Nothing Special   »   [go: up one dir, main page]

WO2015083392A1 - Heat pump device - Google Patents

Heat pump device Download PDF

Info

Publication number
WO2015083392A1
WO2015083392A1 PCT/JP2014/067592 JP2014067592W WO2015083392A1 WO 2015083392 A1 WO2015083392 A1 WO 2015083392A1 JP 2014067592 W JP2014067592 W JP 2014067592W WO 2015083392 A1 WO2015083392 A1 WO 2015083392A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
heat exchange
refrigerant
heat
exchange unit
Prior art date
Application number
PCT/JP2014/067592
Other languages
French (fr)
Japanese (ja)
Inventor
藤塚 正史
和典 土野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2015083392A1 publication Critical patent/WO2015083392A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2347/00Details for preventing or removing deposits or corrosion
    • F25B2347/02Details of defrosting cycles
    • F25B2347/021Alternate defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to a heat pump device including a refrigerant circuit.
  • Patent Document 1 a plurality of first switching valves 25 provided between an outlet side of the outdoor heat exchangers 22 installed in parallel and a suction side of the compressor 21, and the outdoor heat exchangers 22 are arranged.
  • An air conditioner including a second switching valve 26 provided between the outlet side and the discharge side of the compressor 21 is disclosed.
  • This patent document 1 discloses that in the outdoor heat exchanger 22 where defrosting is required, by opening the first switching valve 25 and closing the second switching valve 26, only the outdoor heat exchanger 22 is supplied from the compressor 21. The discharged hot gas refrigerant flows and defrosts.
  • Patent Document 2 discloses a showcase in which a cooling operation is performed by the first evaporator 15c and the second evaporator 16c.
  • the high-temperature refrigerant discharged from the compressor 14a circulates in the condenser 14b and dissipates heat, and then does not pass through the expansion valve 23. It distribute
  • Patent Document 2 intends to perform a defrost cooling operation in which the first evaporator 15c is defrosted while the inside of the showcase is cooled by the second evaporator 16c.
  • JP 2008-157558 A (FIG. 4, pages 7 to 8) JP 2008-133998 A (FIG. 6, page 5)
  • the air conditioner disclosed in Patent Document 1 causes the refrigerant to flow in parallel to the plurality of outdoor heat exchangers 22 in a normal heating operation without defrosting, but in the heating operation with defrosting, the defrosting is performed.
  • the refrigerant flowing through the outdoor heat exchanger 22 having the request is circulated in series to the outdoor heat exchanger 22 having no defrosting request.
  • the distribution route of the refrigerant is complicated, and a large number of switching valves are required for switching the complicated distribution route. Therefore, there are problems that it is difficult to reduce the size of the apparatus, the cost is high, and the failure rate is high and the reliability is low.
  • the present invention was made against the background of the above problems, and is small, inexpensive, highly reliable, suppresses refrigerant accumulation, has high energy savings, and is comfortable during defrosting or food storage quality.
  • the heat pump apparatus which keeps up is provided.
  • the heat pump device includes a refrigerant circuit in which a compressor, a first heat exchange unit, an expansion device, and a second heat exchanger are connected by a pipe and through which refrigerant flows, and a control unit that controls the operation of the refrigerant circuit.
  • the first heat exchange unit has a plurality of sub heat exchange units connected in series, and a sub expansion device provided between the plurality of sub heat exchange units,
  • the control unit defrosts the sub-heat exchange unit
  • the sub-expansion device causes a difference between the pressure of the refrigerant flowing upstream of the sub-expansion device and the pressure of the refrigerant flowing downstream of the sub-expansion device. It has the control means at the time of defrosting which controls.
  • the defrosting control means defrosts the auxiliary heat exchange unit
  • the pressure difference between the refrigerant flowing upstream of the auxiliary expansion device and the refrigerant flowing downstream of the auxiliary expansion device is calculated.
  • heating, cooling, or cooling is continued by the other subheat exchange part, defrosting at least one subheat exchange part.
  • comfort and food preservation quality are not impaired at the time of defrosting.
  • these effects can be obtained while saving the effort of switching the operation mode, being small, inexpensive, and highly reliable, suppressing the accumulation of refrigerant, and providing high energy savings.
  • FIG. 1 is a schematic diagram showing a heat pump device 1 according to Embodiment 1.
  • FIG. 4 is a schematic diagram showing a heat pump device 1 according to Embodiment 2.
  • FIG. 6 is a schematic diagram showing a heat pump device 200 according to Embodiment 3.
  • FIG. 6 is a schematic diagram showing a first heat exchange unit 4 in Embodiment 4.
  • FIG. 10 is a schematic diagram showing a first heat exchange unit 4 in a fifth embodiment.
  • FIG. 10 is a schematic diagram showing a first heat exchange unit 4 in a sixth embodiment.
  • FIG. 10 is a schematic diagram showing a second sub heat exchange unit 42 in a sixth embodiment.
  • FIG. 10 is a schematic diagram showing a heat pump device 500 according to a sixth embodiment.
  • FIG. 10 is a schematic diagram showing a heat pump device 600 according to a seventh embodiment.
  • FIG. 1 is a schematic diagram showing a heat pump device 1 according to the first embodiment.
  • the heat pump device 1 will be described with reference to FIG.
  • the heat pump device 1 constituting an air conditioner or the like includes a refrigerant circuit 8 and a control unit 21.
  • the refrigerant circuit 8 is a circuit in which the compressor 2, the first heat exchange unit 4, the expansion device 6, and the second heat exchanger 7 are connected by piping, and the refrigerant circulates.
  • coolant to be used is a refrigerant
  • the refrigerant circuit 8 absorbs heat from, for example, one of the outdoor air 11 and the indoor air 12 and dissipates heat to the other using the condensation and vaporization of the circulating refrigerant.
  • the outdoor air 11 is air as a heat absorption source (during heating operation) or a heat radiation destination (during cooling operation) necessary for cooling and heating the indoor air 12.
  • heat is efficiently transferred between the outdoor air 11 and the indoor air 12 via the refrigerant with respect to the power required for the compression of the compressor 2.
  • the refrigerant that has been reduced in temperature and pressure by the expansion device 6 to be in a gas-liquid two-phase state flows to the second heat exchanger 7 installed in the room.
  • the refrigerant that has become a high-temperature and high-pressure state in the compressor 2 and is in a gas phase flows through the second heat exchanger 7.
  • the refrigerant flow direction in the refrigerant circuit 8 is reversed when the indoor air 12 is cooled or heated.
  • the compressor 2 pumps the refrigerant in a gas phase to increase the temperature and pressure.
  • a pressure feed switching unit 3 is provided on the discharge side of the compressor 2.
  • the pressure feed switching unit 3 switches the refrigerant flow direction in the refrigerant circuit 8.
  • This pressure feed switching unit 3 is, for example, a four-way valve, and four connection paths A, B, C, and D are connected to the four-way valve.
  • the pumping switching unit 3 is connected in the first state in which the connection path A and the connection path B, the connection path C and the connection path D are connected, the connection path A and the connection path C, and the connection path B and the connection path D are connected.
  • the second state can be changed to the second state.
  • connection path A is connected to the discharge side of the compressor 2
  • connection path B is connected to the second heat exchanger 7
  • connection path C is connected to the first heat exchange unit 4
  • connection path D is It is connected to the suction side of the compressor 2.
  • the first heat exchange unit 4 is used outdoors. For example, the outdoor air 11 blown by a fan (not shown) is used as a heat source to exchange heat between the outdoor air 11 and the refrigerant. .
  • the 1st heat exchange unit 4 is provided with the 1st sub heat exchange part 41 and the 2nd sub heat exchange part 42, and these 1st sub heat exchange parts 41 and the 2nd sub heat exchange part 42 is connected in series. Thereby, the refrigerant does not flow in the parallel direction but always flows in the series direction in the first sub heat exchange unit 41 and the second sub heat exchange unit 42.
  • the number of sub heat exchange units is not limited to two, and a plurality of sub heat exchange units may be installed.
  • a sub-expansion device 43 is provided between the first sub-heat exchange unit 41 and the second sub-heat exchange unit 42.
  • the sub-expansion device 43 is a high-pressure liquid-phase refrigerant. Is expanded to lower the temperature and pressure to make a gas-liquid two-phase refrigerant.
  • the sub-expansion device 43 is, for example, an expansion valve that changes the amount of refrigerant flow and the pressure of the refrigerant according to the degree of opening. Since the sub-expansion device 43 is provided between the first sub-heat exchange unit 41 and the second sub-heat exchange unit 42, the refrigerant flowing through the first heat exchange unit 4 is always sub-expansion. Flows into the device 43.
  • the refrigerant circuit 8 is provided with a sub-bypass circuit 44 that bypasses the sub-expansion device 43, and the sub-bypass circuit 44 is provided with a sub-bypass valve 45 that adjusts the amount of refrigerant flowing in the sub-bypass circuit 44. It has been.
  • the sub bypass valve 45 When the sub bypass valve 45 is closed, all the refrigerant flowing through the first heat exchange unit 4 does not flow into the sub bypass circuit 44 but flows into the sub expansion device 43.
  • the sub bypass valve 45 is opened, the refrigerant flowing through the first heat exchange unit 4 flows into the sub bypass circuit 44 and the sub expansion device 43 separately. At this time, if the sub-expansion device 43 is throttled, the refrigerant flowing into the sub-expansion device 43 decreases, and a large amount of the remaining refrigerant flows into the sub-bypass circuit 44.
  • the inflow switching unit 5 is a four-way valve, for example, similarly to the pressure-feeding switching unit 3, and the four connection paths A, B, C, and D are connected to the four-way valve.
  • the inflow switching unit 5 includes the first state in which the connection path A and the connection path B, the connection path C and the connection path D are connected, the connection path A and the connection path C, and the connection path B and the connection path D are connected.
  • the second state can be changed to the second state.
  • the connection path A is connected to the expansion device 6,
  • the connection path B is connected to the first auxiliary heat exchange unit 41,
  • the connection path C is connected to the second auxiliary heat exchange unit 42, and the connection path D is pumped. It is connected to the switching unit 3.
  • the refrigerant By switching the inflow switching unit 5, when the refrigerant flows into the first heat exchange unit 4, the refrigerant first flows into the first sub heat exchange unit 41 and then flows into the second sub heat exchange unit 42. Or, first, it is changed whether it flows into the 2nd sub heat exchange part 42, and flows into the 1st sub heat exchange part 41 after that. Further, by switching the inflow switching unit 5, the refrigerant flowing out from the first heat exchange unit 4 to the side opposite to the inflow source flows into the suction side of the compressor 2 or flows into the expansion device 6. Is changed.
  • the refrigerant circuit 8 includes two first temperature detection units 41a and a second temperature detection unit 42a that detect the temperature of the refrigerant.
  • the first sub heat exchange unit 41 and the sub expansion device 43 are provided.
  • the second auxiliary heat exchanging unit 42 and the auxiliary expansion device 43 are provided.
  • the first temperature detector 41a and the second temperature detector 42a indirectly detect the temperature of the refrigerant by measuring the temperature of the pipe.
  • the expansion device 6 expands a high-pressure liquid-phase refrigerant to lower the temperature and the pressure to obtain a gas-liquid two-phase refrigerant.
  • the expansion device 6 is, for example, an expansion valve that changes the flow rate of the refrigerant and the pressure of the refrigerant at the opening degree.
  • the refrigerant circuit 8 is provided with a bypass circuit 61 that bypasses the expansion device 6, and the bypass circuit 61 is provided with a bypass valve 62 that adjusts the amount of refrigerant flowing in the bypass circuit 61.
  • the bypass valve 62 When the bypass valve 62 is closed, all the refrigerant flowing through the refrigerant circuit 8 does not flow into the bypass circuit 61 but flows into the expansion device 6.
  • the bypass valve 62 when the bypass valve 62 is opened, the refrigerant flowing through the refrigerant circuit 8 flows into the bypass circuit 61 and the expansion device 6 separately. At this time, if the expansion device 6 is throttled, the refrigerant flowing into the expansion device 6 decreases, and the remaining large amount of refrigerant flows into the bypass circuit 61.
  • the second heat exchanger 7 is used indoors.
  • the indoor heat 12 blown by a fan (not shown) is used as a heat source, and load heat exchange is performed to exchange heat between the indoor air 12 and the refrigerant. It is a vessel.
  • Control unit 21 The controller 21 controls the operation of the refrigerant circuit 8.
  • the control unit 21 includes a defrosting control unit 22, a threshold determination unit 23, and an end determination unit 24.
  • the defrosting control means 22 can also be configured to open the bypass valve 62 when defrosting the first sub heat exchange unit 41 or the second sub heat exchange unit 42. Further, the defrosting control means 22 may be configured to close the sub bypass valve 45 when the first sub heat exchange unit 41 or the second sub heat exchange unit 42 is defrosted. In addition, the defrosting control means 22 can also control the operation of the expansion device 6.
  • the threshold value determination unit 23 determines whether or not the temperature of the refrigerant detected by the first temperature detection unit 41a or the second temperature detection unit 42a is equal to or higher than a predetermined threshold value. This threshold can be set to 0 ° C., for example, but can be changed as appropriate. Then, the end determination unit 24 determines that the temperature of the refrigerant is equal to or higher than the threshold value while the first sub heat exchange unit 41 or the second sub heat exchange unit 42 is defrosted. In this case, it is determined that the defrosting of the first sub heat exchange unit 41 or the second sub heat exchange unit 42 has been completed.
  • the refrigerant is the compressor 2, the pressure switching unit 3, the second heat exchanger 7, the expansion device 6, the inflow switching unit 5, the first heat exchange unit 4, the inflow switching unit 5, the pressure feeding switching unit 3, It distributes in order of the compressor 2.
  • both the first sub heat exchange unit 41 and the second sub heat exchange unit 42 only absorb heat from the outdoor air 11.
  • the refrigerant may flow into the auxiliary heat exchange unit 41 first, or the refrigerant may flow into the second auxiliary heat exchange unit 42 first.
  • bypass valve 62 is closed to sufficiently expand the refrigerant by the expansion device 6. Note that the pressure loss in the first heat exchange unit 4 is reduced as much as possible by fully opening the sub expansion device 43 and opening the sub bypass valve 45, or both of them. Note that the opening degree of the sub-expansion device 43 may not be fully opened.
  • the high-temperature refrigerant discharged from the compressor 2 exchanges heat with the indoor air 12 in the second heat exchanger 7 to be dissipated to heat the room.
  • the refrigerant liquefied at a low temperature is expanded by the expansion device 6 to be low-pressure to be gas-liquid two-phase.
  • the refrigerant absorbs heat from the outdoor air 11 in the first heat exchange unit 4 and is vaporized, and is sucked into the compressor 2 to be increased in temperature and pressure again.
  • the heat pump device 1 can continuously heat the room.
  • the refrigerant may flow into the first auxiliary heat exchange unit 41 from the inflow switching unit 5 or the refrigerant flows into the second auxiliary heat exchange unit 42 first. Also good. Further, the bypass valve 62 is closed to sufficiently expand the refrigerant by the expansion device 6. Note that the pressure loss in the first heat exchange unit 4 is reduced as much as possible by fully opening the sub expansion device 43 and opening the sub bypass valve 45, or both of them. Note that the opening degree of the sub-expansion device 43 may not be fully opened.
  • the high-temperature refrigerant discharged from the compressor 2 is radiated by exchanging heat with the outdoor air 11 in the first heat exchange unit 4.
  • the refrigerant liquefied at a low temperature is expanded by the expansion device 6 to be low-pressure to be gas-liquid two-phase.
  • the refrigerant absorbs heat from the indoor air 12 in the second heat exchanger 7 to cool the room.
  • the refrigerant that has absorbed heat and is vaporized is sucked into the compressor 2 and is again heated to high temperature and pressure.
  • the heat pump device 1 can continuously cool the room.
  • the normal heating operation and the normal cooling operation are mainly performed.
  • the heat contained in the outdoor air 11 is exchanged between the low-temperature refrigerant and the outdoor air 11, so that the moisture contained in the outdoor air 11 is changed to the outer surface of the first heat exchange unit 4. It adheres to and becomes frost.
  • the heat resistance increases, and the heat exchange efficiency of the first heat exchange unit 4 decreases.
  • frost adhesion is left unattended, the air passage is filled with frost, and eventually the air passage is blocked. Thereby, the outdoor air 11 is not circulated, and heat exchange in the first heat exchange unit 4 may be impossible. In order to avoid such a situation, a defrosting operation is required.
  • High temperature defrosting operation As the defrosting operation, a high temperature defrosting operation (also referred to as hot gas defrosting operation) will be described.
  • the refrigerant flow direction is the same as in the normal cooling operation. That is, the high-temperature refrigerant discharged from the compressor 2 flows into the first heat exchange unit 4. Thereby, the frost adhering to the 1st heat exchange unit 4 is melted by the high temperature refrigerant
  • heat used for defrosting at the time of the high temperature defrosting operation escapes to the outdoor air 11 having a low temperature at the time of the normal heating operation. Is stopped to suppress Such a high-temperature defrosting operation is one of the most commonly performed defrosting methods in a heat pump device.
  • the heat pump device 1 ensures comfort by enabling execution of the defrost heating operation and the semi-high temperature defrost operation in addition to the high temperature defrost operation.
  • defrosting heating operation that is, while defrosting one of the first auxiliary heat exchanging part 41 and the second auxiliary heat exchanging part 42, the other heat is absorbed and the second heat exchanger 7 dissipates heat.
  • operation to perform is demonstrated.
  • the refrigerant is the compressor 2, the pressure switching unit 3, the second heat exchanger 7, the bypass circuit 61 and the expansion device 6, the inflow switching unit 5, the first sub heat exchange unit 41, the sub expansion device 43, The second auxiliary heat exchange unit 42, the inflow switching unit 5, the pumping switching unit 3, and the compressor 2 are distributed in this order.
  • the defrosting control means 22 in the control unit 21 opens the bypass valve 62, reduces the amount of refrigerant flowing through the expansion device 6, opens the expansion device 6 fully open, and expands the refrigerant in the expansion device 6. Suppress.
  • the bypass valve 62 is opened, the refrigerant pressure difference before and after the expansion device 6 disappears, so that expansion of the refrigerant is suppressed without fully opening the expansion device 6.
  • the opening degree of the expansion device 6 is fully opened. Then, the defrosting control means 22 in the control unit 21 closes the sub-bypass valve 45 and increases the amount of refrigerant flowing through the sub-expansion device 43 to promote expansion of the refrigerant in the sub-expansion device 43.
  • the high-temperature refrigerant discharged from the compressor 2 exchanges heat with the indoor air 12 in the second heat exchanger 7 to be dissipated to heat the room.
  • the refrigerant having a low temperature by heating the room has at least the temperature of the indoor air 12, that is, a temperature sufficient for defrosting, even if the maximum heat exchange is performed in the second heat exchanger 7.
  • it since it is not expanded too much in the expansion device 6, it can distribute
  • the control unit 21 detects that the temperature of the refrigerant that has flowed out of the first auxiliary heat exchange unit 41 (the temperature detected by the first temperature detection unit 41a and is close to the condensation temperature of the refrigerant) is that the frost has melted.
  • the opening degree of the sub-expansion device 43 is adjusted to be slightly higher than the temperature at which the sub-expansion device is set, for example, 1 ° C.
  • the opening degree of the sub expansion device 43 is increased, the condensation temperature of the refrigerant decreases, and when the opening degree of the sub expansion device 43 is decreased, the condensation temperature of the refrigerant increases.
  • the control unit 21 determines that the temperature of the refrigerant flowing out from the second heat exchanger 7 (detected by the temperature detection unit 9) You may make it adjust the opening degree of the subexpansion apparatus 43 so that predetermined temperature difference (for example, 4 degreeC) may become higher than temperature.
  • predetermined temperature difference for example, 4 degreeC
  • the control unit 21 adjusts the opening degree of the sub-expansion device 43 so that the temperature of the refrigerant discharged from the compressor 2 (detected by the temperature detection unit 13) becomes the set discharge temperature. You may do it.
  • the opening degree of the sub expansion device 43 is increased, the discharge temperature of the refrigerant is lowered, and when the opening degree of the sub expansion device 43 is lowered, the discharge temperature of the refrigerant is raised.
  • the set discharge temperature is, for example, the temperature of the refrigerant that has flowed out of the first auxiliary heat exchange unit 41 (the temperature detected by the first temperature detection unit 41a and close to the condensation temperature of the refrigerant), and the secondary expansion.
  • the temperature of the refrigerant that expands in the device 43 and flows into the second auxiliary heat exchange unit 42 (the temperature detected by the second temperature detection unit 42a and close to the evaporation temperature of the refrigerant), the frequency of the compressor 2 and It is a value calculated using structural characteristics (such as the volume of the portion to be compressed) and refrigerant characteristics (such as the type of refrigerant, the set degree of superheat or the set degree of cooling). Note that if the lower limit value of the calculated set discharge temperature is set to be at least a predetermined temperature (for example, 5 ° C.) higher than the temperature of the indoor air 12, the refrigerant discharge temperature is excessively lowered and heating is performed. It is possible to avoid such a situation that it becomes impossible.
  • a predetermined temperature for example, 5 ° C.
  • the method for determining the opening degree of the sub-expansion device 43 is not so-called feedback control in which the opening degree of the sub-expansion device 43 is appropriately changed based on the detected refrigerant discharge temperature or condensation temperature.
  • so-called feedforward control may be used in which the opening degree of the sub-expansion device 43 is uniquely determined by a plurality of patterns determined in advance according to the frequency of the compressor 2 and the temperature of the outdoor air 11. Then, the refrigerant which has been expanded in the auxiliary expansion device 43 and reduced in pressure and gas-liquid two-phased is absorbed by the second auxiliary heat exchanging part 42 from the outdoor air 11 and vaporized, and is sucked into the compressor 2 to be again heated and pressurized again. It becomes.
  • the heat pump device 1 absorbs heat at the second sub heat exchange unit 42 and radiates heat at the second heat exchanger 7 while defrosting the first sub heat exchange unit 41, Can be continuously heated.
  • this defrosting heating operation although the maximum capacity in the normal heating operation in which heat is absorbed by both the first auxiliary heat exchanging part 41 and the second auxiliary heat exchanging part 42 is not reached, the indoor temperature can be raised to some extent. For example, the need for heating at maximum capacity is low and comfort is not impaired.
  • a semi-high temperature defrosting operation (also referred to as a semi-hot gas defrosting operation), that is, while defrosting one of the first auxiliary heat exchanging part 41 and the second auxiliary heat exchanging part 42, The operation of absorbing heat and absorbing heat in the second heat exchanger 7 will be described.
  • the refrigerant is the compressor 2, the pressure switching unit 3, the inflow switching unit 5, the first sub heat exchange unit 41, the sub expansion device 43, the second sub heat exchange unit 42, the inflow switching unit 5, and the bypass circuit. 61, the expansion device 6, the second heat exchanger 7, the pumping switching unit 3, and the compressor 2 are distributed in this order.
  • the defrosting control means 22 in the control unit 21 opens the bypass valve 62, reduces the amount of refrigerant flowing through the expansion device 6, opens the expansion device 6 fully open, and expands the refrigerant in the expansion device 6. Suppress.
  • the bypass valve 62 is opened, the refrigerant pressure difference before and after the expansion device 6 disappears, so that expansion of the refrigerant is suppressed without fully opening the expansion device 6.
  • the opening degree of the expansion device 6 is fully opened.
  • the defrosting control means 22 in the control unit 21 closes the sub-bypass valve 45 and increases the amount of refrigerant flowing through the sub-expansion device 43 to promote expansion of the refrigerant in the sub-expansion device 43.
  • the controller 21 causes the temperature of the refrigerant flowing out from the first auxiliary heat exchanging unit 41 (the temperature detected by the first temperature detecting unit 41a, which is close to the refrigerant condensing temperature) to melt the frost.
  • the opening degree of the sub expansion device 43 is adjusted so as to be higher than the temperature, for example, 2 ° C.
  • the opening degree of the sub expansion device 43 is increased, the condensation temperature of the refrigerant decreases, and when the opening degree of the sub expansion device 43 is decreased, the condensation temperature of the refrigerant increases.
  • the control unit 21 adjusts the opening degree of the sub-expansion device 43 so that the temperature of the refrigerant discharged from the compressor 2 (detected by the temperature detection unit 13) becomes the set discharge temperature. You may do it.
  • the opening degree of the sub expansion device 43 is increased, the discharge temperature of the refrigerant is lowered, and when the opening degree of the sub expansion device 43 is lowered, the discharge temperature of the refrigerant is raised.
  • the set discharge temperature is, for example, the temperature of the refrigerant that has flowed out of the first auxiliary heat exchange unit 41 (the temperature detected by the first temperature detection unit 41a and close to the condensation temperature of the refrigerant), and the secondary expansion.
  • the temperature of the refrigerant that expands in the device 43 and flows into the second auxiliary heat exchange unit 42 is a value calculated using structural characteristics (such as the volume of the portion to be compressed) and refrigerant characteristics (such as the type of refrigerant, the set degree of superheat or the set degree of cooling).
  • the method for determining the opening degree of the sub-expansion device 43 is not so-called feedback control in which the opening degree of the sub-expansion device 43 is appropriately changed based on the detected refrigerant discharge temperature or condensing temperature as described above.
  • a so-called feed-forward control may be employed in which the opening degree of the sub-expansion device 43 is uniquely determined by a plurality of patterns determined in advance according to the frequency of the machine 2 and the temperature of the outdoor air 11.
  • the high-temperature refrigerant discharged from the compressor 2 flows into the first sub heat exchange unit 41, and the frost adhering to the first sub heat exchange unit 41 is melted by the high-temperature refrigerant and removed. Frosted.
  • the refrigerant that has been expanded in the sub-expansion device 43 and reduced in pressure to be gas-liquid two-phase is vaporized by absorbing heat from the outdoor air 11 in the second sub-heat exchanger 42. Since the vaporized refrigerant is not expanded by the expansion device 6, it remains at a high temperature (although it is at most about the same temperature as the outdoor air 11, which is a heat source), and the outdoor air 11 is cooler than the indoor air 12.
  • the semi-high temperature defrosting operation unlike the defrosting heating operation, heating is not continued while defrosting, but most of the heat source necessary for defrosting is the second auxiliary heat exchange unit 42. It is covered by outdoor air 11.
  • the second auxiliary heat exchanging unit 42 is also defrosted, so the heat source necessary for defrosting is the indoor air 12 in the second heat exchanger 7. Therefore, in the semi-high temperature defrosting operation, the heat absorption from the indoor air 12 in the second heat exchanger 7 is suppressed more than in the high temperature defrosting operation.
  • the semi-high temperature defrosting operation is performed, the temperature of the indoor air 12 is suppressed from excessively decreasing, and thus comfortable. Does not impair sex.
  • both the defrosting heating operation and the semi-high temperature defrosting operation may be appropriately changed by the control unit 21. For example, when the room is not sufficiently warm and the room temperature is low, the defrost heating operation is performed and the heating is continued. In addition, when the room is sufficiently warm and the room temperature is high, a semi-high temperature defrosting operation is performed to increase the defrosting capacity and to defrost in a shorter time so that the normal heating operation can be quickly restored. .
  • the semi-high temperature defrosting operation when the room is not sufficiently warm, the semi-high temperature defrosting operation may be performed, and when the room is sufficiently warm, the defrosting heating operation may be performed. In this way, by properly using the defrosting heating operation and the semi-high temperature defrosting operation, it is possible to appropriately select whether to give priority to indoor comfort or to defrost efficiency.
  • the control unit 21 determines the end of the defrosting. Specifically, the threshold determination unit 23 determines whether or not the temperature of the refrigerant detected by the first temperature detection unit 41a or the second temperature detection unit 42a is equal to or higher than a predetermined threshold, When the threshold determination unit 23 determines that the temperature of the refrigerant is equal to or higher than the threshold while the end determination unit 24 defrosts the first sub heat exchange unit 41 or the second sub heat exchange unit 42. It is determined that the defrosting of the auxiliary heat exchange unit has been completed.
  • This determination uses an action in which the temperature of the refrigerant starts to rise rapidly because the heat absorption source disappears when the defrosting in the auxiliary heat exchange unit is completed.
  • the opening degree of the sub-expansion device 43 is controlled according to the condensation temperature, the temperature rise of the refrigerant as described above is suppressed by controlling the opening degree of the sub-expansion device 43. For this reason, you may make it determine with the defrosting having been complete
  • the defrosting end determination in the high temperature defrosting operation is performed using the temperature detection unit 10 provided between the first heat exchange unit 4 and the expansion device 6, and the refrigerant flowing out from the first heat exchange unit 4.
  • the predetermined threshold value is set to a temperature (for example, 3 ° C.) slightly higher than 0 ° C. as a temperature at which frost melts. This is because the temperature of the refrigerant does not become higher than the temperature at which the frost melts due to the heat of melting of the frost unless the defrosting of the auxiliary heat exchange unit is completed, and the temperature is slightly higher. This is because it takes into account the increase in the thermal resistance between the refrigerant and the frost and the change in the melting temperature of the frost due to the atmospheric pressure of the outdoor air 11.
  • the first heat exchange unit 4 installed outdoors has the first sub heat exchange unit 41, the second sub heat exchange unit 42, and the sub heat exchange unit 42.
  • the expansion device 43 is configured.
  • the defrosting control means 22 defrosts the first sub heat exchange section 41 or the second sub heat exchange section 42
  • the pressure difference of the refrigerant flowing through the first heat exchange unit 4 is sub-expanded. Increase with device 43.
  • the heat pump apparatus 1 thermally radiates, and it absorbs heat from the other simultaneously.
  • the 2nd heat exchanger 7 installed indoors by absorbing heat from the other.
  • warm heat can be supplied to the indoor air 12 (defrost heating operation).
  • the quantity absorbed by the 2nd heat exchanger 7 is absorbed by absorbing heat from the other. It can be reduced (semi-high temperature defrosting operation).
  • the defrosting can be performed while the heat is supplied to the room which is the heat demand section, so that the user's discomfort is suppressed and the comfort is improved.
  • the refrigerant discharged from the compressor 2 is supplied to the second heat exchanger 7 (load heat exchanger) before the first heat exchange unit 4.
  • the first sub heat exchange unit 41 or the second sub heat exchange unit 42 is defrosted using the residual heat of the refrigerant radiated by the second heat exchanger 7. . For this reason, energy efficiency is high.
  • the high-temperature refrigerant discharged from the compressor 2 is supplied to the first heat exchange unit 4 before the second heat exchanger 7. Although energy efficiency is not so high, it is possible to defrost at high speed.
  • the defrosting heating operation and the semi-high temperature defrosting operation are realized. Therefore, the distribution route is simple, and the size and cost of the device increase with the increase in the number of devices. The rise can be suppressed. Further, the refrigerant flow path is the same in the normal heating operation and the defrosting heating operation, and is the same in the normal cooling operation and the semi-high temperature defrosting operation. For this reason, an unnecessary valve required for switching the operation mode can be omitted, and the number of portions where the refrigerant pool is generated can be reduced.
  • the refrigerant pool does not occur before and after the defrosting process, the process for eliminating the refrigerant pool is unnecessary, and the operation of the heat pump device 1 is simple. Thereby, it is allowed to lower the pressure resistance performance of the pipe, and an increase in the amount of the refrigerant can be suppressed, so that an increase in cost can be suppressed.
  • the pressure feed switching unit 3 since the pressure feed switching unit 3 is provided, the flow direction of the refrigerant can be changed by the pressure feed switching unit 3. For this reason, both normal heating operation for supplying warm air to the indoor air 12 and normal cooling operation for supplying cold heat to the indoor air 12 are possible.
  • the refrigerant discharged from the compressor 2 is supplied to the second heat exchanger 7 (load heat exchanger) prior to the first heat exchange unit 4, and the second heat exchanger 7 Defrosting heating operation for defrosting the first auxiliary heat exchanging part 41 or the second auxiliary heat exchanging part 42 in the first heat exchanging unit 4 using the residual heat of the radiated refrigerant, and compression
  • the high-temperature refrigerant discharged from the machine 2 is supplied to the first heat exchange unit 4 before the second heat exchanger 7, and the first sub heat exchange in the first heat exchange unit 4 is performed.
  • the high temperature defrosting operation and the semi-high temperature defrosting operation in which the part 41 or the second auxiliary heat exchange unit 42 is directly defrosted with a high temperature refrigerant can be used properly.
  • the inflow switching unit 5 can change the flow direction of the refrigerant in the first heat exchange unit 4.
  • the defrosting control means 22 increases the pressure difference of the sub expansion device 43 while switching the refrigerant flow direction in the inflow switching unit 5, whereby the first sub heat exchange unit 41 and the second sub heat.
  • heat can be removed and defrosted to the auxiliary heat exchange part through which the refrigerant flows first, and then absorbed by the auxiliary heat exchange part through which the refrigerant flows.
  • the defrosting heating operation and the semi-high temperature defrosting operation are performed by the first sub heat exchange unit 41 and the second sub heat exchange. This can be done in part 42.
  • bypass circuit 61 and the bypass valve 62 are provided, the operation of closing the bypass valve 62 and increasing the refrigerant pressure difference before and after the expansion device 6, that is, normal heating operation, normal cooling operation, and An operation in which the high-temperature defrosting operation is possible and the bypass valve 62 is opened to reduce the refrigerant pressure difference before and after the expansion device 6 and increase the refrigerant pressure difference before and after the auxiliary expansion device 43, that is, Defrosting heating operation and semi-high temperature defrosting operation are possible. For this reason, the energy efficiency at the time of defrosting improves.
  • auxiliary bypass circuit 44 and the auxiliary bypass valve 45 are provided, the operation of closing the auxiliary bypass valve 45 and increasing the refrigerant pressure difference before and after the auxiliary expansion device 43, that is, the defrosting heating operation.
  • the semi-high temperature defrosting operation is possible, and by opening the auxiliary bypass valve 45 and bypassing the auxiliary expansion device 43, the pressure difference of the refrigerant before and after the auxiliary expansion device 43 is reduced, and the first auxiliary defrosting operation is performed.
  • An operation that absorbs or dissipates heat from both the heat exchange unit 41 and the second auxiliary heat exchange unit 42, that is, a normal heating operation, a normal cooling operation, and a high-temperature defrosting operation are possible. Thereby, the increase in the pressure loss in the 1st heat exchange unit 4 can be suppressed, and the fall of efficiency can be suppressed.
  • coolant with an opening degree is employ
  • the determination accuracy of the completion of the defrosting in the defrosting heating operation and the semi-high temperature defrosting operation is extremely high. For this reason, useless energy consumption required for defrosting can be suppressed. Moreover, the defrosting time can be suppressed, and the effect of improving comfort or reducing discomfort is further enhanced.
  • a heat pump device 1 according to a modification of the first embodiment will be described.
  • the heat pump device 1 can perform the normal heating operation and the defrosting heating operation even if the pumping switching unit 3 is omitted.
  • the normal cooling operation, the high temperature defrosting operation, and the semi-high temperature defrosting operation are possible even if the pumping switching unit 3 is omitted.
  • the pumping switching part 3 can be omitted.
  • the inflow switching unit 5 can be omitted.
  • frost is likely to be generated in one of the first sub heat exchange unit 41 and the second sub heat exchange unit 42 (for example, frost formation on the sub heat exchange unit on the upstream side with respect to the flow of the outdoor air 11).
  • frost is likely to be generated in one of the first sub heat exchange unit 41 and the second sub heat exchange unit 42 (for example, frost formation on the sub heat exchange unit on the upstream side with respect to the flow of the outdoor air 11).
  • frost is likely to be generated in one of the first sub heat exchange unit 41 and the second sub heat exchange unit 42 (for example, frost formation on the sub heat exchange unit on the upstream side with respect to the flow of the outdoor air 11).
  • frost is likely to be generated in one of the first sub heat exchange unit 41 and the second sub heat exchange unit 42 (for example, frost formation on the sub heat exchange unit on the upstream side with respect to the flow of the outdoor air 11).
  • one of them can be defrosted at a high speed by a
  • either the first sub heat exchange unit 41 or the second sub heat exchange unit 42 is defrosted while being heated by the defrost heating operation, and both are simultaneously defrosted at a high speed by the high temperature defrost operation. You may do it. Thereby, even if it omits the inflow switching part 5, when it is at least a semi-high temperature defrost operation or a defrost heating operation, the fall of comfort can be suppressed.
  • the bypass circuit 61 and the bypass valve 62 can be omitted as long as the pressure loss is in an allowable range. This contributes to cost reduction.
  • the sub bypass circuit 44 and the sub bypass valve 45 can be omitted as long as the pressure loss is within an allowable range.
  • the sub-expansion device 43 may be configured by a capillary tube instead of the expansion valve that adjusts the refrigerant flow rate.
  • This capillary tube does not change the opening degree like an expansion valve, and the pressure difference before and after passage is fixed in accordance with the circulation amount of the refrigerant.
  • the present invention is not limited to this. It is good also as a structure to cool.
  • the liquid heated or cooled by the second heat exchanger 7 may be used to indirectly heat or cool the room with a fan coil, radiator, floor heating, or the like disposed in the room. Good.
  • the heat demand unit may generate hot water, hot water for heating, cold water for cooling, or the like.
  • the bypass valve 62 and the sub bypass valve 45 have been described as on-off valves that adjust whether the refrigerant flows or stops in the bypass circuit 61 and the sub bypass circuit 44. It is preferable to use a valve that gradually changes (for example, 2 minutes are required for opening and closing) including an intermediate opening between the closed state and the fully opened state. In this case, when various operation modes (normal heating operation, defrost heating operation, high temperature defrost operation, semi-high temperature defrost operation, etc.) are switched, the temperature, pressure or amount of the refrigerant in each part of the refrigerant circuit 8 is rapidly changed. Smooth switching is possible while suppressing various fluctuations.
  • various operation modes normal heating operation, defrost heating operation, high temperature defrost operation, semi-high temperature defrost operation, etc.
  • finish judgment of the defrost in a defrost heating operation, a semi-high temperature defrost operation, or a high temperature defrost operation is made into the 1st temperature detection part 41a, the 2nd temperature detection part 42a, or temperature detection.
  • the absolute value comparison of the temperature detected in the unit 10 is performed, the relative value comparison by the temperature change at a predetermined time interval, or both the absolute value comparison and the relative value comparison may be performed. In this case, the same effect as that of the first embodiment is obtained.
  • the heat pump apparatus 1 is provided with the suppression means which suppresses heat exchange with the exterior of the sub bypass valve 45, and air.
  • the suppression means can be realized, for example, by laying a heat insulating material on the outside of the sub bypass valve 45, or by forming a two-layer structure outside the movable part of the sub bypass valve 45 and enclosing a dry gas between the layers.
  • the suppression means is arranged at a location away from the auxiliary heat exchange part so that it does not come in contact with moisture, or a shielding part is provided between the auxiliary heat exchange part so that the air containing moisture is difficult to hit. It can be realized by doing. Thereby, the frost formation to the sub bypass valve 45 can be suppressed, and the malfunction of the operation
  • the heat pump device 1 may include a heating unit such as a heater in the sub bypass valve 45 instead of the suppression means.
  • a heating unit such as a heater in the sub bypass valve 45 instead of the suppression means.
  • the control unit 21 determines that it is necessary to operate the sub bypass valve 45 after a normal heating operation or the like.
  • the sub bypass valve 45 is heated by the heating unit and defrosted, whereby ice accretion is achieved.
  • the sub bypass valve 45 can be operated reliably.
  • the heat pump device 1 may include both the suppression unit and the heating unit. In this case, heat radiation from the heating unit to the outside can be suppressed, and the outside of the sub bypass valve 45 can be efficiently defrosted.
  • FIG. 2 is a schematic diagram showing a heat pump device 100 according to the second embodiment.
  • the second embodiment is different from the first embodiment in that a plurality of flow paths through which the refrigerant branches and flows are formed in the first sub heat exchange section 41 and the second sub heat exchange section 42. Is different.
  • portions common to the first embodiment are denoted by the same reference numerals, description thereof is omitted, and differences from the first embodiment will be mainly described.
  • a first circulation path 4 a and a second circulation path 4 b are formed in the first auxiliary heat exchanging part 41 so that the refrigerant always branches and flows in parallel.
  • the first distribution path 4a and the second distribution path 4b are also formed in the second auxiliary heat exchange unit 42 as they are.
  • the first flow path 4a branches between the first sub heat exchange unit 41 and the second sub heat exchange unit 42, one is connected to one end of the sub expansion device 43, and the other is the first It is connected to one end of the sub bypass circuit 44a.
  • the first flow path 4a joins again at the other end of the sub-expansion device 43 and the other end of the first sub-bypass circuit 44a.
  • the first sub bypass circuit 44a is provided with a first sub bypass valve 45a.
  • the first sub bypass valve 45a controls whether or not the refrigerant flows through the first sub bypass circuit 44a.
  • the second flow path 4b also branches between the first sub heat exchange unit 41 and the second sub heat exchange unit 42, one of which is connected to one end of the sub expansion device 43, and the other is the second sub heat exchange unit 42. 2 is connected to one end of the secondary bypass circuit 44b. Then, the second flow path 4b joins again at the other end of the sub expansion device 43 and the other end of the second sub bypass circuit 44b.
  • the second sub bypass circuit 44b is provided with a second sub bypass valve 45b.
  • the second sub bypass valve 45b controls whether or not the refrigerant flows through the second sub bypass circuit 44b.
  • the secondary expansion device 43 is installed at a portion where the first distribution path 4a and the second distribution path 4b merge.
  • the first temperature detection unit 41a and the second temperature detection unit 42a are provided at both ends of the sub-expansion device 43 installed at the portion where the first flow path 4a and the second flow path 4b merge. It has been.
  • the heat pump device 100 according to the second embodiment is different from the first embodiment in that a plurality of distribution paths are formed, but a normal heating operation, a normal cooling operation, a defrost heating operation, and a semi-high temperature defrost operation.
  • the operation of the high temperature defrosting operation is the same as that of the first embodiment.
  • the first sub-bypass valve 45a and the second sub-bypass valve 45b in the second embodiment are simultaneously opened and closed at the same timing when the sub-bypass valve 45 in the first embodiment is opened and closed.
  • the configuration adopted in the modification of the first embodiment can also be adopted in the second embodiment.
  • the first flow path 4a and the second flow path through which the refrigerant branches and flows to the first sub heat exchange unit 41 and the second sub heat exchange unit 42 Since 4b is formed, the pressure loss in the 1st sub heat exchange part 41 and the 2nd sub heat exchange part 42 is reduced more. For this reason, in addition to the effect obtained in the first embodiment, the efficiency of the refrigeration cycle in the refrigerant circuit 8 can be increased.
  • first secondary bypass circuit 44a and the second secondary bypass circuit 44b are connected to the first circulation path 4a and the second circulation path 4b, respectively, bypass for bypassing the secondary expansion device 43
  • the function is improved and the pressure difference of the refrigerant is reduced.
  • the first circulation path 4a and the second circulation path are formed at both ends of the sub-expansion device 43. Since the two distribution channels 4b once join, this imbalance is corrected naturally. At that time, the first distribution path 4a and the second distribution path 4b are merged after branching to the first sub-bypass circuit 44a and the second sub-bypass circuit 44b, respectively. There is no increase in pressure loss, or a large increase.
  • the first sub bypass valve 45a and the second sub bypass valve 45b are provided separately for the first sub bypass circuit 44a and the second sub bypass circuit 44b, respectively.
  • it is a body valve, it is opened and closed simultaneously at the same timing, and even if the valve body is formed integrally or a single motor that supplies the driving power required for opening and closing is combined Good. In this case, it becomes easier to obtain the effect of downsizing or cost reduction.
  • first sub-bypass circuits 44a and first sub-bypass valves 45a may be provided in the first distribution path 4a.
  • a plurality of second sub-bypass circuits 44b and second sub-bypass valves 45b may be provided in the second flow path 4b.
  • the same number of flow paths (the first flow path 4a and the second flow path) are used in the first sub heat exchange unit 41 and the second sub heat exchange unit 42 before and after the sub expansion device 43.
  • a different number of distribution channels may be used.
  • a plurality of secondary bypass circuits are branched from at least one distribution path.
  • FIG. 3 is a schematic diagram showing a heat pump device 200 according to the third embodiment.
  • the third embodiment is different from the first embodiment in that the heat exchange unit 4 includes a plurality of, for example, first heat exchange units 4-1 and 4-2.
  • portions common to the first embodiment are denoted by the same reference numerals, description thereof is omitted, and differences from the first embodiment will be mainly described.
  • the third embodiment includes two first heat exchange units 4-1 and 4-2, and the refrigerant flows from the inflow switching unit 5 to the refrigerant forward piping and the return passage.
  • the first heat exchange units 4-1 and 4-2 are branched in parallel, and then merged.
  • the first heat exchange unit 4-1 includes a first sub heat exchange unit 41-1, a second sub heat exchange unit 42-1, a first temperature detection unit 41a-1, and a second temperature detection unit 42a. -1, a secondary expansion device 43-1, a secondary bypass circuit 44-1, and a secondary bypass valve 45-1.
  • the second heat exchange unit 4-2 includes a first sub heat exchange unit 41-2, a second sub heat exchange unit 42-2, a first temperature detection unit 41a-2, and a second temperature detection.
  • a portion 42a-2, a sub expansion device 43-2, a sub bypass circuit 44-2, and a sub bypass valve 45-2 are provided.
  • the first heat exchange unit 4-1 and the second heat exchange unit 4-2 have the same configuration.
  • the refrigerant flowing from the inflow switching unit 5 always branches in parallel to the first heat exchange units 4-1, 4-2 and flows into the first heat exchange units 4-1, 4-2.
  • the refrigerant discharged from the heat exchange units 4-1 and 4-2 joins and returns to the inflow switching unit 5. Therefore, as in the first embodiment, in each of the first heat exchange units 4-1 and 4-2, the refrigerant flow is always the same as in the first embodiment regardless of the operating state. In series.
  • the first auxiliary heat exchange units 41-1 and 41-2 are defrosted at the same time, or the second auxiliary heat exchange units 42-1 and 42- The operation of either defrosting 2 at the same time is performed.
  • the sub bypass valves 45-1 and 45-2 are simultaneously closed, and the control unit 21 performs the same method as in the first embodiment in accordance with the discharge temperature (temperature detected by the temperature detection unit 13).
  • the sub-expansion devices 43-1 and 43-2 are set to the same opening degree.
  • the opening degree of the sub expansion device 43-1 is determined by the first temperature detection unit.
  • 41a-1 is controlled according to the temperature (close to the condensing temperature, more precisely, the temperature obtained by subtracting the subcooling temperature from the condensing temperature), and the opening degree of the sub expansion device 43-2 is determined by the first temperature detecting unit.
  • the temperature may be controlled according to the temperature detected at 41a-2 (close to the condensation temperature, more precisely, the temperature obtained by subtracting the subcool temperature from the condensation temperature).
  • the opening degree of the sub expansion devices 43-1 and 43-2 depends on the temperature of the first temperature detection units 41a-1 and 41a-2 (or the second temperature detection units 42a-1 and 42a-2).
  • the opening ratio of the sub-expansion devices 43-1 and 43-2 is maintained at a controlled value according to the discharge temperature (the temperature detected by the temperature detector 13).
  • the discharge temperature and the temperature close to the condensation temperature may be controlled simultaneously by increasing / decreasing itself. Then, when the detection values of the first temperature detection units 41a-1 and 41a-2 are both higher than a predetermined value, it is determined that the defrosting is finished.
  • the third embodiment has a configuration in which a plurality of first heat exchange units 4-1 and 4-2 are arranged in parallel, and performs the same operation as in the first embodiment.
  • the pressure loss of the refrigerant circuit 8 on the first heat exchange units 4-1 and 4-2 side is further suppressed.
  • FIG. 4 is a schematic diagram showing the first heat exchange unit 4 in the fourth embodiment.
  • the heat pump device 300 includes the blower fan 46, and the blower fan 46 is provided individually for each of the plurality of sub heat exchange units in the first heat exchange unit 4. This is different from the first embodiment.
  • portions common to the first embodiment are denoted by the same reference numerals, description thereof is omitted, and differences from the first embodiment will be mainly described.
  • the first sub heat exchange unit 41 and the second sub heat exchange unit 42 in the first heat exchange unit 4 are individually connected to the first heat exchange unit 41.
  • a first blower fan 46a and a second blower fan 46b are provided.
  • a partition plate 47 is provided between the first sub heat exchange unit 41 and the second sub heat exchange unit 42, and this partition plate 47 is blown by the first blower fan 46a.
  • the outdoor air 11a and the outdoor air 11b blown by the second blower fan 46b are separated.
  • the control unit 21 performs defrosting.
  • the blower fan on the side of the heat exchange unit is stopped, and the blower fan on the side of the auxiliary heat exchange unit that is not defrosted is operated to continue the heat absorption operation.
  • the rotation of the first blower fan 46a is stopped and the outdoor air 11a is changed to the first sub heat exchange unit 42.
  • the second blower fan 46 b While not being supplied to the heat exchanging part 41, the second blower fan 46 b is rotated, and the outdoor air 11 b is supplied to the second auxiliary heat exchanging part 42. Thereby, since it becomes difficult to radiate heat to the outdoor air 11a in the first sub heat exchange part 41, it is possible to efficiently defrost, and the second sub heat exchange part 42 efficiently absorbs heat from the outdoor air 11b. be able to.
  • the control unit 21 stops the rotation of both the first blower fan 46a and the second blower fan 46b, and efficiently suppresses heat radiation from the refrigerant to the outdoor air 11. Defrosted.
  • the control unit 21 rotates both the first blower fan 46a and the second blower fan 46b, and the first heat exchange unit 4 performs the normal heating operation. Heat can be absorbed from the outdoor air 11 efficiently, and heat can be efficiently radiated to the outdoor air 11 in the normal cooling operation.
  • the partition plate 47 is provided, but the partition plate 47 may be omitted. Further, when the fourth embodiment and the third embodiment are combined, one blower fan corresponding to the first sub heat exchange units 41-1 and 41-2 is provided, and the second sub heat exchange unit 42 is provided. -1 and 42-2 may be provided with another blower fan.
  • FIG. 5 is a schematic diagram showing the first heat exchange unit 4 in the fifth embodiment.
  • the heat pump device 400 includes the blower fan 46, and the blower fan 46 is different from the first embodiment in that the air blowing direction can be switched in both directions.
  • portions common to the first embodiment are denoted by the same reference numerals, description thereof is omitted, and differences from the first embodiment will be mainly described.
  • the blowing fan 46 switches the direction of blowing the outdoor air 11 in both directions by changing the rotation direction.
  • a direction in which the air is blown from the auxiliary heat exchange unit to the blower fan 46 is a forward direction 11c
  • a direction in which the air is blown from the blower fan 46 to the auxiliary heat exchange unit is a reverse direction 11d.
  • the first sub heat exchange part 41 and the second sub heat exchange part 42 are arranged in series with respect to the air blowing direction of the air blown by the blower fan 46.
  • the control unit The defrosting control means 22 in 21 changes the air blowing direction in the blower fan 46 so that the defrosting side auxiliary heat exchanging part is located upstream of the air blowing direction in the blower fan 46. Switch.
  • the defrosting control means 22 determines the blowing direction of the outdoor air 11 by the blower fan 46, Switch to the forward direction 11c.
  • the defrosting control unit 22 determines the blowing direction of the outdoor air 11 by the blower fan 46. Switch to the reverse direction 11d.
  • the rotational speed of the blower fan 46 is set lower than that in the normal heating operation or the normal cooling operation so that the heat released from the refrigerant during the defrosting is not excessively taken away by the outdoor air 11. It is preferable to make it.
  • the blower fan 46 is stopped in order to efficiently defrost.
  • the heat released from the refrigerant in the upstream side secondary heat exchange unit for defrosting is recovered as a heat absorption source in the downstream side secondary heat exchange unit that continues the endothermic operation. For this reason, it is possible to achieve efficient defrosting and heat absorption only by providing one blower fan 46, and to reduce the number of parts, and to manufacture a heat pump device 400 with low cost, compactness, low failure risk, and high reliability. Can do.
  • the first auxiliary heat exchanging units 41-1 and 41-2 are arranged in parallel upstream or downstream with respect to the blowing direction in the blower fan 46.
  • the second auxiliary heat exchange units 42-1 and 42-2 are arranged in parallel on the downstream side or the upstream side with respect to the blowing direction in the blower fan 46, and the first auxiliary heat exchange units 41-1 and 41- are arranged. 2 and the second auxiliary heat exchanging units 42-1 and 42-2 may be arranged in series with respect to the blowing direction of the blowing fan 46.
  • FIG. 6 is a schematic diagram showing the first heat exchange unit 4 in the sixth embodiment.
  • the sixth embodiment is different from the first embodiment in that the heat pump device 500 includes a blower fan 46 and a heating unit 48.
  • the heat pump device 500 includes a blower fan 46 and a heating unit 48.
  • portions common to the first embodiment are denoted by the same reference numerals, description thereof is omitted, and differences from the first embodiment will be mainly described.
  • the first auxiliary heat exchanging part 41 and the second auxiliary heat exchanging part 42 are arranged in series with respect to the blowing direction of the air blown by the blower fan 46.
  • the first auxiliary heat exchanging part 41 is arranged on the upstream side with respect to the blowing direction of the air blown by the blower fan 46.
  • a heating means 48 which is an electric heater is provided between the first sub heat exchange section 41 and the second sub heat exchange section 42, along the second sub heat exchange section 42 on the second sub heat exchange section 42 side.
  • FIG. 7 is a schematic diagram showing the second sub heat exchange unit 42 in the sixth embodiment.
  • the second auxiliary heat exchanging unit 42 has a plurality of plate fins 49 stacked, and two refrigerant tubes 50 penetrate these plate fins 49 in the stacking direction. Yes.
  • the refrigerant pipe 50 is a part of the first circulation path 4a, the second circulation path 4b in the second embodiment, or the refrigerant circuit 8 in other embodiments.
  • the heating means 48 is disposed in parallel with the refrigerant pipe 50 along the outer edge of the second sub heat exchange part 42.
  • the heating means 48 may not be arranged in parallel with the refrigerant pipe 50, and is not attached to the outer edge of the second auxiliary heat exchanging section 42, but is attached to a part of the refrigerant pipe 50 or the plate fin 49. It may be worn or built in.
  • FIG. 8 is a schematic diagram showing a heat pump device 500 according to the sixth embodiment.
  • the refrigerant circuit 8 a of the heat pump device 500 does not include the pressure feed switching unit 3 and the inflow switching unit 5.
  • the expansion device 6 is provided with a plurality of capillary tubes 63 and 64 and shut-off valves 63a and 63b that cause a fixed pressure loss instead of the expansion valve as in the above-described embodiment.
  • the shut-off valves 63a and 63b switch the capillary tubes 63 and 64 through which the refrigerant flows, and flow only through the capillary tube 63, flow through only the capillary tube 64, and neither of the capillary tubes 63 and 64 flows.
  • 64 can be switched to four ways of distribution.
  • the capillary tubes 63 and 64 and the shutoff valves 63a and 64a may not be two sets as shown in FIG. 8, but may be one set or a plurality of sets of three or more. In the case of one set, the adjustment of the circulation amount of the refrigerant becomes coarse, and the adjustment of the circulation amount of the refrigerant becomes finer as the number of combinations increases. Further, when there is one capillary tube 63, the circulation of the refrigerant is not switched, and therefore the shutoff valve may be omitted.
  • the secondary expansion device 43 in the first heat exchange unit 4 is not an expansion valve, but a capillary tube 65 that becomes a fixed pressure loss as in the above embodiment.
  • the compressor 2, the second heat exchanger 7, the plurality of capillary tubes 63 and 64, the expansion device 6 including the shut-off valves 63a and 64a, the first heat exchange unit 4, and the compressor 2 are provided.
  • the refrigerant circulates in this order.
  • the refrigerant from the expansion device 6 flows in the order of the first sub heat exchange unit 41, the sub expansion device 43 including the capillary tube 65, and the second sub heat exchange unit 42. Circulate.
  • the heat pump device 500 according to the sixth embodiment can only dissipate heat from the second heat exchanger 7 to the indoor air 12, and is a heating-only device. For this reason, normal cooling operation, high-temperature defrosting operation, and semi-high temperature defrosting operation cannot be performed, but normal heating operation and defrosting heating operation are possible in the same manner as in the above embodiment, and the same effects as in the above embodiment. Play. Further, since the expansion device 6 and the sub-expansion device 43 are not the expansion valve but are constituted by the capillary tubes 63 and 64 and the capillary tube 65, the reliability is improved because the device is cheaper and smaller, and is less likely to fail.
  • the capillary tubes 63 and 64 and the capillary tube 65 have a narrower range of refrigerant flow or compression ratio than the expansion valve. However, if the heating and defrosting conditions are kept constant, the efficiency of the operating conditions can be improved. Reduction can be suppressed as much as possible.
  • either one or both of the expansion device 6 and the sub expansion device 43 has a variable flow rate or compression ratio range.
  • a wide expansion valve may be used.
  • any one or both of the expansion device 6 and the sub expansion device 43 in the first, second, and third embodiments may be a capillary tube. In this case, an inexpensive, small, and highly reliable heat pump device is realized. be able to.
  • bypass valve 62 and the shutoff valves 63a and 64a may substitute two of these as three-way valves.
  • any piping or valve may be used as long as the distribution path can be switched.
  • FIG. 9 is a schematic diagram showing a heat pump device 600 according to the seventh embodiment.
  • the seventh embodiment is different from the first embodiment in that the heat pump device 600 is applied to the refrigerator 601.
  • portions common to the first embodiment are denoted by the same reference numerals, description thereof will be omitted, and differences from the first embodiment will be mainly described.
  • the heat pump device is applied to an air conditioner that transports heat between the outdoor air 11 and the indoor air 12 by the refrigerant circuit 8 to cool and heat the room.
  • the heat pump device 600 is applied to a refrigerator 601 that stores food or the like at a low temperature.
  • the refrigerator 601 uses the refrigerant circuit 8 to perform defrosting in the cooling unit 104 that is the first heat exchange unit 4.
  • the inside air 51 and the inside air 52 (by the circulation fan 146 (equivalent to the ventilation fan 46 in the said embodiment))
  • the outdoor air 11, 11a, 11b in the above embodiment passes through the circulation path 71 and passes between the interior 70 and the cooling unit 104 (corresponding to the first heat exchange unit 4 in the above embodiment).
  • a first cooler 141 (corresponding to the first sub heat exchange unit 41 in the above embodiment) and a second cooler 142 (second sub heat exchanger in the above embodiment) are provided.
  • the heat exchanging section 42 corresponding to the heat exchanging section 42).
  • the internal air 51 is cooled, that is, the temperature is lowered by heat exchange with the refrigerant flowing in the first cooler 141, and the internal air 52 flows in the second cooler 142. It is cooled, that is, the temperature is lowered by exchanging heat with the refrigerant.
  • a partition plate 147 (corresponding to the partition plate 47 in the fourth embodiment) is provided between the first cooler 141 and the second cooler 142.
  • an air passage change means 72 that is, for example, a baffle plate is provided between the circulation fan 146 and the cooling unit 104 to open or block the air flow.
  • the air passage changing means 72 can take three positions.
  • the air passage change means 72 When the air passage change means 72 is at the position 72a, the air passage to the first cooler 141 is shielded and the circulation of the internal air 51 is interrupted. Moreover, when the ventilation path change means 72 exists in the position 72b, the air path to the 2nd cooler 142 is shielded, and the distribution
  • the refrigerator 601 is provided with a radiator (not shown) for radiating the heat of the interior 70 to the outside, and this radiator is the second heat exchanger in the above embodiment. It corresponds to 7.
  • the radiator in the refrigerator 601 may be replaced with a refrigerant pipe routed along the inside of the external wall surface of the refrigerator 601 instead of a so-called heat exchanger.
  • the in-compartment air 51 and the in-compartment air 52 once cooled by the cooling unit 104 are supplied to the inside 70 and then circulated back to the cooling unit 104 by the circulation path 71.
  • the refrigerant circuit (not shown) through which the refrigerant flows is the same as the air conditioner in the above embodiment.
  • the cooling unit 104 only needs to cool the internal air 51 and the internal air 52. Therefore, at least the normal cooling operation (second heat exchanger in the above embodiment) is used as the refrigerant flow. 7 may absorb the heat and cool the indoor air 12). Thereby, it can suppress that the condensed water by which the indoor air 12 outside the warehouse was cooled adheres to the wall surface etc. outside the warehouse.
  • the air passage change means 72 is arranged at the position 72c in a state where the circulation fan 146 is operated, and the first cooler 141 and the second cooler 141 Both the internal air 51 and the internal air 52 are cooled by the cooler 142.
  • the refrigerant flow in the refrigerant circuit is the first auxiliary heat exchange in the above embodiment. It is the same as the case where only the part 41 is defrosted, and the ventilation path change means 72 is arrange
  • the refrigerant flow in the refrigerant circuit is the second auxiliary heat exchange in the above embodiment. It is the same as the case where only the part 42 is defrosted, and the ventilation path change means 72 is arrange
  • the refrigerator 601 including a plurality of coolers can continue cooling the interior 70 with the other cooler while defrosting one cooler. For this reason, the refrigerator 601 can maintain the temperature of the interior 70 of the refrigerator 601 low even during defrosting, and can maintain the quality of food stored in the interior 70.
  • the refrigerator 601 according to the seventh embodiment has a reduced risk of failure due to fewer necessary switching valves, piping configurations, operation mode switching, and the like as compared to the showcase of Patent Document 2. Reliability is improved. Further, the operation method is simplified, and a small refrigerator 601 can be realized at low cost.
  • the defrost cooling operation since the air blowing is changed by the air passage changing means 72, the heat generated during the defrosting is appropriately prevented from leaking into the interior 70. Thereby, in the refrigerator 601, it can defrost and cool efficiently.
  • one air passage changing means 72 is used to switch whether the internal air 51 and the internal air 52 are circulated to one cooler or both coolers.
  • a plurality of air passage changing means 72 may be used.
  • an air passage changing means 72 that can be opened and closed is provided for each cooler, and the internal air 51 and the internal air 52 are circulated to one cooler or both coolers. Can be switched.
  • the baffle board as the ventilation path change means 72, whether the internal air 51 and the internal air 52 are distribute
  • a blower fan may be provided for each cooler, and the blower path changing means 72 may be realized by switching the operation or stop of the blower fan. In this case, by switching the operation or stop of the blower fan, it is switched whether the internal air 51 and the internal air 52 are circulated to one cooler or both coolers.
  • Embodiment 7 Although the several cooler was arrange

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A heat pump device (1) having: a refrigerant circuit (8), in which a refrigerant circulates, and which is formed by connecting, by means of piping, a compressor (2), a first heat exchange unit (4), an expansion device (6), and a second heat exchanger (7); and a control unit (21), which controls the operation of the refrigerant circuit (8). In this heat pump device (1) the first heat exchange unit (4) has multiple heat exchange sub-units connected in series, and an expansion sub-device (43) provided between the multiple heat exchange sub-units. In addition, the control unit (21) has a defrosting control means (22) that controls the expansion sub-device (43) when the heat exchange sub-units are defrosted, so as to generate a difference between the pressure of the refrigerant circulating on the upstream side of the expansion sub-device (43) and the pressure of the refrigerant circulating on the downstream side of the expansion sub-device (43).

Description

ヒートポンプ装置Heat pump equipment
 本発明は、冷媒回路を備えるヒートポンプ装置に関する。 The present invention relates to a heat pump device including a refrigerant circuit.
 従来より、例えば室外の空気を熱源として、冷凍サイクルによって熱需要部に熱を運ぶヒートポンプ装置がある。このヒートポンプ装置において、温熱を熱需要部に運ぶ際に、室外に設置された熱交換器に発生する霜を除去する手段が、提案されている。 Conventionally, for example, there is a heat pump device that uses outdoor air as a heat source and transfers heat to a heat demand section by a refrigeration cycle. In this heat pump device, means for removing frost generated in a heat exchanger installed outdoors when carrying warm heat to a heat demanding unit has been proposed.
 特許文献1には、並列に複数設置された室外熱交換器22の出口側と、圧縮機21の吸入側との間に設けられた第1切替弁25と、それらの室外熱交換器22の出口側と、圧縮機21の吐出側との間に設けられた第2切替弁26とを備える空気調和装置が開示されている。この特許文献1は、除霜が要求された室外熱交換器22において、第1切替弁25を開き、第2切替弁26を閉じることによって、その室外熱交換器22だけに、圧縮機21から吐出される高温ガスの冷媒が流通し、除霜する。その際、圧縮機21から吐出された後、除霜要求がある室外熱交換器22の出口側から入口側に向けて逆方向に流通し、除霜に使用された冷媒と、圧縮機21から吐出された後、室内熱交換器41を流通して暖房に使用された冷媒とが合流する。そして、この合流した冷媒が、除霜要求がない室外熱交換器22に流通して吸熱する。これにより、この従来技術は、室内熱交換器41での暖房を継続しつつ、除霜要求がある室外熱交換器22を除霜しようとするものである。 In Patent Document 1, a plurality of first switching valves 25 provided between an outlet side of the outdoor heat exchangers 22 installed in parallel and a suction side of the compressor 21, and the outdoor heat exchangers 22 are arranged. An air conditioner including a second switching valve 26 provided between the outlet side and the discharge side of the compressor 21 is disclosed. This patent document 1 discloses that in the outdoor heat exchanger 22 where defrosting is required, by opening the first switching valve 25 and closing the second switching valve 26, only the outdoor heat exchanger 22 is supplied from the compressor 21. The discharged hot gas refrigerant flows and defrosts. At that time, after being discharged from the compressor 21, it flows in the reverse direction from the outlet side of the outdoor heat exchanger 22 having the defrosting request toward the inlet side, and the refrigerant used for the defrosting and the compressor 21 After being discharged, the refrigerant used for heating through the indoor heat exchanger 41 joins. Then, the merged refrigerant flows through the outdoor heat exchanger 22 where there is no defrost request and absorbs heat. Thereby, this conventional technology tries to defrost the outdoor heat exchanger 22 having a defrosting request while continuing heating in the indoor heat exchanger 41.
 また、特許文献2には、第1の蒸発器15cと第2の蒸発器16cとで冷却運転が行われるショーケースが開示されている。この従来技術は、冷媒回路に設けられた複数の弁を切り替えて、圧縮機14aから吐出された高温の冷媒が、凝縮器14bに流通して放熱した後、膨張弁23を通過せずに、第1の蒸発器15cに流通して、第1の蒸発器15cを除霜する。そして、第1の蒸発器15cから流出した冷媒が、膨張弁23に流通して、第2の蒸発器16cで吸熱して、ショーケース内を冷却する。このように、特許文献2は、第2の蒸発器16cでショーケース内を冷却しつつ、第1の蒸発器15cを除霜するという除霜冷却運転を行おうとするものである。 In addition, Patent Document 2 discloses a showcase in which a cooling operation is performed by the first evaporator 15c and the second evaporator 16c. In this prior art, by switching a plurality of valves provided in the refrigerant circuit, the high-temperature refrigerant discharged from the compressor 14a circulates in the condenser 14b and dissipates heat, and then does not pass through the expansion valve 23. It distribute | circulates to the 1st evaporator 15c and defrosts the 1st evaporator 15c. And the refrigerant | coolant which flowed out from the 1st evaporator 15c distribute | circulates to the expansion valve 23, absorbs heat with the 2nd evaporator 16c, and cools the inside of a showcase. As described above, Patent Document 2 intends to perform a defrost cooling operation in which the first evaporator 15c is defrosted while the inside of the showcase is cooled by the second evaporator 16c.
特開2008-157558号公報(図4、第7頁~第8頁)JP 2008-157558 A (FIG. 4, pages 7 to 8) 特開2008-133998号公報(図6、第5頁)JP 2008-133998 A (FIG. 6, page 5)
 しかしながら、特許文献1に開示された空気調和装置は、除霜を伴わない通常の暖房運転では、複数の室外熱交換器22に並列に冷媒を流すが、除霜を伴う暖房運転では、除霜要求がある室外熱交換器22を流通する冷媒を、除霜要求がない室外熱交換器22に直列に流通させる。このため、特許文献1は、冷媒の流通経路が複雑であり、この複雑な流通経路の切り替えを行うための多数の切替弁が必要である。従って、装置の小型化が困難であること、コストが高くなること、及び故障率が高く信頼性が低いことが問題となる。また、切替弁が多いと、冷媒溜りが発生する場所が増えてしまい、多量の冷媒が必要となる問題もある。更に、特許文献1は、圧縮機21から吐出された高温の冷媒で除霜するため、除霜自体は早期に処理されるものの、エネルギ消費が激しい。また、特許文献2においては、エネルギ消費が激しくならない点は異なるが、それ以外では、特許文献1と同様の問題がある。 However, the air conditioner disclosed in Patent Document 1 causes the refrigerant to flow in parallel to the plurality of outdoor heat exchangers 22 in a normal heating operation without defrosting, but in the heating operation with defrosting, the defrosting is performed. The refrigerant flowing through the outdoor heat exchanger 22 having the request is circulated in series to the outdoor heat exchanger 22 having no defrosting request. For this reason, in Patent Document 1, the distribution route of the refrigerant is complicated, and a large number of switching valves are required for switching the complicated distribution route. Therefore, there are problems that it is difficult to reduce the size of the apparatus, the cost is high, and the failure rate is high and the reliability is low. Moreover, when there are many switching valves, the place where a refrigerant | coolant pool generate | occur | produces increases and there also exists a problem which requires a lot of refrigerant | coolants. Further, in Patent Document 1, since defrosting is performed with a high-temperature refrigerant discharged from the compressor 21, the defrosting itself is processed at an early stage, but energy consumption is intense. Moreover, in patent document 2, although the point that energy consumption does not become intense differs, there exists a problem similar to patent document 1 other than that.
 本発明は、上記のような課題を背景としてなされたもので、小型、安価、高信頼性が得られ、冷媒溜りを抑制し、高い省エネ性を備えつつ、除霜時に快適性又は食品保存品質を保つヒートポンプ装置を提供するものである。 The present invention was made against the background of the above problems, and is small, inexpensive, highly reliable, suppresses refrigerant accumulation, has high energy savings, and is comfortable during defrosting or food storage quality. The heat pump apparatus which keeps up is provided.
 本発明に係るヒートポンプ装置は、圧縮機、第1の熱交換ユニット、膨張装置及び第2の熱交換器が配管で接続され、冷媒が流通する冷媒回路と、冷媒回路の動作を制御する制御部と、を有するヒートポンプ装置において、第1の熱交換ユニットは、直列に接続された複数の副熱交換部と、複数の副熱交換部の間に設けられた副膨張装置と、を有し、制御部は、副熱交換部を除霜する際、副膨張装置の上流側に流通する冷媒の圧力と、副膨張装置の下流側に流通する冷媒の圧力とに差が生じるように副膨張装置を制御する除霜時制御手段を有することを特徴とする。 The heat pump device according to the present invention includes a refrigerant circuit in which a compressor, a first heat exchange unit, an expansion device, and a second heat exchanger are connected by a pipe and through which refrigerant flows, and a control unit that controls the operation of the refrigerant circuit. The first heat exchange unit has a plurality of sub heat exchange units connected in series, and a sub expansion device provided between the plurality of sub heat exchange units, When the control unit defrosts the sub-heat exchange unit, the sub-expansion device causes a difference between the pressure of the refrigerant flowing upstream of the sub-expansion device and the pressure of the refrigerant flowing downstream of the sub-expansion device. It has the control means at the time of defrosting which controls.
 本発明によれば、除霜時制御手段が、副熱交換部を除霜する際、副膨張装置の上流側に流通する冷媒と、副膨張装置の下流側に流通する冷媒との圧力差を副膨張装置で高めるため、少なくとも1つの副熱交換部を除霜しつつ、それ以外の副熱交換部によって、暖房、冷房又は冷却が継続される。このため、ヒートポンプ装置の利用者において、除霜時に快適性、食品保存品質が損なわれない。更に、これらの効果は、運転モードの切り替えの手間を省き、小型、安価及び高信頼性であり、冷媒溜りを抑制し、高い省エネ性を備えつつ、得ることができる。 According to the present invention, when the defrosting control means defrosts the auxiliary heat exchange unit, the pressure difference between the refrigerant flowing upstream of the auxiliary expansion device and the refrigerant flowing downstream of the auxiliary expansion device is calculated. In order to raise with a subexpansion apparatus, heating, cooling, or cooling is continued by the other subheat exchange part, defrosting at least one subheat exchange part. For this reason, in the user of a heat pump apparatus, comfort and food preservation quality are not impaired at the time of defrosting. Furthermore, these effects can be obtained while saving the effort of switching the operation mode, being small, inexpensive, and highly reliable, suppressing the accumulation of refrigerant, and providing high energy savings.
実施の形態1に係るヒートポンプ装置1を示す模式図である。1 is a schematic diagram showing a heat pump device 1 according to Embodiment 1. FIG. 実施の形態2に係るヒートポンプ装置1を示す模式図である。4 is a schematic diagram showing a heat pump device 1 according to Embodiment 2. FIG. 実施の形態3に係るヒートポンプ装置200を示す模式図である。6 is a schematic diagram showing a heat pump device 200 according to Embodiment 3. FIG. 実施の形態4における第1の熱交換ユニット4を示す模式図である。6 is a schematic diagram showing a first heat exchange unit 4 in Embodiment 4. FIG. 実施の形態5における第1の熱交換ユニット4を示す模式図である。FIG. 10 is a schematic diagram showing a first heat exchange unit 4 in a fifth embodiment. 実施の形態6における第1の熱交換ユニット4を示す模式図である。FIG. 10 is a schematic diagram showing a first heat exchange unit 4 in a sixth embodiment. 実施の形態6における第2の副熱交換部42を示す模式図である。FIG. 10 is a schematic diagram showing a second sub heat exchange unit 42 in a sixth embodiment. 実施の形態6に係るヒートポンプ装置500を示す模式図である。FIG. 10 is a schematic diagram showing a heat pump device 500 according to a sixth embodiment. 実施の形態7に係るヒートポンプ装置600を示す模式図である。FIG. 10 is a schematic diagram showing a heat pump device 600 according to a seventh embodiment.
 以下、本発明に係るヒートポンプ装置の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, an embodiment of a heat pump device according to the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.
実施の形態1.
 図1は、実施の形態1に係るヒートポンプ装置1を示す模式図である。この図1に基づいて、ヒートポンプ装置1について説明する。図1に示すように、空気調和装置等を構成するヒートポンプ装置1は、冷媒回路8と制御部21とを備えている。このうち、冷媒回路8は、圧縮機2、第1の熱交換ユニット4、膨張装置6及び第2の熱交換器7が配管で接続され、冷媒が流通するものである。なお、使用される冷媒は、例えばフロン系、炭化水素系、二酸化炭素等のような使用される温度及び圧力の範囲内で気液2相化する冷媒である。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram showing a heat pump device 1 according to the first embodiment. The heat pump device 1 will be described with reference to FIG. As shown in FIG. 1, the heat pump device 1 constituting an air conditioner or the like includes a refrigerant circuit 8 and a control unit 21. Among these, the refrigerant circuit 8 is a circuit in which the compressor 2, the first heat exchange unit 4, the expansion device 6, and the second heat exchanger 7 are connected by piping, and the refrigerant circulates. In addition, the refrigerant | coolant to be used is a refrigerant | coolant which carries out a gas-liquid two-phase within the range of the used temperature and pressure like a fluorocarbon type | system | group, a hydrocarbon type | system | group, a carbon dioxide etc., for example.
 冷媒回路8は、流通する冷媒の凝縮及び気化を利用して、例えば室外空気11及び室内空気12のうち一方から吸熱し、他方に放熱する。なお、室外空気11は、室内空気12を冷暖房する上で必要となる吸熱源(暖房運転時)又は放熱先(冷房運転時)としての空気である。そして、冷媒回路8においては、圧縮機2の圧縮に要する動力に対し効率よく、冷媒を介して室外空気11と室内空気12との間で熱が移動される。室内空気12を冷却する場合、膨張装置6で低温低圧化して気液2相の状態となった冷媒が、室内に設置された第2の熱交換器7に流通する。一方、室内空気12を加熱する場合、圧縮機2で高温高圧化して気相の状態となった冷媒が、第2の熱交換器7に流通する。このように、冷媒回路8における冷媒の流通方向は、室内空気12の冷房時又は暖房時で、逆転する。 The refrigerant circuit 8 absorbs heat from, for example, one of the outdoor air 11 and the indoor air 12 and dissipates heat to the other using the condensation and vaporization of the circulating refrigerant. The outdoor air 11 is air as a heat absorption source (during heating operation) or a heat radiation destination (during cooling operation) necessary for cooling and heating the indoor air 12. In the refrigerant circuit 8, heat is efficiently transferred between the outdoor air 11 and the indoor air 12 via the refrigerant with respect to the power required for the compression of the compressor 2. When the indoor air 12 is cooled, the refrigerant that has been reduced in temperature and pressure by the expansion device 6 to be in a gas-liquid two-phase state flows to the second heat exchanger 7 installed in the room. On the other hand, when the indoor air 12 is heated, the refrigerant that has become a high-temperature and high-pressure state in the compressor 2 and is in a gas phase flows through the second heat exchanger 7. As described above, the refrigerant flow direction in the refrigerant circuit 8 is reversed when the indoor air 12 is cooled or heated.
 (圧縮機2、圧送切替部3)
 圧縮機2は、冷媒を気相の状態で圧送して高温高圧化するものである。この圧縮機2の吐出側には、圧送切替部3が設けられており、この圧送切替部3は、冷媒回路8における冷媒の流通方向を切り替えるものである。この圧送切替部3は、例えば4方弁であり、この4方弁は、4つの接続路A、B、C、Dが接続されている。圧送切替部3は、このうち、接続路Aと接続路B、接続路Cと接続路Dが接続された第1の状態、接続路Aと接続路C、接続路Bと接続路Dが接続された第2の状態という2つの状態に変更することができる。例えば、接続路Aが圧縮機2の吐出側に接続され、接続路Bが第2の熱交換器7に接続され、接続路Cが第1の熱交換ユニット4に接続され、接続路Dが圧縮機2の吸入側に接続されている。この圧送切替部3を切り替えることにより、圧縮機2から吐出された冷媒が、第1の熱交換ユニット4に流入するか又は第2の熱交換器7に流入するかが変更される。
(Compressor 2, pumping switching unit 3)
The compressor 2 pumps the refrigerant in a gas phase to increase the temperature and pressure. On the discharge side of the compressor 2, a pressure feed switching unit 3 is provided. The pressure feed switching unit 3 switches the refrigerant flow direction in the refrigerant circuit 8. This pressure feed switching unit 3 is, for example, a four-way valve, and four connection paths A, B, C, and D are connected to the four-way valve. Among these, the pumping switching unit 3 is connected in the first state in which the connection path A and the connection path B, the connection path C and the connection path D are connected, the connection path A and the connection path C, and the connection path B and the connection path D are connected. The second state can be changed to the second state. For example, the connection path A is connected to the discharge side of the compressor 2, the connection path B is connected to the second heat exchanger 7, the connection path C is connected to the first heat exchange unit 4, and the connection path D is It is connected to the suction side of the compressor 2. By switching the pressure feed switching unit 3, it is changed whether the refrigerant discharged from the compressor 2 flows into the first heat exchange unit 4 or the second heat exchanger 7.
 (第1の熱交換ユニット4)
 第1の熱交換ユニット4は、室外で使用されるものであり、例えばファン(図示せず)で送風された室外空気11を熱源として、この室外空気11と冷媒とを熱交換するものである。第1の熱交換ユニット4は、第1の副熱交換部41と第2の副熱交換部42とを備えており、これらの第1の副熱交換部41と第2の副熱交換部42とは、直列に接続されている。これにより、これらの第1の副熱交換部41と第2の副熱交換部42には、冷媒が並列方向に流通するのではなく、常に直列方向に流通する。なお、副熱交換部は2つに限るものではなく、複数設置することもできる。
(First heat exchange unit 4)
The first heat exchange unit 4 is used outdoors. For example, the outdoor air 11 blown by a fan (not shown) is used as a heat source to exchange heat between the outdoor air 11 and the refrigerant. . The 1st heat exchange unit 4 is provided with the 1st sub heat exchange part 41 and the 2nd sub heat exchange part 42, and these 1st sub heat exchange parts 41 and the 2nd sub heat exchange part 42 is connected in series. Thereby, the refrigerant does not flow in the parallel direction but always flows in the series direction in the first sub heat exchange unit 41 and the second sub heat exchange unit 42. Note that the number of sub heat exchange units is not limited to two, and a plurality of sub heat exchange units may be installed.
 (副膨張装置43)
 そして、これらの第1の副熱交換部41と第2の副熱交換部42との間には、副膨張装置43が設けられており、この副膨張装置43は、高圧の液相の冷媒を膨張させて低温低圧化し、気液2相冷媒とするものである。なお、この副膨張装置43は、例えば、冷媒の流通量及び冷媒の圧力を、その開度で変更する膨張弁である。副膨張装置43は、第1の副熱交換部41と第2の副熱交換部42との間に設けられているため、第1の熱交換ユニット4を流通する冷媒は、常に、副膨張装置43に流入する。
(Sub-expansion device 43)
A sub-expansion device 43 is provided between the first sub-heat exchange unit 41 and the second sub-heat exchange unit 42. The sub-expansion device 43 is a high-pressure liquid-phase refrigerant. Is expanded to lower the temperature and pressure to make a gas-liquid two-phase refrigerant. The sub-expansion device 43 is, for example, an expansion valve that changes the amount of refrigerant flow and the pressure of the refrigerant according to the degree of opening. Since the sub-expansion device 43 is provided between the first sub-heat exchange unit 41 and the second sub-heat exchange unit 42, the refrigerant flowing through the first heat exchange unit 4 is always sub-expansion. Flows into the device 43.
 (副バイパス弁45)
 また、冷媒回路8には、副膨張装置43をバイパスする副バイパス回路44が設けられており、副バイパス回路44には、副バイパス回路44における冷媒の流通量を調節する副バイパス弁45が設けられている。この副バイパス弁45が閉じると、第1の熱交換ユニット4を流通する冷媒は、副バイパス回路44に流入せず、全て副膨張装置43に流入する。一方、副バイパス弁45が開くと、第1の熱交換ユニット4を流通する冷媒は、副バイパス回路44と副膨張装置43とに分かれて流入する。なお、その際、副膨張装置43が絞られていれば、副膨張装置43に流入する冷媒は減り、残りの多くの冷媒が副バイパス回路44に流入する。
(Sub bypass valve 45)
Further, the refrigerant circuit 8 is provided with a sub-bypass circuit 44 that bypasses the sub-expansion device 43, and the sub-bypass circuit 44 is provided with a sub-bypass valve 45 that adjusts the amount of refrigerant flowing in the sub-bypass circuit 44. It has been. When the sub bypass valve 45 is closed, all the refrigerant flowing through the first heat exchange unit 4 does not flow into the sub bypass circuit 44 but flows into the sub expansion device 43. On the other hand, when the sub bypass valve 45 is opened, the refrigerant flowing through the first heat exchange unit 4 flows into the sub bypass circuit 44 and the sub expansion device 43 separately. At this time, if the sub-expansion device 43 is throttled, the refrigerant flowing into the sub-expansion device 43 decreases, and a large amount of the remaining refrigerant flows into the sub-bypass circuit 44.
 (流入切替部5)
 第1の熱交換ユニット4のうち、第1の副熱交換部41の一端側には、流入切替部5が設けられており、流入切替部5は、第1の熱交換ユニット4における冷媒の流通方向を切り替えるものである。この流入切替部5は、例えば圧送切替部3と同様に、4方弁であり、この4方弁は、4つの接続路A、B、C、Dが接続されている。流入切替部5は、このうち、接続路Aと接続路B、接続路Cと接続路Dが接続された第1の状態、接続路Aと接続路C、接続路Bと接続路Dが接続された第2の状態という2つの状態に変更することができる。例えば、接続路Aが膨張装置6に接続され、接続路Bが第1の副熱交換部41に接続され、接続路Cが第2の副熱交換部42に接続され、接続路Dが圧送切替部3に接続されている。
(Inflow switching part 5)
In the first heat exchange unit 4, an inflow switching unit 5 is provided on one end side of the first sub heat exchange unit 41, and the inflow switching unit 5 is used for the refrigerant in the first heat exchange unit 4. The distribution direction is switched. The inflow switching unit 5 is a four-way valve, for example, similarly to the pressure-feeding switching unit 3, and the four connection paths A, B, C, and D are connected to the four-way valve. Of these, the inflow switching unit 5 includes the first state in which the connection path A and the connection path B, the connection path C and the connection path D are connected, the connection path A and the connection path C, and the connection path B and the connection path D are connected. The second state can be changed to the second state. For example, the connection path A is connected to the expansion device 6, the connection path B is connected to the first auxiliary heat exchange unit 41, the connection path C is connected to the second auxiliary heat exchange unit 42, and the connection path D is pumped. It is connected to the switching unit 3.
 この流入切替部5を切り替えることによって、冷媒が第1の熱交換ユニット4に流入する際、先ず、第1の副熱交換部41に流入し、その後、第2の副熱交換部42に流入するか、又は、先ず、第2の副熱交換部42に流入し、その後、第1の副熱交換部41に流入するかが変更される。更に、流入切替部5を切り替えることによって、第1の熱交換ユニット4から、流入元とは逆の側に流出する冷媒が、圧縮機2の吸入側に流入するか又は膨張装置6に流入するかが変更される。 By switching the inflow switching unit 5, when the refrigerant flows into the first heat exchange unit 4, the refrigerant first flows into the first sub heat exchange unit 41 and then flows into the second sub heat exchange unit 42. Or, first, it is changed whether it flows into the 2nd sub heat exchange part 42, and flows into the 1st sub heat exchange part 41 after that. Further, by switching the inflow switching unit 5, the refrigerant flowing out from the first heat exchange unit 4 to the side opposite to the inflow source flows into the suction side of the compressor 2 or flows into the expansion device 6. Is changed.
 (第1の温度検出部41a及び第2の温度検出部42a)
 また、冷媒回路8は、冷媒の温度を検出する2つの第1の温度検出部41a及び第2の温度検出部42aを備えており、夫々例えば第1の副熱交換部41と副膨張装置43との間と、第2の副熱交換部42と副膨張装置43との間に設けられている。これらの第1の温度検出部41a及び第2の温度検出部42aは、配管の温度を測定することによって、間接的に冷媒の温度を検出している。
(First temperature detector 41a and second temperature detector 42a)
The refrigerant circuit 8 includes two first temperature detection units 41a and a second temperature detection unit 42a that detect the temperature of the refrigerant. For example, the first sub heat exchange unit 41 and the sub expansion device 43 are provided. And between the second auxiliary heat exchanging unit 42 and the auxiliary expansion device 43. The first temperature detector 41a and the second temperature detector 42a indirectly detect the temperature of the refrigerant by measuring the temperature of the pipe.
 (膨張装置6)
 膨張装置6は、高圧の液相の冷媒を膨張させて低温低圧化し、気液2相冷媒とするものである。なお、この膨張装置6は、例えば、冷媒の流通量を及び冷媒の圧力を、その開度で変更する膨張弁である。
(Expansion device 6)
The expansion device 6 expands a high-pressure liquid-phase refrigerant to lower the temperature and the pressure to obtain a gas-liquid two-phase refrigerant. The expansion device 6 is, for example, an expansion valve that changes the flow rate of the refrigerant and the pressure of the refrigerant at the opening degree.
 (バイパス弁62)
 また、冷媒回路8には、膨張装置6をバイパスするバイパス回路61が設けられており、バイパス回路61には、バイパス回路61における冷媒の流通量を調節するバイパス弁62が設けられている。このバイパス弁62が閉じると、冷媒回路8を流通する冷媒は、バイパス回路61に流入せず、全て膨張装置6に流入する。一方、バイパス弁62が開くと、冷媒回路8を流通する冷媒は、バイパス回路61と膨張装置6とに分かれて流入する。なお、その際、膨張装置6が絞られていれば、膨張装置6に流入する冷媒は減り、残りの多くの冷媒がバイパス回路61に流入する。
(Bypass valve 62)
The refrigerant circuit 8 is provided with a bypass circuit 61 that bypasses the expansion device 6, and the bypass circuit 61 is provided with a bypass valve 62 that adjusts the amount of refrigerant flowing in the bypass circuit 61. When the bypass valve 62 is closed, all the refrigerant flowing through the refrigerant circuit 8 does not flow into the bypass circuit 61 but flows into the expansion device 6. On the other hand, when the bypass valve 62 is opened, the refrigerant flowing through the refrigerant circuit 8 flows into the bypass circuit 61 and the expansion device 6 separately. At this time, if the expansion device 6 is throttled, the refrigerant flowing into the expansion device 6 decreases, and the remaining large amount of refrigerant flows into the bypass circuit 61.
 (第2の熱交換器7)
 第2の熱交換器7は、室内で使用されるものであり、例えばファン(図示せず)で送風された室内空気12を熱源として、この室内空気12と冷媒とを熱交換する負荷熱交換器である。
(Second heat exchanger 7)
The second heat exchanger 7 is used indoors. For example, the indoor heat 12 blown by a fan (not shown) is used as a heat source, and load heat exchange is performed to exchange heat between the indoor air 12 and the refrigerant. It is a vessel.
 (制御部21)
 制御部21は、冷媒回路8の動作を制御するものである。この制御部21は、除霜時制御手段22と、閾値判定手段23と、終了判定手段24とを備えている。
(Control unit 21)
The controller 21 controls the operation of the refrigerant circuit 8. The control unit 21 includes a defrosting control unit 22, a threshold determination unit 23, and an end determination unit 24.
 (除霜時制御手段22)
 除霜時制御手段22は、第1の副熱交換部41又は第2の副熱交換部42を除霜する際、副膨張装置43の上流側に流通する冷媒と、副膨張装置43の下流側に流通する冷媒との圧力差を、副膨張装置43で高めるものである。また、除霜時制御手段22は、第1の副熱交換部41又は第2の副熱交換部42を除霜する際、バイパス弁62を開くように構成することもできる。更に、除霜時制御手段22は、第1の副熱交換部41又は第2の副熱交換部42を除霜する際、副バイパス弁45を閉じるように構成してもよい。また、そのほかに、除霜時制御手段22は、膨張装置6の動作を制御することもできる。
(Defrosting control means 22)
When the defrosting control means 22 defrosts the first sub heat exchange unit 41 or the second sub heat exchange unit 42, the refrigerant flowing upstream of the sub expansion device 43 and the downstream of the sub expansion device 43. The sub-expansion device 43 increases the pressure difference with the refrigerant flowing to the side. The defrosting control means 22 can also be configured to open the bypass valve 62 when defrosting the first sub heat exchange unit 41 or the second sub heat exchange unit 42. Further, the defrosting control means 22 may be configured to close the sub bypass valve 45 when the first sub heat exchange unit 41 or the second sub heat exchange unit 42 is defrosted. In addition, the defrosting control means 22 can also control the operation of the expansion device 6.
 (閾値判定手段23、終了判定手段24)
 閾値判定手段23は、第1の温度検出部41a又は第2の温度検出部42aで検出された冷媒の温度が、予め決められた閾値以上であるか否かを判定するものである。この閾値は、例えば0℃に設定することができるが、適宜変更可能である。そして、終了判定手段24は、第1の副熱交換部41又は第2の副熱交換部42を除霜している間に、冷媒の温度が閾値以上であると閾値判定手段23で判定された場合、第1の副熱交換部41又は第2の副熱交換部42の除霜が終了したと判定するものである。
(Threshold determination means 23, end determination means 24)
The threshold value determination unit 23 determines whether or not the temperature of the refrigerant detected by the first temperature detection unit 41a or the second temperature detection unit 42a is equal to or higher than a predetermined threshold value. This threshold can be set to 0 ° C., for example, but can be changed as appropriate. Then, the end determination unit 24 determines that the temperature of the refrigerant is equal to or higher than the threshold value while the first sub heat exchange unit 41 or the second sub heat exchange unit 42 is defrosted. In this case, it is determined that the defrosting of the first sub heat exchange unit 41 or the second sub heat exchange unit 42 has been completed.
 次に、本実施の形態1に係るヒートポンプ装置1の動作について説明する。 Next, the operation of the heat pump device 1 according to the first embodiment will be described.
 (通常暖房運転)
 先ず、通常暖房運転、即ち、第1の熱交換ユニット4で吸熱し、第2の熱交換器7で放熱する運転について説明する。このとき、冷媒は、圧縮機2、圧送切替部3、第2の熱交換器7、膨張装置6、流入切替部5、第1の熱交換ユニット4、流入切替部5、圧送切替部3、圧縮機2の順に、流通する。第1の熱交換ユニット4において、第1の副熱交換部41及び第2の副熱交換部42のいずれも、室外空気11から吸熱するだけであるため、流入切替部5から、第1の副熱交換部41に先に冷媒が流入してもよいし、第2の副熱交換部42に先に冷媒が流入してもよい。また、膨張装置6で十分に冷媒を膨張させるために、バイパス弁62は閉じられる。なお、副膨張装置43を全開、副バイパス弁45を開、又はそのいずれも実行することによって、第1の熱交換ユニット4における圧損を極力低減する。なお、副膨張装置43の開度は全開にしなくともよい。
(Normal heating operation)
First, the normal heating operation, that is, the operation of absorbing heat by the first heat exchange unit 4 and radiating heat by the second heat exchanger 7 will be described. At this time, the refrigerant is the compressor 2, the pressure switching unit 3, the second heat exchanger 7, the expansion device 6, the inflow switching unit 5, the first heat exchange unit 4, the inflow switching unit 5, the pressure feeding switching unit 3, It distributes in order of the compressor 2. In the first heat exchange unit 4, both the first sub heat exchange unit 41 and the second sub heat exchange unit 42 only absorb heat from the outdoor air 11. The refrigerant may flow into the auxiliary heat exchange unit 41 first, or the refrigerant may flow into the second auxiliary heat exchange unit 42 first. Further, the bypass valve 62 is closed to sufficiently expand the refrigerant by the expansion device 6. Note that the pressure loss in the first heat exchange unit 4 is reduced as much as possible by fully opening the sub expansion device 43 and opening the sub bypass valve 45, or both of them. Note that the opening degree of the sub-expansion device 43 may not be fully opened.
 このように、圧縮機2から吐出された高温の冷媒は、第2の熱交換器7で室内空気12と熱交換して放熱され、室内を暖房する。その際、低温となって液化した冷媒は、膨張装置6で膨張し低圧化して気液2相化する。そして、この冷媒が第1の熱交換ユニット4で室外空気11から吸熱して気化し、圧縮機2に吸入されて再び高温高圧化される。これにより、ヒートポンプ装置1は、継続して室内を暖房することができる。 Thus, the high-temperature refrigerant discharged from the compressor 2 exchanges heat with the indoor air 12 in the second heat exchanger 7 to be dissipated to heat the room. At that time, the refrigerant liquefied at a low temperature is expanded by the expansion device 6 to be low-pressure to be gas-liquid two-phase. Then, the refrigerant absorbs heat from the outdoor air 11 in the first heat exchange unit 4 and is vaporized, and is sucked into the compressor 2 to be increased in temperature and pressure again. Thereby, the heat pump device 1 can continuously heat the room.
 (通常冷房運転)
 次に、通常冷房運転、即ち、第1の熱交換ユニット4で放熱し、第2の熱交換器7で吸熱する運転について説明する。このとき、冷媒は、圧縮機2、圧送切替部3、流入切替部5、第1の熱交換ユニット4、流入切替部5、膨張装置6、第2の熱交換器7、圧送切替部3、圧縮機2の順に、流通する。この通常冷房運転の場合も、第1の熱交換ユニット4において、第1の副熱交換部41及び第2の副熱交換部42のいずれも、室外空気11に放熱するだけであるため、通常暖房運転の場合と同様に、流入切替部5から、第1の副熱交換部41に先に冷媒が流入してもよいし、第2の副熱交換部42に先に冷媒が流入してもよい。また、膨張装置6で十分に冷媒を膨張させるために、バイパス弁62は閉じられる。なお、副膨張装置43を全開、副バイパス弁45を開、又はそのいずれも実行することによって、第1の熱交換ユニット4における圧損を極力低減する。なお、副膨張装置43の開度は全開にしなくともよい。
(Normal cooling operation)
Next, a normal cooling operation, that is, an operation in which heat is radiated by the first heat exchange unit 4 and heat is absorbed by the second heat exchanger 7 will be described. At this time, the refrigerant is the compressor 2, the pressure switching unit 3, the inflow switching unit 5, the first heat exchange unit 4, the inflow switching unit 5, the expansion device 6, the second heat exchanger 7, the pressure feeding switching unit 3, It distributes in order of the compressor 2. Even in this normal cooling operation, in the first heat exchange unit 4, both the first sub heat exchange unit 41 and the second sub heat exchange unit 42 only radiate heat to the outdoor air 11. As in the case of the heating operation, the refrigerant may flow into the first auxiliary heat exchange unit 41 from the inflow switching unit 5 or the refrigerant flows into the second auxiliary heat exchange unit 42 first. Also good. Further, the bypass valve 62 is closed to sufficiently expand the refrigerant by the expansion device 6. Note that the pressure loss in the first heat exchange unit 4 is reduced as much as possible by fully opening the sub expansion device 43 and opening the sub bypass valve 45, or both of them. Note that the opening degree of the sub-expansion device 43 may not be fully opened.
 このように、圧縮機2から吐出された高温の冷媒は、第1の熱交換ユニット4で室外空気11と熱交換して放熱される。その際、低温となって液化した冷媒は、膨張装置6で膨張し低圧化して気液2相化する。そして、この冷媒が第2の熱交換器7で室内空気12から吸熱して、室内を冷房する。その後、吸熱して気化した冷媒が、圧縮機2に吸入されて再び高温高圧化される。これにより、ヒートポンプ装置1は、継続して室内を冷房することができる。 As described above, the high-temperature refrigerant discharged from the compressor 2 is radiated by exchanging heat with the outdoor air 11 in the first heat exchange unit 4. At that time, the refrigerant liquefied at a low temperature is expanded by the expansion device 6 to be low-pressure to be gas-liquid two-phase. The refrigerant absorbs heat from the indoor air 12 in the second heat exchanger 7 to cool the room. Thereafter, the refrigerant that has absorbed heat and is vaporized is sucked into the compressor 2 and is again heated to high temperature and pressure. Thereby, the heat pump device 1 can continuously cool the room.
 (除霜運転)
 以上説明したように、空気調和装置といったヒートポンプ装置1では、主に通常暖房運転及び通常冷房運転が行われる。しかし、通常暖房運転を続けると、第1の熱交換において、低温状態の冷媒と室外空気11とで熱交換することによって、室外空気11に含まれる水分が、第1の熱交換ユニット4の外面に付着して霜となる。これにより熱抵抗が増大し、第1の熱交換ユニット4は、その熱交換効率が低下する。このような霜の付着が放置されると、風路が霜で埋まっていき、やがて風路が塞がる。これにより、室外空気11が流通されなくなり、第1の熱交換ユニット4における熱交換が不可能になる場合がある。このような事態を回避するために、除霜運転が必要となる。
(Defrosting operation)
As described above, in the heat pump device 1 such as an air conditioner, the normal heating operation and the normal cooling operation are mainly performed. However, if the normal heating operation is continued, in the first heat exchange, the heat contained in the outdoor air 11 is exchanged between the low-temperature refrigerant and the outdoor air 11, so that the moisture contained in the outdoor air 11 is changed to the outer surface of the first heat exchange unit 4. It adheres to and becomes frost. As a result, the heat resistance increases, and the heat exchange efficiency of the first heat exchange unit 4 decreases. When such frost adhesion is left unattended, the air passage is filled with frost, and eventually the air passage is blocked. Thereby, the outdoor air 11 is not circulated, and heat exchange in the first heat exchange unit 4 may be impossible. In order to avoid such a situation, a defrosting operation is required.
 (高温除霜運転)
 除霜運転として、高温除霜運転(ホットガス除霜運転ともいう)について説明する。この高温除霜運転では、冷媒の流通方向が、通常冷房運転時と同じである。即ち、圧縮機2から吐出された高温の冷媒が、第1の熱交換ユニット4に流入する。これにより、第1の熱交換ユニット4に付着した霜は、その高温の冷媒によって溶かされ、除霜される。なお、その際、第1の熱交換ユニット4の近傍に設けられたファンは、高温除霜運転時に除霜のために使用される熱が、通常暖房運転時には低温である室外空気11に逃げることを抑制するため、停止される。なお、このような高温除霜運転は、ヒートポンプ装置において、最も一般的に行われる除霜方法の一つである。
(High temperature defrosting operation)
As the defrosting operation, a high temperature defrosting operation (also referred to as hot gas defrosting operation) will be described. In this high-temperature defrosting operation, the refrigerant flow direction is the same as in the normal cooling operation. That is, the high-temperature refrigerant discharged from the compressor 2 flows into the first heat exchange unit 4. Thereby, the frost adhering to the 1st heat exchange unit 4 is melted by the high temperature refrigerant | coolant, and is defrosted. At that time, in the fan provided in the vicinity of the first heat exchange unit 4, heat used for defrosting at the time of the high temperature defrosting operation escapes to the outdoor air 11 having a low temperature at the time of the normal heating operation. Is stopped to suppress Such a high-temperature defrosting operation is one of the most commonly performed defrosting methods in a heat pump device.
 しかしながら、この高温除霜運転においては、低温の冷媒が第2の熱交換器7に流通しており、たとえ第2の熱交換器7の近傍に設けられたファンが停止されていても、除霜するための熱源の一部は、室内空気12で賄われる。このため、通常暖房運転をしている間に、除霜が必要になり、高温除霜運転が行われた場合、室内空気12の温度が低下し、室内における快適性が保ち難い。そこで、本実施の形態1に係るヒートポンプ装置1は、高温除霜運転に加え、除霜暖房運転及び半高温除霜運転を実行可能とすることによって、快適性を担保している。 However, in this high-temperature defrosting operation, low-temperature refrigerant flows through the second heat exchanger 7, and even if the fan provided in the vicinity of the second heat exchanger 7 is stopped, the removal is performed. Part of the heat source for frosting is covered with indoor air 12. For this reason, defrosting is required during normal heating operation, and when high-temperature defrosting operation is performed, the temperature of the indoor air 12 is lowered and it is difficult to maintain comfort in the room. Therefore, the heat pump device 1 according to the first embodiment ensures comfort by enabling execution of the defrost heating operation and the semi-high temperature defrost operation in addition to the high temperature defrost operation.
 (除霜暖房運転)
 先ず、除霜暖房運転、即ち、第1の副熱交換部41及び第2の副熱交換部42のいずれか一方を除霜しつつ、他方で吸熱し、第2の熱交換器7で放熱する運転について説明する。一例として、第1の副熱交換部41を除霜しつつ、第2の副熱交換部42で吸熱する場合について説明する。このとき、冷媒は、圧縮機2、圧送切替部3、第2の熱交換器7、バイパス回路61及び膨張装置6、流入切替部5、第1の副熱交換部41、副膨張装置43、第2の副熱交換部42、流入切替部5、圧送切替部3、圧縮機2の順に、流通する。
(Defrost heating operation)
First, defrosting heating operation, that is, while defrosting one of the first auxiliary heat exchanging part 41 and the second auxiliary heat exchanging part 42, the other heat is absorbed and the second heat exchanger 7 dissipates heat. The driving | operation to perform is demonstrated. As an example, a case where the second sub heat exchange unit 42 absorbs heat while defrosting the first sub heat exchange unit 41 will be described. At this time, the refrigerant is the compressor 2, the pressure switching unit 3, the second heat exchanger 7, the bypass circuit 61 and the expansion device 6, the inflow switching unit 5, the first sub heat exchange unit 41, the sub expansion device 43, The second auxiliary heat exchange unit 42, the inflow switching unit 5, the pumping switching unit 3, and the compressor 2 are distributed in this order.
 制御部21における除霜時制御手段22は、バイパス弁62を開き、膨張装置6に流通する冷媒の量を減らすと共に、膨張装置6の開度を全開にして、膨張装置6での冷媒の膨張を抑制する。なお、バイパス弁62が開くと、膨張装置6の前後における冷媒の圧力差がなくなるため、膨張装置6の開度を全開にしなくとも、冷媒の膨張は抑制される。しかし、冷媒回路8における圧力損失を極力低減するために、膨張装置6の開度を全開にしている。そして、制御部21における除霜時制御手段22は、副バイパス弁45を閉じ、副膨張装置43に流通する冷媒の量を増やして、副膨張装置43での冷媒の膨張を促す。 The defrosting control means 22 in the control unit 21 opens the bypass valve 62, reduces the amount of refrigerant flowing through the expansion device 6, opens the expansion device 6 fully open, and expands the refrigerant in the expansion device 6. Suppress. When the bypass valve 62 is opened, the refrigerant pressure difference before and after the expansion device 6 disappears, so that expansion of the refrigerant is suppressed without fully opening the expansion device 6. However, in order to reduce the pressure loss in the refrigerant circuit 8 as much as possible, the opening degree of the expansion device 6 is fully opened. Then, the defrosting control means 22 in the control unit 21 closes the sub-bypass valve 45 and increases the amount of refrigerant flowing through the sub-expansion device 43 to promote expansion of the refrigerant in the sub-expansion device 43.
 これにより、圧縮機2から吐出された高温の冷媒は、第2の熱交換器7で室内空気12と熱交換して放熱され、室内を暖房する。その際、室内を暖房することによって低温となった冷媒は、第2の熱交換器7で最大限熱交換されたとしても、少なくとも室内空気12の温度、即ち、除霜に十分な温度を有しており、また膨張装置6において過度に膨張されないため、第1の副熱交換部41に流通し、これを除霜することができる。このとき、たとえば制御部21は、第1の副熱交換部41から流出した冷媒の温度(第1の温度検出部41aで検知する温度であり、冷媒の凝縮温度に近い)が、霜が融解する温度より若干高く、例えば1℃になるように、副膨張装置43の開度を調節する。ここで、副膨張装置43の開度を上げると、冷媒の凝縮温度は下がり、副膨張装置43の開度を下げると、冷媒の凝縮温度は上がる。また、副膨張装置43の開度を調節するそのほかの方法として、制御部21は、第2の熱交換器7から流出した冷媒の温度(温度検出部9で検知する)が、室内空気12の温度よりも所定温度差(たとえば4℃)高くなるように、副膨張装置43の開度を調節するようにしてもよい。 Thus, the high-temperature refrigerant discharged from the compressor 2 exchanges heat with the indoor air 12 in the second heat exchanger 7 to be dissipated to heat the room. At that time, the refrigerant having a low temperature by heating the room has at least the temperature of the indoor air 12, that is, a temperature sufficient for defrosting, even if the maximum heat exchange is performed in the second heat exchanger 7. Moreover, since it is not expanded too much in the expansion device 6, it can distribute | circulate to the 1st sub heat exchange part 41, and can defrost this. At this time, for example, the control unit 21 detects that the temperature of the refrigerant that has flowed out of the first auxiliary heat exchange unit 41 (the temperature detected by the first temperature detection unit 41a and is close to the condensation temperature of the refrigerant) is that the frost has melted. The opening degree of the sub-expansion device 43 is adjusted to be slightly higher than the temperature at which the sub-expansion device is set, for example, 1 ° C. Here, when the opening degree of the sub expansion device 43 is increased, the condensation temperature of the refrigerant decreases, and when the opening degree of the sub expansion device 43 is decreased, the condensation temperature of the refrigerant increases. As another method of adjusting the opening degree of the sub-expansion device 43, the control unit 21 determines that the temperature of the refrigerant flowing out from the second heat exchanger 7 (detected by the temperature detection unit 9) You may make it adjust the opening degree of the subexpansion apparatus 43 so that predetermined temperature difference (for example, 4 degreeC) may become higher than temperature.
 更に、他の方法として、制御部21は、圧縮機2から吐出される冷媒の温度(温度検出部13で検知する)が設定吐出温度になるように、副膨張装置43の開度を調節するようにしてもよい。ここで、副膨張装置43の開度を上げると、冷媒の吐出温度は下がり、副膨張装置43の開度を下げると、冷媒の吐出温度は上がる。この場合、設定吐出温度は、例えば、第1の副熱交換部41から流出した冷媒の温度(第1の温度検出部41aで検知する温度であり、冷媒の凝縮温度に近い)と、副膨張装置43で膨張して第2の副熱交換部42に流入する冷媒の温度(第2の温度検出部42aで検知する温度であり、冷媒の蒸発温度に近い)と、圧縮機2の周波数及び構造特性(圧縮する部分の容積等)と、冷媒特性(冷媒の種類、設定過熱度又は設定冷却度等)とを用いて算出される値である。なお、算出される設定吐出温度の下限値を、少なくとも室内空気12の温度より所定の温度(例えば5℃)以上高くなるように設定しておけば、冷媒の吐出温度が過剰に低下して暖房できなくなるといった事態を回避することができる。 Furthermore, as another method, the control unit 21 adjusts the opening degree of the sub-expansion device 43 so that the temperature of the refrigerant discharged from the compressor 2 (detected by the temperature detection unit 13) becomes the set discharge temperature. You may do it. Here, when the opening degree of the sub expansion device 43 is increased, the discharge temperature of the refrigerant is lowered, and when the opening degree of the sub expansion device 43 is lowered, the discharge temperature of the refrigerant is raised. In this case, the set discharge temperature is, for example, the temperature of the refrigerant that has flowed out of the first auxiliary heat exchange unit 41 (the temperature detected by the first temperature detection unit 41a and close to the condensation temperature of the refrigerant), and the secondary expansion. The temperature of the refrigerant that expands in the device 43 and flows into the second auxiliary heat exchange unit 42 (the temperature detected by the second temperature detection unit 42a and close to the evaporation temperature of the refrigerant), the frequency of the compressor 2 and It is a value calculated using structural characteristics (such as the volume of the portion to be compressed) and refrigerant characteristics (such as the type of refrigerant, the set degree of superheat or the set degree of cooling). Note that if the lower limit value of the calculated set discharge temperature is set to be at least a predetermined temperature (for example, 5 ° C.) higher than the temperature of the indoor air 12, the refrigerant discharge temperature is excessively lowered and heating is performed. It is possible to avoid such a situation that it becomes impossible.
 更にまた、副膨張装置43の開度を決定する方法は、上記のような検知される冷媒の吐出温度又は凝縮温度に基づいて副膨張装置43の開度を適宜変更するといったいわゆるフィードバック制御ではなく、圧縮機2の周波数や室外空気11の温度等の範囲に応じて予め決められた複数パターンの値で副膨張装置43の開度を一意に決めるといったいわゆるフィードフォワード制御としても良い。そして、副膨張装置43で膨張し低圧化して気液2相化した冷媒は、第2の副熱交換部42で室外空気11から吸熱して気化し、圧縮機2に吸入されて再び高温高圧化される。 Furthermore, the method for determining the opening degree of the sub-expansion device 43 is not so-called feedback control in which the opening degree of the sub-expansion device 43 is appropriately changed based on the detected refrigerant discharge temperature or condensation temperature. Also, so-called feedforward control may be used in which the opening degree of the sub-expansion device 43 is uniquely determined by a plurality of patterns determined in advance according to the frequency of the compressor 2 and the temperature of the outdoor air 11. Then, the refrigerant which has been expanded in the auxiliary expansion device 43 and reduced in pressure and gas-liquid two-phased is absorbed by the second auxiliary heat exchanging part 42 from the outdoor air 11 and vaporized, and is sucked into the compressor 2 to be again heated and pressurized again. It becomes.
 このように、ヒートポンプ装置1は、第1の副熱交換部41を除霜しつつ、第2の副熱交換部42で吸熱して、第2の熱交換器7で放熱することによって、室内を継続して暖房することができる。なお、この除霜暖房運転においては、第1の副熱交換部41及び第2の副熱交換部42の両方で吸熱する通常暖房運転における最大能力には及ばないものの、室内の温度がある程度高ければ、最大能力で暖房する必要性は低いため、快適性を阻害することはない。 Thus, the heat pump device 1 absorbs heat at the second sub heat exchange unit 42 and radiates heat at the second heat exchanger 7 while defrosting the first sub heat exchange unit 41, Can be continuously heated. In this defrosting heating operation, although the maximum capacity in the normal heating operation in which heat is absorbed by both the first auxiliary heat exchanging part 41 and the second auxiliary heat exchanging part 42 is not reached, the indoor temperature can be raised to some extent. For example, the need for heating at maximum capacity is low and comfort is not impaired.
 (半高温除霜運転)
 次に、半高温除霜運転(半ホットガス除霜運転ともいう)、即ち、第1の副熱交換部41及び第2の副熱交換部42のいずれか一方を除霜しつつ、他方で吸熱し、第2の熱交換器7でも吸熱する運転について説明する。一例として、第1の副熱交換部41を除霜しつつ、第2の副熱交換部42で吸熱する場合について説明する。このとき、冷媒は、圧縮機2、圧送切替部3、流入切替部5、第1の副熱交換部41、副膨張装置43、第2の副熱交換部42、流入切替部5、バイパス回路61及び膨張装置6、第2の熱交換器7、圧送切替部3、圧縮機2の順に、流通する。
(Semi-high temperature defrosting operation)
Next, a semi-high temperature defrosting operation (also referred to as a semi-hot gas defrosting operation), that is, while defrosting one of the first auxiliary heat exchanging part 41 and the second auxiliary heat exchanging part 42, The operation of absorbing heat and absorbing heat in the second heat exchanger 7 will be described. As an example, a case where the second sub heat exchange unit 42 absorbs heat while defrosting the first sub heat exchange unit 41 will be described. At this time, the refrigerant is the compressor 2, the pressure switching unit 3, the inflow switching unit 5, the first sub heat exchange unit 41, the sub expansion device 43, the second sub heat exchange unit 42, the inflow switching unit 5, and the bypass circuit. 61, the expansion device 6, the second heat exchanger 7, the pumping switching unit 3, and the compressor 2 are distributed in this order.
 制御部21における除霜時制御手段22は、バイパス弁62を開き、膨張装置6に流通する冷媒の量を減らすと共に、膨張装置6の開度を全開にして、膨張装置6での冷媒の膨張を抑制する。なお、バイパス弁62が開くと、膨張装置6の前後における冷媒の圧力差がなくなるため、膨張装置6の開度を全開にしなくとも、冷媒の膨張は抑制される。しかし、冷媒回路8における圧力損失を極力低減するために、膨張装置6の開度を全開にしている。そして、制御部21における除霜時制御手段22は、副バイパス弁45を閉じ、副膨張装置43に流通する冷媒の量を増やして、副膨張装置43での冷媒の膨張を促す。その際、制御部21は、第1の副熱交換部41から流出した冷媒の温度(第1の温度検出部41aで検知する温度であり、冷媒の凝縮温度に近い)が、霜が融解する温度より高く、例えば2℃になるように、副膨張装置43の開度を調節する。ここで、副膨張装置43の開度を上げると、冷媒の凝縮温度は下がり、副膨張装置43の開度を下げると、冷媒の凝縮温度は上がる。 The defrosting control means 22 in the control unit 21 opens the bypass valve 62, reduces the amount of refrigerant flowing through the expansion device 6, opens the expansion device 6 fully open, and expands the refrigerant in the expansion device 6. Suppress. When the bypass valve 62 is opened, the refrigerant pressure difference before and after the expansion device 6 disappears, so that expansion of the refrigerant is suppressed without fully opening the expansion device 6. However, in order to reduce the pressure loss in the refrigerant circuit 8 as much as possible, the opening degree of the expansion device 6 is fully opened. Then, the defrosting control means 22 in the control unit 21 closes the sub-bypass valve 45 and increases the amount of refrigerant flowing through the sub-expansion device 43 to promote expansion of the refrigerant in the sub-expansion device 43. At that time, the controller 21 causes the temperature of the refrigerant flowing out from the first auxiliary heat exchanging unit 41 (the temperature detected by the first temperature detecting unit 41a, which is close to the refrigerant condensing temperature) to melt the frost. The opening degree of the sub expansion device 43 is adjusted so as to be higher than the temperature, for example, 2 ° C. Here, when the opening degree of the sub expansion device 43 is increased, the condensation temperature of the refrigerant decreases, and when the opening degree of the sub expansion device 43 is decreased, the condensation temperature of the refrigerant increases.
 更に、他の方法として、制御部21は、圧縮機2から吐出される冷媒の温度(温度検出部13で検知する)が設定吐出温度になるように、副膨張装置43の開度を調節するようにしてもよい。ここで、副膨張装置43の開度を上げると、冷媒の吐出温度は下がり、副膨張装置43の開度を下げると、冷媒の吐出温度は上がる。この場合、設定吐出温度は、例えば、第1の副熱交換部41から流出した冷媒の温度(第1の温度検出部41aで検知する温度であり、冷媒の凝縮温度に近い)と、副膨張装置43で膨張して第2の副熱交換部42に流入する冷媒の温度(第2の温度検出部42aで検知する温度であり、冷媒の蒸発温度に近い)と、圧縮機2の周波数及び構造特性(圧縮する部分の容積等)と、冷媒特性(冷媒の種類、設定過熱度又は設定冷却度等)とを用いて算出される値である。また副膨張装置43の開度を決定する方法は、上記のような検知される冷媒の吐出温度又は凝縮温度に基づいて副膨張装置43の開度を適宜変更するといったいわゆるフィードバック制御ではなく、圧縮機2の周波数や室外空気11の温度度等の範囲に応じて予め決められた複数パターンの値で副膨張装置43の開度を一意に決めるといったいわゆるフィードフォワード制御としても良い。 Furthermore, as another method, the control unit 21 adjusts the opening degree of the sub-expansion device 43 so that the temperature of the refrigerant discharged from the compressor 2 (detected by the temperature detection unit 13) becomes the set discharge temperature. You may do it. Here, when the opening degree of the sub expansion device 43 is increased, the discharge temperature of the refrigerant is lowered, and when the opening degree of the sub expansion device 43 is lowered, the discharge temperature of the refrigerant is raised. In this case, the set discharge temperature is, for example, the temperature of the refrigerant that has flowed out of the first auxiliary heat exchange unit 41 (the temperature detected by the first temperature detection unit 41a and close to the condensation temperature of the refrigerant), and the secondary expansion. The temperature of the refrigerant that expands in the device 43 and flows into the second auxiliary heat exchange unit 42 (the temperature detected by the second temperature detection unit 42a and close to the evaporation temperature of the refrigerant), the frequency of the compressor 2 and It is a value calculated using structural characteristics (such as the volume of the portion to be compressed) and refrigerant characteristics (such as the type of refrigerant, the set degree of superheat or the set degree of cooling). The method for determining the opening degree of the sub-expansion device 43 is not so-called feedback control in which the opening degree of the sub-expansion device 43 is appropriately changed based on the detected refrigerant discharge temperature or condensing temperature as described above. A so-called feed-forward control may be employed in which the opening degree of the sub-expansion device 43 is uniquely determined by a plurality of patterns determined in advance according to the frequency of the machine 2 and the temperature of the outdoor air 11.
 これにより、圧縮機2から吐出された高温の冷媒は、第1の副熱交換部41に流入し、第1の副熱交換部41に付着した霜が、その高温の冷媒によって溶かされ、除霜される。その後、副膨張装置43で膨張し低圧化して気液2相化した冷媒は、第2の副熱交換部42で室外空気11から吸熱して気化する。そして、気化した冷媒は、膨張装置6で膨張されないため、高温のまま(とはいえ、最大でも熱源である室外空気11と同じ温度程度までであり、室外空気11が室内空気12より低温である通常暖房時には室内空気12を暖房できる温度ではない)、第2の熱交換器7に流入する。その際、高温除霜運転と比べて冷媒が高温のまま、第2の熱交換器7に流入するため、第2の熱交換器7における過度の吸熱が抑制される。そして、第2の熱交換器7から流出した冷媒は、圧縮機2に吸入されて再び高温高圧化される。 As a result, the high-temperature refrigerant discharged from the compressor 2 flows into the first sub heat exchange unit 41, and the frost adhering to the first sub heat exchange unit 41 is melted by the high-temperature refrigerant and removed. Frosted. Thereafter, the refrigerant that has been expanded in the sub-expansion device 43 and reduced in pressure to be gas-liquid two-phase is vaporized by absorbing heat from the outdoor air 11 in the second sub-heat exchanger 42. Since the vaporized refrigerant is not expanded by the expansion device 6, it remains at a high temperature (although it is at most about the same temperature as the outdoor air 11, which is a heat source), and the outdoor air 11 is cooler than the indoor air 12. It is not a temperature at which the indoor air 12 can be heated during normal heating), and flows into the second heat exchanger 7. At that time, since the refrigerant flows into the second heat exchanger 7 while maintaining a high temperature as compared with the high temperature defrosting operation, excessive heat absorption in the second heat exchanger 7 is suppressed. And the refrigerant | coolant which flowed out from the 2nd heat exchanger 7 is suck | inhaled by the compressor 2, and is high-temperature-high pressure again.
 このように、半高温除霜運転では、除霜暖房運転とは異なり、除霜しつつ暖房を継続するものではないが、除霜に必要な熱源の大部分が第2の副熱交換部42で室外空気11から賄われる。これに対し、高温除霜運転では、第2の副熱交換部42も除霜するため、除霜に必要な熱源は、第2の熱交換器7における室内空気12である。従って、半高温除霜運転では、第2の熱交換器7における室内空気12からの吸熱が、高温除霜運転よりも抑制される。このように、通常暖房運転をしている間に、除霜が必要になっても、半高温除霜運転であれば、室内空気12の温度が過度に低下することを抑制し、従って、快適性を損なわない。 Thus, in the semi-high temperature defrosting operation, unlike the defrosting heating operation, heating is not continued while defrosting, but most of the heat source necessary for defrosting is the second auxiliary heat exchange unit 42. It is covered by outdoor air 11. On the other hand, in the high temperature defrosting operation, the second auxiliary heat exchanging unit 42 is also defrosted, so the heat source necessary for defrosting is the indoor air 12 in the second heat exchanger 7. Therefore, in the semi-high temperature defrosting operation, the heat absorption from the indoor air 12 in the second heat exchanger 7 is suppressed more than in the high temperature defrosting operation. Thus, even if defrosting is necessary during normal heating operation, if the semi-high temperature defrosting operation is performed, the temperature of the indoor air 12 is suppressed from excessively decreasing, and thus comfortable. Does not impair sex.
 なお、除霜暖房運転又は半高温除霜運転において、第1の副熱交換部41を除霜する例について説明したが、流入切替部5を切り替えることによって、第2の副熱交換部42を除霜することも可能である。更に、除霜暖房運転と半高温除霜運転との両方を、制御部21によって適宜変更する構成としてもよい。例えば、室内が充分に暖まっておらず、室内の温度が低い場合、除霜暖房運転を行って、暖房を継続する。また、室内が充分に暖まっており、室内の温度が高い場合、半高温除霜運転を行って、除霜能力を高め、より短時間に除霜して通常暖房運転に早く復帰できるようにする。また、それとは逆に、室内が充分に暖まっていない場合は、半高温除霜運転を行い、室内が充分に暖まっている場合は、除霜暖房運転を行うようにしてもよい。このように、除霜暖房運転と半高温除霜運転とを使い分けることによって、室内の快適性を優先するか、又は除霜の効率性を優先するかを適宜選択することができる。 In addition, although the example which defrosts the 1st sub heat exchange part 41 in the defrost heating operation or the semi-high temperature defrost operation was demonstrated, by switching the inflow switching part 5, the 2nd sub heat exchange part 42 is changed. It is also possible to defrost. Further, both the defrosting heating operation and the semi-high temperature defrosting operation may be appropriately changed by the control unit 21. For example, when the room is not sufficiently warm and the room temperature is low, the defrost heating operation is performed and the heating is continued. In addition, when the room is sufficiently warm and the room temperature is high, a semi-high temperature defrosting operation is performed to increase the defrosting capacity and to defrost in a shorter time so that the normal heating operation can be quickly restored. . On the contrary, when the room is not sufficiently warm, the semi-high temperature defrosting operation may be performed, and when the room is sufficiently warm, the defrosting heating operation may be performed. In this way, by properly using the defrosting heating operation and the semi-high temperature defrosting operation, it is possible to appropriately select whether to give priority to indoor comfort or to defrost efficiency.
 また、これらの除霜暖房運転又は半高温除霜運転において、制御部21は、除霜の終了を判定する。具体的には、閾値判定手段23が、第1の温度検出部41a又は第2の温度検出部42aで検出された冷媒の温度が、予め決められた閾値以上であるか否かを判定し、終了判定手段24が、第1の副熱交換部41又は第2の副熱交換部42を除霜している間に、冷媒の温度が閾値以上であると閾値判定手段23で判定された場合、副熱交換部の除霜が終了したと判定する。この判定は、副熱交換部での除霜が終了すると、吸熱源がなくなるため、冷媒の温度が急激に上昇し始める作用を利用したものである。凝縮温度に応じて副膨張装置43の開度を制御している場合、上記のような冷媒の温度上昇は、この副膨張装置43の開度の制御によって抑制されている。このため、副膨張装置43の開度が急激に大きくなることに基づいて、除霜が終了したと判定するようにしてもよい。 Further, in these defrosting heating operation or semi-high temperature defrosting operation, the control unit 21 determines the end of the defrosting. Specifically, the threshold determination unit 23 determines whether or not the temperature of the refrigerant detected by the first temperature detection unit 41a or the second temperature detection unit 42a is equal to or higher than a predetermined threshold, When the threshold determination unit 23 determines that the temperature of the refrigerant is equal to or higher than the threshold while the end determination unit 24 defrosts the first sub heat exchange unit 41 or the second sub heat exchange unit 42. It is determined that the defrosting of the auxiliary heat exchange unit has been completed. This determination uses an action in which the temperature of the refrigerant starts to rise rapidly because the heat absorption source disappears when the defrosting in the auxiliary heat exchange unit is completed. When the opening degree of the sub-expansion device 43 is controlled according to the condensation temperature, the temperature rise of the refrigerant as described above is suppressed by controlling the opening degree of the sub-expansion device 43. For this reason, you may make it determine with the defrosting having been complete | finished based on the opening degree of the subexpansion apparatus 43 becoming large rapidly.
 なお、第1の副熱交換部41を除霜する場合、第1の温度検出部41aで検出された冷媒の温度(又は副膨張装置43の開度の上昇)で判定すればよく、第2の副熱交換部42を除霜する場合、第2の温度検出部42aで検出された冷媒の温度(又は副膨張装置43の開度の上昇)で判定すればよい。また、高温除霜運転における除霜の終了判定は、第1の熱交換ユニット4から膨張装置6の間に設けた温度検出部10を使って、第1の熱交換ユニット4から流出する冷媒の温度が予め決められた閾値以上であるか否かで判定すればよい。また予め決められた閾値とは、例えば、霜が溶ける温度としての0℃より若干高い温度(たとえば3℃)とする。このようにするのは、副熱交換部の除霜が終了していなければ、霜の融解熱のため、霜が溶ける温度より冷媒の温度が高くならない、ことを利用したもので、若干高い温度としているのは、冷媒と霜との間の熱抵抗分の増加や室外空気11の気圧によって霜の融解温が変化することなどを考慮しているためである。 In addition, when defrosting the 1st sub heat exchange part 41, what is necessary is just to determine with the temperature of the refrigerant | coolant (or raise of the opening degree of the sub expansion apparatus 43) detected by the 1st temperature detection part 41a, and 2nd In the case of defrosting the auxiliary heat exchanging section 42, the temperature of the refrigerant detected by the second temperature detecting section 42a (or the increase in the degree of opening of the auxiliary expansion device 43) may be determined. In addition, the defrosting end determination in the high temperature defrosting operation is performed using the temperature detection unit 10 provided between the first heat exchange unit 4 and the expansion device 6, and the refrigerant flowing out from the first heat exchange unit 4. What is necessary is just to judge by whether temperature is more than a predetermined threshold value. The predetermined threshold value is set to a temperature (for example, 3 ° C.) slightly higher than 0 ° C. as a temperature at which frost melts. This is because the temperature of the refrigerant does not become higher than the temperature at which the frost melts due to the heat of melting of the frost unless the defrosting of the auxiliary heat exchange unit is completed, and the temperature is slightly higher. This is because it takes into account the increase in the thermal resistance between the refrigerant and the frost and the change in the melting temperature of the frost due to the atmospheric pressure of the outdoor air 11.
 以上のように、本実施の形態1に係るヒートポンプ装置1は、室外に設置される第1の熱交換ユニット4が、第1の副熱交換部41、第2の副熱交換部42及び副膨張装置43で構成されている。そして、除霜時制御手段22は、第1の副熱交換部41又は第2の副熱交換部42を除霜する際、第1の熱交換ユニット4を流通する冷媒の圧力差を副膨張装置43で高める。これにより、ヒートポンプ装置1は、第1の副熱交換部41及び第2の副熱交換部42のいずれか一方を除霜するために、放熱し、それと同時に、他方から吸熱する。 As described above, in the heat pump device 1 according to the first embodiment, the first heat exchange unit 4 installed outdoors has the first sub heat exchange unit 41, the second sub heat exchange unit 42, and the sub heat exchange unit 42. The expansion device 43 is configured. When the defrosting control means 22 defrosts the first sub heat exchange section 41 or the second sub heat exchange section 42, the pressure difference of the refrigerant flowing through the first heat exchange unit 4 is sub-expanded. Increase with device 43. Thereby, in order to defrost one of the 1st sub heat exchange part 41 and the 2nd sub heat exchange part 42, the heat pump apparatus 1 thermally radiates, and it absorbs heat from the other simultaneously.
 そして、第1の副熱交換部41及び第2の副熱交換部42のいずれか一方を除霜していても、他方から吸熱することによって、室内に設置された第2の熱交換器7で室内空気12に温熱を供給することができる(除霜暖房運転)。また、第1の副熱交換部41及び第2の副熱交換部42のいずれか一方を除霜していても、他方から吸熱することによって、第2の熱交換器7で吸熱する量を低減することができる(半高温除霜運転)。これにより、除霜暖房運転では、快適性が飛躍的に向上し、半高温除霜運転では、快適性を損なわない。 And even if any one of the 1st sub heat exchange part 41 and the 2nd sub heat exchange part 42 is defrosted, the 2nd heat exchanger 7 installed indoors by absorbing heat from the other. Thus, warm heat can be supplied to the indoor air 12 (defrost heating operation). Moreover, even if any one of the 1st sub heat exchange part 41 and the 2nd sub heat exchange part 42 is defrosted, the quantity absorbed by the 2nd heat exchanger 7 is absorbed by absorbing heat from the other. It can be reduced (semi-high temperature defrosting operation). Thereby, in defrost heating operation, comfort is improved dramatically, and comfort is not impaired in semi-high temperature defrost operation.
 前述の如く、除霜暖房運転では、熱需要部である室内に温熱が供給されたまま、除霜することができるため、利用者の不快感を抑制し、快適性が向上する。また、除霜暖房運転では、圧縮機2から吐出された冷媒が、第1の熱交換ユニット4よりも先に第2の熱交換器7(負荷熱交換器)に供給されるため、この第2の熱交換器7で放熱された冷媒の残熱を利用して、第1の熱交換ユニット4のうち、第1の副熱交換部41又は第2の副熱交換部42を除霜する。このため、エネルギ効率が高い。なお、高温除霜運転及び半高温除霜運転では、圧縮機2から吐出された高温の冷媒が、第2の熱交換器7よりも先に第1の熱交換ユニット4に供給されるため、エネルギ効率はあまり高くないが高速で除霜することが可能である。 As described above, in the defrost heating operation, the defrosting can be performed while the heat is supplied to the room which is the heat demand section, so that the user's discomfort is suppressed and the comfort is improved. In the defrosting heating operation, the refrigerant discharged from the compressor 2 is supplied to the second heat exchanger 7 (load heat exchanger) before the first heat exchange unit 4. Of the first heat exchange unit 4, the first sub heat exchange unit 41 or the second sub heat exchange unit 42 is defrosted using the residual heat of the refrigerant radiated by the second heat exchanger 7. . For this reason, energy efficiency is high. In the high-temperature defrosting operation and the semi-high temperature defrosting operation, the high-temperature refrigerant discharged from the compressor 2 is supplied to the first heat exchange unit 4 before the second heat exchanger 7. Although energy efficiency is not so high, it is possible to defrost at high speed.
 また、副膨張装置43だけを付加することによって、除霜暖房運転及び半高温除霜運転を実現しているため、流通経路が簡素で済み、また、機器数増加に伴う装置の大型化及びコスト上昇を抑えることができる。更に、冷媒の流通経路は、通常暖房運転と除霜暖房運転とで同じであり、また、通常冷房運転と半高温除霜運転とで同じである。このため、運転モードを切り替えるために必要となる余計な弁を省くことができ、冷媒溜りが発生する部位を減らすことができる。従って、除霜工程の前後で冷媒溜りが発生せず、冷媒溜りを解消するための処理も不要で、ヒートポンプ装置1の運用が簡便である。これにより、配管の耐圧性能を下げることが許容され、また、冷媒の量の増加を抑えることができ、従って、コスト上昇を抑えることができる。 In addition, since only the sub-expansion device 43 is added, the defrosting heating operation and the semi-high temperature defrosting operation are realized. Therefore, the distribution route is simple, and the size and cost of the device increase with the increase in the number of devices. The rise can be suppressed. Further, the refrigerant flow path is the same in the normal heating operation and the defrosting heating operation, and is the same in the normal cooling operation and the semi-high temperature defrosting operation. For this reason, an unnecessary valve required for switching the operation mode can be omitted, and the number of portions where the refrigerant pool is generated can be reduced. Therefore, the refrigerant pool does not occur before and after the defrosting process, the process for eliminating the refrigerant pool is unnecessary, and the operation of the heat pump device 1 is simple. Thereby, it is allowed to lower the pressure resistance performance of the pipe, and an increase in the amount of the refrigerant can be suppressed, so that an increase in cost can be suppressed.
 また、圧送切替部3が設けられているため、この圧送切替部3で冷媒の流通方向を変更することができる。このため、室内空気12に温熱を供給する通常暖房運転と、室内空気12に冷熱を供給する通常冷房運転とのいずれもが可能である。更に、圧縮機2から吐出された冷媒が、第1の熱交換ユニット4よりも先に第2の熱交換器7(負荷熱交換器)に供給されて、この第2の熱交換器7で放熱された冷媒の残熱を利用して、第1の熱交換ユニット4のうち、第1の副熱交換部41又は第2の副熱交換部42を除霜する除霜暖房運転と、圧縮機2から吐出された高温の冷媒が、第2の熱交換器7よりも先に第1の熱交換ユニット4に供給されて、第1の熱交換ユニット4のうち、第1の副熱交換部41又は第2の副熱交換部42を高温冷媒で直接除霜する高温除霜運転及び半高温除霜運転とを使い分けることができる。 Further, since the pressure feed switching unit 3 is provided, the flow direction of the refrigerant can be changed by the pressure feed switching unit 3. For this reason, both normal heating operation for supplying warm air to the indoor air 12 and normal cooling operation for supplying cold heat to the indoor air 12 are possible. Further, the refrigerant discharged from the compressor 2 is supplied to the second heat exchanger 7 (load heat exchanger) prior to the first heat exchange unit 4, and the second heat exchanger 7 Defrosting heating operation for defrosting the first auxiliary heat exchanging part 41 or the second auxiliary heat exchanging part 42 in the first heat exchanging unit 4 using the residual heat of the radiated refrigerant, and compression The high-temperature refrigerant discharged from the machine 2 is supplied to the first heat exchange unit 4 before the second heat exchanger 7, and the first sub heat exchange in the first heat exchange unit 4 is performed. The high temperature defrosting operation and the semi-high temperature defrosting operation in which the part 41 or the second auxiliary heat exchange unit 42 is directly defrosted with a high temperature refrigerant can be used properly.
 更に、流入切替部5が設けられているため、この流入切替部5で第1の熱交換ユニット4における冷媒の流通方向を変更することができる。また、この流入切替部5で冷媒の流通方向を切り替えつつ、除霜時制御手段22が、副膨張装置43の圧力差を高めることによって、第1の副熱交換部41及び第2の副熱交換部42のうち、先に冷媒が流通する副熱交換部に放熱して除霜し、且つその後に冷媒が流通する副熱交換部で吸熱することができる。更にまた、この流入切替部5と圧送切替部3とのいずれも採用することによって、除霜暖房運転及び半高温除霜運転とを、第1の副熱交換部41及び第2の副熱交換部42で行うことができる。 Furthermore, since the inflow switching unit 5 is provided, the inflow switching unit 5 can change the flow direction of the refrigerant in the first heat exchange unit 4. Further, the defrosting control means 22 increases the pressure difference of the sub expansion device 43 while switching the refrigerant flow direction in the inflow switching unit 5, whereby the first sub heat exchange unit 41 and the second sub heat. Of the exchange part 42, heat can be removed and defrosted to the auxiliary heat exchange part through which the refrigerant flows first, and then absorbed by the auxiliary heat exchange part through which the refrigerant flows. Furthermore, by adopting both the inflow switching unit 5 and the pressure feeding switching unit 3, the defrosting heating operation and the semi-high temperature defrosting operation are performed by the first sub heat exchange unit 41 and the second sub heat exchange. This can be done in part 42.
 また、バイパス回路61とバイパス弁62とが設けられているため、このバイパス弁62を閉じて、膨張装置6の前後で冷媒の圧力差を高くする運転、即ち、通常暖房運転、通常冷房運転及び高温除霜運転が可能であると共に、このバイパス弁62を開いて、膨張装置6の前後で冷媒の圧力差を低くし、副膨張装置43の前後で冷媒の圧力差を高くする運転、即ち、除霜暖房運転及び半高温除霜運転が可能である。このため、除霜時のエネルギ効率が向上する。 Further, since the bypass circuit 61 and the bypass valve 62 are provided, the operation of closing the bypass valve 62 and increasing the refrigerant pressure difference before and after the expansion device 6, that is, normal heating operation, normal cooling operation, and An operation in which the high-temperature defrosting operation is possible and the bypass valve 62 is opened to reduce the refrigerant pressure difference before and after the expansion device 6 and increase the refrigerant pressure difference before and after the auxiliary expansion device 43, that is, Defrosting heating operation and semi-high temperature defrosting operation are possible. For this reason, the energy efficiency at the time of defrosting improves.
 更に、副バイパス回路44と副バイパス弁45とが設けられているため、この副バイパス弁45を閉じて、副膨張装置43の前後で冷媒の圧力差を高くする運転、即ち、除霜暖房運転及び半高温除霜運転が可能であると共に、この副バイパス弁45を開いて、副膨張装置43をバイパスすることによって、副膨張装置43の前後で冷媒の圧力差を低くし、第1の副熱交換部41及び第2の副熱交換部42のいずれもから吸熱又は放熱する運転、即ち、通常暖房運転、通常冷房運転及び高温除霜運転が可能である。これにより、第1の熱交換ユニット4における圧損の増加を抑制し、効率の低下を抑止することができる。 Further, since the auxiliary bypass circuit 44 and the auxiliary bypass valve 45 are provided, the operation of closing the auxiliary bypass valve 45 and increasing the refrigerant pressure difference before and after the auxiliary expansion device 43, that is, the defrosting heating operation. In addition, the semi-high temperature defrosting operation is possible, and by opening the auxiliary bypass valve 45 and bypassing the auxiliary expansion device 43, the pressure difference of the refrigerant before and after the auxiliary expansion device 43 is reduced, and the first auxiliary defrosting operation is performed. An operation that absorbs or dissipates heat from both the heat exchange unit 41 and the second auxiliary heat exchange unit 42, that is, a normal heating operation, a normal cooling operation, and a high-temperature defrosting operation are possible. Thereby, the increase in the pressure loss in the 1st heat exchange unit 4 can be suppressed, and the fall of efficiency can be suppressed.
 更に、副膨張装置43は、冷媒の流通量及び冷媒の圧力差を開度で調節する膨張弁が採用されているため、副膨張装置43の前後における冷媒の圧力差を微調整することができる。このため、除霜時の運転条件の変更及び温度調整等の精度が向上する。 Furthermore, since the expansion valve which adjusts the flow volume of a refrigerant | coolant and the pressure difference of a refrigerant | coolant with an opening degree is employ | adopted for the subexpansion apparatus 43, the pressure difference of the refrigerant | coolant before and behind the subexpansion apparatus 43 can be finely adjusted. . For this reason, the precision of the change of the operating condition at the time of defrosting, temperature adjustment, etc. improves.
 更にまた、第1の温度検出部41a又は第2の温度検出部42aが設けられているため、除霜暖房運転及び半高温除霜運転における除霜終了の判定精度が極めて高い。このため、除霜に要する無駄なエネルギ消費を抑えることができる。また、除霜時間を抑えることができ、快適性の向上又は不快感の低減の効果がより高まる。 Furthermore, since the first temperature detection unit 41a or the second temperature detection unit 42a is provided, the determination accuracy of the completion of the defrosting in the defrosting heating operation and the semi-high temperature defrosting operation is extremely high. For this reason, useless energy consumption required for defrosting can be suppressed. Moreover, the defrosting time can be suppressed, and the effect of improving comfort or reducing discomfort is further enhanced.
 (変形例)
 次に、本実施の形態1の変形例に係るヒートポンプ装置1について説明する。ヒートポンプ装置1は、通常冷房運転、高温除霜運転及び半高温除霜運転が不要である場合、圧送切替部3を省いても、通常暖房運転及び除霜暖房運転は可能である。また、通常暖房運転及び除霜暖房運転が不要である場合、圧送切替部3を省いても、通常冷房運転、高温除霜運転及び半高温除霜運転は可能である。このように、用途によって、運転の種類を選択すれば、圧送切替部3を省くことができる。
(Modification)
Next, a heat pump device 1 according to a modification of the first embodiment will be described. When the normal cooling operation, the high-temperature defrosting operation, and the semi-high temperature defrosting operation are unnecessary, the heat pump device 1 can perform the normal heating operation and the defrosting heating operation even if the pumping switching unit 3 is omitted. Further, when the normal heating operation and the defrosting heating operation are unnecessary, the normal cooling operation, the high temperature defrosting operation, and the semi-high temperature defrosting operation are possible even if the pumping switching unit 3 is omitted. Thus, if the kind of driving | operation is selected according to a use, the pumping switching part 3 can be omitted.
 また、第1の副熱交換部41及び第2の副熱交換部42のいずれか一方のみを除霜すれば済む場合、流入切替部5を省くこともできる。例えば、第1の副熱交換部41及び第2の副熱交換部42のいずれか一方に霜が発生し易い場合(例えば、室外空気11の流れに対し上流側の副熱交換部に着霜し易い場合等)、そのいずれか一方を半高温除霜運転で高速に除霜し、他方を除霜暖房運転で暖房しつつ除霜するように構成することができる。又は、第1の副熱交換部41及び第2の副熱交換部42のいずれか一方を、除霜暖房運転によって暖房しつつ除霜し、両方を同時に高温除霜運転で高速に除霜するようにしてもよい。これにより、流入切替部5を省いても、少なくとも半高温除霜運転又は除霜暖房運転であるときには、快適性の低下を抑制することができる。 Further, when only one of the first sub heat exchange unit 41 and the second sub heat exchange unit 42 needs to be defrosted, the inflow switching unit 5 can be omitted. For example, when frost is likely to be generated in one of the first sub heat exchange unit 41 and the second sub heat exchange unit 42 (for example, frost formation on the sub heat exchange unit on the upstream side with respect to the flow of the outdoor air 11). In such a case, one of them can be defrosted at a high speed by a semi-high temperature defrosting operation, and the other can be defrosted while being heated by a defrosting heating operation. Alternatively, either the first sub heat exchange unit 41 or the second sub heat exchange unit 42 is defrosted while being heated by the defrost heating operation, and both are simultaneously defrosted at a high speed by the high temperature defrost operation. You may do it. Thereby, even if it omits the inflow switching part 5, when it is at least a semi-high temperature defrost operation or a defrost heating operation, the fall of comfort can be suppressed.
 また、膨張装置6の開度を全開にしても、圧損が許容できる範囲であれば、バイパス回路61及びバイパス弁62を省くこともできる。これにより、コスト削減に資する。この膨張装置6と同様に、副膨張装置43の開度を全開にしても、圧損が許容できる範囲であれば、副バイパス回路44及び副バイパス弁45を省くこともできる。 Further, even if the opening degree of the expansion device 6 is fully opened, the bypass circuit 61 and the bypass valve 62 can be omitted as long as the pressure loss is in an allowable range. This contributes to cost reduction. Similarly to the expansion device 6, even if the opening degree of the sub expansion device 43 is fully opened, the sub bypass circuit 44 and the sub bypass valve 45 can be omitted as long as the pressure loss is within an allowable range.
 更に、副膨張装置43は、冷媒の流通量を調整する膨張弁ではなく、キャピラリチューブで構成されていてもよい。このキャピラリチューブは、膨張弁のように開度を変更するものではなく、冷媒の流通量に応じて、通過前後の圧力差が固定されている。これにより、除霜暖房運転の場合等において、圧縮機2の周波数等の運転条件が固定されるため、膨張弁よりも、運転条件の自由度及び調整の自由度が若干下がり、除霜における省エネ効果も低下するものの、より低コスト且つ小型化しつつ、実施の形態1と同等の効果が得られる。また、副膨張装置43という可動部品が減ることによって、故障リスクが低減し信頼性が向上する。 Furthermore, the sub-expansion device 43 may be configured by a capillary tube instead of the expansion valve that adjusts the refrigerant flow rate. This capillary tube does not change the opening degree like an expansion valve, and the pressure difference before and after passage is fixed in accordance with the circulation amount of the refrigerant. Thereby, in the case of defrosting heating operation, etc., since the operating conditions such as the frequency of the compressor 2 are fixed, the degree of freedom of the operating conditions and the degree of freedom of adjustment are slightly lower than those of the expansion valve. Although the effect is reduced, the same effect as in the first embodiment can be obtained while reducing the cost and size. In addition, since the number of movable parts called the sub-expansion device 43 is reduced, the risk of failure is reduced and the reliability is improved.
 更にまた、上記実施の形態1では、熱需要部において、第2の熱交換器7によって、室内空気12を加熱又は冷却する構成を説明したが、これに限らず、水等の液体を加熱又は冷却する構成としてもよい。この場合、第2の熱交換器7で加熱又は冷却された液体を利用して、室内に配置されたファンコイル、ラジエータ又は床暖房等で、室内を間接的に加熱又は冷却するようにしてもよい。このように、熱需要部は、室内空気12を加熱又は冷却する代わりに、給湯や暖房用の湯や冷房用の冷水等を生成するものであってもよい。 Furthermore, in the first embodiment, the configuration in which the indoor air 12 is heated or cooled by the second heat exchanger 7 in the heat demand section has been described. However, the present invention is not limited to this. It is good also as a structure to cool. In this case, the liquid heated or cooled by the second heat exchanger 7 may be used to indirectly heat or cool the room with a fan coil, radiator, floor heating, or the like disposed in the room. Good. Thus, instead of heating or cooling the indoor air 12, the heat demand unit may generate hot water, hot water for heating, cold water for cooling, or the like.
 上記実施の形態1では、バイパス弁62、副バイパス弁45を、バイパス回路61、副バイパス回路44において冷媒を流通するか又は停止するかを調節する開閉弁として説明したが、これを、例えば全閉と全開との間の途中開度を含めて緩やかに(例えば開閉に時間が2分必要)変化する弁にすることが好ましい。この場合、種々の運転モード(通常暖房運転、除霜暖房運転、高温除霜運転、半高温除霜運転等)の切り替え時において、冷媒回路8の各部における冷媒の温度、圧力又は量等の急激な変動を抑制しつつスムーズな切り替えが可能となる。 In the first embodiment, the bypass valve 62 and the sub bypass valve 45 have been described as on-off valves that adjust whether the refrigerant flows or stops in the bypass circuit 61 and the sub bypass circuit 44. It is preferable to use a valve that gradually changes (for example, 2 minutes are required for opening and closing) including an intermediate opening between the closed state and the fully opened state. In this case, when various operation modes (normal heating operation, defrost heating operation, high temperature defrost operation, semi-high temperature defrost operation, etc.) are switched, the temperature, pressure or amount of the refrigerant in each part of the refrigerant circuit 8 is rapidly changed. Smooth switching is possible while suppressing various fluctuations.
 また、上記実施の形態1では、除霜暖房運転、半高温除霜運転又は高温除霜運転における除霜の終了判断を、第1の温度検出部41a、第2の温度検出部42a又は温度検出部10において検出した温度の絶対値比較で行うようにしているが、所定時間間隔での温度変化による相対値比較、又は絶対値比較と相対値比較との両方で行うようにしてもよい。この場合も、実施の形態1と同様の効果を奏する。 Moreover, in the said Embodiment 1, the completion | finish judgment of the defrost in a defrost heating operation, a semi-high temperature defrost operation, or a high temperature defrost operation is made into the 1st temperature detection part 41a, the 2nd temperature detection part 42a, or temperature detection. Although the absolute value comparison of the temperature detected in the unit 10 is performed, the relative value comparison by the temperature change at a predetermined time interval, or both the absolute value comparison and the relative value comparison may be performed. In this case, the same effect as that of the first embodiment is obtained.
 更に、実施の形態1において、ヒートポンプ装置1は、副バイパス弁45の外部と空気との熱交換を抑制する抑制手段を備えることが好ましい。これにより、通常暖房運転時において、副バイパス弁45が全開であり、低温の冷媒が通過しても、副バイパス弁45の外部の可動部が着霜し、その動作を阻害することを抑制することができる。抑制手段は、例えば、副バイパス弁45の外側に断熱材を敷設したり、副バイパス弁45の可動部分の外部を2層構造とし、層間に乾燥気体を封入したりすることによって実現できる。また、抑制手段は、湿気を含む空気が当たらないように副熱交換部から離れた場所に配置したり、湿気を含む空気が当たり難くなるように副熱交換部との間に遮蔽部を設けたりすることによって実現できる。これにより、副バイパス弁45への着霜を抑制し、氷着による動作の不具合を抑制することができる。 Furthermore, in Embodiment 1, it is preferable that the heat pump apparatus 1 is provided with the suppression means which suppresses heat exchange with the exterior of the sub bypass valve 45, and air. Thereby, during the normal heating operation, even if the sub bypass valve 45 is fully opened and the low-temperature refrigerant passes, the movable part outside the sub bypass valve 45 is frosted and the operation is inhibited. be able to. The suppression means can be realized, for example, by laying a heat insulating material on the outside of the sub bypass valve 45, or by forming a two-layer structure outside the movable part of the sub bypass valve 45 and enclosing a dry gas between the layers. In addition, the suppression means is arranged at a location away from the auxiliary heat exchange part so that it does not come in contact with moisture, or a shielding part is provided between the auxiliary heat exchange part so that the air containing moisture is difficult to hit. It can be realized by doing. Thereby, the frost formation to the sub bypass valve 45 can be suppressed, and the malfunction of the operation | movement by icing can be suppressed.
 また、ヒートポンプ装置1は、抑制手段の代わりに、ヒータ等の加熱部を、副バイパス弁45に備えてもよい。制御部21によって、通常暖房運転後等に、副バイパス弁45を動作する必要が生じたと判断されたとき等に、副バイパス弁45を加熱部で加熱して除霜することによって、氷着を改善して副バイパス弁45を確実に動作させることができる。更に、ヒートポンプ装置1は、上記の抑制手段及び上記の加熱部を両方備えてもよい。この場合、加熱部からの外部への放熱を抑制することができ、副バイパス弁45の外部を効率良く除霜することができる。 Moreover, the heat pump device 1 may include a heating unit such as a heater in the sub bypass valve 45 instead of the suppression means. When it is determined by the control unit 21 that it is necessary to operate the sub bypass valve 45 after a normal heating operation or the like, the sub bypass valve 45 is heated by the heating unit and defrosted, whereby ice accretion is achieved. Thus, the sub bypass valve 45 can be operated reliably. Furthermore, the heat pump device 1 may include both the suppression unit and the heating unit. In this case, heat radiation from the heating unit to the outside can be suppressed, and the outside of the sub bypass valve 45 can be efficiently defrosted.
実施の形態2.
 次に、本実施の形態2に係るヒートポンプ装置100について説明する。図2は、実施の形態2に係るヒートポンプ装置100を示す模式図である。本実施の形態2は、第1の副熱交換部41及び第2の副熱交換部42に、冷媒が分岐して流通する複数の流通経路が形成されている点で、実施の形態1と相違する。本実施の形態2では、実施の形態1と共通する部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 2. FIG.
Next, the heat pump apparatus 100 according to the second embodiment will be described. FIG. 2 is a schematic diagram showing a heat pump device 100 according to the second embodiment. The second embodiment is different from the first embodiment in that a plurality of flow paths through which the refrigerant branches and flows are formed in the first sub heat exchange section 41 and the second sub heat exchange section 42. Is different. In the second embodiment, portions common to the first embodiment are denoted by the same reference numerals, description thereof is omitted, and differences from the first embodiment will be mainly described.
 本実施の形態2では、図2に示すように、第1の副熱交換部41に、常に並列に冷媒が分岐して流通する第1の流通経路4a及び第2の流通経路4bが形成されている。そして、この第1の流通経路4a及び第2の流通経路4bは、そのまま、第2の副熱交換部42にも形成されている。第1の流通経路4aは、第1の副熱交換部41と第2の副熱交換部42との間で分岐し、一方は副膨張装置43の一端部に接続され、他方は第1の副バイパス回路44aの一端部に接続されている。そして、第1の流通経路4aは、副膨張装置43の他端部と第1の副バイパス回路44aの他端部とで、再び合流する。なお、第1の副バイパス回路44aには、第1の副バイパス弁45aが設けられている。この第1の副バイパス弁45aは、第1の副バイパス回路44aに冷媒が流通するか否かを制御するものである。 In the second embodiment, as shown in FIG. 2, a first circulation path 4 a and a second circulation path 4 b are formed in the first auxiliary heat exchanging part 41 so that the refrigerant always branches and flows in parallel. ing. The first distribution path 4a and the second distribution path 4b are also formed in the second auxiliary heat exchange unit 42 as they are. The first flow path 4a branches between the first sub heat exchange unit 41 and the second sub heat exchange unit 42, one is connected to one end of the sub expansion device 43, and the other is the first It is connected to one end of the sub bypass circuit 44a. The first flow path 4a joins again at the other end of the sub-expansion device 43 and the other end of the first sub-bypass circuit 44a. The first sub bypass circuit 44a is provided with a first sub bypass valve 45a. The first sub bypass valve 45a controls whether or not the refrigerant flows through the first sub bypass circuit 44a.
 また、第2の流通経路4bも、第1の副熱交換部41と第2の副熱交換部42との間で分岐し、一方は副膨張装置43の一端部に接続され、他方は第2の副バイパス回路44bの一端部に接続されている。そして、第2の流通経路4bは、副膨張装置43の他端部と第2の副バイパス回路44bの他端部とで、再び合流する。なお、第2の副バイパス回路44bには、第2の副バイパス弁45bが設けられている。この第2の副バイパス弁45bは、第2の副バイパス回路44bに冷媒が流通するか否かを制御するものである。 The second flow path 4b also branches between the first sub heat exchange unit 41 and the second sub heat exchange unit 42, one of which is connected to one end of the sub expansion device 43, and the other is the second sub heat exchange unit 42. 2 is connected to one end of the secondary bypass circuit 44b. Then, the second flow path 4b joins again at the other end of the sub expansion device 43 and the other end of the second sub bypass circuit 44b. The second sub bypass circuit 44b is provided with a second sub bypass valve 45b. The second sub bypass valve 45b controls whether or not the refrigerant flows through the second sub bypass circuit 44b.
 以上のとおり、副膨張装置43は、第1の流通経路4aと第2の流通経路4bとが合流した部分に設置されている。なお、第1の温度検出部41a及び第2の温度検出部42aは、第1の流通経路4aと第2の流通経路4bとが合流した部分に設置された副膨張装置43の両端部に設けられている。 As described above, the secondary expansion device 43 is installed at a portion where the first distribution path 4a and the second distribution path 4b merge. The first temperature detection unit 41a and the second temperature detection unit 42a are provided at both ends of the sub-expansion device 43 installed at the portion where the first flow path 4a and the second flow path 4b merge. It has been.
 実施の形態2に係るヒートポンプ装置100は、複数の流通経路が形成されている点で、実施の形態1と相違するが、通常暖房運転、通常冷房運転、除霜暖房運転、半高温除霜運転及び高温除霜運転の動作は、実施の形態1と同様である。なお、実施の形態1の副バイパス弁45を開閉する同じタイミングで、実施の形態2の第1の副バイパス弁45aと第2の副バイパス弁45bとは同時に開閉される。また、実施の形態1の変形例で採用された構成は、実施の形態2でも採用することが可能である。 The heat pump device 100 according to the second embodiment is different from the first embodiment in that a plurality of distribution paths are formed, but a normal heating operation, a normal cooling operation, a defrost heating operation, and a semi-high temperature defrost operation. The operation of the high temperature defrosting operation is the same as that of the first embodiment. Note that the first sub-bypass valve 45a and the second sub-bypass valve 45b in the second embodiment are simultaneously opened and closed at the same timing when the sub-bypass valve 45 in the first embodiment is opened and closed. The configuration adopted in the modification of the first embodiment can also be adopted in the second embodiment.
 以上説明したように、実施の形態2では、第1の副熱交換部41及び第2の副熱交換部42に、冷媒が分岐して流通する第1の流通経路4a及び第2の流通経路4bが形成されているため、第1の副熱交換部41及び第2の副熱交換部42における圧損がより低減される。このため、実施の形態1で得られる効果に加え、冷媒回路8における冷凍サイクルの高効率化を達成できる。 As described above, in the second embodiment, the first flow path 4a and the second flow path through which the refrigerant branches and flows to the first sub heat exchange unit 41 and the second sub heat exchange unit 42. Since 4b is formed, the pressure loss in the 1st sub heat exchange part 41 and the 2nd sub heat exchange part 42 is reduced more. For this reason, in addition to the effect obtained in the first embodiment, the efficiency of the refrigeration cycle in the refrigerant circuit 8 can be increased.
 また、第1の流通経路4aと第2の流通経路4bとに、夫々第1の副バイパス回路44aと第2の副バイパス回路44bとが接続されているため、副膨張装置43をバイパスするバイパス機能が向上し、冷媒の圧力差が低減される。また、第1の流通経路4a及び第2の流通経路4bにおける冷媒の圧力差又は温度等が、多少不均衡であっても、副膨張装置43の両端部で、第1の流通経路4aと第2の流通経路4bとが一旦合流するため、この不均衡は自然に是正される。またその際、第1の流通経路4aと第2の流通経路4bとは、それぞれ第1の副バイパス回路44aと第2の副バイパス回路44bとへ分岐してから合流しているので、合流することによる圧損の増加はないか、又は大きくない。 Further, since the first secondary bypass circuit 44a and the second secondary bypass circuit 44b are connected to the first circulation path 4a and the second circulation path 4b, respectively, bypass for bypassing the secondary expansion device 43 The function is improved and the pressure difference of the refrigerant is reduced. Further, even if the pressure difference or temperature of the refrigerant in the first circulation path 4a and the second circulation path 4b is somewhat unbalanced, the first circulation path 4a and the second circulation path are formed at both ends of the sub-expansion device 43. Since the two distribution channels 4b once join, this imbalance is corrected naturally. At that time, the first distribution path 4a and the second distribution path 4b are merged after branching to the first sub-bypass circuit 44a and the second sub-bypass circuit 44b, respectively. There is no increase in pressure loss, or a large increase.
 なお、上記実施の形態2では、第1の副バイパス弁45aと第2の副バイパス弁45bとは、第1の副バイパス回路44aと第2の副バイパス回路44bとのそれぞれに設けられた別体の弁としているが、同じタイミングで同時に開閉されるものであり、弁体を一体で形成したり、あるいは開閉のために必要な駆動動力を供給するモーターを1台で兼用したりしてもよい。このようにした場合、小型化または低コスト化の効果を得ることがより容易となる。 In the second embodiment, the first sub bypass valve 45a and the second sub bypass valve 45b are provided separately for the first sub bypass circuit 44a and the second sub bypass circuit 44b, respectively. Although it is a body valve, it is opened and closed simultaneously at the same timing, and even if the valve body is formed integrally or a single motor that supplies the driving power required for opening and closing is combined Good. In this case, it becomes easier to obtain the effect of downsizing or cost reduction.
 また第1の流通経路4aに、第1の副バイパス回路44aおよび第1の副バイパス弁45aを複数備えても良い。また第2の流通経路4bに、第2の副バイパス回路44bおよび第2の副バイパス弁45bを複数備えても良い。また、上記実施の形態2では、副膨張装置43の前後の第1の副熱交換部41と第2の副熱交換部42とで、同数の流通経路(第1の流通経路4a、第2の流通経路4b)としているが、異なる数の流通経路であっても良い。なお、その場合、副膨張装置43の前後において少ない数の流通経路を備えた側では、少なくとも1つの流通経路から複数の副バイパス回路を分岐することになる。 Further, a plurality of first sub-bypass circuits 44a and first sub-bypass valves 45a may be provided in the first distribution path 4a. A plurality of second sub-bypass circuits 44b and second sub-bypass valves 45b may be provided in the second flow path 4b. In the second embodiment, the same number of flow paths (the first flow path 4a and the second flow path) are used in the first sub heat exchange unit 41 and the second sub heat exchange unit 42 before and after the sub expansion device 43. However, a different number of distribution channels may be used. In this case, on the side having a small number of distribution paths before and after the secondary expansion device 43, a plurality of secondary bypass circuits are branched from at least one distribution path.
実施の形態3.
 次に、本実施の形態3に係るヒートポンプ装置200について説明する。図3は、実施の形態3に係るヒートポンプ装置200を示す模式図である。本実施の形態3では、熱交換ユニット4が複数、例えば第1の熱交換ユニット4-1、4-2を備えている点で、実施の形態1と相違する。本実施の形態3では、実施の形態1と共通する部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 3 FIG.
Next, the heat pump device 200 according to the third embodiment will be described. FIG. 3 is a schematic diagram showing a heat pump device 200 according to the third embodiment. The third embodiment is different from the first embodiment in that the heat exchange unit 4 includes a plurality of, for example, first heat exchange units 4-1 and 4-2. In the third embodiment, portions common to the first embodiment are denoted by the same reference numerals, description thereof is omitted, and differences from the first embodiment will be mainly described.
 本実施の形態3は、図3に示すように、2個の第1の熱交換ユニット4-1、4-2を備えており、冷媒は、流入切替部5から、冷媒の往路配管及び復路配管夫々の途中において、第1の熱交換ユニット4-1、4-2に並列に分岐し、その後、合流する。第1の熱交換ユニット4-1は、第1の副熱交換部41-1、第2の副熱交換部42-1、第1の温度検出部41a-1、第2の温度検出部42a-1、副膨張装置43-1、副バイパス回路44-1、及び副バイパス弁45-1を備えている。また、第2の熱交換ユニット4-2は、第1の副熱交換部41-2、第2の副熱交換部42-2、第1の温度検出部41a-2、第2の温度検出部42a-2、副膨張装置43-2、副バイパス回路44-2、及び副バイパス弁45-2を備えている。このように、第1の熱交換ユニット4-1と第2の熱交換ユニット4-2とは、同様の構成を備えている。 As shown in FIG. 3, the third embodiment includes two first heat exchange units 4-1 and 4-2, and the refrigerant flows from the inflow switching unit 5 to the refrigerant forward piping and the return passage. In the middle of each pipe, the first heat exchange units 4-1 and 4-2 are branched in parallel, and then merged. The first heat exchange unit 4-1 includes a first sub heat exchange unit 41-1, a second sub heat exchange unit 42-1, a first temperature detection unit 41a-1, and a second temperature detection unit 42a. -1, a secondary expansion device 43-1, a secondary bypass circuit 44-1, and a secondary bypass valve 45-1. Further, the second heat exchange unit 4-2 includes a first sub heat exchange unit 41-2, a second sub heat exchange unit 42-2, a first temperature detection unit 41a-2, and a second temperature detection. A portion 42a-2, a sub expansion device 43-2, a sub bypass circuit 44-2, and a sub bypass valve 45-2 are provided. Thus, the first heat exchange unit 4-1 and the second heat exchange unit 4-2 have the same configuration.
 実施の形態3では、運転モードに関わらず、流入切替部5から流入する冷媒は、第1の熱交換ユニット4-1、4-2に常に並列に分岐して流入し、これらの第1の熱交換ユニット4-1、4-2から排出された冷媒が合流して、流入切替部5に戻る。従って、本実施の形態1と同様に、第1の熱交換ユニット4-1、4-2の内部の夫々においては、運転状態に関わらず、実施の形態1と同様に、冷媒の流れは常に直列である。 In the third embodiment, regardless of the operation mode, the refrigerant flowing from the inflow switching unit 5 always branches in parallel to the first heat exchange units 4-1, 4-2 and flows into the first heat exchange units 4-1, 4-2. The refrigerant discharged from the heat exchange units 4-1 and 4-2 joins and returns to the inflow switching unit 5. Therefore, as in the first embodiment, in each of the first heat exchange units 4-1 and 4-2, the refrigerant flow is always the same as in the first embodiment regardless of the operating state. In series.
 除霜暖房運転又は半高温除霜運転の際には、第1の副熱交換部41-1、41-2を同時に除霜するか、又は第2の副熱交換部42-1、42-2を同時に除霜するかのいずれかの動作となる。またその際、副バイパス弁45-1、45-2は同時に閉められ、また制御部21によって、実施の形態1と同様の方法で、吐出温度(温度検出部13で検知する温度)に応じて、副膨張装置43-1、43-2は、同じ開度に設定される。また、別の制御方法の例として、第1の副熱交換部41-1、41-2を同時に除霜する際には、副膨張装置43-1の開度は、第1の温度検出部41a-1で検知される温度(凝縮温度に近く、正確には凝縮温度からサブクール温度を差し引いた温度)に応じて制御され、副膨張装置43-2の開度は、第1の温度検出部41a-2で検知される温度(凝縮温度に近く、正確には凝縮温度からサブクール温度を差し引いた温度)に応じて制御されてもよい。 In the defrosting heating operation or the semi-high temperature defrosting operation, the first auxiliary heat exchange units 41-1 and 41-2 are defrosted at the same time, or the second auxiliary heat exchange units 42-1 and 42- The operation of either defrosting 2 at the same time is performed. At that time, the sub bypass valves 45-1 and 45-2 are simultaneously closed, and the control unit 21 performs the same method as in the first embodiment in accordance with the discharge temperature (temperature detected by the temperature detection unit 13). The sub-expansion devices 43-1 and 43-2 are set to the same opening degree. As another example of the control method, when the first sub heat exchange units 41-1 and 41-2 are defrosted simultaneously, the opening degree of the sub expansion device 43-1 is determined by the first temperature detection unit. 41a-1 is controlled according to the temperature (close to the condensing temperature, more precisely, the temperature obtained by subtracting the subcooling temperature from the condensing temperature), and the opening degree of the sub expansion device 43-2 is determined by the first temperature detecting unit. The temperature may be controlled according to the temperature detected at 41a-2 (close to the condensation temperature, more precisely, the temperature obtained by subtracting the subcool temperature from the condensation temperature).
 また、副膨張装置43-1、43-2の開度が、第1の温度検出部41a-1、41a-2(又は第2の温度検出部42a-1、42a-2)の温度に応じて制御されると同時に、吐出温度(温度検出部13で検知する温度)に応じて、副膨張装置43-1、43-2の開度比が、制御された値に維持されつつ開度比自体を増減して制御し、吐出温度と凝縮温度に近い温度とが、同時に制御されるようにしてもよい。そして、第1の温度検出部41a-1、41a-2の検出値がいずれも所定値より高くなったときに、除霜が終了したと判定される。 Further, the opening degree of the sub expansion devices 43-1 and 43-2 depends on the temperature of the first temperature detection units 41a-1 and 41a-2 (or the second temperature detection units 42a-1 and 42a-2). The opening ratio of the sub-expansion devices 43-1 and 43-2 is maintained at a controlled value according to the discharge temperature (the temperature detected by the temperature detector 13). The discharge temperature and the temperature close to the condensation temperature may be controlled simultaneously by increasing / decreasing itself. Then, when the detection values of the first temperature detection units 41a-1 and 41a-2 are both higher than a predetermined value, it is determined that the defrosting is finished.
 以上のように、実施の形態3は、第1の熱交換ユニット4-1、4-2を複数並列に配置した構成にし、実施の形態1と同様の動作を行うだけで、実施の形態1と同様の効果を奏し、更に、第1の熱交換ユニット4-1、4-2側における冷媒回路8の圧損は、より一層抑制される。 As described above, the third embodiment has a configuration in which a plurality of first heat exchange units 4-1 and 4-2 are arranged in parallel, and performs the same operation as in the first embodiment. The pressure loss of the refrigerant circuit 8 on the first heat exchange units 4-1 and 4-2 side is further suppressed.
実施の形態4.
 次に、本実施の形態4における第1の熱交換ユニット4について説明する。図4は、実施の形態4における第1の熱交換ユニット4を示す模式図である。本実施の形態4では、ヒートポンプ装置300が送風ファン46を備えており、この送風ファン46が、第1の熱交換ユニット4における複数の副熱交換部毎に、個別に設けられている点で、実施の形態1と相違する。本実施の形態4では、実施の形態1と共通する部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 4 FIG.
Next, the 1st heat exchange unit 4 in this Embodiment 4 is demonstrated. FIG. 4 is a schematic diagram showing the first heat exchange unit 4 in the fourth embodiment. In the fourth embodiment, the heat pump device 300 includes the blower fan 46, and the blower fan 46 is provided individually for each of the plurality of sub heat exchange units in the first heat exchange unit 4. This is different from the first embodiment. In the fourth embodiment, portions common to the first embodiment are denoted by the same reference numerals, description thereof is omitted, and differences from the first embodiment will be mainly described.
 本実施の形態4では、図4に示すように、ヒートポンプ装置300において、第1の熱交換ユニット4における第1の副熱交換部41及び第2の副熱交換部42に、夫々個別に第1の送風ファン46a及び第2の送風ファン46bが設けられている。また、第1の副熱交換部41と第2の副熱交換部42との間には、仕切り板47が設けられており、この仕切り板47は、第1の送風ファン46aにおいて送風される室外空気11aと、第2の送風ファン46bにおいて送風される室外空気11bとを分けるものである。これにより、第1の送風ファン46aが回転すると、室外空気11aが第1の副熱交換部41に送風され、また、第2の送風ファン46bが回転すると、室外空気11bが第2の副熱交換部42に送風される。 In the fourth embodiment, as shown in FIG. 4, in the heat pump device 300, the first sub heat exchange unit 41 and the second sub heat exchange unit 42 in the first heat exchange unit 4 are individually connected to the first heat exchange unit 41. A first blower fan 46a and a second blower fan 46b are provided. Further, a partition plate 47 is provided between the first sub heat exchange unit 41 and the second sub heat exchange unit 42, and this partition plate 47 is blown by the first blower fan 46a. The outdoor air 11a and the outdoor air 11b blown by the second blower fan 46b are separated. Thereby, when the 1st ventilation fan 46a rotates, the outdoor air 11a is ventilated to the 1st auxiliary heat exchange part 41, and when the 2nd ventilation fan 46b rotates, the outdoor air 11b becomes 2nd auxiliary heat. Air is sent to the exchange unit 42.
 次に、本実施の形態4における除霜暖房運転又は半高温除霜運転の動作について説明する。第1の副熱交換部41、第2の副熱交換部42のいずれか一方を除霜しようとする場合(除霜暖房運転又は半高温除霜運転)、制御部21によって、除霜する副熱交換部の側の送風ファンが停止され、除霜しない副熱交換部の側の送風ファンが稼働され吸熱運転し続ける。例えば、第1の副熱交換部41が除霜され、第2の副熱交換部42が吸熱運転し続ける場合、第1の送風ファン46aの回転が停止され、室外空気11aが第1の副熱交換部41に供給されないようにすると共に、第2の送風ファン46bが回転され、室外空気11bが第2の副熱交換部42に供給される。これにより、第1の副熱交換部41では、室外空気11aに放熱され難くなるため、効率良く除霜することができ、第2の副熱交換部42では、室外空気11bから効率良く吸熱することができる。 Next, the operation of the defrosting heating operation or the semi-high temperature defrosting operation in the fourth embodiment will be described. When defrosting one of the first sub heat exchange unit 41 and the second sub heat exchange unit 42 (defrost heating operation or semi-high temperature defrost operation), the control unit 21 performs defrosting. The blower fan on the side of the heat exchange unit is stopped, and the blower fan on the side of the auxiliary heat exchange unit that is not defrosted is operated to continue the heat absorption operation. For example, when the first sub heat exchange unit 41 is defrosted and the second sub heat exchange unit 42 continues the heat absorption operation, the rotation of the first blower fan 46a is stopped and the outdoor air 11a is changed to the first sub heat exchange unit 42. While not being supplied to the heat exchanging part 41, the second blower fan 46 b is rotated, and the outdoor air 11 b is supplied to the second auxiliary heat exchanging part 42. Thereby, since it becomes difficult to radiate heat to the outdoor air 11a in the first sub heat exchange part 41, it is possible to efficiently defrost, and the second sub heat exchange part 42 efficiently absorbs heat from the outdoor air 11b. be able to.
 また、高温除霜運転では、制御部21によって、第1の送風ファン46a及び第2の送風ファン46bは、いずれも回転が停止され、冷媒から室外空気11への放熱を抑制して、効率良く除霜される。また、通常暖房運転又は通常冷房運転では、制御部21によって、第1の送風ファン46a及び第2の送風ファン46bは、いずれも回転され、第1の熱交換ユニット4において、通常暖房運転の場合、効率良く室外空気11から吸熱することができ、また、通常冷房運転の場合、効率良く室外空気11に放熱することができる。 Further, in the high temperature defrosting operation, the control unit 21 stops the rotation of both the first blower fan 46a and the second blower fan 46b, and efficiently suppresses heat radiation from the refrigerant to the outdoor air 11. Defrosted. In the normal heating operation or the normal cooling operation, the control unit 21 rotates both the first blower fan 46a and the second blower fan 46b, and the first heat exchange unit 4 performs the normal heating operation. Heat can be absorbed from the outdoor air 11 efficiently, and heat can be efficiently radiated to the outdoor air 11 in the normal cooling operation.
 なお、実施の形態4では、仕切り板47を備えているが、仕切り板47を省いてもよい。また、実施の形態4と実施の形態3とを組み合わせた場合、第1の副熱交換部41-1、41-2に対応する1台の送風ファンを設け、第2の副熱交換部42-1、42-2に対応するもう1台の送風ファンを設けるようにしてもよい。 In the fourth embodiment, the partition plate 47 is provided, but the partition plate 47 may be omitted. Further, when the fourth embodiment and the third embodiment are combined, one blower fan corresponding to the first sub heat exchange units 41-1 and 41-2 is provided, and the second sub heat exchange unit 42 is provided. -1 and 42-2 may be provided with another blower fan.
実施の形態5.
 次に、本実施の形態5における第1の熱交換ユニット4について説明する。図5は、実施の形態5における第1の熱交換ユニット4を示す模式図である。本実施の形態5では、ヒートポンプ装置400が送風ファン46を備えており、送風ファン46は、空気の送風方向が双方向に切り替えられるものである点で、実施の形態1と相違する。本実施の形態5では、実施の形態1と共通する部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 5 FIG.
Next, the 1st heat exchange unit 4 in this Embodiment 5 is demonstrated. FIG. 5 is a schematic diagram showing the first heat exchange unit 4 in the fifth embodiment. In the fifth embodiment, the heat pump device 400 includes the blower fan 46, and the blower fan 46 is different from the first embodiment in that the air blowing direction can be switched in both directions. In the fifth embodiment, portions common to the first embodiment are denoted by the same reference numerals, description thereof is omitted, and differences from the first embodiment will be mainly described.
 本実施の形態5では、図5に示すように、ヒートポンプ装置400において、送風ファン46は、回転方向を変えることによって、室外空気11の送風方向が双方向に切り替えられる。ここで、副熱交換部から送風ファン46に送風される方向を正方向11c、送風ファン46から副熱交換部に送風される方向を逆方向11dとする。また、第1の副熱交換部41と第2の副熱交換部42とは、送風ファン46において送風される空気の送風方向に対し直列に配置されている。 In the fifth embodiment, as shown in FIG. 5, in the heat pump device 400, the blowing fan 46 switches the direction of blowing the outdoor air 11 in both directions by changing the rotation direction. Here, a direction in which the air is blown from the auxiliary heat exchange unit to the blower fan 46 is a forward direction 11c, and a direction in which the air is blown from the blower fan 46 to the auxiliary heat exchange unit is a reverse direction 11d. Further, the first sub heat exchange part 41 and the second sub heat exchange part 42 are arranged in series with respect to the air blowing direction of the air blown by the blower fan 46.
 次に、本実施の形態5に係るヒートポンプ装置400の動作について説明する。本実施の形態5では、第1の副熱交換部41、第2の副熱交換部42のいずれか一方を除霜しようとする場合(除霜暖房運転、半高温除霜運転)、制御部21における除霜時制御手段22は、除霜する側の副熱交換部が、送風ファン46において送風される空気の送風方向に対し上流側に位置するように送風ファン46における空気の送風方向を切り替える。 Next, the operation of the heat pump apparatus 400 according to the fifth embodiment will be described. In the fifth embodiment, when one of the first sub heat exchange unit 41 and the second sub heat exchange unit 42 is to be defrosted (defrost heating operation, semi-high temperature defrost operation), the control unit The defrosting control means 22 in 21 changes the air blowing direction in the blower fan 46 so that the defrosting side auxiliary heat exchanging part is located upstream of the air blowing direction in the blower fan 46. Switch.
 例えば、第1の副熱交換部41を除霜し、第2の副熱交換部42を吸熱運転し続ける場合、除霜時制御手段22は、送風ファン46による室外空気11の送風方向を、正方向11cに切り替える。また、第2の副熱交換部42を除霜し、第1の副熱交換部41を吸熱運転し続ける場合、除霜時制御手段22は、送風ファン46による室外空気11の送風方向を、逆方向11dに切り替える。なお、このとき、送風ファン46の回転数は、通常暖房運転又は通常冷房運転のときよりも低くして、除霜時における冷媒から放出される熱が、室外空気11に過度に奪われないようにすることが好ましい。また、高温除霜運転時においては、効率良く除霜するために、送風ファン46は停止される。 For example, when defrosting the first auxiliary heat exchanging part 41 and continuing the heat absorption operation of the second auxiliary heat exchanging part 42, the defrosting control means 22 determines the blowing direction of the outdoor air 11 by the blower fan 46, Switch to the forward direction 11c. In addition, when the second sub heat exchange unit 42 is defrosted and the first sub heat exchange unit 41 continues to perform an endothermic operation, the defrosting control unit 22 determines the blowing direction of the outdoor air 11 by the blower fan 46. Switch to the reverse direction 11d. At this time, the rotational speed of the blower fan 46 is set lower than that in the normal heating operation or the normal cooling operation so that the heat released from the refrigerant during the defrosting is not excessively taken away by the outdoor air 11. It is preferable to make it. Further, during the high temperature defrosting operation, the blower fan 46 is stopped in order to efficiently defrost.
 これにより、除霜のために上流側の副熱交換部において冷媒から放出された熱が、吸熱運転し続けている下流側の副熱交換部において、吸熱源として熱回収される。このため、1台の送風ファン46を設けるだけで、効率良い除霜及び吸熱が実現されると共に、部品数が減り、低コスト、コンパクト、低故障リスク、高信頼のヒートポンプ装置400を製造することができる。 Thereby, the heat released from the refrigerant in the upstream side secondary heat exchange unit for defrosting is recovered as a heat absorption source in the downstream side secondary heat exchange unit that continues the endothermic operation. For this reason, it is possible to achieve efficient defrosting and heat absorption only by providing one blower fan 46, and to reduce the number of parts, and to manufacture a heat pump device 400 with low cost, compactness, low failure risk, and high reliability. Can do.
 なお、実施の形態5と実施の形態3とを組み合わせた場合、第1の副熱交換部41-1、41-2を、送風ファン46における送風方向に対し上流側又は下流側に並列に配置し、第2の副熱交換部42-1、42-2を、送風ファン46における送風方向に対し下流側又は上流側に並列に配置し、第1の副熱交換部41-1、41-2と、第2の副熱交換部42-1、42-2とを、送風ファン46における送風方向に対し直列に配置すればよい。 When the fifth embodiment and the third embodiment are combined, the first auxiliary heat exchanging units 41-1 and 41-2 are arranged in parallel upstream or downstream with respect to the blowing direction in the blower fan 46. The second auxiliary heat exchange units 42-1 and 42-2 are arranged in parallel on the downstream side or the upstream side with respect to the blowing direction in the blower fan 46, and the first auxiliary heat exchange units 41-1 and 41- are arranged. 2 and the second auxiliary heat exchanging units 42-1 and 42-2 may be arranged in series with respect to the blowing direction of the blowing fan 46.
実施の形態6.
 次に、本実施の形態6における第1の熱交換ユニット4について説明する。図6は、実施の形態6における第1の熱交換ユニット4を示す模式図である。本実施の形態6では、ヒートポンプ装置500が送風ファン46及び加熱手段48を備えている点で、実施の形態1と相違する。本実施の形態6では、実施の形態1と共通する部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 6 FIG.
Next, the 1st heat exchange unit 4 in this Embodiment 6 is demonstrated. FIG. 6 is a schematic diagram showing the first heat exchange unit 4 in the sixth embodiment. The sixth embodiment is different from the first embodiment in that the heat pump device 500 includes a blower fan 46 and a heating unit 48. In the sixth embodiment, portions common to the first embodiment are denoted by the same reference numerals, description thereof is omitted, and differences from the first embodiment will be mainly described.
 実施の形態6では、図6に示すように、第1の副熱交換部41と第2の副熱交換部42とは、送風ファン46において送風される空気の送風方向に対し直列に配置されており、第1の副熱交換部41は、送風ファン46において送風される空気の送風方向に対し上流側に配置されている。また、第1の副熱交換部41と第2の副熱交換部42との間には、第2の副熱交換部42の側において、この第2の副熱交換部42に沿って、例えば電気ヒータである加熱手段48が設けられている。 In the sixth embodiment, as shown in FIG. 6, the first auxiliary heat exchanging part 41 and the second auxiliary heat exchanging part 42 are arranged in series with respect to the blowing direction of the air blown by the blower fan 46. The first auxiliary heat exchanging part 41 is arranged on the upstream side with respect to the blowing direction of the air blown by the blower fan 46. Further, between the first sub heat exchange section 41 and the second sub heat exchange section 42, along the second sub heat exchange section 42 on the second sub heat exchange section 42 side, For example, a heating means 48 which is an electric heater is provided.
 図7は、実施の形態6における第2の副熱交換部42を示す模式図である。図7に示すように、第2の副熱交換部42は、複数のプレートフィン49が積層されたものであり、2本の冷媒管50が、これらのプレートフィン49を積層方向に貫通している。この冷媒管50は、実施の形態2における第1の流通経路4a、第2の流通経路4b又はそのほかの実施の形態における冷媒回路8の一部である。加熱手段48は、第2の副熱交換部42の外縁に沿って、この冷媒管50に平行に配置されている。なお、加熱手段48は、冷媒管50に平行に配置されていなくともよく、また、第2の副熱交換部42の外縁に沿うのではなく、冷媒管50又はプレートフィン49の一部に貼着又は内蔵されて設けられてもよい。 FIG. 7 is a schematic diagram showing the second sub heat exchange unit 42 in the sixth embodiment. As shown in FIG. 7, the second auxiliary heat exchanging unit 42 has a plurality of plate fins 49 stacked, and two refrigerant tubes 50 penetrate these plate fins 49 in the stacking direction. Yes. The refrigerant pipe 50 is a part of the first circulation path 4a, the second circulation path 4b in the second embodiment, or the refrigerant circuit 8 in other embodiments. The heating means 48 is disposed in parallel with the refrigerant pipe 50 along the outer edge of the second sub heat exchange part 42. The heating means 48 may not be arranged in parallel with the refrigerant pipe 50, and is not attached to the outer edge of the second auxiliary heat exchanging section 42, but is attached to a part of the refrigerant pipe 50 or the plate fin 49. It may be worn or built in.
 図8は、実施の形態6に係るヒートポンプ装置500を示す模式図である。図8に示すように、ヒートポンプ装置500の冷媒回路8aは、圧送切替部3及び流入切替部5を備えていない。また、膨張装置6は、上記実施の形態のように、膨張弁ではなく、固定圧損となる複数のキャピラリチューブ63、64、遮断弁63a、63bを備えている。遮断弁63a、63bは、冷媒が流通するキャピラリチューブ63、64を切り替えるものであり、キャピラリチューブ63のみに流通、キャピラリチューブ64のみに流通、キャピラリチューブ63、64のいずれも非流通、キャピラリチューブ63、64のいずれも流通の4通りに切り替えられる。 FIG. 8 is a schematic diagram showing a heat pump device 500 according to the sixth embodiment. As shown in FIG. 8, the refrigerant circuit 8 a of the heat pump device 500 does not include the pressure feed switching unit 3 and the inflow switching unit 5. Moreover, the expansion device 6 is provided with a plurality of capillary tubes 63 and 64 and shut-off valves 63a and 63b that cause a fixed pressure loss instead of the expansion valve as in the above-described embodiment. The shut-off valves 63a and 63b switch the capillary tubes 63 and 64 through which the refrigerant flows, and flow only through the capillary tube 63, flow through only the capillary tube 64, and neither of the capillary tubes 63 and 64 flows. , 64 can be switched to four ways of distribution.
 なお、キャピラリチューブ63、64と、遮断弁63a、64aとは、図8のように2組の組み合わせでなくともよく、1組でも、3組以上の複数組でもよい。1組である場合、冷媒の流通量の調整が粗くなり、組合せが多いほど、冷媒の流通量の調整が細かくなる。また、キャピラリチューブ63が1個である場合、冷媒の流通を切り替えないため、遮断弁は省いてもよい。 The capillary tubes 63 and 64 and the shutoff valves 63a and 64a may not be two sets as shown in FIG. 8, but may be one set or a plurality of sets of three or more. In the case of one set, the adjustment of the circulation amount of the refrigerant becomes coarse, and the adjustment of the circulation amount of the refrigerant becomes finer as the number of combinations increases. Further, when there is one capillary tube 63, the circulation of the refrigerant is not switched, and therefore the shutoff valve may be omitted.
 また、第1の熱交換ユニット4における副膨張装置43も、上記実施の形態のように、膨張弁ではなく、固定圧損となるキャピラリチューブ65である。 Also, the secondary expansion device 43 in the first heat exchange unit 4 is not an expansion valve, but a capillary tube 65 that becomes a fixed pressure loss as in the above embodiment.
 更に、冷媒回路8aにおいては、圧縮機2、第2の熱交換器7、複数のキャピラリチューブ63、64及び遮断弁63a、64aからなる膨張装置6、第1の熱交換ユニット4、圧縮機2の順序で冷媒が循環する。第1の熱交換ユニット4においては、膨張装置6からの冷媒が、第1の副熱交換部41、キャピラリチューブ65からなる副膨張装置43、第2の副熱交換部42の順序で冷媒が循環する。 Further, in the refrigerant circuit 8a, the compressor 2, the second heat exchanger 7, the plurality of capillary tubes 63 and 64, the expansion device 6 including the shut-off valves 63a and 64a, the first heat exchange unit 4, and the compressor 2 are provided. The refrigerant circulates in this order. In the first heat exchange unit 4, the refrigerant from the expansion device 6 flows in the order of the first sub heat exchange unit 41, the sub expansion device 43 including the capillary tube 65, and the second sub heat exchange unit 42. Circulate.
 本実施の形態6に係るヒートポンプ装置500は、第2の熱交換器7から室内空気12に放熱することだけが可能であり、暖房専用装置である。このため、通常冷房運転、高温除霜運転及び半高温除霜運転はできないが、通常暖房運転及び除霜暖房運転は、上記実施の形態と同様に可能であり、上記実施の形態と同様の効果を奏する。また、膨張装置6及び副膨張装置43が、膨張弁ではなく、キャピラリチューブ63、64及びキャピラリチューブ65で構成されているため、より安価、小型であり、故障し難いため信頼性も向上する。なお、キャピラリチューブ63、64及びキャピラリチューブ65は、膨張弁よりも冷媒の流通量又は圧縮比の可変範囲が狭くなるが、暖房、除霜の条件を一定にしておけば、運転条件の効率の低下を極力抑制することができる。 The heat pump device 500 according to the sixth embodiment can only dissipate heat from the second heat exchanger 7 to the indoor air 12, and is a heating-only device. For this reason, normal cooling operation, high-temperature defrosting operation, and semi-high temperature defrosting operation cannot be performed, but normal heating operation and defrosting heating operation are possible in the same manner as in the above embodiment, and the same effects as in the above embodiment. Play. Further, since the expansion device 6 and the sub-expansion device 43 are not the expansion valve but are constituted by the capillary tubes 63 and 64 and the capillary tube 65, the reliability is improved because the device is cheaper and smaller, and is less likely to fail. The capillary tubes 63 and 64 and the capillary tube 65 have a narrower range of refrigerant flow or compression ratio than the expansion valve. However, if the heating and defrosting conditions are kept constant, the efficiency of the operating conditions can be improved. Reduction can be suppressed as much as possible.
 なお、本実施の形態6においても、上記実施の形態1、2、3と同様に、膨張装置6及び副膨張装置43のいずれか一方又は両方を、冷媒の流通量又は圧縮比の可変範囲が広い膨張弁としてもよい。また、上記実施の形態1、2、3における膨張装置6及び副膨張装置43のいずれか一方又は両方を、キャピラリチューブとしてもよく、この場合、安価、小型、高信頼性のヒートポンプ装置を実現することができる。 In the sixth embodiment, as in the first, second, and third embodiments, either one or both of the expansion device 6 and the sub expansion device 43 has a variable flow rate or compression ratio range. A wide expansion valve may be used. In addition, any one or both of the expansion device 6 and the sub expansion device 43 in the first, second, and third embodiments may be a capillary tube. In this case, an inexpensive, small, and highly reliable heat pump device is realized. be able to.
 なお、バイパス弁62、遮断弁63a、64aは、これらのうち2つを、三方弁として代用してもよい。このように、冷媒回路8aにおいて、流通経路を切り替えることができれば、いずれの配管又は弁等を用いてもよい。 In addition, the bypass valve 62 and the shutoff valves 63a and 64a may substitute two of these as three-way valves. Thus, in the refrigerant circuit 8a, any piping or valve may be used as long as the distribution path can be switched.
実施の形態7.
 次に、本実施の形態7に係るヒートポンプ装置600について説明する。図9は、実施の形態7に係るヒートポンプ装置600を示す模式図である。本実施の形態7では、ヒートポンプ装置600を冷蔵庫601に適用する点で、実施の形態1と相違する。本実施の形態7では、実施の形態1と共通する部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 7 FIG.
Next, the heat pump apparatus 600 according to the seventh embodiment will be described. FIG. 9 is a schematic diagram showing a heat pump device 600 according to the seventh embodiment. The seventh embodiment is different from the first embodiment in that the heat pump device 600 is applied to the refrigerator 601. In the seventh embodiment, portions common to the first embodiment are denoted by the same reference numerals, description thereof will be omitted, and differences from the first embodiment will be mainly described.
 上記実施の形態1~6では、ヒートポンプ装置を、冷媒回路8によって室外空気11と室内空気12との間で熱を搬送して室内を冷暖房する空気調和装置に適用する例を示したが、本実施の形態7では、ヒートポンプ装置600を、食品等を低温で保存する冷蔵庫601に適用する例について説明する。冷蔵庫601は、冷媒回路8を使用して、第1の熱交換ユニット4である冷却ユニット104において除霜が行われる。 In the first to sixth embodiments, the heat pump device is applied to an air conditioner that transports heat between the outdoor air 11 and the indoor air 12 by the refrigerant circuit 8 to cool and heat the room. In Embodiment 7, an example in which the heat pump device 600 is applied to a refrigerator 601 that stores food or the like at a low temperature will be described. The refrigerator 601 uses the refrigerant circuit 8 to perform defrosting in the cooling unit 104 that is the first heat exchange unit 4.
 図9に示すように、冷蔵庫601においては、冷蔵庫601の庫内70を冷却するため、循環ファン146(上記実施の形態における送風ファン46に相当)によって、庫内空気51、庫内空気52(上記実施の形態における室外空気11、11a、11bに相当)が、循環路71を通って、庫内70と冷却ユニット104(上記実施の形態における第1の熱交換ユニット4に相当)との間で循環する。また、冷却ユニット104の内部において、第1の冷却器141(上記実施の形態における第1の副熱交換部41に相当)と、第2の冷却器142(上記実施の形態における第2の副熱交換部42に相当)とが、並列に配置されている。そして、庫内空気51は、第1の冷却器141内を流通する冷媒と熱交換されることにより冷却、即ち低温化され、また、庫内空気52は、第2の冷却器142内を流通する冷媒と熱交換されることにより冷却、即ち低温化される。 As shown in FIG. 9, in the refrigerator 601, in order to cool the inside 70 of the refrigerator 601, the inside air 51 and the inside air 52 (by the circulation fan 146 (equivalent to the ventilation fan 46 in the said embodiment)) ( The outdoor air 11, 11a, 11b in the above embodiment passes through the circulation path 71 and passes between the interior 70 and the cooling unit 104 (corresponding to the first heat exchange unit 4 in the above embodiment). Circulate with. Further, in the cooling unit 104, a first cooler 141 (corresponding to the first sub heat exchange unit 41 in the above embodiment) and a second cooler 142 (second sub heat exchanger in the above embodiment) are provided. Corresponding to the heat exchanging section 42). The internal air 51 is cooled, that is, the temperature is lowered by heat exchange with the refrigerant flowing in the first cooler 141, and the internal air 52 flows in the second cooler 142. It is cooled, that is, the temperature is lowered by exchanging heat with the refrigerant.
 また、第1の冷却器141と第2の冷却器142との間には、仕切り板147(上記実施の形態4における仕切り板47に相当)が設けられている。更に、循環ファン146と冷却ユニット104との間には、空気の流れを開放又は遮断する例えばバッフル板である送風路変更手段72が設けられている。この送風路変更手段72は、3種類の位置をとることができる。 Further, a partition plate 147 (corresponding to the partition plate 47 in the fourth embodiment) is provided between the first cooler 141 and the second cooler 142. Further, an air passage change means 72 that is, for example, a baffle plate is provided between the circulation fan 146 and the cooling unit 104 to open or block the air flow. The air passage changing means 72 can take three positions.
 送風路変更手段72が、位置72aにある場合、第1の冷却器141への風路が遮蔽され、庫内空気51の流通が遮断される。また、送風路変更手段72が、位置72bにある場合、第2の冷却器142への風路が遮蔽され、庫内空気52の流通が遮断される。ここで、第1の冷却器141と第2の冷却器142との間に仕切り板147が設けられているため、風路の遮蔽が適切に行われる。更に、送風路変更手段72が、位置72cにある場合、第1の冷却器141と第2の冷却器142との両方への風路が開放され、庫内空気51及び庫内空気52の流通が妨げられず、第1の冷却器141及び第2の冷却器142における冷却が行われる。 When the air passage change means 72 is at the position 72a, the air passage to the first cooler 141 is shielded and the circulation of the internal air 51 is interrupted. Moreover, when the ventilation path change means 72 exists in the position 72b, the air path to the 2nd cooler 142 is shielded, and the distribution | circulation of the internal air 52 is interrupted | blocked. Here, since the partition plate 147 is provided between the first cooler 141 and the second cooler 142, the air path is appropriately shielded. Further, when the air passage change means 72 is located at the position 72c, the air passages to both the first cooler 141 and the second cooler 142 are opened, and the distribution of the internal air 51 and the internal air 52 is performed. The first cooler 141 and the second cooler 142 are cooled.
 また、冷蔵庫601には、庫内70の熱を、庫外に放熱するための放熱器(図示せず)が設けられており、この放熱器は、上記実施の形態における第2の熱交換器7に相当する。なお、冷蔵庫601における放熱器は、いわゆる熱交換器ではなく、冷蔵庫601の外部壁面の内部に沿って引き回された冷媒配管で代用してもよい。また、冷蔵庫601においては、冷却ユニット104で一旦冷却された庫内空気51及び庫内空気52が、庫内70に供給された後、循環路71によって冷却ユニット104に戻って循環する点で、上記実施の形態における空気調和装置と相違するが、冷媒が流通する冷媒回路(図示せず)としては、上記実施の形態における空気調和装置と同様である。 Moreover, the refrigerator 601 is provided with a radiator (not shown) for radiating the heat of the interior 70 to the outside, and this radiator is the second heat exchanger in the above embodiment. It corresponds to 7. Note that the radiator in the refrigerator 601 may be replaced with a refrigerant pipe routed along the inside of the external wall surface of the refrigerator 601 instead of a so-called heat exchanger. Further, in the refrigerator 601, the in-compartment air 51 and the in-compartment air 52 once cooled by the cooling unit 104 are supplied to the inside 70 and then circulated back to the cooling unit 104 by the circulation path 71. Although different from the air conditioner in the above embodiment, the refrigerant circuit (not shown) through which the refrigerant flows is the same as the air conditioner in the above embodiment.
 また、冷蔵庫601においては、冷却ユニット104にて庫内空気51及び庫内空気52を冷却するだけで足りるため、冷媒の流れとして、少なくとも上記実施の形態における通常冷房運転(第2の熱交換器7で吸熱し、室内空気12を冷却する)の機能は備わっていなくともよい。これにより、庫外の室内空気12が冷却された凝縮水が、庫外の壁面等に付着することを抑制することができる。 In the refrigerator 601, the cooling unit 104 only needs to cool the internal air 51 and the internal air 52. Therefore, at least the normal cooling operation (second heat exchanger in the above embodiment) is used as the refrigerant flow. 7 may absorb the heat and cool the indoor air 12). Thereby, it can suppress that the condensed water by which the indoor air 12 outside the warehouse was cooled adheres to the wall surface etc. outside the warehouse.
 次に、本実施の形態7に係る冷蔵庫601の動作について説明する。通常冷却運転(上記実施の形態における通常暖房運転に相当)においては、循環ファン146が稼働された状態で、送風路変更手段72が位置72cに配置され、第1の冷却器141及び第2の冷却器142によって、庫内空気51及び庫内空気52の両方が冷却される。 Next, the operation of the refrigerator 601 according to the seventh embodiment will be described. In the normal cooling operation (corresponding to the normal heating operation in the above embodiment), the air passage change means 72 is arranged at the position 72c in a state where the circulation fan 146 is operated, and the first cooler 141 and the second cooler 141 Both the internal air 51 and the internal air 52 are cooled by the cooler 142.
 第1の冷却器141のみを除霜する除霜冷却運転(上記実施の形態における除霜暖房運転に相当)においては、冷媒回路における冷媒の流れは、上記実施の形態における第1の副熱交換部41のみを除霜する場合と同様であり、また、送風路変更手段72が位置72aに配置される。このとき、循環ファン146は送風し続けているため、第2の冷却器142によって、庫内空気52は冷却されている。その結果、通常冷却運転に比べて冷却量は劣るものの、庫内70の冷却を継続することができる。また、第1の冷却器141は、放熱器から戻ってきた冷媒との熱交換によって除霜される。なお、その際、庫内空気51に熱が漏れても、送風路変更手段72によって庫内空気51の流通が遮断されているため、庫内70に漏れる熱は極めて微小である。 In the defrost cooling operation for defrosting only the first cooler 141 (corresponding to the defrost heating operation in the above embodiment), the refrigerant flow in the refrigerant circuit is the first auxiliary heat exchange in the above embodiment. It is the same as the case where only the part 41 is defrosted, and the ventilation path change means 72 is arrange | positioned in the position 72a. At this time, since the circulation fan 146 continues to blow air, the internal air 52 is cooled by the second cooler 142. As a result, although the cooling amount is inferior to that in the normal cooling operation, the cooling of the interior 70 can be continued. Moreover, the 1st cooler 141 is defrosted by heat exchange with the refrigerant | coolant which returned from the heat radiator. At this time, even if heat leaks into the internal air 51, the flow of the internal air 51 is blocked by the air passage changing means 72, so the heat leaking into the internal space 70 is extremely small.
 第2の冷却器142のみを除霜する除霜冷却運転(上記実施の形態における除霜暖房運転に相当)においては、冷媒回路における冷媒の流れは、上記実施の形態における第2の副熱交換部42のみを除霜する場合と同様であり、また、送風路変更手段72が位置72bに配置される。このとき、循環ファン146は送風し続けているため、第1の冷却器141によって、庫内空気51は冷却されている。その結果、通常冷却運転に比べて冷却量は劣るものの、庫内70の冷却を継続することができる。また、第2の冷却器142は、放熱器から戻ってきた冷媒との熱交換によって除霜される。なお、その際、庫内空気52に熱が漏れても、送風路変更手段72によって庫内空気52の流通が遮断されているため、庫内70に漏れる熱は極めて微小である。 In the defrost cooling operation for defrosting only the second cooler 142 (corresponding to the defrost heating operation in the above embodiment), the refrigerant flow in the refrigerant circuit is the second auxiliary heat exchange in the above embodiment. It is the same as the case where only the part 42 is defrosted, and the ventilation path change means 72 is arrange | positioned in the position 72b. At this time, since the circulation fan 146 continues to blow, the internal air 51 is cooled by the first cooler 141. As a result, although the cooling amount is inferior to that in the normal cooling operation, the cooling of the interior 70 can be continued. Moreover, the 2nd cooler 142 is defrosted by heat exchange with the refrigerant | coolant which returned from the heat radiator. At this time, even if heat leaks into the internal air 52, the flow of the internal air 52 is blocked by the air passage changing means 72, so the heat leaking into the internal space 70 is extremely small.
 このように、複数の冷却器を備える冷蔵庫601は、一方の冷却器を除霜しつつ、他方の冷却器で庫内70の冷却を継続することができる。このため、冷蔵庫601は、除霜中においても、冷蔵庫601の庫内70の温度を低く維持することができ、庫内70に保存される食品等の品質を保持することができる。また、本実施の形態7に係る冷蔵庫601は、特許文献2のショーケースと比較して、必要な切替弁、配管構成、及び運転モードの切り替え等が少なくなることにより、故障リスクが低下し、信頼性が向上する。また、運転方法も簡便になり、低コストで小型の冷蔵庫601を実現することができる。 Thus, the refrigerator 601 including a plurality of coolers can continue cooling the interior 70 with the other cooler while defrosting one cooler. For this reason, the refrigerator 601 can maintain the temperature of the interior 70 of the refrigerator 601 low even during defrosting, and can maintain the quality of food stored in the interior 70. In addition, the refrigerator 601 according to the seventh embodiment has a reduced risk of failure due to fewer necessary switching valves, piping configurations, operation mode switching, and the like as compared to the showcase of Patent Document 2. Reliability is improved. Further, the operation method is simplified, and a small refrigerator 601 can be realized at low cost.
 また、除霜冷却運転では、送風路変更手段72によって、送風を遮断するため、除霜時に発生する熱が庫内70に漏洩することが適切に防止される。これにより、冷蔵庫601においては、効率良く除霜及び冷却することができる。 Further, in the defrost cooling operation, since the air blowing is changed by the air passage changing means 72, the heat generated during the defrosting is appropriately prevented from leaking into the interior 70. Thereby, in the refrigerator 601, it can defrost and cool efficiently.
 (変形例)
 上記実施の形態7では、1個の送風路変更手段72を用いて、庫内空気51及び庫内空気52を、一方の冷却器に流通させるか両方の冷却器に流通させるかを切り替えるものとしたが、複数の送風路変更手段72を用いてもよい。この場合、冷却器毎に、開閉可能な送風路変更手段72を個別に設けて、庫内空気51及び庫内空気52を、一方の冷却器に流通させるか両方の冷却器に流通させるかが切り替えられる。
(Modification)
In the seventh embodiment, one air passage changing means 72 is used to switch whether the internal air 51 and the internal air 52 are circulated to one cooler or both coolers. However, a plurality of air passage changing means 72 may be used. In this case, an air passage changing means 72 that can be opened and closed is provided for each cooler, and the internal air 51 and the internal air 52 are circulated to one cooler or both coolers. Can be switched.
 また、上記実施の形態7においては、送風路変更手段72として、バッフル板を用いて、庫内空気51及び庫内空気52を、一方の冷却器に流通させるか両方の冷却器に流通させるかを切り替えるものとしたが、バッフル板を用いず、冷却器毎に個別に送風ファンを設けて、この送風ファンの運転又は停止を切り替えることによって、送風路変更手段72を実現してもよい。この場合、送風ファンの運転又は停止を切り替えることによって、庫内空気51及び庫内空気52を、一方の冷却器に流通させるか両方の冷却器に流通させるかが切り替えられる。 Moreover, in the said Embodiment 7, using the baffle board as the ventilation path change means 72, whether the internal air 51 and the internal air 52 are distribute | circulated to one cooler or both coolers. However, instead of using a baffle plate, a blower fan may be provided for each cooler, and the blower path changing means 72 may be realized by switching the operation or stop of the blower fan. In this case, by switching the operation or stop of the blower fan, it is switched whether the internal air 51 and the internal air 52 are circulated to one cooler or both coolers.
 更に、上記実施の形態7では、庫内空気51及び庫内空気52の流れに対し、複数の冷却器が並列に配置されている例を示したが、実施の形態5(図5)、実施の形態6(図6)のように、庫内空気51及び庫内空気52の流れに対し、冷却器が直列に配置されてもよい。更にまた、実施の形態6のように、加熱手段48を下流側の冷却器に設け、また、冷媒回路においても、圧送切替部3及び流入切替部5を省いた冷媒回路8a(図8)のように構成してもよい。この場合、上流側の冷却器は、冷媒を使用して除霜され、下流側の冷却器は、加熱手段48を使用して除霜される。これにより、冷蔵庫601は、部品点数を抑制することができるため、より小型且つ低コストとなり、故障するリスクを抑制して信頼性を向上させることができる。 Furthermore, in the said Embodiment 7, although the several cooler was arrange | positioned in parallel with respect to the flow of the internal air 51 and the internal air 52, Embodiment 5 (FIG. 5), implementation was shown. Like the form 6 (FIG. 6), the cooler may be arranged in series with respect to the flow of the internal air 51 and the internal air 52. Furthermore, as in the sixth embodiment, the heating means 48 is provided in the cooler on the downstream side, and also in the refrigerant circuit, the refrigerant circuit 8a (FIG. 8) in which the pressure feeding switching unit 3 and the inflow switching unit 5 are omitted. You may comprise as follows. In this case, the upstream cooler is defrosted using the refrigerant, and the downstream cooler is defrosted using the heating means 48. Thereby, since the refrigerator 601 can suppress a number of parts, it becomes smaller and low-cost, can suppress the risk of failure, and can improve reliability.
 1 ヒートポンプ装置、2 圧縮機、3 圧送切替部、4、4-1、4-2 第1の熱交換ユニット、4a 第1の流通経路、4b 第2の流通経路、5 流入切替部、6 膨張装置、7 第2の熱交換器、8、8a 冷媒回路、9 温度検出部、10 温度検出部、11、11a、11b 室外空気(空気)、11c 正方向、11d 逆方向、12 室内空気、13 温度検出部、21 制御部、22 除霜時制御手段、23 閾値判定手段、24 終了判定手段、41、41-1、41-2 第1の副熱交換部、41a、41a-1、41a-2 第1の温度検出部、42、42-1、42-2 第2の副熱交換部、42a、42a-1、42a-2 第2の温度検出部、43、43-1、43-2 副膨張装置、44、44-1、44-2 副バイパス回路、44a 第1の副バイパス回路、44b 第2の副バイパス回路、45、45-1、45-2 副バイパス弁、45a 第1の副バイパス弁、45b 第2の副バイパス弁、46、 送風ファン、46a 第1の送風ファン、46b 第2の送風ファン、47 仕切り板、48 加熱手段、49 プレートフィン、50 冷媒管、51、52 庫内空気、61 バイパス回路、62 バイパス弁、63 キャピラリチューブ、63a 遮断弁、64 キャピラリチューブ、64a 遮断弁、65 キャピラリチューブ、70 庫内、71 循環路、72 送風路変更手段、72a、72b、72c 位置、100 ヒートポンプ装置、104 冷却ユニット、141 第1の冷却器、142 第2の冷却器、146 循環ファン、147 仕切り板、200 ヒートポンプ装置、300 ヒートポンプ装置、400 ヒートポンプ装置、500 ヒートポンプ装置、600 ヒートポンプ装置、601 冷蔵庫。 1 heat pump device, 2 compressor, 3 pumping switching unit, 4-1, 4-1, 4-2 1st heat exchange unit, 4a 1st distribution path, 4b 2nd distribution path, 5 inflow switching unit, 6 expansion Device, 7 second heat exchanger, 8, 8a refrigerant circuit, 9 temperature detector, 10 temperature detector, 11, 11a, 11b outdoor air (air), 11c forward direction, 11d reverse direction, 12 indoor air, 13 Temperature detection unit, 21 control unit, 22 defrosting control unit, 23 threshold determination unit, 24 end determination unit, 41, 41-1, 41-2 first auxiliary heat exchange unit, 41a, 41a-1, 41a- 2 1st temperature detection part, 42, 42-1 and 42-2 2nd sub heat exchange part, 42a, 42a-1, 42a-2 2nd temperature detection part, 43, 43-1 and 43-2 Sub-expansion device, 44, 44-1, 4-2 Sub bypass circuit, 44a First sub bypass circuit, 44b Second sub bypass circuit, 45, 45-1, 45-2 Sub bypass valve, 45a First sub bypass valve, 45b Second sub bypass Valve, 46, blower fan, 46a first blower fan, 46b second blower fan, 47 partition plate, 48 heating means, 49 plate fin, 50 refrigerant pipe, 51, 52 internal air, 61 bypass circuit, 62 bypass Valve, 63 capillary tube, 63a shutoff valve, 64 capillary tube, 64a shutoff valve, 65 capillary tube, 70 inside, 71 circulation path, 72 air passage change means, 72a, 72b, 72c position, 100 heat pump device, 104 cooling unit 141, first cooler, 142, second cooler, 14 Circulating fan, 147 partition plate 200 heat pump apparatus, 300 a heat pump apparatus, 400 a heat pump apparatus, 500 a heat pump apparatus, 600 a heat pump apparatus, 601 a refrigerator.

Claims (18)

  1.  圧縮機、第1の熱交換ユニット、膨張装置及び第2の熱交換器が配管で接続され、冷媒が流通する冷媒回路と、前記冷媒回路の動作を制御する制御部と、を有するヒートポンプ装置において、
     前記第1の熱交換ユニットは、
     直列に接続された複数の副熱交換部と、
     複数の前記副熱交換部の間に設けられた副膨張装置と、を有し、
     前記制御部は、
     前記副熱交換部を除霜する際、前記副膨張装置の上流側に流通する冷媒の圧力と、前記副膨張装置の下流側に流通する冷媒の圧力とに差が生じるように前記副膨張装置を制御する除霜時制御手段を有する
     ことを特徴とするヒートポンプ装置。
    In a heat pump device having a refrigerant circuit in which a compressor, a first heat exchange unit, an expansion device, and a second heat exchanger are connected by piping and through which refrigerant flows, and a control unit that controls the operation of the refrigerant circuit. ,
    The first heat exchange unit includes:
    A plurality of auxiliary heat exchange units connected in series;
    A secondary expansion device provided between the plurality of secondary heat exchange units,
    The controller is
    When defrosting the sub heat exchanger, the sub expansion device is configured such that a difference is generated between the pressure of the refrigerant flowing upstream of the sub expansion device and the pressure of the refrigerant flowing downstream of the sub expansion device. A heat pump device comprising defrosting control means for controlling the defrosting.
  2.  前記冷媒回路は、
     前記冷媒回路における冷媒の流通方向を切り替える圧送切替部を更に有する
     ことを特徴とする請求項1記載のヒートポンプ装置。
    The refrigerant circuit is
    The heat pump device according to claim 1, further comprising a pressure feed switching unit that switches a flow direction of the refrigerant in the refrigerant circuit.
  3.  前記冷媒回路は、
     前記第1の熱交換ユニットにおける冷媒の流通方向を切り替える流入切替部を更に有する
     ことを特徴とする請求項1又は2記載のヒートポンプ装置。
    The refrigerant circuit is
    The heat pump device according to claim 1, further comprising an inflow switching unit that switches a flow direction of the refrigerant in the first heat exchange unit.
  4.  前記冷媒回路は、
     前記膨張装置をバイパスするバイパス回路と、
     前記バイパス回路に設けられ、前記バイパス回路における冷媒の流通量を調節するバイパス弁と、を更に有する
     ことを特徴とする請求項1~3のいずれか1項に記載のヒートポンプ装置。
    The refrigerant circuit is
    A bypass circuit for bypassing the expansion device;
    The heat pump device according to any one of claims 1 to 3, further comprising a bypass valve provided in the bypass circuit and configured to adjust a flow rate of the refrigerant in the bypass circuit.
  5.  前記除霜時制御手段は、
     前記副熱交換部を除霜する際、前記バイパス弁を開く
     ことを特徴とする請求項4記載のヒートポンプ装置。
    The defrosting control means includes
    The heat pump device according to claim 4, wherein the defrost valve is opened when defrosting the auxiliary heat exchange unit.
  6.  前記除霜時制御手段は、
     前記冷媒回路における冷媒の凝縮温度に基づいて、前記副膨張装置を制御するものである
     ことを特徴とする請求項1~5のいずれか1項に記載のヒートポンプ装置。
    The defrosting control means includes
    The heat pump device according to any one of claims 1 to 5, wherein the sub-expansion device is controlled based on a condensation temperature of the refrigerant in the refrigerant circuit.
  7.  前記除霜時制御手段は、
     前記冷媒回路における冷媒の吐出温度に基づいて、前記副膨張装置を制御するものである
     ことを特徴とする請求項1~6のいずれか1項に記載のヒートポンプ装置。
    The defrosting control means includes
    The heat pump device according to any one of claims 1 to 6, wherein the sub-expansion device is controlled based on a discharge temperature of the refrigerant in the refrigerant circuit.
  8.  前記第1の熱交換ユニットを流通する冷媒と熱交換する空気を、前記第1の熱交換ユニットに送風する送風ファンと、
     空気の流れを開放又は遮断する送風路変更手段と、を更に有し、
     前記除霜時制御手段は、
     前記送風ファンにおいて送風される空気が流れるか否かを、複数の前記副熱交換部毎に変更するように前記送風路変更手段に空気の流れを開放又は遮断させる
     ことを特徴とする請求項1~7のいずれか1項に記載のヒートポンプ装置。
    A blower fan that blows air that exchanges heat with the refrigerant flowing through the first heat exchange unit to the first heat exchange unit;
    Air passage changing means for opening or shutting off the flow of air, and
    The defrosting control means includes
    The air flow is opened or blocked by the blowing path changing means so as to change whether or not the air blown in the blower fan flows for each of the plurality of auxiliary heat exchange units. 8. The heat pump device according to any one of 1 to 7.
  9.  前記第1の熱交換ユニットを流通する冷媒と熱交換する空気を、前記第1の熱交換ユニットに送風する送風ファンを更に有し、
     前記送風ファンは、
     複数の前記副熱交換部毎に、個別に設けられている
     ことを特徴とする請求項1~7のいずれか1項に記載のヒートポンプ装置。
    A fan for blowing air to the first heat exchange unit with air that exchanges heat with the refrigerant flowing through the first heat exchange unit;
    The blower fan is
    The heat pump device according to any one of claims 1 to 7, wherein the heat pump device is individually provided for each of the plurality of sub heat exchange units.
  10.  前記第1の熱交換ユニットを流通する冷媒と熱交換する空気を、前記第1の熱交換ユニットに送風する送風ファンを更に有し、
     複数の前記副熱交換部は、前記送風ファンにおいて送風される空気の送風方向に対し直列に配置されており、
     前記副膨張装置を流通する冷媒の流通方向に対し上流側に配置された前記副熱交換部は、
     前記送風ファンにおいて送風される空気の送風方向に対し上流側に配置されている
     ことを特徴とする請求項1~7のいずれか1項に記載のヒートポンプ装置。
    A fan for blowing air to the first heat exchange unit with air that exchanges heat with the refrigerant flowing through the first heat exchange unit;
    The plurality of auxiliary heat exchange units are arranged in series with respect to the blowing direction of the air blown in the blower fan,
    The auxiliary heat exchange unit arranged on the upstream side with respect to the flow direction of the refrigerant flowing through the auxiliary expansion device,
    The heat pump device according to any one of claims 1 to 7, wherein the heat pump device is disposed upstream of a blowing direction of air blown by the blower fan.
  11.  前記送風ファンは、
     空気の送風方向が双方向に切り替えられるものであり、
     前記除霜時制御手段は、
     前記副熱交換部を除霜する際、前記副膨張装置を流通する冷媒の流通方向に対し上流側に配置された前記副熱交換部が、前記送風ファンにおいて送風される空気の送風方向に対し上流側に位置するように前記送風ファンにおける空気の送風方向を切り替える
     ことを特徴とする請求項10記載のヒートポンプ装置。
    The blower fan is
    The air blowing direction can be switched in both directions,
    The defrosting control means includes
    When defrosting the sub heat exchange unit, the sub heat exchange unit disposed on the upstream side with respect to the flow direction of the refrigerant flowing through the sub expansion device is directed toward the air blowing direction of the air blown by the blower fan. The heat pump device according to claim 10, wherein the air blowing direction in the blower fan is switched so as to be positioned on the upstream side.
  12.  前記副熱交換部に設けられ、前記副熱交換部を加熱する加熱手段を更に有し、
     前記制御部は、
     前記送風ファンにおいて送風される空気の送風方向に対し下流側に位置する前記副熱交換部を、前記加熱手段において加熱させる
     ことを特徴とする請求項10又は11記載のヒートポンプ装置。
    Provided in the auxiliary heat exchange section, further comprising a heating means for heating the auxiliary heat exchange section;
    The controller is
    The heat pump device according to claim 10 or 11, wherein the heating unit heats the auxiliary heat exchange unit positioned downstream with respect to a blowing direction of air blown by the blower fan.
  13.  前記除霜時制御手段は、
     前記副熱交換部を除霜する際、前記送風ファンを停止又は前記送風ファンの回転数を低下させる
     ことを特徴とする請求項8~12のいずれか1項に記載のヒートポンプ装置。
    The defrosting control means includes
    The heat pump device according to any one of claims 8 to 12, wherein when the sub heat exchange unit is defrosted, the blower fan is stopped or the rotational speed of the blower fan is reduced.
  14.  前記冷媒回路は、
     冷媒の温度を検出する温度検出部を更に有し、
     前記制御部は、
     前記温度検出部で検出された冷媒の温度が、予め決められた閾値以上であるか否かを判定する閾値判定手段と、
     前記副熱交換部を除霜している間に、冷媒の温度が前記閾値以上であると前記閾値判定手段で判定された場合、前記副熱交換部の除霜が終了したと判定する終了判定手段と、を更に有する
     ことを特徴とする請求項1~13のいずれか1項に記載のヒートポンプ装置。
    The refrigerant circuit is
    A temperature detection unit for detecting the temperature of the refrigerant;
    The controller is
    Threshold determination means for determining whether the temperature of the refrigerant detected by the temperature detection unit is equal to or higher than a predetermined threshold;
    An end determination for determining that the defrosting of the auxiliary heat exchange unit is completed when the threshold determination unit determines that the temperature of the refrigerant is equal to or higher than the threshold while defrosting the auxiliary heat exchange unit. The heat pump device according to any one of claims 1 to 13, further comprising: means.
  15.  前記冷媒回路は、
     前記副膨張装置をバイパスする副バイパス回路と、
     前記副バイパス回路に設けられ、前記副バイパス回路における冷媒の流通量を調節する副バイパス弁と、を更に有し、
     前記除霜時制御手段は、
     複数の前記副熱交換部のいずれかを除霜する際、前記副バイパス弁を閉じる
     ことを特徴とする請求項1~14のいずれか1項に記載のヒートポンプ装置。
    The refrigerant circuit is
    A sub-bypass circuit that bypasses the sub-inflator;
    A sub bypass valve that is provided in the sub bypass circuit and adjusts a refrigerant flow rate in the sub bypass circuit;
    The defrosting control means includes
    The heat pump device according to any one of claims 1 to 14, wherein the sub bypass valve is closed when any of the plurality of sub heat exchange units is defrosted.
  16.  前記副熱交換部には、
     冷媒が分岐して流通する複数の流通経路が形成されており、
     前記複数の流通経路毎に、前記副バイパス回路及び前記副バイパス弁が設けられている
     ことを特徴とする請求項15記載のヒートポンプ装置。
    In the auxiliary heat exchange part,
    A plurality of distribution channels through which the refrigerant branches and distributes are formed,
    The heat pump device according to claim 15, wherein the sub bypass circuit and the sub bypass valve are provided for each of the plurality of distribution paths.
  17.  前記副膨張装置は、
     冷媒の流通量を調節する膨張弁で構成されている
     ことを特徴とする請求項1~16のいずれか1項に記載のヒートポンプ装置。
    The secondary expansion device is
    The heat pump device according to any one of claims 1 to 16, wherein the heat pump device comprises an expansion valve that adjusts a flow rate of the refrigerant.
  18.  前記副膨張装置は、
     キャピラリチューブで構成されている
     ことを特徴とする請求項1~17のいずれか1項に記載のヒートポンプ装置。
    The secondary expansion device is
    The heat pump device according to any one of claims 1 to 17, wherein the heat pump device comprises a capillary tube.
PCT/JP2014/067592 2013-12-04 2014-07-01 Heat pump device WO2015083392A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013251439A JP2017026159A (en) 2013-12-04 2013-12-04 Heat pump device
JP2013-251439 2013-12-04

Publications (1)

Publication Number Publication Date
WO2015083392A1 true WO2015083392A1 (en) 2015-06-11

Family

ID=53273170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067592 WO2015083392A1 (en) 2013-12-04 2014-07-01 Heat pump device

Country Status (2)

Country Link
JP (1) JP2017026159A (en)
WO (1) WO2015083392A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109564043A (en) * 2016-08-01 2019-04-02 尹明镇 Heat exchanger alternate type heat pump system
EP3460374A3 (en) * 2017-09-20 2019-06-05 Hamilton Sundstrand Corporation Rotating heat exchanger/bypass combo
CN110226068A (en) * 2017-01-17 2019-09-10 株式会社Ed7 Waste Heat Recovery type mixing heat pump system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186250A1 (en) * 2017-04-06 2018-10-11 パナソニックIpマネジメント株式会社 Air conditioner

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726376A (en) * 1980-07-24 1982-02-12 Fuji Electric Co Ltd Cooling unit for refrigerating plant
JPS5747176A (en) * 1980-09-02 1982-03-17 Okamura Corp Method of and apparatus for cooling air curtain type refrigerated display case
JPS58178176A (en) * 1982-04-14 1983-10-19 株式会社岡村製作所 Method and device for cooling air curtain type refrigerating case, etc.
JPS62149761U (en) * 1986-03-15 1987-09-22
US4722388A (en) * 1986-09-08 1988-02-02 Drury Chauncey R Heat exchanger
WO1997041398A1 (en) * 1996-05-02 1997-11-06 Store Heat And Produce Energy, Inc. Defrost operation for heat pump and refrigeration systems
JPH10205933A (en) * 1997-01-20 1998-08-04 Fujitsu General Ltd Air conditioner
JP2000274780A (en) * 1999-03-19 2000-10-06 Fujitsu General Ltd Air conditioner
JP2004176980A (en) * 2002-11-26 2004-06-24 Daikin Ind Ltd Refrigerating plant
JP2005069673A (en) * 2003-08-06 2005-03-17 Gac Corp Cooling unit and cooling system
JP2006234375A (en) * 2005-01-28 2006-09-07 Denso Corp Heat pump type water heater
DE102005018125A1 (en) * 2005-04-20 2006-10-26 Bernhard Wenzel A method for defrosting evaporators in heat pump systems has each evaporator provided with a similar tubular defrost unit by which the evaporators are operated alternately
JP2011080741A (en) * 2009-09-09 2011-04-21 Fujitsu General Ltd Heat pump device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726376A (en) * 1980-07-24 1982-02-12 Fuji Electric Co Ltd Cooling unit for refrigerating plant
JPS5747176A (en) * 1980-09-02 1982-03-17 Okamura Corp Method of and apparatus for cooling air curtain type refrigerated display case
JPS58178176A (en) * 1982-04-14 1983-10-19 株式会社岡村製作所 Method and device for cooling air curtain type refrigerating case, etc.
JPS62149761U (en) * 1986-03-15 1987-09-22
US4722388A (en) * 1986-09-08 1988-02-02 Drury Chauncey R Heat exchanger
WO1997041398A1 (en) * 1996-05-02 1997-11-06 Store Heat And Produce Energy, Inc. Defrost operation for heat pump and refrigeration systems
JPH10205933A (en) * 1997-01-20 1998-08-04 Fujitsu General Ltd Air conditioner
JP2000274780A (en) * 1999-03-19 2000-10-06 Fujitsu General Ltd Air conditioner
JP2004176980A (en) * 2002-11-26 2004-06-24 Daikin Ind Ltd Refrigerating plant
JP2005069673A (en) * 2003-08-06 2005-03-17 Gac Corp Cooling unit and cooling system
JP2006234375A (en) * 2005-01-28 2006-09-07 Denso Corp Heat pump type water heater
DE102005018125A1 (en) * 2005-04-20 2006-10-26 Bernhard Wenzel A method for defrosting evaporators in heat pump systems has each evaporator provided with a similar tubular defrost unit by which the evaporators are operated alternately
JP2011080741A (en) * 2009-09-09 2011-04-21 Fujitsu General Ltd Heat pump device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109564043A (en) * 2016-08-01 2019-04-02 尹明镇 Heat exchanger alternate type heat pump system
CN110226068A (en) * 2017-01-17 2019-09-10 株式会社Ed7 Waste Heat Recovery type mixing heat pump system
CN110226068B (en) * 2017-01-17 2022-05-31 株式会社Ed7 Waste heat recovery type hybrid heat pump system
EP3460374A3 (en) * 2017-09-20 2019-06-05 Hamilton Sundstrand Corporation Rotating heat exchanger/bypass combo
US10704847B2 (en) 2017-09-20 2020-07-07 Hamilton Sunstrand Corporation Rotating heat exchanger/bypass combo

Also Published As

Publication number Publication date
JP2017026159A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
KR0153546B1 (en) Heat storage type airconditioner and defrosting method
US9234676B2 (en) Hot water supply apparatus associated with heat pump
JP6545354B2 (en) Heat pump apparatus and air conditioner
JP6910210B2 (en) Air conditioner
EP2420767B1 (en) Heat-pump hot water supply and air conditioning apparatus
KR101175451B1 (en) Hot water supply device associated with heat pump
JP6667719B2 (en) Air conditioner
JP2008128628A (en) Refrigerating device
WO2018043454A1 (en) Air conditioning and hot water supplying system
WO2015083392A1 (en) Heat pump device
JP2013096661A (en) Heat pump device and heat pump water heater
KR101754685B1 (en) Heat pump type speed heating apparatus
JPWO2019167250A1 (en) Air conditioner
JP4670576B2 (en) vending machine
JP2017161159A (en) Outdoor uni of air conditioner
JP2009293887A (en) Refrigerating device
JP2008102941A (en) Vending machine
JP4429960B2 (en) Vending machine with cooling and heating system
JP4444146B2 (en) Vending machine with cooling and heating system
JP6593483B2 (en) Refrigeration equipment
JPH0849924A (en) Heat storage type air-conditioner
JP2016033432A (en) Refrigeration system
JP6326621B2 (en) vending machine
JP2022057052A (en) refrigerator
TWI512254B (en) Multi-temperature multi-function system with compound controllable energy-saving module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14868298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP