magnetic pole position 11 ° to the actual d-axis magnetic pole of the linear motor 21.
- the position is set (step S184), and control of the linear motor 21 is started.
- the control device 10 sets the d ⁇ -axis magnetic pole position by a predetermined amount ( ⁇ E) on the basis of the estimated d ⁇ -axis magnetic pole position.
- DC excitation is performed while changing, and when the amount of movement ⁇ X and the predetermined amount ( ⁇ E) correspond to each other, it is determined that the actual d-axis magnetic pole position matches the d ⁇ -axis magnetic pole position.
- the initial magnetic pole position can be set.
- the minimum value in the estimated section is set to the d ⁇ -axis magnetic pole.
- the configuration of setting the position (steps S107, S108, S112, S113) and narrowing down the magnetic pole position has been described.
- the present invention is not limited to this, and the magnetic pole position may be narrowed down using the maximum value in the estimated section as the d ⁇ -axis magnetic pole position.
- steps S152, S157, and S163, and 1 ° in steps S171 and S181 are examples, and may be different angles (variations).
- the amount of change (second change amount) in steps S171 and S181 is determined to be smaller than the amount of change (first change amount) in steps S152, S157, and S163.
- the d-axis magnetic pole position from 0 ° to 360 ° is divided into four sections at intervals of 90 °.
- the present invention is not limited to this, and it may be divided into three sections with 120 ° intervals or six sections with 60 ° intervals.
- the control device 10 in the above-described embodiment may have a computer system inside.
- the process of setting the initial magnetic pole position described above is stored in a computer-readable recording medium in the form of a program, and the above process is performed by the computer reading and executing this program.
- the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
- the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Linear Motors (AREA)
Abstract
Description
本願は、2013年9月13日に、日本に出願された特願2013-190961号に基づき優先権を主張し、その内容をここに援用する。
T=pφf・iq
d軸電流制御器107は、算出したd軸電圧指令値V* dをベクトル回転器・2相3相変換器109に入力する。
初期磁極位置設定器112は、q^軸電流を0にし、d^軸電流をidにして、推力を発生させてリニアモータ21を動作させる。初期磁極位置設定器112は、エンコーダ22を介して得られるリニアモータ21の動作に基づいて、磁極位置を検出して初期磁極位置を設定する。初期磁極位置を設定している際には、位置制御器104及び速度制御器105は動作しない。
モータ動作サブルーチン(ステップS102)によりリニアモータ21が動作した方向、すなわち可動子が移動した方向が、予め定められた方向(+方向)であるか否かを初期磁極位置設定器112は判定する(ステップS103)。予め定められた方向は、例えば、磁極位置(電気角)が増加する方向である。
一方、ステップS106の判定においてリニアモータ21が動作した方向が+方向でなかった場合(ステップS106:NO)、初期磁極位置設定器112は、d^磁極位置を90°に設定し、通電電流値を定格電流の1/n倍に設定し(ステップS108)、処理をステップS151(図4)に進める。
一方、ステップS110の判定においてリニアモータ21が動作した方向が+方向でなかった場合(ステップS111:NO)、初期磁極位置設定器112は、d^軸磁極位置に270°を設定し、通電電流値を定格電流の1/n倍に設定し(ステップS113)、処理をステップS151(図4)に進める。
前回のモータ動作サブルーチンにおいてリニアモータ21が動いていた場合(ステップS154:YES)、初期磁極位置設定器112は、今回のモータ動作サブルーチンにおいてリニアモータ21が動いたか否かを判定する(ステップS155)。
一方、前回と今回とにおいてリニアモータ21が同じ方向に動いていない場合(ステップS156:NO)、初期磁極位置設定器112は、現在のd^軸磁極位置で直流励磁を行い(ステップS159)、処理をステップS171(図5)に進める。
一方、通電を停止した後に逆方向に動いていない場合(ステップS160:NO)、初期磁極位置設定器112は、現在のd^軸磁極位置で直流励磁を行い(ステップS161)、処理をステップS181(図6)に進める。
一方、今回のモータ動作サブルーチンにおいてリニアモータ21が動いていた場合(ステップS162:YES)、初期磁極位置設定器112は、現在のd^軸磁極位置で直流励磁を行い(ステップS161)、処理をステップS181(図6)に進める。
一方、移動量が変化量ΔEに対応する距離と一致しない場合(ステップS173:NO)、初期磁極位置設定器112は、処理をステップS171に戻して、ステップS171からステップS173までの処理を繰り返して行う。
一方、移動量が変化量ΔEに対応する距離と一致しない場合(ステップS183:NO)、初期磁極位置設定器112は、処理をステップS181に戻して、ステップS181からステップS183までの処理を繰り返して行う。
このとき、リニアモータ21の動きに基づいて、可動子に対して作用している外力があるか否か、また外力がある場合には可動子の移動方向に対していずれの方向であるかを判定する。
図9Aは、ロッド型のリニアモータ21を垂直に設置し、可動子が自重により可動範囲の最も下側で静止している状態を示している。図9Bは、ロッド型のリニアモータ21を垂直に設置し、可動子の垂直方向上側の端部にバネなどの付勢部材を取り付けて鉛直方向上向きに引き上げ、可動範囲の最も上側で静止している状態を示している。図9Aは垂直方向上向きがd軸磁極位置の+方向になっているのに対して、図9Bは垂直方向下向きがd軸磁極位置の+方向になっている。また、図9A及び図9Bのいずれにおいても、リニアモータ21の実際のd軸磁極位置は8°である場合を示している。
21…リニアモータ
Claims (4)
- リニアモータを制御する制御装置であって、
0°から360°までの磁極位置を分割した複数の区間のいずれかに前記リニアモータの現在の磁極位置が含まれるかを複数回のパルス通電による可動子の移動方向に基づいて推定する区間推定部と、
前記区間推定部が推定した区間の最小値又は最大値のいずれか一方から他方に向かって所定の第1変化量で推定磁極位置を変化させながらパルス通電を行い、パルス通電をした際の前記可動子の動きに基づいて前記現在の磁極位置に推定磁極位置を近づける磁極位置絞り込み部と、
前記磁極位置絞り込み部が近づけた推定磁極位置を前記第1変化量より小さい第2変化量で変化させながら直流励磁を行い、推定磁極位置を変化させる度に前記可動子の移動量を取得し、取得した移動量が前記第2変化量に対応する移動量と一致した場合に、推定磁極位置と前記現在の磁極位置が一致したと判定する磁極位置検出部と
を備えるリニアモータの制御装置。 - 請求項1に記載のリニアモータの制御装置において、
前記磁極位置絞り込み部は、
連続する2回のパルス通電において、前記可動子の動く方向が異なっている場合、又は、一方のパルス通電で前記可動子が動き他方のパルス通電で前記可動子が動かない場合に推定磁極位置を前記現在の磁極位置に近づける絞り込みが完了したと判定する
リニアモータの制御装置。 - 請求項2に記載のリニアモータの制御装置において、
前記磁極位置検出部は、
連続する2回のパルス通電において前記可動子の動く方向が異なっている場合、及び、連続する2回のパルス通電において今回のパルス通電で前記可動子が動かず前回のパルス通電で前記可動子が動き、前回のパルス通電の後に前記可動子が逆に動いた場合と、
連続する2回のパルス通電において今回のパルス通電で前記可動子が動き前回のパルス通電で前記可動子が動かない場合、及び、連続する2回のパルス通電において今回のパルス通電で前記可動子が動かず前回のパルス通電で前記可動子が動き、前回のパルス通電の後に前記可動子が逆に動かなかった場合とにおいて、
推定磁極位置を前記第2変化量ずつ増加させながら直流励磁を行うか、推定磁極位置を前記第2変化量ずつ減少させながら直流励磁を行うかを切り替えるリニアモータの制御装置。 - リニアモータを制御する制御装置が行う制御方法であって、
0°から360°までの磁極位置を分割した複数の区間のいずれかに前記リニアモータの現在の磁極位置が含まれるかを複数回のパルス通電による可動子の移動方向に基づいて推定する区間推定ステップと、
前記区間推定ステップにおいて推定した区間の最小値又は最大値のいずれか一方から他方に向かって所定の第1変化量で推定磁極位置を変化させながらパルス通電を行い、パルス通電をした際の前記可動子の動きに基づいて前記現在の磁極位置に推定磁極位置を近づける磁極位置絞り込みステップと、
前記磁極位置絞り込みステップで近づけた推定磁極位置を前記第1変化量より小さい第2変化量で変化させながら直流励磁を行い、推定磁極位置を変化させる度に前記可動子の移動量を取得し、取得した移動量が前記第2変化量に対応する移動量と一致した場合に、推定磁極位置と前記現在の磁極位置が一致したと判定する磁極位置検出ステップと
を有する制御方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112014004187.4T DE112014004187B4 (de) | 2013-09-13 | 2014-08-25 | Regelvorrichtung und Regelverfahren für einen Linearmotor |
CN201480049919.8A CN105531919B (zh) | 2013-09-13 | 2014-08-25 | 线性电动机的控制装置及控制方法 |
US15/021,389 US9509245B2 (en) | 2013-09-13 | 2014-08-25 | Control device and control method for linear motor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013190961A JP5820446B2 (ja) | 2013-09-13 | 2013-09-13 | リニアモータの制御装置、及び制御方法 |
JP2013-190961 | 2013-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015037423A1 true WO2015037423A1 (ja) | 2015-03-19 |
Family
ID=52665537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/072152 WO2015037423A1 (ja) | 2013-09-13 | 2014-08-25 | リニアモータの制御装置、及び制御方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9509245B2 (ja) |
JP (1) | JP5820446B2 (ja) |
CN (1) | CN105531919B (ja) |
DE (1) | DE112014004187B4 (ja) |
TW (1) | TWI625927B (ja) |
WO (1) | WO2015037423A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017034893A (ja) * | 2015-08-04 | 2017-02-09 | Thk株式会社 | リニアアクチュエータの制御装置及び制御方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6966344B2 (ja) * | 2018-02-01 | 2021-11-17 | 株式会社日立産機システム | 磁極位置推定方法及び制御装置 |
CN112514237B (zh) * | 2018-08-08 | 2024-07-16 | 日本电产株式会社 | 位置推断方法、马达控制装置以及马达系统 |
JP6739683B1 (ja) * | 2019-06-06 | 2020-08-12 | 三菱電機株式会社 | モータ制御装置 |
CN114762242A (zh) * | 2019-12-27 | 2022-07-15 | 松下知识产权经营株式会社 | 直线电动机系统 |
CN112204560B (zh) | 2020-05-07 | 2024-04-26 | 株式会社Jsol | 计算机程序、模拟方法和模拟装置 |
JP7514136B2 (ja) * | 2020-07-30 | 2024-07-10 | キヤノン株式会社 | 搬送装置、制御装置及び制御方法 |
TWI760228B (zh) * | 2021-05-20 | 2022-04-01 | 台達電子工業股份有限公司 | 馬達控制方法 |
CN115459663A (zh) | 2021-05-20 | 2022-12-09 | 台达电子工业股份有限公司 | 马达控制方法 |
JP2023028748A (ja) | 2021-08-20 | 2023-03-03 | オムロン株式会社 | 搬送システム、及び保持装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0515179A (ja) * | 1991-07-03 | 1993-01-22 | Shinko Electric Co Ltd | 同期電動機の起動方法 |
JP2001078487A (ja) * | 1999-09-07 | 2001-03-23 | Fanuc Ltd | 同期電動機のロータ磁極位置検出方法 |
JP2005151752A (ja) * | 2003-11-18 | 2005-06-09 | Fanuc Ltd | 磁極位置検出装置 |
WO2007114058A1 (ja) * | 2006-03-31 | 2007-10-11 | Thk Co., Ltd. | 永久磁石同期モータの磁極位置検出方法 |
JP2013115878A (ja) * | 2011-11-25 | 2013-06-10 | Thk Co Ltd | リニアモータ制御装置、及び制御方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3805336B2 (ja) | 2003-10-22 | 2006-08-02 | ファナック株式会社 | 磁極位置検出装置及び方法 |
JP4263582B2 (ja) | 2003-11-17 | 2009-05-13 | 本田技研工業株式会社 | ブラシレスモータ制御装置 |
JP4816645B2 (ja) | 2005-09-26 | 2011-11-16 | 株式会社安川電機 | Ac同期モータの初期磁極位置推定装置 |
JP2010035287A (ja) | 2008-07-25 | 2010-02-12 | Hitachi Ltd | 円筒型リニアモータ及びそれを用いた電磁サスペンション及び電動パワーステアリング装置 |
JP5206619B2 (ja) | 2009-08-04 | 2013-06-12 | 株式会社デンソー | ブラシレス三相直流モータの駆動方法及び駆動制御装置 |
-
2013
- 2013-09-13 JP JP2013190961A patent/JP5820446B2/ja active Active
-
2014
- 2014-08-25 US US15/021,389 patent/US9509245B2/en active Active
- 2014-08-25 DE DE112014004187.4T patent/DE112014004187B4/de active Active
- 2014-08-25 WO PCT/JP2014/072152 patent/WO2015037423A1/ja active Application Filing
- 2014-08-25 CN CN201480049919.8A patent/CN105531919B/zh active Active
- 2014-09-04 TW TW103130642A patent/TWI625927B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0515179A (ja) * | 1991-07-03 | 1993-01-22 | Shinko Electric Co Ltd | 同期電動機の起動方法 |
JP2001078487A (ja) * | 1999-09-07 | 2001-03-23 | Fanuc Ltd | 同期電動機のロータ磁極位置検出方法 |
JP2005151752A (ja) * | 2003-11-18 | 2005-06-09 | Fanuc Ltd | 磁極位置検出装置 |
WO2007114058A1 (ja) * | 2006-03-31 | 2007-10-11 | Thk Co., Ltd. | 永久磁石同期モータの磁極位置検出方法 |
JP2013115878A (ja) * | 2011-11-25 | 2013-06-10 | Thk Co Ltd | リニアモータ制御装置、及び制御方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017034893A (ja) * | 2015-08-04 | 2017-02-09 | Thk株式会社 | リニアアクチュエータの制御装置及び制御方法 |
WO2017022588A1 (ja) * | 2015-08-04 | 2017-02-09 | Thk株式会社 | リニアアクチュエータの制御装置及び制御方法 |
CN107852122A (zh) * | 2015-08-04 | 2018-03-27 | Thk株式会社 | 线性致动器的控制装置以及控制方法 |
KR20180037189A (ko) * | 2015-08-04 | 2018-04-11 | 티에치케이 가부시끼가이샤 | 리니어 액추에이터의 제어 장치 및 제어 방법 |
TWI704761B (zh) * | 2015-08-04 | 2020-09-11 | 日商Thk股份有限公司 | 線性致動器之控制裝置及控制方法 |
US10972036B2 (en) | 2015-08-04 | 2021-04-06 | Thk Co., Ltd. | Device and method for controlling linear actuator |
KR102590969B1 (ko) * | 2015-08-04 | 2023-10-18 | 티에치케이 가부시끼가이샤 | 리니어 액추에이터의 제어 장치 및 제어 방법 |
Also Published As
Publication number | Publication date |
---|---|
CN105531919B (zh) | 2017-05-03 |
JP2015057030A (ja) | 2015-03-23 |
US9509245B2 (en) | 2016-11-29 |
DE112014004187T5 (de) | 2016-06-02 |
TW201526520A (zh) | 2015-07-01 |
CN105531919A (zh) | 2016-04-27 |
TWI625927B (zh) | 2018-06-01 |
JP5820446B2 (ja) | 2015-11-24 |
DE112014004187B4 (de) | 2023-03-16 |
US20160226417A1 (en) | 2016-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5820446B2 (ja) | リニアモータの制御装置、及び制御方法 | |
JP5781235B2 (ja) | 同期機制御装置 | |
JP4928855B2 (ja) | 同期機のセンサレス制御装置 | |
TWI458251B (zh) | 線性同步電動機控制方法及控制裝置 | |
JP6488626B2 (ja) | モータ制御装置、モータシステム、モータ制御プログラム | |
JP5224372B2 (ja) | 永久磁石同期モータの磁極位置検出方法 | |
JP5177133B2 (ja) | モータ制御装置 | |
JP2015080344A (ja) | 電動機の駆動装置 | |
JP5743344B2 (ja) | 同期電動機の制御装置 | |
JP2009153347A (ja) | 同期電動機の制御装置 | |
JP2019022403A (ja) | 電動機用インバータ回路の評価装置および評価方法 | |
JP6541887B2 (ja) | 回転電機の制御装置 | |
JP2020005404A (ja) | 電力変換装置 | |
JP5625008B2 (ja) | 電力変換装置、電動機駆動システム、搬送機、昇降装置 | |
JP5479094B2 (ja) | 同期モータの制御方法及び制御装置 | |
JP7147296B2 (ja) | モータ制御装置 | |
JP7501190B2 (ja) | 交流同期モータの磁極位置推定装置及び制御装置 | |
JP2019187178A (ja) | モータ制御装置 | |
JP6278857B2 (ja) | 同期電動機の磁極位置推定装置および磁極位置推定方法 | |
JP7585845B2 (ja) | モータ制御装置 | |
WO2022172472A1 (ja) | モータ制御装置 | |
JP2019161875A (ja) | モータ制御装置 | |
JP6923801B2 (ja) | 誘導電動機のオブザーバ制御装置 | |
JP2022123717A (ja) | モータ制御装置 | |
Yang et al. | Sensorless Control of a Single-Phase Switched Reluctance Motor Using Residual Flux |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480049919.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14843272 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15021389 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112014004187 Country of ref document: DE Ref document number: 1120140041874 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14843272 Country of ref document: EP Kind code of ref document: A1 |