WO2015056662A1 - アブレーションシステム及びアブレーションデバイス - Google Patents
アブレーションシステム及びアブレーションデバイス Download PDFInfo
- Publication number
- WO2015056662A1 WO2015056662A1 PCT/JP2014/077296 JP2014077296W WO2015056662A1 WO 2015056662 A1 WO2015056662 A1 WO 2015056662A1 JP 2014077296 W JP2014077296 W JP 2014077296W WO 2015056662 A1 WO2015056662 A1 WO 2015056662A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- balloon
- shaft
- fluid
- light guide
- ablation device
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/22—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
- A61B18/24—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00011—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
- A61B2018/00023—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
- A61B2018/0022—Balloons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00273—Anchoring means for temporary attachment of a device to tissue
- A61B2018/00279—Anchoring means for temporary attachment of a device to tissue deployable
- A61B2018/00285—Balloons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00345—Vascular system
- A61B2018/00404—Blood vessels other than those in or around the heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00434—Neural system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00505—Urinary tract
- A61B2018/00511—Kidney
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00744—Fluid flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00791—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00791—Temperature
- A61B2018/00821—Temperature measured by a thermocouple
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00982—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combined with or comprising means for visual or photographic inspections inside the body, e.g. endoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/22—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
- A61B2018/2255—Optical elements at the distal end of probe tips
- A61B2018/2261—Optical elements at the distal end of probe tips with scattering, diffusion or dispersion of light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/22—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
- A61B2018/2255—Optical elements at the distal end of probe tips
- A61B2018/2272—Optical elements at the distal end of probe tips with reflective or refractive surfaces for deflecting the beam
Definitions
- the present invention relates to an ablation system and an ablation device for performing ablation on a tissue around a lumen of a living body.
- renal artery sympathetic nerve ablation As one of renal artery sympathetic nerve ablation, a balloon catheter with electrodes is inserted into the left and right renal arteries, the electrodes are heated and heated from the lumen side of the renal arteries, and the heat is transferred to the adventitia of the renal arteries. There is a technique to reach and cauterize nerves.
- the pulse laser is guided to the renal artery using a catheter, and the pulse laser is focused on the outer membrane of the renal artery by a condensing lens, thereby generating multiphoton absorption at the focal position.
- Devices for performing ablation on the outer membrane at a position have been proposed (Patent Documents 1 and 2).
- the devices described in Patent Documents 1 and 2 have a problem that the structure of the catheter becomes complicated because a condensing lens or the like is disposed in the catheter.
- the focal position of the pulse laser depends on the thickness of the blood vessel wall and the position of the catheter in the blood vessel, there is a problem that it is difficult to accurately position the focal position of the pulse laser at a desired position.
- there are individual differences in the thickness of the blood vessel wall so it is necessary to measure the thickness of the blood vessel wall of the individual to be ablated in advance and adjust the focal position of the condenser lens to the thickness of the blood vessel wall.
- the catheter is positioned out of the center of the blood vessel, there may be a problem that the focal position of the pulse laser is not uniform in the thickness direction of the blood vessel wall in the circumferential direction of the blood vessel.
- the present invention has been made in view of the above-described circumstances, and an object of the present invention is to heat a deep tissue around the lumen of a living body and suppress thermal damage to the lumen lumen. It is to provide an ablation system or an ablation device capable of performing the above.
- Another object of the present invention is to provide an ablation device in which a reflector is hardly damaged even when the output of a laser beam is increased.
- the ablation system according to the present invention is provided with an elastically inflatable balloon on the distal end side of the shaft, and a first lumen for allowing fluid to flow into the balloon, for allowing fluid to flow out from the balloon.
- An ablation device in which a light guide material for guiding laser light into the balloon is provided along the shaft, laser light generating means for irradiating the light guide material with laser light, and the first Fluid return means for returning fluid to the internal space of the balloon through the lumen and the second lumen.
- the ablation device includes a reflective material that reflects laser light emitted from the light guide material in the balloon in a second direction intersecting a first direction in which the light guide material is extended, and at least The reflective material can move in the balloon along the first direction, and can rotate about the first direction as an axis.
- the balloon In the ablation device inserted into the lumen of the living body, the balloon is inflated at a desired position, and the fluid is returned to the internal space of the balloon through the first lumen and the second lumen by the fluid return means.
- the laser light emitted from the laser light generating means is guided into the balloon by the light guide material and reflected in the second direction by the reflective material. Thereby, the laser beam is irradiated to the tissue around the lumen.
- the reflecting material is moved in the balloon along the first direction and rotated about the first direction as an axis, the tissue around the lumen is uniformly irradiated with laser light.
- the balloon is in contact with the inner surface of the lumen, and the heating of the inner surface by the laser light is suppressed by being cooled by the fluid circulating in the balloon.
- the reflective material is integrally provided on a distal end side of the light guide material, the light guide material is movable along the first direction with respect to the shaft, and the first It may be rotatable about one direction as an axis.
- the reflective material is rotated around the first direction while being moved in the balloon along the first direction.
- the laser light generating means may irradiate the light guide material with laser light having a waveform that changes continuously and periodically.
- the present invention provides a shaft, a balloon that is provided on the distal end side of the shaft and is elastically inflatable, and a first lumen that is provided along the shaft and allows fluid to flow into the balloon. And a second lumen for allowing fluid to flow out of the balloon, a light guide material provided along the shaft for guiding laser light into the balloon, and A reflecting material that reflects laser light emitted from the light guide material in a balloon in a second direction intersecting the first direction in which the light guide material is extended, and at least the reflective material is
- the ablation device may be regarded as an ablation device that is movable in the balloon along the first direction and is rotatable about the first direction as an axis.
- the reflective material is integrally provided on the tip side of the light guide material, the light guide material is movable along the first direction with respect to the shaft, and It may be rotatable about one direction as an axis.
- An ablation device includes a main shaft having a fluid lumen through which a fluid circulates, a balloon that is provided on a distal end side of the main shaft and is inflatable by the fluid that circulates through the fluid lumen, and a guide A wire lumen through which a wire can be inserted; a sub-shaft inserted into the main shaft and extending into the balloon; and provided along the sub-shaft to guide laser light into the balloon A light guide material; and a reflective material that reflects the laser light emitted from the light guide material in the balloon in a direction intersecting the axial direction.
- the sub shaft is movable in the axial direction with respect to the main shaft, and is rotatable around the axial direction.
- the light guide material and the reflective material are movable and rotatable along with the sub shaft.
- the guide wire inserted into the lumen of the living body is inserted through the wire lumen of the ablation device, and the main shaft is inserted along the guide wire to a desired position in the lumen.
- fluid is flowed into the balloon and inflated.
- the fluid flowing into the balloon is appropriately refluxed.
- the laser light applied to the light guide material is guided into the balloon and reflected by the reflective material in a direction intersecting the axial direction. Thereby, the laser beam is irradiated to the tissue around the lumen.
- the subshaft is moved in the balloon along the axial direction and rotated around the axial direction, the light guide material and the reflective material move and rotate along the outer periphery of the subshaft, and around the lumen.
- the tissue is uniformly irradiated with laser light. At this time, even if the guide wire is inserted through the wire lumen of the sub shaft, the laser light is not blocked by the guide wire.
- the balloon is in contact with the inner surface of the lumen, and the heating of the inner surface by the laser beam is cooled by the fluid circulating in the balloon.
- the reflective material may be provided integrally on the tip side of the light guide material.
- the subshaft may be inserted through the fluid lumen.
- a connector having a port through which a fluid flows is connected to the base end side of the main shaft, and the port is connected to the fluid lumen so as to be able to flow the fluid.
- the optical material may be rotatable about the axial direction with respect to the connector.
- the present invention includes the ablation device, laser light generation means for irradiating the light guide material with laser light, and fluid return means for returning fluid to the internal space of the balloon through the fluid lumen. It may be viewed as an ablation system.
- An ablation device is provided along a shaft, a balloon that is provided on the distal end side of the shaft and is elastically inflatable, and is provided along the shaft so as to distribute fluid to the balloon.
- the fluid lumen is provided along the shaft, and the light guide material guides the laser light into the balloon.
- the light guide material extends the laser light emitted from the light guide material in the balloon.
- a reflecting material that reflects in a second direction that intersects the first direction.
- the reflective material is disposed to face the first direction with respect to the tip of the light guide material.
- the ablation device inserted into the lumen of the living body, fluid is circulated at a desired position, and the balloon is inflated.
- Laser light is guided into the balloon by the light guide material and reflected in the second direction by the reflective material.
- the laser beam is irradiated to the tissue around the lumen.
- the balloon is in contact with the inner surface of the lumen, and heating of the inner surface by the laser light is suppressed by being cooled by the fluid in the balloon. Since the reflective material is disposed to face the tip of the light guide material, the reflective material is not easily damaged by the laser light.
- the reflecting material is disposed in a flow path of fluid flowing through the balloon.
- the reflecting material has a metal layer on the surface.
- the reflector is movable in the balloon along the first direction, and is rotatable around the axis of the shaft along the first direction.
- the rotation around the axis of the shaft includes rotation of the reflecting material at a position spaced from the axis of the shaft and rotation of the reflecting material on the axis of the shaft.
- a light guide tube is provided along the shaft that is movable in the balloon along the first direction and is rotatable about the axis of the shaft along the first direction.
- the light guide material and the reflective material are disposed in the internal space of the light guide tube.
- the light guide tube has an opening that allows an external fluid to contact the reflective surface of the reflective material.
- the present invention includes the ablation device, laser light generation means for irradiating the light guide material with laser light, and fluid return means for returning fluid to the internal space of the balloon through the fluid lumen. It may be viewed as an ablation system.
- An ablation device is provided along a shaft, a tip end side of the shaft, is elastically inflatable, and is formed along the shaft, and allows fluid to flow into the balloon.
- a light guide material for reflecting or diffusing laser light emitted from the light guide material in the balloon in a direction intersecting the first direction in which the light guide material is extended, and provided in the balloon And has a reflection layer for reflecting or blocking the laser beam reflected or diffused by the diffusion member on the inner surface side of the diffusion member, and the laser A tubular member having a transmission window that transmits light to the outside of the reflective layer.
- the balloon In the ablation device inserted into the lumen of the living body, the balloon is inflated at a desired position, and the fluid is refluxed to the internal space of the balloon through the first lumen and the second lumen.
- the laser light applied to the light guide material is guided into the balloon, and reflected or diffused in the direction intersecting the first direction by the diffusion member.
- the reflected or diffused laser light is reflected by the reflective layer of the tubular member.
- the reflected or diffused laser light travels from the transmission window of the tubular member toward the outside of the tubular member, that is, the tissue around the lumen.
- the balloon is in contact with the inner surface of the lumen, and the heating of the inner surface by the laser light is suppressed by being cooled by the fluid circulating in the balloon.
- the tubular member may be movable in a direction in which at least one of a position in the circumferential direction having the first direction of the transmission window as an axis and a position in the first direction is displaced.
- the laser beam is uniformly irradiated to the tissue around the lumen.
- the diffusion member and the tubular member may be provided integrally with the light guide material.
- the movement of the tubular member can be controlled by operating the proximal end side of the light guide material.
- the transmission window may have a spiral shape extending in the first direction.
- the laser light is uniformly applied to the tissue around the lumen.
- a plurality of the transmission windows may be provided at different positions with respect to the first direction.
- the laser light is uniformly applied to the tissue around the lumen.
- the plurality of transmission windows may be arranged at different positions with respect to the circumferential direction with the first direction as an axis.
- the laser beam traveling in the circumferential direction since the direction of the laser beam traveling in the circumferential direction is different, the laser beam is not concentrated at a specific position in the first direction. Thereby, the heating to the inner surface of the lumen can be suppressed.
- the plurality of transmission windows may be such that each transmission range partially overlaps in the first direction.
- the present invention it is possible to heat a deep tissue around the lumen of a living body and suppress thermal damage to the lumen lumen.
- FIG. 1 is a diagram illustrating a configuration of an ablation system 10 including an ablation device 11 in a state in which a balloon 21 according to the first embodiment is in a contracted posture.
- FIG. 2 is a partial cross section of the ablation device 11.
- FIG. 3 is a cross-sectional view showing the ablation device 11 in the state where the renal artery 40 is ablated.
- FIG. 4 is a partial cross-sectional view of the vicinity of the balloon 71 of the ablation device 61 according to the second embodiment.
- FIG. 5 is a partial sectional view of the vicinity of the connector portion 73 of the ablation device 61.
- FIG. 6 is a diagram illustrating a configuration of an ablation system 110 including the ablation device 111 in a state where the balloon 121 according to the third embodiment is in a contracted posture.
- FIG. 7 is a partial cross section of the ablation device 111.
- FIG. 8 is a cross-sectional view showing the ablation device 111 in a state where the renal artery 40 is ablated.
- FIG. 9A is a partial cross-sectional view of the vicinity of the balloon 171 of the ablation device 161 according to the fourth embodiment
- FIG. 9B is a cross-sectional view showing a BB cut surface in FIG. 9A.
- FIG. 9C is an enlarged cross-sectional view showing the vicinity of C in FIG. FIG.
- FIG. 10 is a partial cross-sectional view near the connector portion 173 of the ablation device 161.
- FIG. 1 is a diagram illustrating a configuration of an ablation system 210 including an ablation device 211 in a state in which a balloon 221 according to a fifth embodiment is in a contracted posture.
- FIG. 12 is a partial cross section of the ablation device 211.
- FIG. 13 is a side view of the tubular member 234.
- FIG. 14 is a cross-sectional view showing the ablation device 211 in a state in which the renal artery 40 is ablated.
- FIG. 15 is a side view of a tubular member 234 according to a modification of the fifth embodiment.
- the ablation system 10 includes an ablation device 11, a laser light generation unit 12, a fluid reflux unit 13, a drive mechanism 14, and a control unit 15.
- the ablation device 11 has a shaft 22 provided with a balloon 21 on the distal end side.
- the shaft 22 is a member that is long in the axial direction 101.
- the shaft 22 is a tubular body that can be elastically bent so as to be bent with respect to the axial direction 101.
- the direction in which the shaft 22 in the uncurved state extends is referred to as the axial direction 101 in this specification.
- the axial direction 101 corresponds to the first direction.
- the in-tube 27 and the optical fiber 29 are inserted through the shaft 22.
- the outer diameter and inner diameter of the shaft 22 are not necessarily constant with respect to the axial direction 101, but from the viewpoint of operability, it is preferable that the rigidity on the base end side is higher than the tip end side.
- the shaft 22 can be made of a known material used for a balloon catheter, such as synthetic resin or stainless steel, and is not necessarily composed of only one type of material, and a plurality of parts made of other materials are assembled. It may be configured.
- the proximal end side refers to the rear side (right side in FIG. 1) with respect to the direction in which the ablation device 11 is inserted into the blood vessel.
- the distal end side refers to the front side (left side in FIG. 1) with respect to the direction in which the ablation device 11 is inserted into the blood vessel.
- the balloon 21 is provided on the tip side of the shaft 22.
- the balloon 21 expands elastically when fluid (liquid, gas) flows into the internal space and contracts when fluid flows out of the internal space. 1 and 2, the balloon 21 in a deflated state is shown.
- the internal space of the balloon 21 is in communication with the internal space of the shaft 22 and the internal space of the in-side tube 27.
- the balloon 21 expands in a radial direction orthogonal to the axial direction 101 so that the center of the axial direction 101 becomes the maximum diameter.
- the internal space of the in-side tube 27 corresponds to the first lumen
- the internal space of the shaft 22 corresponds to the second lumen.
- An out port 28 is provided on the proximal end side of the shaft 22.
- the out port 28 is continuous with the internal space of the shaft 22.
- the fluid recirculated to the balloon 21 flows out from the out port 28 through the internal space of the shaft 22.
- a hub 23 is provided at the base end of the shaft 22.
- An optical fiber 29 is inserted through the hub 23.
- the hub 23 is provided with an in-port 26 separately from the insertion port of the optical fiber 29.
- the in port 26 is continuous with the internal space of the in side tube 27. Through the inner space of the in-side tube 27, the fluid recirculated to the balloon 21 flows from the in-port 26.
- a guide wire tube 24 is provided outside the shaft 22.
- the guide wire tube 24 is sufficiently shorter than the length of the shaft 22 in the axial direction 101.
- the guide wire tube 24 is not necessarily provided outside the shaft 22.
- the guide wire tube 24 may be inserted into the inner space of the shaft 22 if a monorail type is adopted.
- the in-side tube 27 inserted into the shaft 22 has a distal end leading to the internal space of the balloon 21 and a proximal end connected to the in-port 26.
- the distal end of the in-side tube 27 is connected to the distal tip 25 provided on the distal end side of the balloon 21.
- openings 30 and 31 that penetrate the peripheral wall of the in-side tube 27 are provided.
- the openings 30 and 31 are for fluid flowing through the inner space of the in-side tube 27 to flow into the balloon 21, and are arranged at different positions with respect to the circumferential direction of the axial direction 101.
- the tip 25 is provided with a marker made of a contrast medium.
- the contrast agent include barium sulfate, bismuth oxide, and bismuth subcarbonate.
- the optical fiber 29 is inserted from the hub 23 into the in-side tube 27 and extends to the inside of the balloon 21.
- the optical fiber 29 propagates the laser light generated by the laser light generation means 12 and applied to the proximal end of the optical fiber 29 to the distal end side.
- an optical fiber having a refractive index that totally reflects at the wavelength of the laser light is appropriately adopted. Specific examples include a single mode fiber, a polarization maintaining fiber, a multimode fiber, and a bundle fiber for image transmission. .
- the optical fiber 29 corresponds to a light guide material.
- the distal end surface 32 of the optical fiber 29 is a flat surface inclined at an angle of 45 degrees with respect to the axial direction 101.
- a reflective material 33 is laminated on the distal end surface 32.
- a material that totally reflects the laser beam propagating through the optical fiber 29 is used as the reflecting material 33.
- quartz glass or the like is employed, but the material is not particularly limited.
- the optical fiber 29 and the reflector 33 can rotate about the axial direction 101 as a unit with respect to the in-side tube 27 and can slide in the axial direction 101.
- the rotation and sliding of the optical fiber 29 and the reflector 33 are controlled by directly or indirectly operating the proximal end side of the optical fiber 29 extended from the hub 23. Specifically, the optical fiber 29 is rotated and slid by applying a driving force from the driving mechanism 14 to the proximal end side of the optical fiber 29.
- a temperature sensor may be provided on the outer wall of the in-side tube 27 in the balloon 21.
- a known sensor such as a thermocouple can be used as long as it can be installed inside the balloon 21.
- the temperature of the fluid in the balloon 21 can be monitored by guiding the cable extended from the temperature sensor to the outside.
- a third lumen may be provided on the shaft 22 and an imaging member such as an endoscope, IVUS, or OCT may be inserted.
- the laser light generation means 12 is, for example, one in which light from an excitation source is given to a laser medium, and is oscillated and output by reflection of an optical resonator.
- the laser beam output from the laser beam generating means 12 is preferably a continuous wave, and the wavelength of the laser beam is preferably in the range of 400 to 2000 nm. In particular, when the wavelength of the laser beam is in the range of 800 to 1500 nm (915 nm, 980 nm, 1470 nm), a local temperature increase can be confirmed, and the intima of the renal artery can be appropriately heated.
- the laser light generating means 12 is connected to the base end of the optical fiber 29, and the laser light output from the laser light generating means 12 is irradiated on the base end face of the optical fiber 29.
- the fluid reflux means 13 a known device having a roller pump or a syringe pump can be used.
- the fluid return means 13 is connected to the in port 26 and the out port 28 of the ablation device 11 through a flow path such as a tube.
- the fluid recirculation means 13 has a tank for storing fluid, and supplies the fluid from the tank to the in port 26 at a desired flow rate and pressure by the driving force of the pump. Further, the fluid flowing out from the out port 28 may be returned to the tank or discarded as a waste liquid.
- reflux means 13 may be provided with the cooling device for cooling the fluid in a tank.
- the fluid is not particularly limited, but for the purpose of ablation of the renal artery, a mixed solution of physiological saline and contrast medium is preferable.
- the drive mechanism 14 applies a driving force for rotating and sliding the proximal end side of the optical fiber 29 with respect to the axial direction 101, and a mechanism in which a motor, a slider, or the like is combined may be employed.
- the drive mechanism 14 is not essential, and the optical fiber 29 may be rotated and slid with respect to the axial direction 101 by the operator handling the proximal end side of the optical fiber 29.
- the control means 15 generates, for example, laser light from the laser light generation means 12 at a predetermined light intensity and time based on a pre-programmed protocol, controls the flow rate and pressure of the fluid reflux means 13, and is driven. The drive amount and timing of the mechanism 14 are controlled.
- the control means 15 includes an arithmetic device for performing these operation controls.
- the ablation device 11 is connected to a laser beam generation unit 12, a fluid reflux unit 13, and a drive mechanism 14. Further, the laser light generating means 12, the fluid reflux means 13, and the drive mechanism 14 are connected to the control means 15.
- the control means 15 is preset with a program suitable for performing ablation on the renal artery 40.
- the ablation device 11 is inserted into the renal artery 40 from the distal end side.
- a guide wire is inserted in advance and reaches the target portion while performing imaging under fluoroscopy.
- Such insertion of the guide wire is performed by a known method disclosed in, for example, Japanese Patent Application Laid-Open Nos. 2006-326226 and 2006-230442.
- the ablation device 11 When the ablation device 11 is inserted into the renal artery 40, no fluid is pressed into the balloon 21, and the balloon 21 is in a deflated state. A guide wire is inserted into the guide wire tube 24 from the tip of the ablation device 11 in this state. Then, the ablation device 11 is inserted into the renal artery 40 along the guide wire. The insertion position of the ablation device 11 in the renal artery 40 is grasped by, for example, confirming a marker placed on the distal tip 25 under the X-ray.
- the fluid return means 13 is driven by the control means 15, and fluid is transferred from the fluid return means 13 through the in-side tube 27 to the balloon 21. And the balloon 21 is expanded. Further, the fluid is recirculated from the balloon 21 through the shaft 22 to the fluid recirculation means 13 from the out port 28.
- the fluid recirculation to the balloon 21 indicated by an arrow 51 in FIG. 3 is managed so as to have a desired flow velocity and pressure by controlling the fluid recirculation unit 13 by the control unit 15.
- the fluid stored in the fluid return means 13 is managed at a temperature suitable for cooling the intima of the renal artery 40.
- the laser light generation means 12 and the drive mechanism 14 are driven by the control means 15, and the laser light 42 generated from the laser light generation means 12 is propagated into the balloon 21 through the optical fiber 29, and the axis line is formed by the reflector 33. Reflected in a direction intersecting the direction 101.
- the reflected laser light 42 passes through the in-side tube 27 and the balloon 21, is irradiated onto the blood vessel wall of the renal artery 40, passes through the blood vessel wall, and reaches the nerve 41.
- the nerve 41 irradiated with the laser beam 42 (shown by a two-dot chain line for convenience in FIG. 3) is ablated.
- the intensity and irradiation time of the laser light 42 are managed by the control means 15.
- the optical fiber 29 propagating the laser light 42 is slid while being rotated with respect to the axial direction 101. Since the optical fiber 29 is rotated and the reflecting material 33 is also rotated, the direction of the laser light 42 reflected by the reflecting material 33 is displaced in the circumferential direction of the axial direction 101 (arrow 52). Thereby, it is possible to uniformly ablate the nerve 41 existing in the circumferential direction of the renal artery 40. Further, since the optical fiber 29 is slid and the reflecting material 33 is also slid, the laser light 42 reflected by the reflecting material 33 is displaced in the axial direction 101 (arrow 53). Thereby, it is possible to uniformly ablate the nerve 41 existing in the direction in which the renal artery 40 extends (the same direction as the axial direction 101).
- the rotation and slide pattern of the optical fiber 29 can be arbitrarily set by programming in the control means 15. Therefore, for example, when the optical fiber 29 is slid while being rotated, the nerve 41 of the renal artery 40 can be irradiated with the laser beam 42 spirally. In addition, when the rotation or slide of the optical fiber 29 is temporarily stopped, the laser light 42 is irradiated from the laser light generating means 12 so that the nerve 41 of the renal artery 40 is irradiated with the laser light 42 in a spot shape. it can. In other words, the timing and order of irradiating the laser beam 42 to the nerves 41 existing all around the predetermined range in the direction in which the renal artery 40 extends can be arbitrarily set.
- the laser beam 42 reflected by the reflecting material 33 is also irradiated to the tissue on the intima side of the renal artery 40 before reaching the nerve 41 of the renal artery 40.
- the inflated balloon 21 is in contact with the intima of the renal artery 40, and fluid is circulated in the balloon 21. Due to the cooling effect of the fluid, heating of the intima side of the renal artery 40 is suppressed. Therefore, it is preferable that the slide range of the optical fiber 29 is a range in which the balloon 21 is in contact with the intima of the renal artery 40.
- the nerve 41 of the renal artery 40 can be ablated, and heating to the intima of the renal artery 40 can be suppressed to suppress thermal damage to the intima.
- the ablation device 11 since the reflecting material 33 is integrally provided on the distal end side of the optical fiber 29 and the optical fiber 29 can move and rotate along the axial direction 101 with respect to the shaft 22, the ablation device 11 has a simple configuration. Realized. Further, the movement and rotation of the reflector 33 can be operated via the optical fiber 29 on the proximal end side of the shaft 22.
- the reflecting material 33 is integrally provided at the tip of the optical fiber 29, but a member that transmits laser light such as a lens is provided between the tip of the optical fiber 29 and the reflecting material 33. It may be. Further, the tip of the optical fiber 29 and the reflecting material 33 are arranged through a space, and the optical fiber 29 and the reflecting material 33 are connected so that the movement and rotation of the optical fiber 29 are transmitted to the reflecting material 33. It may be. Further, the optical fiber 29 and the reflecting material 33 are completely independent, and the reflecting material 33 is fixed to, for example, the in-side tube 27 and is configured to be interlocked with the rotation and movement of the in-side tube 27. Also good.
- the optical fiber 29 is inserted through the in-side tube 27.
- the insertion path of the optical fiber 29 is not limited as long as the tip side reaches the balloon 21. Therefore, for example, it may be inserted into the internal space of the shaft 22 or may be inserted into the balloon 21 from the outside of the shaft 22.
- the ablation device 61 constitutes a part of an ablation system having a laser light generation unit 12, a fluid reflux unit 13, a drive mechanism 14, and a control unit 15.
- the ablation device 61 has a main shaft 72 provided with a balloon 71 on the distal end side.
- the main shaft 72 is a member that is long in the axial direction 101.
- the main shaft 72 is a tubular body that can be elastically bent so as to bend with respect to the axial direction 101.
- the direction in which the main shaft 72 in the uncurved state extends is referred to as the axial direction 101 in this specification.
- the main shaft 72 In the main shaft 72, an in-side tube 77, an optical fiber 79, a sub shaft 74, and a guide wire shaft 84 are inserted.
- the outer diameter and inner diameter of the main shaft 72 are not necessarily constant with respect to the axial direction 101, but from the viewpoint of operability, it is preferable that the rigidity on the proximal side is higher than the distal side.
- the main shaft 72 can be made of a known material used for a balloon catheter, such as synthetic resin or stainless steel, and is not necessarily composed of only one type of material, and a plurality of parts made of other materials are assembled. And may be configured.
- the proximal side refers to the rear side (right side in FIG. 4) with respect to the direction in which the ablation device 61 is inserted into the blood vessel.
- the distal side refers to the front side (left side in FIG. 4) with respect to the direction in which the ablation device 61 is inserted into the blood vessel.
- a balloon 71 is provided on the front end side of the main shaft 72.
- the balloon 71 expands elastically when fluid (liquid, gas) flows into the internal space and contracts when fluid flows out of the internal space.
- FIG. 4 shows the balloon 71 in an expanded state.
- the internal space of the balloon 71 communicates with the internal space of the main shaft 72 and the internal space of the in-side tube 77.
- the balloon 71 expands in the radial direction orthogonal to the axial direction 101 so that the center of the axial direction 101 becomes the maximum diameter.
- a fluid having a flow rate sufficient to maintain the pressure of the fluid that maintains the inflation of the balloon 71 flows into the balloon 71 and flows out from the balloon 71 through the internal space of the main shaft 72, whereby the fluid recirculates in the balloon 71. Is done.
- the material of the balloon 71 and the method for fixing the balloon 71 and the main shaft 72 known materials and methods used in balloon catheters can be used.
- the internal space of the in-side tube 77 and the space between the main shaft 72 and the in-side tube 77 correspond to the fluid lumen.
- the in-side tube 77 inserted into the main shaft 72 has a distal end side reaching the internal space of the balloon 71 and a proximal end side connected to the in-port 76 of the connector portion 73.
- the distal end of the in-side tube 77 is connected to a distal tip 75 provided on the distal end side of the balloon 71.
- openings 80 and 81 that penetrate the peripheral wall of the in-side tube 77 are provided.
- the openings 80 and 81 are for allowing the fluid flowing through the inner space of the in-side tube 77 to flow into the balloon 71, and are arranged at different positions with respect to the circumferential direction of the axial direction 101.
- the tip chip 75 is provided with a marker made of a contrast medium.
- the contrast agent include barium sulfate, bismuth oxide, and bismuth subcarbonate.
- a sub shaft 74 is inserted into the in-side tube 77.
- the sub shaft 74 extends from the outside of the connector portion 73 to the inside of the balloon 71.
- the sub-shaft 74 is a member that is long in the axial direction 101, is elastically bent so as to bend with respect to the axial direction 101, and is not connected to the tip chip 75, so that the rotation around the axial direction 101 can be rotated by the connector portion. It is a tubular body that can transmit from the 73 side to the tip side.
- the sub shaft 74 is a tubular body made of, for example, a stainless coil.
- a guide wire shaft 84 is inserted into the internal space of the sub shaft 74.
- the guide wire shaft 84 is connected to the tip end 75.
- a hole 85 is formed in the distal tip 75 along the axial direction 101 so that the internal space of the guide wire shaft 84 is continued to the outside.
- the distal end of the guide wire shaft 84 reaches the distal end of the distal end tip 75 through the hole 85.
- As the material of the guide wire shaft 84 a known material can be adopted.
- the internal space of the guide wire shaft 84 corresponds to a wire lumen.
- the optical fiber 79 is bonded to the outer periphery of the sub shaft 74 from the outside of the connector portion 73 and extends in the axial direction 101 to reach the inside of the balloon 71.
- the optical fiber 79 propagates the laser light generated by the laser light generation means 12 and applied to the proximal end of the optical fiber 79 to the distal end side.
- an optical fiber having a refractive index that totally reflects at the wavelength of the laser light is appropriately adopted. Specific examples include a single mode fiber, a polarization maintaining fiber, a multimode fiber, and a bundle fiber for image transmission. .
- the optical fiber 79 corresponds to the light guide material.
- the front end surface 82 of the optical fiber 79 is an angle of 45 degrees with respect to the axial direction 101 and is a flat surface inclined so that the outer surface faces the sub shaft 74 side.
- a reflective material 83 is laminated on the distal end surface 82.
- a material that totally reflects the laser beam propagating through the optical fiber 79 is used as the reflecting material 83.
- quartz glass or the like is adopted, but the material is not particularly limited.
- the optical fiber 79 and the reflector 83 can rotate about the axial direction 101 integrally with the sub shaft 74 and can slide in the axial direction 101.
- the rotation and sliding of the optical fiber 79 and the reflector 83 are controlled by directly or indirectly operating the proximal end side of the sub shaft 74 extending from the connector portion 73. Specifically, when the driving force from the driving mechanism 14 is applied to the base end side of the sub shaft 74, the optical fiber 79 and the reflecting material 83 rotate and slide along the outer periphery of the sub shaft 74 together with the sub shaft 74. Is done.
- a temperature sensor may be provided on the outer wall of the in-side tube 77 in the balloon 71.
- a known sensor such as a thermocouple can be used as long as it can be installed inside the balloon 71.
- the temperature of the fluid in the balloon 71 can be monitored by guiding the cable extended from the temperature sensor to the outside.
- a connector portion 73 is provided on the proximal end side of the main shaft 72.
- the connector part 73 is a part that the practitioner has when operating the ablation device 61.
- the connector part 73 is provided with an out port 78.
- the out port 78 is continuous with the space between the main shaft 72 and the in-side tube 77. Through this space, the fluid returned to the balloon 71 flows out from the out port 78.
- the connector portion 73 is provided with an in port 76.
- the in port 76 is continuous with the space between the in side tube 77 and the sub shaft 74. Through this space, the fluid returned to the balloon 71 flows from the in port 76.
- the in port 76 and the out port 78 are liquid-tightly separated by O-rings 86 and 87, respectively. Further, the in port 76 and the out port 78 are connected to the fluid recirculation means 13 shown in FIG.
- the sub shaft 74 and the optical fiber 79 are extended from the base end of the connector part 73 to the outside.
- the sub shaft 74 and the optical fiber 79 can move along the axial direction 101 with respect to the connector portion 73 and can rotate around the axial direction 101.
- the periphery of the sub shaft 74 and the optical fiber 79 is secured by an O-ring 88.
- the optical fiber 79 is connected to the laser light generating means 12 shown in FIG. 1, and the sub shaft 74 is connected to the drive mechanism 14 shown in FIG.
- the usage method of the ablation device 61 described above is the same as the usage method of the ablation device 11, and is used as the ablation system 10 shown in FIG. 1 as an example of the usage method.
- the ablation device 61 is inserted into the renal artery 40 from the distal end side.
- a guide wire is inserted into the renal artery 40 in advance and reaches the target portion, and the guide wire is inserted into the guide wire shaft 84 of the ablation device 61, and along the guide wire, the main wire of the ablation device 61 is inserted.
- the shaft 72 is inserted into the renal artery 40.
- the ablation device 61 when the ablation device 61 is inserted to the target portion of the renal artery 40, the fluid is returned to the balloon 71 and the balloon 71 is expanded. Subsequently, the laser light is propagated into the balloon 71 through the optical fiber 79, and reflected by the reflecting material 73 in a direction intersecting the axial direction 101 and outside the main shaft 72. The reflected laser light passes through the in-side tube 77 and the balloon 71, is irradiated onto the blood vessel wall of the renal artery 40, passes through the blood vessel wall, and reaches the nerve.
- the optical fiber 79 moves and rotates along the outer periphery of the sub shaft 74, the laser light reflected to the outside of the main shaft 72 is blocked by the guide wire inserted into the sub shaft 74 and the guide wire shaft 84. There is no. Therefore, when the renal artery 40 is irradiated with laser light, that is, when ablation is performed, the guide wire does not need to be drawn from the guide wire shaft 84.
- the optical fiber 79 is fixed to the outer periphery of the sub shaft 74 and the reflector 83 reflects the laser light to the outside of the main shaft 72 in the direction intersecting the axial direction 101, The reflected laser light is not blocked by the inserted guide wire shaft 84 or the guide wire inserted through the guide wire shaft 84. Thereby, ablation can be performed with the guide wire inserted through the ablation device 61. Further, since the guide wire shaft 84 extends from the distal end to the proximal end of the main shaft 72, it is easy to insert the guide wire into the ablation device 61 again after the guide wire is removed from the ablation device 61. .
- the ablation device 61 can be realized with a simple configuration. Is done.
- the sub shaft 74 can be operated in the connector portion 73 to move and rotate the reflecting material 83.
- the reflecting material 83 is integrally provided at the tip of the optical fiber 79.
- a member such as a lens that transmits laser light is provided between the tip of the optical fiber 79 and the reflecting material 83. It may be done.
- the tip of the optical fiber 79 and the reflecting material 83 are arranged through a space, and the optical fiber 79 and the reflecting material 83 are arranged so that the optical fiber 79 and the reflecting material 33 move and rotate together with the sub shaft 74. Each may be bonded to the sub shaft 74.
- the guide wire may be configured to be inserted through the sub shaft 74 without the guide wire shaft 84 being provided.
- the ablation system 110 includes an ablation device 111, a laser light generation unit 112, a fluid reflux unit 113, a drive mechanism 114, and a control unit 115.
- the ablation device 111 has a shaft 122 provided with a balloon 121 on the distal end side.
- the shaft 122 is a member that is long in the axial direction 101.
- the shaft 122 is a tubular body that can be elastically bent so as to be bent with respect to the axial direction 101.
- a direction in which the shaft 122 in an uncurved state extends is referred to as an axial direction 101 in this specification.
- the axial direction 101 corresponds to the first direction.
- the in-side tube 127 and the light guide tube 134 are inserted through the shaft 122.
- the outer diameter and the inner diameter of the shaft 122 are not necessarily constant with respect to the axial direction 101, but from the viewpoint of operability, it is preferable that the rigidity on the proximal side is higher than the distal side.
- the shaft 122 can be made of a known material used for a balloon catheter, such as synthetic resin or stainless steel, and is not necessarily composed of only one type of material, and a plurality of parts made of other materials are assembled. It may be configured.
- the proximal end side refers to the rear side (right side in FIG. 6) with respect to the direction in which the ablation device 111 is inserted into the blood vessel.
- the distal end side refers to the front side (left side in FIG. 6) with respect to the direction in which the ablation device 111 is inserted into the blood vessel.
- a balloon 121 is provided on the tip side of the shaft 122.
- the balloon 121 expands elastically when fluid (liquid, gas) flows into the internal space and contracts when fluid flows out of the internal space. 6 and 7, the balloon 121 in a deflated state is shown.
- the internal space of the balloon 121 is in communication with the internal space of the shaft 122 and the internal space of the in-side tube 127, respectively.
- the balloon 121 expands in the radial direction orthogonal to the axial direction 101 so that the center of the axial direction 101 becomes the maximum diameter.
- the internal space of the in-side tube 127 and the internal space of the shaft 122 correspond to a fluid lumen.
- An out port 128 is provided on the base end side of the shaft 122.
- the out port 128 is continuous with the internal space of the shaft 122.
- the fluid recirculated to the balloon 121 flows out from the out port 128 through the internal space of the shaft 122.
- a hub 123 is provided at the base end of the shaft 122.
- An optical fiber 129 is inserted through the hub 123.
- the hub 123 is provided with an in-port 126 separately from the insertion port for the optical fiber 129.
- the in port 126 is continuous with the internal space of the in side tube 127. Through the inner space of the in-side tube 127, the fluid recirculated to the balloon 121 flows from the in-port 126.
- a guide wire tube 124 is provided outside the shaft 122.
- the guide wire tube 124 is sufficiently shorter than the length of the shaft 122 in the axial direction 101.
- the guide wire tube 124 is not necessarily provided outside the shaft 122.
- the guide wire tube 124 may be inserted into the internal space of the shaft 122.
- the in-side tube 127 inserted into the shaft 122 has a distal end side reaching the internal space of the balloon 121 and a proximal end side connected to the in-port 126.
- the distal end of the in-side tube 127 is connected to the distal end tip 125 provided on the distal end side of the balloon 121.
- openings 130 and 131 that penetrate the peripheral wall of the in-side tube 127 are provided in the vicinity of the distal end tip 125 of the in-side tube 127.
- the openings 130 and 131 are for the fluid flowing through the inner space of the in-side tube 127 to flow into the balloon 121, and are arranged at different positions with respect to the circumferential direction of the axial direction 101.
- the tip chip 125 is provided with a marker made of a contrast medium.
- the contrast agent include barium sulfate, bismuth oxide, and bismuth subcarbonate.
- the light guide tube 134 is a tube body that can be elastically bent so as to be curved with respect to the axial direction 101.
- the light guide tube 134 inserted into the in-side tube 127 has a distal end side that reaches the vicinity of the openings 130 and 131 of the in-side tube 127, and a proximal end side that extends to the outside through the hub 123.
- An opening 135 is formed on the side wall near the tip of the light guide tube 134 and serving as the internal space of the balloon 121. Through the opening 135, the internal space of the light guide tube 134 is communicated with the outside.
- the optical fiber 129 is inserted from the hub 123 into the light guide tube 134 and extends to the opening 135.
- the inner diameter of the inner space of the light guide tube 134 is equal to the outer diameter of the optical fiber 129. Therefore, the axis of the optical fiber 129 and the axis of the light guide tube 134 are substantially matched.
- the front end surface 132 of the optical fiber 129 is orthogonal to the axis.
- the optical fiber 129 is generated by the laser light generation means 112 and propagates the laser light applied to the proximal end of the optical fiber 129 to the distal end side.
- an optical fiber having a refractive index that totally reflects at the wavelength of the laser light is appropriately adopted. Specific examples include a single mode fiber, a polarization maintaining fiber, a multimode fiber, and a bundle fiber for image transmission. .
- the optical fiber 129 corresponds to a light guide material.
- the reflecting material 133 is disposed in the inner space of the light guide tube 134 so as to face the distal end surface 132 of the optical fiber 129 in the axial direction 101.
- the reflecting surface 136 facing the tip surface 132 in the reflecting material 133 is a flat surface inclined at an angle of 45 degrees with respect to the axis of the optical fiber 129.
- the distal end surface 132 and the reflecting surface 136 are exposed to the outside of the light guide tube 134 through the opening 135 of the light guide tube 134.
- the reflecting material 133 is a cylindrical body made of an optical fiber, a resin, or the like, and the outer diameter thereof is equal to the inner diameter of the inner space of the light guide tube 134.
- a metal layer is laminated on the surface of the reflective material 133 including the reflective surface 136.
- the metal layer is formed, for example, by plating or sputtering on the surface of the reflective material 133 by mixing nickel, gold, aluminum, chromium, or the like alone or mixed.
- the optical fiber 129 and the reflective material 133 are integrated with the light guide tube 134 around the axis (axial direction 101) while maintaining the positional relationship between the distal end surface 132 and the reflective surface 136, that is, the separation distance and the angle of the reflective surface 136. And can be slid in the axial direction 101.
- the rotation and sliding of the optical fiber 129 and the reflecting member 133 are controlled by directly or indirectly operating the proximal end side of the light guide tube 134 extended from the hub 123. Specifically, the light guide tube 134 is rotated and slid by applying a driving force from the drive mechanism 114 to the proximal end side of the light guide tube 134.
- a temperature sensor may be provided on the outer wall of the in-side tube 127 in the balloon 121 or the like.
- a known sensor such as a thermocouple can be used as long as it can be installed inside the balloon 121.
- the temperature of the fluid in the balloon 121 can be monitored by guiding the cable extended from the temperature sensor to the outside.
- a third lumen may be provided on the shaft 122, and an imaging member such as an endoscope, IVUS, or OCT may be inserted.
- the laser light generation means 112 a known laser light generation device can be used.
- the laser light generating means 112 is, for example, a device in which light from an excitation source is given to a laser medium, and is oscillated and output by reflection of an optical resonator.
- the laser beam output from the laser beam generator 112 is preferably a continuous wave, and the wavelength of the laser beam is preferably in the range of 400 to 2000 nm. In particular, when the wavelength of the laser beam is in the range of 800 to 1500 nm (915 nm, 980 nm, 1470 nm), a local temperature increase can be confirmed, and the intima of the renal artery can be appropriately heated.
- the laser light generation means 112 is connected to the base end of the optical fiber 129, and the laser light output from the laser light generation means 112 is irradiated on the base end face of the optical fiber 129.
- the fluid reflux means 113 a known device having a roller pump or a syringe pump can be used.
- the fluid return means 113 is connected to the in port 126 and the out port 128 of the ablation device 111 via a flow path such as a tube.
- the fluid recirculation means 113 has a tank for storing the fluid, and supplies the fluid from the tank to the in port 126 with a desired flow rate and pressure by the driving force of the pump. Further, the fluid flowing out from the out port 128 may be returned to the tank or discarded as a waste liquid.
- reflux means 113 may be provided with the cooling device for cooling the fluid in a tank.
- the fluid is not particularly limited, but for the purpose of ablation of the renal artery, a mixed solution of physiological saline and contrast medium is preferable.
- the driving mechanism 114 applies a driving force for rotating and sliding the proximal end side of the light guide tube 134 with respect to the axial direction 101, and a mechanism in which a motor, a slider, or the like is combined may be employed.
- the drive mechanism 114 is not essential, and the light guide tube 134 may be rotated and slid with respect to the axial direction 101 by the operator handling the proximal end side of the light guide tube 134.
- control means 115 generates laser light from the laser light generation means 112 at a predetermined light intensity and time based on a pre-programmed protocol, controls the flow rate and pressure of the fluid return means 113, and is driven. The drive amount and timing of the mechanism 114 are controlled.
- the control means 115 includes an arithmetic unit for performing these operation controls.
- the ablation device 111 is connected to the laser light generation means 112, the fluid reflux means 113, and the drive mechanism 114. Further, the laser light generating means 112, the fluid reflux means 113, and the drive mechanism 114 are connected to the control means 115. In the control means 115, a program suitable for performing ablation on the renal artery 40 is set in advance.
- the ablation device 111 is inserted into the renal artery 40 from the distal end side.
- a guide wire is inserted in advance and reaches the target portion while performing imaging under fluoroscopy.
- Such insertion of the guide wire is performed by a known method disclosed in, for example, Japanese Patent Application Laid-Open Nos. 2006-326226 and 2006-230442.
- the ablation device 111 When the ablation device 111 is inserted into the renal artery 40, no fluid is pressed into the balloon 121, and the balloon 121 is in a deflated state. From the tip of the ablation device 111 in this state, a guide wire is inserted into the guide wire tube 124. The ablation device 111 is then inserted into the renal artery 40 along the guide wire. The insertion position of the ablation device 111 in the renal artery 40 is grasped by, for example, confirming a marker placed on the distal tip 125 under the X-ray.
- the fluid return means 113 is driven by the control means 115, and physiological saline or the like is passed from the fluid return means 113 through the in-side tube 127. Is flowed into the balloon 121 and the balloon 121 expands. Further, the fluid is recirculated from the balloon 121 to the fluid recirculation means 113 from the out port 128 through the shaft 122.
- the return of the fluid to the balloon 21 indicated by the arrow 151 is managed so as to have a desired flow velocity and pressure by controlling the fluid return means 113 by the control means 115. Further, the fluid stored in the fluid return means 113 is managed at a temperature suitable for cooling the intima of the renal artery 40.
- the laser light generation means 112 and the drive mechanism 114 are driven by the control means 115, the laser light 42 generated from the laser light generation means 112 is propagated into the balloon 121 through the optical fiber 129, and the distal end surface 132 is emitted.
- the laser beam 42 thus reflected is reflected by the reflecting surface 136 of the reflecting material 133 in a direction intersecting the axial direction 101 (in the present embodiment, a direction orthogonal to the second direction).
- the reflected laser light 42 passes through the in-side tube 127 and the balloon 121, is irradiated onto the blood vessel wall of the renal artery 40, passes through the blood vessel wall, and reaches the nerve 41.
- the nerve 41 irradiated with the laser light 42 (shown by a two-dot chain line for convenience in FIG. 8) is ablated.
- the intensity and irradiation time of the laser light 42 are managed by the control means 115.
- the drive mechanism 114 is driven by the control means 115, the light guide tube 134 is slid while being rotated with respect to the axial direction 101.
- the optical fiber 129 and the reflector 133 are also rotated and slid, so that the direction of the laser beam 142 reflected by the reflector 133 is displaced in the circumferential direction of the axial direction 101. (Arrow 152).
- the laser beam 42 reflected by the reflecting material 133 is displaced in the axial direction 101 (arrow 153).
- the rotation and slide patterns of the light guide tube 134 can be arbitrarily set by programming in the control means 115. Therefore, for example, the laser light 42 can be irradiated spirally on the nerve 41 of the renal artery 40 by sliding the light guide tube 134 while rotating.
- the laser light 42 is irradiated from the laser light generating means 112 so that the nerve 41 of the renal artery 40 is irradiated with the laser light 42 in a spot shape. it can.
- the timing and order of irradiating the laser beam 42 to the nerves 41 existing all around the predetermined range in the direction in which the renal artery 40 extends can be arbitrarily set.
- the laser beam 42 reflected by the reflecting material 133 is also applied to the tissue on the intima side of the renal artery 40 before reaching the nerve 41 of the renal artery 40.
- An inflated balloon 121 is in contact with the intima of the renal artery 40, and fluid is circulated in the balloon 121. Due to the cooling effect of the fluid, heating of the intima side of the renal artery 40 is suppressed. Therefore, it is preferable that the slide range of the optical fiber 129 is a range in which the balloon 121 is in contact with the intima of the renal artery 40.
- the fluid recirculated into the balloon 121 contacts the reflecting surface 136 of the reflecting member 133 through the opening 135 of the light guide tube 134. Thereby, the reflective surface 136 is cooled by the fluid.
- the nerve 41 of the renal artery 40 can be ablated, and heating to the intima of the renal artery 40 can be suppressed to suppress thermal damage to the intima.
- the reflecting material 133 is disposed so as to face the front end surface 132 of the optical fiber 129, the reflecting material 133 is hardly damaged by the laser light 42.
- the reflecting material 133 is disposed in the flow path of the fluid flowing through the balloon 121, the reflecting material 133 is cooled by the fluid, and damage due to the laser light 42 is further suppressed.
- the reflector 133 is rotated around the axis of the shaft 122 while being moved in the balloon 121 along the axial direction 101, so that the laser beam 42 is uniformly applied to the tissue around the renal artery 40. Is done.
- optical fiber 129 and the reflecting material 133 are disposed in the internal space of the light guide tube 134, the optical fiber 129 and the reflecting material 133 can be moved and rotated while maintaining the mutual positional relationship. .
- the light guide tube 134 has the opening 135 that allows an external fluid to contact the reflective surface 136 of the reflective material 133, the reflective surface 136 of the reflective material 133 is cooled by the fluid.
- the light guide tube 134 is inserted through the in-side tube 127.
- the insertion path of the light guide tube 134 is not limited as long as the distal end side reaches the balloon 121. Therefore, for example, it may be inserted into the internal space of the shaft 122 or may be inserted into the balloon 121 from the outside of the shaft 122.
- the ablation device 61 Similar to the ablation device 111 shown in FIG. 6, the ablation device 61 constitutes a part of an ablation system having a laser light generation unit 112, a fluid reflux unit 113, a drive mechanism 114, and a control unit 115.
- the ablation device 161 has a main shaft 172 provided with a balloon 171 on the distal end side.
- the main shaft 172 is a member that is long in the axial direction 101.
- the main shaft 172 is a tubular body that can be elastically bent so as to bend with respect to the axial direction 101.
- the direction in which the main shaft 172 in an uncurved state extends is referred to as the axial direction 101 in this specification.
- the outer diameter and inner diameter of the main shaft 172 do not necessarily have to be constant with respect to the axial direction 101, but from the viewpoint of operability, it is preferable that the rigidity on the proximal side is higher than the distal side.
- the main shaft 172 can be made of a known material used for balloon catheters, such as synthetic resin and stainless steel, and is not necessarily composed of only one type of material, and a plurality of parts made of other materials are assembled. And may be configured.
- the proximal end side refers to the rear side (the right side in FIG. 9A) with respect to the direction in which the ablation device 161 is inserted into the blood vessel.
- the distal end side refers to the front side (left side in FIG. 9A) with respect to the direction in which the ablation device 161 is inserted into the blood vessel.
- a balloon 171 is provided on the distal end side of the main shaft 172.
- the balloon 171 expands elastically when a fluid (liquid, gas) flows into the internal space and contracts when the fluid flows out from the internal space.
- a fluid liquid, gas
- FIG. 9 the balloon 171 in an expanded state is shown.
- the internal space of the balloon 171 communicates with the internal space of the main shaft 172 and the internal space of the in-side tube 177.
- the balloon 171 expands in the radial direction orthogonal to the axial direction 101 so that the center of the axial direction 101 becomes the maximum diameter.
- known materials and methods used in balloon catheters can be used as the material of the balloon 171 and the method for fixing the balloon 171 and the main shaft 172.
- the internal space of the in-side tube 177 and the space between the main shaft 172 and the in-side tube 177 correspond to the fluid lumen.
- the in-side tube 177 inserted into the main shaft 172 has a distal end side reaching the internal space of the balloon 171 and a proximal end side connected to the in-port 176 of the connector portion 173.
- the distal end of the in-side tube 177 is connected to a distal tip 175 provided on the distal end side of the balloon 171.
- openings 180 and 181 penetrating the peripheral wall of the in-side tube 177 are provided.
- the openings 180 and 181 are for fluid flowing through the inner space of the in-side tube 177 to flow into the balloon 171, and are arranged at different positions with respect to the circumferential direction of the axial direction 101.
- the tip chip 175 is provided with a marker made of a contrast medium.
- the contrast agent include barium sulfate, bismuth oxide, and bismuth subcarbonate.
- the sub-shaft 174 is inserted through the in-side tube 177.
- the sub shaft 174 extends from the outside of the connector portion 173 to the inside of the balloon 171.
- the sub-shaft 174 is a member that is long in the axial direction 101, is elastically bent so as to be curved with respect to the axial direction 101, and is not connected to the tip chip 175. It is a tube that can transmit from the 173 side to the tip side.
- the sub shaft 174 is a tubular body made of, for example, a stainless coil.
- a guide wire shaft 184 is inserted into the internal space of the sub shaft 174.
- the guide wire shaft 184 is connected to the tip end 175.
- a hole 185 is formed in the distal tip 175 along the axial direction 101 so that the internal space of the guide wire shaft 184 continues to the outside.
- the distal end of the guide wire shaft 184 passes through the hole 185 and reaches the distal end of the distal tip 175.
- As the material of the guide wire shaft 184 a known material can be adopted.
- the internal space of the guide wire shaft 184 is a wire lumen.
- the light guide tube 189 is a tubular body that can be elastically bent so as to bend with respect to the axial direction 101.
- the light guide tube 189 is bonded to the outer periphery of the sub-shaft 174 from the outside of the connector portion 173, extends in the axial direction 101, and reaches the inside of the balloon 171.
- An opening 190 is formed on the side wall in the vicinity of the tip of the light guide tube 189 and at the position serving as the internal space of the balloon 171. Through the opening 190, the internal space of the light guide tube 189 communicates with the outside.
- the optical fiber 179 is inserted from the connector portion 173 into the light guide tube 189 and extends to the opening 190.
- the inner diameter of the inner space of the light guide tube 189 is equal to the outer diameter of the optical fiber 179. Therefore, the axis of the optical fiber 179 and the axis of the light guide tube 189 are substantially matched.
- the front end surface 182 of the optical fiber 179 is orthogonal to the axis.
- the optical fiber 179 is generated by the laser light generation means 112 and propagates the laser light applied to the proximal end of the optical fiber 179 to the distal end side.
- an optical fiber having a refractive index that totally reflects at the wavelength of the laser light is appropriately adopted. Specific examples include a single mode fiber, a polarization maintaining fiber, a multimode fiber, and an image transmission bundle fiber. .
- the optical fiber 179 corresponds to the light guide material.
- the reflective material 183 is disposed in the inner space of the light guide tube 189 so as to face the distal end surface 182 of the optical fiber 179 in the axial direction 101.
- the reflective surface 191 that faces the tip surface 182 in the reflective material 183 is a flat surface that is inclined at an angle of 45 degrees with respect to the axis of the optical fiber 179. It is exposed to the outside of the light guide tube 189 through the front end surface 182, the reflection surface 191, and the opening 190 of the light guide tube 189.
- the reflecting material 183 is a cylindrical body made of an optical fiber, a resin, or the like, and the outer diameter thereof is equal to the inner diameter of the inner space of the light guide tube 189.
- a metal layer is laminated on the surface of the reflective material 183 including the reflective surface 191.
- the metal layer is formed, for example, by plating or sputtering on the surface of the reflective material 83 with nickel, gold, aluminum, chromium, or the like alone or mixed.
- the optical fiber 179 and the reflective material 183 are integrated with the sub shaft 174 and the light guide tube 189 in the axial direction 101 while maintaining the positional relationship between the distal end surface 182 and the reflective surface 191, that is, in the state where the separation distance and the angle of the reflective surface 191 are maintained. It can rotate around and slide in the axial direction 101.
- the rotation and sliding of the optical fiber 179 and the reflector 183 are controlled by directly or indirectly operating the proximal end side of the sub shaft 174 extending from the connector portion 173. Specifically, when the driving force from the driving mechanism 114 is applied to the base end side of the sub shaft 174, the sub shaft 174 is rotated and slid.
- a temperature sensor may be provided on the outer wall of the in-side tube 177 in the balloon 171 or the like.
- a known sensor such as a thermocouple can be used as long as it can be installed inside the balloon 171.
- the temperature of the fluid in the balloon 171 can be monitored by guiding the cable extended from the temperature sensor to the outside.
- a connector portion 173 is provided on the base end side of the main shaft 172.
- the connector part 173 is a part that the practitioner has when operating the ablation device 161.
- the connector part 173 is provided with an out port 178.
- the out port 178 is continuous with the space between the main shaft 172 and the in-side tube 177. Through this space, the fluid returned to the balloon 171 flows out from the out port 178.
- the connector portion 173 is provided with an in port 176.
- the in-port 176 is continuous with the space between the in-side tube 177 and the sub shaft 174. Through this space, the fluid recirculated to the balloon 171 flows from the in port 176.
- the in port 176 and the out port 178 are liquid-tightly separated by O-rings 186 and 187, respectively. Further, the in port 176 and the out port 178 are connected to the fluid reflux means 113 shown in FIG.
- the subshaft 174 and the light guide tube 189 are extended from the base end of the connector portion 173 to the outside.
- the sub shaft 174 and the light guide tube 189 can move along the axial direction 101 with respect to the connector portion 173 and can rotate around the axial direction 101.
- the O-ring 188 ensures liquid tightness around the sub shaft 174 and the light guide tube 189.
- the optical fiber 179 inserted in the light guide tube 189 is connected to the laser light generating means 112 shown in FIG. 6, and the sub shaft 174 is connected to the drive mechanism 114 shown in FIG. Yes.
- the usage method of the ablation device 161 described above is the same as the usage method of the ablation device 111, and is used as the ablation system 110 shown in FIG. 6 as an example of the usage method.
- the ablation device 161 is inserted into the renal artery 40 from the distal end side.
- a guide wire is inserted in advance into the renal artery 40 and reaches the target portion, and the guide wire is inserted into the guide wire shaft 184 of the ablation device 161, and the main wire of the ablation device 161 is guided along the guide wire.
- a shaft 172 is inserted into the renal artery 40.
- the ablation device 161 when the ablation device 161 is inserted to the target portion of the renal artery 40, the fluid is returned to the balloon 171 and the balloon 171 is expanded. Subsequently, the laser light is propagated into the balloon 171 through the optical fiber 179 and emitted from the distal end surface 182, and is reflected to the outside of the main shaft 172 in a direction intersecting the axial direction 101 by the reflecting surface 191 of the reflecting material 183. Is done. The reflected laser light passes through the in-side tube 177 and the balloon 171, is irradiated onto the blood vessel wall of the renal artery 40, passes through the blood vessel wall, and reaches the nerve.
- the light guide tube 189 moves and rotates along the outer periphery of the sub shaft 174, the laser light reflected to the outside of the main shaft 172 is blocked by the guide wire inserted into the sub shaft 174 and the guide wire shaft 184. There is nothing to do. Therefore, when the renal artery 40 is irradiated with laser light, that is, when ablation is performed, the guide wire does not need to be pulled out from the guide wire shaft 184.
- the ablation is performed on the nerve of the renal artery and the heating to the intima of the renal artery is suppressed, thereby causing the heat damage to the intima. Can be suppressed.
- the reflecting material 183 is disposed so as to oppose the distal end surface 182 of the optical fiber 179, the reflecting material 183 is hardly damaged by the laser beam.
- the light guide tube 189 is fixed to the outer periphery of the sub-shaft 174, and the reflecting material 183 reflects the laser light to the outside of the main shaft 172 in the direction intersecting the axial direction 101.
- the reflected laser beam is not blocked by the guide wire shaft 184 inserted inside or the guide wire inserted through the guide wire shaft 184.
- ablation can be performed with the guide wire inserted through the ablation device 161.
- the guide wire shaft 184 extends from the distal end to the proximal end of the main shaft 172, it is easy to insert the guide wire into the ablation device 161 again after removing the guide wire from the ablation device 161. .
- the guide wire may be configured to be inserted through the sub shaft 174 without the guide wire shaft 184 being provided.
- the ablation system 210 includes an ablation device 211, a laser light generation unit 212, a fluid reflux unit 213, a drive mechanism 214, and a control unit 215.
- the ablation device 211 has a shaft 222 provided with a balloon 221 on the distal end side.
- the shaft 222 is a member that is long in the axial direction 101.
- the shaft 222 is a tubular body that can be elastically bent so as to be bent with respect to the axial direction 101.
- the direction in which the shaft 222 in an uncurved state extends is referred to as the axial direction 101 in this specification.
- the axial direction 101 corresponds to the first direction.
- the in-side tube 227 and the optical fiber 229 are inserted through the shaft 222.
- the outer diameter and inner diameter of the shaft 222 are not necessarily constant with respect to the axial direction 101, but from the viewpoint of operability, it is preferable that the rigidity on the proximal side is higher than the distal side.
- the shaft 222 may be made of a known material used for a balloon catheter, such as synthetic resin or stainless steel, and is not necessarily composed of only one type of material, and a plurality of parts made of other materials are assembled. It may be configured.
- the proximal end side refers to the rear side (right side in FIG. 11) with respect to the direction in which the ablation device 211 is inserted into the blood vessel.
- the distal end side refers to the front side (left side in FIG. 11) with respect to the direction in which the ablation device 211 is inserted into the blood vessel.
- a balloon 221 is provided on the tip side of the shaft 222.
- the balloon 221 expands elastically when fluid (liquid, gas) flows into the internal space, and contracts when fluid flows out of the internal space. 11 and 12, the balloon 221 in a deflated state is shown.
- the internal space of the balloon 221 is in communication with the internal space of the shaft 222 and the internal space of the in-side tube 227, respectively.
- the balloon 221 expands in the radial direction orthogonal to the axial direction 101 so that the center of the axial direction 101 becomes the maximum diameter.
- the internal space of the in-side tube 227 corresponds to the first lumen
- the internal space of the shaft 222 corresponds to the second lumen.
- An out port 228 is provided on the base end side of the shaft 222.
- the out port 228 is continuous with the internal space of the shaft 222. Through the internal space of the shaft 222, the fluid recirculated to the balloon 221 flows out from the out port 228.
- a hub 223 is provided at the base end of the shaft 222.
- An optical fiber 229 is inserted through the hub 223.
- the hub 223 is provided with an in-port 226 separately from the insertion port for the optical fiber 229.
- the in port 226 is continuous with the internal space of the in side tube 227. Through the inner space of the in-side tube 227, the fluid recirculated to the balloon 221 flows from the in-port 226.
- a guide wire tube 224 is provided outside the shaft 222.
- the guide wire tube 224 is sufficiently shorter than the length of the shaft 222 in the axial direction 101.
- the guide wire tube 224 is not necessarily provided outside the shaft 222.
- the guide wire tube 224 may be inserted into the internal space of the shaft 222.
- the in-side tube 227 inserted into the shaft 222 has a distal end side reaching the internal space of the balloon 221 and a proximal end side connected to the in-port 226.
- the distal end of the in-side tube 227 is connected to the distal tip 225 provided on the distal end side of the balloon 221.
- openings 230 and 231 penetrating the peripheral wall of the in-side tube 227 are provided.
- the openings 230 and 231 are for allowing the fluid flowing through the inner space of the in-side tube 227 to flow into the balloon 221, and are arranged at different positions with respect to the circumferential direction of the axial direction 101.
- the tip chip 225 is provided with a marker made of a contrast medium.
- the contrast agent include barium sulfate, bismuth oxide, and bismuth subcarbonate.
- the optical fiber 229 is inserted from the hub 223 into the inside tube 227 and extends to the inside of the balloon 221.
- the optical fiber 229 transmits the laser light generated by the laser light generating means 212 and applied to the proximal end of the optical fiber 229 to the distal end side.
- an optical fiber having a refractive index that totally reflects at the wavelength of the laser light is appropriately applied. Specific examples include a single mode fiber, a polarization maintaining fiber, a multimode fiber, and an image transmission bundle fiber. .
- the optical fiber 229 corresponds to the light guide material.
- a diffusion member 233 is provided inside the in-side tube 227 so as to be adjacent to the front end surface 232 of the optical fiber 229.
- the diffusing member 233 is a cylindrical member, and the length in the axial direction 101 is shorter than the length in the axial direction 101 of the balloon 221.
- the diffusing member 233 transmits the laser light emitted from the distal end surface 232 of the optical fiber 229 and diffuses the laser light so that the traveling direction of the laser light changes, that is, from the axial direction 101 to the direction intersecting the axial direction 101. It is.
- the diffusion member 233 for example, quartz-based glass or the like is adopted, but the material is not particularly limited.
- the diffusion member 233 is connected to and integrated with the optical fiber 229, and can rotate or slide together with the optical fiber 229 in the inner space of the in-side tube 227.
- the diffusing member 233 is not limited to a member that changes the traveling direction of the laser light by refraction, but may be a member that changes the traveling direction of the laser light by reflection.
- a tubular member 234 is provided inside the in-side tube 227 so as to surround the outside of the diffusion member 233.
- the tubular member 234 is a circular tube-shaped member in which the distal end side and the proximal end side, that is, the distal tip 225 side and the hub 223 side are sealed, and covers the distal end surface 232 of the optical fiber 229 and the outer side of the diffusion member 233.
- the length of the tubular member 234 in the axial direction 101 is shorter than the length of the balloon 221 in the axial direction 101.
- the tubular member 234 is connected to and integrated with the optical fiber 229 inserted on the proximal end side, and can rotate or slide together with the optical fiber 229 in the inner space of the in-side tube 227. That is, the optical fiber 229, the diffusing member 233, and the tubular member 234 can be integrally rotated or slid in the inner space of the in-side tube 227.
- the tubular member 234 is obtained by laminating a reflective layer 236 inside a resin layer 235 that can transmit laser light.
- the resin layer 235 is a synthetic resin such as polyimide.
- the reflective layer 236 is a metal or the like that reflects laser light, and is formed, for example, by applying gold plating to the inner surface side of the resin layer 235.
- the reflective layer 236 is present on the inner surface side facing the diffusion member 233 and the sealed tip side. Note that the reflective layer 236 does not necessarily need to totally reflect the laser light, and may absorb part or all of the laser light.
- the tubular member 234 has a transmission window 237 formed on a circular tube-shaped peripheral wall.
- the transmission window 237 is formed by removing a part of the reflection layer 236. For example, it is formed by masking the inner surface of the resin layer 235 corresponding to the transmission window 237 when gold plating as the reflection layer 236 is performed.
- the transmission window 237 has an elongated spiral shape extending along the axial direction 101. In the transmission window 237, the laser beam can be transmitted from the inner space side of the tubular member 234 to the outside.
- the optical fiber 229, the diffusion member 233, and the tubular member 234 can rotate about the axial direction 101 as a unit with respect to the in-side tube 227, and can slide in the axial direction 101.
- the rotation and sliding of the optical fiber 229, the diffusing member 233, and the tubular member 234 are controlled by directly or indirectly operating the proximal end side of the optical fiber 229 extended from the hub 223. Specifically, when the driving force from the driving mechanism 214 is applied to the proximal end side of the optical fiber 229, the optical fiber 229 is rotated and slid. Thereby, the position of the circumferential direction with respect to the axial direction 101 of the transmission window 237 of the tubular member 234 and the position of the axial direction 101 are displaced.
- a temperature sensor may be provided on the outer wall of the in-side tube 227 in the balloon 221 or the like.
- a known sensor such as a thermocouple can be used as long as it can be installed inside the balloon 221.
- the temperature of the fluid in the balloon 221 can be monitored by guiding the cable extended from the temperature sensor to the outside.
- a third lumen may be provided on the shaft 222, and an imaging member such as an endoscope, IVUS, or OCT may be inserted.
- the laser light generating means 212 a known laser light generating device can be used.
- the laser light generation means 212 is, for example, one in which light from an excitation source is given to a laser medium, and is oscillated and output by reflection of an optical resonator.
- the laser beam output from the laser beam generator 212 is preferably a continuous wave, and the wavelength of the laser beam is preferably in the range of 400 to 2000 nm. In particular, when the wavelength of the laser beam is in the range of 800 to 1500 nm (915 nm, 980 nm, 1470 nm), a local temperature increase can be confirmed, and the intima of the renal artery can be appropriately heated.
- the laser light generating means 212 is connected to the base end of the optical fiber 229, and the laser light output from the laser light generating means 212 is irradiated on the base end face of the optical fiber 229.
- the fluid reflux means 213 a known device having a roller pump or a syringe pump can be used.
- the fluid return means 213 is connected to the in-port 226 and the out-port 228 of the ablation device 211 via a flow path such as a tube.
- the fluid recirculation means 213 has a tank for storing fluid, and supplies the fluid from the tank to the in port 226 at a desired flow rate and pressure by the driving force of the pump. Further, the fluid flowing out from the out port 228 may be returned to the tank or discarded as a waste liquid.
- reflux means 213 may be provided with the cooling device for cooling the fluid in a tank.
- the fluid is not particularly limited, but for the purpose of ablation of the renal artery, a mixed solution of physiological saline and contrast medium is preferable.
- the driving mechanism 214 applies a driving force for rotating and sliding the proximal end side of the optical fiber 229 with respect to the axial direction 101, and a mechanism in which a motor, a slider, or the like is combined may be employed.
- the drive mechanism 214 is not essential, and the optical fiber 229 may be rotated and slid with respect to the axial direction 101 by the operator handling the proximal end side of the optical fiber 229.
- the control unit 215 generates, for example, laser light from the laser light generation unit 212 at a predetermined light intensity and time based on a pre-programmed protocol, controls the flow rate and pressure of the fluid reflux unit 213, and is driven. The drive amount and timing of the mechanism 214 are controlled.
- the control means 215 includes an arithmetic device for performing these operation controls.
- the ablation device 211 is connected to the laser light generation means 212, the fluid reflux means 213, and the drive mechanism 214. Further, the laser light generating means 212, the fluid reflux means 213, and the driving mechanism 214 are connected to the control means 215. A program suitable for performing ablation on the renal artery 40 is preset in the control means 215.
- the ablation device 211 is inserted into the renal artery 40 from the distal end side.
- a guide wire is inserted in advance and reaches the target portion while performing imaging under fluoroscopy.
- Such insertion of the guide wire is performed by a known method disclosed in, for example, Japanese Patent Application Laid-Open Nos. 2006-326226 and 2006-230442.
- the ablation device 211 When the ablation device 211 is inserted into the renal artery 40, no fluid is injected into the balloon 221, and the balloon 221 is in a deflated state. From the tip of the ablation device 211 in this state, a guide wire is inserted into the guide wire tube 224. Then, the ablation device 211 is inserted into the renal artery 40 along the guide wire. The insertion position of the ablation device 211 in the renal artery 40 is grasped by, for example, confirming a marker placed on the distal tip 225 under the X-ray.
- the fluid return means 213 is driven by the control means 215, and fluid flows from the fluid return means 213 through the in-side tube 227 to the balloon 221. And the balloon 221 expands.
- the fluid is returned from the outlet port 228 to the fluid return means 213 from the balloon 221 through the shaft 222.
- the return of the fluid to the balloon 221 is managed so as to obtain a desired flow velocity and pressure by controlling the fluid return means 213 by the control means 215.
- the fluid stored in the fluid return means 213 is managed at a temperature suitable for cooling the intima of the renal artery 40.
- the laser light generation means 212 and the drive mechanism 214 are driven by the control means 215, and the laser light 42 generated from the laser light generation means 212 is transmitted into the balloon 221 through the optical fiber 229 and is diffused by the diffusion member 233. Diffused in a plurality of directions intersecting the axial direction 101.
- the diffused laser light 42 is reflected in the internal space of the tubular member 234 by the reflective layer 236 of the tubular member 234.
- the laser beam 42 that has reached the transmission window 237 of the tubular member 234 passes through the transmission window 237, further passes through the in-side tube 227 and the balloon 221, is irradiated onto the blood vessel wall of the renal artery 40, and passes through the blood vessel wall.
- the nerve 41 is reached. Thereby, the nerve 41 is ablated by irradiating the nerve 41 with the laser beam 42 in a spiral shape by the transmission window 237 of the tubular member 234.
- the intensity and irradiation time of the laser beam are managed by the control means 215.
- the optical fiber 229 that transmits the laser light 42 is slid while being rotated with respect to the axial direction 101. Since the optical fiber 229 is rotated and the diffusing member 233 and the tubular member 234 are also rotated, the direction of the laser light 42 transmitted through the spiral transmission window 237 is displaced in the circumferential direction of the axial direction 101. Thereby, it is possible to uniformly ablate the nerve 41 existing in the circumferential direction of the renal artery 40. Further, since the optical fiber 229 is slid and the transmission window 237 is also slid, the laser light 42 transmitted through the transmission window 237 is displaced in the axial direction 101. Thereby, it is possible to uniformly ablate the nerve 41 existing in the direction in which the renal artery 40 extends (the same direction as the axial direction 101).
- the rotation and slide pattern of the optical fiber 229 can be arbitrarily set by programming in the control means 215.
- the laser light 42 is irradiated from the laser light generating means 212 to irradiate the nerve 41 of the renal artery 40 in a spot shape. it can.
- the timing and order of irradiating the laser beam 42 to the nerves 41 existing all around the predetermined range in the direction in which the renal artery 40 extends can be arbitrarily set.
- the laser beam 42 that has passed through the transmission window 237 is also applied to the tissue on the intima side of the renal artery 40 before reaching the nerve 41 of the renal artery 40.
- An inflated balloon 221 is in contact with the intima of the renal artery 40, and fluid is circulated in the balloon 221. Due to the cooling effect of the fluid, heating of the intima side of the renal artery 40 is suppressed. Therefore, it is preferable that the slide range of the optical fiber 229 is a range in which the balloon 221 is in contact with the intima of the renal artery 40.
- the nerve 41 of the renal artery 40 can be ablated, and heating to the intima of the renal artery 40 can be suppressed to suppress thermal damage to the intima.
- the laser beam 42 is uniformly irradiated to the nerve 41 of the renal artery 40.
- the diffusion member 233 and the tubular member 234 are integrally provided on the distal end side of the optical fiber 229, and the optical fiber 229 can move and rotate along the axial direction 101 with respect to the shaft 222. Realized with a simple configuration. Further, the movement and rotation of the diffusing member 233 and the tubular member 234 can be operated via the optical fiber 229 on the proximal end side of the shaft 222.
- the transmission window 237 of the tubular member 234 has a spiral shape extending in the axial direction 101, but the shape of the transmission window 237 may be changed as appropriate.
- a plurality of circular transmission windows 238 may be provided at different positions in the axial direction 101.
- Each transmission range D1, D2, D3, D4 of each transmission window 238 partially overlaps with the transmission window 238 adjacent in the axial direction 101.
- each transmission window 238 has a different position with respect to the circumferential direction in the axial direction 101.
- the tubular member 234 is rotated and slid to uniformly irradiate the nerve 41 of the renal artery 40 with the laser light.
- the laser light 42 since the direction of the laser light 42 that travels through each transmission window 238 is different from the circumferential direction of the axial direction 101, the laser light 42 does not concentrate in a specific circumferential direction of the axial direction 101. . Thereby, the heating to the inner surface of the renal artery 40 can be suppressed.
- each transmission window 238 partially overlaps each transmission range D1, D2, D3, and D4 in the axial direction 101, so that an unirradiated portion of the laser light 42 is hardly generated in the axial direction 101 of the renal artery 40.
- the diffusion member 233 and the tubular member 234 are integrally provided at the tip of the optical fiber 229.
- the tubular member 234 is configured to be rotatable and slidable, and the tubular member.
- An operation unit for operating 234 may be extended to the hub 223.
- the tubular member 234 and the in-side tube 227 may be connected, and the tubular member 234 may be configured to interlock with the rotation and slide of the in-side tube 227.
- the optical fiber 229 is inserted through the in-side tube 227.
- the insertion path of the optical fiber 229 is not limited as long as the distal end side reaches the balloon 221. . Therefore, for example, it may be inserted into the internal space of the shaft 222 or may be inserted into the balloon 221 from the outside of the shaft 222.
- the tubular member 234 is rotated and slid, but the tubular member 234 may be configured to be rotatable only or slidable only.
- the tubular member 234 having the spiral-shaped transmission window 237 is provided to the same extent as the length of the balloon 221 in the axial direction 101, the renal artery 40 is within the range of the balloon 221 when the tubular member 234 is rotated. It is possible to uniformly irradiate the nerve 41 with the laser beam 42.
- the transmission windows 237 and 238 are formed of the resin layer 235.
- the transmission windows may be formed as holes that penetrate the resin layer 235 and the reflection layer 236. .
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Otolaryngology (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Laser Surgery Devices (AREA)
Abstract
【課題】管腔内膜への熱損傷を抑制することができるアブレーションシステムを提供する。 【解決手段】アブレーションシステム10は、シャフト22の先端側にバルーン21が設けられており、バルーン21へ流体を流入させるためのイン側チューブ27、バルーン21から流体を流出させるためのシャフト22の内部空間、及びバルーン21内へレーザ光を導く光ファイバ29がシャフト22に沿ってそれぞれ設けられたアブレーションデバイス11と、光ファイバ29へレーザ光を照射するレーザ光発生手段12と、バルーン21の内部空間に流体を還流させる流体還流手段13と、を具備する。アブレーションデバイス11は、バルーン21内において光ファイバ29から出射されるレーザ光を反射する反射材33を有しており、反射材33が軸線方向191に沿ってバルーン21内を移動可能であり、かつ軸線方向101を軸線として回転可能である。
Description
本発明は、生体の管腔周囲の組織に対してアブレーションを行うアブレーションシステム及びアブレーションデバイスに関する。
腎動脈の外膜近傍に存在する神経が焼灼されると、長期的に血圧が下がることが知られており、高血圧の治療へ応用が期待されている。このような腎動脈において神経を焼灼する手法は、腎動脈交感神経アブレーションや腎デナベーションと称されている。腎動脈交感神経アブレーションの一つとして、電極を有するバルーンカテーテルを左右の腎動脈に挿入して、電極を発熱させて腎動脈の内腔側から加熱を行い、その熱を腎動脈の外膜まで到達させて神経を焼灼する手法がある。
しかしながら、神経を焼灼するに必要な60~70℃程度の熱を、腎動脈の内腔側から外膜まで到達させると、内膜に付与される熱によって、浮腫や血栓などの副作用が高頻度で生じるという問題が懸念されている。また、内腔側から外膜まで必要な熱を到達させるために数分間が必要であり、その間、患者に熱さや疼痛を与えることもある。
前述された問題に対して、カテーテルを用いてパルスレーザを腎動脈に導き、集光レンズによって腎動脈の外膜にパルスレーザを集光し、焦点位置において多光子吸収を生じさせることによって、焦点位置にある外膜にアブレーションを行う装置が提案されている(特許文献1,2)。
しかしながら、特許文献1,2に記載の装置は、カテーテル内に集光レンズなどを配置するためカテーテルの構造が複雑になるという問題がある。また、パルスレーザの焦点位置が、血管壁の厚みや血管内におけるカテーテルの位置に依存するので、パルスレーザの焦点位置を所望の位置に精度よく位置決めすることが難しいという問題もある。例えば、血管壁の厚みには個人差があるので、予めアブレーションを行う個人の血管壁の厚みを計測して、その血管壁の厚みに集光レンズの焦点位置を調整する必要があるという問題や、カテーテルが血管の中心からずれて位置決めされると、血管の周方向において、パルスレーザの焦点位置が血管壁の厚み方向に対して一様にならないという問題が生じ得る。
また、短時間に効率よくアブレーションを行うために、レーザ光の出力を高めることが望ましいが、レーザ光の出力を高めると、反射材などに焦げや剥がれなどの損傷が生じるおそれがある。
本発明は、前述された事情に鑑みてなされたものであり、その目的は、生体の管腔周囲の深部の組織に対して加熱を行うとともに、管腔内膜への熱損傷を抑制することができるアブレーションシステム又はアブレーションデバイスを提供することにある。
また、本発明の他の目的は、レーザ光の出力を高めても反射材に損傷が生じ難いアブレーションデバイスを提供することにある。
(1) 本発明に係るアブレーションシステムは、シャフトの先端側に弾性的に膨張可能なバルーンが設けられており、当該バルーンへ流体を流入させるための第1ルーメン、当該バルーンから流体を流出させるための第2ルーメン、及び当該バルーン内へレーザ光を導く導光材が当該シャフトに沿ってそれぞれ設けられたアブレーションデバイスと、上記導光材へレーザ光を照射するレーザ光発生手段と、上記第1ルーメン及び第2ルーメンを通じて上記バルーンの内部空間に流体を還流させる流体還流手段と、を具備する。上記アブレーションデバイスは、上記バルーン内において上記導光材から出射されるレーザ光を上記導光材が延出された第1方向と交差する第2方向へ反射する反射材を有しており、少なくとも当該反射材が上記第1方向に沿って上記バルーン内を移動可能であり、かつ上記第1方向を軸線として回転可能である。
生体の管腔へ挿入されたアブレーションデバイスは、所望の位置においてバルーンが膨張され、流体還流手段によって第1ルーメン及び第2ルーメンを通じてバルーンの内部空間に流体が還流される。レーザ光発生手段から照射されたレーザ光は、導光材によりバルーン内へ導かれ、反射材によって第2方向へ反射される。これにより、レーザ光が管腔の周囲の組織へ照射される。反射材が第1方向に沿ってバルーン内を移動されつつ、第1方向を軸線として回転されることによって、管腔の周囲の組織に対して一様にレーザ光が照射される。管腔の内面にはバルーンが接触しており、レーザ光による内面への加熱は、バルーン内を還流する流体によって冷却されることにより抑制される。
(2) 上記反射材は、上記導光材の先端側に一体に設けられており、上記導光材は、上記シャフトに対して、上記第1方向に沿って移動可能であり、かつ上記第1方向を軸線として回転可能であってもよい。
これにより、アブレーションデバイスを簡易な構成で実現できる。また、シャフトの基端側において導光材を操作することによって、反射材が第1方向に沿ってバルーン内を移動されつつ、第1方向を軸線として回転される。
(3) 上記レーザ光発生手段は、波形が連続して周期的に変化するレーザ光を上記導光材へ照射するものであってもよい。
(4) 本発明は、シャフトと、上記シャフトの先端側に設けられて弾性的に膨張可能なバルーンと、上記シャフトに沿って設けられており、上記バルーンへ流体を流入させるための第1ルーメンと、上記シャフトに沿って設けられており、上記バルーンから流体を流出させるための第2ルーメンと、上記シャフトに沿って設けられており、上記バルーン内へレーザ光を導く導光材と、上記バルーン内において上記導光材から出射されるレーザ光を上記導光材が延出された第1方向と交差する第2方向へ反射する反射材と、を具備しており、少なくとも当該反射材が、上記第1方向に沿って上記バルーン内を移動可能であり、かつ上記第1方向を軸線として回転可能であるアブレーションデバイスとして捉えられてもよい。
(5) 上記反射材は、上記導光材の先端側に一体に設けられており、上記導光材は、上記シャフトに対して、上記第1方向に沿って移動可能であり、かつ上記第1方向を軸線として回転可能であってもよい。
(6) 本発明に係るアブレーションデバイスは、流体が流通する流体ルーメンを有するメインシャフトと、上記メインシャフトの先端側に設けられており、上記流体ルーメンを流通する流体により膨張可能なバルーンと、ガイドワイヤが挿通可能なワイヤルーメンを有し、上記メインシャフト内に挿通されて上記バルーン内へ延出されたサブシャフトと、上記サブシャフトに沿って設けられており、上記バルーン内へレーザ光を導く導光材と、上記バルーン内において上記導光材から出射されるレーザ光を上記軸線方向と交差する方向へ反射する反射材と、を具備する。上記サブシャフトは、上記メインシャフトに対して軸線方向に移動可能であり、且つ当該軸線方向周りに回転可能である。上記導光材及び上記反射材は、上記サブシャフトに伴って移動及び回転可能である。
生体の管腔へ挿入されたガイドワイヤを、アブレーションデバイスのワイヤルーメンに挿通させ、ガイドワイヤに沿ってメインシャフトが管腔の所望の位置まで挿入される。所望の位置において流体がバルーン内に流入されて膨張される。バルーンに流入される流体は、適宜還流される。導光材に照射されたレーザ光はバルーン内へ導かれ、反射材によって軸線方向と交差する方向へ反射される。これにより、レーザ光が管腔の周囲の組織へ照射される。サブシャフトが軸線方向に沿ってバルーン内を移動されつつ、軸線方向周りに回転されることによって、導光材及び反射材は、サブシャフトの外周に沿って移動及び回転し、管腔の周囲の組織に対して一様にレーザ光が照射される。このとき、サブシャフトのワイヤルーメンにガイドワイヤが挿通されていても、ガイドワイヤによってレーザ光が遮断されない。管腔の内面にはバルーンが接触しており、レーザ光による内面への加熱は、バルーン内を還流する流体によって冷却される。
(7) 上記反射材は、上記導光材の先端側に一体に設けられたものであってもよい。
これにより、アブレーションデバイスを簡易な構成で実現できる。
(8) 上記サブシャフトは、上記流体ルーメンに挿通されたものであってもよい。
これにより反射材が、流体ルーメンに流通される流体によって冷却される。
(9) 上記メインシャフトの基端側に、流体が流通するポートを有するコネクタが連結されており、上記ポートは、上記流体ルーメンと流体を流通可能に接続されており、上記サブシャフト及び上記導光材は、上記コネクタに対して上記軸線方向周りに回転可能であってもよい。
これにより、コネクタ側において、サブシャフト、導光材及び反射材の操作が容易になる。
(10) 本発明は、上記アブレーションデバイスと、上記導光材へレーザ光を照射するレーザ光発生手段と、上記流体ルーメンを通じて上記バルーンの内部空間に流体を還流させる流体還流手段と、を具備するアブレーションシステムとして捉えられてもよい。
(11) 本発明に係るアブレーションデバイスは、シャフトと、上記シャフトの先端側に設けられて弾性的に膨張可能なバルーンと、上記シャフトに沿って設けられており、上記バルーンへ流体を流通させるための流体ルーメンと、上記シャフトに沿って設けられており、上記バルーン内へレーザ光を導く導光材と、上記バルーン内において上記導光材から出射されるレーザ光を上記導光材が延出された第1方向と交差する第2方向へ反射する反射材と、を具備する。上記反射材は、上記導光材の先端に対して上記第1方向に対向して配置されている。
生体の管腔へ挿入されたアブレーションデバイスは、所望の位置において流体が流通されてバルーンが膨張される。導光材によりレーザ光がバルーン内へ導かれ、反射材によって第2方向へ反射される。これにより、レーザ光が管腔の周囲の組織へ照射される。管腔の内面にはバルーンが接触しており、レーザ光による内面への加熱は、バルーン内の流体によって冷却されることにより抑制される。反射材が、導光材の先端に対向して配置されているので、反射材がレーザ光により損傷され難い。
(12) 好ましくは、上記反射材は、上記バルーンに流通する流体の流路内に配置されている。
これにより、反射材が流体により冷却されるので、レーザ光による損傷が更に抑制される。
(13) 好ましくは、上記反射材は、表面に金属層を有するものである。
(14) 好ましくは、上記反射材は、上記第1方向に沿って上記バルーン内を移動可能であり、かつ上記第1方向に沿った上記シャフトの軸線周りに回転可能である。
反射材が第1方向に沿ってバルーン内を移動されつつ、シャフトの軸線周りに回転されることによって、管腔の周囲の組織に対して一様にレーザ光が照射される。なお、シャフトの軸線周りの回転には、シャフトの軸線から距離を隔てた位置における反射材の回動と、シャフトの軸線上における反射材の回転とが含まれる。
(15) 好ましくは、上記第1方向に沿って上記バルーン内を移動可能であり、かつ上記第1方向に沿った上記シャフトの軸線周りに回転可能な導光用チューブが上記シャフトに沿って設けられており、上記導光材及び上記反射材は、上記導光用チューブの内部空間に配置されたものである。
これにより、導光材及び反射材が相互の位置関係を保持した状態で、移動及び回転可能となる。
(16) 好ましくは、上記導光用チューブは、上記反射材の反射面に外部の流体を接触可能とする開口を有する。
これにより、反射材の反射面が流体により冷却される。
(17) 本発明は、上記アブレーションデバイスと、上記導光材へレーザ光を照射するレーザ光発生手段と、上記流体ルーメンを通じて上記バルーンの内部空間に流体を還流させる流体還流手段と、を具備するアブレーションシステムとして捉えられてもよい。
(18) 本発明に係るアブレーションデバイスは、シャフトと、上記シャフトの先端側に設けられており、弾性的に膨張可能なバルーンと、上記シャフトに沿って形成されており、上記バルーンへ流体を流入させるための第1ルーメンと、上記シャフトに沿って形成されており、上記バルーンから流体を流出させるための第2ルーメンと、上記シャフトに沿って設けられており、上記バルーン内へレーザ光を導く導光材と、上記バルーン内において上記導光材から出射されるレーザ光を上記導光材が延出された第1方向と交差する方向へ反射又は拡散させる拡散部材と、上記バルーン内に設けられて上記拡散部材を囲繞しており、その内面側に上記拡散部材により反射又は拡散されたレーザ光を反射又は遮断する反射層を有し、かつ当該レーザ光を当該反射層の外側へ透過させる透過窓を有する管状部材と、を具備する。
生体の管腔へ挿入されたアブレーションデバイスは、所望の位置においてバルーンが膨張され、第1ルーメン及び第2ルーメンを通じてバルーンの内部空間に流体が還流される。導光材に照射されたレーザ光がバルーン内へ導かれ、拡散部材によって第1方向と交差する方向へ反射又は拡散される。反射又は拡散されたレーザ光は、管状部材の反射層によって反射される。一方、反射又は拡散されたレーザ光は、管状部材の透過窓から管状部材の外側、すなわち管腔の周囲の組織へ向かって進む。管腔の内面にはバルーンが接触しており、レーザ光による内面への加熱は、バルーン内を還流する流体によって冷却されることにより抑制される。
(19) 上記管状部材は、上記透過窓の上記第1方向を軸線とする周方向の位置又は上記第1方向の位置の少なくとも一方が変位する向きへ移動可能であってもよい。
管状部材が移動されることによって、透過窓の位置が変位するので、管腔の周囲の組織に対して一様にレーザ光が照射される。
(20) 上記拡散部材及び上記管状部材は、上記導光材と一体に設けられたものであってもよい。
導光材の基端側が操作されることによって、管状部材の移動が制御できる。
(21) 上記透過窓は、上記第1方向へ延びる螺旋形状であってもよい。
これにより、管腔の周囲の組織に対して一様にレーザ光が照射される。
(22) 上記透過窓は、上記第1方向に対して異なる位置に複数が設けられたものであってもよい。
これにより、管腔の周囲の組織に対して一様にレーザ光が照射される。
(23) 上記複数の透過窓は、上記第1方向を軸線とする周方向に対してそれぞれが異なる位置に配置されたものであってもよい。
第1方向において、周方向へ進むレーザ光の向きが異なるので、第1方向の特定の位置にレーザ光が集中しない。これにより、管腔の内面への加熱を抑えることができる。
(24) 上記複数の透過窓は、各透過範囲が上記第1方向において一部が重複するものであってもよい。
これにより、管腔の第1方向においてレーザ光の未照射箇所が生じない。
本発明によれば、生体の管腔周囲の深部の組織に対して加熱を行うとともに、管腔内膜への熱損傷を抑制することができる。
また、レーザ光による反射材の損傷を抑制することができる。
以下、本発明の好ましい実施形態を説明する。なお、本実施形態は本発明の一実施態様にすぎず、本発明の要旨を変更しない範囲で実施態様を変更できることは言うまでもない。
[第1実施形態]
[アブレーションシステム10]
図1に示されるように、アブレーションシステム10は、アブレーションデバイス11、レーザ光発生手段12、流体還流手段13、駆動機構14、及び制御手段15を有する。
[アブレーションシステム10]
図1に示されるように、アブレーションシステム10は、アブレーションデバイス11、レーザ光発生手段12、流体還流手段13、駆動機構14、及び制御手段15を有する。
[アブレーションデバイス11]
図1,2に示されるように、アブレーションデバイス11は、先端側にバルーン21が設けられたシャフト22を有する。シャフト22は、軸線方向101に長尺な部材である。シャフト22は、軸線方向101に対して湾曲するように弾性的に撓み得る管体である。湾曲していない状態のシャフト22が延びる方向が、本明細書において軸線方向101と称される。軸線方向101が第1方向に相当する。
図1,2に示されるように、アブレーションデバイス11は、先端側にバルーン21が設けられたシャフト22を有する。シャフト22は、軸線方向101に長尺な部材である。シャフト22は、軸線方向101に対して湾曲するように弾性的に撓み得る管体である。湾曲していない状態のシャフト22が延びる方向が、本明細書において軸線方向101と称される。軸線方向101が第1方向に相当する。
シャフト22には、イン側チューブ27及び光ファイバ29が挿通されている。シャフト22の外径及び内径は、軸線方向101に対して必ずしも一定である必要はないが、操作性の観点からは、先端側より基端側の剛性が高いことが好ましい。シャフト22は、合成樹脂やステンレスなど、バルーンカテーテルに用いられている公知の材質が使用でき、また、必ずしも1種類の素材のみから構成される必要はなく、他素材からなる複数の部品が組み付けられて構成されていてもよい。
なお、本実施形態において基端側とは、アブレーションデバイス11が血管に挿入される向きに対して後ろ側(図1における右側)をいう。先端側とは、アブレーションデバイス11が血管に挿入される向きに対して前側(図1における左側)をいう。
シャフト22の先端側には、バルーン21が設けられている。バルーン21は、内部空間に流体(液体、気体)が流入されることにより弾性的に膨張し、内部空間から流体が流出されることにより収縮するものである。図1,2においては、収縮した状態のバルーン21が示されている。バルーン21の内部空間は、シャフト22の内部空間及びイン側チューブ27の内部空間とそれぞれ連通されている。イン側チューブ27を通じてバルーン21の内部空間に流体が流入されると、バルーン21は、軸線方向101の中央が最大径となるように軸線方向101と直交する径方向へ膨張する。バルーン21が膨張を維持する流体の圧力を保持する程度の流量の流体がバルーン21へ流入されつつ、シャフト22の内部空間を通じてバルーン21から流体が流出されることにより、バルーン21において流体が還流される。バルーン21の材質や、バルーン21とシャフト22との固定方法は、バルーンカテーテルにおいて用いられる公知の材質及び方法が使用できる。イン側チューブ27の内部空間が第1ルーメンに相当し、シャフト22の内部空間が第2ルーメンに相当する。
シャフト22の基端側にはアウト用ポート28が設けられている。アウト用ポート28は、シャフト22の内部空間と連続している。シャフト22の内部空間を通じて、バルーン21に還流される流体がアウト用ポート28から流出する。
シャフト22の基端にはハブ23が設けられている。ハブ23には、光ファイバ29が挿通されている。ハブ23には、光ファイバ29の挿通口とは別個にイン用ポート26が設けられている。イン用ポート26は、イン側チューブ27の内部空間と連続している。イン側チューブ27の内部空間を通じて、バルーン21に還流される流体がイン用ポート26から流入する。
シャフト22の外側には、ガイドワイヤ用チューブ24が設けられている。ガイドワイヤ用チューブ24は、シャフト22の軸線方向101の長さに対して十分に短い。なお、ガイドワイヤ用チューブ24は、必ずしもシャフト22の外側に設けられる必要はない。例えば、本実施形態のようなラピッドエクスチェンジ型に代えて、モノレール型が採用されるのであれば、ガイドワイヤ用チューブ24はシャフト22の内部空間に挿通されていてもよい。
シャフト22の内部に挿通されたイン側チューブ27は、先端側がバルーン21の内部空間へ至っており、基端側がイン用ポート26に接続されている。イン側チューブ27の先端は、バルーン21の先端側に設けられた先端チップ25に接続されている。イン側チューブ27の先端チップ25付近には、イン側チューブ27の周壁を貫通する開口30,31が設けられている。開口30,31は、イン側チューブ27の内部空間を流通する流体がバルーン21内へ流出するためのものであり、軸線方向101の周方向に対して異なる位置に配置されている。
先端チップ25には、造影剤を素材としたマーカーが設けられている。造影剤としては、例えば、硫酸バリウム、酸化ビスマス、次炭酸ビスマスなどが挙げられる。
光ファイバ29は、ハブ23からイン側チューブ27の内部に挿通されて、バルーン21の内部まで延出されている。光ファイバ29は、レーザ光発生手段12において発生され、光ファイバ29の基端に照射されたレーザ光を先端側へ伝播するものである。光ファイバ29は、レーザ光の波長において全反射する屈折率を有するものが適宜採用され、具体的には、単一モードファイバ、偏波保持ファイバ、マルチモードファイバ、イメージ伝送用バンドルファイバが挙げられる。光ファイバ29が導光材に相当する。
光ファイバ29の先端面32は、軸線方向101に対して45度の角度となるように傾斜された平面である。先端面32には、反射材33が積層されている。反射材33は、光ファイバ29を伝播するレーザ光を全反射する素材が採用される。反射材33の材質としては石英系のガラスなどが採用されるが、その材質は特に限定されない。
光ファイバ29及び反射材33は、イン側チューブ27に対して一体として軸線方向101周りに回転可能であり、かつ軸線方向101へスライド可能である。光ファイバ29及び反射材33の回転及びスライドは、ハブ23から延出された光ファイバ29の基端側が直接又は間接に操作されることによって制御される。具体的には、光ファイバ29の基端側に駆動機構14からの駆動力が付与されることによって、光ファイバ29が回転及びスライドされる。
なお、各図には示されてないが、バルーン21内におけるイン側チューブ27の外壁などに温度センサが設けられてもよい。温度センサとしては、バルーン21の内部に設置可能なものであれば、例えば熱電対などの公知のものを用いることができる。温度センサから延出されたケーブルが外部へ導かれることによって、バルーン21内の流体の温度をモニタリングすることができる。また、シャフト22に第3ルーメンを設けて、内視鏡、IVUS、OCTなどのイメージング部材が内挿されてもよい。
レーザ光発生手段12は、公知のレーザ光発生装置を用いることができる。レーザ光発生手段12は、例えば、励起源の光がレーザ媒質に与えられ、光共振器の反射により発振されて出力するものである。レーザ光発生手段12から出力されるレーザ光は、連続波であることが好ましく、また、レーザ光の波長としては400~2000nmの範囲であることが好ましい。特に、レーザ光の波長が800~1500nmの範囲(915nm、980nm、1470nm)である場合に、局所的な温度上昇が確認でき、腎動脈の内膜を適切に加温できる。レーザ光発生手段12は、光ファイバ29の基端と接続されており、レーザ光発生手段12から出力されたレーザ光は光ファイバ29の基端面に照射される。
流体還流手段13は、ローラポンプやシリンジポンプを有する公知の装置を用いることができる。流体還流手段13は、アブレーションデバイス11のイン用ポート26及びアウト用ポート28とチューブなどの流路を介して接続されている。流体還流手段13は、流体を貯留するタンクを有しており、ポンプの駆動力によってタンクからイン用ポート26に所望の流量及び圧力で流体を供給する。また、アウト用ポート28から流出した流体は、タンクに還流させてもよいし、廃液として廃棄してもよい。また、流体還流手段13は、タンク内の流体を冷却するための冷却装置を備えていてもよい。流体は特に限定されないが、腎動脈のアブレーションを目的としては、生理食塩水と造影剤の混合溶液が好ましい。
駆動機構14は、光ファイバ29の基端側を軸線方向101に対して回転及びスライドさせる駆動力を付与するものであり、モータやスライダなどを組み合わせた機構が採用され得る。なお、駆動機構14は必須ではなく、光ファイバ29の基端側を施術者がハンドリングすることにより、光ファイバ29が軸線方向101に対して回転及びスライドされてもよい。
制御手段15は、例えば、予めプログラムされたプロトコルに基づいて、レーザ光発生手段12からレーザ光を所定の光強度及び時間で発生させたり、流体還流手段13の流量及び圧力を制御したり、駆動機構14の駆動量及びタイミングを制御したりするものである。制御手段15は、これらの動作制御を行うための演算装置を備えている。
[アブレーションデバイス11の使用方法]
以下に、腎動脈40の神経41を切断するためのアブレーションシステム10の使用方法が説明される。
以下に、腎動脈40の神経41を切断するためのアブレーションシステム10の使用方法が説明される。
図1に示されるように、アブレーションデバイス11は、レーザ光発生手段12、流体還流手段13、及び駆動機構14と接続されている。また、レーザ光発生手段12、流体還流手段13、及び駆動機構14は制御手段15と接続されている。制御手段15には、腎動脈40に対してアブレーションを行うに適したプログラムが予め設定されている。
アブレーションデバイス11は、先端側から腎動脈40に挿入される。腎動脈40には、X線透視下で造影を行いながら、ガイドワイヤが予め挿通されて目的部分へ到達されている。このようなガイドワイヤの挿通は、例えば、特開2006-326226号公報や特開2006-230442号公報に開示された公知の手法によりなされる。
アブレーションデバイス11が腎動脈40へ挿入されるときには、バルーン21には流体が圧入されておらず、バルーン21は収縮した状態である。この状態のアブレーションデバイス11の先端から、ガイドワイヤがガイドワイヤ用チューブ24に挿通される。そして、アブレーションデバイス11が、ガイドワイヤに沿って腎動脈40に挿入される。腎動脈40におけるアブレーションデバイス11の挿入位置は、例えば、先端チップ25に設置されたマーカをX線下により確認することによって把握される。
図3に示されるように、アブレーションデバイス11が腎動脈40の目的部分まで挿入されると、制御手段15によって流体還流手段13が駆動され、流体還流手段13からイン側チューブ27を通じて流体がバルーン21へ流入されてバルーン21が拡張する。また、バルーン21からシャフト22を通じてアウト用ポート28から流体が流体還流手段13に還流される。図3において矢印51で示されるバルーン21に対する流体の還流は、制御手段15によって流体還流手段13が制御されることによって、所望の流速及び圧力となるように管理されている。また、流体還流手段13に貯留されている流体は、腎動脈40の内膜を冷却するに適した温度に管理されている。
続いて、制御手段15によってレーザ光発生手段12及び駆動機構14が駆動され、レーザ光発生手段12から発生されたレーザ光42が、光ファイバ29を通じてバルーン21内へ伝播され、反射材33によって軸線方向101と交差する方向へ反射される。反射されたレーザ光42は、イン側チューブ27及びバルーン21を透過して、腎動脈40の血管壁へ照射され、血管壁を透過して神経41に到達する。これにより、レーザ光42が照射された神経41(図3では便宜的に2点鎖線で示されている。)がアブレーションされる。なお、レーザ光42の強度や照射時間は、制御手段15によって管理されている。
また、制御手段15によって駆動機構14が駆動されることによって、レーザ光42を伝播する光ファイバ29が、軸線方向101に対して回転されつつスライドされる。光ファイバ29が回転されると共に反射材33も回転されるので、反射材33によって反射されるレーザ光42の向きが軸線方向101の周方向に変位する(矢印52)。これにより、腎動脈40の周方向に存在する神経41に対して一様にアブレーションを行うことができる。また、光ファイバ29がスライドされると共に反射材33もスライドされるので、反射材33によって反射されるレーザ光42が軸線方向101に変位する(矢印53)。これにより、腎動脈40が延びる方向(軸線方向101と同じ方向である。)に存在する神経41に対して一様にアブレーションを行うことができる。
なお、光ファイバ29の回転及びスライドのパターンは、制御手段15におけるプログラミングによって任意に設定できる。したがって、例えば、光ファイバ29が回転されつつスライドされることによって、腎動脈40の神経41に対して螺旋状にレーザ光42を照射することができる。また、光ファイバ29の回転又はスライドを一時停止したときにレーザ光発生手段12からレーザ光42を照射することによって、腎動脈40の神経41に対してスポット状にレーザ光42を照射することもできる。つまり、腎動脈40が延びる方向の所定の範囲の全周に存在する神経41に対して、レーザ光42を照射するタイミングや順序などは、任意に設定することができる。
一方、反射材33によって反射されたレーザ光42は、腎動脈40の神経41に到達する前に、腎動脈40の内膜側の組織にも照射されることとなる。腎動脈40の内膜には拡張されたバルーン21が接触しており、バルーン21内に流体が還流されている。この流体の冷却効果によって、腎動脈40の内膜側の加熱が抑制される。したがって、光ファイバ29のスライド範囲は、バルーン21が腎動脈40の内膜に接触している範囲とすることが好適である。
[第1実施形態の作用効果]
前述された実施形態によれば、腎動脈40の神経41に対してアブレーションを行うとともに、腎動脈40の内膜への加熱を抑制して、内膜への熱損傷を抑制することができる。
前述された実施形態によれば、腎動脈40の神経41に対してアブレーションを行うとともに、腎動脈40の内膜への加熱を抑制して、内膜への熱損傷を抑制することができる。
また、反射材33が光ファイバ29の先端側に一体に設けられており、光ファイバ29がシャフト22に対して、軸線方向101に沿って移動かつ回転可能なので、アブレーションデバイス11が簡易な構成で実現される。また、シャフト22の基端側において光ファイバ29を介して反射材33の移動及び回転を操作することができる。
[第1実施形態の変形例]
なお、本実施形態では、光ファイバ29の先端に反射材33が一体に設けられているが、光ファイバ29の先端と反射材33との間にレンズなどのレーザ光を透過する部材が設けられていてもよい。また、光ファイバ29の先端と反射材33とが空間を介して配置されており、光ファイバ29の移動及び回転が反射材33に伝達されるように光ファイバ29と反射材33とが連結されていてもよい。また、光ファイバ29と反射材33とが完全に独立しており、反射材33が、例えばイン側チューブ27に固定されて、イン側チューブ27の回転及び移動に連動するように構成されていてもよい。
なお、本実施形態では、光ファイバ29の先端に反射材33が一体に設けられているが、光ファイバ29の先端と反射材33との間にレンズなどのレーザ光を透過する部材が設けられていてもよい。また、光ファイバ29の先端と反射材33とが空間を介して配置されており、光ファイバ29の移動及び回転が反射材33に伝達されるように光ファイバ29と反射材33とが連結されていてもよい。また、光ファイバ29と反射材33とが完全に独立しており、反射材33が、例えばイン側チューブ27に固定されて、イン側チューブ27の回転及び移動に連動するように構成されていてもよい。
また、本実施形態では、光ファイバ29がイン側チューブ27内を挿通されているが、光ファイバ29は、先端側がバルーン21内に到達していれば、挿通経路は限定されない。したがって、例えば、シャフト22の内部空間に挿通されていてもよいし、シャフト22の外側からバルーン21内へ挿入されていてもよい。
[第2実施形態]
以下、本発明の第2実施形態に係るアブレーションデバイス61が説明される。アブレーションデバイス61は、図1に示されたアブレーションデバイス11と同様に、レーザ光発生手段12、流体還流手段13、駆動機構14、及び制御手段15を有するアブレーションシステムの一部を構成する。
以下、本発明の第2実施形態に係るアブレーションデバイス61が説明される。アブレーションデバイス61は、図1に示されたアブレーションデバイス11と同様に、レーザ光発生手段12、流体還流手段13、駆動機構14、及び制御手段15を有するアブレーションシステムの一部を構成する。
図4,5に示されるように、アブレーションデバイス61は、先端側にバルーン71が設けられたメインシャフト72を有する。メインシャフト72は、軸線方向101に長尺な部材である。メインシャフト72は、軸線方向101に対して湾曲するように弾性的に撓み得る管体である。湾曲していない状態のメインシャフト72が延びる方向が、本明細書において軸線方向101と称される。
メインシャフト72には、イン側チューブ77、光ファイバ79、サブシャフト74及びガイドワイヤシャフト84が挿通されている。メインシャフト72の外径及び内径は、軸線方向101に対して必ずしも一定である必要はないが、操作性の観点からは、先端側より基端側の剛性が高いことが好ましい。メインシャフト72は、合成樹脂やステンレスなど、バルーンカテーテルに用いられている公知の材質が使用でき、また、必ずしも1種類の素材のみから構成される必要はなく、他素材からなる複数の部品が組み付けられて構成されていてもよい。
なお、本実施形態において基端側とは、アブレーションデバイス61が血管に挿入される向きに対して後ろ側(図4における右側)をいう。先端側とは、アブレーションデバイス61が血管に挿入される向きに対して前側(図4における左側)をいう。
メインシャフト72の先端側には、バルーン71が設けられている。バルーン71は、内部空間に流体(液体、気体)が流入されることにより弾性的に膨張し、内部空間から流体が流出されることにより収縮するものである。図4においては、拡張した状態のバルーン71が示されている。バルーン71の内部空間は、メインシャフト72の内部空間及びイン側チューブ77の内部空間とそれぞれ連通されている。イン側チューブ77を通じてバルーン71の内部空間に流体が流入されると、バルーン71は、軸線方向101の中央が最大径となるように軸線方向101と直交する径方向へ膨張する。バルーン71が膨張を維持する流体の圧力を保持する程度の流量の流体がバルーン71へ流入されつつ、メインシャフト72の内部空間を通じてバルーン71から流体が流出されることにより、バルーン71において流体が還流される。バルーン71の材質や、バルーン71とメインシャフト72との固定方法は、バルーンカテーテルにおいて用いられる公知の材質及び方法が使用できる。イン側チューブ77の内部空間、並びにメインシャフト72とイン側チューブ77との間の空間が流体ルーメンに相当する。
メインシャフト72の内部に挿通されたイン側チューブ77は、先端側がバルーン71の内部空間へ至っており、基端側がコネクタ部73のイン用ポート76に接続されている。イン側チューブ77の先端は、バルーン71の先端側に設けられた先端チップ75に接続されている。イン側チューブ77の先端チップ75付近には、イン側チューブ77の周壁を貫通する開口80,81が設けられている。開口80,81は、イン側チューブ77の内部空間を流通する流体がバルーン71内へ流出するためのものであり、軸線方向101の周方向に対して異なる位置に配置されている。
先端チップ75には、造影剤を素材としたマーカーが設けられている。造影剤としては、例えば、硫酸バリウム、酸化ビスマス、次炭酸ビスマスなどが挙げられる。
イン側チューブ77には、サブシャフト74が挿通されている。サブシャフト74は、コネクタ部73の外側からバルーン71の内部まで延出されている。サブシャフト74は、軸線方向101に長尺な部材であり、軸線方向101に対して湾曲するように弾性的に撓み、かつ先端チップ75に接続されていないので軸線方向101周りの回転をコネクタ部73側から先端側まで伝達可能な管体である。サブシャフト74は、例えばステンレスコイルから構成される管体である。
サブシャフト74の内部空間にはガイドワイヤシャフト84が挿通されている。ガイドワイヤシャフト84は、先端チップ75に接続されている。先端チップ75には、ガイドワイヤシャフト84の内部空間を外部へ連続させるように軸線方向101に沿った孔85が形成されている。ガイドワイヤシャフト84の先端は、孔85を挿通して先端チップ75の先端に到達している。ガイドワイヤシャフト84の素材としては、公知のものが採用され得る。ガイドワイヤシャフト84の内部空間がワイヤルーメンに相当する。
光ファイバ79は、コネクタ部73の外側からサブシャフト74の外周に接着されて軸線方向101に延出され、バルーン71の内部まで到達している。光ファイバ79は、レーザ光発生手段12において発生され、光ファイバ79の基端に照射されたレーザ光を先端側へ伝播するものである。光ファイバ79は、レーザ光の波長において全反射する屈折率を有するものが適宜採用され、具体的には、単一モードファイバ、偏波保持ファイバ、マルチモードファイバ、イメージ伝送用バンドルファイバが挙げられる。光ファイバ79が導光材に相当する。
光ファイバ79の先端面82は、軸線方向101に対して45度の角度であって、外面がサブシャフト74側を向くように傾斜した平面である。先端面82には、反射材83が積層されている。反射材83は、光ファイバ79を伝播するレーザ光を全反射する素材が採用される。反射材83の材質としては石英系のガラスなどが採用されるが、その材質は特に限定されない。
光ファイバ79及び反射材83は、サブシャフト74と一体に軸線方向101周りに回転可能であり、かつ軸線方向101へスライド可能である。光ファイバ79及び反射材83の回転及びスライドは、コネクタ部73から延出されたサブシャフト74の基端側が直接又は間接に操作されることによって制御される。具体的には、サブシャフト74の基端側に駆動機構14からの駆動力が付与されることによって、サブシャフト74と共に光ファイバ79及び反射材83がサブシャフト74の外周に沿って回転及びスライドされる。
なお、各図には示されてないが、バルーン71内におけるイン側チューブ77の外壁などに温度センサが設けられてもよい。温度センサとしては、バルーン71の内部に設置可能なものであれば、例えば熱電対などの公知のものを用いることができる。温度センサから延出されたケーブルが外部へ導かれることによって、バルーン71内の流体の温度をモニタリングすることができる。
図5に示されるように、メインシャフト72の基端側にはコネクタ部73が設けられている。コネクタ部73は、アブレーションデバイス61を操作するときに施術者が持つ部分である。コネクタ部73にはアウト用ポート78が設けられている。アウト用ポート78は、メインシャフト72とイン側チューブ77との間の空間と連続している。この空間を通じて、バルーン71に還流される流体がアウト用ポート78から流出する。
コネクタ部73には、イン用ポート76が設けられている。イン用ポート76は、イン側チューブ77とサブシャフト74との間の空間と連続している。この空間を通じて、バルーン71に還流される流体がイン用ポート76から流入する。なお、コネクタ部73の内部において、イン用ポート76及びアウト用ポート78はそれぞれがOリング86,87によって液密に分離されている。また、イン用ポート76及びアウト用ポート78は、図1に示される流体還流手段13と接続されている。
サブシャフト74及び光ファイバ79は、コネクタ部73の基端から外部へ延出されている。サブシャフト74及び光ファイバ79は、コネクタ部73に対して軸線方向101に沿って移動可能であり、かつ軸線方向101周りに回転可能である。なお、コネクタ部73の内部において、サブシャフト74及び光ファイバ79の周囲は、Oリング88によって液密が確保されている。光ファイバ79は、図1に示されるレーザ光発生手段12と接続されており、また、サブシャフト74は、図1に示される駆動機構14と接続されている。
前述されたアブレーションデバイス61の使用方法は、アブレーションデバイス11の使用方法と同様であり、使用方法の一例として、図1に示されるアブレーションシステム10として使用される。
すなわち、アブレーションデバイス61は、先端側から腎動脈40に挿入されてる。このとき、腎動脈40には、ガイドワイヤが予め挿通されて目的部分へ到達されており、アブレーションデバイス61のガイドワイヤシャフト84にガイドワイヤが挿通され、そのガイドワイヤに沿ってアブレーションデバイス61のメインシャフト72が腎動脈40に挿入される。
そして、アブレーションデバイス61が腎動脈40の目的部分まで挿入されると、流体がバルーン71へ還流されてバルーン71が拡張する。続いて、レーザ光が、光ファイバ79を通じてバルーン71内へ伝播され、反射材73によって軸線方向101と交差する方向であってメインシャフト72の外側へ反射される。反射されたレーザ光は、イン側チューブ77及びバルーン71を透過して、腎動脈40の血管壁へ照射され、血管壁を透過して神経に到達する。光ファイバ79は、サブシャフト74の外周に沿って移動及び回転するので、メインシャフト72の外側へ反射されるレーザ光がサブシャフト74やガイドワイヤシャフト84に挿通されたガイドワイヤによって遮断されることがない。したがって、腎動脈40にレーザ光が照射されるとき、すなわち、アブレーションが行われるときにガイドワイヤがガイドワイヤシャフト84から引き出されている必要はない。
[第2実施形態の作用効果]
前述された第2実施形態によれば、第1実施形態と同様に、腎動脈の神経に対してアブレーションを行うとともに、腎動脈の内膜への加熱を抑制して、内膜への熱損傷を抑制することができる。
前述された第2実施形態によれば、第1実施形態と同様に、腎動脈の神経に対してアブレーションを行うとともに、腎動脈の内膜への加熱を抑制して、内膜への熱損傷を抑制することができる。
また、光ファイバ79がサブシャフト74の外周に固定されており、反射材83が軸線方向101と交差する方向であってメインシャフト72の外側へレーザ光を反射するので、サブシャフト74の内部に挿通されたガイドワイヤシャフト84や、ガイドワイヤシャフト84に挿通されたガイドワイヤによって、反射されたレーザ光が遮断されない。これにより、アブレーションデバイス61にガイドワイヤを挿通した状態でアブレーションを行うことができる。また、ガイドワイヤシャフト84は、メインシャフト72の先端から基端まで延出されているので、アブレーションデバイス61からガイドワイヤを抜いた後、再びアブレーションデバイス61へガイドワイヤを挿通することが容易である。
また、反射材83が光ファイバ79の先端側に一体に設けられており、光ファイバ79がサブシャフト74と共に、軸線方向101に沿って移動かつ回転可能なので、アブレーションデバイス61が簡易な構成で実現される。また、コネクタ部73においてサブシャフト74を操作して、反射材83の移動及び回転させることができる。
[第2実施形態の変形例]
なお、第2実施形態では、光ファイバ79の先端に反射材83が一体に設けられているが、光ファイバ79の先端と反射材83との間にレンズなどのレーザ光を透過する部材が設けられていてもよい。また、光ファイバ79の先端と反射材83とが空間を介して配置されており、光ファイバ79及び反射材33がサブシャフト74と一体に移動及び回転するように光ファイバ79及び反射材83がそれぞれサブシャフト74に接着されていてもよい。
なお、第2実施形態では、光ファイバ79の先端に反射材83が一体に設けられているが、光ファイバ79の先端と反射材83との間にレンズなどのレーザ光を透過する部材が設けられていてもよい。また、光ファイバ79の先端と反射材83とが空間を介して配置されており、光ファイバ79及び反射材33がサブシャフト74と一体に移動及び回転するように光ファイバ79及び反射材83がそれぞれサブシャフト74に接着されていてもよい。
また、ガイドワイヤシャフト84が設けられることなく、サブシャフト74にガイドワイヤが挿通されるように構成されてもよい。
[第3実施形態]
[アブレーションシステム110]
図6に示されるように、アブレーションシステム110は、アブレーションデバイス111、レーザ光発生手段112、流体還流手段113、駆動機構114、及び制御手段115を有する。
[アブレーションシステム110]
図6に示されるように、アブレーションシステム110は、アブレーションデバイス111、レーザ光発生手段112、流体還流手段113、駆動機構114、及び制御手段115を有する。
[アブレーションデバイス111]
図6,7に示されるように、アブレーションデバイス111は、先端側にバルーン121が設けられたシャフト122を有する。シャフト122は、軸線方向101に長尺な部材である。シャフト122は、軸線方向101に対して湾曲するように弾性的に撓み得る管体である。湾曲していない状態のシャフト122が延びる方向が、本明細書において軸線方向101と称される。軸線方向101が第1方向に相当する。
図6,7に示されるように、アブレーションデバイス111は、先端側にバルーン121が設けられたシャフト122を有する。シャフト122は、軸線方向101に長尺な部材である。シャフト122は、軸線方向101に対して湾曲するように弾性的に撓み得る管体である。湾曲していない状態のシャフト122が延びる方向が、本明細書において軸線方向101と称される。軸線方向101が第1方向に相当する。
シャフト122には、イン側チューブ127及び導光用チューブ134が挿通されている。シャフト122の外径及び内径は、軸線方向101に対して必ずしも一定である必要はないが、操作性の観点からは、先端側より基端側の剛性が高いことが好ましい。シャフト122は、合成樹脂やステンレスなど、バルーンカテーテルに用いられている公知の材質が使用でき、また、必ずしも1種類の素材のみから構成される必要はなく、他素材からなる複数の部品が組み付けられて構成されていてもよい。
なお、本実施形態において基端側とは、アブレーションデバイス111が血管に挿入される向きに対して後ろ側(図6における右側)をいう。先端側とは、アブレーションデバイス111が血管に挿入される向きに対して前側(図6における左側)をいう。
シャフト122の先端側には、バルーン121が設けられている。バルーン121は、内部空間に流体(液体、気体)が流入されることにより弾性的に膨張し、内部空間から流体が流出されることにより収縮するものである。図6,7においては、収縮した状態のバルーン121が示されている。バルーン121の内部空間は、シャフト122の内部空間及びイン側チューブ127の内部空間とそれぞれ連通されている。イン側チューブ127を通じてバルーン121の内部空間に流体が流入されると、バルーン121は、軸線方向101の中央が最大径となるように軸線方向101と直交する径方向へ膨張する。バルーン121が膨張を維持する流体の圧力を保持する程度の流量の流体がバルーン121へ流入されつつ、シャフト122の内部空間を通じてバルーン121から流体が流出されることにより、バルーン121において流体が還流される。バルーン121の材質や、バルーン121とシャフト122との固定方法は、バルーンカテーテルにおいて用いられる公知の材質及び方法が使用できる。イン側チューブ127の内部空間及びシャフト122の内部空間が流体ルーメンに相当する。
シャフト122の基端側にはアウト用ポート128が設けられている。アウト用ポート128は、シャフト122の内部空間と連続している。シャフト122の内部空間を通じて、バルーン121に還流される流体がアウト用ポート128から流出する。
シャフト122の基端にはハブ123が設けられている。ハブ123には、光ファイバ129が挿通されている。ハブ123には、光ファイバ129の挿通口とは別個にイン用ポート126が設けられている。イン用ポート126は、イン側チューブ127の内部空間と連続している。イン側チューブ127の内部空間を通じて、バルーン121に還流される流体がイン用ポート126から流入する。
シャフト122の外側には、ガイドワイヤ用チューブ124が設けられている。ガイドワイヤ用チューブ124は、シャフト122の軸線方向101の長さに対して十分に短い。なお、ガイドワイヤ用チューブ124は、必ずしもシャフト122の外側に設けられる必要はない。例えば、本実施形態のようなラピッドエクスチェンジ型に代えて、モノレール型が採用されるのであれば、ガイドワイヤ用チューブ124はシャフト122の内部空間に挿通されていてもよい。
シャフト122の内部に挿通されたイン側チューブ127は、先端側がバルーン121の内部空間へ至っており、基端側がイン用ポート126に接続されている。イン側チューブ127の先端は、バルーン121の先端側に設けられた先端チップ125に接続されている。イン側チューブ127の先端チップ125付近には、イン側チューブ127の周壁を貫通する開口130,131が設けられている。開口130,131は、イン側チューブ127の内部空間を流通する流体がバルーン121内へ流出するためのものであり、軸線方向101の周方向に対して異なる位置に配置されている。
先端チップ125には、造影剤を素材としたマーカーが設けられている。造影剤としては、例えば、硫酸バリウム、酸化ビスマス、次炭酸ビスマスなどが挙げられる。
導光用チューブ134は、軸線方向101に対して湾曲するように弾性的に撓み得る管体である。イン側チューブ127の内部に挿通された導光用チューブ134は、先端側がイン側チューブ127の開口130,131付近へ至っており、基端側がハブ123を通じて外部へ延出されている。導光用チューブ134の先端付近であってバルーン121の内部空間となる位置の側壁には開口135が形成されている。開口135により、導光用チューブ134の内部空間が外部と連通されている。
光ファイバ129は、ハブ123から導光用チューブ134の内部に挿通されて、開口135まで延出されている。導光用チューブ134の内部空間の内径は、光ファイバ129の外径と同等である。したがって、光ファイバ129の軸線と導光用チューブ134の軸線とはほぼ合致している。光ファイバ129の先端面132は、軸線と直交している。光ファイバ129は、レーザ光発生手段112において発生され、光ファイバ129の基端に照射されたレーザ光を先端側へ伝播するものである。光ファイバ129は、レーザ光の波長において全反射する屈折率を有するものが適宜採用され、具体的には、単一モードファイバ、偏波保持ファイバ、マルチモードファイバ、イメージ伝送用バンドルファイバが挙げられる。光ファイバ129が導光材に相当する。
反射材133は、導光用チューブ134の内部空間において、光ファイバ129の先端面132と軸線方向101に対向して配置されている。反射材133において先端面132と対向する反射面136は、光ファイバ129の軸線に対して45度の角度となるように傾斜された平面である。先端面132及び反射面136は、導光用チューブ134の開口135を通じて導光用チューブ134の外部へ露出されている。反射材133は、光ファイバや樹脂などからなる円柱体であり、その外径は、導光用チューブ134の内部空間の内径と同等である。したがって、反射材133の軸線と導光用チューブ134の軸線とはほぼ合致している。反射材133において反射面136を含む表面には、金属層が積層されている。金属層は、例えば、ニッケル、金、アルミニウム、クロムなどが単独又は混合されて反射材133の表面にメッキ又はスパッタリングなどにより形成されたものである。
光ファイバ129及び反射材133は、先端面132及び反射面136の位置関係、すなわち離間距離及び反射面136の角度を保持した状態で、導光用チューブ134と一体として軸線(軸線方向101)周りに回転可能であり、かつ軸線方向101へスライド可能である。光ファイバ129及び反射材133の回転及びスライドは、ハブ123から延出された導光用チューブ134の基端側が直接又は間接に操作されることによって制御される。具体的には、導光用チューブ134の基端側に駆動機構114からの駆動力が付与されることによって、導光用チューブ134が回転及びスライドされる。
なお、各図には示されてないが、バルーン121内におけるイン側チューブ127の外壁などに温度センサが設けられてもよい。温度センサとしては、バルーン121の内部に設置可能なものであれば、例えば熱電対などの公知のものを用いることができる。温度センサから延出されたケーブルが外部へ導かれることによって、バルーン121内の流体の温度をモニタリングすることができる。また、シャフト122に第3ルーメンを設けて、内視鏡、IVUS、OCTなどのイメージング部材が内挿されてもよい。
レーザ光発生手段112は、公知のレーザ光発生装置を用いることができる。レーザ光発生手段112は、例えば、励起源の光がレーザ媒質に与えられ、光共振器の反射により発振されて出力するものである。レーザ光発生手段112から出力されるレーザ光は、連続波であることが好ましく、また、レーザ光の波長としては400~2000nmの範囲であることが好ましい。特に、レーザ光の波長が800~1500nmの範囲(915nm、980nm、1470nm)である場合に、局所的な温度上昇が確認でき、腎動脈の内膜を適切に加温できる。レーザ光発生手段112は、光ファイバ129の基端と接続されており、レーザ光発生手段112から出力されたレーザ光は光ファイバ129の基端面に照射される。
流体還流手段113は、ローラポンプやシリンジポンプを有する公知の装置を用いることができる。流体還流手段113は、アブレーションデバイス111のイン用ポート126及びアウト用ポート128とチューブなどの流路を介して接続されている。流体還流手段113は、流体を貯留するタンクを有しており、ポンプの駆動力によってタンクからイン用ポート126に所望の流量及び圧力で流体を供給する。また、アウト用ポート128から流出した流体は、タンクに還流させてもよいし、廃液として廃棄してもよい。また、流体還流手段113は、タンク内の流体を冷却するための冷却装置を備えていてもよい。流体は特に限定されないが、腎動脈のアブレーションを目的としては、生理食塩水と造影剤の混合溶液が好ましい。
駆動機構114は、導光用チューブ134の基端側を軸線方向101に対して回転及びスライドさせる駆動力を付与するものであり、モータやスライダなどを組み合わせた機構が採用され得る。なお、駆動機構114は必須ではなく、導光用チューブ134の基端側を施術者がハンドリングすることにより、導光用チューブ134が軸線方向101に対して回転及びスライドされてもよい。
制御手段115は、例えば、予めプログラムされたプロトコルに基づいて、レーザ光発生手段112からレーザ光を所定の光強度及び時間で発生させたり、流体還流手段113の流量及び圧力を制御したり、駆動機構114の駆動量及びタイミングを制御したりするものである。制御手段115は、これらの動作制御を行うための演算装置を備えている。
[アブレーションデバイス11の使用方法]
以下に、腎動脈40の神経41を切断するためのアブレーションシステム110の使用方法が説明される。
以下に、腎動脈40の神経41を切断するためのアブレーションシステム110の使用方法が説明される。
図6に示されるように、アブレーションデバイス111は、レーザ光発生手段112、流体還流手段113、及び駆動機構114と接続されている。また、レーザ光発生手段112、流体還流手段113、及び駆動機構114は制御手段115と接続されている。制御手段115には、腎動脈40に対してアブレーションを行うに適したプログラムが予め設定されている。
アブレーションデバイス111は、先端側から腎動脈40に挿入される。腎動脈40には、X線透視下で造影を行いながら、ガイドワイヤが予め挿通されて目的部分へ到達されている。このようなガイドワイヤの挿通は、例えば、特開2006-326226号公報や特開2006-230442号公報に開示された公知の手法によりなされる。
アブレーションデバイス111が腎動脈40へ挿入されるときには、バルーン121には流体が圧入されておらず、バルーン121は収縮した状態である。この状態のアブレーションデバイス111の先端から、ガイドワイヤがガイドワイヤ用チューブ124に挿通される。そして、アブレーションデバイス111が、ガイドワイヤに沿って腎動脈40に挿入される。腎動脈40におけるアブレーションデバイス111の挿入位置は、例えば、先端チップ125に設置されたマーカをX線下により確認することによって把握される。
図8に示されるように、アブレーションデバイス111が腎動脈40の目的部分まで挿入されると、制御手段115によって流体還流手段113が駆動され、流体還流手段113からイン側チューブ127を通じて生理食塩水などの流体がバルーン121へ流入されてバルーン121が拡張する。また、バルーン121からシャフト122を通じてアウト用ポート128から流体が流体還流手段113に還流される。図8において矢印151で示されるバルーン21に対する流体の還流は、制御手段115によって流体還流手段113が制御されることによって、所望の流速及び圧力となるように管理されている。また、流体還流手段113に貯留されている流体は、腎動脈40の内膜を冷却するに適した温度に管理されている。
続いて、制御手段115によってレーザ光発生手段112及び駆動機構114が駆動され、レーザ光発生手段112から発生されたレーザ光42が、光ファイバ129を通じてバルーン121内へ伝播され、先端面132が出射されたレーザ光42が反射材133の反射面136によって軸線方向101と交差する方向(本実施形態では直交する方向、第2方向に相当する。)へ反射される。反射されたレーザ光42は、イン側チューブ127及びバルーン121を透過して、腎動脈40の血管壁へ照射され、血管壁を透過して神経41に到達する。これにより、レーザ光42が照射された神経41(図8では便宜的に2点鎖線で示されている。)がアブレーションされる。なお、レーザ光42の強度や照射時間は、制御手段115によって管理されている。
また、制御手段115によって駆動機構114が駆動されることによって、導光用チューブ134が、軸線方向101に対して回転されつつスライドされる。導光用チューブ134の回転及びスライドに伴って、光ファイバ129及び反射材133も回転及びスライドされるので、反射材133によって反射されるレーザ光142の向きが軸線方向101の周方向に変位する(矢印152)。これにより、腎動脈40の周方向に存在する神経41に対して一様にアブレーションを行うことができる。また、反射材133によって反射されるレーザ光42が軸線方向101に変位する(矢印153)。これにより、腎動脈40が延びる方向(軸線方向101と同じ方向である。)に存在する神経41に対して一様にアブレーションを行うことができる。
なお、導光用チューブ134の回転及びスライドのパターンは、制御手段115におけるプログラミングによって任意に設定できる。したがって、例えば、導光用チューブ134が回転されつつスライドされることによって、腎動脈40の神経41に対して螺旋状にレーザ光42を照射することができる。また、光ファイバ129の回転又はスライドを一時停止したときにレーザ光発生手段112からレーザ光42を照射することによって、腎動脈40の神経41に対してスポット状にレーザ光42を照射することもできる。つまり、腎動脈40が延びる方向の所定の範囲の全周に存在する神経41に対して、レーザ光42を照射するタイミングや順序などは、任意に設定することができる。
一方、反射材133によって反射されたレーザ光42は、腎動脈40の神経41に到達する前に、腎動脈40の内膜側の組織にも照射されることとなる。腎動脈40の内膜には拡張されたバルーン121が接触しており、バルーン121内に流体が還流されている。この流体の冷却効果によって、腎動脈40の内膜側の加熱が抑制される。したがって、光ファイバ129のスライド範囲は、バルーン121が腎動脈40の内膜に接触している範囲とすることが好適である。また、バルーン121内に還流される流体は、導光用チューブ134の開口135を通じて、反射材133の反射面136に接触する。これにより、反射面136が流体により冷却される。
[第3実施形態の作用効果]
前述された実施形態によれば、腎動脈40の神経41に対してアブレーションを行うとともに、腎動脈40の内膜への加熱を抑制して、内膜への熱損傷を抑制することができる。
前述された実施形態によれば、腎動脈40の神経41に対してアブレーションを行うとともに、腎動脈40の内膜への加熱を抑制して、内膜への熱損傷を抑制することができる。
また、反射材133が、光ファイバ129の先端面132に対向して配置されているので、反射材133がレーザ光42により損傷され難い。
また、反射材133は、バルーン121に流通する流体の流路内に配置されているので、反射材133が流体により冷却され、レーザ光42による損傷が更に抑制される。
また、反射材133が軸線方向101に沿ってバルーン121内を移動されつつ、シャフト122の軸線周りに回転されることによって、腎動脈40の周囲の組織に対して一様にレーザ光42が照射される。
また、光ファイバ129及び反射材133は、導光用チューブ134の内部空間に配置されているので、光ファイバ129及び反射材133が相互の位置関係を保持した状態で、移動及び回転可能となる。
また、導光用チューブ134は、反射材133の反射面136に外部の流体を接触可能とする開口135を有するので、反射材133の反射面136が流体により冷却される。
[第3実施形態の変形例]
なお、本実施形態では、光ファイバ129の先端面132と反射材133の反射面136との間に他の部材が設けられていないが、光ファイバ129の先端面132と反射材133の反射面136との間にレンズなどのレーザ光を透過する部材が設けられていてもよい。
なお、本実施形態では、光ファイバ129の先端面132と反射材133の反射面136との間に他の部材が設けられていないが、光ファイバ129の先端面132と反射材133の反射面136との間にレンズなどのレーザ光を透過する部材が設けられていてもよい。
また、本実施形態では、導光用チューブ134がイン側チューブ127内を挿通されているが、導光用チューブ134は、先端側がバルーン121内に到達していれば、挿通経路は限定されない。したがって、例えば、シャフト122の内部空間に挿通されていてもよいし、シャフト122の外側からバルーン121内へ挿入されていてもよい。
[第4実施形態]
以下、本発明の第4実施形態に係るアブレーションデバイス61が説明される。アブレーションデバイス61は、図6に示されたアブレーションデバイス111と同様に、レーザ光発生手段112、流体還流手段113、駆動機構114、及び制御手段115を有するアブレーションシステムの一部を構成する。
以下、本発明の第4実施形態に係るアブレーションデバイス61が説明される。アブレーションデバイス61は、図6に示されたアブレーションデバイス111と同様に、レーザ光発生手段112、流体還流手段113、駆動機構114、及び制御手段115を有するアブレーションシステムの一部を構成する。
図9,10に示されるように、アブレーションデバイス161は、先端側にバルーン171が設けられたメインシャフト172を有する。メインシャフト172は、軸線方向101に長尺な部材である。メインシャフト172は、軸線方向101に対して湾曲するように弾性的に撓み得る管体である。湾曲していない状態のメインシャフト172が延びる方向が、本明細書において軸線方向101と称される。
メインシャフト172には、イン側チューブ177、サブシャフト174、導光用チューブ189及びガイドワイヤシャフト184が挿通されている。メインシャフト172の外径及び内径は、軸線方向101に対して必ずしも一定である必要はないが、操作性の観点からは、先端側より基端側の剛性が高いことが好ましい。メインシャフト172は、合成樹脂やステンレスなど、バルーンカテーテルに用いられている公知の材質が使用でき、また、必ずしも1種類の素材のみから構成される必要はなく、他素材からなる複数の部品が組み付けられて構成されていてもよい。
なお、本実施形態において基端側とは、アブレーションデバイス161が血管に挿入される向きに対して後ろ側(図9(A)における右側)をいう。先端側とは、アブレーションデバイス161が血管に挿入される向きに対して前側(図9(A)における左側)をいう。
メインシャフト172の先端側には、バルーン171が設けられている。バルーン171は、内部空間に流体(液体、気体)が流入されることにより弾性的に膨張し、内部空間から流体が流出されることにより収縮するものである。図9においては、拡張した状態のバルーン171が示されている。バルーン171の内部空間は、メインシャフト172の内部空間及びイン側チューブ177の内部空間とそれぞれ連通されている。イン側チューブ177を通じてバルーン171の内部空間に流体が流入されると、バルーン171は、軸線方向101の中央が最大径となるように軸線方向101と直交する径方向へ膨張する。バルーン171が膨張を維持する流体の圧力を保持する程度の流量の流体がバルーン171へ流入されつつ、メインシャフト172の内部空間を通じてバルーン171から流体が流出されることにより、バルーン171において流体が還流される。バルーン171の材質や、バルーン171とメインシャフト172との固定方法は、バルーンカテーテルにおいて用いられる公知の材質及び方法が使用できる。イン側チューブ177の内部空間、並びにメインシャフト172とイン側チューブ177との間の空間が流体ルーメンに相当する。
メインシャフト172の内部に挿通されたイン側チューブ177は、先端側がバルーン171の内部空間へ至っており、基端側がコネクタ部173のイン用ポート176に接続されている。イン側チューブ177の先端は、バルーン171の先端側に設けられた先端チップ175に接続されている。イン側チューブ177の先端チップ175付近には、イン側チューブ177の周壁を貫通する開口180,181が設けられている。開口180,181は、イン側チューブ177の内部空間を流通する流体がバルーン171内へ流出するためのものであり、軸線方向101の周方向に対して異なる位置に配置されている。
先端チップ175には、造影剤を素材としたマーカーが設けられている。造影剤としては、例えば、硫酸バリウム、酸化ビスマス、次炭酸ビスマスなどが挙げられる。
イン側チューブ177には、サブシャフト174が挿通されている。サブシャフト174は、コネクタ部173の外側からバルーン171の内部まで延出されている。サブシャフト174は、軸線方向101に長尺な部材であり、軸線方向101に対して湾曲するように弾性的に撓み、かつ先端チップ175に接続されていないので軸線方向101周りの回転をコネクタ部173側から先端側まで伝達可能な管体である。サブシャフト174は、例えばステンレスコイルから構成される管体である。
サブシャフト174の内部空間にはガイドワイヤシャフト184が挿通されている。ガイドワイヤシャフト184は、先端チップ175に接続されている。先端チップ175には、ガイドワイヤシャフト184の内部空間を外部へ連続させるように軸線方向101に沿った孔185が形成されている。ガイドワイヤシャフト184の先端は、孔185を挿通して先端チップ175の先端に到達している。ガイドワイヤシャフト184の素材としては、公知のものが採用され得る。ガイドワイヤシャフト184の内部空間がワイヤルーメンである。
導光用チューブ189は、軸線方向101に対して湾曲するように弾性的に撓み得る管体である。導光用チューブ189は、コネクタ部173の外側からサブシャフト174の外周に接着されて軸線方向101に延出され、バルーン171の内部まで到達している。導光用チューブ189の先端付近であってバルーン171の内部空間となる位置の側壁には開口190が形成されている。開口190により、導光用チューブ189の内部空間が外部と連通されている。
光ファイバ179は、コネクタ部173から導光用チューブ189の内部に挿通されて、開口190まで延出されている。導光用チューブ189の内部空間の内径は、光ファイバ179の外径と同等である。したがって、光ファイバ179の軸線と導光用チューブ189の軸線とはほぼ合致している。光ファイバ179の先端面182は、軸線と直交している。光ファイバ179は、レーザ光発生手段112において発生され、光ファイバ179の基端に照射されたレーザ光を先端側へ伝播するものである。光ファイバ179は、レーザ光の波長において全反射する屈折率を有するものが適宜採用され、具体的には、単一モードファイバ、偏波保持ファイバ、マルチモードファイバ、イメージ伝送用バンドルファイバが挙げられる。光ファイバ179が導光材に相当する。
反射材183は、導光用チューブ189の内部空間において、光ファイバ179の先端面182と軸線方向101に対向して配置されている。反射材183において先端面182と対向する反射面191は、光ファイバ179の軸線に対して45度の角度となるように傾斜された平面である。先端面182及び反射面191、導光用チューブ189の開口190を通じて導光用チューブ189の外部へ露出されている。反射材183は、光ファイバや樹脂などからなる円柱体であり、その外径は、導光用チューブ189の内部空間の内径と同等である。したがって、反射材183の軸線と導光用チューブ189の軸線とはほぼ合致している。反射材183において反射面191を含む表面には、金属層が積層されている。金属層は、例えば、ニッケル、金、アルミニウム、クロムなどが単独又は混合されて反射材83の表面にメッキ又はスパッタリングなどにより形成されたものである。
光ファイバ179及び反射材183は、先端面182及び反射面191の位置関係、すなわち離間距離及び反射面191の角度を保持した状態で、サブシャフト174及び導光用チューブ189と一体として軸線方向101周りに回転可能であり、かつ軸線方向101へスライド可能である。光ファイバ179及び反射材183の回転及びスライドは、コネクタ部173から延出されたサブシャフト174の基端側が直接又は間接に操作されることによって制御される。具体的には、サブシャフト174の基端側に駆動機構114からの駆動力が付与されることによって、サブシャフト174が回転及びスライドされる。
なお、各図には示されてないが、バルーン171内におけるイン側チューブ177の外壁などに温度センサが設けられてもよい。温度センサとしては、バルーン171の内部に設置可能なものであれば、例えば熱電対などの公知のものを用いることができる。温度センサから延出されたケーブルが外部へ導かれることによって、バルーン171内の流体の温度をモニタリングすることができる。
図10に示されるように、メインシャフト172の基端側にはコネクタ部173が設けられている。コネクタ部173は、アブレーションデバイス161を操作するときに施術者が持つ部分である。コネクタ部173にはアウト用ポート178が設けられている。アウト用ポート178は、メインシャフト172とイン側チューブ177との間の空間と連続している。この空間を通じて、バルーン171に還流される流体がアウト用ポート178から流出する。
コネクタ部173には、イン用ポート176が設けられている。イン用ポート176は、イン側チューブ177とサブシャフト174との間の空間と連続している。この空間を通じて、バルーン171に還流される流体がイン用ポート176から流入する。なお、コネクタ部173の内部において、イン用ポート176及びアウト用ポート178はそれぞれがOリング186,187によって液密に分離されている。また、イン用ポート176及びアウト用ポート178は、図6に示される流体還流手段113と接続されている。
サブシャフト174及び導光用チューブ189は、コネクタ部173の基端から外部へ延出されている。サブシャフト174及び導光用チューブ189は、コネクタ部173に対して軸線方向101に沿って移動可能であり、かつ軸線方向101周りに回転可能である。なお、コネクタ部173の内部において、サブシャフト174及び導光用チューブ189の周囲は、Oリング188によって液密が確保されている。導光用チューブ189に挿入されている光ファイバ179は、図6に示されるレーザ光発生手段112と接続されており、また、サブシャフト174は、図6に示される駆動機構114と接続されている。
前述されたアブレーションデバイス161の使用方法は、アブレーションデバイス111の使用方法と同様であり、使用方法の一例として、図6に示されるアブレーションシステム110として使用される。
すなわち、アブレーションデバイス161は、先端側から腎動脈40に挿入されてる。このとき、腎動脈40には、ガイドワイヤが予め挿通されて目的部分へ到達されており、アブレーションデバイス161のガイドワイヤシャフト184にガイドワイヤが挿通され、そのガイドワイヤに沿ってアブレーションデバイス161のメインシャフト172が腎動脈40に挿入される。
そして、アブレーションデバイス161が腎動脈40の目的部分まで挿入されると、流体がバルーン171へ還流されてバルーン171が拡張する。続いて、レーザ光が、光ファイバ179を通じてバルーン171内へ伝播されて先端面182から出射され、反射材183の反射面191によって軸線方向101と交差する方向であってメインシャフト172の外側へ反射される。反射されたレーザ光は、イン側チューブ177及びバルーン171を透過して、腎動脈40の血管壁へ照射され、血管壁を透過して神経に到達する。導光用チューブ189は、サブシャフト174の外周に沿って移動及び回転するので、メインシャフト172の外側へ反射されるレーザ光がサブシャフト174やガイドワイヤシャフト184に挿通されたガイドワイヤによって遮断されることがない。したがって、腎動脈40にレーザ光が照射されるとき、すなわち、アブレーションが行われるときにガイドワイヤがガイドワイヤシャフト184から引き出されている必要はない。
[第4実施形態の作用効果]
前述された第4実施形態によれば、第3実施形態と同様に、腎動脈の神経に対してアブレーションを行うとともに、腎動脈の内膜への加熱を抑制して、内膜への熱損傷を抑制することができる。
前述された第4実施形態によれば、第3実施形態と同様に、腎動脈の神経に対してアブレーションを行うとともに、腎動脈の内膜への加熱を抑制して、内膜への熱損傷を抑制することができる。
また、反射材183が、光ファイバ179の先端面182に対向して配置されているので、反射材183がレーザ光により損傷され難い。
また、導光用チューブ189がサブシャフト174の外周に固定されており、反射材183が軸線方向101と交差する方向であってメインシャフト172の外側へレーザ光を反射するので、サブシャフト174の内部に挿通されたガイドワイヤシャフト184や、ガイドワイヤシャフト184に挿通されたガイドワイヤによって、反射されたレーザ光が遮断されない。これにより、アブレーションデバイス161にガイドワイヤを挿通した状態でアブレーションを行うことができる。また、ガイドワイヤシャフト184は、メインシャフト172の先端から基端まで延出されているので、アブレーションデバイス161からガイドワイヤを抜いた後、再びアブレーションデバイス161へガイドワイヤを挿通することが容易である。
[第4実施形態の変形例]
なお、第4実施形態では、光ファイバ179の先端面182と反射材183の反射面191との間に他の部材が設けられていないが、光ファイバ179の先端面182と反射材183の反射面191との間にレンズなどのレーザ光を透過する部材が設けられていてもよい。
なお、第4実施形態では、光ファイバ179の先端面182と反射材183の反射面191との間に他の部材が設けられていないが、光ファイバ179の先端面182と反射材183の反射面191との間にレンズなどのレーザ光を透過する部材が設けられていてもよい。
また、ガイドワイヤシャフト184が設けられることなく、サブシャフト174にガイドワイヤが挿通されるように構成されてもよい。
[第5実施形態]
[アブレーションシステム210]
図11に示されるように、アブレーションシステム210は、アブレーションデバイス211、レーザ光発生手段212、流体還流手段213、駆動機構214、及び制御手段215を有する。
[アブレーションシステム210]
図11に示されるように、アブレーションシステム210は、アブレーションデバイス211、レーザ光発生手段212、流体還流手段213、駆動機構214、及び制御手段215を有する。
[アブレーションデバイス211]
図11,12に示されるように、アブレーションデバイス211は、先端側にバルーン221が設けられたシャフト222を有する。シャフト222は、軸線方向101に長尺な部材である。シャフト222は、軸線方向101に対して湾曲するように弾性的に撓み得る管体である。湾曲していない状態のシャフト222が延びる方向が、本明細書において軸線方向101と称される。軸線方向101が第1方向に相当する。
図11,12に示されるように、アブレーションデバイス211は、先端側にバルーン221が設けられたシャフト222を有する。シャフト222は、軸線方向101に長尺な部材である。シャフト222は、軸線方向101に対して湾曲するように弾性的に撓み得る管体である。湾曲していない状態のシャフト222が延びる方向が、本明細書において軸線方向101と称される。軸線方向101が第1方向に相当する。
シャフト222には、イン側チューブ227及び光ファイバ229が挿通されている。シャフト222の外径及び内径は、軸線方向101に対して必ずしも一定である必要はないが、操作性の観点からは、先端側より基端側の剛性が高いことが好ましい。シャフト222は、合成樹脂やステンレスなど、バルーンカテーテルに用いられている公知の材質が使用でき、また、必ずしも1種類の素材のみから構成される必要はなく、他素材からなる複数の部品が組み付けられて構成されていてもよい。
なお、本実施形態において基端側とは、アブレーションデバイス211が血管に挿入される向きに対して後ろ側(図11における右側)をいう。先端側とは、アブレーションデバイス211が血管に挿入される向きに対して前側(図11における左側)をいう。
シャフト222の先端側には、バルーン221が設けられている。バルーン221は、内部空間に流体(液体、気体)が流入されることにより弾性的に膨張し、内部空間から流体が流出されることにより収縮するものである。図11,12においては、収縮した状態のバルーン221が示されている。バルーン221の内部空間は、シャフト222の内部空間及びイン側チューブ227の内部空間とそれぞれ連通されている。イン側チューブ227を通じてバルーン221の内部空間に流体が流入されると、バルーン221は、軸線方向101の中央が最大径となるように軸線方向101と直交する径方向へ膨張する。バルーン221が膨張を維持する流体の圧力を保持する程度の流量の流体がバルーン221へ流入されつつ、シャフト222の内部空間を通じてバルーン221から流体が流出されることにより、バルーン221において流体が還流される。バルーン221の材質や、バルーン221とシャフト222との固定方法は、バルーンカテーテルにおいて用いられる公知の材質及び方法が使用できる。イン側チューブ227の内部空間が第1ルーメンに相当し、シャフト222の内部空間が第2ルーメンに相当する。
シャフト222の基端側にはアウト用ポート228が設けられている。アウト用ポート228は、シャフト222の内部空間と連続している。シャフト222の内部空間を通じて、バルーン221に還流される流体がアウト用ポート228から流出する。
シャフト222の基端にはハブ223が設けられている。ハブ223には、光ファイバ229が挿通されている。ハブ223には、光ファイバ229の挿通口とは別個にイン用ポート226が設けられている。イン用ポート226は、イン側チューブ227の内部空間と連続している。イン側チューブ227の内部空間を通じて、バルーン221に還流される流体がイン用ポート226から流入する。
図12に示されるように、シャフト222の外側には、ガイドワイヤ用チューブ224が設けられている。ガイドワイヤ用チューブ224は、シャフト222の軸線方向101の長さに対して十分に短い。なお、ガイドワイヤ用チューブ224は、必ずしもシャフト222の外側に設けられる必要はない。例えば、本実施形態のようなラピッドエクスチェンジ型に代えて、モノレール型が採用されるのであれば、ガイドワイヤ用チューブ224はシャフト222の内部空間に挿通されていてもよい。
シャフト222の内部に挿通されたイン側チューブ227は、先端側がバルーン221の内部空間へ至っており、基端側がイン用ポート226に接続されている。イン側チューブ227の先端は、バルーン221の先端側に設けられた先端チップ225に接続されている。イン側チューブ227の先端チップ225付近には、イン側チューブ227の周壁を貫通する開口230,231が設けられている。開口230,231は、イン側チューブ227の内部空間を流通する流体がバルーン221内へ流出するためのものであり、軸線方向101の周方向に対して異なる位置に配置されている。
先端チップ225には、造影剤を素材としたマーカーが設けられている。造影剤としては、例えば、硫酸バリウム、酸化ビスマス、次炭酸ビスマスなどが挙げられる。
光ファイバ229は、ハブ223からイン側チューブ227の内部に挿通されて、バルーン221の内部まで延出されている。光ファイバ229は、レーザ光発生手段212において発生され、光ファイバ229の基端に照射されたレーザ光を先端側へ伝波するものである。光ファイバ229は、レーザ光の波長において全反射する屈折率を有するものが適宜作用され、具体的には、単一モードファイバ、偏波保持ファイバ、マルチモードファイバ、イメージ伝送用バンドルファイバが挙げられる。光ファイバ229が導光材に相当する。
図12及び図13に示されるように、イン側チューブ227の内部には、光ファイバ229の先端面232に隣接して拡散部材233が設けられている。拡散部材233は、円柱形状の部材であって軸線方向101の長さは、バルーン221の軸線方向101の長さより短い。拡散部材233は、光ファイバ229の先端面232から出射されるレーザ光を透過させ、かつレーザ光の進行方向が変化するように、すなわち軸線方向101から軸線方向101と交差する方向へ拡散させるものである。拡散部材233として、例えば石英系のガラスなどが採用されるが、その材質は特に限定されない。拡散部材233は、光ファイバ229に連結されて一体にされており、イン側チューブ227の内部空間において、光ファイバ229と共に回転又はスライド可能である。なお、拡散部材233は、屈折によりレーザ光の進行方向を変化させるものだけでなく、反射によってレーザ光の進行方向を変化させるものであってもよい。
図12及び図13に示されるように、イン側チューブ227の内部には、拡散部材233の外側を囲繞するようにして管状部材234が設けられており。管状部材234は先端側及び基端側、つまり先端チップ225側及びハブ223側がそれぞれ封止された円管形状の部材であり、光ファイバ229の先端面232及び拡散部材233の外側を覆っている。管状部材234の軸線方向101の長さは、バルーン221の軸線方向101の長さより短い。管状部材234は、基端側に挿通された光ファイバ229と連結されて一体にされており、イン側チューブ227の内部空間において、光ファイバ229と共に回転又はスライド可能である。つまり、光ファイバ229、拡散部材233及び管状部材234は、イン側チューブ227の内部空間において、一体に回転又はスライド可能である。
管状部材234は、レーザ光を透過可能な樹脂層235の内側に反射層236が積層されたものである。樹脂層235は、例えばポリイミドなどの合成樹脂である。反射層236は、レーザ光を反射する金属などであり、例えば樹脂層235の内面側に金メッキが施されることにより形成される。反射層236は、拡散部材233と対向する内面側と封止された先端側に存在する。なお、反射層236は、必ずしもレーザ光を全反射する必要はなく、レーザ光の一部又は全部を吸収するものであってもよい。
管状部材234は、円管形状の周壁に形成された透過窓237を有する。透過窓237は、反射層236の一部が除去されることにより形成されている。例えば、反射層236である金メッキが施されるときに、透過窓237に該当する樹脂層235の内面がマスキングされることによって形成される。透過窓237は、軸線方向101に沿って延びる細長な螺旋形状である。透過窓237において、管状部材234の内部空間側から外側へレーザ光が透過可能である。
光ファイバ229、拡散部材233及び管状部材234は、イン側チューブ227に対して一体として軸線方向101周りに回転可能であり、かつ軸線方向101へスライド可能である。光ファイバ229、拡散部材233及び管状部材234の回転及びスライドは、ハブ223から延出された光ファイバ229の基端側が直接又は間接に操作されることによって制御される。具体的には、光ファイバ229の基端側に駆動機構214からの駆動力が付与されることによって、光ファイバ229が回転及びスライドされる。これにより、管状部材234の透過窓237の軸線方向101に対する周方向の位置及び軸線方向101の位置が変位する。
なお、各図には示されてないが、バルーン221内におけるイン側チューブ227の外壁などに温度センサが設けられてもよい。温度センサとしては、バルーン221の内部に設置可能なものであれば、例えば熱電対などの公知のものを用いることができる。温度センサから延出されたケーブルが外部へ導かれることによって、バルーン221内の流体の温度をモニタリングすることができる。また、シャフト222に第3ルーメンを設けて、内視鏡、IVUS、OCTなどのイメージング部材が内挿されてもよい。
レーザ光発生手段212は、公知のレーザ光発生装置を用いることができる。レーザ光発生手段212は、例えば、励起源の光がレーザ媒質に与えられ、光共振器の反射により発振されて出力するものである。レーザ光発生手段212から出力されるレーザ光は、連続波であることが好ましく、また、レーザ光の波長としては400~2000nmの範囲であることが好ましい。特に、レーザ光の波長が800~1500nmの範囲(915nm、980nm、1470nm)である場合に、局所的な温度上昇が確認でき、腎動脈の内膜を適切に加温できる。レーザ光発生手段212は、光ファイバ229の基端と接続されており、レーザ光発生手段212から出力されたレーザ光は光ファイバ229の基端面に照射される。
流体還流手段213は、ローラポンプやシリンジポンプを有する公知の装置を用いることができる。流体還流手段213は、アブレーションデバイス211のイン用ポート226及びアウト用ポート228とチューブなどの流路を介して接続されている。流体還流手段213は、流体を貯留するタンクを有しており、ポンプの駆動力によってタンクからイン用ポート226に所望の流量及び圧力で流体を供給する。また、アウト用ポート228から流出した流体は、タンクに還流させてもよいし、廃液として廃棄してもよい。また、流体還流手段213は、タンク内の流体を冷却するための冷却装置を備えていてもよい。流体は特に限定されないが、腎動脈のアブレーションを目的としては、生理食塩水と造影剤の混合溶液が好ましい。
駆動機構214は、光ファイバ229の基端側を軸線方向101に対して回転及びスライドさせる駆動力を付与するものであり、モータやスライダなどを組み合わせた機構が採用され得る。なお、駆動機構214は必須ではなく、光ファイバ229の基端側を施術者がハンドリングすることにより、光ファイバ229が軸線方向101に対して回転及びスライドされてもよい。
制御手段215は、例えば、予めプログラムされたプロトコルに基づいて、レーザ光発生手段212からレーザ光を所定の光強度及び時間で発生させたり、流体還流手段213の流量及び圧力を制御したり、駆動機構214の駆動量及びタイミングを制御したりするものである。制御手段215は、これらの動作制御を行うための演算装置を備えている。
[アブレーションデバイス211の使用方法]
以下に、腎動脈40の神経41を切断するためのアブレーションシステム210の使用方法が説明される。
以下に、腎動脈40の神経41を切断するためのアブレーションシステム210の使用方法が説明される。
図11に示されるように、アブレーションデバイス211は、レーザ光発生手段212、流体還流手段213、及び駆動機構214と接続されている。また、レーザ光発生手段212、流体還流手段213、及び駆動機構214は制御手段215と接続されている。制御手段215には、腎動脈40に対してアブレーションを行うに適したプログラムが予め設定されている。
アブレーションデバイス211は、先端側から腎動脈40に挿入される。腎動脈40には、X線透視下で造影を行いながら、ガイドワイヤが予め挿通されて目的部分へ到達されている。このようなガイドワイヤの挿通は、例えば、特開2006-326226号公報や特開2006-230442号公報に開示された公知の手法によりなされる。
アブレーションデバイス211が腎動脈40へ挿入されるときには、バルーン221には流体が圧入されておらず、バルーン221は収縮した状態である。この状態のアブレーションデバイス211の先端から、ガイドワイヤがガイドワイヤ用チューブ224に挿通される。そして、アブレーションデバイス211が、ガイドワイヤに沿って腎動脈40に挿入される。腎動脈40におけるアブレーションデバイス211の挿入位置は、例えば、先端チップ225に設置されたマーカをX線下により確認することによって把握される。
図14に示されるように、アブレーションデバイス211が腎動脈40の目的部分まで挿入されると、制御手段215によって流体還流手段213が駆動され、流体還流手段213からイン側チューブ227を通じて流体がバルーン221へ流入されてバルーン221が拡張する。また、バルーン221からシャフト222を通じてアウト用ポート228から流体が流体還流手段213に還流される。バルーン221に対する流体の還流は、制御手段215によって流体還流手段213が制御されることによって、所望の流速及び圧力となるように管理されている。また、流体還流手段213に貯留されている流体は、腎動脈40の内膜を冷却するに適した温度に管理されている。
続いて、制御手段215によってレーザ光発生手段212及び駆動機構214が駆動され、レーザ光発生手段212から発生されたレーザ光42が、光ファイバ229を通じてバルーン221内へ伝波され、拡散部材233によって軸線方向101と交差する複数の方向へ拡散される。拡散されたレーザ光42は、管状部材234の反射層236によって、管状部材234の内部空間においてを反射される。そして、管状部材234の透過窓237に到達したレーザ光42が透過窓237を透過し、更にイン側チューブ227及びバルーン221を透過して、腎動脈40の血管壁へ照射され、血管壁を透過して神経41に到達する。これにより、管状部材234の透過窓237によって螺旋形状にレーザ光42が神経41へ照射されて、神経41がアブレーションされる。なお、レーザ光の強度や照射時間は、制御手段215によって管理されている。
また、制御手段215によって駆動機構214が駆動されることによって、レーザ光42を伝波する光ファイバ229が、軸線方向101に対して回転されつつスライドされる。光ファイバ229が回転されると共に拡散部材233及び管状部材234も回転されるので、螺旋形状の透過窓237を透過するレーザ光42の向きが軸線方向101の周方向に変位する。これにより、腎動脈40の周方向に存在する神経41に対して一様にアブレーションを行うことができる。また、光ファイバ229がスライドされると共に透過窓237もスライドされるので、透過窓237を透過するレーザ光42が軸線方向101に変位する。これにより、腎動脈40が延びる方向(軸線方向101と同じ方向である。)に存在する神経41に対して一様にアブレーションを行うことができる。
なお、光ファイバ229の回転及びスライドのパターンは、制御手段215におけるプログラミングによって任意に設定できる。また、光ファイバ229の回転又はスライドを一時停止したときにレーザ光発生手段212からレーザ光42を照射することによって、腎動脈40の神経41に対してスポット状にレーザ光42を照射することもできる。つまり、腎動脈40が延びる方向の所定の範囲の全周に存在する神経41に対して、レーザ光42を照射するタイミングや順序などは、任意に設定することができる。
一方、透過窓237を透過したレーザ光42は、腎動脈40の神経41に到達する前に、腎動脈40の内膜側の組織にも照射されることとなる。腎動脈40の内膜には拡張されたバルーン221が接触しており、バルーン221内に流体が還流されている。この流体の冷却効果によって、腎動脈40の内膜側の加熱が抑制される。したがって、光ファイバ229のスライド範囲は、バルーン221が腎動脈40の内膜に接触している範囲とすることが好適である。
[第5実施形態の作用効果]
前述された実施形態によれば、腎動脈40の神経41に対してアブレーションを行うとともに、腎動脈40の内膜への加熱を抑制して、内膜への熱損傷を抑制することができる。
前述された実施形態によれば、腎動脈40の神経41に対してアブレーションを行うとともに、腎動脈40の内膜への加熱を抑制して、内膜への熱損傷を抑制することができる。
また、管状部材234が回転及びスライドされることによって、透過窓237の位置が変位するので、腎動脈40の神経41に対して一様にレーザ光42が照射される。
また、拡散部材233及び管状部材234が光ファイバ229の先端側に一体に設けられており、光ファイバ229がシャフト222に対して、軸線方向101に沿って移動かつ回転可能なので、アブレーションデバイス211が簡易な構成で実現される。また、シャフト222の基端側において光ファイバ229を介して拡散部材233及び管状部材234の移動及び回転を操作することができる。
[第5実施形態の変形例]
なお、前述された実施形態では、管状部材234の透過窓237が軸線方向101へ延びる螺旋形状であるが、透過窓237の形状は適宜変更されてもよい。例えば、図15に示されるように、円形の透過窓238が軸線方向101に異なる位置に複数が設けられてもよい。各透過窓238の各透過範囲D1,D2,D3,D4は、軸線方向101において隣り合う透過窓238と一部が重複している。また、各透過窓238は、軸線方向101の周方向に対する位置が異なっている。
なお、前述された実施形態では、管状部材234の透過窓237が軸線方向101へ延びる螺旋形状であるが、透過窓237の形状は適宜変更されてもよい。例えば、図15に示されるように、円形の透過窓238が軸線方向101に異なる位置に複数が設けられてもよい。各透過窓238の各透過範囲D1,D2,D3,D4は、軸線方向101において隣り合う透過窓238と一部が重複している。また、各透過窓238は、軸線方向101の周方向に対する位置が異なっている。
このような複数の透過窓238によっても、管状部材234が回転及びスライドされることによって、腎動脈40の神経41に対して一様にレーザ光が照射される。
また、各透過窓238を透過して進行するレーザ光42の向きは、軸線方向101の周方向に対して向きが異なるので、軸線方向101の周方向の特定の向きにレーザ光42が集中しない。これにより、腎動脈40の内面への加熱を抑えることができる。
また、各透過窓238は、各透過範囲D1,D2,D3,D4が軸線方向101において一部が重複するので、腎動脈40の軸線方向101においてレーザ光42の未照射箇所が生じ難い。
なお、前述された実施形態及び変形例では、光ファイバ229の先端に拡散部材233及び管状部材234が一体に設けられているが、管状部材234のみが回転及びスライド可能に構成されて、管状部材234を操作する操作部がハブ223へ延出されていてもよい。例えば、管状部材234とイン側チューブ227とが連結されており、イン側チューブ227の回転及びスライドに管状部材234が連動するように構成されていてもよい。
また、前述された実施形態及び変形例では、光ファイバ229がイン側チューブ227内を挿通されているが、光ファイバ229は、先端側がバルーン221内に到達していれば、挿通経路は限定されない。したがって、例えば、シャフト222の内部空間に挿通されていてもよいし、シャフト222の外側からバルーン221内へ挿入されていてもよい。
また、前述された実施形態及び変形例では、管状部材234が回転及びスライドされるが、管状部材234は、回転のみ又はスライドのみ可能に構成されていてもよい。例えば、螺旋形状の透過窓237を有する管状部材234が、バルーン221の軸線方向101の長さと同程度に設けられていれば、管状部材234が回転されると、バルーン221の範囲において腎動脈40の神経41に対して一様にレーザ光42を照射することができる。
また、前述された実施形態及び変形例では、透過窓237,238は、樹脂層235から構成されているが、樹脂層235及び反射層236を貫通する孔として透過窓が構成されていてもよい。
10,110 アブレーションシステム
11,61,111,161,211 アブレーションデバイス
12,112 レーザ光発生手段
13,113 流体還流手段
21,71,121,171,221 バルーン
22,122,222 シャフト(第2ルーメン、流体ルーメン)
27,77,127,177,227 イン側チューブ(第1ルーメン、流体ルーメン)
29,79,129,179,229 光ファイバ(導光材)
33,83,133,183 反射材
72,172 メインシャフト
73 コネクタ部
74 サブシャフト
84 ガイドワイヤシャフト(ワイヤルーメン)
136,191 反射面
134,189 導光用チューブ
135,190 開口
233 拡散部材
234 管状部材
236 反射層
237,238 透過窓
11,61,111,161,211 アブレーションデバイス
12,112 レーザ光発生手段
13,113 流体還流手段
21,71,121,171,221 バルーン
22,122,222 シャフト(第2ルーメン、流体ルーメン)
27,77,127,177,227 イン側チューブ(第1ルーメン、流体ルーメン)
29,79,129,179,229 光ファイバ(導光材)
33,83,133,183 反射材
72,172 メインシャフト
73 コネクタ部
74 サブシャフト
84 ガイドワイヤシャフト(ワイヤルーメン)
136,191 反射面
134,189 導光用チューブ
135,190 開口
233 拡散部材
234 管状部材
236 反射層
237,238 透過窓
Claims (24)
- シャフトの先端側に弾性的に膨張可能なバルーンが設けられており、当該バルーンへ流体を流入させるための第1ルーメン、当該バルーンから流体を流出させるための第2ルーメン、及び当該バルーン内へレーザ光を導く導光材が当該シャフトに沿ってそれぞれ設けられたアブレーションデバイスと、
上記導光材へレーザ光を照射するレーザ光発生手段と、
上記第1ルーメン及び第2ルーメンを通じて上記バルーンの内部空間に流体を還流させる流体還流手段と、を具備しており、
上記アブレーションデバイスは、上記バルーン内において上記導光材から出射されるレーザ光を上記導光材が延出された第1方向と交差する第2方向へ反射する反射材を有しており、少なくとも当該反射材が上記第1方向に沿って上記バルーン内を移動可能であり、かつ上記第1方向を軸線として回転可能であるアブレーションシステム。 - 上記反射材は、上記導光材の先端側に一体に設けられており、
上記導光材は、上記シャフトに対して、上記第1方向に沿って移動可能であり、かつ上記第1方向を軸線として回転可能である請求項1に記載のアブレーションシステム。 - 上記レーザ光発生手段は、波形が連続して周期的に変化するレーザ光を上記導光材へ照射するものである請求項1又は2に記載のアブレーションシステム。
- シャフトと、
上記シャフトの先端側に設けられて弾性的に膨張可能なバルーンと、
上記シャフトに沿って設けられており、上記バルーンへ流体を流入させるための第1ルーメンと、
上記シャフトに沿って設けられており、上記バルーンから流体を流出させるための第2ルーメンと、
上記シャフトに沿って設けられており、上記バルーン内へレーザ光を導く導光材と、
上記バルーン内において上記導光材から出射されるレーザ光を上記導光材が延出された第1方向と交差する第2方向へ反射する反射材と、を具備しており、
少なくとも当該反射材が、上記第1方向に沿って上記バルーン内を移動可能であり、かつ上記第1方向を軸線として回転可能であるアブレーションデバイス。 - 上記反射材は、上記導光材の先端側に一体に設けられており、
上記導光材は、上記シャフトに対して、上記第1方向に沿って移動可能であり、かつ上記第1方向を軸線として回転可能である請求項4に記載のアブレーションデバイス。 - 流体が流通する流体ルーメンを有するメインシャフトと、
上記メインシャフトの先端側に設けられており、上記流体ルーメンを流通する流体により膨張可能なバルーンと、
ガイドワイヤが挿通可能なワイヤルーメンを有し、上記メインシャフト内に挿通されて上記バルーン内へ延出されたサブシャフトと、
上記サブシャフトに沿って設けられており、上記バルーン内へレーザ光を導く導光材と、
上記バルーン内において上記導光材から出射されるレーザ光を上記軸線方向と交差する方向へ反射する反射材と、を具備しており、
上記サブシャフトは、上記メインシャフトに対して軸線方向に移動可能であり、且つ当該軸線方向周りに回転可能であり、
上記導光材及び上記反射材は、上記サブシャフトに伴って移動及び回転可能であるアブレーションデバイス。 - 上記反射材は、上記導光材の先端側に一体に設けられたものである請求項6に記載のアブレーションデバイス。
- 上記サブシャフトは、上記流体ルーメンに挿通されたものである請求項6又は7に記載のアブレーションデバイス。
- 上記メインシャフトの基端側に、流体が流通するポートを有するコネクタが連結されており、
上記ポートは、上記流体ルーメンと流体を流通可能に接続されており、
上記サブシャフト及び上記導光材は、上記コネクタに対して上記軸線方向周りに回転可能である請求項6から8のいずれかに記載のアブレーションデバイス。 - 請求項6から9のいずれかに記載のアブレーションデバイスと、
上記導光材へレーザ光を照射するレーザ光発生手段と、
上記流体ルーメンを通じて上記バルーンの内部空間に流体を還流させる流体還流手段と、を具備するアブレーションシステム。 - シャフトと、
上記シャフトの先端側に設けられて弾性的に膨張可能なバルーンと、
上記シャフトに沿って設けられており、上記バルーンへ流体を流通させるための流体ルーメンと、
上記シャフトに沿って設けられており、上記バルーン内へレーザ光を導く導光材と、
上記バルーン内において上記導光材から出射されるレーザ光を上記導光材が延出された第1方向と交差する第2方向へ反射する反射材と、を具備しており、
上記反射材は、上記導光材の先端に対して上記第1方向に対向して配置されているアブレーションデバイス。 - 上記反射材は、上記バルーンに流通する流体の流路内に配置されている請求項11に記載のアブレーションデバイス。
- 上記反射材は、表面に金属層を有するものである請求項11又は12に記載のアブレーションデバイス。
- 上記反射材は、上記第1方向に沿って上記バルーン内を移動可能であり、かつ上記第1方向に沿った上記シャフトの軸線周りに回転可能である請求項11から13のいずれかに記載のアブレーションデバイス。
- 上記第1方向に沿って上記バルーン内を移動可能であり、かつ上記第1方向に沿った上記シャフトの軸線周りに回転可能な導光用チューブが上記シャフトに沿って設けられており、
上記導光材及び上記反射材は、上記導光用チューブの内部空間に配置されたものである請求項11から14のいずれかに記載のアブレーションデバイス。 - 上記導光用チューブは、上記反射材の反射面に外部の流体を接触可能とする開口を有する請求項15に記載のアブレーションデバイス。
- 請求項11から16のいずれかに記載のアブレーションデバイスと、
上記導光材へレーザ光を照射するレーザ光発生手段と、
上記流体ルーメンを通じて上記バルーンの内部空間に流体を還流させる流体還流手段と、を具備するアブレーションシステム。 - シャフトと、
上記シャフトの先端側に設けられており、弾性的に膨張可能なバルーンと、
上記シャフトに沿って形成されており、上記バルーンへ流体を流入させるための第1ルーメンと、
上記シャフトに沿って形成されており、上記バルーンから流体を流出させるための第2ルーメンと、
上記シャフトに沿って設けられており、上記バルーン内へレーザ光を導く導光材と、
上記バルーン内において上記導光材から出射されるレーザ光を上記導光材が延出された第1方向と交差する方向へ反射又は拡散させる拡散部材と、
上記バルーン内に設けられて上記拡散部材を囲繞しており、その内面側に上記拡散部材により反射又は拡散されたレーザ光を反射又は遮断する反射層を有し、かつ当該レーザ光を当該反射層の外側へ透過させる透過窓を有する管状部材と、を具備するアブレーションデバイス。 - 上記管状部材は、上記透過窓の上記第1方向を軸線とする周方向の位置又は上記第1方向の位置の少なくとも一方が変位する向きへ移動可能である請求項18に記載のアブレーションデバイス。
- 上記拡散部材及び上記管状部材は、上記導光材と一体に設けられたものである請求項19に記載のアブレーションデバイス。
- 上記透過窓は、上記第1方向へ延びる螺旋形状である請求項18から20のいずれかに記載のアブレーションデバイス。
- 上記透過窓は、上記第1方向に対して異なる位置に複数が設けられたものである請求項18から20のいずれかに記載のアブレーションデバイス。
- 上記複数の透過窓は、上記第1方向を軸線とする周方向に対してそれぞれが異なる位置に配置されたものである請求項22に記載のアブレーションデバイス。
- 上記複数の透過窓は、各透過範囲が上記第1方向において一部が重複するものである請求項23に記載のアブレーションデバイス。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14853946.3A EP3058888B1 (en) | 2013-10-15 | 2014-10-14 | Ablation system and ablation device |
ES14853946T ES2739848T3 (es) | 2013-10-15 | 2014-10-14 | Sistema de ablación y dispositivo de ablación |
CN201480056430.3A CN105636540B (zh) | 2013-10-15 | 2014-10-14 | 消融系统及消融设备 |
EP18169873.9A EP3378430B1 (en) | 2013-10-15 | 2014-10-14 | Ablation system and ablation device |
CN201910849575.3A CN110420057B (zh) | 2013-10-15 | 2014-10-14 | 消融系统及消融设备 |
US15/028,090 US10631930B1 (en) | 2013-10-15 | 2014-10-14 | Ablation system and ablation device |
US16/818,299 US10925672B2 (en) | 2013-10-15 | 2020-03-13 | Ablation system |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-214549 | 2013-10-15 | ||
JP2013214550 | 2013-10-15 | ||
JP2013-214550 | 2013-10-15 | ||
JP2013214549A JP6183134B2 (ja) | 2013-10-15 | 2013-10-15 | アブレーションデバイス |
JP2014104452A JP6354323B2 (ja) | 2013-10-15 | 2014-05-20 | アブレーションシステム及びアブレーションデバイス |
JP2014-104476 | 2014-05-20 | ||
JP2014-104452 | 2014-05-20 | ||
JP2014104476A JP6439274B2 (ja) | 2014-05-20 | 2014-05-20 | アブレーションデバイス及びアブレーションシステム |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/028,090 A-371-Of-International US10631930B1 (en) | 2013-10-15 | 2014-10-14 | Ablation system and ablation device |
US16/818,299 Continuation US10925672B2 (en) | 2013-10-15 | 2020-03-13 | Ablation system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015056662A1 true WO2015056662A1 (ja) | 2015-04-23 |
Family
ID=52828106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/077296 WO2015056662A1 (ja) | 2013-10-15 | 2014-10-14 | アブレーションシステム及びアブレーションデバイス |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110420057B (ja) |
WO (1) | WO2015056662A1 (ja) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108135496A (zh) * | 2015-10-22 | 2018-06-08 | 美敦力 | 消融后组织分析技术 |
CN110446472A (zh) * | 2016-11-10 | 2019-11-12 | 埃里斯塔有限责任公司 | 用于借助对中器件进行激光热消融的装置和包括该装置的设备 |
US20210153939A1 (en) * | 2019-11-22 | 2021-05-27 | Bolt Medical, Inc. | Energy manifold for directing and concentrating energy within a lithoplasty device |
US11517713B2 (en) | 2019-06-26 | 2022-12-06 | Boston Scientific Scimed, Inc. | Light guide protection structures for plasma system to disrupt vascular lesions |
US11583339B2 (en) | 2019-10-31 | 2023-02-21 | Bolt Medical, Inc. | Asymmetrical balloon for intravascular lithotripsy device and method |
US11648057B2 (en) | 2021-05-10 | 2023-05-16 | Bolt Medical, Inc. | Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device |
US11660427B2 (en) | 2019-06-24 | 2023-05-30 | Boston Scientific Scimed, Inc. | Superheating system for inertial impulse generation to disrupt vascular lesions |
US11672585B2 (en) | 2021-01-12 | 2023-06-13 | Bolt Medical, Inc. | Balloon assembly for valvuloplasty catheter system |
US11672599B2 (en) | 2020-03-09 | 2023-06-13 | Bolt Medical, Inc. | Acoustic performance monitoring system and method within intravascular lithotripsy device |
US11707323B2 (en) | 2020-04-03 | 2023-07-25 | Bolt Medical, Inc. | Electrical analyzer assembly for intravascular lithotripsy device |
US11717139B2 (en) | 2019-06-19 | 2023-08-08 | Bolt Medical, Inc. | Plasma creation via nonaqueous optical breakdown of laser pulse energy for breakup of vascular calcium |
US11806075B2 (en) | 2021-06-07 | 2023-11-07 | Bolt Medical, Inc. | Active alignment system and method for laser optical coupling |
US11819229B2 (en) | 2019-06-19 | 2023-11-21 | Boston Scientific Scimed, Inc. | Balloon surface photoacoustic pressure wave generation to disrupt vascular lesions |
US11839391B2 (en) | 2021-12-14 | 2023-12-12 | Bolt Medical, Inc. | Optical emitter housing assembly for intravascular lithotripsy device |
US11903642B2 (en) | 2020-03-18 | 2024-02-20 | Bolt Medical, Inc. | Optical analyzer assembly and method for intravascular lithotripsy device |
EP4178414A4 (en) * | 2020-07-08 | 2024-06-19 | PROCEPT BioRobotics Corporation | HEMOSTASIS DEVICES AND METHODS |
US12016610B2 (en) | 2020-12-11 | 2024-06-25 | Bolt Medical, Inc. | Catheter system for valvuloplasty procedure |
US12102384B2 (en) | 2019-11-13 | 2024-10-01 | Bolt Medical, Inc. | Dynamic intravascular lithotripsy device with movable energy guide |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111821579A (zh) * | 2020-08-05 | 2020-10-27 | 李伟 | 一种光动力治疗用辅助装置 |
CN112998851A (zh) * | 2021-02-26 | 2021-06-22 | 华中科技大学 | 一种用于冠心病治疗的高柔性低损耗的消融用激光导管 |
CN113876417B (zh) * | 2021-10-15 | 2024-09-06 | 巨翊科技(上海)有限公司 | 一种激光消融系统 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11333005A (ja) * | 1998-05-28 | 1999-12-07 | Terumo Corp | エネルギー照射装置 |
US20030060813A1 (en) * | 2001-09-22 | 2003-03-27 | Loeb Marvin P. | Devices and methods for safely shrinking tissues surrounding a duct, hollow organ or body cavity |
US20050131399A1 (en) * | 2002-04-22 | 2005-06-16 | Loeb Marvin P. | Devices and methods for directed, interstitial ablation of tissue |
JP2006230442A (ja) | 2005-02-22 | 2006-09-07 | Nipro Corp | ガイディングカテーテル |
US20060217693A1 (en) * | 2003-11-07 | 2006-09-28 | Biotex, Inc. | Cooled laser fiber for improved thermal therapy |
JP2006326226A (ja) | 2005-05-30 | 2006-12-07 | Nipro Corp | ガイディングカテーテル |
JP2008501444A (ja) * | 2004-06-07 | 2008-01-24 | エドワーズ ライフサイエンシーズ コーポレイション | 組織を方向性をもって切除するための方法およびデバイス |
JP2008036153A (ja) * | 2006-08-07 | 2008-02-21 | Hamamatsu Photonics Kk | 光照射装置 |
WO2013017261A1 (de) | 2011-08-04 | 2013-02-07 | Clariant International Ltd | Zusammensetzung enthaltend isosorbidmonoester und isosorbiddiester |
WO2013047261A1 (ja) | 2011-09-27 | 2013-04-04 | テルモ株式会社 | アブレーションデバイス |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3650688T2 (de) * | 1985-03-22 | 1999-03-25 | Massachusetts Institute Of Technology, Cambridge, Mass. | Faseroptisches Sondensystem zur spektralen Diagnose von Gewebe |
US5454807A (en) * | 1993-05-14 | 1995-10-03 | Boston Scientific Corporation | Medical treatment of deeply seated tissue using optical radiation |
EP0960601B1 (en) * | 1998-05-28 | 2006-10-11 | Terumo Kabushiki Kaisha | Tissue irradiation apparatus |
US6660001B2 (en) * | 2000-01-21 | 2003-12-09 | Providence Health System-Oregon | Myocardial revascularization-optical reflectance catheter and method |
US8986298B2 (en) * | 2006-11-17 | 2015-03-24 | Biosense Webster, Inc. | Catheter with omni-directional optical tip having isolated optical paths |
JP4848989B2 (ja) * | 2007-03-27 | 2011-12-28 | ニプロ株式会社 | プロテクタ |
PT2148628T (pt) * | 2007-05-07 | 2017-12-06 | Jaswant Rathore | Um método e um sistema para fotoablação a laser dentro do cristalino |
US8123745B2 (en) * | 2007-06-29 | 2012-02-28 | Biosense Webster, Inc. | Ablation catheter with optically transparent, electrically conductive tip |
ATE511787T1 (de) * | 2007-12-28 | 2011-06-15 | Koninkl Philips Electronics Nv | Gewebeablationsvorrichtung mit photoakustischer läsionsbildungsrückmeldung |
JP5615508B2 (ja) * | 2009-03-31 | 2014-10-29 | 東レ株式会社 | 撹拌方法及びバルーン付きアブレーションカテーテルシステム |
CN103108601A (zh) * | 2010-02-26 | 2013-05-15 | 学校法人庆应义塾 | 利用光化学反应进行心肌组织的光动力学消融的导管 |
AU2011241103A1 (en) * | 2010-04-13 | 2012-11-08 | Sentreheart, Inc. | Methods and devices for treating atrial fibrillation |
US9237925B2 (en) * | 2011-04-22 | 2016-01-19 | Ablative Solutions, Inc. | Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation |
US10743932B2 (en) * | 2011-07-28 | 2020-08-18 | Biosense Webster (Israel) Ltd. | Integrated ablation system using catheter with multiple irrigation lumens |
CN102885648B (zh) * | 2012-08-29 | 2015-03-18 | 中国人民解放军第三军医大学第一附属医院 | 肾脏去交感神经消融导管系统 |
-
2014
- 2014-10-14 CN CN201910849575.3A patent/CN110420057B/zh active Active
- 2014-10-14 WO PCT/JP2014/077296 patent/WO2015056662A1/ja active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11333005A (ja) * | 1998-05-28 | 1999-12-07 | Terumo Corp | エネルギー照射装置 |
US20030060813A1 (en) * | 2001-09-22 | 2003-03-27 | Loeb Marvin P. | Devices and methods for safely shrinking tissues surrounding a duct, hollow organ or body cavity |
US20050131399A1 (en) * | 2002-04-22 | 2005-06-16 | Loeb Marvin P. | Devices and methods for directed, interstitial ablation of tissue |
US20060217693A1 (en) * | 2003-11-07 | 2006-09-28 | Biotex, Inc. | Cooled laser fiber for improved thermal therapy |
JP2008501444A (ja) * | 2004-06-07 | 2008-01-24 | エドワーズ ライフサイエンシーズ コーポレイション | 組織を方向性をもって切除するための方法およびデバイス |
JP2006230442A (ja) | 2005-02-22 | 2006-09-07 | Nipro Corp | ガイディングカテーテル |
JP2006326226A (ja) | 2005-05-30 | 2006-12-07 | Nipro Corp | ガイディングカテーテル |
JP2008036153A (ja) * | 2006-08-07 | 2008-02-21 | Hamamatsu Photonics Kk | 光照射装置 |
WO2013017261A1 (de) | 2011-08-04 | 2013-02-07 | Clariant International Ltd | Zusammensetzung enthaltend isosorbidmonoester und isosorbiddiester |
WO2013047261A1 (ja) | 2011-09-27 | 2013-04-04 | テルモ株式会社 | アブレーションデバイス |
Non-Patent Citations (1)
Title |
---|
See also references of EP3058888A4 |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10799280B2 (en) | 2015-10-22 | 2020-10-13 | Medtronic Cryocath Lp | Post ablation tissue analysis technique |
US11806064B2 (en) | 2015-10-22 | 2023-11-07 | Medtronic Cryocath Lp | Post ablation tissue analysis technique |
CN108135496A (zh) * | 2015-10-22 | 2018-06-08 | 美敦力 | 消融后组织分析技术 |
CN110446472A (zh) * | 2016-11-10 | 2019-11-12 | 埃里斯塔有限责任公司 | 用于借助对中器件进行激光热消融的装置和包括该装置的设备 |
US11717139B2 (en) | 2019-06-19 | 2023-08-08 | Bolt Medical, Inc. | Plasma creation via nonaqueous optical breakdown of laser pulse energy for breakup of vascular calcium |
US11819229B2 (en) | 2019-06-19 | 2023-11-21 | Boston Scientific Scimed, Inc. | Balloon surface photoacoustic pressure wave generation to disrupt vascular lesions |
US11660427B2 (en) | 2019-06-24 | 2023-05-30 | Boston Scientific Scimed, Inc. | Superheating system for inertial impulse generation to disrupt vascular lesions |
US11517713B2 (en) | 2019-06-26 | 2022-12-06 | Boston Scientific Scimed, Inc. | Light guide protection structures for plasma system to disrupt vascular lesions |
US11911574B2 (en) | 2019-06-26 | 2024-02-27 | Boston Scientific Scimed, Inc. | Fortified balloon inflation fluid for plasma system to disrupt vascular lesions |
US11583339B2 (en) | 2019-10-31 | 2023-02-21 | Bolt Medical, Inc. | Asymmetrical balloon for intravascular lithotripsy device and method |
US12102384B2 (en) | 2019-11-13 | 2024-10-01 | Bolt Medical, Inc. | Dynamic intravascular lithotripsy device with movable energy guide |
US20210153939A1 (en) * | 2019-11-22 | 2021-05-27 | Bolt Medical, Inc. | Energy manifold for directing and concentrating energy within a lithoplasty device |
US11672599B2 (en) | 2020-03-09 | 2023-06-13 | Bolt Medical, Inc. | Acoustic performance monitoring system and method within intravascular lithotripsy device |
US11903642B2 (en) | 2020-03-18 | 2024-02-20 | Bolt Medical, Inc. | Optical analyzer assembly and method for intravascular lithotripsy device |
US11707323B2 (en) | 2020-04-03 | 2023-07-25 | Bolt Medical, Inc. | Electrical analyzer assembly for intravascular lithotripsy device |
EP4178414A4 (en) * | 2020-07-08 | 2024-06-19 | PROCEPT BioRobotics Corporation | HEMOSTASIS DEVICES AND METHODS |
US12016610B2 (en) | 2020-12-11 | 2024-06-25 | Bolt Medical, Inc. | Catheter system for valvuloplasty procedure |
US11672585B2 (en) | 2021-01-12 | 2023-06-13 | Bolt Medical, Inc. | Balloon assembly for valvuloplasty catheter system |
US11648057B2 (en) | 2021-05-10 | 2023-05-16 | Bolt Medical, Inc. | Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device |
US11806075B2 (en) | 2021-06-07 | 2023-11-07 | Bolt Medical, Inc. | Active alignment system and method for laser optical coupling |
US11839391B2 (en) | 2021-12-14 | 2023-12-12 | Bolt Medical, Inc. | Optical emitter housing assembly for intravascular lithotripsy device |
Also Published As
Publication number | Publication date |
---|---|
CN110420057A (zh) | 2019-11-08 |
CN110420057B (zh) | 2022-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015056662A1 (ja) | アブレーションシステム及びアブレーションデバイス | |
US10925672B2 (en) | Ablation system | |
JP6183134B2 (ja) | アブレーションデバイス | |
US20230363819A1 (en) | Apparatus and methods for resecting and/or ablating an undesired tissue | |
EP1075821B1 (en) | Laser irradiation apparatus | |
JP2002017877A (ja) | 医療用エネルギー照射装置 | |
JP3754562B2 (ja) | エネルギー照射装置 | |
JP2003010102A (ja) | 医療用エネルギー照射装置 | |
JP4388647B2 (ja) | レーザ照射装置 | |
WO2013047261A1 (ja) | アブレーションデバイス | |
JP6439274B2 (ja) | アブレーションデバイス及びアブレーションシステム | |
JP6354323B2 (ja) | アブレーションシステム及びアブレーションデバイス | |
WO2022224792A1 (ja) | アブレーション用カテーテル | |
JPH11276499A (ja) | レーザ照射装置 | |
JP5781363B2 (ja) | 外装チューブ,レーザ伝送路,レーザ治療器具 | |
JP4637327B2 (ja) | 加熱治療装置 | |
ES2710180T3 (es) | Dispositivo basado en luz para el tratamiento endovascular de vasos sanguíneos patológicamente alterados | |
JP2019092843A (ja) | レーザ伝送路、レーザ処置具、レーザ治療装置、及びレーザ治療システム | |
CN118058830A (zh) | 激光消融导管及激光消融系统 | |
JP6428019B2 (ja) | バルーンカテーテル | |
JP2022034313A (ja) | アブレーションカテーテル及びアブレーションカテーテルの製造方法 | |
JP2001037892A (ja) | レーザ照射装置 | |
JP2005312944A (ja) | 医療装置 | |
JP2005287722A (ja) | 医療用エネルギー照射装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14853946 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014853946 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014853946 Country of ref document: EP |