WO2015030066A1 - 光学部材貼合体の製造方法 - Google Patents
光学部材貼合体の製造方法 Download PDFInfo
- Publication number
- WO2015030066A1 WO2015030066A1 PCT/JP2014/072465 JP2014072465W WO2015030066A1 WO 2015030066 A1 WO2015030066 A1 WO 2015030066A1 JP 2014072465 W JP2014072465 W JP 2014072465W WO 2015030066 A1 WO2015030066 A1 WO 2015030066A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical member
- bonding
- sheet
- liquid crystal
- crystal panel
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N2021/8472—Investigation of composite materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N2021/8477—Investigating crystals, e.g. liquid crystals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N2021/9513—Liquid crystal panels
Definitions
- the present invention relates to a method for producing an optical member bonded body.
- This bonding method is a method in which a long polarizing plate unwound from an original fabric roll is cut into a predetermined size and directly bonded to a liquid crystal panel conveyed on the line.
- an automatic optical inspection device (Automatic Optical Inspection) is installed on the production line to sequentially automatically inspect defects in the bonded body conveyed on the line.
- Various defect inspection apparatuses such as a transmission type and a reflection type are known as such defect inspection apparatuses, and these defect inspection apparatuses are appropriately selected and used according to the type of defect.
- the defect inspection apparatus since the defect inspection apparatus is installed on the production line, the time lag as described above does not occur, and the production yield is improved.
- the aspect of the present invention has been made in view of such circumstances, and is capable of detecting a defect with sufficient accuracy in actual use and capable of stable production without impairing the production yield. It aims at providing the manufacturing method of a member bonding body.
- the manufacturing method of the optical member bonding body which concerns on 1 aspect of this invention is a manufacturing method of the optical member bonding body formed by bonding an optical member to an optical display component, Comprising: A strip
- the optical member bonding body which unwinds from a raw fabric roll, bonds the said some optical member obtained by cut
- a first visual inspection step for visually inspecting defects for each of the plurality of optical member bonded bodies, and the optical member bonded body forming step and the first visual inspection step are manufactured in the same manner. Do in line.
- mode of this invention is a manufacturing method of the optical member bonding body formed by bonding an optical member to an optical display component, Comprising: A strip
- positioned on the outer side of the part corresponding to 1 is cut
- the optical member bonding body formation which forms the said optical member bonding body containing the said optical member of the magnitude
- a plurality of optical member pasting steps It has a first visual inspection step of visually inspecting defects for each body, a, and the optical member bonded body forming step and the first visual inspection step, performed in the same manufacturing line.
- an outer peripheral edge of a bonding surface between the sheet piece and the optical display component may be detected for each of the plurality of optical display components.
- the manufacturing method of the optical member bonded body includes the defective product with respect to the defective product detected in the first visual inspection step.
- autoclave treatment for heating and pressurizing the defective product, or peeling the optical member from the optical member bonded body to expose the optical display component, and exposing the surface of the optical display component
- it has a regeneration process step of selecting and implementing either one of the rework processes of pasting the new optical member prepared in advance and forming the new optical member bonded body,
- the regeneration treatment step may be performed separately from the production line.
- the manufacturing method of the said optical member bonding body is a 2nd visual inspection process which visually inspects a defect about each of the said some optical member bonding body which passed through the said reproduction
- the second visual inspection step may be performed separately from the production line.
- the regeneration process may be performed again on the defective product detected in the second visual inspection process.
- a plurality of the optical member bonded bodies sequentially conveyed through the optical member bonded body forming step.
- a plurality of inspectors may share the visual inspection.
- the plurality of optical member bonded bodies are distributed to a plurality of inspection lines, and the inspectors arranged on the plurality of inspection lines are visually observed. You may inspect.
- the optical member bonding body in which the optical member is bonded to both surfaces of the optical display component in the optical member bonding body forming step, the optical member bonding body in which the optical member is bonded to both surfaces of the optical display component.
- the optical member bonded body in which the optical member is bonded to both surfaces of the optical display component may be visually inspected.
- the aspect of the present invention it is possible to provide a method for producing an optical member bonded body capable of detecting a defect with an accuracy that is not excessive or insufficient in actual use and capable of stable production without impairing the production yield. it can.
- FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. It is a fragmentary sectional view of an optical member sheet. It is explanatory drawing about the manufacturing method of the optical member bonding body in 1st Embodiment. It is a schematic block diagram about the film bonding system of 2nd Embodiment. It is a schematic diagram of the 1st detection apparatus which detects the outer periphery of the bonding surface. It is a schematic diagram which shows the modification of a 1st detection apparatus. It is a top view which shows the position which detects the outer periphery of the bonding surface. It is a schematic diagram of the 2nd detection apparatus which detects the outer periphery of the bonding surface.
- FIG. 1 is a schematic block diagram about the film bonding system 1 which comprises a part of production system of an optical member bonding body
- FIG. 2 is explanatory drawing about the 1st inversion apparatus 15 which the film bonding system 1 has. It is.
- the film bonding system 1 manufactures an optical member bonding body by bonding a film-shaped optical member such as a polarizing film, an antireflection film, or a light diffusion film to a panel-shaped optical display component such as a liquid crystal panel or an organic EL panel. System.
- the film bonding system 1 is configured as a part of a production system that produces an optical display device including an optical display component and an optical member.
- the liquid crystal panel P is used as an optical display component.
- liquid crystal panel P used in the film bonding system 1 is described, and then the film bonding system 1 is described in detail.
- FIG. 3 is a plan view of the liquid crystal panel P.
- the liquid crystal panel P includes a first substrate P1 having a rectangular shape in plan view, a second substrate P2 having a relatively small rectangular shape disposed to face the first substrate P1, a first substrate P1, and a second substrate. And a liquid crystal layer P3 sealed between the substrate P2.
- the liquid crystal panel P has a rectangular shape that follows the outer peripheral shape of the first substrate P1 in a plan view, and has a display region P4 that is an area that fits inside the outer periphery of the liquid crystal layer P3 in a plan view.
- FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
- the first optical member F11 and the first optical member F11 cut out from the long strip-shaped first optical member sheet F1 and the long strip-shaped second optical member sheet F2 (see FIG. 1)
- Two optical members F12 are appropriately bonded.
- the first optical member sheet F1 and the second optical member sheet F2 may be collectively referred to as “optical member sheet FX”.
- the first optical member F11 and the second optical member F12 may be collectively referred to as “optical member F1X”.
- the first optical member F11 as the polarizing film and the second optical member F12 as the polarizing film are bonded to the backlight side surface of the liquid crystal panel P and the display surface side surface of the liquid crystal panel P, respectively. Is done.
- the 3rd optical member as a brightness improvement film may be further bonded on the surface by the side of the backlight of liquid crystal panel P so that it may overlap with the 1st optical member F11.
- FIG. 5 is a partial cross-sectional view of the optical member sheet FX.
- the optical member sheet FX includes a film-shaped optical member main body F1a, an adhesive layer F2a provided on the first surface (upper surface in FIG. 5) of the optical member main body F1a, and the optical member main body F1a.
- the separator sheet F3a is detachably laminated on one surface, and the surface protection film F4a is laminated on the second surface (lower surface in FIG. 5) of the optical member body F1a.
- seat FX is called the bonding sheet
- hatching of each layer in FIG. 5 is omitted.
- the optical member body F1a is bonded to the sheet-like polarizer F6, the first film F7 bonded to the first surface of the polarizer F6 with an adhesive or the like, and the second surface of the polarizer F6 with an adhesive or the like. And a second film F8.
- the first film F7 and the second film F8 are protective films that protect the polarizer F6, for example.
- the optical member body F1a may have a single-layer structure having a single optical layer, or may have a stacked structure in which a plurality of optical layers are stacked together.
- the optical layer may be a retardation film, a brightness enhancement film, or the like.
- At least one of the first film F7 and the second film F8 may be subjected to a surface treatment capable of obtaining an effect such as a hard coat treatment for protecting the outermost surface of the liquid crystal display element or an antiglare treatment.
- the optical member body F1a may not include at least one of the first film F7 and the second film F8.
- the 1st film F7 is abbreviate
- the optical member body F1a is cut out to a predetermined length, and then pasted over the entire display area P4 of the liquid crystal panel P and the peripheral area of the display area P4. At that time, the sheet piece obtained by cutting the adhesive layer F2a into the same predetermined length is left in the sheet piece cut out from the optical member body F1a, and the sheet piece of the optical member body F1a is the sheet piece of the adhesive layer F2a. It is bonded to the liquid crystal panel P.
- the separator sheet F3a protects the adhesive layer F2a and the optical member body F1a until the separator sheet F3a is separated from the adhesive layer F2a.
- the surface protective film F4a is cut out together with the optical member main body F1a and bonded to the liquid crystal panel P.
- the surface protective film F4a is disposed on the side opposite to the liquid crystal panel P with respect to the optical member body F1a to protect the optical member body F1a.
- the surface protective film F4a is separated from the optical member main body F1a at a predetermined timing.
- the structure which does not contain the surface protection film F4a may be sufficient as the optical member sheet
- separated from the optical member main body F1a may be sufficient as the surface protection film F4a.
- the optical member F1X is formed by cutting the bonding sheet F5 in the production line as will be described later.
- the film bonding system 1 will be described with reference to FIGS.
- the right side indicates the upstream side in the transport direction of the liquid crystal panel P (hereinafter referred to as the panel transport upstream side).
- the left side in the figure shows the downstream side in the transport direction of the liquid crystal panel P (hereinafter referred to as the panel transport downstream side).
- the film bonding system 1 sequentially performs a predetermined process on the liquid crystal panel P while transporting the liquid crystal panel P from the start position to the final position of the bonding process using, for example, a driving roller conveyor 5.
- the liquid crystal panel P is conveyed on the roller conveyor 5 with its front and back surfaces being horizontal.
- the entire process performed by the flow operation on the liquid crystal panel P from the start position to the end position of the bonding process may be referred to as a “production line”.
- the production line mainly refers to a flow operation performed on the roller conveyor 5, and the operation performed on the production line is referred to as “operation in the production line”.
- the production line includes a cleaning process (not shown) of the liquid crystal panel P provided on the upstream side of the bonding process.
- the liquid crystal panel P conveyed on the roller conveyor 5 is taken out from the start position to the end position of the bonding process, and the liquid crystal panel P is processed at a position different from the roller conveyor 5, and then the processed liquid crystal Even when the panel P is returned to the roller conveyor 5, the panel P is handled as a part of the production line if no stagnation occurs in the flow operation.
- the work performed separately from the flow work on the roller conveyor 5 is referred to as “outside the production line”. Outside the production line, the work can be performed over the necessary time regardless of the conveying speed of the roller conveyor 5.
- the roller conveyor 5 is divided into an upstream conveyor 6 and a downstream conveyor 7 with a first reversing device 15 described in detail later as a boundary.
- the liquid crystal panel P is transported in the direction in which the short side of the display area P4 is along the transport direction in the upstream conveyor 6, and is transported in the direction in which the long side of the display area P4 is along the transport direction in the downstream conveyor 7. Is done.
- An optical member obtained by cutting the belt-shaped optical member sheet FX is bonded to the front surface of the liquid crystal panel P and the back surface of the liquid crystal panel P.
- Each part of the film bonding system 1 is comprehensively controlled by the control part 20 as an electronic control apparatus.
- the film bonding system 1 includes a first suction device 11 that sucks the liquid crystal panel P transported to the end position of the upstream process and transports the liquid crystal panel P to the start position of the upstream conveyor 6 and aligns the liquid crystal panel P.
- the first dust collector 12 provided on the downstream side of the panel transport, the first bonding device 13 provided on the downstream side of the panel transport with respect to the first dust collector 12, and the panel transport with respect to the first pasting device 13.
- the first deviation inspection device 14 provided on the downstream side, and the liquid crystal panel P provided on the downstream side of the panel conveyance with respect to the first deviation inspection device 14 and reaching the end position of the upstream conveyor 6, the initial position of the downstream conveyor 7
- a first reversing device 15 that conveys the
- the film bonding system 1 includes a second dust collector 16 provided on the downstream side of the panel transport from the initial position of the downstream conveyor 7 and a second dust collector provided on the downstream side of the panel transport from the second dust collector 16.
- the defect inspection position which performs visual inspection (1st visual inspection process) of a defect about the optical member bonding body which bonded the optical member on both surfaces of liquid crystal panel P in the panel conveyance downstream rather than the 2nd inversion apparatus 19. 21 is set.
- the first suction device 11 holds the liquid crystal panel P and freely conveys it in the vertical and horizontal directions and aligns the liquid crystal panel P.
- the first suction device 11 is provided in the panel holding portion 11a.
- an alignment camera 11b for detecting the alignment reference is provided in the panel holding portion 11a.
- the panel holding unit 11a holds the upper surface of the liquid crystal panel P transported to the end position of the upstream process by vacuum suction, and transports the liquid crystal panel P in a horizontal state to the starting position of the bonding process (upstream conveyor 6). At that position, the suction is released and the liquid crystal panel P is delivered to the upstream conveyor 6.
- Alignment camera 11b images the alignment mark, tip shape, and the like of liquid crystal panel P when, for example, liquid crystal panel P held by panel holding portion 11a is placed on upstream conveyor 6.
- the imaging data of the alignment camera 11b is transmitted to the control unit 20, and the control unit 20 operates the panel holding unit 11a based on the imaging data.
- alignment of liquid crystal panel P with respect to the upstream conveyor 6 is performed.
- the 1st dust collector 12 is provided in the panel conveyance upstream of the 1st bonding apparatus 13 in proximity to the bonding position of the 1st bonding apparatus 13.
- the first dust collector 12 removes static electricity and collects dust on the lower surface side of the liquid crystal panel P immediately before being introduced into the bonding position.
- the 1st bonding apparatus 13 is a 1st optical member along the longitudinal direction of the 1st optical member sheet
- the first optical member sheet F1 is configured to have a width corresponding to the width of the liquid crystal panel P. “Having a width corresponding to the width of the liquid crystal panel P” means that the sheet piece of the bonding sheet obtained by half-cutting the first optical member sheet F1 in the sheet width direction is the size of the display area P4 of the liquid crystal panel P. That is, the size of the substrate of the liquid crystal panel P to which the sheet piece is bonded (the size excluding the functional part such as the electronic component mounting portion on the substrate).
- the width (length in the short direction) of the first optical member sheet F1 is the same as or wider than the long side of the display area P4 of the liquid crystal panel P, and the liquid crystal on which the sheet piece is bonded. In the substrate of the panel P, it is the same as or narrower than the side corresponding to the long side of the display area P4.
- the 1st bonding apparatus 13 is the liquid crystal panel P by which the bonding sheet F5 of the 1st optical member sheet
- seat F1 is the same as or longer than the short side of the display area P4 of liquid crystal panel P, and a sheet piece is bonded.
- a sheet piece of the bonding sheet F5 is formed by cutting with a length equal to or shorter than the side corresponding to the short side of the display region P4 in the substrate of the substrate, and on the lower surface of the liquid crystal panel P introduced into the bonding position. On the other hand, the sheet piece of the bonding sheet F5 cut into a predetermined size is bonded.
- the “sheet piece of the bonding sheet F5” produced in the first bonding apparatus 13 corresponds to the optical member bonded to the liquid crystal panel P.
- the optical member produced as described above has such a size that the peripheral edge can be accommodated in the frame G when the liquid crystal panel P is overlapped.
- the conveying device 22 is a device that conveys the bonding sheet F5 using the separator sheet F3a as a carrier.
- the conveying device 22 holds a raw fabric roll R1 around which the belt-shaped first optical member sheet F1 is wound, and rolls out the first optical member sheet F1 along the longitudinal direction of the first optical member sheet F1.
- a cutting device 22c for half-cutting the member sheet F1 and a first optical member sheet F1 that has been half-cut are wound at an acute angle to separate the optical member from the separator sheet F3a, and this optical member is supplied to the bonding position.
- a Ri section 22e is a plurality of guide rollers 22b for winding the first optical member sheet F1 to guide the first optical member sheet F1 unwound from the raw roll R1 along a predetermined transport path, and a first optical on the transport path
- a cutting device 22c for half-cutting the member sheet F1 and a first optical member sheet F1 that has been half-cut
- the “half cut” means that the separator sheet F3a remains in a predetermined thickness so that the separator sheet F3a is not broken by a tension acting during conveyance of the first optical member sheet F1. Indicates that the first optical member sheet F1 is cut from the opposite side to the vicinity of the boundary surface between the adhesive layer F2a and the separator sheet F3a.
- a cutting blade or a laser device can be used to form the cut.
- the roll holding unit 22a positioned at the start point of the transport device 22 and the winding unit 22e positioned at the end point of the transport device 22 are driven in synchronization with each other, for example.
- the winding part 22e winds up the separator sheet F3a having passed through the knife edge 22d while the roll holding part 22a feeds the first optical member sheet F1 in the transport direction of the first optical member sheet F1.
- the upstream side in the transport direction of the first optical member sheet F1 (separator sheet F3a) in the transport device 22 is referred to as a sheet transport upstream side
- the downstream side in the transport direction is referred to as a sheet transport downstream side.
- Each guide roller 22b changes the traveling direction of the first optical member sheet F1 being conveyed along the conveyance path. At least some of the plurality of guide rollers 22b are movable in order to adjust the tension of the first optical member sheet F1 being conveyed.
- the cutting device 22c When the first optical member sheet F1 is fed out by a predetermined length, the cutting device 22c has one thickness direction of the first optical member sheet F1 over the entire width in the width direction orthogonal to the longitudinal direction of the first optical member sheet F1. Cut the part (half cut).
- the cutting device 22c performs cutting so that the first optical member sheet F1 (separator sheet F3a) is not broken by a tension acting during conveyance of the first optical member sheet F1 (so that a predetermined thickness remains on the separator sheet F3a).
- the advancing / retreating position of the blade is adjusted, and half cutting is performed to the vicinity of the interface between the adhesive layer F2a and the separator sheet F3a.
- the first optical member sheet F1 after the half cut is cut along the entire width in the width direction of the first optical member sheet F1 by cutting the bonding sheet F5 in the thickness direction of the first optical member sheet F1. Is formed.
- a plurality of score lines are formed so as to be aligned in the longitudinal direction of the belt-shaped first optical member sheet F1. For example, in the case of the bonding process which conveys liquid crystal panel P of the same size, a plurality of score lines are formed at equal intervals in the longitudinal direction of the first optical member sheet F1.
- the first optical member sheet F1 is divided into a plurality of sections in the longitudinal direction by a plurality of cut lines. Each section sandwiched between a pair of cut lines adjacent in the longitudinal direction in the first optical member sheet F1 is a sheet piece in the bonding sheet F5.
- the knife edge 22d is disposed below the upstream conveyor 6 and extends at least over the entire width of the first optical member sheet F1 in the width direction of the first optical member sheet F1.
- the knife edge 22d winds the first optical member sheet F1 so as to be in sliding contact with the separator sheet F3a of the first optical member sheet F1 after the half cut.
- the knife edge 22d is in an inclined position as viewed from the width direction of the first optical member sheet F1 (the width direction of the upstream conveyor 6) (that is, has a predetermined angle with respect to the transport direction of the liquid crystal panel P).
- a first surface disposed; a second surface disposed at an acute angle with respect to the first surface when viewed from the width direction of the first optical member sheet F1 above the first surface; and the first surface and the second surface. And an intersecting tip.
- the knife edge 22d winds the first optical member sheet F1 at an acute angle around the tip of the knife edge 22d.
- the first optical member sheet F1 separates the sheet piece (optical member) of the bonding sheet F5 from the separator sheet F3a when turning back at an acute angle at the tip of the knife edge 22d.
- the tip end of the knife edge 22d is arranged close to the panel conveyance upstream side of the pinching roll 23.
- the optical member separated from the separator sheet F3a by the knife edge 22d is introduced between the pair of bonding rollers 23a of the pinching roll 23 while overlapping with the lower surface of the liquid crystal panel P conveyed by the upstream conveyor 6.
- the pinching roll 23 has a pair of laminating rollers 23a arranged in parallel with each other in the axial direction.
- a predetermined gap is formed between the pair of bonding rollers 23 a, and the inside of this gap is the bonding position of the first bonding device 13.
- the liquid crystal panel P and the optical member are overlapped and introduced.
- the liquid crystal panel P and the optical member are sent out to the downstream side of the panel conveyance while being pressed between the pair of bonding rollers 23a. Thereby, an optical member is integrally bonded to the lower surface of the liquid crystal panel P.
- the panel after this bonding is called single-sided bonding panel (optical member bonding body) P11.
- inspection apparatus 14 is whether the position with respect to liquid crystal panel P of the optical member bonded by the 1st bonding apparatus 13 in the single-sided bonding panel P11 is appropriate (whether a position shift exists in a tolerance range).
- the first misalignment inspection apparatus 14 includes, for example, a pair of cameras 14a that capture an image of the edge of the optical member on the upstream side of the single-sided bonding panel P11 and the edge of the optical member on the downstream side of the single-sided bonding panel P11. Have. Imaging data from each camera 14a is transmitted to the control unit 20, and it is determined based on this imaging data whether or not the relative positions of the optical member and the liquid crystal panel P are appropriate.
- the single-sided bonding panel P11 whose relative position is determined to be inappropriate is discharged out of the system (outside the production line) by a not-shown dispensing means.
- the first reversing device 15 shown in FIG. 2 includes, for example, a rotation shaft 15a inclined at 45 ° in a plan view with respect to the transport direction of the liquid crystal panel P, and the end position of the upstream conveyor 6 via the rotation shaft 15a. And a reversing arm 15b supported between the initial positions of the downstream conveyor 7. The reversing arm 15b holds the single-sided bonding panel P11 that has reached the end position of the upstream conveyor 6 via the first deviation inspection device 14 by suction or pinching, and rotates 180 ° around the rotation shaft 15a.
- the reversing arm 15b reverses the front and back of the single-sided bonding panel P11 and, for example, transfers the single-sided bonding panel P11 that has been transferred in parallel with the short side of the display area P4 in parallel with the long side of the display area P4. Turn around as you do.
- the polarization axis direction of the optical member F1X bonded to the surface of the liquid crystal panel P and the polarization axis direction of the optical member F1X bonded to the back surface of the liquid crystal panel P are arranged at right angles to each other.
- the upstream conveyor 6 and the downstream conveyor 7 both have the direction from the right side to the left side of the drawing as the transport direction of the liquid crystal panel P.
- the upstream conveyor 6 and the downstream conveyor pass through the first reversing device 15. 7 is offset by a predetermined amount in plan view.
- a reversing device having a reversing arm having a rotation axis parallel to the transport direction may be used.
- the sheet conveying direction of the first laminating device 13 and the sheet conveying direction of the second laminating device 17 are arranged at right angles to each other in a plan view, the liquid crystal panel P and the back surface of the liquid crystal panel P are mutually attached.
- the optical member F1X whose polarization axis direction is a right angle can be bonded.
- the reversing arm 15b has the same alignment function as the panel holding part 11a of the first suction device 11.
- the first reversing device 15 is provided with an alignment camera 15 c similar to the alignment camera 11 b of the first suction device 11.
- the second dust collecting device 16 is provided in the vicinity of the bonding position of the second bonding device 17 on the panel conveyance upstream side of the second bonding device 17.
- the second dust collector 16 removes static electricity and collects dust on the lower surface side of the single-sided bonding panel P11 immediately before being introduced into the bonding position.
- the 2nd bonding apparatus 17 is provided with the conveying apparatus 22 and the pinching roll 23 similar to the 1st bonding apparatus 13.
- the second optical member sheet F2 is configured to have a width corresponding to the width of the liquid crystal panel P.
- the width (length in the short direction) of the second optical member sheet F2 is the same as or wider than the short side of the display region P4 of the liquid crystal panel P, and the liquid crystal on which the sheet piece is bonded.
- the side corresponding to the short side of the display region P4 is the same as or narrower than the side.
- the 2nd bonding apparatus 17 is the liquid crystal panel P by which the bonding sheet F5 of the 2nd optical member sheet
- seat F2 is the same as or longer than the long side of the display area P4 of liquid crystal panel P, and a sheet piece is bonded.
- a sheet piece of the bonding sheet F5 is formed by cutting with a length equal to or shorter than the side corresponding to the long side of the display region P4 on the substrate of the liquid crystal panel P introduced into the bonding position. On the other hand, the sheet piece of the bonding sheet F5 cut into a predetermined size is bonded.
- the “sheet piece of the bonding sheet F5” produced in the second bonding apparatus 17 corresponds to the optical member bonded to the liquid crystal panel P.
- the optical member produced as described above has such a size that the peripheral edge can be accommodated in the frame G when the liquid crystal panel P is overlapped.
- the single-sided bonding panel P11 and the optical member are introduced in an overlapping state, and the single-sided bonding panel An optical member is integrally bonded to the lower surface of P11.
- the panel after this bonding is called double-sided bonding panel (optical member bonding body) P12.
- the second misalignment inspection apparatus 18 includes, for example, a pair of cameras 18a that capture an image of the edge of the optical member on the upstream side of the double-sided bonding panel P12 and the edge of the optical member on the downstream side of the double-sided bonding panel P12. Have. Imaging data from each camera 18a is transmitted to the control unit 20, and based on this imaging data, it is determined whether or not the relative positions of the optical member and the liquid crystal panel P are appropriate.
- the double-sided bonding panel P12 determined to have an inappropriate relative position is discharged out of the system by a not-shown payout means.
- the second reversing device 19 reverses the front and back of the liquid crystal panel P (double-sided bonding panel P12) with the backlight side facing upward via the first reversing device 15 and the liquid crystal is the same as when carrying into the film bonding system 1.
- the display surface side of the panel P is turned upward.
- defect inspection position At the defect inspection position 21, the presence or absence of a defect is visually inspected for the double-sided bonded panel P12 with the display surface facing upward through the second reversing device 19.
- the “defect” that is the inspection target is a defect that is present in the display area of the double-sided bonding panel P12 and can be optically inspected. In the display device manufactured using the composite panel P12, this indicates a display defect.
- defects examples include (1) defects that the liquid crystal panel P itself has, (2) defects that the optical member itself has, and (3) defects that occur on the bonding surface between the liquid crystal panel P and the optical member.
- Defects of the liquid crystal panel P itself include, for example, that the liquid crystal of the liquid crystal panel P is not aligned as designed due to disturbance of the liquid crystal alignment film of the liquid crystal panel P.
- the liquid crystal panel P has such a defect, for example, even if a pair of polarizing plates are accurately bonded to crossed Nicols and the liquid crystal panel P is designed to be normally black, from one side of the double-sided bonded panel P12 When light is irradiated, light leakage occurs, so that defects can be confirmed as bright spots.
- liquid crystal panel P In visual inspection, light is irradiated from the 1st surface side of the double-sided bonding panel P12, and an inspector observes and judges the presence or absence of a bright spot from the 2nd surface side of the double-sided bonding panel P12. Moreover, also when the liquid crystal panel P is damaged during conveyance, it is mentioned as a defect which (1) liquid crystal panel P itself has.
- Defects of the optical member itself can include deformations such as scratches and dents formed on the surface of the optical member F1X. In the visual inspection, the inspector observes and judges the presence or absence of scratches or dents.
- a bonding surface is a bonding surface of liquid crystal panel P and the 1st optical member F11 shown in FIG. 4, and a bonding surface of liquid crystal panel P and the 2nd optical member F12. In the visual inspection, an inspector observes and determines the presence or absence of foreign matter or bubbles.
- the defect inspection position 21 is set on the downstream conveyor 7, the double-sided bonded panels P12 can be inspected in real time on the production line. For this reason, when defective products are found, the production line is stopped before many defective products are manufactured, and the occurrence position of defective products and measures against the occurrence of defective products can be quickly implemented.
- the line conveyance speed of the double-sided bonding panel P12 is usually higher than the time (speed) required for the inspector to visually inspect one double-sided bonding panel P12. Therefore, it is possible to arrange a plurality of inspectors at the defect inspection position 21 and perform visual inspection by sharing them.
- a plurality of inspectors may be arranged in a line in the extending direction of the downstream conveyor 7 for inspection. After setting up a plurality of inspection lines, an inspector is arranged on the plurality of inspection lines, and the double-sided bonding panel P12 conveyed is distributed to each inspection line, so that inspection can be performed on each inspection line. Good.
- defective products that have been inspected at the defect inspection position 21 and found to be defective can be removed from the production line without being returned to the downstream conveyor 7 and subjected to the following regeneration processing outside the production line (offline).
- the defects are small deformations of the optical member itself and “(3) Defects occurring on the bonding surface between the liquid crystal panel P and the optical member”.
- an autoclave treatment is performed to heat and press the defective product.
- “Autoclave treatment” refers to exposing a defective product to be treated to a temperature higher than room temperature in a pressurized environment higher than atmospheric pressure and holding it for a certain period of time.
- the processing condition is a pressure condition of 0.294 MPa or more and 0.785 MPa or less (3 kgf / cm 2 or more and 8 kgf / cm 2 or less), and holding at a temperature condition of 40 ° C. or more and 80 ° C. or less for 30 seconds or more and 25 minutes or less. Time is mentioned.
- the pressure conditions can than 0.392MPa (4kgf / cm 2 or more) 0.588MPa or less (6 kgf / cm 2 or less).
- the temperature condition can be 50 ° C. or higher and 70 ° C. or lower.
- the holding time can be 1 minute or more and 5 minutes or less.
- the upper limit value and the lower limit value of the processing conditions can be arbitrarily combined. In addition, said numerical value is an example and is not limited to this.
- holding time refers to the time from when the pressure in the chamber 101 becomes equal to or higher than the set values for pressure and temperature until either one of the pressure or temperature falls below the set value. Therefore, even if one or both of the pressure and temperature fluctuate, if the pressure and temperature are equal to or higher than a set value, the processing time under that condition is included in the holding time.
- the defect of the defective product is a small deformation of the optical member itself, when the autoclave treatment is performed, the optical member is softened and easily deformed by heat. Thereby, it can be expected that a small deformation causing the defect disappears.
- the defect which a defective article has is the bubble which pinched
- the saturated solubility of the air in the sheet piece of the adhesion layer F2a (refer FIG. 5) which an optical member has with heat and pressure. Therefore, the air forming the bubbles melts into the sheet piece of the adhesive layer F2a. Thereby, it can be expected that bubbles disappear.
- the defective product is subjected to autoclaving to eliminate the defect.
- the defect that the defective product has is a large deformation of the optical member itself among “(2) Defects of the optical member itself” or “(3) Defects that occur on the bonding surface of the liquid crystal panel P and the optical member. ”In the case where the air bubbles are sandwiched between the liquid crystal panel P and the optical member and are large, or if the defect is caused by the foreign matter sandwiched in the pasting surface, the above autoclave In the process, it is expected that defects will not disappear.
- the optical member is peeled from the defective product to expose the liquid crystal panel P, a new sheet piece is bonded to the exposed liquid crystal panel P, and a rework process is performed to form a new double-sided bonded panel P12. .
- the defect that the defective product has is “(1) the defect that the liquid crystal panel P itself has” such as damage to the liquid crystal panel P, and if it is determined that it cannot be regenerated by the autoclave process or the rework process, the defective product is discarded. To do.
- Such a regeneration processing step is performed separately from the above production line (offline processing). Therefore, it is possible to spend a sufficient amount of time for each process, and reduction of waste products can be expected.
- the process is returned to the above-described regeneration processing process again to attempt regeneration.
- Drawing 6 is an explanatory view about a manufacturing method of an optical member pasting object in this embodiment, and is a flow figure showing a manufacturing process mentioned above. Hereinafter, the manufacturing flow will be described using the reference numerals shown in FIG. 1 as appropriate.
- the process indicated by reference sign S1 indicates a process performed within the manufacturing line
- the process indicated by reference sign S2 indicates a process performed outside the manufacturing line.
- step S11 First, in the manufacture of the double-sided bonded panel P12, the liquid crystal panel P is carried into the production line (step S11), and dirt such as dust and dust adhering to the surface of the liquid crystal panel P is washed (step S12).
- the first optical member sheet F1 and the second optical member sheet F2 are unwound from the raw roll R1, respectively, while the first optical member sheet F1 and the second optical member sheet F2 are unwound.
- Each of the first optical member F11 and the second optical member F12 is formed by cutting to a length corresponding to the long side or the short side of the display region P4.
- “cut to the length corresponding to the long side or the short side of the display region P4” means that the size of the sheet piece obtained by cutting is equal to or larger than the size of the display region P4 of the liquid crystal panel P.
- the long side of the display area P4 is not larger than the size of the substrate of the optical display component to which the sheet piece is bonded (the size excluding the functional part such as the electronic component mounting portion on the substrate).
- the length or sheet piece corresponding to the long side of the display region P4 of the substrate of the liquid crystal panel P to which the sheet piece is pasted is longer than the length or the length of the short side of the display region P4. This means that the substrate of the liquid crystal panel P is cut with a length equal to or shorter than the length corresponding to the short side of the display region P4.
- the first optical member F11 is bonded to the first surface of the liquid crystal panel P
- the second optical member F12 is bonded to the second surface of the liquid crystal panel P to form a double-sided bonding panel P12 (step S13).
- step S14 the visual inspection of a defect is performed in a manufacturing line (inline) (step S14).
- a 1st visual inspection process is performed in the manufacturing line continuous with the optical member bonding body formation process.
- the optical member bonded body forming step and the first visual inspection step are performed on the same production line.
- the optical member bonded body forming step and the first visual inspection step are performed in the production line (inline).
- the double-sided bonded panel P12 determined to be non-defective is, for example, collected for a plurality of sheets and then carried out for the next process (step S15).
- step S22 When the defect of the defective product is a small object that is a small deformation of the optical member itself or air bubbles that are sandwiched between the liquid crystal panel P and the optical member (“defect / small” in the flow diagram) And an autoclave process is performed (step S22).
- step S23 when the defect of the defective product is a large object that is a large deformation of the optical member itself or air bubbles that are sandwiched between the liquid crystal panel P and the optical member (in the flow diagram, “defect / medium And rework processing is performed (step S23).
- the defect of the defective product is one that cannot be regenerated by the autoclave process or the rework process, such as damage to the liquid crystal panel P (denoted as “defect / large” in the flow diagram), discard it. .
- step S24 a visual inspection for defects is performed on the double-sided bonded panel P12 that has been subjected to autoclave processing or rework processing.
- step S21 If a defect is not found, it will be carried out to the next process as a finished product double-sided bonding panel P12. If a defect is found and determined as a defective product, the process returns to step S21 again, and reproduction is attempted again through the reproduction process.
- the manufacturing method of the optical member bonding body of this embodiment is performed as mentioned above.
- the inspector sequentially inspects the optical member bonding body conveyed on the line by visual inspection.
- visual inspection by an inspector there is less possibility of overkill compared to the case of performing defect inspection with a commercially available optical automatic inspection device, and the accuracy of defect inspection is at an appropriate level according to actual use. Kept.
- the optical member bonding body of the present embodiment the optical member bonding that enables defect detection with accuracy with no excess or deficiency in actual use and that can be stably manufactured without impairing the manufacturing yield.
- a method for producing a coalescence is provided.
- the present invention is not limited to the above embodiment.
- the optical display component to which the optical member is bonded is not limited to the liquid crystal panel, and can be an organic EL panel, and the optical member to be bonded.
- a polarizing film and can be an antireflection film, a light diffusion film, or the like.
- the visual inspection is performed after the optical member is bonded to both surfaces of the liquid crystal panel P.
- the visual inspection can also be performed after the optical member is bonded to one surface.
- the defective product detected in the second visual inspection process is subjected to the regeneration process again.
- the regeneration process is performed a plurality of times, the heat history increases and the optical member is attached. Since the quality of coalescence is likely to deteriorate, defective products detected in the second visual inspection process may be discarded.
- an upper limit value that can be applied to the regeneration process step is set in advance, and defective products that have passed the regeneration process step a set number of times. It is good practice to discard them.
- FIG. 7 is a schematic block diagram about the film bonding system 2 which comprises a part of production system of an optical member bonding body, and is a figure corresponding to FIG.
- the film bonding system 2 is described in two upper and lower stages. In the following description, detailed description of contents common to the above description is omitted.
- seat F1 is wider than the long side of the display area P4 of liquid crystal panel P.
- the width (length in the short direction) of the band-shaped second optical member sheet F2 is wider than the short side of the display region P4 of the liquid crystal panel P.
- the bonding sheet F5 of the belt-shaped first optical member sheet F1 is cut out with a length longer than the short side of the display region P4 of the liquid crystal panel P to produce the first sheet piece F1m. Then, the liquid crystal panel P is bonded to the liquid crystal panel P during the conveyance of the liquid crystal panel P using the roller conveyor 5. Similarly, the bonding sheet F5 of the band-shaped second optical member sheet F2 is cut out with a length longer than the long side of the display area P4 of the liquid crystal panel P to produce a second sheet piece F2m, and the roller conveyor 5 is used. The liquid crystal panel P is bonded to the liquid crystal panel P while it is being transported. In the following description, the first sheet piece F1m and the second sheet piece F2m may be collectively referred to as “sheet piece FXm”.
- the first optical member F11 is formed by separating the excess portion of the first sheet piece F1m located outside the display area P4 of the liquid crystal panel P when being bonded to the liquid crystal panel P from the first sheet piece F1m.
- the 2nd optical member F12 is formed by cut
- Each part of the film bonding system 2 is comprehensively controlled by a control unit (not shown).
- the film bonding system 2 includes a first suction device 11 that sucks the liquid crystal panel P transported to the carry-out end of the preceding step and transports it to the carry-in end of the upstream conveyor 6 and performs alignment (positioning) of the liquid crystal panel P.
- the 1st dust collector 12 provided in the panel conveyance downstream of the 1st adsorption
- the first reversing device 31A disposed on the panel transport downstream side with respect to 13, the first cutting device 32A disposed on the panel transport downstream side with respect to the first reversing device 31A, and the panel transport downstream with respect to the first cutting device 32A.
- a recovery device (not shown) disposed at the first recovery position 33A on the side, and a first swivel device 34 disposed on the downstream side of the panel transport with respect to the recovery device.
- the film bonding system 2 is arrange
- FIG. The 2nd bonding apparatus 17, the 2nd inversion apparatus 31B arrange
- a defect inspection position 21 for performing a visual inspection for defects is set for the optical member bonded body in which the optical member is bonded to both surfaces of the liquid crystal panel P.
- a detection device used for setting a cut position in the first cutting device 32A is provided on the panel conveyance upstream side of the first cutting device 32A.
- a detection device used for setting a cut position in the second cutting device 32B is provided on the upstream side of the second cutting device 32B on the panel conveyance.
- the 1st bonding apparatus 13 bonds the sheet piece (1st sheet piece F1m) of the bonding sheet
- the 1st bonding apparatus 13 is a 1st optical member along the longitudinal direction of the 1st optical member sheet
- a conveying device 22 that conveys the sheet F1, and a pressure roll that bonds the first sheet piece F1m separated by the conveying device 22 from the first optical member sheet F1 to the lower surface of the liquid crystal panel P conveyed by the upstream conveyor 6. 23.
- the conveying device 22 is a device that conveys the bonding sheet F5 using the separator sheet F3a as a carrier.
- the transport device 22 includes a roll holding unit 22a, a plurality of guide rollers 22b, a cutting device 22c that performs a half cut on the first optical member sheet F1 on the transport path, and a first optical member sheet F1 that has been subjected to a half cut. It has a knife edge 22d that feeds the first sheet piece F1m to the bonding position while peeling off the first sheet piece F1m from the separator sheet F3a by winding at an acute angle, and a winding part 22e.
- the first optical member sheet F1 has a width wider than the width of the liquid crystal panel P in a plan view in a horizontal direction (sheet width direction) orthogonal to the transport direction of the first optical member sheet F1.
- the cutting device 22c is configured such that the length of the display area P4 in the length direction perpendicular to the sheet width direction of the first optical member sheet F1 (the length of either the long side of the display area P4 or the short side of the display area P4, In the embodiment, every time a length longer than the short side length of the display area P4 is extended, the first optical member sheet F1 is half-cut across the entire width along the sheet width direction. Thereby, the 1st sheet piece F1m larger than the display area P4 of liquid crystal panel P is formed from the bonding sheet
- the first optical member sheet F1 after the half cut is formed with a cut line in which at least the optical member main body F1a and the surface protection film F4a are cut in the thickness direction over the entire width in the width direction of the first optical member sheet F1.
- the cut lines are formed at intervals having a length corresponding to the short side length of the display region P4 in the longitudinal direction of the belt-shaped first optical member sheet F1.
- the first optical member sheet F1 is divided into a plurality of sections in the longitudinal direction by the plurality of score lines. In the 1st optical member sheet
- the size of the first sheet piece F1m can be larger than the liquid crystal panel P, for example.
- the size of the portion that protrudes outside the liquid crystal panel P (the size of the surplus portion of the first sheet piece F1m) is appropriately set according to the size of the liquid crystal panel P.
- the first sheet piece F1m is applied to a medium to small size liquid crystal panel P of 5 to 10 inches
- one side of the first sheet piece F1m and one side of the liquid crystal panel P at each side of the first sheet piece F1m Is set to a length in the range of 2 mm to 5 mm.
- said numerical value is an example and is not limited to this.
- the knife edge 22d is disposed below the upstream conveyor 6 and extends over at least the entire width in the width direction of the first optical member sheet F1.
- the first optical member sheet F1 is wound around the knife edge 22d so that the separator sheet F3a of the first optical member sheet F1 after the half cut comes into sliding contact with the knife edge 22d.
- the first optical member sheet F1 peels the separator sheet F3a from the first sheet piece F1m when the traveling direction changes so as to be bent at an acute angle at the tip of the knife edge 22d.
- the front end portion of the knife edge 22d is disposed close to the upstream side of the sandwiching roll 23 in the panel conveyance, and the first sheet piece F1m peeled from the separator sheet F3a by the knife edge 22d is transferred to the upstream conveyor 6 by the liquid crystal panel P. It is introduced between the pair of laminating rollers 23 a of the pinching roll 23 while overlapping with the lower surface of.
- the pinching roll 23 has a pair of laminating rollers 23a arranged in parallel with each other in the axial direction. A predetermined gap is formed between the pair of bonding rollers 23 a, and the position of this gap becomes the bonding position of the first bonding device 13.
- the liquid crystal panel P and the first sheet piece F1m are introduced into the gap between the pair of bonding rollers 23a so that the liquid crystal panel P and the first sheet piece F1m are sandwiched between the pair of bonding rollers 23a. It is sent out downstream. Thereby, the 1st sheet piece F1m is integrally bonded by the lower surface of liquid crystal panel P, and it becomes 1st optical member bonding body (bonding body) PA1.
- (First reversing device) 31 A of 1st inversion apparatuses convey the 1st optical member bonding body PA1 to the cutting position of the 1st cutting device 32A, reverse the front and back of 1st optical member bonding body PA1 at the time of this conveyance, and 1st of liquid crystal panel P
- the sheet piece F1m is transferred to the first cutting device 32A in a state where the upper surface is the bonded surface.
- (First cutting device) 32 A of 1st cutting devices cut off the surplus part arranged outside the part corresponding to the pasting surface of liquid crystal panel P and the 1st sheet piece F1m from the 1st sheet piece F1m pasted on liquid crystal panel P,
- the 1st optical member F11 (refer FIG. 4) of the magnitude
- the first optical member is placed on one of the front surface of the liquid crystal panel P and the back surface of the liquid crystal panel P by separating the excess portion of the first sheet piece F1m from the first optical member bonding body PA1 by the first cutting device 32A.
- 2nd optical member bonding body PA2 formed by F11 being bonded is formed.
- the configuration of the first cutting device 32A will be described in detail later.
- a collection device (not shown) disposed at the first collection position 33A holds, for example, an excess portion cut by the first cutting device 32A and peels off from the first optical member F11 formed by the first cutting device 32A. Then, the unnecessary surplus part is collected. After the recovery process of the surplus portion, the second optical member bonding body PA2 moves in the direction of the first turning device 34. Note that the recovery device may not be used as long as the cut surplus portion is removed by free fall during cutting by the first cutting device 32A.
- the first swivel device 34 holds the second optical member bonding body PA2 that has reached the carry-out end of the upstream conveyor 6 via the first cutting device 32A by suction or pinching, and the second optical member bonding body PA2 is displayed.
- the second optical member bonding body PA2 is turned so as to be conveyed in the direction along the long side of the region P4. Thereby, the polarizing axis of the polarizing film bonded to the surface of the liquid crystal panel P and the polarizing axis of the polarizing film bonded to the back surface of the liquid crystal panel P become perpendicular to each other.
- the first turning device 34 includes an alignment camera 34c similar to the alignment camera 11b of the first suction device 11, and has the same alignment function as the panel holding portion 11a of the first suction device 11.
- the 2nd bonding apparatus 17 is the bonding of the sheet piece (2nd sheet piece F2m) of the bonding sheet
- the 2nd bonding apparatus 17 is provided with the conveying apparatus 22 and the pinching roll 23 similar to the 1st bonding apparatus 13. FIG.
- the cutting device 22c of the 2nd bonding apparatus 17 is the length of the display area P4 in the length direction in which the 2nd optical member sheet
- Half cut is applied to the optical member sheet F2. Thereby, the 2nd sheet piece F2m larger than the display area P4 of liquid crystal panel P is formed from the bonding sheet
- Cut lines are formed in the second optical member sheet F2 after the half cut at intervals having a length corresponding to the long side length of the display region P4 in the longitudinal direction of the band-shaped second optical member sheet F2.
- the second optical member sheet F2 is divided into a plurality of sections in the longitudinal direction by the plurality of score lines.
- interposed into a pair of cutting line adjacent in a longitudinal direction turns into 2nd sheet piece F2m.
- the size of the second sheet piece F2m can be made larger than the liquid crystal panel P, for example.
- the size of the portion that protrudes outside the liquid crystal panel P (the size of the surplus portion of the second sheet piece F2m) is appropriately set according to the size of the liquid crystal panel P.
- the second sheet piece F2m is applied to a medium-to-small size liquid crystal panel P of 5 inches to 10 inches, one side of the second sheet piece F2m and one side of the liquid crystal panel P at each side of the second sheet piece F2m Is set to a length in the range of 2 mm to 5 mm.
- said numerical value is an example and is not limited to this.
- the pinching roll 23 has a pair of bonding rollers 23a arranged in parallel with each other in the axial direction. A predetermined gap is formed between the pair of bonding rollers 23a. It becomes the bonding position of the combination device 17. In the gap, the second optical member bonding body PA2 and the second sheet piece F2m are introduced in an overlapping state, and the second optical member bonding body PA2 and the second sheet piece F2m are sandwiched between the pair of bonding rollers 23a. It is sent out to the panel conveyance downstream side while being pressed.
- 2nd sheet piece F2m is integrally bonded by the lower surface (surface on the opposite side to the surface where 1st optical member F11 of 2nd optical member bonding body PA2 was bonded) of 2nd optical member bonding body PA2. It becomes a 3rd optical member bonding body (bonding body) PA3.
- the second reversing device 31B conveys the third optical member bonding body PA3 to the cutting position of the second cutting device 32B, reverses the front and back of the third optical member bonding body PA3 during the conveyance, and the second of the liquid crystal panel P.
- the sheet piece F2m is transferred to the second cutting device 32B in a state where the surface on which the sheet piece F2m is bonded is used as the upper surface.
- the 2nd cutting device 32B is the surplus arrange
- a part is cut
- the second cutting device 32B separates the excess portion of the second sheet piece F2m from the third optical member bonding body PA3, so that the second surface is either the front surface of the liquid crystal panel P or the back surface of the liquid crystal panel P.
- optical member bonding body (1st optical member F11 is bonded and formed in the 1st surface which is either the surface of liquid crystal panel P, or the back surface of liquid crystal panel P, and optical member F12 is bonded.
- Optical member bonding body) PA4 is formed.
- the first cutting device 32A and the second cutting device 32B are, for example, CO 2 laser cutters.
- the first cutting device 32A separates the surplus portion arranged outside the portion corresponding to the bonding surface of the liquid crystal panel P and the first sheet piece F1m from the first sheet piece F1m, and the liquid crystal panel P and the first sheet
- size corresponding to the bonding surface with piece F1m is formed.
- the second cutting device 32B separates the surplus portion arranged outside the portion corresponding to the bonding surface of the liquid crystal panel P and the second sheet piece F2m from the second sheet piece F2m, and the liquid crystal panel P and the second sheet
- size corresponding to the bonding surface with piece F2m is formed.
- the cutting device 32 (the first cutting device 32A and the second cutting device 32B may be collectively referred to as “cutting device 32”) is bonded to the liquid crystal panel P and the liquid crystal panel P detected by the detection device described later.
- the sheet piece FXm bonded to the liquid crystal panel P is cut endlessly along the outer peripheral edge of the bonded surface of the sheet piece FXm.
- a frame portion G (see FIG. 4) having a predetermined width for arranging a sealant or the like for joining the first substrate P1 of the liquid crystal panel P and the second substrate P2 of the liquid crystal panel P.
- the sheet piece FXm is cut by the cutting device 32 within the width of the frame portion G.
- FIG. 8 is a schematic diagram of the first detection device 61 that detects the outer peripheral edge of the bonding surface.
- the 1st detection apparatus 61 with which the film bonding system 2 of this embodiment is provided is the bonding surface (henceforth, 1st bonding surface (below) of liquid crystal panel P and 1st sheet piece F1m in 1st optical member bonding body PA1. Bonding surface) may be referred to as SA1.)
- An imaging device 63 that captures an image of the outer peripheral edge ED, an illumination light source 64 that illuminates the outer peripheral edge ED, an image that is captured by the imaging device 63, and an image And a control unit 65 that performs calculation for detecting the outer peripheral edge ED.
- Such a first detection device 61 is provided on the upstream side of the panel conveyance of the first cutting device 32A in FIG. 7, and is provided between the first reversing device 31A and the first cutting device 32A.
- the imaging device 63 is fixed and arranged inside the first bonding surface SA1 with respect to the outer peripheral edge ED, and the normal line of the first bonding surface SA1 and the normal line of the imaging surface 63a of the imaging device 63 are arranged.
- the posture is inclined so as to form an angle ⁇ (hereinafter referred to as an inclination angle ⁇ of the imaging device 63).
- the imaging device 63 directs the imaging surface 63a to the outer peripheral edge ED, and captures an image of the outer peripheral edge ED from the side on which the first sheet piece F1m is bonded in the first optical member bonding body PA1.
- the inclination angle ⁇ of the imaging device 63 can be set so that the outer peripheral edge of the first substrate P1 constituting the first bonding surface SA1 can be reliably imaged.
- the first substrate P1 constituting the liquid crystal panel P and the second substrate P2 constituting the liquid crystal panel P may be shifted outward from the end surface of the first substrate P1.
- the inclination angle ⁇ of the imaging device 63 can be set so that the outer peripheral edge of the second substrate P2 does not enter the imaging field of the imaging device 63.
- the inclination angle ⁇ of the imaging device 63 is adapted to the distance between the first bonding surface SA1 and the center of the imaging surface 63a of the imaging device 63 (hereinafter referred to as the height H of the imaging device 63).
- the height H of the imaging device 63 can be set to.
- the inclination angle ⁇ of the imaging device 63 can be set to an angle in the range of 5 ° or more and 20 ° or less.
- the height H of the imaging device 63 and the inclination angle ⁇ of the imaging device 63 can be obtained based on the deviation amount.
- the height H of the imaging device 63 is set to 78 mm
- the inclination angle ⁇ of the imaging device 63 is set to 10 °.
- said numerical value is an example and is not limited to this.
- the inclination angle ⁇ of the imaging device 63 may be 0 °.
- FIG. 9 is a schematic diagram illustrating a modification of the first detection device 61, and is an example in the case where the inclination angle ⁇ of the imaging device 63 is 0 °.
- each of the imaging device 63 and the illumination light source 64 may be disposed at a position overlapping the outer peripheral edge ED along the normal direction of the first bonding surface SA1.
- the distance between the first bonding surface SA1 and the center of the imaging surface 63a of the imaging device 63 (hereinafter referred to as the height H1 of the imaging device 63) is easy to detect the outer peripheral edge ED of the first bonding surface SA1.
- the height H1 of the imaging device 63 can be set in the range of 50 mm or more and 320 mm or less.
- said numerical value is an example and is not limited to this.
- the illumination light source 64 is fixed and arranged on the side opposite to the side on which the first sheet piece F1m is bonded in the first optical member bonded body PA1.
- the illumination light source 64 is arrange
- the optical axis of the illumination light source 64 and the normal line of the imaging surface 63a of the imaging device 63 are parallel.
- the illumination light source 64 may be arrange
- the optical axis of the illumination light source 64 and the normal line of the imaging surface 63a of the imaging device 63 intersect. It may be.
- FIG. 10 is a plan view showing a position for detecting the outer peripheral edge of the bonding surface.
- region CA is set on the conveyance path
- region CA is set in the position corresponding to the outer periphery ED of 1st bonding surface SA1 in the liquid crystal panel P conveyed.
- the inspection area CA is set at four locations corresponding to the four corners of the rectangular first bonding surface SA1 in plan view, and the corners of the first bonding surface SA1 are detected as the outer peripheral edge ED. It is the composition to do.
- the hook-shaped part corresponding to the corner is shown as the outer peripheral edge ED.
- the outer periphery ED detects the outer periphery ED in the four inspection areas CA.
- the imaging device 63 and the illumination light source 64 are arranged in each inspection area CA, and the first detection device 61 has a corner portion of the first bonding surface SA1 for each liquid crystal panel P to be transported.
- the outer peripheral edge ED is detected based on the imaging data. Data of the detected outer peripheral edge ED is stored in the control unit 65 shown in FIG.
- region CA may be arrange
- the imaging device 63 and the illumination light source 64 are not limited to the configuration arranged in each inspection area CA, and are configured to be able to move along a movement path set along the outer peripheral edge ED of the first bonding surface SA1. It may be.
- the imaging device 63 and the illumination light source 64 are configured to detect the outer peripheral edge ED when the imaging device 63 and the illumination light source 64 are positioned in each inspection area CA, so that one imaging device 63 and one illumination light source 64 are provided. In this case, the outer periphery ED can be detected.
- the cutting position for the first sheet piece F1m by the first cutting device 32A is set based on the detection result of the outer peripheral edge ED of the first bonding surface SA1.
- the control unit 65 shown in FIG. 8 is configured such that the first optical member F11 is outside the liquid crystal panel P (the outside of the first bonding surface SA1) based on the stored data of the outer peripheral edge ED of the first bonding surface SA1. ),
- the cut position of the first sheet piece F1m can be set so as not to protrude. Further, the setting of the cut position is not necessarily performed by the control unit 65 of the first detection device 61, and may be performed by using a calculation unit separately using the data of the outer peripheral edge ED detected by the first detection device 61. I do not care.
- the first cutting device 32A cuts the first sheet piece F1m at the cutting position set by the control unit 65.
- the first cutting device 32 ⁇ / b> A includes a portion corresponding to the first bonding surface SA ⁇ b> 1 in the first sheet piece F ⁇ b> 1 m bonded to the liquid crystal panel P and an extra portion outside the first bonding surface SA ⁇ b> 1.
- a first optical member F11 (see FIG. 4) having a size corresponding to the first bonding surface SA1 is cut out.
- 2nd optical member bonding body PA2 by which the 1st optical member F11 overlapped and bonded on the upper surface of liquid crystal panel P is formed.
- the “part corresponding to the first bonding surface SA1” means the outer peripheral shape (contour shape in plan view) of the liquid crystal panel P that is equal to or larger than the size of the display area of the liquid crystal panel P facing the first sheet piece F1m. ) And a region that avoids a functional part such as an electric component mounting portion in the liquid crystal panel P.
- the surplus portion is laser-cut along the outer peripheral edge of the liquid crystal panel P at three sides excluding the functional portion in the liquid crystal panel P having a rectangular shape in plan view, and the liquid crystal panel P at one side corresponding to the functional portion. It is possible to adopt a configuration in which the surplus portion is laser-cut at a position that appropriately enters the display region P4 side from the outer peripheral edge.
- the first substrate P1 is a TFT substrate
- FIG. 11 is a schematic diagram of the second detection device 62 that detects the outer peripheral edge of the bonding surface.
- the 2nd detection apparatus 62 with which the film bonding system 2 of this embodiment is provided is the bonding surface (henceforth the 2nd bonding surface (below) of liquid crystal panel P and 2nd sheet piece F2m in 3rd optical member bonding body PA3.
- the image pickup device 63 that picks up the image of the outer peripheral edge ED of the bonding surface) SA2), the illumination light source 64 that illuminates the outer peripheral edge ED, and the image picked up by the image pickup device 63 are stored in the image.
- a control unit 65 that performs calculation for detecting the outer peripheral edge ED.
- the second detection device 62 has the same configuration as the first detection device 61 described above.
- Such a second detection device 62 is provided on the upstream side of the panel conveyance of the second cutting device 32B in FIG. 7, and is provided between the second reversing device 31B and the second cutting device 32B.
- the 2nd detection apparatus 62 detects the outer periphery ED of 2nd bonding surface SA2 similarly to the above-mentioned 1st detection apparatus 61 in the test
- the cutting position of the second sheet piece F2m by the second cutting device 32B is set based on the detection result of the outer peripheral edge ED of the second bonding surface SA2.
- control unit 65 shown in FIG. 11 is configured such that the second optical member F12 is outside the liquid crystal panel P (the outside of the second bonding surface SA2) based on the stored data of the outer peripheral edge ED of the second bonding surface SA2. ),
- the cut position of the second sheet piece F2m can be set so as not to protrude. Further, the setting of the cut position is not necessarily performed by the control unit 65 of the second detection device 62, and may be performed by using a calculation unit separately using the data of the outer peripheral edge ED detected by the second detection device 62. I do not care.
- the second cutting device 32B cuts the second sheet piece F2m at the cutting position set by the control unit 65.
- the 2nd cutting device 32B detects the part corresponding to 2nd bonding surface SA2 among the 2nd sheet pieces F2m bonded by liquid crystal panel P, and the excess part of the outer side of 2nd bonding surface SA2.
- the second optical member F12 (see FIG. 4) having a size corresponding to the second bonding surface SA2 is cut out along the outer peripheral edge ED. Thereby, 4th optical member bonding body PA4 by which the 2nd optical member F12 was bonded on the upper surface of 2nd optical member bonding body PA2 is formed.
- the “part corresponding to the second bonding surface SA2” means the outer peripheral shape (contour shape in plan view) of the liquid crystal panel P that is equal to or larger than the size of the display area of the opposing liquid crystal panel P in the second sheet piece F2m. ) And a region that avoids a functional part such as an electric component mounting portion in the liquid crystal panel P.
- the outer periphery of the bonding surface is detected for each of the plurality of liquid crystal panels P using the detection device, and the sheets bonded to the individual liquid crystal panels P based on the detected outer periphery.
- the cutting position of the piece FXm is set.
- the CO 2 laser is used as an example of the cutting device 32, but the cutting device 32 is not limited to this. It is also possible to use other cutting means such as a cutting blade as the cutting device 32.
- a collection device (not shown) disposed at the second collection position 33B holds, for example, an excess portion cut by the second cutting device 32B and peels off from the second optical member F12 formed by the second cutting device 32B. Then, the unnecessary surplus part is collected. 4th optical member bonding body PA4 moves to the direction of the 2nd turning apparatus 35 after the collection process of a surplus part. Note that the recovery device may not be used as long as the cut surplus portion is removed by free fall at the time of cutting by the second cutting device 32B.
- the 2nd turning apparatus 35 turns 4th optical member bonding body PA4 so that 4th optical member bonding body PA4 may be conveyed in the direction in alignment with the short side of display area P4.
- the defect of the fourth optical member bonding body PA4 is visually inspected at the defect inspection position 21 set on the downstream side of the second turning device 35.
- About handling of the 4th optical member bonding body PA4 after visual inspection (unloading from a production line, and regeneration processing outside a production line), it is the same as that of a 1st embodiment.
- the liquid crystal panel P is carried into the production line (step S11), and dirt such as dust and dust adhering to the surface of the liquid crystal panel P is washed (step S12).
- the first optical member sheet F1 is cut while being unwound from the raw roll R1, and is larger than the display region P4 (for example, larger than the liquid crystal panel P), the first sheet piece F1m. Form. Then, the 1st sheet piece F1m is bonded together to liquid crystal panel P, and 1st optical member bonding body PA1 is formed.
- 1st optical member bonding body PA1 the outer periphery of the bonding surface of 1st sheet piece F1m and liquid crystal panel P is detected, and the excess part of 1st sheet piece F1m is cut along the detected outer periphery.
- the 2nd optical member bonding body PA2 is formed.
- the second optical member sheet F2 is cut while being unwound from the original roll R1, and a second sheet piece F2m larger than the display region P4 (for example, larger than the liquid crystal panel P) is formed, and the second optical member affixed
- the third optical member bonded body PA3 is formed by bonding to the combined PA2.
- 3rd optical member bonding body PA3 the outer periphery of the bonding surface of 2nd sheet piece F2m and liquid crystal panel P is detected, The excess part of 2nd sheet piece F2m is cut along the detected outer periphery. And 4th optical member bonding body PA4 is formed (step S13).
- Steps S14, S15, and S21 to S24 are performed on the obtained fourth optical member bonding body PA4 in the same manner as in the first embodiment.
- the manufacturing method of the optical member bonding body of this embodiment is performed as mentioned above.
- the manufacturing method of the optical member bonding body as described above as in the first embodiment, it is possible to detect defects with accuracy without excess or deficiency on actual use, and stable manufacturing without impairing the manufacturing yield.
- a manufacturing method of a possible optical member pasting object is provided.
- liquid crystal panel P or 1st while peeling the produced 1st sheet piece F1m and 2nd sheet piece F2m from the separator sheet F3a.
- the bonding apparatus the produced first sheet piece F1m and the second sheet piece F2m are attached and held, and have a bonding head that is transported and bonded onto the liquid crystal panel P or the second optical member bonding body PA2. It doesn't matter.
- F1X ... optical member F11 ... first optical member (optical member), F12 ... second optical member (optical member), FX ... optical member sheet, F1 ... first optical member sheet (optical member sheet) F2 ... second optical member sheet (optical member sheet), P4 ... display region, R1 ... raw roll, FXm ... sheet piece, F1m ... first sheet piece (sheet piece), F2m ... second sheet piece (sheet piece) ), P ... liquid crystal panel (optical display component), P11 ... single-sided bonding panel (optical member bonding body), P12 ... double-sided bonding panel (optical member bonding body), PA1 ... first optical member bonding body (bonding body). PA3 ... 3rd optical member bonding body (bonding body), PA4 ... 4th optical member bonding body (optical member bonding body).
Landscapes
- Liquid Crystal (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- Polarising Elements (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
光学部材貼合体の製造方法は、光学表示部品に光学部材を貼合して形成される光学部材貼合体の製造方法であって、帯状の光学部材シートを原反ロールから巻き出し、光学部材シートを切断して得られる複数の光学部材を、複数の光学表示部品に貼合して複数の光学部材貼合体を形成する光学部材貼合体形成工程(S13)と、複数の光学部材貼合体のそれぞれについて欠陥を目視検査する第1目視検査工程(S14)と、を有し、光学部材貼合体形成工程と第1目視検査工程とを、同一の製造ラインで行う。
Description
本発明は、光学部材貼合体の製造方法に関する。
本願は、2013年8月30日に出願された日本国特許出願2013-180587号に基づき優先権を主張し、その内容をここに援用する。
本願は、2013年8月30日に出願された日本国特許出願2013-180587号に基づき優先権を主張し、その内容をここに援用する。
液晶パネル(光学表示部品)に偏光板(光学部材)を貼合する方式として、RTP(Roll to Panel)方式と呼ばれる貼合方式が知られている(例えば、特許文献1参照)。この貼合方式は、原反ロールから巻き出された長尺状の偏光板を所定サイズにカットし、ライン上を搬送される液晶パネルに直接貼合する方式である。
液晶パネルに偏光板を貼合する際には、稼動設備からの発塵や作業者に起因して発生する塵埃等が、液晶パネルと偏光板との間に貼合異物として入り込む等の不良が発生することがある。このような不良品は、製造ライン外に搬出された製造物を検査することにより検出することができるが、この方法では、不良品の検査位置が製造ラインと分離しており、不良品の発生から不良品の検出までにタイムラグを生じる。そのため、不良品の発生後、ライン停止や原因除去などの対策が遅れる結果、不良品を検出するまでに不良品を発生させ続けることとなり、相当数の不良品を発生させ、製造ラインの歩留りを低下させるという課題がある。
そのため、特許文献1の生産システムでは、製造ライン上に光学式自動検査装置(Automatic Optical Inspection)を設置し、ライン上を搬送されてくる貼合体の欠陥を順次自動検査するようにしている。このような欠陥検査装置としては、透過型や反射型などの種々の欠陥検査装置が知られており、欠陥の種類に応じてこれらの欠陥検査装置が適宜選択して使用される。特許文献1の生産システムにおいては、製造ライン上に欠陥検査装置を設置しているので、上述のようなタイムラグは発生せず、製造歩留りが改善される。
現在市販されている欠陥検査装置を用いた自動検査では、目視検査と比較して、不良品を良品と判定する「見逃し」が発生しやすい。通常は、欠陥検査装置において良否判定の閾値を厳しく設定し、見逃しの発生を抑制している。しかし、それでも欠陥検査装置を用いた自動検査においては、見逃しが発生する場合がある。そのため、欠陥検出の精度を高めるための抜本的な改善策が求められている。
本発明の態様はこのような事情に鑑みてなされたものであって、実使用の上で過不足の無い精度で欠陥検出が可能であり、且つ製造歩留りを損なわず安定した製造が可能な光学部材貼合体の製造方法を提供することを目的とする。
上記の目的を達成するために、本発明の態様に係る光学部材貼合体の製造方法は以下の構成を採用する。
(1)本発明の一態様に係る光学部材貼合体の製造方法は、光学表示部品に光学部材を貼合して形成される光学部材貼合体の製造方法であって、帯状の光学部材シートを原反ロールから巻き出し、前記光学部材シートを切断して得られる複数の前記光学部材を、複数の前記光学表示部品に貼合して、複数の前記光学部材貼合体を形成する光学部材貼合体形成工程と、複数の前記光学部材貼合体のそれぞれについて欠陥を目視検査する第1目視検査工程と、を有し、前記光学部材貼合体形成工程と前記第1目視検査工程とを、同一の製造ラインで行う。
(1)本発明の一態様に係る光学部材貼合体の製造方法は、光学表示部品に光学部材を貼合して形成される光学部材貼合体の製造方法であって、帯状の光学部材シートを原反ロールから巻き出し、前記光学部材シートを切断して得られる複数の前記光学部材を、複数の前記光学表示部品に貼合して、複数の前記光学部材貼合体を形成する光学部材貼合体形成工程と、複数の前記光学部材貼合体のそれぞれについて欠陥を目視検査する第1目視検査工程と、を有し、前記光学部材貼合体形成工程と前記第1目視検査工程とを、同一の製造ラインで行う。
(2)本発明の別の一態様に係る光学部材貼合体の製造方法は、光学表示部品に光学部材を貼合して形成される光学部材貼合体の製造方法であって、帯状の光学部材シートを原反ロールから巻き出し、前記光学部材シートを切断して得られる複数のシート片を、複数の前記光学表示部品に貼合して、複数の貼合体を形成する貼合体形成工程と、前記貼合体において、前記シート片と前記光学表示部品との貼合面の外周縁を検出する検出工程と、前記貼合体において、前記光学表示部品に貼合された前記シート片から前記貼合面に対応する部分の外側に配置された余剰部分を、前記外周縁に沿って切り離し、前記貼合面に対応する大きさの前記光学部材を含む前記光学部材貼合体を形成する光学部材貼合体形成工程と、複数の前記光学部材貼合体のそれぞれについて欠陥を目視検査する第1目視検査工程と、を有し、前記光学部材貼合体形成工程と前記第1目視検査工程とを、同一の製造ラインで行う。
(3)上記(2)の態様においては、前記検出工程では、複数の前記光学表示部品ごとに、前記シート片と前記光学表示部品との貼合面の外周縁を検出してもよい。
(4)上記(1)から(3)のいずれか一項の態様においては、前記光学部材貼合体の製造方法は、前記第1目視検査工程で検出された不良品について、前記不良品が有する欠陥の状態に応じて、前記不良品を加熱加圧処理するオートクレーブ処理、または前記光学部材貼合体から前記光学部材を剥離して前記光学表示部品を露出させ、露出させた前記光学表示部品の面に、あらかじめ用意された新たな前記光学部材を貼合して、新たな前記光学部材貼合体を形成するリワーク処理、のいずれか一方の再生処理を選択して実施する再生処理工程を有し、前記再生処理工程を、前記製造ラインとは分離して行ってもよい。
(5)上記(4)の態様においては、前記光学部材貼合体の製造方法は、前記再生処理工程を経た複数の前記光学部材貼合体のそれぞれについて、欠陥を目視検査する第2目視検査工程を有し、前記第2目視検査工程を、前記製造ラインとは分離して行ってもよい。
(6)上記(5)の態様においては、前記第2目視検査工程で検出された不良品について、再び前記再生処理を施してもよい。
(7)上記(1)から(6)のいずれか一項の態様においては、前記第1目視検査工程では、前記光学部材貼合体形成工程を経て順次搬送される複数の前記光学部材貼合体を複数の検査員が分担して目視検査してもよい。
(8)上記(7)の態様においては、前記第1目視検査工程では、複数の前記光学部材貼合体を複数の検査ラインに分配し、複数の前記検査ラインに配置された前記検査員が目視検査してもよい。
(9)上記(1)から(8)のいずれか一項の態様においては、前記光学部材貼合体形成工程では、前記光学表示部品の両面に前記光学部材を貼合した前記光学部材貼合体を形成し、前記第1目視検査工程では、前記光学表示部品の両面に前記光学部材が貼合された前記光学部材貼合体について目視検査してもよい。
本発明の態様によれば、実使用の上で過不足の無い精度で欠陥検出が可能であり、且つ製造歩留りを損なわず安定した製造が可能な光学部材貼合体の製造方法を提供することができる。
以下、本発明の実施形態に係る光学部材貼合体の製造方法について説明する。図1,2は、本実施形態に係る光学部材貼合体の製造方法の実施に用いられる光学部材貼合体の生産システムを示す説明図である。図1は、光学部材貼合体の生産システムの一部を構成するフィルム貼合システム1についての概略構成図であり、図2は、フィルム貼合システム1が有する第1反転装置15についての説明図である。
フィルム貼合システム1は、例えば液晶パネルや有機ELパネルといったパネル状の光学表示部品に、偏光フィルムや反射防止フィルム、光拡散フィルムといったフィルム状の光学部材を貼合し、光学部材貼合体を製造するシステムである。フィルム貼合システム1は、光学表示部品及び光学部材を含んだ光学表示デバイスを生産する生産システムの一部として構成される。フィルム貼合システム1では、光学表示部品として液晶パネルPを用いている。
以下の説明においては、まず、フィルム貼合システム1において用いられる液晶パネルPについて説明した上で、フィルム貼合システム1について詳細に説明する。
(液晶パネル)
図3は、液晶パネルPの平面図である。液晶パネルPは、平面視で長方形状を有する第1基板P1と、第1基板P1に対向して配置される比較的小型の長方形状を有する第2基板P2と、第1基板P1と第2基板P2との間に封入された液晶層P3とを備える。液晶パネルPは、平面視で第1基板P1の外周形状に沿う長方形状を有し、平面視で液晶層P3の外周の内側に収まる領域である表示領域P4を有する。
図3は、液晶パネルPの平面図である。液晶パネルPは、平面視で長方形状を有する第1基板P1と、第1基板P1に対向して配置される比較的小型の長方形状を有する第2基板P2と、第1基板P1と第2基板P2との間に封入された液晶層P3とを備える。液晶パネルPは、平面視で第1基板P1の外周形状に沿う長方形状を有し、平面視で液晶層P3の外周の内側に収まる領域である表示領域P4を有する。
図4は図3のIV-IV断面図である。液晶パネルPの表面及び液晶パネルPの裏面には、長尺帯状の第1光学部材シートF1及び長尺帯状の第2光学部材シートF2(図1参照)から切り出した第1光学部材F11及び第2光学部材F12が適宜貼合される。以下の説明においては、第1光学部材シートF1及び第2光学部材シートF2を「光学部材シートFX」と総称することがある。また、第1光学部材F11及び第2光学部材F12を「光学部材F1X」と総称することがある。
本実施形態では、液晶パネルPのバックライト側の面及び液晶パネルPの表示面側の面には、偏光フィルムとしての第1光学部材F11及び偏光フィルムとしての第2光学部材F12がそれぞれ貼合される。なお、液晶パネルPのバックライト側の面に、第1光学部材F11に重ねて輝度向上フィルムとしての第3光学部材がさらに貼合されていてもよい。
図5は、光学部材シートFXの部分断面図である。光学部材シートFXは、フィルム状の光学部材本体F1aと、光学部材本体F1aの第1面(図5では上面)に設けられた粘着層F2aと、粘着層F2aを介して光学部材本体F1aの第1面に分離可能に積層されたセパレータシートF3aと、光学部材本体F1aの第2面(図5では下面)に積層された表面保護フィルムF4aとを有する。以下、光学部材シートFXからセパレータシートF3aを除いた部分を貼合シートF5という。なお、図示都合上、図5の各層のハッチングは省略する。
光学部材本体F1aは、シート状の偏光子F6と、偏光子F6の第1面に接着剤等で接合される第1フィルムF7と、偏光子F6の第2面に接着剤等で接合される第2フィルムF8とを有する。第1フィルムF7及び第2フィルムF8は、例えば偏光子F6を保護する保護フィルムである。
なお、光学部材本体F1aは、一層の光学層を有する単層構造でもよく、複数の光学層が互いに積層された積層構造でもよい。光学層は、偏光子F6の他に、位相差フィルムや輝度向上フィルム等でもよい。第1フィルムF7と第2フィルムF8の少なくとも一方は、液晶表示素子の最外面を保護するハードコート処理やアンチグレア処理を含む防眩などの効果が得られる表面処理が施されてもよい。光学部材本体F1aは、第1フィルムF7と第2フィルムF8の少なくとも一方を含まなくてもよい。例えば第1フィルムF7を省略した場合、セパレータシートF3aを偏光子F6の第1面に粘着層F2aを介して分離可能に積層することとしてもよい。
光学部材本体F1aは、所定長さに切出された後に、液晶パネルPの表示領域P4の全域と表示領域P4の周辺領域とにわたって貼合される。その際、光学部材本体F1aから切り出されるシート片には、粘着層F2aを同じ所定長さに切り出して得られるシート片が残され、光学部材本体F1aのシート片は、粘着層F2aのシート片を介して液晶パネルPに貼合される。
セパレータシートF3aは、セパレータシートF3aが粘着層F2aから分離されるまでの間に粘着層F2a及び光学部材本体F1aを保護する。
表面保護フィルムF4aは、光学部材本体F1aと共に切出され液晶パネルPに貼合される。表面保護フィルムF4aは、光学部材本体F1aに対して液晶パネルPと反対側に配置されて光学部材本体F1aを保護する。表面保護フィルムF4aは、所定のタイミングで光学部材本体F1aから分離される。なお、光学部材シートFXが表面保護フィルムF4aを含まない構成であってもよい。表面保護フィルムF4aが光学部材本体F1aから分離されない構成であってもよい。
このような光学部材シートFXからは、後述するように製造ライン内で貼合シートF5を切断することで、光学部材F1Xが形成される。
(フィルム貼合システム)
以下、図1,2を参照してフィルム貼合システム1について説明する。なお、図中右側は液晶パネルPの搬送方向上流側(以下、パネル搬送上流側という)を示す。図中左側は液晶パネルPの搬送方向下流側(以下、パネル搬送下流側という)を示す。
以下、図1,2を参照してフィルム貼合システム1について説明する。なお、図中右側は液晶パネルPの搬送方向上流側(以下、パネル搬送上流側という)を示す。図中左側は液晶パネルPの搬送方向下流側(以下、パネル搬送下流側という)を示す。
フィルム貼合システム1は、貼合工程の始発位置から終着位置まで、例えば駆動式のローラコンベヤ5を用いて液晶パネルPを搬送しつつ、液晶パネルPに順次所定の処理を施す。液晶パネルPは、その表裏面を水平にした状態でローラコンベヤ5上を搬送される。
以下の説明においては、貼合工程の始発位置から終着位置まで、液晶パネルPに対し流れ作業で行う処理全体を「製造ライン」と称することがある。製造ラインは、主としてローラコンベヤ5上で行われる流れ作業のことを指し、製造ラインで行われる作業を「製造ライン内」の作業と称する。本実施形態においては、製造ラインには、貼合工程の上流側に設けられた液晶パネルPの洗浄処理(不図示)を含む。
また、貼合工程の始発位置から終着位置までに、ローラコンベヤ5上を搬送される液晶パネルPを取り出し、ローラコンベヤ5とは異なる位置において液晶パネルPに対する処理を行った後に、処理された液晶パネルPをローラコンベヤ5に戻すような場合も、流れ作業によどみを生じさせないならば、製造ラインの一部として扱う。
また、ローラコンベヤ5上での流れ作業とは分離して行われる作業を「製造ライン外」の作業と称する。製造ライン外では、ローラコンベヤ5の搬送速度に関わらず、必要な時間をかけて作業を行うことができる。
ローラコンベヤ5は、後に詳述する第1反転装置15を境に、上流側コンベヤ6と下流側コンベヤ7とに分かれる。液晶パネルPは、例えば上流側コンベヤ6では表示領域P4の短辺を搬送方向に沿わせた向きで搬送され、下流側コンベヤ7では表示領域P4の長辺を搬送方向に沿わせた向きで搬送される。液晶パネルPの表面及び液晶パネルPの裏面に対して、帯状の光学部材シートFXを切断して得られる光学部材が貼合される。フィルム貼合システム1の各部は、電子制御装置としての制御部20により統括制御される。
フィルム貼合システム1は、上流工程の終着位置まで搬送された液晶パネルPを吸着して上流側コンベヤ6の始発位置まで搬送すると共に液晶パネルPのアライメントを行う第1吸着装置11と、始発位置よりもパネル搬送下流側に設けられる第1集塵装置12と、第1集塵装置12よりもパネル搬送下流側に設けられる第1貼合装置13と、第1貼合装置13よりもパネル搬送下流側に設けられる第1ズレ検査装置14と、第1ズレ検査装置14よりもパネル搬送下流側に設けられて上流側コンベヤ6の終着位置に達した液晶パネルPを下流側コンベヤ7の始発位置まで搬送する第1反転装置15と、を備えている。
また、フィルム貼合システム1は、下流側コンベヤ7の始発位置よりもパネル搬送下流側に設けられる第2集塵装置16と、第2集塵装置16よりもパネル搬送下流側に設けられる第2貼合装置17と、第2貼合装置17よりもパネル搬送下流側に設けられる第2ズレ検査装置18と、第2ズレ検査装置18よりもパネル搬送下流側に設けられる第2反転装置19と、を備えている。
また、第2反転装置19よりもパネル搬送下流側には、液晶パネルPの両面に光学部材を貼合した光学部材貼合体について、欠陥の目視検査(第1目視検査工程)を行う欠陥検査位置21が設定されている。
(第1吸着装置)
第1吸着装置11は、液晶パネルPを保持して垂直方向及び水平方向で自在に搬送すると共に液晶パネルPのアライメントを行うパネル保持部11aと、例えばパネル保持部11aに設けられて液晶パネルPのアライメント基準を検出するアライメントカメラ11bとを有する。
第1吸着装置11は、液晶パネルPを保持して垂直方向及び水平方向で自在に搬送すると共に液晶パネルPのアライメントを行うパネル保持部11aと、例えばパネル保持部11aに設けられて液晶パネルPのアライメント基準を検出するアライメントカメラ11bとを有する。
パネル保持部11aは、上流工程の終着位置に運ばれた液晶パネルPの上面を真空吸着によって保持すると共に、液晶パネルPを貼合工程(上流側コンベヤ6)の始発位置へ水平状態のまま搬送し、その位置で吸着を解除して液晶パネルPを上流側コンベヤ6に受け渡す。
アライメントカメラ11bは、例えばパネル保持部11aが保持した液晶パネルPを上流側コンベヤ6上に載置する際、液晶パネルPのアライメントマークや先端形状等を撮像する。アライメントカメラ11bの撮像データは制御部20に送信され、この撮像データに基づき制御部20がパネル保持部11aを作動させる。これにより、上流側コンベヤ6に対する液晶パネルPのアライメントが行われる。このとき、上流側コンベヤ6に対する液晶パネルPの、搬送方向と直交する水平方向(コンベヤ幅方向)での位置決めと、上流側コンベヤ6に対する液晶パネルPの、垂直軸回りの回転方向での位置決めとが行われる。
(第1集塵装置)
第1集塵装置12は、第1貼合装置13の貼合位置に近接して第1貼合装置13のパネル搬送上流側に設けられる。第1集塵装置12は、貼合位置に導入される直前の液晶パネルPの下面側の静電気の除去及び集塵を行う。
第1集塵装置12は、第1貼合装置13の貼合位置に近接して第1貼合装置13のパネル搬送上流側に設けられる。第1集塵装置12は、貼合位置に導入される直前の液晶パネルPの下面側の静電気の除去及び集塵を行う。
(第1貼合装置)
第1貼合装置13は、第1光学部材シートF1が巻回された原反ロールR1から第1光学部材シートF1を巻き出しつつ第1光学部材シートF1の長手方向に沿って第1光学部材シートF1を搬送する搬送装置22と、搬送装置22が第1光学部材シートF1から分離させた光学部材を上流側コンベヤ6が搬送する液晶パネルPの下面に貼合する挟圧ロール23とを備える。
第1貼合装置13は、第1光学部材シートF1が巻回された原反ロールR1から第1光学部材シートF1を巻き出しつつ第1光学部材シートF1の長手方向に沿って第1光学部材シートF1を搬送する搬送装置22と、搬送装置22が第1光学部材シートF1から分離させた光学部材を上流側コンベヤ6が搬送する液晶パネルPの下面に貼合する挟圧ロール23とを備える。
本実施形態においては、第1光学部材シートF1は、液晶パネルPの幅に対応した幅を有するように構成されている。「液晶パネルPの幅に対応する幅を有する」とは、第1光学部材シートF1をシート幅方向にハーフカットして得られる貼合シートのシート片が、液晶パネルPの表示領域P4の大きさ以上で、且つ、そのシート片が貼合される液晶パネルPの基板の大きさ(その基板において電子部品取付部などの機能部分を除く大きさ)以下の大きさとなるようなものをいう。
具体的には、第1光学部材シートF1の幅(短手方向の長さ)は、液晶パネルPの表示領域P4の長辺と同じかそれよりも広く、且つシート片が貼合される液晶パネルPの基板において表示領域P4の長辺と対応する辺と同じかそれよりも狭い。第1貼合装置13は、第1光学部材シートF1の貼合シートF5を、液晶パネルPの表示領域P4の短辺と同じかそれよりも長く、且つシート片が貼合される液晶パネルPの基板において表示領域P4の短辺と対応する辺と同じかそれよりも短い長さでカットして貼合シートF5のシート片を形成し、貼合位置に導入された液晶パネルPの下面に対して、所定サイズにカットされた貼合シートF5のシート片の貼合を行う。
第1貼合装置13において作製される「貼合シートF5のシート片」は、液晶パネルPに貼合される光学部材に該当する。上述のようにして作製される光学部材は、周縁部が、液晶パネルPに重ねたとき額縁部Gに収まるような大きさとなる。
搬送装置22は、セパレータシートF3aをキャリアとして貼合シートF5を搬送する装置である。搬送装置22は、帯状の第1光学部材シートF1を巻回した原反ロールR1を保持すると共に第1光学部材シートF1の長手方向に沿って第1光学部材シートF1を繰り出すロール保持部22aと、原反ロールR1から巻き出した第1光学部材シートF1を所定の搬送経路に沿って案内するために第1光学部材シートF1を巻きかける複数のガイドローラ22bと、搬送経路上の第1光学部材シートF1にハーフカットを施す切断装置22cと、ハーフカットを施した第1光学部材シートF1を鋭角に巻きかけてセパレータシートF3aから光学部材を分離させつつ、この光学部材を貼合位置に供給するナイフエッジ22dと、ナイフエッジ22dを経て単独となったセパレータシートF3aを巻き取るセパレータロールR2を保持する巻き取り部22eとを有する。
なお、本実施形態において「ハーフカット」とは、第1光学部材シートF1の搬送中に働くテンションによってセパレータシートF3aが破断せずセパレータシートF3aが所定の厚さだけ残るように、セパレータシートF3aとは反対側から粘着層F2aとセパレータシートF3aとの境界面の近傍まで第1光学部材シートF1に切り込みを入れることを指す。切り込みの形成には、切断刃やレーザー装置を用いることができる。
搬送装置22の始点に位置するロール保持部22aと搬送装置22の終点に位置する巻き取り部22eとは、例えば互いに同期して駆動する。これにより、ロール保持部22aが第1光学部材シートF1の搬送方向へ第1光学部材シートF1を繰り出しつつ、巻き取り部22eがナイフエッジ22dを経たセパレータシートF3aを巻き取る。以下、搬送装置22における第1光学部材シートF1(セパレータシートF3a)の搬送方向上流側をシート搬送上流側、搬送方向下流側をシート搬送下流側という。
各ガイドローラ22bは、搬送中の第1光学部材シートF1の進行方向を搬送経路に沿って変化させる。複数のガイドローラ22bの少なくとも一部は、搬送中の第1光学部材シートF1のテンションを調整するために移動可能である。
切断装置22cは、第1光学部材シートF1が所定長さ繰り出された際、第1光学部材シートF1の長手方向と直交する幅方向の全幅にわたって、第1光学部材シートF1の厚さ方向の一部を切断する(ハーフカットを施す)。
切断装置22cは、第1光学部材シートF1の搬送中に働くテンションによって第1光学部材シートF1(セパレータシートF3a)が破断しないように(所定の厚さがセパレータシートF3aに残るように)、切断刃の進退位置を調整し、粘着層F2aとセパレータシートF3aとの界面の近傍までハーフカットを施す。
ハーフカット後の第1光学部材シートF1には、第1光学部材シートF1の厚さ方向で貼合シートF5が切断されることにより、第1光学部材シートF1の幅方向の全幅にわたる切込線が形成される。切込線は、帯状の第1光学部材シートF1の長手方向で複数並ぶように形成される。例えば同一サイズの液晶パネルPを搬送する貼合工程の場合、複数の切り込み線は第1光学部材シートF1の長手方向で等間隔に形成される。第1光学部材シートF1は、複数の切込線によって長手方向で複数の区画に分けられる。第1光学部材シートF1における長手方向で隣り合う一対の切込線に挟まれる区画は、それぞれ貼合シートF5における一つのシート片とされる。
ナイフエッジ22dは、上流側コンベヤ6の下方に配置されて第1光学部材シートF1の幅方向で少なくとも第1光学部材シートF1の全幅にわたって延在する。ナイフエッジ22dは、ハーフカット後の第1光学部材シートF1のセパレータシートF3aに摺接するように第1光学部材シートF1を巻きかける。
ナイフエッジ22dは、第1光学部材シートF1の幅方向(上流側コンベヤ6の幅方向)から見て伏せた姿勢に(すなわち、液晶パネルPの搬送方向に対して所定の角度を有するように)配置される第1面と、第1面の上方で第1光学部材シートF1の幅方向から見て第1面に対して鋭角に配置される第2面と、第1面及び第2面が交わる先端部とを有する。
ナイフエッジ22dは、ナイフエッジ22dの先端部に第1光学部材シートF1を鋭角に巻きかける。第1光学部材シートF1は、ナイフエッジ22dの先端部で鋭角に折り返す際、セパレータシートF3aから貼合シートF5のシート片(光学部材)を分離させる。ナイフエッジ22dの先端部は、挟圧ロール23のパネル搬送上流側に近接して配置される。ナイフエッジ22dによりセパレータシートF3aから分離した光学部材は、上流側コンベヤ6が搬送する液晶パネルPの下面に重なりつつ、挟圧ロール23の一対の貼合ローラ23a間に導入される。
挟圧ロール23は、互いに軸方向を平行にして配置された一対の貼合ローラ23aを有する。一対の貼合ローラ23a間には所定の間隙が形成され、この間隙内が第1貼合装置13の貼合位置となる。その間隙内には、液晶パネルP及び光学部材が重なり合って導入される。これら液晶パネルP及び光学部材が、一対の貼合ローラ23aに挟圧されつつパネル搬送下流側に送り出される。これにより、液晶パネルPの下面に光学部材が一体的に貼合される。以下、この貼合後のパネルを片面貼合パネル(光学部材貼合体)P11という。
(第1ズレ検査装置)
第1ズレ検査装置14は、片面貼合パネルP11における第1貼合装置13で貼合した光学部材の液晶パネルPに対する位置が適正か否か(位置ズレが公差範囲内にあるか否か)を検査する。第1ズレ検査装置14は、例えば片面貼合パネルP11のパネル搬送上流側における光学部材の端縁及び片面貼合パネルP11のパネル搬送下流側における光学部材の端縁を撮像する一対のカメラ14aを有する。各カメラ14aによる撮像データは制御部20に送信され、この撮像データに基づき光学部材及び液晶パネルPの相対位置が適正か否かが判定される。その相対位置が適正ではないと判定された片面貼合パネルP11は、不図示の払い出し手段によりシステム外(製造ライン外)に排出される。
第1ズレ検査装置14は、片面貼合パネルP11における第1貼合装置13で貼合した光学部材の液晶パネルPに対する位置が適正か否か(位置ズレが公差範囲内にあるか否か)を検査する。第1ズレ検査装置14は、例えば片面貼合パネルP11のパネル搬送上流側における光学部材の端縁及び片面貼合パネルP11のパネル搬送下流側における光学部材の端縁を撮像する一対のカメラ14aを有する。各カメラ14aによる撮像データは制御部20に送信され、この撮像データに基づき光学部材及び液晶パネルPの相対位置が適正か否かが判定される。その相対位置が適正ではないと判定された片面貼合パネルP11は、不図示の払い出し手段によりシステム外(製造ライン外)に排出される。
(第1反転装置)
図2に示す第1反転装置15は、例えば液晶パネルPの搬送方向に対して平面視で45°に傾斜した回動軸15aと、回動軸15aを介して上流側コンベヤ6の終着位置及び下流側コンベヤ7の始発位置の間に支持される反転アーム15bとを有する。反転アーム15bは、第1ズレ検査装置14を経て上流側コンベヤ6の終着位置に達した片面貼合パネルP11を吸着や挟持等により保持し、回動軸15a回りに180°回動する。これにより、反転アーム15bは、片面貼合パネルP11の表裏を反転させると共に、例えば表示領域P4の短辺と平行に搬送されていた片面貼合パネルP11を表示領域P4の長辺と平行に搬送されるように方向転換させる。
図2に示す第1反転装置15は、例えば液晶パネルPの搬送方向に対して平面視で45°に傾斜した回動軸15aと、回動軸15aを介して上流側コンベヤ6の終着位置及び下流側コンベヤ7の始発位置の間に支持される反転アーム15bとを有する。反転アーム15bは、第1ズレ検査装置14を経て上流側コンベヤ6の終着位置に達した片面貼合パネルP11を吸着や挟持等により保持し、回動軸15a回りに180°回動する。これにより、反転アーム15bは、片面貼合パネルP11の表裏を反転させると共に、例えば表示領域P4の短辺と平行に搬送されていた片面貼合パネルP11を表示領域P4の長辺と平行に搬送されるように方向転換させる。
上記の反転は、液晶パネルPの表面に貼合される光学部材F1Xの偏光軸方向と、液晶パネルPの裏面に貼合される光学部材F1Xの偏光軸方向とを互いに直角に配置するような場合に行われる。上流側コンベヤ6及び下流側コンベヤ7は、共に図の右側から左側へ向う方向を液晶パネルPの搬送方向とするが、第1反転装置15を経由することで、上流側コンベヤ6及び下流側コンベヤ7が平面視で所定量オフセットする。
なお、単に液晶パネルPの表裏を反転させる場合には、例えば搬送方向と平行な回動軸を有する反転アームを有する反転装置を用いればよい。この場合、第1貼合装置13のシート搬送方向と第2貼合装置17のシート搬送方向とを平面視で互いに直角にして配置すれば、液晶パネルPの表面及び液晶パネルPの裏面に互いに偏光軸方向を直角にした光学部材F1Xを貼合できる。
反転アーム15bは、第1吸着装置11のパネル保持部11aと同様のアライメント機能を有する。第1反転装置15には、第1吸着装置11のアライメントカメラ11bと同様のアライメントカメラ15cが設けられる。
(第2集塵装置)
図1にもどって、第2集塵装置16は、第2貼合装置17の貼合位置に近接して第2貼合装置17のパネル搬送上流側に設けられる。第2集塵装置16は、貼合位置に導入される直前の片面貼合パネルP11の下面側の静電気の除去及び集塵を行う。
図1にもどって、第2集塵装置16は、第2貼合装置17の貼合位置に近接して第2貼合装置17のパネル搬送上流側に設けられる。第2集塵装置16は、貼合位置に導入される直前の片面貼合パネルP11の下面側の静電気の除去及び集塵を行う。
(第2貼合装置)
第2貼合装置17は、第1貼合装置13と同様の搬送装置22及び挟圧ロール23を備えている。第2貼合装置17においては、貼合位置に導入された片面貼合パネルP11の下面に対して、第2光学部材シートF2を所定サイズにカットして形成される光学部材の貼合を行う。
第2貼合装置17は、第1貼合装置13と同様の搬送装置22及び挟圧ロール23を備えている。第2貼合装置17においては、貼合位置に導入された片面貼合パネルP11の下面に対して、第2光学部材シートF2を所定サイズにカットして形成される光学部材の貼合を行う。
本実施形態においては、上述した第1光学部材シートF1と同様に、第2光学部材シートF2は、液晶パネルPの幅に対応した幅を有するように構成されている。具体的には、第2光学部材シートF2の幅(短手方向の長さ)は、液晶パネルPの表示領域P4の短辺と同じかそれよりも広く、且つシート片が貼合される液晶パネルPの基板において表示領域P4の短辺と対応する辺と同じかそれよりも狭い。第2貼合装置17は、第2光学部材シートF2の貼合シートF5を、液晶パネルPの表示領域P4の長辺と同じかそれよりも長く、且つシート片が貼合される液晶パネルPの基板において表示領域P4の長辺と対応する辺と同じかそれよりも短い長さでカットして貼合シートF5のシート片を形成し、貼合位置に導入された液晶パネルPの下面に対して、所定サイズにカットした貼合シートF5のシート片の貼合を行う。
第2貼合装置17において作製される「貼合シートF5のシート片」は、液晶パネルPに貼合される光学部材に該当する。上述のようにして作製される光学部材は、周縁部が、液晶パネルPに重ねたとき額縁部Gに収まるような大きさとなる。
挟圧ロール23の一対の貼合ローラ23a間の間隙内(第2貼合装置17の貼合位置)には、片面貼合パネルP11及び光学部材が重なり合った状態で導入され、片面貼合パネルP11の下面に光学部材が一体的に貼合される。以下、この貼合後のパネルを両面貼合パネル(光学部材貼合体)P12という。
第2ズレ検査装置18は、両面貼合パネルP12における第2貼合装置17で貼合した光学部材の液晶パネルPに対する位置が適正か否か(位置ズレが公差範囲内にあるか否か)を検査する。第2ズレ検査装置18は、例えば両面貼合パネルP12のパネル搬送上流側における光学部材の端縁及び両面貼合パネルP12のパネル搬送下流側における光学部材の端縁を撮像する一対のカメラ18aを有する。各カメラ18aによる撮像データは制御部20に送信され、この撮像データに基づき光学部材及び液晶パネルPの相対位置が適正か否かが判定される。その相対位置が適正ではないと判定された両面貼合パネルP12は、不図示の払い出し手段によりシステム外に排出される。
(第2反転装置)
第2反転装置19は、第1反転装置15を経てバックライト側を上向きにした液晶パネルP(両面貼合パネルP12)の表裏を反転させ、フィルム貼合システム1への搬入時と同様に液晶パネルPの表示面側を上向きにする。
第2反転装置19は、第1反転装置15を経てバックライト側を上向きにした液晶パネルP(両面貼合パネルP12)の表裏を反転させ、フィルム貼合システム1への搬入時と同様に液晶パネルPの表示面側を上向きにする。
(欠陥検査位置)
欠陥検査位置21では、第2反転装置19を経て表示面側を上向きにした両面貼合パネルP12について、目視により欠陥の有無を検査する。
欠陥検査位置21では、第2反転装置19を経て表示面側を上向きにした両面貼合パネルP12について、目視により欠陥の有無を検査する。
ここで、本実施形態の光学部材貼合体の製造方法において、検査対象である「欠陥」とは、両面貼合パネルP12の表示領域に存在する光学的に検査可能な不具合であって、両面貼合パネルP12を用いて製造される表示装置において表示不良を引き起こすものを指す。
このような欠陥としては、(1)液晶パネルP自身が有する欠陥、(2)光学部材自身が有する欠陥、(3)液晶パネルPと光学部材との貼合面に生じる欠陥、が挙げられる。
「(1)液晶パネルP自身が有する欠陥」としては、例えば、液晶パネルPの液晶配向膜の乱れにより、液晶パネルPの液晶が設計通りに配向していないことが挙げられる。液晶パネルPがこのような欠陥を有する場合、例えば、一対の偏光板が正確にクロスニコルに貼合され、液晶パネルPをノーマリーブラックに設計しても、両面貼合パネルP12の一方側から光を照射すると、光漏れを生じるため、欠陥を輝点として確認できる。目視検査においては、両面貼合パネルP12の第1面側から光を照射し、検査員が両面貼合パネルP12の第2面側から輝点の有無を観察して判断する。また、液晶パネルPが搬送中に損傷しているような場合も、(1)液晶パネルP自身が有する欠陥として挙げられる。
「(2)光学部材自身が有する欠陥」としては、光学部材F1Xの表面に形成された傷やへこみなどの変形を挙げることができる。目視検査においては、検査員が傷やへこみの有無を観察して判断する。
「(3)液晶パネルPと光学部材との貼合面に生じる欠陥」としては、液晶パネルPと光学部材との貼合面に、塵やほこり(以下、「異物」と総称する)を挟み込むことによる欠陥や、貼合面に空気を挟み込み気泡が形成されることによる欠陥が挙げられる。貼合面とは、図4に示す液晶パネルPと第1光学部材F11との貼合面、および液晶パネルPと第2光学部材F12との貼合面のことである。目視検査においては、検査員が異物や気泡の有無を観察して判断する。
欠陥検査位置21が、下流側コンベヤ7上に設定されているため、製造ラインにおいて、リアルタイムで両面貼合パネルP12を全数検査することができる。そのため、不良品が発見された場合に、不良品を多く製造してしまう前に製造ラインを停止させ、不良品の発生位置の特定と不良品発生に対する対策とを素早く実施することができる。
また、検査員が目視検査を行うため、測定装置を用いて自動化した場合と比べ、虚報(良品を不良品と判定してしまうこと)や見逃し(不良品を良品と判定してしまうこと)が少なく、欠陥検査の結果が安定する。
なお、欠陥検査においては、通常、検査員が1枚の両面貼合パネルP12の目視検査に要する時間(速度)に対して、両面貼合パネルP12のライン搬送速度が速いことが多い。そのため、欠陥検査位置21に複数の検査員を配置し、分担して目視検査を行うことができる。
複数の検査員を下流側コンベヤ7の延在方向に一列に配列して検査を行ってもよい。複数の検査ラインを設定した上で、この複数の検査ラインに検査員を配置し、搬送されてくる両面貼合パネルP12を各検査ラインに分配することで、各検査ラインで検査を行ってもよい。
欠陥検査位置21において検査され、欠陥が見つからなかった両面貼合パネルP12については、下流側コンベヤ7によって下流側に搬送され、フィルム貼合システム1の製造ラインから搬出される。
また、欠陥検査位置21において検査され、欠陥が見つかった不良品については、下流側コンベヤ7に戻されずに製造ラインから外され、製造ライン外(オフライン)で以下の再生処理を施すことができる。
(再生処理)
不良品については、まず、見つかった欠陥の種類や状態を確認し、後段の処理を施すことにより欠陥を消失させることが可能か否かの判断が行われる。次いで、欠陥の状態に応じて、以下の2つの処理のいずれかを選択し、処理を施す。
不良品については、まず、見つかった欠陥の種類や状態を確認し、後段の処理を施すことにより欠陥を消失させることが可能か否かの判断が行われる。次いで、欠陥の状態に応じて、以下の2つの処理のいずれかを選択し、処理を施す。
欠陥が、「(2)光学部材自身が有する欠陥」のうち、光学部材自身の小さな変形や、「(3)液晶パネルPと光学部材との貼合面に生じる欠陥」のうち、液晶パネルPと光学部材との貼合面に空気を挟み込み生じた気泡であって微小な物である場合、不良品を加熱加圧処理するオートクレーブ処理を施す。
「オートクレーブ処理」とは、被処理品である不良品を、大気圧よりも高い加圧環境下において室温よりも高い温度に曝し、一定時間保持することを指す。処理条件は、一例として、0.294MPa以上0.785MPa以下(3kgf/cm2以上8kgf/cm2以下)の圧力条件において、40℃以上80℃以下の温度条件で30秒以上25分以下の保持時間とすることが挙げられる。
圧力条件は、0.392MPa以上(4kgf/cm2以上)0.588MPa以下(6kgf/cm2以下)にできる。
温度条件は、50℃以上70℃以下にできる。
保持時間は、1分以上5分以下にできる。
処理条件の上限値および下限値は、それぞれ任意に組み合わせることができる。
なお、上記の数値は一例であり、これに限定されない。
温度条件は、50℃以上70℃以下にできる。
保持時間は、1分以上5分以下にできる。
処理条件の上限値および下限値は、それぞれ任意に組み合わせることができる。
なお、上記の数値は一例であり、これに限定されない。
また、「保持時間」とは、チャンバー101内が圧力および温度の設定値以上となった後、圧力および温度のいずれか一方が設定値を下回るまで、の時間を指す。そのため、圧力および温度のいずれか一方または両方について変動したとしても、圧力および温度が設定値以上であれば、その条件での処理時間は保持時間に含まれる。
不良品が有する欠陥が、光学部材自身の小さな変形である場合には、オートクレーブ処理を施すと、熱により光学部材が軟化して変形しやすくなる。これにより、欠陥の原因となっている小さな変形が消失することが期待できる。
また、不良品が有する欠陥が、貼合面に空気を挟み込み生じた気泡である場合には、熱および圧力により、光学部材が有する粘着層F2a(図5参照)のシート片における空気の飽和溶解度が増加するため、気泡を形成する空気が粘着層F2aのシート片に溶け込む。これにより気泡が消失することが期待できる。
さらに、粘着層F2aのシート片に溶解した空気は、粘着層F2aのシート片内に拡散するため、オートクレーブ処理の後に不良品を大気圧下常温に戻したとしても、消失した気泡があった位置に再度空気が凝集して気泡が再生することはないと期待できる。
そのため、不良品が有する欠陥が微小な物であり、オートクレーブ処理により消失すると判断する場合、欠陥を消失させるべく不良品にオートクレーブ処理を施す。
対して、不良品が有する欠陥が、「(2)光学部材自身が有する欠陥」のうち、光学部材自身の大きな変形や、「(3)液晶パネルPと光学部材との貼合面に生じる欠陥」のうち、液晶パネルPと光学部材との貼合面に空気を挟み込み生じた気泡であって大きな物である場合、また貼合面に異物を挟み込み生じた欠陥である場合には、上記オートクレーブ処理では、欠陥が消失しないと予想される。
その場合、不良品から光学部材を剥離して液晶パネルPを露出させ、露出させた液晶パネルPに新たなシート片を貼合して、新たな両面貼合パネルP12を形成するリワーク処理を施す。
また、不良品が有する欠陥が、液晶パネルPの損傷など「(1)液晶パネルP自身が有する欠陥」であり、上記オートクレーブ処理でもリワーク処理でも再生不能と判断する場合には、不良品を廃棄する。
このような再生処理工程は、上述の製造ラインとは分離して行われる(オフライン処理)。そのため、各処理に十分な時間をかけることができ、廃棄品の低減が期待できる。
再生処理工程を経た両面貼合パネルP12については、上述の製造ラインとは分離した目視検査(第2目視検査工程)において欠陥の有無が検査される。欠陥が見つからなければ、完成品の両面貼合パネルP12として、次の工程に搬出される。
また、第2目視検査工程において欠陥が見つかり不良品として判定されたものについては、再度上述の再生処理工程に戻し、再生を試みる。
(光学部材貼合体の製造方法)
図6は、本実施形態における光学部材貼合体の製造方法についての説明図であり、上述した製造工程を示したフロー図である。以下、図1で示した符号を適宜使用して製造フローを説明する。
図6は、本実施形態における光学部材貼合体の製造方法についての説明図であり、上述した製造工程を示したフロー図である。以下、図1で示した符号を適宜使用して製造フローを説明する。
フロー図においては、符号S1で示された処理は、製造ライン内で行われる処理を示し、符号S2で示された処理は、製造ライン外で行われる処理を示す。
(光学部材貼合体形成工程)
まず、両面貼合パネルP12の製造において、製造ラインに液晶パネルPを搬入し(ステップS11)、液晶パネルPの表面に付着した塵やほこりなどの汚れを洗浄する(ステップS12)。
まず、両面貼合パネルP12の製造において、製造ラインに液晶パネルPを搬入し(ステップS11)、液晶パネルPの表面に付着した塵やほこりなどの汚れを洗浄する(ステップS12)。
次いで、上述のフィルム貼合システム1にて、第1光学部材シートF1および第2光学部材シートF2をそれぞれ原反ロールR1から巻き出しつつ、第1光学部材シートF1および第2光学部材シートF2をそれぞれ表示領域P4の長辺または短辺に対応した長さにカットして、第1光学部材F11および第2光学部材F12を形成する。ここで、「表示領域P4の長辺または短辺に対応した長さにカットする」とは、カットして得られたシート片の大きさが液晶パネルPの表示領域P4の大きさ以上で、且つ、そのシート片が貼合される光学表示部品の基板の大きさ(その基板において電子部品取付部などの機能部分を除く大きさ)以下の大きさとなるように、表示領域P4の長辺の長さまたは表示領域P4の短辺の長さ以上で、且つ、シート片が貼合される液晶パネルPの基板の、表示領域P4の長辺に対応する長さまたはシート片が貼合される液晶パネルPの基板の、表示領域P4の短辺に対応する長さ以下の長さでカットすることを意味する。
その後、第1光学部材F11を液晶パネルPの第1面に、第2光学部材F12を液晶パネルPの第2面に貼り合わせて両面貼合パネルP12を形成する(ステップS13)。
(第1目視検査工程)
その後、得られた両面貼合パネルP12について、製造ライン内(インライン)で欠陥の目視検査を行う(ステップS14)。
本実施形態では、第1目視検査工程は、光学部材貼合体形成工程と連続した製造ラインにおいて行われる。換言すれば、光学部材貼合体形成工程と第1目視検査工程とは、同一の製造ラインで行われる。換言すれば、光学部材貼合体形成工程と第1目視検査工程とは、製造ライン内(インライン)で行われる。
その後、得られた両面貼合パネルP12について、製造ライン内(インライン)で欠陥の目視検査を行う(ステップS14)。
本実施形態では、第1目視検査工程は、光学部材貼合体形成工程と連続した製造ラインにおいて行われる。換言すれば、光学部材貼合体形成工程と第1目視検査工程とは、同一の製造ラインで行われる。換言すれば、光学部材貼合体形成工程と第1目視検査工程とは、製造ライン内(インライン)で行われる。
目視検査の結果、良品と判定された両面貼合パネルP12については、例えば、複数枚をまとめた上で、次工程に向けて搬出する(ステップS15)。
(再生処理工程)
一方、目視検査の結果、欠陥を有する不良品と判定された両面貼合パネルP12については、見つかった欠陥の種類や状態を製造ライン外(オフライン)で確認し、後段の処理を施すことにより欠陥を消失させることが可能か否かの判断を行う(ステップS21)。
一方、目視検査の結果、欠陥を有する不良品と判定された両面貼合パネルP12については、見つかった欠陥の種類や状態を製造ライン外(オフライン)で確認し、後段の処理を施すことにより欠陥を消失させることが可能か否かの判断を行う(ステップS21)。
不良品の欠陥が、光学部材自身の小さな変形や、液晶パネルPと光学部材との貼合面に空気を挟み込み生じた気泡であって微小な物である場合(フロー図では「欠陥・小」と表記)、オートクレーブ処理を施す(ステップS22)。
一方、不良品の欠陥が、光学部材自身の大きな変形や、液晶パネルPと光学部材との貼合面に空気を挟み込み生じた気泡であって大きな物である場合(フロー図では「欠陥・中」と表記)、リワーク処理を施す(ステップS23)。
また、不良品が有する欠陥が、液晶パネルPの損傷など、上記オートクレーブ処理でもリワーク処理でも再生不能なもの(フロー図では「欠陥・大」と表記)であると判断する場合には、廃棄する。
次いで、オートクレーブ処理またはリワーク処理を施した両面貼合パネルP12について、欠陥の目視検査を行う(第2目視検査工程、ステップS24)。
欠陥が見つからなければ、完成品の両面貼合パネルP12として、次の工程に搬出される。欠陥が見つかり不良品として判定されたものについては、再度ステップS21に戻し、再び再生処理工程を経ることで再生を試みる。
本実施形態の光学部材貼合体の製造方法は、以上のようにして行う。
本実施形態の光学部材貼合体の製造方法は、以上のようにして行う。
以上のような光学部材貼合体の製造方法によれば、ライン上を搬送されてくる光学部材貼合体を検査員が目視によって順次検査する。検査員による目視検査では、市販の光学式自動検査装置で欠陥検査を行う場合に比べて、オーバーキル(overkill)になる可能性が少なく、欠陥検査の精度が実使用に即した適切な水準に保たれる。
また、製造ライン上に検査員を配置して、製造物を順次検査していくため、製造ラインにおける不良品の発生を、不良品の発生から短時間のうちに検出できる。そのため、不良品の発生を抑制することができ、製造歩留まりが向上する。
よって、本実施形態の光学部材貼合体の製造方法によれば、実使用の上で過不足の無い精度で欠陥検出が可能であり、且つ製造歩留りを損なわず安定した製造が可能な光学部材貼合体の製造方法が提供される。
なお、本発明は上記の実施形態に限られるものではない。例えば、上記の実施形態では液晶パネルに偏光フィルムを貼合する場合について説明したが、光学部材が貼り付けられる光学表示部品は液晶パネルに限られず、有機ELパネルにでき、貼合される光学部材は偏光フィルムに限られず、反射防止フィルム、光拡散フィルムなどにできる。
また、本実施形態においては、液晶パネルPの両面に光学部材を貼合した後に目視検査を行うこととしたが、片面に光学部材を貼合した後に目視検査を行うこともできる。
また、本実施形態においては、第2目視検査工程で検出された不良品について、再び再生処理工程を施すこととしたが、再生処理工程を複数回経由すると、熱履歴が多くなり、光学部材貼合体の品質が低下しやすいため、第2目視検査工程で検出された不良品については、廃棄することとしても構わない。
しかし、歩留まりの改善という観点からは、廃棄品は少ない方がよいため、例えば、再生処理工程について施すことができる上限値を予め設定しておき、設定回数だけ再生処理工程を通過した不良品については廃棄するという運用としておくとよい。
[第2実施形態]
図7は、本実施形態に係る光学部材貼合体の製造方法の実施に用いられる他の光学部材貼合体の生産システムを示す説明図である。図7は、光学部材貼合体の生産システムの一部を構成するフィルム貼合システム2についての概略構成図であり、図1に対応する図である。図7では、図示都合上、フィルム貼合システム2を上下二段に分けて記載している。以下の説明においては、上述した説明と共通する内容については、詳細な説明を省略する。
図7は、本実施形態に係る光学部材貼合体の製造方法の実施に用いられる他の光学部材貼合体の生産システムを示す説明図である。図7は、光学部材貼合体の生産システムの一部を構成するフィルム貼合システム2についての概略構成図であり、図1に対応する図である。図7では、図示都合上、フィルム貼合システム2を上下二段に分けて記載している。以下の説明においては、上述した説明と共通する内容については、詳細な説明を省略する。
図7に示すフィルム貼合システム2では、帯状の第1光学部材シートF1の幅(短手方向の長さ)は、液晶パネルPの表示領域P4の長辺よりも広い。また、帯状の第2光学部材シートF2の幅(短手方向の長さ)は、液晶パネルPの表示領域P4の短辺よりも広い。
このようなフィルム貼合システム2では、帯状の第1光学部材シートF1の貼合シートF5を、液晶パネルPの表示領域P4の短辺よりも長い長さで切出して第1シート片F1mを作製し、ローラコンベヤ5を用いた液晶パネルPの搬送中に、液晶パネルPに貼合する。同様に、帯状の第2光学部材シートF2の貼合シートF5を、液晶パネルPの表示領域P4の長辺よりも長い長さで切出して第2シート片F2mを作製し、ローラコンベヤ5を用いた液晶パネルPの搬送中に、液晶パネルPに貼合する。以下の説明においては、第1シート片F1m及び第2シート片F2mを「シート片FXm」と総称することがある。
その後、液晶パネルPに貼合された時に液晶パネルPの表示領域P4の外側に位置する第1シート片F1mの余剰部分を第1シート片F1mから切り離すことにより第1光学部材F11を形成する。また、液晶パネルPに貼合された時に液晶パネルPの表示領域P4の外側に位置する第2シート片F2mの余剰部分を第2シート片F2mから切り離すことにより第2光学部材F12を形成する。フィルム貼合システム2の各部は、不図示の制御部により統括制御される。
フィルム貼合システム2は、前段工程の搬出端に搬送された液晶パネルPを吸着して上流側コンベヤ6の搬入端に搬送すると共に液晶パネルPのアライメント(位置決め)を行う第1吸着装置11と、第1吸着装置11のパネル搬送下流側に設けられる第1集塵装置12と、第1集塵装置12よりもパネル搬送下流側に設けられる第1貼合装置13と、第1貼合装置13よりもパネル搬送下流側に配置される第1反転装置31Aと、第1反転装置31Aよりもパネル搬送下流側に配置される第1切断装置32Aと、第1切断装置32Aよりもパネル搬送下流側の第1回収位置33Aに配置される回収装置(不図示)と、回収装置よりもパネル搬送下流側に配置される第1旋回装置34と、を備えている。
また、フィルム貼合システム2は、下流側コンベヤ7の搬入端よりもパネル搬送下流側に配置される第2集塵装置16と、第2集塵装置16よりもパネル搬送下流側に配置される第2貼合装置17と、第2貼合装置17よりもパネル搬送下流側に配置される第2反転装置31Bと、第2反転装置31Bよりもパネル搬送下流側に配置される第2切断装置32Bと、第2切断装置32Bよりもパネル搬送下流側の第2回収位置33Bに配置される回収装置(不図示)と、回収装置よりもパネル搬送下流側に配置される第2旋回装置35と、を備えている。
また、第2旋回装置35よりもパネル搬送下流側には、液晶パネルPの両面に光学部材を貼合した光学部材貼合体について、欠陥の目視検査を行う欠陥検査位置21が設定されている。
また、詳しくは後述するが、第1切断装置32Aのパネル搬送上流側には、第1切断装置32Aにおけるカット位置を設定するために用いる検出装置が設けられる。第2切断装置32Bのパネル搬送上流側には、第2切断装置32Bにおけるカット位置を設定するために用いる検出装置が設けられている。
(第1貼合装置)
第1貼合装置13は、貼合位置に導入された液晶パネルPの下面に対して、所定サイズにカットした貼合シートF5のシート片(第1シート片F1m)の貼合を行う。
第1貼合装置13は、貼合位置に導入された液晶パネルPの下面に対して、所定サイズにカットした貼合シートF5のシート片(第1シート片F1m)の貼合を行う。
第1貼合装置13は、第1光学部材シートF1が巻回された原反ロールR1から第1光学部材シートF1を巻き出しつつ第1光学部材シートF1の長手方向に沿って第1光学部材シートF1を搬送する搬送装置22と、搬送装置22が第1光学部材シートF1から分離させた第1シート片F1mを上流側コンベヤ6により搬送される液晶パネルPの下面に貼合する挟圧ロール23と、を備えている。
搬送装置22は、セパレータシートF3aをキャリアとして貼合シートF5を搬送する装置である。搬送装置22は、ロール保持部22aと、複数のガイドローラ22bと、搬送経路上の第1光学部材シートF1にハーフカットを施す切断装置22cと、ハーフカットを施した第1光学部材シートF1を鋭角に巻きかけてセパレータシートF3aから第1シート片F1mを剥離させつつ第1シート片F1mを貼合位置に供給するナイフエッジ22dと、巻き取り部22eと、を有する。
第1光学部材シートF1は、第1光学部材シートF1の搬送方向と直交する水平方向(シート幅方向)で、平面視における液晶パネルPの幅よりも広い幅を有している。
切断装置22cは、第1光学部材シートF1がシート幅方向と直交する長さ方向で表示領域P4の長さ(表示領域P4の長辺と表示領域P4の短辺のいずれかの長さ、本実施形態では表示領域P4の短辺長さに相当)よりも長い長さが繰り出される毎に、シート幅方向に沿って全幅にわたって、第1光学部材シートF1に対してハーフカットを施す。これにより、第1光学部材シートF1が有する貼合シートF5から、液晶パネルPの表示領域P4よりも大きい第1シート片F1mが形成される。
ハーフカット後の第1光学部材シートF1には、第1光学部材シートF1の幅方向の全幅にわたり、厚さ方向で少なくとも光学部材本体F1a及び表面保護フィルムF4aが切断された切込線が形成される。切込線は、帯状の第1光学部材シートF1の長手方向で表示領域P4の短辺長さ相当の長さを有する間隔に形成される。複数の切込線により、第1光学部材シートF1は、長手方向で複数の区画に分けられる。第1光学部材シートF1において、長手方向で隣り合う一対の切込線に挟まれる区画部分それぞれが、第1シート片F1mとなる。
第1シート片F1mの大きさは、例えば液晶パネルPよりも大きくできる。なお、第1シート片F1mにおいて、液晶パネルPの外側にはみ出る部分の大きさ(第1シート片F1mの余剰部分の大きさ)は、液晶パネルPのサイズに応じて適宜設定される。例えば、第1シート片F1mを5インチ~10インチの中小型サイズの液晶パネルPに適用する場合は、第1シート片F1mの各辺において第1シート片F1mの一辺と液晶パネルPの一辺との間の間隔を2mm~5mmの範囲の長さに設定する。
なお、上記の数値は一例であり、これに限定されない。
なお、上記の数値は一例であり、これに限定されない。
ナイフエッジ22dは、上流側コンベヤ6の下方に配置されて第1光学部材シートF1の幅方向で少なくともその全幅に渡って延在する。ハーフカット後の第1光学部材シートF1のセパレータシートF3aがナイフエッジ22dに摺接するように、第1光学部材シートF1はナイフエッジ22dに巻きかけられる。
第1光学部材シートF1は、ナイフエッジ22dの先端部で鋭角に折れ曲がるようにして進行方向が変化する際に、第1シート片F1mからセパレータシートF3aを剥離させる。ナイフエッジ22dの先端部は、挟圧ロール23のパネル搬送上流側に近接配置され、ナイフエッジ22dによりセパレータシートF3aから剥離した第1シート片F1mは、上流側コンベヤ6によって搬送される液晶パネルPの下面に重なりつつ、挟圧ロール23の一対の貼合ローラ23a間に導入される。
第1光学部材シートF1は、ナイフエッジ22dの先端部で鋭角に折れ曲がるようにして進行方向が変化する際に、第1シート片F1mからセパレータシートF3aを剥離させる。ナイフエッジ22dの先端部は、挟圧ロール23のパネル搬送上流側に近接配置され、ナイフエッジ22dによりセパレータシートF3aから剥離した第1シート片F1mは、上流側コンベヤ6によって搬送される液晶パネルPの下面に重なりつつ、挟圧ロール23の一対の貼合ローラ23a間に導入される。
挟圧ロール23は、互いに軸方向を平行にして配置された一対の貼合ローラ23aを有する。一対の貼合ローラ23a間には所定の間隙が形成され、この間隙の位置が第1貼合装置13の貼合位置となる。一対の貼合ローラ23aの間隙に、液晶パネルP及び第1シート片F1mが重なり合って導入され、これら液晶パネルP及び第1シート片F1mが、一対の貼合ローラ23aに挟圧されつつパネル搬送下流側に送り出される。これにより、液晶パネルPの下面に第1シート片F1mが一体的に貼合されて、第1光学部材貼合体(貼合体)PA1となる。
(第1反転装置)
第1反転装置31Aは、第1光学部材貼合体PA1を第1切断装置32Aの切断位置へ搬送するとともに、この搬送時に第1光学部材貼合体PA1の表裏を反転し、液晶パネルPの第1シート片F1mが貼合された面を上面とした状態で第1切断装置32Aに受け渡す。
第1反転装置31Aは、第1光学部材貼合体PA1を第1切断装置32Aの切断位置へ搬送するとともに、この搬送時に第1光学部材貼合体PA1の表裏を反転し、液晶パネルPの第1シート片F1mが貼合された面を上面とした状態で第1切断装置32Aに受け渡す。
(第1切断装置)
第1切断装置32Aは、液晶パネルPに貼合された第1シート片F1mから液晶パネルPと第1シート片F1mとの貼合面に対応する部分の外側に配置された余剰部分を切り離し、液晶パネルPと第1シート片F1mとの貼合面に対応する大きさの第1光学部材F11(図4参照)を形成する。第1切断装置32Aにより第1光学部材貼合体PA1から第1シート片F1mの余剰部分が切り離されることにより、液晶パネルPの表面及び液晶パネルPの裏面のいずれか一方の面に第1光学部材F11が貼合されて形成される第2光学部材貼合体PA2が形成される。
第1切断装置32Aの構成について、詳しくは後述する。
第1切断装置32Aは、液晶パネルPに貼合された第1シート片F1mから液晶パネルPと第1シート片F1mとの貼合面に対応する部分の外側に配置された余剰部分を切り離し、液晶パネルPと第1シート片F1mとの貼合面に対応する大きさの第1光学部材F11(図4参照)を形成する。第1切断装置32Aにより第1光学部材貼合体PA1から第1シート片F1mの余剰部分が切り離されることにより、液晶パネルPの表面及び液晶パネルPの裏面のいずれか一方の面に第1光学部材F11が貼合されて形成される第2光学部材貼合体PA2が形成される。
第1切断装置32Aの構成について、詳しくは後述する。
(回収装置)
第1回収位置33Aに配置される不図示の回収装置は、例えば、第1切断装置32Aによって切断された余剰部分を保持し、第1切断装置32Aで形成された第1光学部材F11から剥離して、不要となった余剰部分を回収する。余剰部分の回収処理後、第2光学部材貼合体PA2は第1旋回装置34の方向に移動する。なお、切断された余剰部分が、第1切断装置32Aによる切断時に自由落下して除去されるようであれば、回収装置は用いなくてもよい。
第1回収位置33Aに配置される不図示の回収装置は、例えば、第1切断装置32Aによって切断された余剰部分を保持し、第1切断装置32Aで形成された第1光学部材F11から剥離して、不要となった余剰部分を回収する。余剰部分の回収処理後、第2光学部材貼合体PA2は第1旋回装置34の方向に移動する。なお、切断された余剰部分が、第1切断装置32Aによる切断時に自由落下して除去されるようであれば、回収装置は用いなくてもよい。
(第1旋回装置)
第1旋回装置34は、第1切断装置32Aを経て上流側コンベヤ6の搬出端に達した第2光学部材貼合体PA2を吸着あるいは挟持することにより保持し、第2光学部材貼合体PA2が表示領域P4の長辺に沿う方向に搬送されるように、第2光学部材貼合体PA2を旋回させる。これにより、液晶パネルPの表面に貼合される偏光フィルムの偏光軸と、液晶パネルPの裏面に貼合される偏光フィルムの偏光軸とが互いに直角となる。
第1旋回装置34は、第1切断装置32Aを経て上流側コンベヤ6の搬出端に達した第2光学部材貼合体PA2を吸着あるいは挟持することにより保持し、第2光学部材貼合体PA2が表示領域P4の長辺に沿う方向に搬送されるように、第2光学部材貼合体PA2を旋回させる。これにより、液晶パネルPの表面に貼合される偏光フィルムの偏光軸と、液晶パネルPの裏面に貼合される偏光フィルムの偏光軸とが互いに直角となる。
第1旋回装置34は、第1吸着装置11のアライメントカメラ11bと同様のアライメントカメラ34cを備えており、第1吸着装置11のパネル保持部11aと同様のアライメント機能を有している。
(第2貼合装置)
第2貼合装置17は、貼合位置に導入された第2光学部材貼合体PA2の下面に対して、所定サイズにカットされた貼合シートF5のシート片(第2シート片F2m)の貼合を行う。第2貼合装置17は、第1貼合装置13と同様の搬送装置22及び挟圧ロール23を備えている。
第2貼合装置17は、貼合位置に導入された第2光学部材貼合体PA2の下面に対して、所定サイズにカットされた貼合シートF5のシート片(第2シート片F2m)の貼合を行う。第2貼合装置17は、第1貼合装置13と同様の搬送装置22及び挟圧ロール23を備えている。
第2貼合装置17の切断装置22cは、第2貼合装置17で用いる第2光学部材シートF2がシート幅方向と直交する長さ方向で表示領域P4の長さ(表示領域P4の長辺と表示領域P4の短辺のいずれかの長さ、本実施形態では表示領域P4の長辺長さに相当)よりも長い長さが繰り出される毎に、シート幅方向に沿って全幅にわたって、第2光学部材シートF2に対してハーフカットを施す。これにより、第2光学部材シートF2が有する貼合シートF5から、液晶パネルPの表示領域P4よりも大きい第2シート片F2mが形成される。
ハーフカット後の第2光学部材シートF2には、帯状の第2光学部材シートF2の長手方向で表示領域P4の長辺長さ相当の長さを有する間隔で、切込線が形成される。複数の切込線により、第2光学部材シートF2は、長手方向で複数の区画に分けられる。第2光学部材シートF2において、長手方向で隣り合う一対の切込線に挟まれる区画部分それぞれが、第2シート片F2mとなる。
第2シート片F2mの大きさは、例えば液晶パネルPよりも大きくできる。なお、第2シート片F2mにおいて、液晶パネルPの外側にはみ出る部分の大きさ(第2シート片F2mの余剰部分の大きさ)は、液晶パネルPのサイズに応じて適宜設定される。例えば、第2シート片F2mを5インチ~10インチの中小型サイズの液晶パネルPに適用する場合は、第2シート片F2mの各辺において第2シート片F2mの一辺と液晶パネルPの一辺との間の間隔を2mm~5mmの範囲の長さに設定する。
なお、上記の数値は一例であり、これに限定されない。
なお、上記の数値は一例であり、これに限定されない。
挟圧ロール23は、互いに軸方向を平行にして配置される一対の貼合ローラ23aを有し、一対の貼合ローラ23a間には所定の間隙が形成され、この間隙の位置が第2貼合装置17の貼合位置となる。間隙内には、第2光学部材貼合体PA2及び第2シート片F2mが重なり合った状態で導入され、これら第2光学部材貼合体PA2及び第2シート片F2mが、一対の貼合ローラ23aに挟圧されつつパネル搬送下流側に送り出される。これにより、第2光学部材貼合体PA2の下面(第2光学部材貼合体PA2の第1光学部材F11が貼合された面とは反対側の面)に第2シート片F2mが一体的に貼合され、第3光学部材貼合体(貼合体)PA3となる。
(第2反転装置)
第2反転装置31Bは、第3光学部材貼合体PA3を第2切断装置32Bの切断位置へ搬送するとともに、この搬送時に第3光学部材貼合体PA3の表裏を反転し、液晶パネルPの第2シート片F2mが貼合された面を上面とした状態で第2切断装置32Bに受け渡す。
第2反転装置31Bは、第3光学部材貼合体PA3を第2切断装置32Bの切断位置へ搬送するとともに、この搬送時に第3光学部材貼合体PA3の表裏を反転し、液晶パネルPの第2シート片F2mが貼合された面を上面とした状態で第2切断装置32Bに受け渡す。
(第2切断装置)
第2切断装置32Bは、第3光学部材貼合体PA3に貼合された第2シート片F2mから液晶パネルPと第2シート片F2mとの貼合面に対応する部分の外側に配置された余剰部分を切り離し、液晶パネルPと第2シート片F2mとの貼合面に対応する大きさの第2光学部材F12(図4参照)を形成する。第2切断装置32Bにより第3光学部材貼合体PA3から第2シート片F2mの余剰部分が切り離されることにより、液晶パネルPの表面及び液晶パネルPの裏面のいずれかである第2面に第2光学部材F12が貼合され、且つ、液晶パネルPの表面及び液晶パネルPの裏面のいずれかである第1面に第1光学部材F11が貼合されて形成される第4光学部材貼合体(光学部材貼合体)PA4が形成される。
第2切断装置32Bは、第3光学部材貼合体PA3に貼合された第2シート片F2mから液晶パネルPと第2シート片F2mとの貼合面に対応する部分の外側に配置された余剰部分を切り離し、液晶パネルPと第2シート片F2mとの貼合面に対応する大きさの第2光学部材F12(図4参照)を形成する。第2切断装置32Bにより第3光学部材貼合体PA3から第2シート片F2mの余剰部分が切り離されることにより、液晶パネルPの表面及び液晶パネルPの裏面のいずれかである第2面に第2光学部材F12が貼合され、且つ、液晶パネルPの表面及び液晶パネルPの裏面のいずれかである第1面に第1光学部材F11が貼合されて形成される第4光学部材貼合体(光学部材貼合体)PA4が形成される。
第1切断装置32Aおよび第2切断装置32Bは、例えばCO2レーザーカッターである。第1切断装置32Aによって、第1シート片F1mから、液晶パネルPと第1シート片F1mとの貼合面に対応する部分の外側に配置された余剰部分を切り離し、液晶パネルPと第1シート片F1mとの貼合面に対応する大きさの第1光学部材F11を形成する。第2切断装置32Bによって、第2シート片F2mから、液晶パネルPと第2シート片F2mとの貼合面に対応する部分の外側に配置された余剰部分を切り離し、液晶パネルPと第2シート片F2mとの貼合面に対応する大きさの第2光学部材F12を形成する。
切断装置32(第1切断装置32A及び第2切断装置32Bを「切断装置32」と総称することがある)は、後述する検出装置で検出された、液晶パネルPと、液晶パネルPに貼合されたシート片FXmと、の貼合面の外周縁に沿って、液晶パネルPに貼合されたシート片FXmを無端状に切断する。表示領域P4の外側には、液晶パネルPの第1基板P1及び液晶パネルPの第2基板P2を接合するシール剤等を配置する所定幅の額縁部G(図4参照)が設けられており、額縁部Gの幅内で切断装置32によるシート片FXmの切断が行われる。
このような、貼合面の外周縁の検出および切断装置による切断は、詳しくは以下のようにして行う。
図8は、貼合面の外周縁を検出する第1検出装置61の模式図である。本実施形態のフィルム貼合システム2が備える第1検出装置61は、第1光学部材貼合体PA1における、液晶パネルPと第1シート片F1mとの貼合面(以下、第1貼合面(貼合面)SA1と称することがある。)の外周縁EDの画像を撮像する撮像装置63と、外周縁EDを照明する照明光源64と、撮像装置63で撮像した画像の記憶や、画像に基づいて外周縁EDを検出するための演算を行う制御部65と、を有する。
このような第1検出装置61は、図7における第1切断装置32Aのパネル搬送上流側であって、第1反転装置31Aと第1切断装置32Aとの間に設けられている。
撮像装置63は、外周縁EDよりも第1貼合面SA1の内側に固定して配置されており、第1貼合面SA1の法線と、撮像装置63の撮像面63aの法線とが、角度θ(以下、撮像装置63の傾斜角度θと称する)をなすように傾斜した姿勢となっている。撮像装置63は、撮像面63aを外周縁EDに向け、第1光学部材貼合体PA1において第1シート片F1mが貼合された側から外周縁EDの画像を撮像する。
撮像装置63の傾斜角度θは、第1貼合面SA1を構成する第1基板P1の外周縁を確実に撮像できるように設定することができる。例えば、液晶パネルPが、マザーパネルを複数枚の液晶パネルに分割する、いわゆる多面取りで形成されている場合、液晶パネルPを構成する第1基板P1と液晶パネルPを構成する第2基板P2との外周縁にずれが生じ、第2基板P2の端面が第1基板P1の端面よりも外側にずれることがある。このような場合、撮像装置63の傾斜角度θは、撮像装置63の撮像視野内に第2基板P2の外周縁が入り込まないように設定することができる。
このような場合、撮像装置63の傾斜角度θは、第1貼合面SA1と撮像装置63の撮像面63aの中心との間の距離(以下、撮像装置63の高さHと称する)に適合するように設定できる。例えば、撮像装置63の高さHが50mm以上100mm以下の場合、撮像装置63の傾斜角度θは、5°以上20°以下の範囲の角度に設定できる。ただし、経験的にずれ量が分かっている場合には、そのずれ量に基づいて撮像装置63の高さH及び撮像装置63の傾斜角度θを求めることができる。本実施形態では、撮像装置63の高さHが78mm、撮像装置63の傾斜角度θが10°に設定されている。
なお、上記の数値は一例であり、これに限定されない。
なお、上記の数値は一例であり、これに限定されない。
撮像装置63の傾斜角度θは、0°であってもよい。図9は、第1検出装置61の変形例を示す模式図であり、撮像装置63の傾斜角度θが0°である場合の例である。この場合、撮像装置63及び照明光源64の各々が、第1貼合面SA1の法線方向に沿って外周縁EDに重なる位置に配置されていてもよい。
第1貼合面SA1と撮像装置63の撮像面63aの中心との間の距離(以下、撮像装置63の高さH1と称する)は、第1貼合面SA1の外周縁EDを検出しやすい位置に設定できる。例えば、撮像装置63の高さH1は、50mm以上320mm以下の範囲に設定できる。
なお、上記の数値は一例であり、これに限定されない。
なお、上記の数値は一例であり、これに限定されない。
照明光源64は、第1光学部材貼合体PA1における第1シート片F1mが貼合された側とは反対側に固定して配置されている。照明光源64は、外周縁EDよりも第1貼合面SA1の外側に配置されている。本実施形態では、照明光源64の光軸と撮像装置63の撮像面63aの法線とが平行になっている。
なお、照明光源64は、第1光学部材貼合体PA1における第1シート片F1mが貼合された側(すなわち、撮像装置63と同じ側)に配置されていてもよい。
また、照明光源64から射出される照明光により、撮像装置63が撮像する外周縁EDが照明されていれば、照明光源64の光軸と撮像装置63の撮像面63aの法線とが交差していてもよい。
図10は、貼合面の外周縁を検出する位置を示す平面図である。図に示す第1光学部材貼合体PA1の搬送経路上には、検査領域CAが設定されている。検査領域CAは、搬送される液晶パネルPにおける、第1貼合面SA1の外周縁EDに対応する位置に設定されている。図では、検査領域CAは、平面視で矩形の第1貼合面SA1の4つの角部に対応する4箇所に設定されており、第1貼合面SA1の角部を外周縁EDとして検出する構成となっている。図では、第1貼合面SA1の外周縁のうち、角部に対応する鉤状の部分を外周縁EDとして示している。
図8の第1検出装置61は、4箇所の検査領域CAにおいて外周縁EDを検出する。具体的には、各検査領域CAには、それぞれ撮像装置63および照明光源64が配置されており、第1検出装置61は、搬送される液晶パネルPごとに第1貼合面SA1の角部を撮像し、撮像データに基づいて外周縁EDを検出する。検出された外周縁EDのデータは、図8に示す制御部65に記憶される。
なお、第1貼合面SA1の外周縁が検出可能であれば、検査領域CAの設定位置はこれに限らない。例えば、各検査領域CAが、第1貼合面SA1の各辺の一部(例えば各辺の中央部)に対応する位置に配置されていてもよい。この場合、第1貼合面SA1の各辺(四辺)を外周縁として検出する構成となる。
また、撮像装置63および照明光源64は、各検査領域CAに配置されている構成に限らず、第1貼合面SA1の外周縁EDに沿うように設定された移動経路を移動可能である構成であってもよい。この場合、撮像装置63と照明光源64とが各検査領域CAに位置した際に外周縁EDを検出する構成とすることで、撮像装置63と照明光源64とがそれぞれ1つずつ設けられていれば、外周縁EDの検出が可能となる。
第1切断装置32Aによる第1シート片F1mについてのカット位置は、第1貼合面SA1の外周縁EDの検出結果に基づいて設定される。
例えば、図8に示す制御部65が、記憶された第1貼合面SA1の外周縁EDのデータに基づいて、第1光学部材F11が液晶パネルPの外側(第1貼合面SA1の外側)にはみ出さない大きさとなるように第1シート片F1mのカット位置を設定する構成とすることができる。また、カット位置の設定は、必ずしも第1検出装置61の制御部65で行う必要はなく、第1検出装置61で検出した外周縁EDのデータを用い、別途計算手段を用いて行うこととしても構わない。
第1切断装置32Aは、制御部65によって設定されたカット位置において第1シート片F1mを切断する。
図7に戻り、第1切断装置32Aは、液晶パネルPに貼合された第1シート片F1mのうち第1貼合面SA1に対応する部分と、第1貼合面SA1の外側の余剰部分とを、検出された外周縁EDに基づいて設定されたカット位置に沿って切り離し、第1貼合面SA1に対応する大きさの第1光学部材F11(図4参照)を切り出す。これにより、液晶パネルPの上面に第1光学部材F11が重ねて貼合された第2光学部材貼合体PA2が形成される。
ここで、「第1貼合面SA1に対応する部分」とは、第1シート片F1mにおいて、対向する液晶パネルPの表示領域の大きさ以上、液晶パネルPの外周形状(平面視における輪郭形状)の大きさ以下の領域であって、かつ液晶パネルPにおける電気部品取付部等の機能部分を避けた領域を指す。
本実施形態では、平面視矩形状の液晶パネルPにおける機能部分を除いた三辺では、液晶パネルPの外周縁に沿って余剰部分をレーザーカットし、機能部分に相当する一辺では、液晶パネルPの外周縁から表示領域P4側に適宜入り込んだ位置で余剰部分をレーザーカットする構成を採用できる。例えば、第1基板P1がTFT基板の場合、機能部分に相当する一辺では機能部分を除くよう液晶パネルPの外周縁から表示領域P4側に所定量ずれた位置でカットする構成を採用できる。
図11は、貼合面の外周縁を検出する第2検出装置62の模式図である。本実施形態のフィルム貼合システム2が備える第2検出装置62は、第3光学部材貼合体PA3における、液晶パネルPと第2シート片F2mとの貼合面(以下、第2貼合面(貼合面)SA2と称することがある。)の外周縁EDの画像を撮像する撮像装置63と、外周縁EDを照明する照明光源64と、撮像装置63で撮像した画像を記憶し、画像に基づいて外周縁EDを検出するための演算を行う制御部65と、を有する。第2検出装置62は、上述の第1検出装置61と同様の構成を有している。
このような第2検出装置62は、図7における第2切断装置32Bのパネル搬送上流側であって、第2反転装置31Bと第2切断装置32Bとの間に設けられている。第2検出装置62は、第3光学部材貼合体PA3の搬送経路上において設定された検査領域において、上述の第1検出装置61と同様にして第2貼合面SA2の外周縁EDを検出する。
第2切断装置32Bによる第2シート片F2mのカット位置は、第2貼合面SA2の外周縁EDの検出結果に基づいて設定される。
例えば、図11に示す制御部65は、記憶された第2貼合面SA2の外周縁EDのデータに基づいて、第2光学部材F12が液晶パネルPの外側(第2貼合面SA2の外側)にはみ出さない大きさとなるように第2シート片F2mのカット位置を設定する構成とすることができる。また、カット位置の設定は、必ずしも第2検出装置62の制御部65で行う必要はなく、第2検出装置62で検出した外周縁EDのデータを用い、別途計算手段を用いて行うこととしても構わない。
第2切断装置32Bは、制御部65によって設定されたカット位置において第2シート片F2mを切断する。
第2切断装置32Bは、液晶パネルPに貼合された第2シート片F2mのうち第2貼合面SA2に対応する部分と、第2貼合面SA2の外側の余剰部分とを、検出された外周縁EDに沿って切り離し、第2貼合面SA2に対応する大きさの第2光学部材F12(図4参照)を切り出す。これにより、第2光学部材貼合体PA2の上面に第2光学部材F12が貼合された第4光学部材貼合体PA4が形成される。
ここで、「第2貼合面SA2に対応する部分」とは、第2シート片F2mにおいて、対向する液晶パネルPの表示領域の大きさ以上、液晶パネルPの外周形状(平面視における輪郭形状)の大きさ以下の領域であって、かつ液晶パネルPにおける電気部品取付部等の機能部分を避けた領域を指す。
このように、切断装置32では、検出装置を用いて複数の液晶パネルPごとに貼合面の外周縁を検出し、検出した外周縁に基づいて、個々の液晶パネルPごとに貼合したシート片FXmの切断位置を設定する。これにより、液晶パネルPやシート片FXmの大きさの個体差によらず所望の大きさの光学部材を切り離すことができる。このため、液晶パネルPやシート片FXmの大きさの個体差による品質バラツキをなくし、表示領域周辺の額縁部を縮小して表示エリアの拡大及び機器の小型化を図ることができる。
上記実施形態では、切断装置32の一例としてCO2レーザーを用いたが、切断装置32はこれに限定されない。切断刃などの他の切断手段を切断装置32として用いることも可能である。
(回収装置)
第2回収位置33Bに配置される不図示の回収装置は、例えば、第2切断装置32Bによって切断された余剰部分を保持し、第2切断装置32Bで形成された第2光学部材F12から剥離して、不要となった余剰部分を回収する。余剰部分の回収処理後、第4光学部材貼合体PA4は第2旋回装置35の方向に移動する。なお、切断された余剰部分が、第2切断装置32Bによる切断時に自由落下して除去されるようであれば、回収装置は用いなくてもよい。
第2回収位置33Bに配置される不図示の回収装置は、例えば、第2切断装置32Bによって切断された余剰部分を保持し、第2切断装置32Bで形成された第2光学部材F12から剥離して、不要となった余剰部分を回収する。余剰部分の回収処理後、第4光学部材貼合体PA4は第2旋回装置35の方向に移動する。なお、切断された余剰部分が、第2切断装置32Bによる切断時に自由落下して除去されるようであれば、回収装置は用いなくてもよい。
(第2旋回装置)
第2旋回装置35は、第4光学部材貼合体PA4が表示領域P4の短辺に沿う方向に搬送されるように、第4光学部材貼合体PA4を旋回させる。
第2旋回装置35は、第4光学部材貼合体PA4が表示領域P4の短辺に沿う方向に搬送されるように、第4光学部材貼合体PA4を旋回させる。
その後、第1実施形態と同様に、第2旋回装置35の下流側に設定された欠陥検査位置21において、第4光学部材貼合体PA4の欠陥を目視検査する。目視検査後の第4光学部材貼合体PA4の取り扱い(製造ラインからの搬出、および製造ライン外での再生処理)については、第1実施形態と同様である。
(光学部材貼合体の製造方法)
図6を参照して、第2実施形態における光学部材貼合体の製造方法について説明する。
図6を参照して、第2実施形態における光学部材貼合体の製造方法について説明する。
まず、両面貼合パネルP12の製造において、製造ラインに液晶パネルPを搬入し(ステップS11)、液晶パネルPの表面に付着した塵やほこりなどの汚れを洗浄する(ステップS12)。
次いで、上述のフィルム貼合システム2にて、第1光学部材シートF1を原反ロールR1から巻き出しつつカットし、表示領域P4よりも大きい(例えば液晶パネルPよりも大きい)第1シート片F1mを形成する。その後、第1シート片F1mを液晶パネルPに貼り合わせて第1光学部材貼合体PA1を形成する。
その後、第1光学部材貼合体PA1において、第1シート片F1mと液晶パネルPとの貼合面の外周縁を検出し、検出した外周縁に沿って第1シート片F1mの余剰部分を切り離して、第2光学部材貼合体PA2を形成する。
同様に、第2光学部材シートF2を原反ロールR1から巻き出しつつカットし、表示領域P4よりも大きい(例えば液晶パネルPよりも大きい)第2シート片F2mを形成し、第2光学部材貼合体PA2に貼り合わせて第3光学部材貼合体PA3を形成する。
その後、第3光学部材貼合体PA3において、第2シート片F2mと液晶パネルPとの貼合面の外周縁を検出し、検出した外周縁に沿って第2シート片F2mの余剰部分を切り離して、第4光学部材貼合体PA4を形成する(ステップS13)。
その後、得られた第4光学部材貼合体PA4について、第1実施形態と同様にステップS14,S15、S21~S24を施す。
本実施形態の光学部材貼合体の製造方法は、以上のようにして行う。
本実施形態の光学部材貼合体の製造方法は、以上のようにして行う。
以上のような光学部材貼合体の製造方法によっても、第1実施形態と同様に、実使用の上で過不足の無い精度で欠陥検出が可能であり、且つ製造歩留りを損なわず安定した製造が可能な光学部材貼合体の製造方法が提供される。
なお、本実施形態では、第1貼合装置13や第2貼合装置17において、作製した第1シート片F1mや第2シート片F2mを、セパレータシートF3aから剥離させながら、液晶パネルPや第2光学部材貼合体PA2に直接貼合する構成としたが、これに限らない。貼合装置においては、作製した第1シート片F1mや第2シート片F2mを付着させて保持し、液晶パネルPや第2光学部材貼合体PA2上に搬送して貼合する貼合ヘッドを有することとしても構わない。
以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
ED…外周縁、F1X…光学部材、F11…第1光学部材(光学部材)、F12…第2光学部材(光学部材)、FX…光学部材シート、F1…第1光学部材シート(光学部材シート)、F2…第2光学部材シート(光学部材シート)、P4…表示領域、R1…原反ロール、FXm…シート片、F1m…第1シート片(シート片)、F2m…第2シート片(シート片)、P…液晶パネル(光学表示部品)、P11…片面貼合パネル(光学部材貼合体)、P12…両面貼合パネル(光学部材貼合体)、PA1…第1光学部材貼合体(貼合体)、PA3…第3光学部材貼合体(貼合体)、PA4…第4光学部材貼合体(光学部材貼合体)。
Claims (9)
- 光学表示部品に光学部材を貼合して形成される光学部材貼合体の製造方法であって、
帯状の光学部材シートを原反ロールから巻き出し、前記光学部材シートを切断して得られる複数の前記光学部材を、複数の前記光学表示部品に貼合して、複数の前記光学部材貼合体を形成する光学部材貼合体形成工程と、
複数の前記光学部材貼合体のそれぞれについて欠陥を目視検査する第1目視検査工程と、を有し、
前記光学部材貼合体形成工程と前記第1目視検査工程とを、同一の製造ラインで行う光学部材貼合体の製造方法。 - 光学表示部品に光学部材を貼合して形成される光学部材貼合体の製造方法であって、
帯状の光学部材シートを原反ロールから巻き出し、前記光学部材シートを切断して得られる複数のシート片を、複数の前記光学表示部品に貼合して、複数の貼合体を形成する貼合体形成工程と、
前記貼合体において、前記シート片と前記光学表示部品との貼合面の外周縁を検出する検出工程と、
前記貼合体において、前記光学表示部品に貼合された前記シート片から前記貼合面に対応する部分の外側に配置された余剰部分を、前記外周縁に沿って切り離し、前記貼合面に対応する大きさの前記光学部材を含む前記光学部材貼合体を形成する光学部材貼合体形成工程と、
複数の前記光学部材貼合体のそれぞれについて欠陥を目視検査する第1目視検査工程と、を有し、
前記光学部材貼合体形成工程と前記第1目視検査工程とを、同一の製造ラインで行う光学部材貼合体の製造方法。 - 前記検出工程では、複数の前記光学表示部品ごとに、前記シート片と前記光学表示部品との貼合面の外周縁を検出する請求項2に記載の光学部材貼合体の製造方法。
- 前記第1目視検査工程で検出された不良品について、前記不良品が有する欠陥の状態に応じて、前記不良品を加熱加圧処理するオートクレーブ処理、または前記光学部材貼合体から前記光学部材を剥離して前記光学表示部品を露出させ、露出させた前記光学表示部品の面に、あらかじめ用意された新たな前記光学部材を貼合して、新たな前記光学部材貼合体を形成するリワーク処理、のいずれか一方の再生処理を選択して実施する再生処理工程を有し、
前記再生処理工程を、前記製造ラインとは分離して行う請求項1から3のいずれか1項に記載の光学部材貼合体の製造方法。 - 前記再生処理工程を経た複数の前記光学部材貼合体のそれぞれについて、欠陥を目視検査する第2目視検査工程を有し、
前記第2目視検査工程を、前記製造ラインとは分離して行う請求項4に記載の光学部材貼合体の製造方法。 - 前記第2目視検査工程で検出された不良品について、再び前記再生処理を施す請求項5に記載の光学部材貼合体の製造方法。
- 前記第1目視検査工程では、前記光学部材貼合体形成工程を経て順次搬送される複数の前記光学部材貼合体を複数の検査員が分担して目視検査する請求項1から6のいずれか1項に記載の光学部材貼合体の製造方法。
- 前記第1目視検査工程では、複数の前記光学部材貼合体を複数の検査ラインに分配し、複数の前記検査ラインに配置された前記検査員が目視検査する請求項7に記載の光学部材貼合体の製造方法。
- 前記光学部材貼合体形成工程では、前記光学表示部品の両面に前記光学部材を貼合した前記光学部材貼合体を形成し、
前記第1目視検査工程では、前記光学表示部品の両面に前記光学部材が貼合された前記光学部材貼合体について目視検査する請求項1から8のいずれか1項に記載の光学部材貼合体の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013180587A JP2015049347A (ja) | 2013-08-30 | 2013-08-30 | 光学部材貼合体の製造方法 |
JP2013-180587 | 2013-08-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015030066A1 true WO2015030066A1 (ja) | 2015-03-05 |
Family
ID=52586616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/072465 WO2015030066A1 (ja) | 2013-08-30 | 2014-08-27 | 光学部材貼合体の製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2015049347A (ja) |
TW (1) | TW201518812A (ja) |
WO (1) | WO2015030066A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6587211B2 (ja) * | 2015-12-17 | 2019-10-09 | 日本電気硝子株式会社 | ガラス板の製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002310926A (ja) * | 2001-04-18 | 2002-10-23 | Corning Japan Kk | 板材検査装置 |
WO2010146733A1 (ja) * | 2009-06-18 | 2010-12-23 | シャープ株式会社 | 表示パネルの欠陥検査方法および欠陥検査装置 |
JP2012137607A (ja) * | 2010-12-27 | 2012-07-19 | Sony Corp | 表示装置およびその製造方法、並びに電子機器 |
JP2012185521A (ja) * | 2007-12-06 | 2012-09-27 | Nitto Denko Corp | 光学表示ユニットの製造方法およびそれに用いられるロール原反 |
JP2013113897A (ja) * | 2011-11-25 | 2013-06-10 | Sumitomo Chemical Co Ltd | 光学表示デバイスの生産システムの運転方法 |
JP2013152456A (ja) * | 2011-12-27 | 2013-08-08 | Sumitomo Chemical Co Ltd | レーザー光照射装置、光学部材貼合体の製造装置、レーザー光照射方法及び光学部材貼合体の製造方法 |
-
2013
- 2013-08-30 JP JP2013180587A patent/JP2015049347A/ja active Pending
-
2014
- 2014-08-27 TW TW103129494A patent/TW201518812A/zh unknown
- 2014-08-27 WO PCT/JP2014/072465 patent/WO2015030066A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002310926A (ja) * | 2001-04-18 | 2002-10-23 | Corning Japan Kk | 板材検査装置 |
JP2012185521A (ja) * | 2007-12-06 | 2012-09-27 | Nitto Denko Corp | 光学表示ユニットの製造方法およびそれに用いられるロール原反 |
WO2010146733A1 (ja) * | 2009-06-18 | 2010-12-23 | シャープ株式会社 | 表示パネルの欠陥検査方法および欠陥検査装置 |
JP2012137607A (ja) * | 2010-12-27 | 2012-07-19 | Sony Corp | 表示装置およびその製造方法、並びに電子機器 |
JP2013113897A (ja) * | 2011-11-25 | 2013-06-10 | Sumitomo Chemical Co Ltd | 光学表示デバイスの生産システムの運転方法 |
JP2013152456A (ja) * | 2011-12-27 | 2013-08-08 | Sumitomo Chemical Co Ltd | レーザー光照射装置、光学部材貼合体の製造装置、レーザー光照射方法及び光学部材貼合体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201518812A (zh) | 2015-05-16 |
JP2015049347A (ja) | 2015-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6529250B2 (ja) | 光学表示パネルの製造方法および光学表示パネルの製造システム | |
WO2010134441A1 (ja) | 光学表示装置の製造システム及び製造方法 | |
KR101558631B1 (ko) | 광학 표시 장치 제조 시스템 및 광학 표시 장치 제조 방법 | |
TWI441703B (zh) | 光學組件貼合體之製造系統、製造方法及記錄媒體 | |
WO2009088013A1 (ja) | 光学表示ユニットの製造システムおよび搬送機構 | |
WO2015030074A1 (ja) | 光学部材貼合体の製造方法 | |
WO2015030158A1 (ja) | 光学部材貼合体の製造方法 | |
WO2015030141A1 (ja) | 光学部材貼合体の製造方法 | |
JP2013113897A (ja) | 光学表示デバイスの生産システムの運転方法 | |
WO2015030066A1 (ja) | 光学部材貼合体の製造方法 | |
JP2019109532A (ja) | 光学表示パネルの製造方法および光学表示パネルの製造システム | |
JP5924726B2 (ja) | 光学部材貼合体の製造装置及び製造方法 | |
JP4844857B1 (ja) | 回収装置、貼合システム及び回収方法 | |
WO2015030062A1 (ja) | 光学部材貼合体の製造方法 | |
JP6490963B2 (ja) | 光学表示部品のアライメント装置及び光学表示部品のアライメント方法 | |
JP6227279B2 (ja) | 光学部材貼合体の製造装置及び製造方法 | |
JP2012173617A (ja) | 回収装置、貼合システム及び回収方法 | |
JP5328970B2 (ja) | 光学表示デバイスの生産システム及び生産方法 | |
KR101169902B1 (ko) | 회수 장치, 접합 시스템 및 회수 방법 | |
JP2012173616A (ja) | 回収装置、貼合システム及び回収方法 | |
JP5724146B2 (ja) | 光学部材貼合体の製造システム、製造方法及び記録媒体 | |
WO2014185092A1 (ja) | 光学部材貼合体の製造システム、製造方法及び記録媒体 | |
JP2014224912A (ja) | 光学表示デバイスの生産システム及び生産方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14839058 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14839058 Country of ref document: EP Kind code of ref document: A1 |