WO2015055950A1 - Mélange particulaire pour l'obtention d'un produit en zircone yttriee - Google Patents
Mélange particulaire pour l'obtention d'un produit en zircone yttriee Download PDFInfo
- Publication number
- WO2015055950A1 WO2015055950A1 PCT/FR2014/052623 FR2014052623W WO2015055950A1 WO 2015055950 A1 WO2015055950 A1 WO 2015055950A1 FR 2014052623 W FR2014052623 W FR 2014052623W WO 2015055950 A1 WO2015055950 A1 WO 2015055950A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particles
- particulate mixture
- less
- zirconia
- mixture
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 123
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 title claims abstract description 107
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 239000002245 particle Substances 0.000 claims abstract description 66
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 14
- 239000010954 inorganic particle Substances 0.000 claims abstract description 9
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000005245 sintering Methods 0.000 claims description 39
- 238000004519 manufacturing process Methods 0.000 claims description 18
- 239000000654 additive Substances 0.000 claims description 16
- 230000000996 additive effect Effects 0.000 claims description 12
- 239000002994 raw material Substances 0.000 claims description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims 1
- 239000011146 organic particle Substances 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 44
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 238000000227 grinding Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 239000000919 ceramic Substances 0.000 description 9
- 238000000926 separation method Methods 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 8
- 239000012535 impurity Substances 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 239000000470 constituent Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000001513 hot isostatic pressing Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000003826 uniaxial pressing Methods 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000011351 dental ceramic Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229910000449 hafnium oxide Inorganic materials 0.000 description 2
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 2
- -1 oxynitrides Chemical class 0.000 description 1
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241001191378 Moho Species 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000033558 biomineral tissue development Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 238000010193 dilatometric analysis Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010437 gem Substances 0.000 description 1
- 229910001751 gemstone Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 210000004264 pstab Anatomy 0.000 description 1
- 238000001812 pycnometry Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/486—Fine ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/486—Fine ceramics
- C04B35/488—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
- H01M8/1253—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/08—Artificial teeth; Making same
- A61C13/083—Porcelain or ceramic teeth
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
- C04B2235/3246—Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
- C04B2235/3267—MnO2
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3281—Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5409—Particle size related information expressed by specific surface values
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5463—Particle size distributions
- C04B2235/5481—Monomodal
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
- H01M2300/0074—Ion conductive at high temperature
- H01M2300/0077—Ion conductive at high temperature based on zirconium oxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention relates to a particulate mixture for obtaining a yttria-stabilized zirconia product, ie stabilized with yttrium, and whose sinterability is improved by reference to the mixtures known hitherto, or at least substantially equivalent.
- the particulate mixture which is the subject of the present invention makes it possible in particular to obtain sintered products whose density is very high, in particular close to the theoretical density of the crystalline material, at relatively low sintering temperatures.
- Products made of yttrium stabilized zirconia are widely used today for their mechanical, thermo-mechanical, chemical and ionic conduction properties.
- Areas of application are, for example, wear parts, for example pump valves, grinding balls, dental parts, decorative objects, jewelery, such as watches, battery electrolytes. with fuel, membranes for the separation of gases, in particular for the separation of oxygen, oxygen probes, optical fiber connectors.
- the sintered material in the case of use as a membrane for the separation of gases, in particular for the separation of oxygen, the sintered material must have a high porosity while maintaining a mechanical strength, in particular a modulus at break ( MOR) acceptable.
- MOR modulus at break
- alumina as a sintering additive for stabilized zirconia results in a reduction in the desired properties, such as translucency of parts in dentistry and decoration or ionic conductivity in the case of conductive ceramics.
- Sintering ability or sinterability of a mixture is understood in the sense of the present invention the capacity of the particles forming said mixture to react with one another at a lower temperature to form the final material within the sintered mechanical part.
- the application US2010 / 292522 describes in its example 1 a particulate mixture comprising 88.2% by weight of a stabilized zirconia with 7 to 9% by weight of yttrium oxide and 11.8% by weight (ie 7 mol%) of an yttrium oxide powder in the presence of an organic binder. Like the previous one, this mixture thus contains a very large quantity of yttrium oxide, which leads to reducing the reactivity to the sintering of said particulate mixture, as is demonstrated in the following description and in particular through the examples provided. .
- One of the aims of the present invention is therefore to provide a mixture of particles to be sintered, said mixture having excellent sinterability, this ability ultimately resulting in sintered products whose properties are optimized for the desired use, these properties being in particular the best compromise between the final densities and the mechanical and chemical properties (in particular the hydrothermal resistance) of the materials constituting the final products.
- Such products can be, according to the application, materials of high density, substantially close to the theoretical density, or alternatively substantially porous materials, e.g. whose relative density is less than 80% or, equivalently, the total porosity is greater than 20% .
- the invention relates in a first aspect a particulate mixture, in particular with a maximum size of DG9 particles 5 is less than 100 micrometers, said mixture being characterized in that it comprises:
- yttrium content of said yttria zirconia particles expressed in the form of the oxide of Yttrium Y2O 3 being between 2.0% and 5.0% by mole, preferably between 2.0% and 4.0% by mole and very preferably between 2.0% and 3.8% by mole .
- yttrium oxide particles Y 2 O 3 in an amount of between 0.2% and 4.0% of the total mass of the inorganic particles present in said mixture.
- the yttrium oxide particles may be replaced by an equivalent amount, based on the Y element, of a precursor of said Y 2 O 3 oxide.
- the term "precursor" of an oxide is a compound or a set of compounds which, by a heat treatment, in particular in air, lead to the formation of said oxide.
- yttrium nitrate is a precursor for yttrium oxide.
- An amount of a precursor of an oxide is said to be "equivalent” to a quantity of said oxide when, during the heat treatment, it leads to said amount of said oxide.
- the particulate mixture has a ratio R, defined as the ratio (D 90 - Di o) / D 50 , greater than 0.3, or even greater than 0.5 and less than 5.0, preferably less than 3.0, preferably less than 2.0, or even less than 1.5.
- the particulate mixture has a specific surface area of less than 15 m 2 / g.
- the particulate mixture has a specific surface area of between 5 and 15 m 2 / g.
- the particulate mixture has a specific surface area of less than 5 m 2 / g.
- the amount of yttriated zirconia particles in the mixture is greater than 85%, preferably greater than 90%, preferably greater than 93%, more preferably greater than 94.5% of the total mass of the inorganic particles present in said mixture .
- the amount of Y 2 O 3 particles in the mixture is greater than 0.2%, preferably greater than 0.4%, preferably greater than 0.5% of the total mass of the inorganic particles present in said mixture,
- the amount of Y 2 O 3 particles in the mixture is less than 3.0%, preferably less than 2.0%, preferably less than 1.5% of the total mass of the inorganic particles present in said mixture.
- the total equivalent amount of Y 2 O 3 in the particulate mixture is less than 4.1 mol%, preferably less than 4.0 mol% and most preferably less than 3.9 mol% or even less than 3.8. molar%.
- equivalent molar amount is meant the total summed amount of yttrium oxide in zirconia and particulate yttrium oxide in the mixture.
- the particulate mixture further comprises between 0.1% and 1.5% of a sinter additive, based on the total mass of the particulate mixture, said additive being selected from A1 2 0 3 , Ti0 2 , ZnO, Fe 2 0 3, CuO, Mn0 2, Si0 2 and mixtures thereof.
- a sinter additive selected from A1 2 0 3 , Ti0 2 , ZnO, Fe 2 0 3, CuO, Mn0 2, Si0 2 and mixtures thereof.
- the particulate mixture comprises a total content of sintering additives, in particular Al 2 O 3 , of less than 0.1% and preferably a total content of sintering additives, in particular Al 2 O 3 , less than 0.05%.
- the particulate mixture does not contain such sintering additives, in particular does not contain Al 2 O 3 , or only in the form of unavoidable impurities.
- the particulate mixture comprises one or more deflocculants and / or binder (s) and / or organic lubricants, preferably temporary, conventionally used in forming processes for the production of preforms to be sintered, for example a carboxylic acid. , a latex, a polyethylene glycol.
- the particulate mixture contains no other element than the yttria zirconia particles, the Y 2 0 3 particles, the additive sintering, unavoidable impurities, one or more deflocculant (s) and / or binder (s) and / or lubricants.
- the particulate mixture consists of a mixture of yttria-containing zirconia particles, yttria particles and one or more deflocculants and / or binder (s) and / or lubricants.
- the overall content of oxides of Zr, Hf and Y in the mixture is greater than or equal to 96%, preferably greater than or equal to 97%, or even greater than 99%, of the total mass of the particulate mixture,
- the particulate mixture consists essentially of said Zr, Hf and Y oxides.
- the ratio of the median size of the Y 2 O 3 powder to the median size of the yttria zirconia powder is between 0.01 and 2, preferably between 0.01 and 1, more preferably substantially equal to 1.
- the median size D 5 o of the particulate mixture is less than 1 ⁇ m, or even less than 0.8 ⁇ m, or even less than 0.6 ⁇ m, or even less than 0.3 ⁇ m.
- the particulate mixture has a specific surface area of between 5 and 15 m 2 / g and a maximum size DG9, 5 of particles less than 10 microns.
- This first embodiment is particularly well suited to the production of dense parts, that is to say having after sintering a relative density greater than 98%.
- the particulate mixture according to this mode is also well suited to the manufacture of porous parts, by the use of pore forming agents in the process for producing said porous parts.
- the particulate mixture of this first embodiment has a size D90 of less than 10 ⁇ m, or even less than 5 ⁇ m, or even less than 3 ⁇ m, or even less than 1 ⁇ m.
- the particulate mixture according to this mode has a median size D 5 o of less than 1 ⁇ m, or even less than 0.8 ⁇ m, or even less than 0.6 ⁇ m, or even less than 0.3 ⁇ m.
- the yttria zirconia particles have a Y 2 O 3 content of greater than 2.0%, preferably greater than 2.5% and less than 3.8%, preferably less than at 3.5% (the percentages being molar).
- the amount of Y 2 O 3 particles is greater than 0.2%, preferably greater than 0.4%, preferably greater than 0.5%. and less than 4.0%, preferably less than 3.0%, preferably less than 2.0%, preferably less than 1.5%.
- This embodiment is particularly well suited to the production of dense pieces, that is to say having after sintering a relative density greater than 98 ⁇ 6, or even greater than 99% and having improved hydrothermal resistance, with properties substantially identical mechanical
- the particulate mixture according to this mode is also well suited to the manufacture of porous parts, by means of the use of porogenic agents in the manufacturing process of said porous parts.
- the zirconia particles have a content of yttria Y2O 3 greater than 2.0%, preferably greater than 2.5% and less than 5.0%, preferably less than 4.0% (the percentages being molar).
- This embodiment is particularly well suited to the production of dense parts, in particular having after sintering a relative density greater than 95% and having an improved ionic conductivity, with substantially identical mechanical properties.
- the particulate mixture according to this mode is also well suited to the manufacture of porous parts, by means of the use of porogenic agents in the manufacturing process of said porous parts.
- the particulate mixture has a specific surface area of less than 5 m 2 / g.
- This embodiment is particularly well suited to the production of porous parts, in the sense previously described.
- the yttria zirconia particles of the mixture have a Y 2 O 3 content greater than 2.0%, preferably greater than 2.5% and less than 4.0%, of preferably less than 3.8%, preferably less than 3.5% (the percentages being molar).
- the amount of Y 2 O 3 particles is greater than 0.2%, preferably greater than 0.4%, preferably greater than 0.5%, and less than 4.0%, preferably less than 3.0%, preferably less than 2.0%, preferably less than 1.5%.
- This embodiment is particularly well suited to the production of porous parts having a good compromise between the total porosity and the mechanical strength of the stabilized zirconia constituent material.
- the yttria-containing zirconia particles have a Y 2 O 3 content of greater than 2.0%, preferably greater than 2.5% and less than 5.0%, preferably less than 4.0% (the percentages being molar).
- the yttria zirconia powder and the initial Y2O 3 powder may be milled or co-milled until the previously described characteristics of the mixture are obtained.
- the particulate mixture as described above can be in a dry form, that is to say be obtained directly by mixing the appropriate raw materials.
- This mixture of raw materials can then undergo an optional step of co-grinding, dry or wet. It may also have undergone an additional step, for example a suspension mixing step and then drying, for example by atomization, in particular to improve the chemical homogeneity.
- the invention relates to the product or the mechanical part obtained by sintering a particulate mixture as previously described.
- Such a product or such a mechanical part may in particular be used as a mechanical wear part, such as for example a pump valve, milling ball, dental ceramic part, decorative object, jewel, fuel cell electrolyte, membrane for separation of gas, in particular for the separation of oxygen, oxygen sensor, fiber optic connector.
- this sintered part has a relative density greater than 98%, preferably greater than 99%, preferably greater than 99.5 ⁇ 6, or even 99.8%
- the Yttriated zirconia constituting all or part of said sintered part is preferably constituted for more than 80%, preferably more than 90%, preferably more than 95%, by volume, of the quadratic and / or cubic phases, the complement to 100% consisting of monoclinic phase.
- the average size of the zirconia grains of the sintered part is preferably less than 10 ⁇ m, preferably less than 5 ⁇ m, preferably less than 2 ⁇ m, preferably less than 1 ⁇ m or even less than 0.5 ⁇ m.
- the sintered part has a total porosity greater than 20%, preferably greater than 30%, preferably greater than 35%
- the zirconia of this sintered part is preferably made up of more than 80%, preferably more than 90%, preferably more than 95%, by volume, of quadratic and / or cubic phase, the complement to 100% consisting of monoclinic phase.
- the average size of the zirconia grains of the sintered part is preferably less than 10 .mu.m, preferably less than 5 .mu.m, preferably less than 2 .mu.m, preferably less than 1 .mu.m.
- the invention relates to a method of manufacturing a sintered part comprising the following steps: a) mixing raw materials to form a feedstock, b) forming a preform from said feedstock,
- the feedstock comprises a particulate mixture as described above.
- the feedstock consists essentially of said particulate mixture.
- the feedstock comprises zirconia particles incorporating yttrium, yttrium oxide particles and optionally a sintering additive as previously described.
- the yttria zirconia particles and the sintering additive are intimately mixed beforehand, this intimacy possibly going as far as the prior incorporation of the sintering additive into the composition of the yttria-containing zirconia particles.
- the preform is sintered, preferably in air, preferably at atmospheric pressure or under pressure (hot pressing) and / or hot isostatic pressing ("Hot Isostatic Pressing"). in English, or HIP)) and at a temperature of between 1200 ° C. and 1600 ° C., preferably greater than 1300 ° C. and / or less than 1500 ° C.
- a sintered part may be made from a particulate mixture according to the invention according to a process conventionally comprising steps a) to c).
- this process comprises, prior to step a), a grinding step to achieve the particle size characteristics of the particulate mixture according to the invention.
- a grinding can be implemented so that each of the powders used in step a) or for the particulate mixture of all of these powders has a maximum size (0 99 , 5) of less than 100 ⁇ m, even less than 10 ym.
- step a a particulate mixture according to the invention "ready-to-use" can be implemented. Alternatively, all raw materials can be dosed at the time of preparation of the feedstock.
- the feedstock can also comprise one or more deflocculant (s) and / or binder (s) and / or lubricants, preferably temporary, conventionally used in forming processes for the production of preforms to be sintered, for example a polyethylene glycol (PEG), a carboxylic acid, or a latex.
- deflocculant s
- binder s
- lubricants preferably temporary, conventionally used in forming processes for the production of preforms to be sintered, for example a polyethylene glycol (PEG), a carboxylic acid, or a latex.
- the mixture of raw materials can optionally be atomized before proceeding to step b).
- the atomization makes it possible to improve the chemical homogeneity of said mixture.
- the size of the atomisates may for example be between 20 ⁇ m and 250 ⁇ m.
- step b) the mixture is then shaped, for example by cold isostatic pressing, to form blocks of desired size.
- step c) the preform is sintered, preferably in air, at atmospheric pressure or under pressure (hot pressing) and / or hot isostatic pressing ("Hot Isostatic Pressing"). , or HIP)) and at a temperature of between 1200 ° C and 1600 ° C, preferably between 1300 ° C and 1500 ° C.
- the holding time at this temperature is preferably between 2 and 8 hours.
- the rise speed is typically between 10 and 100 ° C / h.
- the descent speed can be free.
- the sintering cycle preferably comprises a step of 1 to 4 hours at a temperature of between 400 ° C. and 800 ° C. in order to promote elimination of said products.
- the sintered part obtained at the end of step c) may be machined and / or subjected to a surface treatment, such as, for example, polishing or sanding, according to any technique known to those skilled in the art.
- the term "sintering” means consolidation by heat treatment at more than 1100 ° C of a granular agglomerate, possibly with a partial or total melting of some of the constituents of this agglomerate (but not all of its constituents).
- impurities is meant inevitable constituents necessarily introduced with the raw materials or resulting from reactions with these constituents. Impurities are not necessary constituents, but only tolerated.
- the compounds forming part of the group of oxides, nitrides, oxynitrides, carbides, oxycarbides, carbonitrides and metallic species of sodium and other alkalis are impurities.
- impurities By way of examples, mention may be made of Na 2 ⁇ 0. It is considered that a total content of impurities of less than 2% does not substantially modify the results obtained. In contrast, hafnium oxide is not considered an impurity.
- Zr0 2 zirconium oxide term or "Zr0 2" thus refers conventionally the total content of these two oxides.
- Hf0 2 is not voluntarily added to the feedstock but is still naturally present in zirconia sources at levels generally less than 2%.
- Zr0 2 + Hf0 2 or "ZrC 2 ", or "zirconia content”.
- Yttrium-stabilized zirconia or yttria-stabilized zirconia is a zirconia also incorporating element Y in an amount of about 2.0 to 5.0 mol%, expressed as the oxide. Y2O 3 , to stabilize the quadratic and / or cubic structural forms of zirconia at room temperature.
- stabilized zirconia is more than 80%, even more than 90% or even more than 95%, or even substantially 100%, by volume, of quadratic and / or cubic phase, the complement being 100%. % consisting of monoclinic phase. The amount of stabilized zirconia is measured most often by X-ray diffraction.
- the measuring surface is polished, the last polishing step being carried out with a Mecaprex LD32-E diamond preparation. lym marketed by the company PRESI, after the part has undergone a heat treatment at 1000 ° C for 1 hour and was cooled to room temperature. On a powder, the measurement is carried out directly on the powder, without preliminary grinding.
- Average size of the grains of a sintered part means the average of the dimensions measured according to the "Intercept Length” method described in ASTM standard E1382-97, or “average intercept length", the results obtained by this standard. being multiplied by a correction coefficient equal to 1.56 to take account of the three-dimensional aspect.
- percentiles 10 (denoted Di o), 90 (denoted D 90 ) and 99.5 (denoted D 99 , 5 ), the particle sizes corresponding to the percentages equal to 10%, 90% and 99.5% respectively.
- 10% by weight of the particles of the powder have a size less than Di o and 90% of the particles, by mass, have a size greater than Di o.
- Percentiles are determined using a particle size distribution using a laser granulometer. - The maximum size of a powder is called the 99.5 percentile.
- Absolute density of a product is understood in the sense of the present invention, the ratio equal to the mass of dry matter of said product after grinding to such a finesse that it remains substantially no closed porosity, divided by the volume of this mass after grinding. It can be measured by helium pycnometry.
- Relative density of a product means the ratio of the bulk density divided by the absolute density, expressed as a percentage.
- containing one means "containing at least one", unless otherwise indicated.
- the yttria zirconia powder used is a powder marketed by Saint-Gobain ZirPro under the name CY3Z-MS.
- the powder A ⁇ Os used in Example 2 is a powder of Al 2 03 commercially available from Almatis, having a mass content of Al 2 O 3 greater than 99.99% and a median size equal to 0 , 5 ym.
- the yttrium oxide powder Y 2 O 3 used in Examples 3 to 9 is a powder marketed by the companymaschineacher, having a mass content of Y 2 O 3 greater than 99.99% and a median size equal to 1 micrometer.
- a mixture of particles is formed with the preceding powders in the proportions shown in Table 1 below.
- Each particulate mixture undergoes a milling step in a attrition mill wet environment. These particulate mixtures are then dried.
- Their maximum sizes Dg9, 5 and median D 5 o are described in Table 1.
- Particle size measurements were performed on a Horiba LA-950 laser granulometer.
- the specific surface area is calculated by the BET method (Brunauer Emmet Teller) as described in Journal of American Chemical Society 60 (1938), pages 309-316.
- the quantity M1 of yttrium oxide contained in the particulate mixture is determined by X fluorescence.
- M2 of yttrium oxide corresponds to the quantity of yttrium oxide contained in the stabilized zirconia, the attack with hydrochloric acid having solubilized the particles of yttrium oxide of the particulate mixture.
- the quantity of yttrium oxide particles contained in the particulate mixture, by mass is equal to M1-M2.
- Example 1 The powder of Example 1 serves as a reference and contains only yttria zirconia.
- the powder according to Example 2 is in accordance with the teaching of "Mechanism of alumina-enhanced sintering of fine zirconia powder: influence of alumina concentration on the initial stage sintering", Matsui and al., J. Am. Ceram. Soc. 91 [6], p. 1888-1897 (2008) in which the yttria zirconia is sintered in the presence of the well-known sintering additive AI 2 O 3 .
- Example 3 not in accordance with the present invention, comprises a limited amount of Y 2 O 3 particles in the initial mixture.
- Each particulate mixture according to Examples 1 to 9 is then shaped by uniaxial pressing at a pressure equal to 100 MPa to obtain a preform of 32 mm in diameter. Based on the amount of yttria zirconia powder, 0.8% of an acrylic polyacid dispersant was added to each particulate mixture prior to pressing.
- Each preform is then sintered in an electric oven, under air, in a cycle whose maximum temperature is equal to 1350 ° C or 1450 ° C, for a hold time at the maximum temperature equal to 2 hours.
- the rate of rise in temperature is equal to 100 ° C / h.
- the descent in temperature is equal to 300 ° C / h.
- the density is determined by hydrostatic weighing.
- the temperature at which the rate of shrinkage is maximum (T m ) is obtained according to a dilation-sintering test using a SETSYS Evolution TMA 2400 Dilatometer having a planar alumina probe, the samples used are cylinders of 12 mm height for 5mm diameter shaped by uniaxial pressing of the particulate mixture at 100 MPa.
- Tm temperature at which the rate of shrinkage is maximum
- FIG. 1 the diagram for measuring Tm for examples 1 (comparative) and 4 (according to the invention) previously described was plotted.
- the abscissa axis represents the temperature in degrees Celsius
- the ordinate axis represents the derivative of the thermal expansion (in percentage per degree Celsius).
- the curve plotted in solid squares is that obtained for the particulate mixture according to Example 1 and the curve drawn in open circles is that obtained for the particulate mixture according to Example 4.
- yttrium on the sinterability of the particulate mixture as illustrated by the temperature Tm.
- the addition of a sufficient quantity of yttrium oxide mixed with the yttria zirconia powder makes it possible to greatly reduce the sintering temperature.
- the temperature Tm is thus equal to 1350 ° C. for the zirconia powder alone and decreases by about 100 ° C. by addition of yttrium oxide particles.
- Comparative example 3 shows that a particulate mixture containing a quantity of Y 2 O 3 powder equal to 0.1% does not make it possible to significantly reduce the sintering temperature Tm, and consequently has no improvement effect. on the sinterability of the initial particulate mixture.
- Examples 4 and 5 show that the insertion of a relatively small amount of yttrium oxide, i.e. equal to 0.5% and 1.0%, respectively, in admixture with the powder
- the yttriated zirconia ring significantly and unexpectedly increases the sintering reactivity of the particulate mixture, as indicated by the very low values obtained for the T m .
- the temperature Tm appears substantially identical to that obtained with a particulate mixture containing alumina as a sintering additive, the effectiveness of which is well known.
- the hydrothermal resistance of the samples is also determined according to the following protocol:
- the samples are first subjected to an accelerated aging test (LTD) to measure their hydrothermal resistance according to the following protocol: Samples are placed in a hydrothermal reactor at a temperature of 200 ° C and a pressure of 15 bar for 48 hours.
- LTD accelerated aging test
- the percentage of the monoclinic phase of ZrO 2 zirconia is determined by X-ray diffraction techniques and Rietveld analysis.
- the mass fraction of monoclinic zirconia is obtained from the ratio of the areas of the peaks ((-1) 11) and (111) of the monoclinic zirconia and the peak (111) of the stabilized zirconia in the quadratic and / or cubic form according to the formula :
- Area Mo no area of the peak ((-1) 11) + area of the peak (111) of the monoclinic zirconia,
- Pstab theoretical density of zirconia stabilized in the quadratic and / or cubic form, equal to 6, 1 g / cm 3 .
- Example 5 In view of its combined properties of high density, hydrothermal and mechanical strength, the product according to Example 5 appears particularly suitable for use as a structural and technical ceramic, in particular for dental applications, optical connectors, decorative ceramics.
- 10 is a powder having an equivalent molar content of Y 2 O 3 equal to 5.1%. It is obtained after fusion-solidification and then grinding. The powder has a median size, after grinding, equal to 0.8 ⁇ m.
- 11 is a powder having an equivalent molar content of Y 2 O 3 equal to 3.8%. It is obtained after fusion-solidification and then grinding. The powder has, after grinding, a median size after grinding equal to 0.8 ⁇ m.
- the Y 2 O 3 powder used in Example 11 is marketed by Treibacher. It has a mass content of Y2O 3 greater than 99.99% and a median size equal to 1 ⁇ m.
- a carbon black powder is added to the particulate mixture according to Examples 10 and 11 in an amount equal to 8% by weight based on the sum of the particulate mixture and the carbon black powder.
- This set is then mixed manually for 5 minutes with a pestle in a mortar.
- the mixture thus obtained is then shaped by uniaxial pressing at a pressure equal to 65 MPa to obtain a preform of 32 mm in diameter.
- Each preform is then sintered in an electric oven, under air, in a cycle whose maximum temperature is equal to 1450 ° C. and 1550 ° C., for a time the maximum temperature being maintained for 4 hours.
- the rate of rise in temperature is equal to 100 ° C / h and the rate of descent in temperature is equal to 300 ° C / h.
- Table 5 The main results obtained after characterization of the samples after the sintering are reported in Table 5 which follows:
- the flexural modulus is measured on samples of Examples 10 and 11 sintered at 1450 ° C, under the conditions of ASTM C1499-03.
- the sample according to Example 11 has a MOR module equal to 54 MPa, whereas the sample according to Example 10 has a MOR module equal to 47 MPa.
- Example 11 appears particularly suitable for use as a ceramic membrane for gas separation, in particular for the separation of oxygen.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Composite Materials (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Sustainable Development (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Mélange particulaire, en particulier dont la taille maximale des particules D99,5 est inférieure à 100 μm, ledit mélange étant caractérisé en ce qu' il comprend : des particules de zircone yttriée, en une quantité d'au moins 80,0% de la masse totale des particules inorganiques présentes dans ledit mélange, la teneur en yttrium des particules, exprimée sous la forme de l'oxyde d' Yttrium Y2O3, étant comprise entre 2,0% et 5,0 % en moles, des particules d' Y2O3 en une quantité comprise entre 0,2% et 4,0% de la masse totale des particules inorganiques présentes dans ledit mélange.
Description
MELANGE PARTICULAIRE POUR L' OBTENTION D ' UN PRODUIT EN ZIRCONE YTTRIEE
L' invention se rapporte à un mélange particulaire pour l'obtention d'un produit en zircone yttriée, c'est à dire stabilisée à l'Yttrium, et dont l'aptitude au frittage est améliorée par référence aux mélanges connus jusqu'ici, ou au moins sensiblement équivalente. Le mélange particulaire objet de la présente invention permet notamment l'obtention de produits frittés dont la densité est très élevée, en particulier proche de la densité théorique du matériau cristallin, à des températures de frittage relativement basses.
Les produits fabriqués en zircone stabilisée par l'yttrium sont très utilisés à l'heure actuelle pour leurs propriétés mécaniques, thermo-mécaniques, chimiques et de conduction ionique.
Des domaines d'application sont par exemple des pièces d'usure, comme par exemple des vannes de pompes, des billes de broyage, des pièces pour le dentaire, des objets décoratifs, des bijoux, comme par exemple des montres, des électrolytes de piles à combustible, des membranes pour la séparation de gaz, en particulier pour la séparation de l'oxygène, des sondes à oxygène, des connecteurs de fibres optiques.
Chacun des domaines d'application précédemment décrit requiert des propriétés spécifiques, fonction des caractéristiques structurales propres des matériaux frittés utilisés, ces caractéristiques structurales étant elles-mêmes directement liées au procédé de fabrication
et en particulier au choix des matières premières à fritter .
Ainsi, dans le cas d'une pièce en céramique pour une application dentaire, une forte densité du matériau fritté est recherchée, ainsi qu'une forte résistance hydrothermale .
Alternativement, dans le cas d'une utilisation comme membrane pour la séparation de gaz, en particulier pour la séparation de l'oxygène, le matériau fritté doit présenter une forte porosité tout en conservant une résistance mécanique, en particulier un module à la rupture (MOR) acceptable.
Il est connu que l'obtention par les techniques de frittage de produits en zircone stabilisée tels que des pièces mécaniques de haute densité ou encore poreuses dont les propriétés mécaniques sont optimisées nécessite la mise en œuvre de procédés très spécifiques, par exemple du type de celui décrit dans la demande EP 0320345 Al.
« Mechanism of alumina-enhanced sintering of fine zirconia powder : influence of alumina concentration on the initial stage sintering », Matsui et al., J. Am. Ceram. Soc, 91 [6], p 1888-1897 (2008), décrit l'alumine comme un additif favorisant le frittage de la zircone stabilisée .
Cependant, pour certaines applications comme par exemple les céramiques dentaires, les céramiques conductrices de l'oxygène et certaines céramiques décoratives, l'utilisation de l'alumine comme additif de frittage de la zircone stabilisée entraîne une diminution des propriétés recherchées, comme par exemple la translucidité des pièces en dentaire et en décoration ou
la conductivité ionique dans le cas des céramiques conductrices .
En tout premier lieu le choix des matières premières utilisées pour la fabrication de telles pièces apparaît primordial pour l'obtention de telles propriétés. Le choix de ces matières premières conditionne en particulier la microstructure et l'homogénéité du matériau final et donc les propriétés de la pièce frittée. En particulier les meilleures propriétés mécaniques de la pièce finale sont largement conditionnées par l'aptitude au frittage des différentes particules présentes dans le mélange initial, comme il est indiqué dans la demande EP 0320 345.
Par aptitude au frittage ou encore frittabilité d'un mélange, on entend au sens de la présente invention la capacité des particules formant ledit mélange à réagir entres elles à plus basse température pour former le matériau final au sein de la pièce mécanique fritté.
Cette aptitude au frittage ou frittabilité peut par exemple être mise en évidence :
- par une mesure de masse volumique apparente et comparaison à des températures de frittage identiques : une masse volumique supérieure indique une densification plus importante de la poudre, ce qui se traduit par des possibilités accrues de densification de la pièce finale bien supérieure.
- par une mesure de la température pour laquelle la vitesse de retrait apparaît maximale, au cours d'une mesure de dilatation-frittage . Plus cette température est basse, plus la frittabilité de la poudre est importante. Cette mesure est obtenue de manière simple et classique par une analyse dilatométrique du mélange de particules.
La demande de brevet WO 2011/062775 A2 de la société Exxon Mobil décrit dans son exemple 2 une composition comprenant 75 % en volume de zircone stabilisé avec une quantité de 10 à 15% d'oxyde d' yttrium, en mélange avec une quantité de 10% volume d'une poudre oxyde d' yttrium, mélangé avec 15% volume de billes de polymère. Il apparaît clairement que ce mélange comprend une quantité très importante d'oxyde d' yttrium. Une telle quantité, comme il est démontré dans les exemples qui suivent, conduit à l'obtention de densités plus faibles et surtout à une diminution de la réactivité au frittage du mélange particulaire, comme indiqué dans la suite de la description et notamment au travers les exemples fournis.
La demande US2010 /292522 décrit dans son exemple 1 un mélange particulaire comprenant 88,2% poids d'une zircone stabilisée avec 7 à 9% poids d'oxyde d' yttrium et 11,8% poids (soit 7% molaire) d'une poudre d'oxyde d' yttrium, en présence d'un liant organique. Tout comme le précédent, ce mélange contient donc une très forte quantité d' oxyde d' yttrium, ce qui conduit à diminuer la réactivité au frittage dudit mélange particulaire, comme il est démontré dans la suite de la description et notamment au travers des exemples fournis.
L'un des buts visés par la présente invention est donc de proposer un mélange de particules à fritter, ledit mélange présentant une excellente aptitude au frittage, cette aptitude conduisant au final à des produits frittés dont les propriétés sont optimisées pour l'utilisation recherchée, ces propriétés étant notamment le meilleur compromis entre les densités finales et les propriétés mécaniques et chimiques (en particulier la résistance hydrothermale) des matériaux constituant les produits finaux. De tels produits peuvent être, selon
l'application, des matériaux de forte densité, sensiblement proche de la densité théorique, ou alternativement des matériaux sensiblement poreux,, par exemple dont la masse volumique relative est inférieure à 80% ou de manière équivalente dont la porosité totale est supérieure à 20%.
L' invention concerne selon un premier aspect un mélange particulaire, en particulier dont la taille maximale des particules Dg9,5 est inférieure à 100 micromètres, ledit mélange étant caractérisé en ce qu'il comprend :
- des particules de zircone yttriée, en une quantité d'au moins 80,0% de la masse totale des particules inorganiques présentes dans ledit mélange, la teneur en yttrium desdites particules de zircone yttriée, exprimée sous la forme de l'oxyde d' Yttrium Y2O3, étant comprise entre 2,0% et 5,0% en moles, de préférence entre 2,0% et 4,0% en moles et de manière très préférée entre 2,0% et 3,8% en moles .
- des particules d' oxyde d' yttrium Y2O3 en une quantité comprise entre 0,2% et 4,0% de la masse totale des particules inorganiques présentes dans ledit mélange.
Sans sortir du cadre de la présente invention, les particules d' oxyde d' yttrium peuvent être remplacées par une quantité équivalente, sur la base de l'élément Y, d'un précurseur dudit oxyde Y2O3.
De façon classique, on appelle « précurseur » d'un oxyde un composé ou un ensemble de composés qui, par un traitement thermique notamment sous air, conduisent à la formation dudit oxyde. A titre d'exemple le nitrate d' yttrium est un précurseur d'oxyde d' yttrium. Une quantité d'un précurseur d'un oxyde est dite « équivalente » à une quantité dudit oxyde lorsque, lors du
traitement thermique, elle conduit à ladite quantité dudit oxyde.
Selon des modes préférés de réalisation de la présente invention, qui peuvent être le cas échéant combinés entre eux :
Le mélange particulaire présente un rapport R, défini comme le rapport ( D90 - Di o ) / D50 , supérieur à 0,3, voire supérieur à 0,5 et inférieur à 5,0, de préférence inférieur à 3,0, de préférence inférieur à 2,0, voire inférieur à 1,5.
Le mélange particulaire présente une aire spécifique inférieure à 15 m2/g.
Le mélange particulaire présente une aire spécifique comprise entre 5 et 15 m2/g.
Le mélange particulaire présente une aire spécifique inférieure à 5 m2/g.
La quantité de particules de zircone yttriée dans le mélange est supérieure à 85%, de préférence supérieure à 90%, de préférence supérieure à 93%, de préférence encore supérieure à 94,5% de la masse totale des particules inorganiques présentes dans ledit mélange.
La quantité de particules d' Y2O3 dans le mélange est supérieure 0,2%, de préférence supérieure à 0,4%, de préférence supérieure à 0,5% de la masse totale des particules inorganiques présentes dans ledit mélange,
La quantité de particules d' Y2O3 dans le mélange est inférieure à 3,0%, de préférence inférieure à 2,0%, de préférence inférieure à 1,5% de la masse totale des particules inorganiques présentes dans ledit mélange .
La quantité équivalente totale de Y2O3 dans le mélange particulaire est inférieure à 4,1% molaire, de préférence est inférieure à 4,0% molaire et de manière très préférée est inférieure à 3, 9% molaire ou même inférieure à 3,8% molaire. Par quantité molaire équivalente, on entend la quantité sommée totale de l'oxyde d' yttrium dans la zircone et de l'oxyde d' yttrium sous forme de particules dans le mélange .
Le mélange particulaire comprend en outre entre 0,1% et 1,5% d'un additif de frittage, sur la base de la masse totale du mélange particulaire, ledit additif étant choisi parmi A1203, Ti02, ZnO, Fe203, CuO, Mn02, Si02 et leurs mélanges.
Alternativement et de préférence, le mélange particulaire comprend une teneur totale en additifs de frittage, en particulier Al203, inférieure à 0,1% et de préférence une teneur totale en additifs de frittage, en particulier Al203, inférieure à 0,05%. De préférence, le mélange particulaire ne contient pas de tels additifs de frittage, en particulier ne contient pas d'Al203, ou alors uniquement sous forme d'impuretés inévitables.
Le mélange particulaire comporte un ou plusieurs défloculant ( s ) et/ou liant (s) et/ou lubrifiants organiques, de préférence temporaires, utilisés classiquement dans les procédés de mise en forme pour la fabrication de préformes à fritter, par exemple un acide carboxylique, un latex, un polyéthylène glycol.
Dans un mode de réalisation, le mélange particulaire ne contient aucun autre élément que les particules de zircone yttriée, les particules d'Y203, l'additif
de frittage, les impuretés inévitables, un ou plusieurs défloculant ( s ) et/ou liant (s) et/ou lubrifiants. Par exemple Le mélange particulaire consiste en un mélange de particules de zircone yttriée, de particules d'oxyde d'yttrium et d'un ou plusieurs défloculant ( s ) et/ou liant (s) et/ou lubrifiants .
la teneur globale en oxydes de Zr, Hf et Y dans le mélange est supérieure ou égale à 96%, de préférence supérieure ou égale à 97%, voire supérieure à 99%, de la masse totale du mélange particulaire,
Le mélange particulaire est constitué essentiellement desdits oxydes de Zr, Hf et Y.
Le rapport de la taille médiane de la poudre d'Y2Û3 sur la taille médiane de la poudre de zircone yttriée est compris entre 0,01 et 2, de préférence compris entre 0,01 et 1, de préférence encore sensiblement égal à 1.
La taille médiane D5o du mélange particulaire est inférieure à 1 ym, voire inférieure à 0,8ym, voire encore inférieure à 0,6 ym, ou encore inférieure à 0 , 3 ym.
Selon un premier mode possible, le mélange particulaire présente une aire spécifique comprise entre 5 et 15 m2/g et une taille maximale Dg9,5 des particules inférieure à 10 ym. Ce premier mode de réalisation est particulièrement bien adapté à la réalisation de pièces denses, c'est-à-dire présentant après frittage une masse volumique relative supérieure à 98%. Le mélange particulaire selon ce mode est également bien adapté à la fabrication de pièces poreuses, moyennant l'emploi
d' agents porogènes dans le procédé de fabrication desdites pièces poreuses.
De préférence, le mélange particulaire de ce premier mode de réalisation présente une taille D90 inférieure à 10 ym, voire inférieure à 5 ym, voire inférieure à 3 ym, voire inférieure à 1 ym.
De préférence, le mélange particulaire selon ce mode présente une taille médiane D5o inférieure à 1 ym, voire inférieure à 0,8ym, voire encore inférieure à 0,6 ym, ou encore inférieure à 0,3 ym.
Dans un mode de réalisation particulier de ce premier mode de réalisation, les particules de zircone yttriée présentent une teneur en Y2O3 supérieure à 2,0%, de préférence supérieur à 2,5% et inférieure à 3,8%, de préférence inférieure à 3,5% (les pourcentages étant molaires) . De préférence également, la quantité de particules d' Y2O3 (ou la quantité équivalente du précurseur des particules d'Y2Û3) est supérieure à 0,2%, de préférence supérieure à 0,4%, de préférence supérieure à 0,5% et inférieure à 4,0%, de préférence inférieure à 3,0%, de préférence inférieure à 2,0%, de préférence inférieure à 1,5%. Ce mode de réalisation est particulièrement bien adapté à la réalisation de pièces denses, c'est-à-dire présentant après frittage une masse volumique relative supérieure à 98 ~6 , voire même supérieure à 99% et présentant une résistance hydrothermale améliorée, à propriétés mécaniques sensiblement identiques. Le mélange particulaire selon ce mode est également bien adapté à la fabrication de pièces poreuses, moyennant l'emploi d'agents porogènes dans le procédé de fabrication desdites pièces poreuses.
Dans un autre mode de réalisation particulier de ce premier mode de réalisation, les particules de zircone
yttriée présentent une teneur en Y2O3 supérieure à 2,0%, de préférence supérieure à 2,5% et inférieure à 5,0%, de préférence inférieure à 4,0%, (les pourcentages étant molaires) .
Ce mode de réalisation est particulièrement bien adapté à la réalisation de pièces denses, en particulier présentant après frittage une masse volumique relative supérieure à 95% et présentant une conductivité ionique améliorée, à propriétés mécaniques sensiblement identiques. Le mélange particulaire selon ce mode est également bien adapté à la fabrication de pièces poreuses, moyennant l'emploi d'agents porogènes dans le procédé de fabrication desdites pièces poreuses.
Selon un deuxième mode possible, le mélange particulaire présente une aire spécifique inférieure à 5 m2/g. Ce mode de réalisation est particulièrement bien adapté à la réalisation de pièces poreuses, au sens précédemment décrit.
Dans un mode de réalisation particulier de ce second mode de réalisation, les particules de zircone yttriée du mélange présentent une teneur en Y2O3 supérieure à 2,0%, de préférence supérieur à 2,5% et inférieure à 4,0%, de préférence inférieure à 3,8%, de préférence inférieure à 3,5% (les pourcentages étant molaires). De préférence, la quantité de particules d' Y2O3 (ou la quantité équivalente du précurseur des particules d'Y2Û3) est supérieure à 0,2%, de préférence supérieure à 0,4%, de préférence supérieure à 0,5% et inférieure à 4,0%, de préférence inférieure à 3,0%, de préférence inférieure à 2,0%, de préférence inférieure à 1,5%.
Ce mode de réalisation est particulièrement bien adapté à la réalisation de pièces poreuses présentant un
bon compromis entre la porosité totale et la résistance mécanique du matériau constitutif en zircone stabilisé.
Dans un autre mode de réalisation particulier de ce second mode de réalisation, les particules de zircone yttriée présentent une teneur en Y2O3 supérieure à 2,0%, de préférence supérieure à 2,5% et inférieure à 5,0%, de préférence inférieure à 4,0% (les pourcentages étant molaires) . La poudre de zircone yttriée et la poudre d' Y2O3 initiales peuvent subir un broyage, ou encore un cobroyage, jusqu'à l'obtention des caractéristiques du mélange précédemment décrites.
Le mélange particulaire tel que décrit précédemment peut se présenter sous une forme sèche, c'est-à-dire être obtenu directement par mélange des matières premières adéquates. Ce mélange de matières premières peut ensuite subir une étape optionnelle de co-broyage, en voie sèche ou en voie humide. Il peut aussi avoir subi une étape supplémentaire, par exemple une étape de mélange en suspension puis de séchage, par exemple par atomisation, notamment pour en améliorer l'homogénéité chimique.
L' invention se rapporte selon un autre aspect au produit ou à la pièce mécanique obtenue par frittage d'un mélange particulaire tel que précédemment décrit.
Un tel produit ou une telle pièce mécanique peut notamment être utilisé comme pièce mécanique d'usure, comme par exemple une vanne de pompe, bille de broyage, pièce céramique dentaire, objet décoratif, bijou, électrolyte de piles à combustible, membrane pour la séparation de gaz, en particulier pour la séparation de l'oxygène, sonde à oxygène, connecteur de fibres optiques .
Dans un premier mode de réalisation où un produit dense est recherché, cette pièce frittée présente une masse volumique relative supérieure à 98%, de préférence supérieure à 99%, de préférence supérieure à 99,5~6 , voire 99,8%, la zircone yttriée constituant tout ou partie de ladite pièce frittée est de préférence constituée pour plus de 80%, de préférence pour plus de 90%, de préférence pour plus de 95%, en volume, des phases quadratique et/ou cubique, le complément à 100% étant constitué de phase monoclinique. La taille moyenne des grains de zircone de la pièce frittée est de préférence inférieure à 10 ym, de préférence inférieure à 5 ym, de préférence inférieure à 2 ym, de préférence inférieure à 1 ym, voire inférieure à 0,5 ym.
Dans un autre mode de réalisation où un produit poreux est recherché, la pièce frittée présente une porosité totale supérieure à 20%, de préférence supérieure à 30%, de préférence supérieure à 35%, la zircone de cette pièce frittée est de préférence constituée pour plus de 80%, de préférence pour plus de 90%, de préférence pour plus de 95%, en volume, de phase quadratique et/ou cubique, le complément à 100% étant constitué de phase monoclinique. La taille moyenne des grains de zircone de la pièce frittée est de préférence inférieure à 10 ym, de préférence inférieure à 5 ym, de préférence inférieure à 2 ym, de préférence inférieure à 1 ym.
Enfin l'invention porte sur un procédé de fabrication d'une pièce frittée comportant les étapes suivantes : a) mélange de matières premières pour former une charge de départ,
b) mise en forme d'une préforme à partir de ladite charge de départ,
c) frittage de ladite préforme de manière à obtenir ladite pièce frittée,
dans lequel la charge de départ comporte un mélange particulaire tel que décrit précédemment.
De préférence, la charge de départ est constituée essentiellement par ledit mélange particulaire.
Dans un mode de réalisation, la charge de départ comprend des particules de zircone incorporant de l'yttrium, des particules d'oxyde d' yttrium et éventuellement un additif de frittage tel que précédemment décrit. Selon un mode de réalisation particulier, les particules de zircone yttriée et l'additif de frittage sont préalablement intimement mélangés, cette intimité pouvant aller jusqu'à l'incorporation préalable de l'additif de frittage dans la composition des particules de zircone yttriée.
A l'étape c) , la préforme est frittée, de préférence sous air, de préférence à pression atmosphérique ou sous pression (pressage à chaud (« Hot Pressing » en anglais) et/ou pressage isostatique à chaud (« Hot Isostatic Pressing » en anglais, ou HIP) ) et à une température comprise entre 1200°C et 1600°C, de préférence supérieure à 1300°C et/ou inférieure à 1500°C.
Une pièce frittée peut être fabriquée à partir d'un mélange particulaire selon 1 ' invention selon un procédé comportant classiquement les étapes a) à c) . Optionnellement , ce procédé comporte, préalablement à l'étape a), une étape de broyage permettant d'atteindre
les caractéristiques granulométriques du mélange particulaire selon l'invention. En particulier, un broyage peut être mis en œuvre pour que chacune des poudres utilisées à l'étape a) ou pour que le mélange particulaire de l'ensemble de ces poudres présente une taille maximale (099,5) inférieure à 100 ym, voire inférieure à 10 ym.
A l'étape a), un mélange particulaire selon l'invention "prêt-à-l'emploi" peut être mis en œuvre. En variante, toutes les matières premières peuvent être dosées au moment de la préparation de la charge de départ .
La charge de départ peut encore comporter un ou plusieurs défloculant ( s ) et/ou liant (s) et/ou lubrifiants, de préférence temporaires, utilisés classiquement dans les procédés de mise en forme pour la fabrication de préformes à fritter, par exemple un polyéthylène glycol (PEG) , un acide carboxylique, ou un latex .
Le mélange des matières premières peut éventuellement être atomisé avant de passer à l'étape b) . Avantageusement, 1 ' atomisation permet d'améliorer l'homogénéité chimique dudit mélange. La taille des atomisats peut par exemple être comprise entre 20 ym et 250 ym.
A l'étape b) , le mélange est ensuite mis en forme, par exemple par pressage isostatique à froid, afin de former des blocs de taille désirée.
D'autres techniques telles que le coulage en barbotine, le pressage uniaxial, le coulage d'un gel, le vibro-coulage, le coulage en bande, le moulage par injection ou une combinaison de ces techniques pourraient être utilisées.
A l'étape c) , la préforme est frittée, de préférence sous air, à pression atmosphérique ou sous pression (pressage à chaud (« Hot Pressing » en anglais) et/ou pressage isostatique à chaud (« Hot Isostatic Pressing » en anglais, ou HIP) ) et à une température comprise entre 1200°C et 1600°C, de préférence entre 1300°C et 1500°C. Le temps de maintien à cette température est de préférence compris entre 2 et 8 heures. La vitesse de montée est classiquement comprise entre 10 et 100°C/h. La vitesse de descente peut être libre. Si des défloculant ( s ) et/ou liant (s) et/ou lubrifiants sont utilisés, le cycle de frittage comprend de préférence un palier de 1 à 4 heures à une température comprise entre 400°C et 800°C afin de favoriser l'élimination desdits produits .
La pièce frittée obtenue en fin de l'étape c) peut être usinée et/ou subir un traitement de surface, comme par exemple un polissage ou un sablage, selon toute technique connue de l'homme du métier.
Au sens de la présente invention, on donne les définitions suivantes :
On appelle « frittage » une consolidation par traitement thermique à plus de 1100°C d'un agglomérat granulaire, avec éventuellement une fusion, partiellement ou totale, de certains des constituants de cet agglomérat (mais pas de tous ses constituants) .
Par « impuretés », on entend les constituants inévitables introduits nécessairement avec les matières premières ou résultant de réactions avec ces constituants. Les impuretés ne sont pas des constituants nécessaires, mais seulement tolérés. En particulier, les composés faisant partie du groupe des oxydes, nitrures,
oxynitrures, carbures, oxycarbures, carbonitrures et espèces métalliques de sodium et autres alcalins sont des impuretés. A titre d'exemples, on peut citer Na2<0. On considère qu'une teneur totale en impuretés inférieure à 2% ne modifie pas substantiellement les résultats obtenus. En revanche, l'oxyde d'hafnium n'est pas considéré comme une impureté. Dans une source de particules de zircone, il est connu qu'Hf02 n'est pas chimiquement dissociable de Zr02- Au sens de la présente invention, le terme oxyde de zirconium ou « Zr02 » désigne donc classiquement la teneur totale de ces deux oxydes. Selon la présente invention, Hf02 n'est pas ajouté volontairement dans la charge de départ mais est toujours naturellement présent dans les sources de zircone à des teneurs généralement inférieures à 2%. Par souci de clarté, on désigne indifféremment la teneur en zircone et en traces d'oxyde d'hafnium par « Zr02+Hf02 » ou par « ZrC>2 », on encore par « teneur en zircone ».
On appelle « zircone yttriée » ou « zircone stabilisée à l'yttrium », une zircone incorporant également l'élément Y en une quantité de l'ordre de 2,0 à 5,0% molaire, exprimée sous la forme de l'oxyde Y2O3, pour stabiliser les formes structurales quadratique et/ou cubique de la zircone à la température ambiante. Une zircone stabilisée au sens de la présente description est notamment constituée pour plus de 80%, voire plus de 90%, voire plus de 95%, voire sensiblement 100%, en volume, de phase quadratique et/ou cubique, le complément à 100% étant constitué de phase monoclinique. La quantité de zircone stabilisée est mesurée le plus souvent par diffraction X. Sur une pièce massive, la surface de mesure est polie, la dernière étape de polissage étant réalisée avec une préparation diamantée Mecaprex LD32-E
lym commercialisée par la société PRESI, après que la pièce a subi un traitement thermique à 1000 °C pendant 1 heure et a été refroidie à température ambiante. Sur une poudre, la mesure est effectuée directement sur la poudre, sans broyage préalable.
Par « taille moyenne » des grains d'une pièce frittée, on entend la moyenne des dimensions mesurées selon la méthode de « Intercept Length » décrite dans la norme ASTM E1382-97, ou « average intercept length », les résultats obtenus par cette norme étant multipliés par un coefficient correcteur égal à 1,56 pour tenir compte de l'aspect tridimensionnel.
- On appelle « taille médiane » d'un ensemble de particules, notée D5 o , la taille divisant les particules de cet ensemble en une première et une deuxième populations égales en masse, ces première et deuxième populations ne comportant que des particules présentant une taille supérieure ou inférieure, respectivement, à ladite taille médiane.
On appelle « percentiles » 10 (notée Di o ) , 90 (notée D90) et 99,5 (notée D99,5) , les tailles de particules correspondant aux pourcentages égaux respectivement à 10%, 90% et 99,5%, en masse, sur la courbe de distribution granulométrique cumulée des tailles de particules de la poudre, lesdites tailles de particules étant classées par ordre croissant. Selon cette définition 10% en masse des particules de la poudre ont ainsi une taille inférieure à Di o et 90% des particules, en masse, ont une taille supérieure à Di o . Les percentiles sont déterminés à l'aide d'une distribution granulométrique réalisée à l'aide d'un granulomètre laser.
- On appelle « taille maximale » d'une poudre, le percentile 99,5.
- Par « masse volumique absolue » d'un produit, on entend au sens de la présente invention, le rapport égal à la masse de matière sèche dudit produit après un broyage à une finesse telle qu' il ne demeure sensiblement aucune porosité fermée, divisée par le volume de cette masse après broyage. Elle peut être mesurée par pycnométrie à hélium.
- Par « masse volumique relative » d'un produit, on entend le rapport égal à la masse volumique apparente divisée par la masse volumique absolue, exprimé en pourcentage .
- Par «contenant un», «comprenant un» ou «comportant un», on entend «comportant au moins un», sauf indication contraire .
Les exemples qui suivent sont donnés à titre purement illustratif et ne limitent sous aucun des aspects décrits la portée de la présente invention.
Exemples 1 à 9 :
Ces exemples sont fournis pour montrer les avantages de la présente invention lorsque des matériaux denses sont recherchés, et présentant en outre une forte résistance hydrothermale, typiquement dans une application comme céramique dentaire telle qu'une couronne en céramique. Pour tous les exemples, la poudre de zircone yttriée utilisée est une poudre commercialisée par la société Saint-Gobain ZirPro sous l'appellation CY3Z-MS. La zircone stabilisée à l'yttrium, présentant une teneur équivalente en Y2O3 égale à 3,0% molaire (soit 5,4%
massique) , la taille médiane des particules constituant la poudre étant égale à 0,2 micromètre.
La poudre d'A^Os utilisée dans l'exemple 2 est une poudre d'Al203, commercialisée par la société Almatis, présentant une teneur massique en AI2O3 supérieure à 99,99% et une taille médiane égale à 0,5 ym.
La poudre d'oxyde d' yttrium Y2O3 utilisée dans les exemples 3 à 9 est une poudre commercialisée par la société Treibacher, présentant une teneur massique en Y2O3 supérieure à 99, 99% et une taille médiane égale à 1 micromètre .
Pour chaque exemple, on constitue un mélange de particules avec les poudres précédentes dans les proportions reportées dans le tableau 1 qui suit. Chaque mélange particulaire subit une étape de broyage en milieu humide en broyeur à attrition. Ces mélanges particulaires sont ensuite séchés. Leurs tailles maximale Dg9,5 et médiane D5o sont décrites dans le tableau 1.
Les mesures de taille des particules ont été réalisées sur un granulomètre laser LA-950 de Horiba.
L'aire spécifique est calculée par la méthode BET (Brunauer Emmet Teller) telle que décrite dans Journal of American Chemical Society 60 (1938), pages 309 à 316.
On donne ci-après une méthode permettant de déterminer la quantité de particules d' oxyde d' yttrium dans le mélange particulaire selon l'invention :
- La quantité Ml d' oxyde d' yttrium contenue dans le mélange particulaire est déterminée par fluorescence X.
- 1,5 gramme du mélange particulaire et 10 ml d'acide chlorhydrique dilué à 30% en masse dans l'eau sont ensuite introduits dans une bombe en téflon. La bombe est
ensuite portée à 110°C pendant une heure, dans un bloc de minéralisation thermo-régulé .
La solution est ensuite filtrée sur Buchner et la teneur M2 en oxyde d' yttrium sur le résidu est déterminée par fluorescence X. Cette quantité M2 d'oxyde d' yttrium correspond à la quantité d' oxyde d' yttrium contenu dans la zircone stabilisée, l'attaque à l'acide chlorhydrique ayant solubilisée les particules d'oxyde d' yttrium du mélange particulaire .
La quantité de particules d' oxyde d' yttrium contenue dans le mélange particulaire, en masse est égale à M1-M2.
Tableau 1
La poudre selon l'exemple 1 sert de référence et ne contient que de la zircone yttriée.
La poudre selon l'exemple 2 est conforme à l'enseignement de « Mechanism of alumina-enhanced sintering of fine zirconia powder : influence of alumina concentration on the initial stage sintering », Matsui et
al., J. Am. Ceram. Soc, 91 [6], p 1888-1897 (2008) où la zircone yttriée est frittée en présence de l'additif de frittage bien connu AI2O3.
L'exemple 3, non conforme à la présente invention, comprend une quantité limitée de particules Y2O3 dans le mélange initial.
Les exemples 4 à 9 sont conformes à l'objet de la présente invention.
Chaque mélange particulaire selon les exemples 1 à 9 est ensuite mis en forme par pressage uniaxial à une pression égale à 100 MPa afin d'obtenir une préforme de 32 mm de diamètre. Sur la base de la quantité de poudre de zircone yttriée, 0,8% d'un dispersant polyacide acrylique a été ajouté à chaque mélange particulaire avant pressage.
Chaque préforme est ensuite frittée en four électrique, sous air, dans un cycle dont la température maximale est égale à 1350°C ou 1450°C, pendant un temps de maintien à la température maximale égal à 2 heures. La vitesse de montée en température est égale à 100 °C/h. La descente en température est égale à 300 °C/h.
On détermine ensuite, les propriétés structurales et les performances de chaque échantillon :
La masse volumique est déterminée par pesée hydrostatique .
La température à laquelle la vitesse du retrait est maximale (Tm) est obtenue selon un essai de dilatation- frittage à l'aide d'un Dilatomètre SETSYS Evolution TMA 2400 possédant un palpeur plan en alumine, les échantillons utilisés sont des cylindres de 12mmm de hauteur pour 5mm de diamètre mis en forme par pressage uniaxial du mélange particulaire à 100 MPa.
Sur la figure 1 ci-joint, on a reporté le diagramme permettant la mesure de Tm pour les exemples 1 (comparatif) et 4 (selon l'invention) précédemment décrits. Sur cette figure, l'axe des abscisses représente la température en degré Celsius, l'axe des ordonnées représente la dérivée de la dilatation thermique (en pourcentage par degré Celsius) . La courbe tracée en carrés pleins est celle obtenue pour le mélange particulaire selon l'exemple 1 et la courbe tracée en ronds vides est celle obtenue pour le mélange particulaire selon l'exemple 4.
Les principaux résultats obtenus après ces différentes caractérisations sont reportés dans le tableau 2 qui suit :
non déterminé
Tableau
Une comparaison des exemples 1 et 3 non conformes à l'invention d'une part, et, des exemples 4 à 9 selon l'invention d'autre part, montre l'effet de l'ajout d'une poudre d'oxyde d' yttrium sur l'aptitude au frittage du mélange particulaire, illustré par la température Tm.
L'ajout d'une quantité suffisante d'oxyde d' yttrium en mélange avec la poudre de zircone yttriée permet de fortement diminuer la température de frittage. La température Tm est ainsi égale à 1350°C pour la poudre de zircone yttriée seule et diminue d'environ 100°C par ajout de particules d'oxyde d' yttrium.
L'exemple 3 comparatif, montre qu'un mélange particulaire contenant une quantité de poudre d' Y2O3 égale à 0,1% ne permet pas de diminuer sensiblement la température de frittage Tm, et par conséquence n'a aucun effet d'amélioration sur l'aptitude au frittage du mélange particulaire initial.
Les exemples 4 et 5 montrent cependant que l'insertion d'une quantité relativement faible d'oxyde d' yttrium, c'est-à-dire égale à 0,5% et 1,0%, respectivement, en mélange avec la poudre de zircone yttriée permet d'augmenter de façon sensible et inattendue la réactivité au frittage du mélange particulaire, comme indiqué par les valeurs très basses obtenues pour la Tm. La comparaison entre l'exemple 2 d'une part, et les exemples 4 et 5, d'autre part, montre l'efficacité remarquable de l'ajout d'une poudre d'oxyde d' Y2O3 dans un mélange particulaire selon l'invention : en particulier, la température Tm apparaît sensiblement identique à celle obtenue avec un mélange particulaire contenant de l'alumine comme additif de frittage, dont l'efficacité est bien connue.
La résistance hydrothermale des échantillons est également déterminée selon le protocole suivant:
Les échantillons sont d'abord soumis à un test de vieillissement accéléré (LTD) pour mesurer leur résistance hydrothermale selon le protocole suivant : les
échantillons sont placés dans un réacteur hydrothermal à une température de 200°C et sous une pression égale à 15 bars pendant 48 heures.
Le pourcentage de la phase monoclinique de la zircone Zr02 est déterminé par les techniques de diffraction des rayons X et analyse Rietveld. La fraction massique de zircone monoclinique est obtenue à partir du ratio des aires des pics ((-1)11) et (111) de la zircone monoclinique et du pic (111) de la zircone stabilisée sous la forme quadratique et/ou cubique selon la formule :
PMOHO - 1 -3 1 1 -AireMono
%Zircone Monoclinique
Mono ' i .i i i .AireMono + pStab .Aire Stab
avec :
AireMono = Aire du pic ((-1)11)+ aire du pic (111) de la zircone monoclinique,
AireStab = Aire du pic (111) de la zircone stabilisée pMono = densité théorique de la zircone monoclinique égale à 5,8 g/cm3,
Pstab = densité théorique de la zircone stabilisée sous la forme quadratique et/ou cubique, égale à 6, 1 g/cm3.
Plus la quantité de zircone monoclinique est importante, plus la résistance hydrothermale du matériau est attendue faible.
% zircone % zircone
Mélange monoclinique monoclinique
particulaire après LTD après LTD selon l'exemple sur fritté à sur fritté à
1400°C 1450°C
1 24 75
2 70 73
3 18 76
4 < 3 66
5 < 3 16
Tableau 3
Une comparaison des exemples 1 et 3 non conformes à l'invention d'une part, et des exemples 4 et 5 selon l'invention d'autre part, montre que les produits obtenus à partir des mélanges particulaires selon l'invention, après frittage à 1400°C, présentent une résistance hydrothermale sensiblement meilleure. En outre, les propriétés mécaniques des produits frittés obtenus, par exemple la ténacité, sont apparues très proches pour les exemples 1 à 5.
Au vu de ses propriétés combinées de forte masse volumique, de résistances hydrothermale et mécanique, le produit selon l'exemple 5 apparaît tout particulièrement adapté à une utilisation en tant que céramique structurale et technique, en particulier pour des applications dentaires, de connecteurs optiques, de céramiques décoratives.
Exemples 10 et 11 :
Ces exemples sont fournis pour montrer les avantages de la présente invention lorsque des matériaux poreux sont recherchés, mais dont la résistance mécanique, en particulier mesuré par le module à la rupture MOR, doit
être relativement élevé. De telles propriétés sont en particulier requises pour une application de matériau en zircone yttriée comme membrane céramique pour la séparation de gaz.
La poudre de zircone yttriée utilisée dans l'exemple
10 est une poudre présentant une teneur molaire équivalente en Y2O3 égale à 5,1%. Elle est obtenue après fusion-solidification puis broyage. La poudre présente une taille médiane, après broyage, égale à 0,8 ym.
La poudre de zircone yttriée utilisée dans l'exemple
11 est une poudre présentant une teneur molaire équivalente en Y2O3 égale à 3,8%. Elle est obtenue après fusion-solidification puis broyage. La poudre présente, après broyage, une taille médiane après broyage égale à 0 , 8 ym.
La poudre d' Y2O3 utilisée dans l'exemple 11 est commercialisée par la société Treibacher. Elle présente une teneur massique en Y2O3 supérieure à 99, 99% et une taille médiane égale à 1 ym.
Pour chaque exemple, on constitue un mélange de particules avec les poudres précédentes dans les proportions reportées dans le tableau 4 qui suit.
Les échantillons selon les exemples 10 et 11 subissent une étape de broyage en broyeur à jarre avec des cylpebs de zircone stabilisée, puis un broyage en milieu humide en broyeur à attrition, jusqu'à obtention d'un mélange particulaire présentant une taille maximale et une taille médiane décrites dans le tableau 1. Ils sont ensuite été séchés. Leurs tailles maximale Dg9,5 et médiane D5o sont décrites dans le tableau 4.
Particules
Particules de zircone yttriée Mélange particulaire obtenu d'Y203
Quantité
Quantité, en
Quantité, en équivalente masse sur la
Exemple Equivamasse dans totale de base du Aire Taille Taille lent le mélange
mélange spécifique maximale médiane R Y2O3 dans Y2O3 particulaire le mélange particulaire (m2/g) D η) D50 (μιη) (mol%) inorganique 99,5 (μι
particulaire inorganique
(%) (en mol%) (%)
10 5, 1 100 n.d. 0 7, 1 0,77 1 ,86 5, 1
1 1 3,8 97,5 n.d. 2,4 6,2 0,73 2,07 4,9 n.d. : non déterminé Tableau 4
A des fins de comparaison, on remarque dans le tableau 4 que la quantité équivalente totale de l'élément Y, exprimée sous forme de l'oxyde Y2O3, est sensiblement équivalente dans les deux échantillons et proche de 5% molaire
Une poudre de noir de carbone est ajoutée au mélange particulaire selon les exemples 10 et 11 en une quantité égale à 8% en masse sur la base de la somme du mélange particulaire et de la poudre de noir de carbone. Cet ensemble est ensuite mélangé manuellement pendant 5 minutes à l'aide d'un pilon dans un mortier. Le mélange ainsi obtenu est ensuite mis en forme par pressage uniaxial à une pression égale à 65 MPa afin d'obtenir une préforme de 32 mm de diamètre.
Chaque préforme est ensuite frittée en four électrique, sous air, dans un cycle dont la température maximale est égale à 1450°C et 1550°C, pendant un temps la température maximale étant maintenue 4 heures. La vitesse de montée en température est égale à 100 °C/h et la vitesse de descente en température est égale à 300 °C/h.
Les principaux résultats obtenus après caractérisations des échantillons à l'issu du frittage sont reportés dans le tableau 5 qui suit :
Tableau 5
La comparaison des données reportées dans le tableau 5 montre que le produit obtenu à partir du mélange particulaire selon l'exemple 11 selon l'invention, présente après un frittage à 1450°C et à 1550°C une masse volumique supérieure à celle du produit obtenu à partir du mélange particulaire de l'exemple 11 non conforme à 1 ' invention .
Le module en rupture en flexion est mesuré sur les échantillons des exemples 10 et 11 frittés à 1450°C, dans les conditions de la norme ASTM C1499-03. L'échantillon selon l'exemple 11 présente un module MOR égal à 54 MPa, alors que l'échantillon selon l'exemple 10 présente un module MOR égal à 47 MPa.
Au final, le produit selon l'exemple 11 apparaît tout particulièrement adapté à une utilisation en tant que membrane céramique pour la séparation de gaz, en particulier pour la séparation de l'oxygène.
Claims
1. Mélange particulaire caractérisé en ce qu'il comprend :
- des particules de zircone yttriée, en une quantité d'au moins 80,0% de la masse totale des particules inorganiques présentes dans ledit mélange, la teneur en yttrium des particules, exprimée sous la forme de l'oxyde d' Yttrium Y2O3, étant comprise entre 2,0% et 5,0 % en moles ,
- des particules d' Y2O3 en une quantité comprise entre 0,2% et 4,0% de la masse totale des particules inorganiques présentes dans ledit mélange.
2. Mélange particulaire selon la revendication 1, dans lequel la taille maximale des particules Dg9,5 est inférieure à 100 micromètres.
3. Mélange particulaire selon l'une quelconque des revendications précédentes, présentant un rapport R, égal à (D90-D10) /D5o, inférieur à 5.
4. Mélange particulaire selon l'une quelconque des revendications précédentes, présentant une aire spécifique inférieure à 15 m2/g.
5. Mélange particulaire selon l'une quelconque des revendications précédentes, présentant une aire spécifique comprise entre 5 et 15 m2/g et une taille maximale Dg9,5 des particules inférieure à 10 ym.
6. Mélange particulaire selon la revendication précédente, dans lequel les particules de zircone yttriée présentent une teneur en Y2O3 supérieure à 2,0% et inférieure à 3,8% en moles et dans lequel la quantité de particules d' Y2O3 est comprise entre 0,2% et 4,0%.
7. Mélange particulaire selon l'une quelconque des revendications 1 à 4, présentant une aire spécifique inférieure à 5 m2/g.
8. Mélange particulaire selon la revendication précédente, dans lequel les particules de zircone yttriée présentent une teneur en Y2O3 supérieure à 2,0% et inférieure à 4,0% en moles et dans lequel la quantité de particules d' Y2O3 est supérieure à 0,2% et inférieure à 4,0%.
9. Mélange particulaire selon l'une des revendications précédente, comprenant en outre entre 0,1% et 1,5% d'un additif de frittage, sur la base de la masse totale du mélange particulaire, ledit additif étant choisi parmi AI2O3, Ti02, ZnO, Fe203, CuO, Mn02, Si02 et leurs mélanges.
10. Mélange particulaire selon l'une des revendications 1 à 8, caractérisé en ce qu'il ne comprend pas d'additifs de frittage, notamment choisis parmi AI2O3, T1O2, ZnO, Fe203, CuO, Mn02, Si02.
11. Mélange particulaire selon l'une des revendications précédentes, dans lequel la teneur globale en oxydes de Zr, Hf et Y est supérieure ou égale à 96%, de préférence supérieure ou égale à 97%, de la masse totale des particules inorganiques présentes dans le mélange.
12. Mélange particulaire selon la revendication précédente, constitué essentiellement desdits oxydes de Zr, Hf et Y.
13. Procédé de fabrication d'une pièce frittée comportant les étapes suivantes :
a) mélange de matières premières pour former une charge de départ,
b) mise en forme d'une préforme à partir de ladite charge de départ,
c) frittage de ladite préforme de manière à obtenir ladite pièce frittée,
dans lequel la charge de départ comporte et de préférence est constituée essentiellement par un mélange particulaire selon l'une des revendications précédentes.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1360120A FR3012135A1 (fr) | 2013-10-17 | 2013-10-17 | Melange particulaire pour l'obtention d'un produit en zircone yttriee |
FR1360120 | 2013-10-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015055950A1 true WO2015055950A1 (fr) | 2015-04-23 |
Family
ID=50289747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2014/052623 WO2015055950A1 (fr) | 2013-10-17 | 2014-10-15 | Mélange particulaire pour l'obtention d'un produit en zircone yttriee |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3012135A1 (fr) |
WO (1) | WO2015055950A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020148446A1 (fr) * | 2019-01-18 | 2020-07-23 | Saint-Gobain Centre De Recherches Et D'etudes Europeen | Billes frittees d'alumine-zircone |
EP4092007A1 (fr) * | 2021-05-19 | 2022-11-23 | Vita Zahnfabrik H. Rauter GmbH & Co. KG | Procédé de fabrication d'une ébauche pour restaurations dentaires au moyen d'un procédé de sédimentation à une seule étape |
EP4092008A1 (fr) * | 2021-05-19 | 2022-11-23 | Vita Zahnfabrik H. Rauter GmbH & Co. KG | Procédé de fabrication d'une ébauche pour la restauration dentaire au moyen d'un procédé de sédimentation à plusieurs étapes |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0320345A1 (fr) * | 1987-12-11 | 1989-06-14 | Rhone-Poulenc Chimie | Zircone stabilisée, son procédé de préparation et son application dans des compositions céramiques |
US20100292522A1 (en) * | 2009-05-18 | 2010-11-18 | Chun Changmin | Stabilized Ceramic Composition, Apparatus and Methods of Using the Same |
WO2011062775A2 (fr) * | 2009-11-20 | 2011-05-26 | Exxonmobil Chemical Patents Inc. | Matériaux de réacteur de pyrolyse poreux et procédés |
-
2013
- 2013-10-17 FR FR1360120A patent/FR3012135A1/fr not_active Withdrawn
-
2014
- 2014-10-15 WO PCT/FR2014/052623 patent/WO2015055950A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0320345A1 (fr) * | 1987-12-11 | 1989-06-14 | Rhone-Poulenc Chimie | Zircone stabilisée, son procédé de préparation et son application dans des compositions céramiques |
US20100292522A1 (en) * | 2009-05-18 | 2010-11-18 | Chun Changmin | Stabilized Ceramic Composition, Apparatus and Methods of Using the Same |
WO2011062775A2 (fr) * | 2009-11-20 | 2011-05-26 | Exxonmobil Chemical Patents Inc. | Matériaux de réacteur de pyrolyse poreux et procédés |
Non-Patent Citations (1)
Title |
---|
RADFORD K C ET AL: "Zirconia electrolyte cells", JOURNAL OF MATERIALS SCIENCE,, vol. 14, no. 1, 1 January 1979 (1979-01-01), pages 59 - 65, XP001266652 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020148446A1 (fr) * | 2019-01-18 | 2020-07-23 | Saint-Gobain Centre De Recherches Et D'etudes Europeen | Billes frittees d'alumine-zircone |
FR3091866A1 (fr) * | 2019-01-18 | 2020-07-24 | Saint-Gobain Centre De Recherches Et D'etudes Europeen | Billes frittees d’alumine-zircone |
CN113614050A (zh) * | 2019-01-18 | 2021-11-05 | 法商圣高拜欧洲实验及研究中心 | 烧结的氧化铝-氧化锆球 |
EP4092007A1 (fr) * | 2021-05-19 | 2022-11-23 | Vita Zahnfabrik H. Rauter GmbH & Co. KG | Procédé de fabrication d'une ébauche pour restaurations dentaires au moyen d'un procédé de sédimentation à une seule étape |
EP4092008A1 (fr) * | 2021-05-19 | 2022-11-23 | Vita Zahnfabrik H. Rauter GmbH & Co. KG | Procédé de fabrication d'une ébauche pour la restauration dentaire au moyen d'un procédé de sédimentation à plusieurs étapes |
WO2022243431A1 (fr) | 2021-05-19 | 2022-11-24 | Vita Zahnfabrik H. Rauter Gmbh & Co. Kg | Procédé pour produire une ébauche pour des restaurations dentaires au moyen d'un procédé de sédimentation en plusieurs étapes |
WO2022243433A1 (fr) | 2021-05-19 | 2022-11-24 | Vita Zahnfabrik H. Rauter Gmbh & Co. Kg | Procédé de fabrication d'une ébauche pour restaurations dentaires faisant appel à un procédé de sédimentation en une seule étape |
Also Published As
Publication number | Publication date |
---|---|
FR3012135A1 (fr) | 2015-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2438029B1 (fr) | Produit fritte a base d'alumine et de zircone | |
EP2516352B1 (fr) | Poudre de granules de céramique | |
KR101502601B1 (ko) | 입방 구조를 가진 소결 제품 | |
JP6637956B2 (ja) | 焼結されたセラミック材料、焼結されたセラミック材料を得るための粉末組成物、その製造方法及びセラミック部品 | |
EP3328813B1 (fr) | Produit fritte a base d'alumine et de zircone | |
JP5819992B2 (ja) | 透明度が向上した多結晶酸窒化アルミニウムの製造方法 | |
EP3024799B1 (fr) | Produit a haute teneur en alumine | |
FR2579199A1 (fr) | Ceramique a base de zircone | |
Li et al. | Hot isostatic pressing of transparent AlON ceramics assisted by dissolution of gas inclusions | |
FR2907116A1 (fr) | Produit fritte a base de zircon+nb2o5 ou ta2o5 | |
KR20140138249A (ko) | 산화이트륨-안정화된 산화지르코늄으로 구성된 소결된 세라믹 성형체 및 산화이트륨-안정화된 산화지르코늄으로 구성된 소결된 세라믹 성형체의 제조 공정 | |
FR2954761A1 (fr) | Poudre de granules de zircone | |
EP3684739B1 (fr) | Mousse ceramique | |
EP3350138A1 (fr) | Grain fondu d'aluminate de magnesium riche en magnesium | |
WO2015055950A1 (fr) | Mélange particulaire pour l'obtention d'un produit en zircone yttriee | |
US20090137380A1 (en) | Sintered alumina product transparent to infrared radiation and in the visible region | |
WO2018141736A1 (fr) | Produit fritte dense | |
EP3655376B1 (fr) | Billes frittees de zircon | |
WO2018050925A1 (fr) | Produit fritte colore a base d'alumine et de zircone | |
WO2018234417A1 (fr) | Produit fritte a base d'alumine et de zircone | |
Theng et al. | Development of translucent zirconia for dental crown applications | |
FR2898890A1 (fr) | Produit d'oxyde d'yttrium fritte et dope. | |
Sivakumar et al. | The Effect of Copper Oxide on the Mechanical Properties of Y-TZP Ceramics | |
EP0263033B1 (fr) | Procédé de fabrication de pièces composites comportant une matrice de matière céramique renforcée par des particules de zircone et éventuellement des fibres monocristallines de carbure de silicium, et pièces obtenues par ce procédé | |
Fredericci | Effect of Particle Format and Nb2O5 Addition in Partially Stabilized Zirconia with Y2O3 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14796818 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14796818 Country of ref document: EP Kind code of ref document: A1 |