Nothing Special   »   [go: up one dir, main page]

JP2006234375A - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP2006234375A
JP2006234375A JP2005370114A JP2005370114A JP2006234375A JP 2006234375 A JP2006234375 A JP 2006234375A JP 2005370114 A JP2005370114 A JP 2005370114A JP 2005370114 A JP2005370114 A JP 2005370114A JP 2006234375 A JP2006234375 A JP 2006234375A
Authority
JP
Japan
Prior art keywords
refrigerant
water
compressor
heat exchanger
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005370114A
Other languages
Japanese (ja)
Other versions
JP4539553B2 (en
Inventor
Jun Iwase
潤 岩瀬
Susumu Kawamura
進 川村
Hisasuke Sakakibara
久介 榊原
Teruhiko Taira
輝彦 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005370114A priority Critical patent/JP4539553B2/en
Priority to DE200610003827 priority patent/DE102006003827A1/en
Publication of JP2006234375A publication Critical patent/JP2006234375A/en
Application granted granted Critical
Publication of JP4539553B2 publication Critical patent/JP4539553B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a supply water in a water coolant heat exchanger from being boiled up, in a defrosting operation of an evaporator in a heat pump type water heater. <P>SOLUTION: In this heat pump type water heater, a water pump 13 for circulating the supply water in a storage tank 10 to the water coolant heat exchanger 15 is stopped in the defrosting operation of the evaporator 17, and the evaporator 17 is defrosted under the condition where the medium flows in order of a compressor 14, the water coolant heat exchanger 15, a pressure reducing device 16 and the evaporator 17, by opening a passage opening of the pressure reducing device 16 up to a prescribed opening or more. In the heat pump type water heater, at least one of control for increasing the passage opening of the pressure reducing device 16 and control for reducing a rotation speed of the compressor 14 is executed to bring a delivery coolant temperature of the compressor 14 within a prescribed temperature or less capable of preventing the supply water in the water coolant heat exchanger 15 from being boiled up, in the defrosting operation of the evaporator 17. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ヒートポンプ式給湯器における蒸発器の除霜制御に関する。   The present invention relates to a defrosting control of an evaporator in a heat pump type water heater.

従来、特許文献1には、ヒートポンプサイクルの低圧側に設けた蒸発器にて大気から吸熱し、一方、ヒートポンプサイクルの高圧側に設けた水冷媒熱交換器で給湯水を加熱し、この給湯水を電動水ポンプにより貯湯タンクに循環するヒートポンプ式給湯器において、蒸発器の除霜運転時には、電動水ポンプの作動を停止して、水冷媒熱交換器での高圧冷媒の放熱を抑制し、かつ、減圧装置の弁開度を通常運転時より大きくすることにより、蒸発器に流入する冷媒の温度を上昇して、蒸発器の除霜を行うことが記載されている。   Conventionally, in Patent Document 1, heat is absorbed from the atmosphere by an evaporator provided on the low pressure side of the heat pump cycle, while hot water is heated by a water-refrigerant heat exchanger provided on the high pressure side of the heat pump cycle. In the heat pump water heater that circulates the water to the hot water storage tank by the electric water pump, during the defrosting operation of the evaporator, the operation of the electric water pump is stopped to suppress the heat radiation of the high-pressure refrigerant in the water refrigerant heat exchanger, and In addition, it is described that the temperature of the refrigerant flowing into the evaporator is increased to increase the temperature of the refrigerant flowing into the evaporator by increasing the valve opening degree of the decompression device as compared with that during normal operation.

これにより、蒸発器の除霜運転時にも圧縮機→水冷媒熱交換器→減圧装置→蒸発器の順に冷媒が流れたまま、蒸発器の除霜を行うことができるので、除霜のためのホットガスバイパス通路を特別に設定する必要がない。
特許第3297657号公報
As a result, even during the defrosting operation of the evaporator, the evaporator can be defrosted while the refrigerant flows in the order of compressor → water refrigerant heat exchanger → decompression device → evaporator. There is no need to set a special hot gas bypass passage.
Japanese Patent No. 3297657

ところで、特許文献1のヒートポンプサイクルにおいて、除霜性能を向上させるためには、除霜運転時の圧縮機入力動力(入力電力)を増加させる必要がある。ここで、圧縮機入力動力は、圧縮機吸入冷媒と圧縮機吐出冷媒のエンタルピ差と、冷媒流量との積で表される。   Incidentally, in the heat pump cycle of Patent Document 1, in order to improve the defrosting performance, it is necessary to increase the compressor input power (input power) during the defrosting operation. Here, the compressor input power is represented by the product of the enthalpy difference between the compressor suction refrigerant and the compressor discharge refrigerant and the refrigerant flow rate.

減圧手段の通路断面積(口径)には実質上制限があるため、圧縮機入力動力の増加は冷媒流量の増加よりも主に冷媒エンタルピ差の増加となって現れる。これにより、除霜運転時に圧縮機入力動力を増加させると、圧縮比が大きくなって、圧縮機吐出冷媒温度の大幅な上昇を招く。この結果、除霜運転時に水冷媒熱交換器内に滞留している給湯水が沸騰してしまうという不具合が生じる。   Since the passage cross-sectional area (diameter) of the decompression means is substantially limited, an increase in compressor input power appears mainly as an increase in refrigerant enthalpy difference rather than an increase in refrigerant flow rate. As a result, when the compressor input power is increased during the defrosting operation, the compression ratio is increased, and the compressor discharge refrigerant temperature is significantly increased. As a result, there arises a problem that hot water staying in the water-refrigerant heat exchanger is boiled during the defrosting operation.

なお、特許文献1のヒートポンプサイクルでは、水冷媒熱交換器の出口側高圧冷媒と圧縮機吸入側の低圧冷媒との間で熱交換を行う内部熱交換器を設けない例を開示しているが、この内部熱交換器を設けてサイクル効率(COP)の向上を図る場合においても、同様に、除霜運転時には電動水ポンプの作動を停止して水冷媒熱交換器での高圧冷媒の放熱を抑制する。   In addition, in the heat pump cycle of patent document 1, although the example which does not provide the internal heat exchanger which performs heat exchange between the outlet side high pressure refrigerant | coolant of a water refrigerant | coolant heat exchanger and the low pressure refrigerant | coolant of a compressor suction side is disclosed. In the case where the internal heat exchanger is provided to improve the cycle efficiency (COP), similarly, the operation of the electric water pump is stopped during the defrosting operation so that the high-pressure refrigerant is dissipated in the water refrigerant heat exchanger. Suppress.

このため、高圧冷媒(圧縮機吐出冷媒)が高温のまま内部熱交換器に流入するので、高温の高圧冷媒によって圧縮機吸入冷媒が過度に加熱される。その結果、圧縮機吐出冷媒温度がより一層高温に上昇して、水冷媒熱交換器内の給湯水がさらに沸騰しやすくなるという不具合が生じる。   For this reason, since the high pressure refrigerant (compressor discharge refrigerant) flows into the internal heat exchanger at a high temperature, the compressor suction refrigerant is excessively heated by the high temperature high pressure refrigerant. As a result, the compressor discharge refrigerant temperature rises to a higher temperature, causing a problem that hot water in the water refrigerant heat exchanger is more likely to boil.

本発明は、上記点に鑑み、ヒートポンプ式給湯器における蒸発器の除霜運転時に水冷媒熱交換器内の給湯水が沸騰することを防止することを目的とする。   In view of the above points, an object of the present invention is to prevent hot water in a water-refrigerant heat exchanger from boiling during a defrosting operation of an evaporator in a heat pump hot water heater.

上記目的を達成するため、請求項1に記載の発明では、蒸発器(17)の除霜運転時に、水冷媒熱交換器(15)における冷媒放熱量が減少するように水ポンプ(13)を制御するとともに、減圧装置(16、160)の通路開度を所定開度以上に大きくすることにより、圧縮機(14)、水冷媒熱交換器(15)、減圧装置(16、160)および蒸発器(17)の順に冷媒が流れたままで、蒸発器(17)の除霜を行うヒートポンプ式給湯器において、
蒸発器(17)の除霜運転時に、圧縮機(14)の吐出冷媒温度が水冷媒熱交換器(15)内の給湯水の沸騰を防止するための所定温度以内となるように、減圧装置(16、160)の通路開度を増加する制御および圧縮機(14)の回転数を低下させる制御の少なくとも一方を実行すること特徴としている。
In order to achieve the above object, according to the first aspect of the present invention, the water pump (13) is arranged so that the refrigerant heat dissipation amount in the water refrigerant heat exchanger (15) is reduced during the defrosting operation of the evaporator (17). By controlling and increasing the passage opening of the decompression device (16, 160) to a predetermined opening or more, the compressor (14), the water refrigerant heat exchanger (15), the decompression device (16, 160), and evaporation In the heat pump water heater that performs defrosting of the evaporator (17) while the refrigerant flows in the order of the heater (17),
The depressurization device so that the refrigerant temperature discharged from the compressor (14) is within a predetermined temperature for preventing boiling of hot water in the water-refrigerant heat exchanger (15) during the defrosting operation of the evaporator (17). It is characterized in that at least one of the control for increasing the passage opening degree of (16, 160) and the control for decreasing the rotational speed of the compressor (14) is executed.

これによると、蒸発器(17)の除霜運転時に圧縮機(14)の吐出冷媒温度を常に監視して所定温度以内に制御できるので、水冷媒熱交換器(15)内の給湯水の沸騰現象を確実に防止できる。   According to this, since the refrigerant temperature discharged from the compressor (14) can be constantly monitored and controlled within a predetermined temperature during the defrosting operation of the evaporator (17), the boiling of hot water in the water-refrigerant heat exchanger (15) can be controlled. The phenomenon can be reliably prevented.

このように、給湯水の沸騰現象を確実に防止できるので、吐出冷媒温度を沸騰防止との両立を図る最高温度に設定して圧縮機(14)を作動させることができる。これにより、除霜運転の開始初期から圧縮機(14)の入力動力を最大に投入して、除霜時間を短縮できる。これは、除霜性能は圧縮機(14)の入力動力(圧縮仕事量)に等しいからである。   Thus, since the boiling phenomenon of hot water supply can be reliably prevented, the compressor (14) can be operated by setting the discharge refrigerant temperature to the highest temperature that achieves both prevention of boiling. Thereby, the input power of the compressor (14) can be maximized from the start of the defrosting operation to shorten the defrosting time. This is because the defrosting performance is equal to the input power (compression work) of the compressor (14).

請求項2に記載の発明のように、請求項1に記載のヒートポンプ式給湯器において、蒸発器(17)の除霜運転時に、減圧装置(16、160)の通路開度を増加する制御および圧縮機(14)の回転数を低下させる制御の両方を実行するようにしてもよい。   As in the invention described in claim 2, in the heat pump type water heater according to claim 1, control for increasing the passage opening of the decompression device (16, 160) during the defrosting operation of the evaporator (17) and You may make it perform both the control which reduces the rotation speed of a compressor (14).

請求項3に記載の発明のように、請求項2に記載のヒートポンプ式給湯器において、蒸発器(17)の除霜運転時に、減圧装置(16、160)の通路開度が最大開度に増加した後に、圧縮機(14)の回転数を低下させる制御を実行するようにしてもよい。   As in the invention described in claim 3, in the heat pump type water heater according to claim 2, during the defrosting operation of the evaporator (17), the passage opening degree of the decompression device (16, 160) is set to the maximum opening degree. You may make it perform control which reduces the rotation speed of a compressor (14), after increasing.

請求項4に記載の発明では、圧縮機(14)と、貯湯タンク(10)に蓄えられる給湯水を前記圧縮機(14)の吐出冷媒により加熱する水冷媒熱交換器(15)と、前記水冷媒熱交換器(15)を通過した高圧冷媒を減圧するとともに、通路開度を電気的に調節可能な減圧装置(16、160)と、前記減圧装置(16、160)を通過した低圧冷媒を蒸発させる蒸発器(17)と、前記貯湯タンク(10)内の給湯水を前記水冷媒熱交換器(15)に循環させる水ポンプ(13)とを備え、
前記蒸発器(17)の除霜運転時に、前記水冷媒熱交換器(15)における冷媒放熱量が減少するように前記水ポンプ(13)を制御するとともに、前記減圧装置(16、160)の通路開度を所定開度以上に大きくすることにより、前記圧縮機(14)、前記水冷媒熱交換器(15)、前記減圧装置(16、160)および前記蒸発器(17)の順に冷媒が流れたままで、前記蒸発器(17)の除霜を行うヒートポンプ式給湯器において、
前記蒸発器(17)の除霜運転中に前記圧縮機(14)の吐出冷媒温度が前記水冷媒熱交換器(15)内の給湯水の沸騰を防止するための所定温度以内となるように、前記減圧装置(16、160)の通路開度および前記圧縮機(14)の回転数を除霜運転開始時に予め所定値に設定すること特徴としている。
In the invention according to claim 4, the compressor (14), the water refrigerant heat exchanger (15) for heating hot water stored in the hot water storage tank (10) with the refrigerant discharged from the compressor (14), The high-pressure refrigerant that has passed through the water-refrigerant heat exchanger (15) is decompressed, and the decompression device (16, 160) capable of electrically adjusting the passage opening, and the low-pressure refrigerant that has passed through the decompression device (16, 160) An evaporator (17) for evaporating water, and a water pump (13) for circulating hot water in the hot water storage tank (10) to the water refrigerant heat exchanger (15),
During the defrosting operation of the evaporator (17), the water pump (13) is controlled so that the refrigerant heat dissipation amount in the water refrigerant heat exchanger (15) is reduced, and the decompression device (16, 160) By increasing the passage opening to a predetermined opening or more, the refrigerant flows in the order of the compressor (14), the water-refrigerant heat exchanger (15), the pressure reducing device (16, 160), and the evaporator (17). In the heat pump water heater that performs defrosting of the evaporator (17) while flowing,
During the defrosting operation of the evaporator (17), the discharge refrigerant temperature of the compressor (14) is within a predetermined temperature for preventing boiling of hot water in the water refrigerant heat exchanger (15). The passage opening degree of the pressure reducing device (16, 160) and the rotational speed of the compressor (14) are set to predetermined values at the start of the defrosting operation.

これにより、給湯水の沸騰を防止しながら、蒸発器(17)の除霜運転を確実に実行できる。   Thereby, the defrosting operation of the evaporator (17) can be reliably executed while preventing boiling of hot water.

請求項5に記載の発明では、請求項1ないし4のいずれか1つに記載のヒートポンプ式給湯器において、減圧装置は、水冷媒熱交換器(15)を通過した高圧冷媒を減圧するノズル部(161)、ノズル部(161)から噴射する高速度の冷媒流により冷媒が内部に吸引される冷媒吸引口(162)、および高速度の冷媒流と前記冷媒吸引口(162)からの吸引冷媒とを混合した冷媒流の速度エネルギーを圧力エネルギーに変換する昇圧部(164)を有するエジェクタ(160)にて構成され、
このエジェクタ(160)にはノズル部(161)の通路開度を電気的に調節可能な機構(165、166)が備えられており、
冷媒吸引口(162)へ向かって冷媒が流れる通路(30)に蒸発器(17)が配置されること特徴とする。
According to a fifth aspect of the present invention, in the heat pump water heater according to any one of the first to fourth aspects, the pressure reducing device is a nozzle portion that depressurizes the high-pressure refrigerant that has passed through the water-refrigerant heat exchanger (15). (161), a refrigerant suction port (162) through which the refrigerant is sucked into the interior by the high-speed refrigerant flow ejected from the nozzle portion (161), and a high-speed refrigerant flow and the suction refrigerant from the refrigerant suction port (162) And an ejector (160) having a booster (164) for converting the velocity energy of the refrigerant flow mixed with pressure energy into pressure energy,
The ejector (160) is provided with a mechanism (165, 166) capable of electrically adjusting the passage opening degree of the nozzle portion (161).
The evaporator (17) is arranged in the passage (30) through which the refrigerant flows toward the refrigerant suction port (162).

このようにエジェクタ(160)にて構成される減圧装置を持つ、いわゆるエジェクタサイクルにおいても、本発明は好適に実施できる。   Thus, the present invention can be suitably implemented also in a so-called ejector cycle having a pressure reducing device constituted by the ejector (160).

請求項6に記載の発明のように、請求項1ないし5のいずれか1つに記載のヒートポンプ式給湯器において、水冷媒熱交換器(15)通過後の高圧冷媒と圧縮機(14)吸入側の低圧冷媒との間で熱交換を行う内部熱交換器(19)を備えるようにしてもよい。   As in the sixth aspect of the invention, in the heat pump type hot water heater according to any one of the first to fifth aspects, the high-pressure refrigerant and the compressor (14) sucked after passing through the water refrigerant heat exchanger (15). An internal heat exchanger (19) for exchanging heat with the low-pressure refrigerant on the side may be provided.

このように内部熱交換器(19)を備えるものにおいても、除霜運転時における水冷媒熱交換器(15)内の給湯水の沸騰現象を確実に防止できる。   As described above, even with the internal heat exchanger (19), it is possible to reliably prevent boiling of hot water in the water-refrigerant heat exchanger (15) during the defrosting operation.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
図1は第1実施形態によるヒートポンプ式給湯器(以下給湯器と略称する。)の全体構成図である。本実施形態による給湯器は、給湯水を貯留する貯湯タンク10、給湯水を加熱するためのヒートポンプサイクル11、および貯湯タンク10内の給湯水を循環できる水循環通路12を備えている。この水循環通路12には給湯水を循環させる電動水ポンプ13が設けられている。
(First embodiment)
FIG. 1 is an overall configuration diagram of a heat pump water heater (hereinafter abbreviated as a water heater) according to a first embodiment. The water heater according to the present embodiment includes a hot water storage tank 10 that stores hot water, a heat pump cycle 11 for heating the hot water, and a water circulation passage 12 that can circulate hot water in the hot water tank 10. The water circulation passage 12 is provided with an electric water pump 13 for circulating hot water.

そして、ヒートポンプサイクル11は、圧縮機14、水冷媒熱交換器15、膨張弁16、蒸発器17、アキュムレータ18、および内部熱交換器19を順次配管接続した閉回路にて構成される。本実施形態では、冷媒として、高圧圧力が臨界圧力以上(超臨界状態)となるCO2 を使用している。   And the heat pump cycle 11 is comprised by the closed circuit which connected the compressor 14, the water refrigerant | coolant heat exchanger 15, the expansion valve 16, the evaporator 17, the accumulator 18, and the internal heat exchanger 19 in order. In the present embodiment, CO2 having a high pressure equal to or higher than the critical pressure (supercritical state) is used as the refrigerant.

圧縮機14は、内蔵する電動モータ14aによって駆動される電動圧縮機であり、その吸入冷媒を臨界圧力以上まで圧縮して吐出する。水冷媒熱交換器15は圧縮機14の吐出冷媒(高温高圧冷媒)と水循環通路12の給湯水との間で熱交換を行って、給湯水を加熱する。   The compressor 14 is an electric compressor driven by a built-in electric motor 14a, and compresses and discharges the suction refrigerant to a critical pressure or higher. The water refrigerant heat exchanger 15 heats hot water by exchanging heat between the refrigerant discharged from the compressor 14 (high-temperature and high-pressure refrigerant) and hot water in the water circulation passage 12.

水冷媒熱交換器15は給湯水が流れる水通路15aと、圧縮機吐出冷媒が流れる冷媒通路15bとを有し、水通路15aを流れる給湯水の流れ方向と冷媒通路15bを流れる冷媒の流れ方向とが対向するように構成されている。   The water-refrigerant heat exchanger 15 has a water passage 15a through which hot water flows, and a refrigerant passage 15b through which compressor discharge refrigerant flows. The flow direction of hot water flowing through the water passage 15a and the flow direction of refrigerant flowing through the refrigerant passage 15b. Are configured to face each other.

給湯水の流通方向は、図1に矢印で示すように、貯湯タンク10下部の出口10a→電動水ポンプ13→水冷媒熱交換器15の水通路15a→貯湯タンク10上部の入口10bへと流れる。   As shown by arrows in FIG. 1, the flowing direction of the hot water flows from the outlet 10 a at the lower part of the hot water storage tank 10 → the electric water pump 13 → the water passage 15 a of the water / refrigerant heat exchanger 15 → the inlet 10 b at the upper part of the hot water storage tank 10. .

なお、水冷媒熱交換器15を流れる冷媒(CO2 )は、圧縮機14で臨界圧力以上に圧縮されることにより超臨界状態のまま給湯水に放熱するので、凝縮しない。   The refrigerant (CO2) flowing through the water-refrigerant heat exchanger 15 is not condensed because it is dissipated to the hot water in the supercritical state by being compressed to a critical pressure or higher by the compressor 14.

水冷媒熱交換器15の冷媒通路15bの出口は内部熱交換器19の高圧側通路19aを介して膨張弁16の入口側に接続される。この膨張弁16は内部熱交換器19出口側の高圧冷媒を減圧する減圧装置であり、本実施形態では、冷媒通路の絞り開度(弁開度)を電気的に制御可能な電動膨張弁を用いている。具体的には、膨張弁16は絞り開度を調節する弁体16aと、この弁体16aの位置を可変制御するサーボモータ等の電動アクチュエータ16bとを有している。   The outlet of the refrigerant passage 15 b of the water refrigerant heat exchanger 15 is connected to the inlet side of the expansion valve 16 via the high-pressure side passage 19 a of the internal heat exchanger 19. The expansion valve 16 is a pressure reducing device that depressurizes the high-pressure refrigerant on the outlet side of the internal heat exchanger 19, and in this embodiment, an electric expansion valve that can electrically control the throttle opening (valve opening) of the refrigerant passage. Used. Specifically, the expansion valve 16 includes a valve body 16a that adjusts the throttle opening, and an electric actuator 16b such as a servo motor that variably controls the position of the valve body 16a.

蒸発器17は室外熱交換器であり、膨張弁16で減圧された低圧冷媒(気液2相冷媒)を外気(室外空気)から吸熱して蒸発させる。蒸発器17には電動室外ファン17aにより外気が送風される。   The evaporator 17 is an outdoor heat exchanger, which absorbs and evaporates the low-pressure refrigerant (gas-liquid two-phase refrigerant) decompressed by the expansion valve 16 from the outside air (outdoor air). Outside air is blown to the evaporator 17 by an electric outdoor fan 17a.

アキュムレータ18は、蒸発器17より流出する冷媒を気液分離する気液分離器であり、気相冷媒のみを内部熱交換器19の低圧側通路19bを通して圧縮機14に吸入させるとともに、サイクル中の余剰冷媒を液相冷媒として蓄える。   The accumulator 18 is a gas-liquid separator that gas-liquid separates the refrigerant flowing out from the evaporator 17. The accumulator 18 sucks only the gas-phase refrigerant into the compressor 14 through the low-pressure side passage 19 b of the internal heat exchanger 19. Surplus refrigerant is stored as a liquid phase refrigerant.

内部熱交換器19は高圧側通路19aを流れる高圧冷媒と低圧側通路19bを流れる低圧冷媒との間で熱交換を行って、圧縮機14の吸入冷媒温度を上昇させる。それにより、圧縮機14の吐出冷媒温度を上昇させ、水冷媒熱交換器15の入口、出口間の冷媒エンタルピ差(放熱量)を増大して、サイクル効率(COP)を向上させる。   The internal heat exchanger 19 performs heat exchange between the high-pressure refrigerant flowing through the high-pressure side passage 19a and the low-pressure refrigerant flowing through the low-pressure side passage 19b, and raises the intake refrigerant temperature of the compressor 14. Thereby, the refrigerant discharge temperature of the compressor 14 is raised, the refrigerant enthalpy difference (heat radiation amount) between the inlet and outlet of the water refrigerant heat exchanger 15 is increased, and the cycle efficiency (COP) is improved.

図2は本実施形態の電気制御のブロック図であり、制御装置20はマイクロコンピュータおよびその周辺回路等により構成され、給湯器の電気機器、すなわち、電動水ポンプ13、圧縮機14の電動モータ14a、電動膨張弁16のアクチュエータ16b、電動室外ファン17a等の作動を制御する。   FIG. 2 is a block diagram of the electric control of the present embodiment, and the control device 20 is constituted by a microcomputer and its peripheral circuits and the like, and is an electric device of a hot water heater, that is, an electric water pump 13 and an electric motor 14a of the compressor 14. The operation of the actuator 16b of the electric expansion valve 16 and the electric outdoor fan 17a is controlled.

制御装置20の入力側には、圧縮機14の吐出冷媒温度を検出する温度センサ21、水冷媒熱交換器15の出口冷媒圧力(高圧圧力)を検出する圧力センサ22、蒸発器17の出口冷媒温度を検出する温度センサ23、水循環通路12のうち、水冷媒熱交換器15の水通路15a入口側の給湯水温度を検出する温度センサ24、外気温を検出する温度センサ25等のセンサ群の検出信号が入される。   On the input side of the control device 20, there are a temperature sensor 21 that detects the refrigerant temperature discharged from the compressor 14, a pressure sensor 22 that detects the outlet refrigerant pressure (high pressure) of the water refrigerant heat exchanger 15, and an outlet refrigerant of the evaporator 17. Of the temperature sensor 23 for detecting the temperature, the temperature sensor 24 for detecting the temperature of the hot water at the inlet side of the water passage 15a of the water refrigerant heat exchanger 15, and the temperature sensor 25 for detecting the outside air temperature. A detection signal is input.

また、給湯器の操作パネル26からは、給湯器の作動、停止の操作信号、給湯器の給湯水設定温度信号等が制御装置20に入力される
次に、本実施形態の作動を説明する。図3は制御装置20のマイクロコンピュータにより実行される制御ルーチンであり、操作パネル26から入力される給湯器の作動信号によりスタートする。まず、除霜運転の必要有無を判定する。具体的には、温度センサ23により検出される蒸発器17の出口冷媒温度が所定温度T1より低いか判定する(S10)。ここで、所定温度T1は例えば、−14℃であり、蒸発器17の出口冷媒温度が所定温度T1より高い時は除霜運転の必要がないと判定できるので、通常運転の制御を行う(S20)。
In addition, from the operation panel 26 of the water heater, an operation signal for operating and stopping the water heater, a hot water supply temperature setting signal for the water heater, and the like are input to the control device 20. Next, the operation of this embodiment will be described. FIG. 3 shows a control routine executed by the microcomputer of the control device 20, which starts with an operation signal of the water heater input from the operation panel 26. First, it is determined whether or not a defrosting operation is necessary. Specifically, it is determined whether the outlet refrigerant temperature of the evaporator 17 detected by the temperature sensor 23 is lower than a predetermined temperature T1 (S10). Here, the predetermined temperature T1 is, for example, −14 ° C., and when the outlet refrigerant temperature of the evaporator 17 is higher than the predetermined temperature T1, it can be determined that the defrosting operation is not necessary, and thus the normal operation is controlled (S20). ).

図4はこの通常運転制御の概要を示すフローチャートであり、まず、水循環通路12の電動水ポンプ13を作動させるとともに、圧縮機14を通常運転時の制御特性により決まる所定回転数にて作動させる(S210)。次に、ヒートポンプサイクル11の目標高圧を、温度センサ25により検出される外気温、温度センサ24により検出される水冷媒熱交換器15の入口側給湯水温度、および目標沸き上げ温度に基づいて算出する(S220)。ここで、目標沸き上げ温度は使用者の設定する給湯水設定温度、あるいは貯湯タンク10内の給湯水温度等に基づいて算出される温度である。   FIG. 4 is a flowchart showing an outline of this normal operation control. First, the electric water pump 13 in the water circulation passage 12 is operated, and the compressor 14 is operated at a predetermined rotational speed determined by control characteristics during normal operation ( S210). Next, the target high pressure of the heat pump cycle 11 is calculated based on the outside air temperature detected by the temperature sensor 25, the inlet side hot water temperature of the water-refrigerant heat exchanger 15 detected by the temperature sensor 24, and the target boiling temperature. (S220). Here, the target boiling temperature is a temperature calculated based on the hot water setting temperature set by the user, the hot water temperature in the hot water storage tank 10, or the like.

次に、この算出目標高圧よりも、圧力センサ22により検出される実際の高圧圧力が高いか判定する(S230)。実際の高圧圧力が高いときは電動膨張弁16の開度を所定量増加する(S240)。これにより、高圧圧力が低下する。   Next, it is determined whether the actual high pressure detected by the pressure sensor 22 is higher than the calculated target high pressure (S230). When the actual high pressure is high, the opening degree of the electric expansion valve 16 is increased by a predetermined amount (S240). Thereby, a high pressure falls.

これに対し、実際の高圧圧力が算出目標高圧よりも低いときは電動膨張弁16の開度を所定量減少する(S250)。これにより、高圧圧力が上昇する。このように、電動膨張弁16の開度を実際の高圧圧力の変化に応じて増減する制御を行うことにより、実際の高圧圧力を目標高圧付近に維持できる。   On the other hand, when the actual high pressure is lower than the calculated target high pressure, the opening degree of the electric expansion valve 16 is decreased by a predetermined amount (S250). As a result, the high pressure increases. In this way, the actual high pressure can be maintained near the target high pressure by performing control to increase or decrease the opening of the electric expansion valve 16 in accordance with the change in the actual high pressure.

なお、図4では、圧縮機14の具体的な回転数制御を図示していないが、ヒートポンプサイクル11の異常運転(例えば、異常高圧上昇、異常吐出温上昇等)を回避するために圧縮機14の回転数は自動制御される。   In FIG. 4, the specific rotation speed control of the compressor 14 is not shown, but the compressor 14 is used to avoid abnormal operation of the heat pump cycle 11 (for example, abnormally high pressure rise, abnormal discharge temperature rise, etc.). The rotation speed is automatically controlled.

通常運転時には電動水ポンプ13の作動によって給湯水が水循環通路12を循環し、貯湯タンク10内下部の低温給湯水を水冷媒熱交換器15に流通させて加熱する。通常運転時には、電動膨張弁16の開度の増減により実際の高圧圧力を目標高圧付近に維持して、高圧冷媒温度を所定温度の給湯水を得るために必要な温度に制御できる。   During normal operation, hot water is circulated through the water circulation passage 12 by the operation of the electric water pump 13, and the low temperature hot water in the lower part of the hot water storage tank 10 is circulated to the water refrigerant heat exchanger 15 to be heated. During normal operation, the actual high pressure can be maintained near the target high pressure by increasing or decreasing the opening of the electric expansion valve 16, and the high-pressure refrigerant temperature can be controlled to a temperature required to obtain hot water at a predetermined temperature.

図5の実線は通常運転時のモリエル線図であり、A点は圧縮機14の吐出部、B点は水冷媒熱交換器15の出口部、C点は内部熱交換器19の高圧側通路出口部(電動膨張弁16の入口部)、D点は電動膨張弁16の出口部、E点はアキュムレータ18内部に形成される飽和ガス線上の位置である。F点は内部熱交換器19の低圧側通路出口部(圧縮機14の吸入部)である。   The solid line in FIG. 5 is a Mollier diagram during normal operation, where point A is the discharge portion of the compressor 14, point B is the outlet of the water-refrigerant heat exchanger 15, and point C is the high-pressure side passage of the internal heat exchanger 19. The outlet part (inlet part of the electric expansion valve 16), the point D is the outlet part of the electric expansion valve 16, and the point E is the position on the saturated gas line formed inside the accumulator 18. Point F is a low-pressure side passage outlet of the internal heat exchanger 19 (suction part of the compressor 14).

一方、蒸発器17の出口冷媒温度が所定温度T1(−14℃)より低いとき、すなわち、除霜運転が必要なときはステップS20の判定がYESとなり、ステップS30にて除霜運転を開始する。具体的には、電動水ポンプ13の作動を停止し、電動膨張弁16の開度を除霜運転時の所定開度に設定し、また、圧縮機14を除霜運転時の所定回転数で作動させる。   On the other hand, when the outlet refrigerant temperature of the evaporator 17 is lower than the predetermined temperature T1 (−14 ° C.), that is, when the defrosting operation is necessary, the determination in step S20 is YES, and the defrosting operation is started in step S30. . Specifically, the operation of the electric water pump 13 is stopped, the opening degree of the electric expansion valve 16 is set to a predetermined opening degree during the defrosting operation, and the compressor 14 is set at a predetermined rotation speed during the defrosting operation. Operate.

ここで、電動膨張弁16の除霜運転時の所定開度は、同一条件(同一高圧圧力値)における通常運転時の開度よりも大きい値である。また、圧縮機14の除霜運転時の所定回転数も、図4のステップS210における通常運転時の所定回転数よりも大きい値である。   Here, the predetermined opening during the defrosting operation of the electric expansion valve 16 is a value larger than the opening during the normal operation under the same conditions (same high pressure value). Moreover, the predetermined rotation speed at the time of defrosting operation of the compressor 14 is also a value larger than the predetermined rotation speed at the time of normal operation in step S210 of FIG.

このように、電動水ポンプ13の作動を停止したままヒートポンプサイクル11を作動させることにより、圧縮機14の高温吐出冷媒が水冷媒熱交換器15にて給湯水側に放熱することをほとんど抑制できる。しかも、電動膨張弁16の開度増加により電動膨張弁16での減圧による冷媒温度の低下を抑制できる。   Thus, by operating the heat pump cycle 11 with the operation of the electric water pump 13 stopped, the high-temperature discharged refrigerant of the compressor 14 can be hardly suppressed from radiating heat to the hot water supply side in the water-refrigerant heat exchanger 15. . And the fall of the refrigerant temperature by the pressure reduction in the electric expansion valve 16 can be suppressed by the opening degree increase of the electric expansion valve 16.

この結果、圧縮機14の吐出冷媒の温度低下を抑制して高温の冷媒を蒸発器17に流入させることができ、蒸発器17の除霜を行うことができる。ここで、図5の破線は除霜運転時のモリエル線図であり、A’点は圧縮機14の吐出部から電動膨張弁16の入口部に至るまでの冷媒の状態である。D’点は電動膨張弁16の出口部で、E点はアキュムレータ18内部に形成される飽和ガス線上の位置である。   As a result, it is possible to suppress the temperature drop of the refrigerant discharged from the compressor 14 and allow the high-temperature refrigerant to flow into the evaporator 17, so that the evaporator 17 can be defrosted. Here, the broken line in FIG. 5 is a Mollier diagram during the defrosting operation, and the A ′ point is the state of the refrigerant from the discharge part of the compressor 14 to the inlet part of the electric expansion valve 16. Point D ′ is the outlet of the electric expansion valve 16, and point E is the position on the saturated gas line formed inside the accumulator 18.

圧縮機14の除霜運転時の所定回転数を通常運転時より大きくすることにより圧縮機14の圧縮仕事量を増加して除霜性能を向上できる。   The defrosting performance can be improved by increasing the compression work of the compressor 14 by increasing the predetermined number of rotations during the defrosting operation of the compressor 14 than during the normal operation.

ところで、圧縮機14の回転数増加、すなわち、圧縮機入力動力の増加は既述したように、圧縮比が大きくなって、圧縮機吐出冷媒温度の大幅な上昇を招く。これにより、除霜運転時に水冷媒熱交換器15内に滞留している給湯水が沸騰してしまうという不具合が生じる。   By the way, as described above, an increase in the rotational speed of the compressor 14, that is, an increase in the compressor input power, increases the compression ratio and causes a significant increase in the compressor discharge refrigerant temperature. Thereby, the malfunction that the hot-water supply water staying in the water-refrigerant heat exchanger 15 boils off at the time of a defrost operation arises.

また、本実施形態のヒートポンプサイクル11では、内部熱交換器19を具備しているので、高圧冷媒(圧縮機吐出冷媒)が高温のまま内部熱交換器19に流入し圧縮機吸入冷媒が過度に加熱されるので、圧縮機吐出冷媒温度がより一層高温に上昇して、水冷媒熱交換器内の給湯水がさらに沸騰しやすくなる。   Further, in the heat pump cycle 11 of the present embodiment, since the internal heat exchanger 19 is provided, the high-pressure refrigerant (compressor discharge refrigerant) flows into the internal heat exchanger 19 at a high temperature, and the compressor suction refrigerant is excessive. Since it is heated, the compressor discharge refrigerant temperature rises to a higher temperature, and hot water in the water-refrigerant heat exchanger is more likely to boil.

そこで、本実施形態では、除霜運転時の圧縮機吐出冷媒温度を、給湯水の沸騰を防止できる温度域に確実に抑制するためのサイクル制御を採用している。   Thus, in the present embodiment, cycle control is used to reliably suppress the compressor discharge refrigerant temperature during the defrosting operation to a temperature range in which boiling of the hot water supply can be prevented.

すなわち、図3のステップS30にて除霜運転を開始した後、ステップS40にて圧縮機吐出冷媒温度(温度ンサ21の検出温度)が給湯水の沸騰防止のための所定温度T2(具体的には90℃)より低いか判定する。この判定がNOのときはステップS50にて電動膨張弁16の開度を増加する制御を行う。。   That is, after the defrosting operation is started in step S30 of FIG. 3, the compressor discharge refrigerant temperature (detected temperature of the temperature sensor 21) is a predetermined temperature T2 for preventing boiling of hot water (specifically, in step S40). Is lower than 90 ° C.). When this determination is NO, control is performed to increase the opening of the electric expansion valve 16 in step S50. .

この電動膨張弁16の開度増加制御を図6(a)に示す除霜運転時の制御特性図に基づいて説明すると、図6(a)の縦軸は電動膨張弁16の開度であり、縦軸の矢印は電動膨張弁16の開度増加方向を示す。「全開」は電動膨張弁16の全開位置であり、「最小開度」は電動膨張弁16の全閉近傍の微小開度位置である。図6(a)の横軸のΔTは、実際の圧縮機吐出冷媒温度(温度ンサ21の検出温度)と上記所定温度T2との温度差である。   The opening degree increase control of the electric expansion valve 16 will be described based on the control characteristic diagram during the defrosting operation shown in FIG. 6A. The vertical axis in FIG. The arrows on the vertical axis indicate the direction in which the electric expansion valve 16 increases. “Full open” is the fully open position of the electric expansion valve 16, and “minimum opening” is a minute opening position in the vicinity of the fully closed of the electric expansion valve 16. 6A is a temperature difference between the actual compressor discharge refrigerant temperature (detected temperature of the temperature sensor 21) and the predetermined temperature T2.

図6(a)の横軸のうち、縦軸より右側領域は実際の圧縮機吐出冷媒温度が上記所定温度T2よりも高い領域であり、ΔTの増加に応じて電動膨張弁16の開度を増加させる特性になっている。これに対し、図6(a)の横軸のうち、縦軸より左側領域は実際の圧縮機吐出冷媒温度が上記所定温度T2よりも低い領域(ΔTのマイナス領域)であり、ΔTのマイナス量の増加に応じて電動膨張弁16の開度を減少させる特性になっている。   6A, the region on the right side of the vertical axis is a region where the actual compressor discharge refrigerant temperature is higher than the predetermined temperature T2, and the opening degree of the electric expansion valve 16 is increased according to the increase of ΔT. Increased characteristics. On the other hand, in the horizontal axis of FIG. 6A, the region on the left side of the vertical axis is a region where the actual compressor discharge refrigerant temperature is lower than the predetermined temperature T2 (a minus region of ΔT), and a minus amount of ΔT. The opening degree of the electric expansion valve 16 is reduced in accordance with the increase of.

なお、ステップS30における電動膨張弁16の除霜開始時の所定開度は図6(a)の中間開度θ1である。従って、ステップS50においては温度差ΔTの増加割合に応じて電動膨張弁16の開度を中間開度θ1から所定量づつ増加させていく。   In addition, the predetermined opening degree at the time of the start of defrosting of the electric expansion valve 16 in step S30 is intermediate opening degree (theta) 1 of Fig.6 (a). Accordingly, in step S50, the opening degree of the electric expansion valve 16 is increased from the intermediate opening degree θ1 by a predetermined amount according to the increasing rate of the temperature difference ΔT.

ここで、電動膨張弁16の開度は数秒程度の所定時間の間は一定に維持され、所定時間ごとに温度差ΔTを判定し、その温度差ΔTに応じた開度に電動膨張弁16の開度を制御する。   Here, the opening degree of the electric expansion valve 16 is kept constant for a predetermined time of about several seconds, the temperature difference ΔT is determined every predetermined time, and the opening degree of the electric expansion valve 16 is adjusted to the opening degree corresponding to the temperature difference ΔT. Control the opening.

ステップS60では電動膨張弁16の開度が最大開度であるか判定され、電動膨張弁16の開度が最大開度に到達するまではステップS60の判定がNOであるため、電動膨張弁16の上記開度制御が継続される。   In step S60, it is determined whether the opening degree of the electric expansion valve 16 is the maximum opening degree. Since the determination in step S60 is NO until the opening degree of the electric expansion valve 16 reaches the maximum opening degree, the electric expansion valve 16 is determined. The above opening degree control is continued.

そして、電動膨張弁16の開度が最大開度に到達すると、ステップS70に進み、圧縮機14の回転数を低下する制御を行う。すなわち、図6(b)は、除霜運転時における圧縮機14の回転数制御特性図であり、図6(b)の縦軸は圧縮機14の回転数であり、縦軸の矢印は圧縮機14の増速方向を示す。   Then, when the opening degree of the electric expansion valve 16 reaches the maximum opening degree, the process proceeds to step S <b> 70, and control is performed to reduce the rotational speed of the compressor 14. That is, FIG. 6B is a rotational speed control characteristic diagram of the compressor 14 during the defrosting operation, the vertical axis of FIG. 6B is the rotational speed of the compressor 14, and the vertical axis arrow indicates compression. The speed increasing direction of the machine 14 is shown.

図6(b)の横軸のうち、縦軸より右側領域は実際の圧縮機吐出冷媒温度が上記所定温度T2よりも高い領域であり、ΔTの増加に応じて圧縮機14の回転数を低下させる特性になっている。これに対し、図6(b)の横軸のうち、縦軸より左側領域は実際の圧縮機吐出冷媒温度が上記所定温度T2よりも低い領域(ΔTのマイナス領域)であり、ΔTのマイナス量の増加に応じて圧縮機14の回転数を増加させる特性になっている。   6B, the region on the right side of the vertical axis is a region where the actual compressor discharge refrigerant temperature is higher than the predetermined temperature T2, and the rotational speed of the compressor 14 is reduced as ΔT increases. It is a characteristic to make it. On the other hand, in the horizontal axis of FIG. 6B, the region on the left side of the vertical axis is a region where the actual compressor discharge refrigerant temperature is lower than the predetermined temperature T2 (a minus region of ΔT), and a minus amount of ΔT. The number of revolutions of the compressor 14 is increased in accordance with the increase in the value.

なお、ステップS30における圧縮機14の除霜開始時の所定回転数は図6(b)の中間回転数N1である。従って、ステップS70においては、ΔTの増加に応じて圧縮機14の回転数を中間回転数N1から所定量づつ低下させていく。   In addition, the predetermined rotation speed at the time of the start of defrosting of the compressor 14 in step S30 is the intermediate rotation speed N1 of FIG.6 (b). Therefore, in step S70, the rotational speed of the compressor 14 is decreased from the intermediate rotational speed N1 by a predetermined amount in accordance with the increase in ΔT.

ステップS70においても、圧縮機14の回転数は数秒程度の所定時間の間、一定に維持され、所定時間ごとに温度差ΔTを判定し、その温度差ΔTに応じた開度に圧縮機14の回転数を制御する。   Also in step S70, the rotational speed of the compressor 14 is kept constant for a predetermined time of about several seconds, the temperature difference ΔT is determined every predetermined time, and the opening of the compressor 14 is set to an opening degree corresponding to the temperature difference ΔT. Control the number of revolutions.

ところで、電動膨張弁16の開度を増加させると、ヒートポンプサイクル11の高低圧差が減少し、圧縮比が低下するので、圧縮機吐出冷媒温度を低下できる。電動膨張弁16が全開しても、圧縮機吐出冷媒温度が上記所定温度T2よりも高い時は圧縮機14の回転数を低下させて、圧縮比を低下させることにより、圧縮機吐出冷媒温度を低下できる。   By the way, if the opening degree of the electric expansion valve 16 is increased, the difference between the high and low pressures of the heat pump cycle 11 is reduced and the compression ratio is lowered, so that the compressor discharge refrigerant temperature can be lowered. Even when the electric expansion valve 16 is fully opened, when the compressor discharge refrigerant temperature is higher than the predetermined temperature T2, the rotation speed of the compressor 14 is decreased to reduce the compression ratio, thereby reducing the compressor discharge refrigerant temperature. Can be reduced.

このような電動膨張弁16の開度制御および圧縮機14の回転数制御を実行することにより、圧縮機吐出冷媒温度の上限を上記所定温度T2(90℃)付近に確実に抑制することができ、これにより、除霜運転時に水冷媒熱交換器15内に滞留している給湯水の沸騰を確実に防止できる。   By executing the opening degree control of the electric expansion valve 16 and the rotation speed control of the compressor 14, the upper limit of the compressor discharge refrigerant temperature can be surely suppressed in the vicinity of the predetermined temperature T2 (90 ° C.). As a result, boiling of hot water remaining in the water / refrigerant heat exchanger 15 during the defrosting operation can be reliably prevented.

一方、ステップS40の判定がYESのときは給湯水の沸騰の心配がないときであるため、ステップS80に進み、蒸発器17の出口冷媒温度が除霜終了温度T3よりも高いか判定する。この除霜終了温度T3は、除霜開始の所定温度T1よりも一定温度αだけ高い温度(T1+α)であって、例えば、5℃である。   On the other hand, when the determination in step S40 is YES, it is a time when there is no fear of boiling of the hot water supply, and thus the process proceeds to step S80 to determine whether the outlet refrigerant temperature of the evaporator 17 is higher than the defrosting end temperature T3. The defrosting end temperature T3 is a temperature (T1 + α) higher than the predetermined temperature T1 at which defrosting is started by a constant temperature α, and is 5 ° C., for example.

ステップS80の判定がNOである間は、ステップS30による除霜運転が継続される。そして、蒸発器17の出口冷媒温度が除霜終了温度T3よりも高くなると、ステップS90に進み、除霜運転を終了し、通常運転制御に移行する。この通常運転制御はステップS20の通常運転制御と同じである。   While the determination in step S80 is NO, the defrosting operation in step S30 is continued. And if the exit refrigerant | coolant temperature of the evaporator 17 becomes higher than defrost end temperature T3, it will progress to step S90, will complete | finish defrost operation, and will transfer to normal operation control. This normal operation control is the same as the normal operation control in step S20.

なお、第1実施形態では、蒸発器17の出口冷媒温度に基づいて除霜運転の開始、終了を行っているが、除霜運転の開始、終了の制御は種々変形可能である。例えば、外気温と蒸発器17の出口冷媒温度との温度差を算出し、この温度差が第1所定値(例えば、10℃)よりも大きくなった時に除霜運転を開始し、この温度差が第1所定値よりも小さい第2所定値以下になった時に除霜運転を終了するようにしてもよい。   In the first embodiment, the start and end of the defrosting operation are performed based on the outlet refrigerant temperature of the evaporator 17, but the control of the start and end of the defrosting operation can be variously modified. For example, a temperature difference between the outside air temperature and the outlet refrigerant temperature of the evaporator 17 is calculated, and the defrosting operation is started when the temperature difference becomes larger than a first predetermined value (for example, 10 ° C.). The defrosting operation may be terminated when becomes less than or equal to a second predetermined value smaller than the first predetermined value.

ここで、蒸発器出口冷媒温度の代わりに蒸発器入口冷媒温度を用いて、外気温と蒸発器入口冷媒温度との温度差に基づいて除霜運転の開始、終了を行うようにしてもよい。   Here, instead of the evaporator outlet refrigerant temperature, the evaporator inlet refrigerant temperature may be used to start and end the defrosting operation based on the temperature difference between the outside air temperature and the evaporator inlet refrigerant temperature.

また、上記の各制御例において、除霜運転の終了を各種温度信号によらずに、タイマー信号によって行うようにしてもよい。つまり、除霜運転の経過時間が予め定めた設定時間に達すると、除霜運転を終了するようにしてもよい。   Further, in each of the above control examples, the defrosting operation may be terminated by a timer signal instead of various temperature signals. That is, when the elapsed time of the defrosting operation reaches a predetermined set time, the defrosting operation may be terminated.

また、外気温が0℃以下における通常運転の経過時間が所定時間(例えば、2時間)よりも大きくなった時に除霜運転を開始し、除霜運転の経過時間が予め定めた設定時間に達すると、除霜運転を終了するようにしてもよい。   Further, the defrosting operation is started when the elapsed time of the normal operation when the outside air temperature is 0 ° C. or less becomes longer than a predetermined time (for example, 2 hours), and the elapsed time of the defrosting operation reaches a predetermined set time. Then, the defrosting operation may be terminated.

(第2実施形態)
第1実施形態では、ヒートポンプサイクルの減圧装置を電動膨張弁16により構成しているが、第2実施形態では、図7に示すようにヒートポンプサイクルの減圧装置をエジェクタ160により構成して、ヒートポンプサイクルをエジェクタサイクルにしている。このエジェクタサイクルは特許第3322263号公報等により公知であるので、その概要を以下説明する。
(Second Embodiment)
In the first embodiment, the decompression device for the heat pump cycle is configured by the electric expansion valve 16, but in the second embodiment, the decompression device for the heat pump cycle is configured by the ejector 160 as shown in FIG. The ejector cycle. Since this ejector cycle is known from Japanese Patent No. 3322263, the outline thereof will be described below.

エジェクタ160は、冷媒を減圧する減圧手段であるとともに、高速で噴出する冷媒流の巻き込み作用によって冷媒を吸引するポンプ手段の役割を兼ねる。図8に示すようにエジェクタ160には、内部熱交換器19の高圧側通路19aを通過した高圧冷媒を等エントロピ的に減圧膨張させるノズル部161が備えられ、このノズル部161から噴射する高速度の冷媒流により冷媒吸引口162の冷媒がエジェクタ160内部に吸引される。   The ejector 160 is a decompression unit that decompresses the refrigerant, and also serves as a pump unit that sucks the refrigerant by the entrainment action of the refrigerant flow ejected at high speed. As shown in FIG. 8, the ejector 160 is provided with a nozzle portion 161 that isentropically decompressed and expanded with the high-pressure refrigerant that has passed through the high-pressure side passage 19 a of the internal heat exchanger 19. The refrigerant in the refrigerant suction port 162 is sucked into the ejector 160 by the refrigerant flow.

ノズル部161の下流側には、高速度の噴射冷媒流と冷媒吸引口162からの吸引冷媒とを混合する混合部163が形成され、この混合部163の下流側に昇圧部をなすディフューザ部164が形成されている。このディフューザ部164は冷媒の通路面積を徐々に拡大する形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる作用、つまり、冷媒の速度エネルギーを圧力エネルギーに変換する作用を果たす。   A mixing unit 163 that mixes the high-speed jet refrigerant flow and the suction refrigerant from the refrigerant suction port 162 is formed on the downstream side of the nozzle unit 161, and a diffuser unit 164 that forms a boosting unit on the downstream side of the mixing unit 163. Is formed. The diffuser portion 164 is formed in a shape that gradually expands the passage area of the refrigerant, and functions to decelerate the refrigerant flow to increase the refrigerant pressure, that is, to convert the velocity energy of the refrigerant into pressure energy.

さらに、ノズル部161には電動アクチュエータ165により位置制御される可変ニードル166が配置され、この可変ニードル166の位置制御によりノズル部161の開度を電気的に制御できるようになっている。   Further, a variable needle 166 whose position is controlled by an electric actuator 165 is disposed in the nozzle portion 161, and the opening degree of the nozzle portion 161 can be electrically controlled by the position control of the variable needle 166.

エジェクタ160のディフューザ部164から流出した冷媒は、アキュムレータ18内に流入し、ここで、冷媒の気液が分離される。そして、アキュムレータ18内上部の気相冷媒が内部熱交換器19の低圧側通路19bを通過して圧縮機14に吸入される。   The refrigerant that has flowed out of the diffuser portion 164 of the ejector 160 flows into the accumulator 18, where the gas-liquid of the refrigerant is separated. Then, the gas-phase refrigerant in the upper part of the accumulator 18 passes through the low-pressure side passage 19 b of the internal heat exchanger 19 and is sucked into the compressor 14.

これに対し、アキュムレータ18内下部の液相冷媒は分岐通路30へ導出される。この分岐通路30は固定絞りからなる補助減圧器31を有し、この補助減圧器31の下流側に蒸発器17を接続し、蒸発器17の出口側をエジェクタ160の冷媒吸引口162に接続している。   On the other hand, the liquid refrigerant in the lower part of the accumulator 18 is led out to the branch passage 30. This branch passage 30 has an auxiliary pressure reducer 31 composed of a fixed throttle. The evaporator 17 is connected to the downstream side of the auxiliary pressure reducer 31, and the outlet side of the evaporator 17 is connected to the refrigerant suction port 162 of the ejector 160. ing.

第2実施形態のエジェクタサイクルによると、ノズル部161による減圧直後の最も低い圧力を冷媒吸引口162から蒸発器17に作用させることができ、一方、圧縮機14の吸入側にはディフューザ部164による昇圧後の圧力を作用させることができる。つまり、蒸発器17の蒸発圧力よりも圧縮機14の吸入圧力を高くすることができ、その分だけ、圧縮機14の駆動動力を節減できる。   According to the ejector cycle of the second embodiment, the lowest pressure immediately after the pressure reduction by the nozzle part 161 can be applied to the evaporator 17 from the refrigerant suction port 162, while the diffuser part 164 is provided on the suction side of the compressor 14. The pressure after the pressure increase can be applied. That is, the suction pressure of the compressor 14 can be made higher than the evaporation pressure of the evaporator 17, and the driving power of the compressor 14 can be saved by that amount.

(第3実施形態)
第1実施形態では、図3のS40〜S70に示すように、蒸発器17の除霜運転時に電動膨張弁16の開度および圧縮機14の回転数を圧縮機吐出冷媒温度に応じてフィードバック制御しているが、第3実施形態では、このようなフィードバック制御をせずに、除霜運転開始時に電動膨張弁16の開度および圧縮機14の回転数を予め所定値に設定する。
(Third embodiment)
In the first embodiment, as shown in S40 to S70 of FIG. 3, during the defrosting operation of the evaporator 17, the opening degree of the electric expansion valve 16 and the rotation speed of the compressor 14 are feedback-controlled according to the compressor discharge refrigerant temperature. However, in the third embodiment, without performing such feedback control, the opening degree of the electric expansion valve 16 and the rotation speed of the compressor 14 are set to predetermined values at the start of the defrosting operation.

第3実施形態を図9に基づいてより具体的に説明する。図9は、前述の図3と同様に制御装置20のマイクロコンピュータにより実行される制御ルーチンであり、図3と同等部分には同一符号を付して説明を簡略化する。   The third embodiment will be described more specifically based on FIG. FIG. 9 is a control routine executed by the microcomputer of the control device 20 in the same manner as in FIG. 3 described above, and the same parts as those in FIG.

まず、ステップS10にて温度センサ23により検出される蒸発器17の出口冷媒温度が所定温度T1(例えば、−14℃)より低いか判定し、この出口冷媒温度が所定温度T1より低いときは除霜運転の必要有りと判定して、次のステップS30にて除霜運転を開始する。具体的には、電動水ポンプ13の作動を停止し、電動膨張弁16の開度を除霜運転時の所定開度に設定し、また、圧縮機14を除霜運転時の所定回転数で作動させる。   First, in step S10, it is determined whether the outlet refrigerant temperature of the evaporator 17 detected by the temperature sensor 23 is lower than a predetermined temperature T1 (for example, −14 ° C.). If the outlet refrigerant temperature is lower than the predetermined temperature T1, it is excluded. It is determined that the frost operation is necessary, and the defrost operation is started in the next step S30. Specifically, the operation of the electric water pump 13 is stopped, the opening degree of the electric expansion valve 16 is set to a predetermined opening degree during the defrosting operation, and the compressor 14 is set at a predetermined rotation speed during the defrosting operation. Operate.

ここで、電動膨張弁16の除霜運転時の所定開度は、同一条件(同一高圧圧力値)における通常運転時の開度よりも大きい値である。   Here, the predetermined opening during the defrosting operation of the electric expansion valve 16 is a value larger than the opening during the normal operation under the same conditions (same high pressure value).

但し、電動膨張弁16の所定開度および圧縮機14の所定回転数は、除霜運転中に圧縮機14の吐出冷媒温度が水冷媒熱交換器15内の給湯水の沸騰を防止するための所定温度(例えば、90℃)以内となるように設定される所定値である。この電動膨張弁開度の所定値および圧縮機回転数の所定値は、より具体的には、除霜開始時における給湯器運転条件(例えば、温度センサ24により検出される給湯水温度、温度センサ25により検出される外気温等)に基づいて決定すればよい。   However, the predetermined opening degree of the electric expansion valve 16 and the predetermined rotation speed of the compressor 14 are used to prevent boiling of hot water in the water-refrigerant heat exchanger 15 during the defrosting operation. It is a predetermined value that is set to be within a predetermined temperature (for example, 90 ° C.). More specifically, the predetermined value of the electric expansion valve opening and the predetermined value of the compressor rotational speed are the hot water heater operating conditions at the start of defrosting (for example, hot water temperature detected by the temperature sensor 24, temperature sensor It may be determined on the basis of the outside air temperature detected by 25).

ステップS30からステップS80に進み、蒸発器17の出口冷媒温度が除霜終了温度T3よりも高いか判定する。この除霜終了温度T3は、前述したように除霜開始の所定温度T1よりも一定温度αだけ高い温度(T1+α)であって、例えば、5℃である。   Proceeding from step S30 to step S80, it is determined whether the outlet refrigerant temperature of the evaporator 17 is higher than the defrosting end temperature T3. As described above, the defrosting end temperature T3 is a temperature (T1 + α) that is higher than the predetermined temperature T1 at which the defrosting is started by a constant temperature α, and is 5 ° C., for example.

ステップS80の判定がNOである間は、ステップS30による除霜運転が継続される。そして、蒸発器17の出口冷媒温度が除霜終了温度T3よりも高くなると、ステップS90に進み、除霜運転を終了し、通常運転制御に移行する。この通常運転制御はステップS20の通常運転制御と同じである。   While the determination in step S80 is NO, the defrosting operation in step S30 is continued. And if the exit refrigerant | coolant temperature of the evaporator 17 becomes higher than defrost end temperature T3, it will progress to step S90, will complete | finish defrost operation, and will transfer to normal operation control. This normal operation control is the same as the normal operation control in step S20.

なお、除霜運転の開始、終了の判定は、蒸発器17の出口冷媒温度に基づく判定に限らず、前述したように種々変形可能である。   Note that the determination of the start and end of the defrosting operation is not limited to the determination based on the outlet refrigerant temperature of the evaporator 17, but can be variously modified as described above.

(他の実施形態)
なお、第1実施形態では、除霜運転時に減圧装置(膨張弁16)の開度制御と圧縮機14の回転数制御の両方を実行して、圧縮機吐出冷媒温度を制御しているが、減圧装置(膨張弁16)の開度制御と圧縮機14の回転数制御のいずれか一方のみを実行して、除霜運転時の圧縮機吐出冷媒温度制御を行うようにしてもよい。
(Other embodiments)
In the first embodiment, during the defrosting operation, both the opening degree control of the pressure reducing device (expansion valve 16) and the rotation speed control of the compressor 14 are executed to control the compressor discharge refrigerant temperature. Only one of the opening degree control of the decompression device (expansion valve 16) and the rotation speed control of the compressor 14 may be executed to perform the compressor discharge refrigerant temperature control during the defrosting operation.

また、第1、第3実施形態では、除霜運転時に水ポンプ13を停止して水冷媒熱交換器15における冷媒放熱量を減少させているが、水ポンプ13を完全に停止せず、水ポンプ13を低回転による低速作動させて、水冷媒熱交換器15における冷媒放熱量を減少させるようにしてもよい。   In the first and third embodiments, the water pump 13 is stopped during the defrosting operation to reduce the refrigerant heat release amount in the water refrigerant heat exchanger 15, but the water pump 13 is not stopped completely, The pump 13 may be operated at a low speed by low rotation to reduce the refrigerant heat release amount in the water-refrigerant heat exchanger 15.

また、第1、第2実施形態では、いずれもヒートポンプサイクルに内部熱交換器19を備えているが、内部熱交換器19を備えていないヒートポンプサイクルに本発明を適用してもよい。第3実施形態の制御を内部熱交換器19を備えていないヒートポンプサイクルに適用できることはもちろんである。   In both the first and second embodiments, the internal heat exchanger 19 is provided in the heat pump cycle, but the present invention may be applied to a heat pump cycle that does not include the internal heat exchanger 19. Of course, the control of the third embodiment can be applied to a heat pump cycle that does not include the internal heat exchanger 19.

本発明の第1実施形態によるヒートポンプ式給湯器の全体構成図である。1 is an overall configuration diagram of a heat pump type water heater according to a first embodiment of the present invention. 第1実施形態の電気制御ブロック図である。It is an electric control block diagram of a 1st embodiment. 第1実施形態の作動を示すフローチャートである。It is a flowchart which shows the action | operation of 1st Embodiment. 図3における通常運転時の制御の概要を示すフローチャートである。It is a flowchart which shows the outline | summary of the control at the time of normal driving | operation in FIG. 第1実施形態のヒートポンプサイクルのモリエル線図である。It is a Mollier diagram of the heat pump cycle of the first embodiment. (a)は図3における膨張弁開度制御の特性図、(b)は図3における圧縮機回転数制御の特性図である。(A) is a characteristic view of expansion valve opening degree control in FIG. 3, (b) is a characteristic view of compressor rotation speed control in FIG. 第2実施形態によるヒートポンプ式給湯器の全体構成図である。It is a whole block diagram of the heat pump type water heater by 2nd Embodiment. 図7のエジェクタの概略断面図である。It is a schematic sectional drawing of the ejector of FIG. 第3実施形態の作動を示すフローチャートである。It is a flowchart which shows the action | operation of 3rd Embodiment.

符号の説明Explanation of symbols

10…貯湯タンク、13…水ポンプ、14…圧縮機、16…電動膨張弁(減圧装置)、17…蒸発器、20…制御装置。   DESCRIPTION OF SYMBOLS 10 ... Hot water storage tank, 13 ... Water pump, 14 ... Compressor, 16 ... Electric expansion valve (pressure reduction device), 17 ... Evaporator, 20 ... Control apparatus.

Claims (6)

圧縮機(14)と、貯湯タンク(10)に蓄えられる給湯水を前記圧縮機(14)の吐出冷媒により加熱する水冷媒熱交換器(15)と、前記水冷媒熱交換器(15)を通過した高圧冷媒を減圧するとともに、通路開度を電気的に調節可能な減圧装置(16、160)と、前記減圧装置(16、160)を通過した低圧冷媒を蒸発させる蒸発器(17)と、前記貯湯タンク(10)内の給湯水を前記水冷媒熱交換器(15)に循環させる水ポンプ(13)とを備え、
前記蒸発器(17)の除霜運転時に、前記水冷媒熱交換器(15)における冷媒放熱量が減少するように前記水ポンプ(13)を制御するとともに、前記減圧装置(16、160)の通路開度を所定開度以上に大きくすることにより、前記圧縮機(14)、前記水冷媒熱交換器(15)、前記減圧装置(16、160)および前記蒸発器(17)の順に冷媒が流れたままで、前記蒸発器(17)の除霜を行うヒートポンプ式給湯器において、
前記蒸発器(17)の除霜運転時に、前記圧縮機(14)の吐出冷媒温度が前記水冷媒熱交換器(15)内の給湯水の沸騰を防止するための所定温度以内となるように、前記減圧装置(16、160)の通路開度を増加する制御および前記圧縮機(14)の回転数を低下させる制御の少なくとも一方を実行すること特徴とするヒートポンプ式給湯器。
A compressor (14), a water refrigerant heat exchanger (15) for heating hot water stored in a hot water storage tank (10) by a refrigerant discharged from the compressor (14), and the water refrigerant heat exchanger (15) A pressure reducing device (16, 160) capable of electrically adjusting a passage opening degree, and an evaporator (17) for evaporating the low pressure refrigerant that has passed through the pressure reducing device (16, 160), while reducing the pressure of the high pressure refrigerant that has passed. A water pump (13) for circulating hot water in the hot water storage tank (10) to the water refrigerant heat exchanger (15),
During the defrosting operation of the evaporator (17), the water pump (13) is controlled so that the refrigerant heat dissipation amount in the water refrigerant heat exchanger (15) is reduced, and the decompression device (16, 160) By increasing the passage opening to a predetermined opening or more, the refrigerant flows in the order of the compressor (14), the water-refrigerant heat exchanger (15), the pressure reducing device (16, 160), and the evaporator (17). In the heat pump water heater that performs defrosting of the evaporator (17) while flowing,
During the defrosting operation of the evaporator (17), the discharge refrigerant temperature of the compressor (14) is within a predetermined temperature for preventing boiling of hot water in the water refrigerant heat exchanger (15). The heat pump type hot water heater is characterized in that at least one of control for increasing the passage opening of the pressure reducing device (16, 160) and control for decreasing the rotational speed of the compressor (14) is executed.
前記蒸発器(17)の除霜運転時に、前記減圧装置(16、160)の通路開度を増加する制御および前記圧縮機(14)の回転数を低下させる制御の両方を実行すること特徴とする請求項1に記載のヒートポンプ式給湯器。 During the defrosting operation of the evaporator (17), both the control for increasing the passage opening degree of the pressure reducing device (16, 160) and the control for decreasing the rotational speed of the compressor (14) are executed. The heat pump type water heater according to claim 1. 前記蒸発器(17)の除霜運転時に、前記減圧装置(16、160)の通路開度が最大開度に増加した後に、前記圧縮機(14)の回転数を低下させる制御を実行すること特徴とする請求項2に記載のヒートポンプ式給湯器。 During the defrosting operation of the evaporator (17), after the passage opening degree of the decompression device (16, 160) has increased to the maximum opening degree, control is performed to reduce the rotational speed of the compressor (14). The heat pump type water heater according to claim 2, wherein 圧縮機(14)と、貯湯タンク(10)に蓄えられる給湯水を前記圧縮機(14)の吐出冷媒により加熱する水冷媒熱交換器(15)と、前記水冷媒熱交換器(15)を通過した高圧冷媒を減圧するとともに、通路開度を電気的に調節可能な減圧装置(16、160)と、前記減圧装置(16、160)を通過した低圧冷媒を蒸発させる蒸発器(17)と、前記貯湯タンク(10)内の給湯水を前記水冷媒熱交換器(15)に循環させる水ポンプ(13)とを備え、
前記蒸発器(17)の除霜運転時に、前記水冷媒熱交換器(15)における冷媒放熱量が減少するように前記水ポンプ(13)を制御するとともに、前記減圧装置(16、160)の通路開度を所定開度以上に大きくすることにより、前記圧縮機(14)、前記水冷媒熱交換器(15)、前記減圧装置(16、160)および前記蒸発器(17)の順に冷媒が流れたままで、前記蒸発器(17)の除霜を行うヒートポンプ式給湯器において、
前記蒸発器(17)の除霜運転中に前記圧縮機(14)の吐出冷媒温度が前記水冷媒熱交換器(15)内の給湯水の沸騰を防止するための所定温度以内となるように、前記減圧装置(16、160)の通路開度および前記圧縮機(14)の回転数を除霜運転開始時に予め所定値に設定すること特徴とするヒートポンプ式給湯器。
A compressor (14), a water refrigerant heat exchanger (15) for heating hot water stored in a hot water storage tank (10) by a refrigerant discharged from the compressor (14), and the water refrigerant heat exchanger (15) A pressure reducing device (16, 160) capable of electrically adjusting a passage opening degree, and an evaporator (17) for evaporating the low pressure refrigerant that has passed through the pressure reducing device (16, 160), while reducing the pressure of the high pressure refrigerant that has passed. A water pump (13) for circulating hot water in the hot water storage tank (10) to the water refrigerant heat exchanger (15),
During the defrosting operation of the evaporator (17), the water pump (13) is controlled so that the refrigerant heat dissipation amount in the water refrigerant heat exchanger (15) is reduced, and the decompression device (16, 160) By increasing the passage opening to a predetermined opening or more, the refrigerant flows in the order of the compressor (14), the water-refrigerant heat exchanger (15), the pressure reducing device (16, 160), and the evaporator (17). In the heat pump water heater that performs defrosting of the evaporator (17) while flowing,
During the defrosting operation of the evaporator (17), the discharge refrigerant temperature of the compressor (14) is within a predetermined temperature for preventing boiling of hot water in the water refrigerant heat exchanger (15). The heat pump hot water heater is characterized in that the passage opening of the decompression device (16, 160) and the rotational speed of the compressor (14) are set to predetermined values at the start of the defrosting operation.
前記減圧装置は、前記水冷媒熱交換器(15)を通過した高圧冷媒を減圧するノズル部(161)、前記ノズル部(161)から噴射する高速度の冷媒流により冷媒が内部に吸引される冷媒吸引口(162)、および前記高速度の冷媒流と前記冷媒吸引口(162)からの吸引冷媒とを混合した冷媒流の速度エネルギーを圧力エネルギーに変換する昇圧部(164)を有するエジェクタ(160)にて構成され、
前記エジェクタ(160)には前記ノズル部(161)の通路開度を電気的に調節可能な機構(165、166)が備えられており、
前記冷媒吸引口(162)へ向かって冷媒が流れる通路(30)に前記蒸発器(17)が配置されること特徴とする請求項1ないし4のいずれか1つに記載のヒートポンプ式給湯器。
In the decompression device, the refrigerant is sucked into the nozzle portion (161) for decompressing the high-pressure refrigerant that has passed through the water-refrigerant heat exchanger (15), and the high-speed refrigerant flow ejected from the nozzle portion (161). Ejector having a refrigerant suction port (162) and a boosting unit (164) for converting the velocity energy of the refrigerant flow obtained by mixing the high-speed refrigerant flow and the refrigerant sucked from the refrigerant suction port (162) into pressure energy ( 160),
The ejector (160) includes a mechanism (165, 166) capable of electrically adjusting a passage opening degree of the nozzle portion (161).
The heat pump type hot water heater according to any one of claims 1 to 4, wherein the evaporator (17) is arranged in a passage (30) through which the refrigerant flows toward the refrigerant suction port (162).
前記水冷媒熱交換器(15)通過後の高圧冷媒と前記圧縮機(14)吸入側の低圧冷媒との間で熱交換を行う内部熱交換器(19)を備えること特徴とする請求項1ないし5のいずれか1つに記載のヒートポンプ式給湯器。 The internal heat exchanger (19) for exchanging heat between the high-pressure refrigerant after passing through the water-refrigerant heat exchanger (15) and the low-pressure refrigerant on the suction side of the compressor (14) is provided. The heat pump type water heater as described in any one of thru | or 5.
JP2005370114A 2005-01-28 2005-12-22 Heat pump water heater Expired - Fee Related JP4539553B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005370114A JP4539553B2 (en) 2005-01-28 2005-12-22 Heat pump water heater
DE200610003827 DE102006003827A1 (en) 2005-01-28 2006-01-26 Hot water supplier with heat pump for hot water has coolant temperature at compressor output not above preset temperature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005021119 2005-01-28
JP2005370114A JP4539553B2 (en) 2005-01-28 2005-12-22 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2006234375A true JP2006234375A (en) 2006-09-07
JP4539553B2 JP4539553B2 (en) 2010-09-08

Family

ID=36776365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005370114A Expired - Fee Related JP4539553B2 (en) 2005-01-28 2005-12-22 Heat pump water heater

Country Status (2)

Country Link
JP (1) JP4539553B2 (en)
DE (1) DE102006003827A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241173A (en) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2008275199A (en) * 2007-04-26 2008-11-13 Denso Corp Heat pump type water heater
JP2009030905A (en) * 2007-07-27 2009-02-12 Denso Corp Heat pump type heating device
JP2009186057A (en) * 2008-02-04 2009-08-20 Denso Corp Heat pump water heater
JP2013088038A (en) * 2011-10-19 2013-05-13 Hitachi Appliances Inc Heat pump type water heater
WO2014174792A1 (en) * 2013-04-22 2014-10-30 株式会社デンソー Heat pump system
WO2015083392A1 (en) * 2013-12-04 2015-06-11 三菱電機株式会社 Heat pump device
JP2019158285A (en) * 2018-03-15 2019-09-19 株式会社デンソー Heat pump type water heater
CN113654283A (en) * 2021-09-17 2021-11-16 珠海格力电器股份有限公司 Refrigerant circulating system, defrosting method, refrigerator and air conditioner

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4386071B2 (en) 2006-12-28 2009-12-16 ダイキン工業株式会社 Refrigeration equipment
DE102007039296A1 (en) * 2007-08-20 2009-02-26 Stiebel Eltron Gmbh & Co. Kg heat pump system
DE102009014682B4 (en) * 2009-03-27 2017-03-30 Joachim Kötter Heat pump for a water heater
AT509739A1 (en) * 2010-03-04 2011-11-15 Vaillant Group Austria Gmbh METHOD FOR DEFROSTING AN AIR SOLE HEAT EXCHANGER OF A HEAT PUMP WITH A SOLE CIRCULAR RUN
CN102628636A (en) * 2012-04-28 2012-08-08 肖舸 Composite plate drying method and drying system
EP3745054B1 (en) * 2019-05-29 2022-11-23 Liebherr-Hausgeräte Ochsenhausen GmbH Fridge and / or freezer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003214713A (en) * 2002-01-23 2003-07-30 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP2004239493A (en) * 2003-02-05 2004-08-26 Denso Corp Heat pump cycle
JP2004340475A (en) * 2003-05-15 2004-12-02 Denso Corp Stream compression type refrigerating machine
JP2004361046A (en) * 2003-06-06 2004-12-24 Denso Corp Heat pump hot water supply apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003214713A (en) * 2002-01-23 2003-07-30 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP2004239493A (en) * 2003-02-05 2004-08-26 Denso Corp Heat pump cycle
JP2004340475A (en) * 2003-05-15 2004-12-02 Denso Corp Stream compression type refrigerating machine
JP2004361046A (en) * 2003-06-06 2004-12-24 Denso Corp Heat pump hot water supply apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241173A (en) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2008275199A (en) * 2007-04-26 2008-11-13 Denso Corp Heat pump type water heater
JP2009030905A (en) * 2007-07-27 2009-02-12 Denso Corp Heat pump type heating device
JP2009186057A (en) * 2008-02-04 2009-08-20 Denso Corp Heat pump water heater
JP2013088038A (en) * 2011-10-19 2013-05-13 Hitachi Appliances Inc Heat pump type water heater
WO2014174792A1 (en) * 2013-04-22 2014-10-30 株式会社デンソー Heat pump system
JP2014214886A (en) * 2013-04-22 2014-11-17 株式会社デンソー Heat pump system
WO2015083392A1 (en) * 2013-12-04 2015-06-11 三菱電機株式会社 Heat pump device
JP2019158285A (en) * 2018-03-15 2019-09-19 株式会社デンソー Heat pump type water heater
CN113654283A (en) * 2021-09-17 2021-11-16 珠海格力电器股份有限公司 Refrigerant circulating system, defrosting method, refrigerator and air conditioner

Also Published As

Publication number Publication date
JP4539553B2 (en) 2010-09-08
DE102006003827A1 (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP5343618B2 (en) Refrigeration cycle equipment
JP4539553B2 (en) Heat pump water heater
WO2017061010A1 (en) Refrigeration cycle device
JP2009097779A (en) Supercritical refrigerating cycle
JP2007292390A (en) Heat pump type water heater
JP5659560B2 (en) Refrigeration cycle equipment
JP2005147610A (en) Heat pump water heater
JP4858399B2 (en) Refrigeration cycle
JP5034654B2 (en) Heat pump water heater
JP2008190737A (en) Heat pump type hot water supply apparatus
JP2009250537A (en) Heat pump type water heater
JP5381749B2 (en) Refrigeration cycle equipment
JP2007322074A (en) Heat pump type water heater
JP2009036404A (en) Refrigerating cycle
JP2004361046A (en) Heat pump hot water supply apparatus
JP2009030905A (en) Heat pump type heating device
JP4465986B2 (en) Heat pump type water heater
JP5338758B2 (en) Hot water supply apparatus and hot water control method thereof
JP4905406B2 (en) Refrigeration cycle equipment
JP4179267B2 (en) Heat pump water heater
JP4561093B2 (en) Heat pump cycle for hot water supply
JP4124195B2 (en) Heat pump type heating device
JP2009300028A (en) Ejector type refrigerating cycle
JP7135583B2 (en) refrigeration cycle equipment
JP2010019456A (en) Heat pump cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R151 Written notification of patent or utility model registration

Ref document number: 4539553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees