Nothing Special   »   [go: up one dir, main page]

WO2015049726A1 - 空燃比センサの異常診断装置 - Google Patents

空燃比センサの異常診断装置 Download PDF

Info

Publication number
WO2015049726A1
WO2015049726A1 PCT/JP2013/076719 JP2013076719W WO2015049726A1 WO 2015049726 A1 WO2015049726 A1 WO 2015049726A1 JP 2013076719 W JP2013076719 W JP 2013076719W WO 2015049726 A1 WO2015049726 A1 WO 2015049726A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel ratio
air
ratio sensor
sensor
downstream
Prior art date
Application number
PCT/JP2013/076719
Other languages
English (en)
French (fr)
Inventor
寛史 宮本
靖志 岩▲崎▼
圭一郎 青木
徹 木所
Original Assignee
トヨタ自動車株式会社
寛史 宮本
靖志 岩▲崎▼
圭一郎 青木
徹 木所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, 寛史 宮本, 靖志 岩▲崎▼, 圭一郎 青木, 徹 木所 filed Critical トヨタ自動車株式会社
Priority to BR112016007345A priority Critical patent/BR112016007345A2/pt
Priority to AU2013402365A priority patent/AU2013402365B2/en
Priority to RU2016111947A priority patent/RU2643169C2/ru
Priority to EP13895060.5A priority patent/EP3054135B1/en
Priority to CN201380079915.XA priority patent/CN105593501B/zh
Priority to JP2015540290A priority patent/JP6020739B2/ja
Priority to PCT/JP2013/076719 priority patent/WO2015049726A1/ja
Priority to US15/026,099 priority patent/US10365183B2/en
Publication of WO2015049726A1 publication Critical patent/WO2015049726A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • G01M15/102Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases
    • G01M15/104Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases using oxygen or lambda-sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1445Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being related to the exhaust flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio

Definitions

  • the present invention relates to an abnormality diagnosis device for an air-fuel ratio sensor disposed in an exhaust passage of an internal combustion engine.
  • an exhaust purification device in which an air-fuel ratio sensor is provided upstream of an exhaust purification catalyst provided in an exhaust passage of an internal combustion engine in an exhaust flow direction, and an oxygen sensor is provided downstream of the exhaust purification catalyst in an exhaust flow direction.
  • the amount of fuel supplied to the internal combustion engine is feedback controlled so that the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst becomes the target air-fuel ratio based on the output of the upstream air-fuel ratio sensor. (Main feedback control) and feedback control (sub feedback control) of the target air-fuel ratio based on the output of the downstream oxygen sensor.
  • an abnormality diagnosis device for diagnosing such sensor abnormality.
  • an apparatus that performs abnormality diagnosis as follows is known. That is, when the output air-fuel ratio of the downstream oxygen sensor is leaner than the stoichiometric air-fuel ratio (hereinafter referred to as “lean air-fuel ratio”), the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst is reduced. The air / fuel ratio is made richer than the stoichiometric air / fuel ratio (hereinafter referred to as “rich air / fuel ratio”). Thereafter, even if the oxygen storage amount of the exhaust purification catalyst becomes zero, if the output air-fuel ratio of the downstream oxygen sensor does not reverse to the rich air-fuel ratio, it is diagnosed that the oxygen sensor has an abnormality such as element cracking. (For example, Patent Document 1). According to Patent Document 1, this makes it possible to detect an oxygen sensor abnormality quickly and accurately.
  • Patent Document 1 it is assumed that an oxygen sensor is used as a downstream sensor. As a result, even when the oxygen storage amount of the exhaust purification catalyst becomes zero, the output air-fuel ratio of the upstream air-fuel ratio sensor is maintained at the lean air-fuel ratio and the output air-fuel ratio of the oxygen sensor is maintained at the rich air-fuel ratio. In addition, it is determined that an abnormality such as an element crack has occurred.
  • an object of the present invention is to provide an abnormality diagnosing device capable of accurately diagnosing an abnormality of a downstream air-fuel ratio sensor when an air-fuel ratio sensor is used as a downstream sensor. There is.
  • an exhaust purification catalyst provided in an exhaust passage of an internal combustion engine, and an upstream side empty provided in the exhaust passage upstream of the exhaust purification catalyst in the exhaust flow direction.
  • a diagnosis of performing an abnormality diagnosis of a downstream air-fuel ratio sensor based on an output of the air-fuel ratio sensor, a downstream air-fuel ratio sensor provided in the exhaust passage downstream of the exhaust purification catalyst in the exhaust flow direction, and an output of these air-fuel ratio sensors In the abnormality diagnosis device for an air-fuel ratio sensor comprising the above-mentioned device, the diagnosis device is configured so that when the output air-fuel ratio of the upstream air-fuel ratio sensor is a rich air-fuel ratio richer than the stoichiometric air-fuel ratio, the downstream side The output air-fuel ratio of the air-fuel ratio sensor has changed from an air-fuel ratio richer than the lean judgment reference air-fuel ratio leaner than the stoichiometric air-fuel ratio to an air-fuel ratio
  • the diagnosis device changes the lean air-fuel ratio from the lean air-fuel ratio, which is leaner than the stoichiometric air-fuel ratio, to the rich air-fuel ratio. If the output air-fuel ratio of the downstream air-fuel ratio sensor is maintained, the air-fuel ratio richer than the lean determination reference air-fuel ratio leaner than the stoichiometric air-fuel ratio is changed to an air-fuel ratio leaner than the lean determination reference air-fuel ratio. When it has changed, it is determined that an abnormality has occurred in the downstream air-fuel ratio sensor.
  • the apparatus further comprises a flow rate detecting device for detecting or estimating a flow rate of the exhaust gas flowing around the downstream air-fuel ratio sensor, and the diagnostic device includes the flow rate detecting device.
  • the abnormality diagnosis of the downstream air-fuel ratio sensor is performed only when the flow rate detected or estimated by is equal to or greater than a predetermined lower limit flow rate.
  • the lean determination reference air-fuel ratio is set based on the flow rate of the exhaust gas detected or estimated by the flow rate detection device.
  • the lean determination reference air-fuel ratio is set to lean as the flow rate of the exhaust gas detected or estimated by the flow rate detection device increases.
  • the lean determination reference air-fuel ratio is set based on an air-fuel ratio detected by the upstream air-fuel ratio sensor.
  • the lean determination reference air-fuel ratio is set to lean as the air-fuel ratio detected by the upstream air-fuel ratio sensor decreases.
  • the internal combustion engine is capable of executing fuel cut control for stopping or reducing fuel supply to the combustion chamber during operation of the internal combustion engine
  • the diagnosis device does not perform abnormality diagnosis of the downstream air-fuel ratio sensor when the elapsed time from the end of the fuel cut control is equal to or less than the reference elapsed time.
  • the internal combustion engine includes a fuel cut control for stopping or reducing fuel supply to the combustion chamber during operation of the internal combustion engine, and the fuel cut control.
  • the diagnostic device can perform the downstream side empty control during the execution of the rich control after the return. Diagnose the abnormality of the fuel ratio sensor.
  • the internal combustion engine sets the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst to a lean air-fuel ratio that is leaner than the rich air-fuel ratio and the stoichiometric air-fuel ratio.
  • the diagnostic device can During the execution of the active control, an abnormality diagnosis of the downstream air-fuel ratio sensor is performed.
  • the downstream air-fuel ratio sensor is a cup-type air-fuel ratio sensor.
  • a warning lamp when it is determined that an abnormality has occurred in the downstream air-fuel ratio sensor, a warning lamp is turned on.
  • an abnormality diagnosis device when an air-fuel ratio sensor is used as a downstream sensor, an abnormality diagnosis device is provided that can accurately diagnose an abnormality of the downstream air-fuel ratio sensor.
  • FIG. 1 is a diagram schematically showing an internal combustion engine in which an abnormality diagnosis apparatus according to a first embodiment of the present invention is used.
  • FIG. 2 is a schematic cross-sectional view of the air-fuel ratio sensor.
  • FIG. 3 is a diagram showing the relationship between the sensor applied voltage and the output current at each exhaust air-fuel ratio.
  • FIG. 4 is a diagram showing the relationship between the exhaust air-fuel ratio and the output current when the applied voltage is made constant.
  • FIG. 5 is a time chart of the oxygen storage amount of the upstream side exhaust purification catalyst and the like during normal operation of the internal combustion engine.
  • FIG. 6 is a schematic cross-sectional view of an air-fuel ratio sensor in which an element crack abnormality has occurred.
  • FIG. 7 is a time chart of the output air-fuel ratio of the air-fuel ratio sensor when active control is performed.
  • FIG. 8 is a graph showing the relationship between the flow rate of the exhaust gas flowing around the downstream air-fuel ratio sensor and the output air-fuel ratio of the downstream air-fuel ratio sensor.
  • FIG. 9 is a flowchart showing a control routine for abnormality diagnosis control of the downstream air-fuel ratio sensor.
  • FIG. 10 is a graph showing the relationship between the exhaust gas flow rate and the lean determination reference air-fuel ratio.
  • FIG. 11 is a flowchart showing a control routine for abnormality diagnosis control of the downstream air-fuel ratio sensor in the second embodiment.
  • FIG. 12 is a diagram showing the relationship between the actual air-fuel ratio of the exhaust gas flowing around the downstream air-fuel ratio sensor and the output air-fuel ratio of the downstream air-fuel ratio sensor.
  • FIG. 13 is a diagram showing the relationship between the output air-fuel ratio of the upstream air-fuel ratio sensor and the lean determination reference air-fuel ratio.
  • FIG. 1 is a diagram schematically showing an internal combustion engine in which an abnormality diagnosis apparatus according to a first embodiment of the present invention is used.
  • 1 is an engine body
  • 2 is a cylinder block
  • 3 is a piston that reciprocates in the cylinder block
  • 4 is a cylinder head fixed on the cylinder block 2
  • 5 is a piston 3 and a cylinder head 4.
  • a combustion chamber formed therebetween 6 is an intake valve
  • 7 is an intake port
  • 8 is an exhaust valve
  • 9 is an exhaust port.
  • the intake valve 6 opens and closes the intake port 7, and the exhaust valve 8 opens and closes the exhaust port 9.
  • a spark plug 10 is disposed at the center of the inner wall surface of the cylinder head 4, and a fuel injection valve 11 is disposed around the inner wall surface of the cylinder head 4.
  • the spark plug 10 is configured to generate a spark in response to the ignition signal.
  • the fuel injection valve 11 injects a predetermined amount of fuel into the combustion chamber 5 according to the injection signal.
  • the fuel injection valve 11 may be arranged so as to inject fuel into the intake port 7.
  • gasoline having a theoretical air-fuel ratio of 14.6 is used as the fuel.
  • other fuels may be used in the internal combustion engine in which the diagnostic device of the present invention is used.
  • the intake port 7 of each cylinder is connected to a surge tank 14 via a corresponding intake branch pipe 13, and the surge tank 14 is connected to an air cleaner 16 via an intake pipe 15.
  • the intake port 7, the intake branch pipe 13, the surge tank 14, and the intake pipe 15 form an intake passage.
  • a throttle valve 18 driven by a throttle valve drive actuator 17 is disposed in the intake pipe 15. The throttle valve 18 is rotated by a throttle valve drive actuator 17 so that the opening area of the intake passage can be changed.
  • the exhaust port 9 of each cylinder is connected to an exhaust manifold 19.
  • the exhaust manifold 19 has a plurality of branches connected to the exhaust ports 9 and a collective part in which these branches are assembled.
  • a collecting portion of the exhaust manifold 19 is connected to an upstream casing 21 containing an upstream exhaust purification catalyst 20.
  • the upstream casing 21 is connected to a downstream casing 23 containing a downstream exhaust purification catalyst 24 via an exhaust pipe 22.
  • the exhaust port 9, the exhaust manifold 19, the upstream casing 21, the exhaust pipe 22, and the downstream casing 23 form an exhaust passage.
  • An electronic control unit (ECU) 31 comprises a digital computer, and is connected to each other via a bidirectional bus 32, a RAM (Random Access Memory) 33, a ROM (Read Only Memory) 34, a CPU (Microprocessor) 35, and an input.
  • a port 36 and an output port 37 are provided.
  • An air flow meter 39 for detecting the flow rate of air flowing through the intake pipe 15 is disposed in the intake pipe 15, and the output of the air flow meter 39 is input to the input port 36 via the corresponding AD converter 38.
  • an upstream air-fuel ratio sensor 40 that detects the air-fuel ratio of the exhaust gas flowing through the exhaust manifold 19 (that is, the exhaust gas flowing into the upstream exhaust purification catalyst 20) is disposed at the collecting portion of the exhaust manifold 19.
  • the downstream side that detects the air-fuel ratio of the exhaust gas that flows in the exhaust pipe 22 (that is, the exhaust gas that flows out of the upstream side exhaust purification catalyst 20 and flows into the downstream side exhaust purification catalyst 24).
  • An air-fuel ratio sensor 41 is arranged. The outputs of these air-fuel ratio sensors 40 and 41 are also input to the input port 36 via the corresponding AD converter 38. The configuration of these air-fuel ratio sensors 40 and 41 will be described later.
  • a load sensor 43 that generates an output voltage proportional to the amount of depression of the accelerator pedal 42 is connected to the accelerator pedal 42, and the output voltage of the load sensor 43 is input to the input port 36 via the corresponding AD converter 38.
  • the crank angle sensor 44 generates an output pulse every time the crankshaft rotates 15 degrees, and this output pulse is input to the input port 36.
  • the CPU 35 calculates the engine speed from the output pulse of the crank angle sensor 44.
  • the output port 37 is connected to the spark plug 10, the fuel injection valve 11, and the throttle valve drive actuator 17 via the corresponding drive circuit 45.
  • the ECU 31 functions as a diagnostic device that performs abnormality diagnosis of the downstream air-fuel ratio sensor 41.
  • the upstream side exhaust purification catalyst 20 and the downstream side exhaust purification catalyst 24 are three-way catalysts having oxygen storage capacity.
  • the exhaust purification catalysts 20 and 24 support a noble metal having a catalytic action (for example, platinum (Pt)) and a substance having an oxygen storage capacity (for example, ceria (CeO 2 )) on a ceramic support. It has been made.
  • a noble metal having a catalytic action for example, platinum (Pt)
  • a substance having an oxygen storage capacity for example, ceria (CeO 2 )
  • the exhaust purification catalysts 20 and 24 exhibit an oxygen storage capability in addition to the catalytic action of simultaneously purifying unburned gas (HC, CO, etc.) and nitrogen oxides (NOx).
  • the exhaust purification catalysts 20, 24 have an air / fuel ratio of exhaust gas flowing into the exhaust purification catalysts 20, 24 leaner than a stoichiometric air / fuel ratio (hereinafter referred to as “lean air / fuel ratio”). Is stored in the exhaust gas.
  • the air-fuel ratio of the inflowing exhaust gas is richer than the stoichiometric air-fuel ratio (hereinafter referred to as “rich air-fuel ratio”)
  • the exhaust purification catalysts 20, 24 are oxygen stored in the exhaust purification catalysts 20, 24. Release.
  • the exhaust gas flowing out from the exhaust purification catalysts 20, 24 is irrespective of the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalysts 20, 24.
  • the air-fuel ratio is almost the stoichiometric air-fuel ratio.
  • the air-fuel ratio sensors 40 and 41 cup-type limit current type air-fuel ratio sensors are used.
  • the structure of the air-fuel ratio sensors 40 and 41 will be briefly described with reference to FIG.
  • the air-fuel ratio sensors 40 and 41 include a solid electrolyte layer 51, an exhaust-side electrode 52 disposed on one side surface thereof, an atmosphere-side electrode 53 disposed on the other side surface, and diffusion of exhaust gas passing therethrough.
  • a diffusion control layer 54 for controlling the rate, a reference gas chamber 55, and a heater unit 56 for heating the air-fuel ratio sensors 40 and 41 are provided.
  • the solid electrolyte layer 51 is formed in a cylindrical shape with one end closed.
  • An atmospheric gas (air) is introduced into the reference gas chamber 55 defined therein, and a heater unit 56 is disposed.
  • An atmosphere side electrode 53 is disposed on the inner surface of the solid electrolyte layer 51, and an exhaust side electrode 52 is disposed on the outer surface thereof.
  • a diffusion control layer 54 is disposed so as to cover them.
  • a protective layer (not shown) for preventing liquid or the like from adhering to the surface of the diffusion limiting layer 54 may be provided outside the diffusion limiting layer 54.
  • the solid electrolyte layer 51 is an oxygen ion conductive oxide in which ZrO 2 (zirconia), HfO 2 , ThO 2 , Bi 2 O 3, etc. are distributed with CaO, MgO, Y 2 O 3 , Yb 2 O 3 etc. as stabilizers.
  • the sintered body is formed.
  • the diffusion control layer 54 is formed of a porous sintered body of a heat-resistant inorganic substance such as alumina, magnesia, silica, spinel, mullite or the like.
  • the exhaust-side electrode 52 and the atmosphere-side electrode 53 are formed of a noble metal having high catalytic activity such as platinum.
  • a sensor applied voltage V is applied between the exhaust side electrode 52 and the atmosphere side electrode 53 by the applied voltage control device 60 mounted on the ECU 31.
  • the ECU 31 is provided with a current detection device 61 that detects a current I flowing between the electrodes 52 and 53 via the solid electrolyte layer when a sensor applied voltage is applied.
  • the current detected by the current detector 61 is the output current of the air-fuel ratio sensors 40 and 41.
  • the thus configured air-fuel ratio sensors 40 and 41 have voltage-current (VI) characteristics as shown in FIG.
  • V voltage-current
  • the output current I increases as the exhaust air-fuel ratio increases (lean).
  • the VI line at each exhaust air-fuel ratio includes a region parallel to the V axis, that is, a region where the output current hardly changes even when the sensor applied voltage changes. This voltage region is referred to as a limiting current region, and the current at this time is referred to as a limiting current.
  • the limit current region and limit current when the exhaust air-fuel ratio is 18 are indicated by W 18 and I 18 , respectively.
  • FIG. 4 is a diagram showing the relationship between the exhaust air-fuel ratio and the output current I when the applied voltage is kept constant at about 0.45V.
  • the output current I from the air-fuel ratio sensors 40 and 41 increases as the exhaust air-fuel ratio increases (that is, the leaner the air-fuel ratio).
  • the air-fuel ratio sensors 40 and 41 are configured such that the output current I becomes zero when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio. Further, when the exhaust air-fuel ratio becomes larger than a certain value or when it becomes smaller than a certain value, the ratio of the change in the output current to the change in the exhaust air-fuel ratio becomes smaller.
  • the limit current type air-fuel ratio sensor having the structure shown in FIG.
  • any air-fuel ratio sensor such as a limit current-type air-fuel ratio sensor of another structure such as a stacked-type limit current-type air-fuel ratio sensor or an air-fuel ratio sensor not of the limit current type is used. It may be used.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is based on the engine operating state based on the outputs of the upstream side air-fuel ratio sensor 40 and the downstream side air-fuel ratio sensor 41.
  • the fuel injection amount from the fuel injection valve 11 is set so as to achieve an optimal air-fuel ratio.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 based on the output of the upstream side air-fuel ratio sensor 40 (or the target air flow of the exhaust gas flowing out from the engine body).
  • FIG. 5 shows the oxygen storage amount of the upstream side exhaust purification catalyst, the target air-fuel ratio, the output air-fuel ratio of the upstream air-fuel ratio sensor, and the output air-fuel ratio of the downstream air-fuel ratio sensor during normal operation (normal control) of the internal combustion engine. It is a time chart.
  • “Output air-fuel ratio” means an air-fuel ratio corresponding to the output of the air-fuel ratio sensor.
  • “during normal operation (normal control)” is a control for adjusting the fuel injection amount in accordance with a specific operation state of the internal combustion engine (for example, an increase correction of the fuel injection amount performed during acceleration of a vehicle equipped with the internal combustion engine) In addition, it means an operating state (control state) in which fuel cut control (to be described later) is not performed.
  • the target air-fuel ratio is set to the lean set air-fuel ratio AFlean (for example, 15) and maintained. Thereafter, the oxygen storage amount of the upstream side exhaust purification catalyst 20 is estimated, and when this estimated value is equal to or greater than a predetermined reference storage amount Cref (an amount smaller than the maximum oxygen storage amount Cmax), the target air-fuel ratio is set to a rich setting.
  • the air-fuel ratio AFrich (for example, 14.4) is set and maintained. In the example shown in FIG. 5, such an operation is repeatedly performed.
  • the target air-fuel ratio is set to the rich set air-fuel ratio AFrich before time t 1 , and accordingly, the output air-fuel ratio of the upstream air-fuel ratio sensor 40 is also rich air-fuel ratio. It has become. Further, since oxygen is stored in the upstream side exhaust purification catalyst 20, the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 is substantially the stoichiometric air-fuel ratio (14.6). At this time, since the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio, the oxygen storage amount of the upstream side exhaust purification catalyst 20 gradually decreases.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 becomes a lean air-fuel ratio, and the outflow of unburned gas is reduced and stopped. Further, the oxygen storage amount of the upstream side exhaust purification catalyst 20 gradually increases and reaches the determination reference storage amount Cref at time t 3 . As described above, when the oxygen storage amount reaches the determination reference storage amount Cref, the target air-fuel ratio is again switched from the lean set air-fuel ratio AFlena to the rich set air-fuel ratio AFrich. By switching the target air-fuel ratio, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 becomes the lean air-fuel ratio again. As a result, the oxygen storage amount of the upstream side exhaust purification catalyst 20 gradually decreases, and thereafter Such an operation is repeated. By performing such control, it is possible to prevent NOx from flowing out of the upstream side exhaust purification catalyst 20.
  • the control of the target air-fuel ratio based on the outputs of the upstream air-fuel ratio sensor 40 and the downstream air-fuel ratio sensor 41 that is performed as normal control is not limited to the control described above. Any control may be used as long as the control is based on the outputs of these air-fuel ratio sensors 40 and 41. Therefore, for example, as the normal control, the target air-fuel ratio is fixed to the stoichiometric air-fuel ratio, feedback control is performed so that the output air-fuel ratio of the upstream air-fuel ratio sensor 40 becomes the stoichiometric air-fuel ratio, and the downstream air-fuel ratio sensor 41 Control may be performed to correct the output air-fuel ratio of the upstream air-fuel ratio sensor 40 based on the output air-fuel ratio.
  • the air-fuel ratio of the exhaust gas around the air-fuel ratio sensors 40, 41 is a rich air-fuel ratio
  • the rich air-fuel ratio exhaust gas enters the reference gas chamber 55.
  • the rich air-fuel ratio exhaust gas diffuses into the reference gas chamber 55, and the atmosphere side electrode 53 is exposed to the rich air-fuel ratio exhaust gas.
  • the exhaust-side electrode 52 is exposed to the exhaust gas through the diffusion-controlling layer 54. For this reason, the exhaust side electrode 52 becomes leaner relative to the atmosphere side electrode 53, and as a result, the output air-fuel ratio of the air-fuel ratio sensors 40, 41 becomes the lean air-fuel ratio.
  • the output current of the air-fuel ratio sensors 40, 41 is greater than the difference between the air-fuel ratios on both sides of the solid electrolyte layer 51 via the diffusion-controlling layer 54. This is because it depends on the amount of oxygen reaching the surface of the electrode 53.
  • the abnormality diagnosis based on the element crack of the downstream air-fuel ratio sensor 41 is performed using the property of the element crack abnormality of the downstream air-fuel ratio sensor 41 as described above.
  • the ECU 31 executes active control when a predetermined execution condition is satisfied.
  • the fuel from the fuel injection valve 11 is adjusted so that the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 (or the target air-fuel ratio of the exhaust gas flowing out from the engine body) becomes a rich air-fuel ratio.
  • the injection amount is controlled. Accordingly, the actual air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 also becomes a rich air-fuel ratio.
  • FIG. 7 is a time chart of the output air-fuel ratio of the air-fuel ratio sensor when active control is performed.
  • the execution of the active control is started at time t 4.
  • the target air-fuel ratio is set to the rich air-fuel ratio.
  • the target air-fuel ratio during execution of active control is set to the active control air-fuel ratio AFact that is richer than the rich set air-fuel ratio that is set during normal operation.
  • the output air-fuel ratio of the upstream air-fuel ratio sensor 40 becomes a rich air-fuel ratio.
  • the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is substantially the stoichiometric air-fuel ratio.
  • the oxygen storage amount of the upstream side exhaust purification catalyst 20 gradually decreases.
  • the output air-fuel ratio of the upstream air-fuel ratio sensor 40 is a rich air-fuel ratio
  • the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is substantially the stoichiometric air-fuel ratio.
  • the oxygen storage amount becomes almost zero, and thereby, the rich air-fuel ratio exhaust gas containing unburned HC and the like flows out from the upstream side exhaust purification catalyst 20. That is, the actual air-fuel ratio of the exhaust gas flowing around the downstream air-fuel ratio sensor 41 becomes a rich air-fuel ratio.
  • the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is also rich in accordance with the actual air-fuel ratio, as shown by the solid line in FIG. It becomes the fuel ratio. Therefore, in the present embodiment, when the output air-fuel ratio of the upstream air-fuel ratio sensor 40 is a rich air-fuel ratio, in particular, the lean air-fuel ratio in which the output air-fuel ratio of the upstream air-fuel ratio sensor 40 is leaner than the stoichiometric air-fuel ratio.
  • the air-fuel ratio output from the downstream air-fuel ratio sensor 41 is leaner than the rich determination reference air-fuel ratio AFrefri (for example, substantially the stoichiometric air-fuel ratio) when the air-fuel ratio is changed from the rich air-fuel ratio to the rich air-fuel ratio. Therefore, when the air-fuel ratio has changed to a richer air-fuel ratio (time t 5 ), it is determined that the downstream air-fuel ratio sensor 41 has not malfunctioned.
  • the rich determination reference air-fuel ratio AFrefri at this time is the same as the rich determination reference air-fuel ratio AFrefri during normal operation, but may be a different value. As a result, the abnormality determination flag remains Off.
  • the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is lean, unlike the actual air-fuel ratio, as shown by the broken line in FIG. It becomes an air fuel ratio. Therefore, in the present embodiment, when the output air-fuel ratio of the upstream air-fuel ratio sensor 40 is a rich air-fuel ratio, the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is a lean that is slightly leaner than the stoichiometric air-fuel ratio.
  • the downstream air-fuel ratio sensor 41 When the air-fuel ratio richer than the determination reference air-fuel ratio AFref (for example, approximately the stoichiometric air-fuel ratio) changes to a leaner air-fuel ratio (time t 5 ), the downstream air-fuel ratio sensor 41 has an abnormal element crack. Is determined to have occurred. As a result, the abnormality determination flag is set to On.
  • the active control is stopped and the normal operation is resumed.
  • the active control is made to stop at time t 5.
  • the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is equal to or lower than the rich determination reference air-fuel ratio AFrefri, so the target air-fuel ratio is set to the lean set air-fuel ratio AFlean. The control shown in is repeated.
  • the output air-fuel ratio of the upstream air-fuel ratio sensor is a rich air-fuel ratio
  • the output air-fuel ratio of the downstream air-fuel ratio sensor 41 once becomes substantially the stoichiometric air-fuel ratio. Later, abnormality diagnosis of the downstream air-fuel ratio sensor 41 is performed based on what air-fuel ratio changes. Thereby, it is possible to diagnose abnormality of element cracking in the downstream sensor which is an air-fuel ratio sensor.
  • the above-described rich determination reference air-fuel ratio AFrefri and lean determination reference air-fuel ratio AFrefle have the theoretical output air-fuel ratio of the normal air-fuel ratio sensor when the oxygen storage amount of the upstream side exhaust purification catalyst 20 is an intermediate amount.
  • the air-fuel ratio is outside the range that fluctuates in the vicinity of the air-fuel ratio.
  • the active control is executed when a certain execution condition is satisfied, and is not executed when it is not satisfied.
  • the abnormality diagnosis of the downstream air-fuel ratio sensor 41 is executed when a certain execution condition is satisfied, and is not executed when the execution condition is not satisfied.
  • the case where a certain execution condition is satisfied means, for example, a case where all of the following conditions are satisfied.
  • the first condition is that both air-fuel ratio sensors 40 and 41 are active, that is, the temperature of both air-fuel ratio sensors 40 and 41 is equal to or higher than the activation temperature. This is because if the air-fuel ratio sensors 40 and 41 are not activated, the air-fuel ratio of the exhaust gas cannot be accurately detected in the first place, and even if an element cracking abnormality occurs, the output air-fuel ratio does not easily shift.
  • the second condition is that the flow rate of the exhaust gas flowing around the downstream air-fuel ratio sensor 41 is not less than a predetermined lower limit flow rate.
  • FIG. 8 is a graph showing the relationship between the flow rate of the exhaust gas flowing around the downstream air-fuel ratio sensor 41 and the output air-fuel ratio of the downstream air-fuel ratio sensor 41.
  • the air-fuel ratio of the exhaust gas flowing around the downstream air-fuel ratio sensor 41 is a rich air-fuel ratio that is slightly richer than the stoichiometric air-fuel ratio.
  • the output air-fuel ratio of the downstream air-fuel ratio sensor 41 increases as the flow rate of the exhaust gas flowing around the downstream air-fuel ratio sensor 41 increases. Shift to the lean side. Therefore, when the flow rate of the exhaust gas flowing around the downstream side air-fuel ratio sensor 41 is small, the degree of leanness in the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 is small even when element cracking occurs.
  • the lean determination reference air-fuel ratio AFrefri may not be reached.
  • the exhaust gas flow rate is a predetermined lower limit flow rate, that is, a flow rate at which the output air-fuel ratio changes between a normal sensor and a sensor in which element cracking occurs (for example, G 1 in FIG. 8). This is the condition for executing active control.
  • the flow rate of the exhaust gas flowing around the downstream air-fuel ratio sensor 41 is calculated based on the air flow rate detected by the air flow meter 39, for example. However, the flow rate of the exhaust gas may be estimated by other methods. Alternatively, an air flow meter or the like for detecting the flow rate of the exhaust gas flowing in the exhaust passage in the vicinity of the downstream air-fuel ratio sensor 41 may be provided, and the air flow meter or the like may be directly detected.
  • the third condition is that the elapsed time from the end of the fuel cut control is longer than the reference elapsed time.
  • the fuel cut control is a control for stopping or significantly reducing the fuel supply to the combustion chamber while the internal combustion engine is operating (the crankshaft is rotating). Such fuel cut control is performed by, for example, a predetermined rotational speed in which the depression amount of the accelerator pedal 42 is zero or almost zero (that is, the engine load is zero or almost zero) and the engine speed is higher than the idling speed. Implemented when the above is true.
  • the elapsed time from the end of the fuel cut control is longer than the reference elapsed time, that is, the time necessary for the output air-fuel ratio to stabilize after the fuel cut control is completed in a normal air-fuel ratio sensor.
  • the fourth condition is that the abnormality determination of the downstream air-fuel ratio sensor 41 has not been completed until the present after the ignition switch of the vehicle equipped with the internal combustion engine is turned ON.
  • the abnormality determination of the downstream air-fuel ratio sensor 41 does not need to be performed so frequently, and therefore the abnormality determination is performed only when the abnormality determination is not completed.
  • an abnormality flag that is turned on when the abnormality determination of the downstream air-fuel ratio sensor 41 is abnormal or a determination completion that is turned on when the abnormality determination of the downstream air-fuel ratio sensor 41 is completed.
  • the condition is that the flag is not ON.
  • the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is alternately changed between the rich air-fuel ratio and the lean air-fuel ratio.
  • the target air-fuel ratio is the rich air-fuel ratio when the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst is normal operation (normal control) (in the above embodiment, the rich set air-fuel ratio).
  • the air-fuel ratio is richer than the fuel ratio AFrich).
  • the target air-fuel ratio may be always set to the stoichiometric air-fuel ratio.
  • active control is performed when the abnormality diagnosis of the downstream air-fuel ratio sensor 41 is performed.
  • it is not always necessary to perform active control when performing abnormality diagnosis of the downstream air-fuel ratio sensor 41.
  • rich control after return is performed to bring the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 to a rich air-fuel ratio. This is performed to release part or all of the oxygen stored in the upstream side exhaust purification catalyst 20 during fuel cut control.
  • the abnormality diagnosis of the downstream air-fuel ratio sensor 41 may be performed during the execution of the rich control after the return. However, even in this case, as described above, the elapsed time from the end of the fuel cut control needs to be equal to or longer than the reference elapsed time.
  • FIG. 9 is a flowchart showing a control routine for abnormality diagnosis control of the downstream air-fuel ratio sensor 41.
  • the illustrated control routine is performed by interruption at regular time intervals.
  • step S11 after the internal combustion engine is started or after the ignition key of the vehicle equipped with the internal combustion engine is turned on, it is determined whether or not the abnormality determination of the downstream air-fuel ratio sensor 41 has been completed. . If the abnormality determination has already been made after the internal combustion engine is started, the control routine is terminated. On the other hand, if it is determined that the abnormality determination has not been completed, the process proceeds to step S12. In step S12, it is determined whether or not the active control flag Fa is zero.
  • the active control flag Fa is a flag that is set to 1 when active control is being executed, and is set to 0 otherwise. When the active control has not been executed yet, the process proceeds to step S13.
  • step S13 it is determined whether or not an active control execution condition is satisfied. When the above-described active control execution condition is not satisfied, the control routine is terminated. On the other hand, when the active control execution condition is satisfied, the routine proceeds to step S14, where the target air-fuel ratio is set to the active control air-fuel ratio. Next, in step S15, the active control flag Fa is set to 1, and the control routine is ended.
  • step S16 it is determined whether or not the stoichiometric flag Fs is zero.
  • the stoichiometric flag Fs is a flag that is set to 1 when the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 substantially reaches the stoichiometric air-fuel ratio after the start of active control, and is set to 0 otherwise. If the stoichiometric flag Fs is 0 in step S16, the process proceeds to step S17.
  • step S17 whether or not the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is an air-fuel ratio between the rich determination reference air-fuel ratio AFrefri and the lean determination reference air-fuel ratio AFrefle, that is, substantially converges to the theoretical air-fuel ratio. It is determined whether or not. If it is determined in step S17 that the output air-fuel ratio of the downstream air-fuel ratio sensor 41 has not converged to the stoichiometric air-fuel ratio, the control routine is ended. On the other hand, if it is determined in step S17 that the output air-fuel ratio of the downstream air-fuel ratio sensor 41 has converged to the stoichiometric air-fuel ratio, the process proceeds to step S18. In step S18, the stoichiometric flag Fs is set to 1, and the control routine is ended.
  • step S19 it is determined whether or not the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is greater than or equal to the lean determination reference air-fuel ratio AFrefle.
  • step S20 the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is rich-selection reference air-fuel ratio. It is determined whether or not it is AFrefri or less.
  • control routine is ended. It is done.
  • step S19 if it is determined in step S19 that the output air-fuel ratio is greater than or equal to the lean determination reference air-fuel ratio AFrefle, the process proceeds to step S21.
  • step S21 it is determined that an abnormality has occurred in the downstream air-fuel ratio sensor 41, the abnormality determination flag is set to On, and, for example, a warning lamp of a vehicle equipped with an internal combustion engine is lit. If it is determined in step S20 that the output air-fuel ratio is equal to or less than the rich determination reference air-fuel ratio AFrefri, the process proceeds to step S22. In step S22, it is determined that the downstream air-fuel ratio sensor 41 is normal, and the abnormality determination flag remains Off.
  • step S21 and step S22 the process proceeds to step S23.
  • step S23 the target air-fuel ratio set to the active control air-fuel ratio is canceled, and normal operation is started.
  • step S24 the active control flag Fa and the stoichiometric flag Fs are reset to 0, and the control routine is ended.
  • the abnormality diagnosis apparatus of 2nd embodiment of this invention is demonstrated.
  • the configuration and the like of the abnormality diagnosis device of the second embodiment of the present invention are basically the same as the configuration and the like of the abnormality diagnosis device of the first embodiment.
  • the lean determination reference air-fuel ratio that is a threshold value for determining abnormality of the downstream air-fuel ratio sensor 41 is a predetermined constant value
  • the lean determination reference air-fuel ratio is Changes in accordance with the flow rate of the exhaust gas flowing around the downstream air-fuel ratio sensor 41.
  • the output air-fuel ratio of the downstream air-fuel ratio sensor 41 may become a lean air-fuel ratio during execution of active control. is there.
  • the output air-fuel ratio of the upstream air-fuel ratio sensor 40 becomes richer than the actual exhaust air-fuel ratio.
  • the fuel injection amount is feedback-controlled based on the output air-fuel ratio of the upstream air-fuel ratio sensor 40, it flows into the upstream side exhaust purification catalyst 20 even when the target air-fuel ratio is a rich air-fuel ratio.
  • the downstream air-fuel ratio sensor 41 when the lean determination reference air-fuel ratio is set to a relatively low air-fuel ratio, that is, an air-fuel ratio with a low lean degree, the downstream air-fuel ratio sensor 41 is actually in a normal state, It is erroneously determined that the downstream air-fuel ratio sensor 41 is abnormal. In order to reduce such erroneous determinations, it is preferable to set the lean determination reference air-fuel ratio as high as possible, that is, an air-fuel ratio with a high lean degree.
  • the lean determination reference air-fuel ratio AFrefle is set based on the flow rate of the exhaust gas flowing around the downstream air-fuel ratio sensor 41. More specifically, as shown in FIG. 10, the lean determination reference air-fuel ratio AFrefle is set higher (lean) as the flow rate of the exhaust gas flowing around the downstream air-fuel ratio sensor 41 increases. . Thereby, it is suppressed that the downstream air-fuel ratio sensor 41 is erroneously determined to be abnormal.
  • FIG. 11 is a flowchart showing a control routine for abnormality diagnosis control of the downstream air-fuel ratio sensor 41 in the second embodiment.
  • the illustrated control routine is performed by interruption at regular time intervals. Note that steps S31 to S44 in FIG. 11 are the same as steps S11 to S24 in FIG.
  • step S45 for example, the flow rate of the exhaust gas flowing around the downstream air-fuel ratio sensor 41 is calculated based on the output of the air flow meter 39, and lean determination is performed using the map shown in FIG. 10 based on this flow rate.
  • a reference air-fuel ratio AFrefle is calculated.
  • the lean determination reference air-fuel ratio AFrefle may be calculated using a calculation formula or the like obtained in advance by experiment or calculation.
  • the abnormality diagnosis apparatus of 3rd embodiment of this invention is demonstrated.
  • the configuration and the like of the abnormality diagnosis device of the third embodiment of the present invention are basically the same as the configuration and the like of the abnormality diagnosis device of the first embodiment and the second embodiment.
  • the lean determination reference air-fuel ratio is set based on the output air-fuel ratio of the upstream air-fuel ratio sensor 40.
  • FIG. 12 is a diagram showing the relationship between the actual air-fuel ratio of the exhaust gas flowing around the downstream air-fuel ratio sensor 41 and the output air-fuel ratio of the downstream air-fuel ratio sensor 41.
  • the broken line in FIG. 12 shows the relationship between the actual air-fuel ratio and the output air-fuel ratio when the downstream air-fuel ratio sensor 41 is in a normal state.
  • the output air-fuel ratio becomes higher (lean) as the actual air-fuel ratio becomes richer. This is because as the actual air-fuel ratio becomes richer, the difference between the air-fuel ratios around the electrodes 52 and 53 of the air-fuel ratio sensor in which element cracking has occurred increases.
  • the lean determination reference air-fuel ratio AFrefle is set based on the output air-fuel ratio of the upstream air-fuel ratio sensor 40. More specifically, as shown in FIG. 13, as the output air-fuel ratio of the upstream air-fuel ratio sensor 40 becomes lower, the lean determination reference air-fuel ratio AFrefle is set higher (lean to be set). It is suppressed that the downstream side air-fuel ratio sensor 41 is erroneously determined to be abnormal.
  • the lean determination reference air-fuel ratio AFrefle is calculated using the map shown in FIG. 13 based on the output air-fuel ratio of the upstream air-fuel ratio sensor 40 in step S45 of FIG.
  • the lean determination reference air-fuel ratio AFrefle may be calculated using a calculation formula or the like obtained in advance by experiment or calculation instead of the map shown in FIG.
  • the second embodiment and the third embodiment can be combined.
  • the lean determination reference air-fuel ratio AFrefle is set based on the flow rate of the exhaust gas flowing around the downstream air-fuel ratio sensor 41 and the output air-fuel ratio of the upstream air-fuel ratio sensor 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 空燃比センサの異常診断装置は、排気浄化触媒と、排気浄化触媒よりも上流側に設けられた上流側空燃比センサと、排気浄化触媒よりも下流側に設けられた下流側空燃比センサと、これら空燃比センサの出力に基づいて下流側空燃比センサの異常診断を行う診断装置とを具備する。診断装置は、上流側空燃比センサの出力空燃比が理論空燃比よりもリッチなリッチ空燃比となっている場合に、下流側空燃比センサの出力空燃比がリーン判定基準空燃比よりもリッチな空燃比からリーン判定基準空燃比よりもリーンな空燃比に変化したときには、下流側空燃比センサに異常が生じていると判定する。これにより、下流側のセンサとして空燃比センサを用いた場合に、この下流側空燃比センサの異常を正確に診断することができる。

Description

空燃比センサの異常診断装置
 本発明は、内燃機関の排気通路に配置される空燃比センサの異常診断装置に関する。
 従来から、内燃機関の排気通路に設けられた排気浄化触媒の排気流れ方向上流側に空燃比センサを設け、排気浄化触媒の排気流れ方向下流側に酸素センサを設けた排気浄化装置が知られている。斯かる排気浄化装置では、例えば、上流側の空燃比センサの出力に基づいて排気浄化触媒に流入する排気ガスの空燃比が目標空燃比となるように、内燃機関に供給する燃料量をフィードバック制御(メインフィードバック制御)すると共に、下流側の酸素センサの出力に基づいて目標空燃比をフィードバック制御(サブフィードバック制御)するようにしている。
 ところで、このような内燃機関に用いられる酸素センサ等には、センサを構成する素子に割れ等が生じる異常が発生する場合がある。このような場合には、センサは、流通する排気ガスの空燃比に応じた適切な出力を発生させることができなくなる。そこで、斯かるセンサの異常を診断する異常診断装置を設けることが知られている。
 斯かる異常診断装置としては、例えば、以下のようにして異常診断を行うものが知られている。すなわち、下流側の酸素センサの出力空燃比が理論空燃比よりもリーンな空燃比(以下、「リーン空燃比」という)となっている場合に、排気浄化触媒に流入する排気ガスの空燃比を理論空燃比よりもリッチな空燃比(以下、「リッチ空燃比」という)にする。その後、排気浄化触媒の酸素吸蔵量がゼロになっても、下流側の酸素センサの出力空燃比がリッチ空燃比に反転しない場合に、酸素センサに素子割れ等の異常があると診断するようにしている(例えば、特許文献1)。特許文献1によれば、これにより酸素センサの異常を迅速に且つ精度良く検知することができるとされている。
特開2004-019542号公報 特開2010-196483号公報 特開2010-025090号公報 特開2007-032537号公報 特開2004-308574号公報
 ところで、特許文献1では、下流側のセンサとして酸素センサを用いることを前提としている。この結果、排気浄化触媒の酸素吸蔵量がゼロになっても、上流側の空燃比センサの出力空燃比がリーン空燃比に維持され且つ酸素センサの出力空燃比がリッチ空燃比に維持された場合に、素子割れ等の異常が発生していると判定している。
 しかしながら、下流側のセンサとして空燃比センサを用いた場合には、同様な手法を用いることはできない。すなわち、下流側のセンサとして空燃比センサを用いた場合には、空燃比センサに素子割れ等の異常が発生しても、必ずしも空燃比センサの出力空燃比がリーン空燃比に維持されるとはいえない。
 したがって、上記問題に鑑みて、本発明の目的は、下流側のセンサとして空燃比センサを用いた場合において、この下流側空燃比センサの異常を正確に診断することができる異常診断装置を提供することにある。
 上記課題を解決するために、第1の発明では、内燃機関の排気通路に設けられた排気浄化触媒と、該排気浄化触媒よりも排気流れ方向上流側において前記排気通路に設けられた上流側空燃比センサと、前記排気浄化触媒よりも排気流れ方向下流側において前記排気通路に設けられた下流側空燃比センサと、これら空燃比センサの出力に基づいて下流側空燃比センサの異常診断を行う診断装置とを具備する空燃比センサの異常診断装置において、前記診断装置は、前記上流側空燃比センサの出力空燃比が理論空燃比よりもリッチなリッチ空燃比となっている場合に、前記下流側空燃比センサの出力空燃比が理論空燃比よりもリーンなリーン判定基準空燃比よりもリッチな空燃比から該リーン判定基準空燃比よりもリーンな空燃比に変化したときには、前記下流側空燃比センサに異常が生じていると判定する、空燃比センサの異常診断装置が提供される。
 第2の発明では、第1の発明において、前記診断装置は、前記上流側空燃比センサの出力空燃比が理論空燃比よりもリーンなリーン空燃比からリッチ空燃比に変化してリッチ空燃比に維持されている場合に、前記下流側空燃比センサの出力空燃比が理論空燃比よりもリーンなリーン判定基準空燃比よりもリッチな空燃比から該リーン判定基準空燃比よりもリーンな空燃比に変化したときには、前記下流側空燃比センサに異常が生じていると判定する。
 第3の発明では、第1又は2の発明において、前記下流側空燃比センサ周りを流通する排気ガスの流量を検出又は推定する流量検出装置を更に具備し、前記診断装置は、前記流量検出装置によって検出又は推定された流量が予め定められた下限流量以上であるときにのみ前記下流側空燃比センサの異常診断を行う。
 第4の発明では、第3の発明において、前記リーン判定基準空燃比は、前記流量検出装置によって検出又は推定された排気ガスの流量に基づいて設定される。
 第5の発明では、第4の発明において、前記リーン判定基準空燃比は、前記流量検出装置によって検出又は推定された排気ガスの流量が多くなるほどリーンに設定される。
 第6の発明では、第1~第5のいずれか1つの発明において、前記リーン判定基準空燃比は、前記上流側空燃比センサによって検出された空燃比に基づいて設定される。
 第7の発明では、第6の発明において、前記リーン判定基準空燃比は、前記上流側空燃比センサによって検出された空燃比が低くなるほどリーンに設定される。
 第8の発明では、第1~第7のいずれか1つの発明において、前記内燃機関は、内燃機関の作動中に燃焼室への燃料供給を停止又は減量する燃料カット制御を実行可能であり、前記診断装置は、燃料カット制御の終了からの経過時間が基準経過時間以下である場合には前記下流側空燃比センサの異常診断を行わない。
 第9の発明では、第1~第8のいずれか1つの発明において、前記内燃機関は、内燃機関の作動中に燃焼室への燃料供給を停止又は減量する燃料カット制御と、該燃料カット制御の終了後に前記排気浄化触媒に流入する排気ガスの空燃比をリッチ空燃比にする復帰後リッチ制御とを実行可能であり、前記診断装置は、前記復帰後リッチ制御の実行中に前記下流側空燃比センサの異常診断を行う。
 第10の発明では、第1~第8のいずれか1つの発明において、前記内燃機関は、前記排気浄化触媒に流入する排気ガスの空燃比をリッチ空燃比と理論空燃比よりもリーンなリーン空燃比とに交互に変更する通常制御と、前記排気浄化触媒に流入する排気ガスの空燃比を前記通常制御時におけるリッチ空燃比よりもリッチにするアクティブ制御とを実行可能であり、前記診断装置は、前記アクティブ制御の実行中に前記下流側空燃比センサの異常診断を行う。
 第11の発明では、第1~第10のいずれか1つの発明において、前記下流側空燃比センサは、コップ型の空燃比センサである。
 第12の発明では、第1~第11のいずれか1つの発明において、前記下流側空燃比センサに異常が生じていると判定されたときには、警告ランプを点灯させる。
 本発明によれば、下流側のセンサとして空燃比センサを用いた場合において、この下流側空燃比センサの異常を正確に診断することができる異常診断装置が提供される。
図1は、本発明の第一実施形態に係る異常診断装置が用いられる内燃機関を概略的に示す図である。 図2は、空燃比センサの概略的な断面図である。 図3は、各排気空燃比におけるセンサ印加電圧と出力電流との関係を示す図である。 図4は、印加電圧を一定にしたときの排気空燃比と出力電流との関係を示す図である。 図5は、内燃機関の通常運転時における、上流側排気浄化触媒の酸素吸蔵量等のタイムチャートである。 図6は、素子割れの異常が生じている空燃比センサの概略的な断面図である。 図7は、アクティブ制御を行った場合における空燃比センサの出力空燃比等のタイムチャートである。 図8は、下流側空燃比センサ周りを流通する排気ガスの流量と、下流側空燃比センサの出力空燃比との関係を示した図である。 図9は、下流側空燃比センサの異常診断制御の制御ルーチンを示すフローチャートである。 図10は、排気ガスの流量とリーン判定基準空燃比との関係を示す図である。 図11は、第二実施形態における下流側空燃比センサの異常診断制御の制御ルーチンを示すフローチャートである。 図12は、下流側空燃比センサ周りを流通する排気ガスの実際の空燃比と、下流側空燃比センサの出力空燃比との関係を示す図である。 図13は、上流側空燃比センサの出力空燃比とリーン判定基準空燃比との関係を示す図である。
 以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。
 <内燃機関全体の説明>
 図1は、本発明の第一実施形態に係る異常診断装置が用いられる内燃機関を概略的に示す図である。図1を参照すると1は機関本体、2はシリンダブロック、3はシリンダブロック2内で往復動するピストン、4はシリンダブロック2上に固定されたシリンダヘッド、5はピストン3とシリンダヘッド4との間に形成された燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポートをそれぞれ示す。吸気弁6は吸気ポート7を開閉し、排気弁8は排気ポート9を開閉する。
 図1に示したようにシリンダヘッド4の内壁面の中央部には点火プラグ10が配置され、シリンダヘッド4の内壁面周辺部には燃料噴射弁11が配置される。点火プラグ10は、点火信号に応じて火花を発生させるように構成される。また、燃料噴射弁11は、噴射信号に応じて、所定量の燃料を燃焼室5内に噴射する。なお、燃料噴射弁11は、吸気ポート7内に燃料を噴射するように配置されてもよい。また、本実施形態では、燃料として理論空燃比が14.6であるガソリンが用いられる。しかしながら、本発明の診断装置が用いられる内燃機関では、他の燃料を用いても良い。
 各気筒の吸気ポート7はそれぞれ対応する吸気枝管13を介してサージタンク14に連結され、サージタンク14は吸気管15を介してエアクリーナ16に連結される。吸気ポート7、吸気枝管13、サージタンク14、吸気管15は吸気通路を形成する。また、吸気管15内にはスロットル弁駆動アクチュエータ17によって駆動されるスロットル弁18が配置される。スロットル弁18は、スロットル弁駆動アクチュエータ17によって回動せしめられることで、吸気通路の開口面積を変更することができる。
 一方、各気筒の排気ポート9は排気マニホルド19に連結される。排気マニホルド19は、各排気ポート9に連結される複数の枝部とこれら枝部が集合した集合部とを有する。排気マニホルド19の集合部は上流側排気浄化触媒20を内蔵した上流側ケーシング21に連結される。上流側ケーシング21は、排気管22を介して下流側排気浄化触媒24を内蔵した下流側ケーシング23に連結される。排気ポート9、排気マニホルド19、上流側ケーシング21、排気管22及び下流側ケーシング23は、排気通路を形成する。
 電子制御ユニット(ECU)31はデジタルコンピュータからなり、双方向性バス32を介して相互に接続されたRAM(ランダムアクセスメモリ)33、ROM(リードオンリメモリ)34、CPU(マイクロプロセッサ)35、入力ポート36および出力ポート37を具備する。吸気管15には、吸気管15内を流れる空気流量を検出するためのエアフロメータ39が配置され、このエアフロメータ39の出力は対応するAD変換器38を介して入力ポート36に入力される。また、排気マニホルド19の集合部には排気マニホルド19内を流れる排気ガス(すなわち、上流側排気浄化触媒20に流入する排気ガス)の空燃比を検出する上流側空燃比センサ40が配置される。加えて、排気管22内には排気管22内を流れる排気ガス(すなわち、上流側排気浄化触媒20から流出して下流側排気浄化触媒24に流入する排気ガス)の空燃比を検出する下流側空燃比センサ41が配置される。これら空燃比センサ40、41の出力も対応するAD変換器38を介して入力ポート36に入力される。なお、これら空燃比センサ40、41の構成については後述する。
 また、アクセルペダル42にはアクセルペダル42の踏込み量に比例した出力電圧を発生する負荷センサ43が接続され、負荷センサ43の出力電圧は対応するAD変換器38を介して入力ポート36に入力される。クランク角センサ44は例えばクランクシャフトが15度回転する毎に出力パルスを発生し、この出力パルスが入力ポート36に入力される。CPU35ではこのクランク角センサ44の出力パルスから機関回転数が計算される。一方、出力ポート37は対応する駆動回路45を介して点火プラグ10、燃料噴射弁11及びスロットル弁駆動アクチュエータ17に接続される。なお、ECU31は、下流側空燃比センサ41の異常診断を行う診断装置として機能する。
 上流側排気浄化触媒20及び下流側排気浄化触媒24は、酸素吸蔵能力を有する三元触媒である。具体的には、排気浄化触媒20、24は、セラミックから成る担体に、触媒作用を有する貴金属(例えば、白金(Pt))及び酸素吸蔵能力を有する物質(例えば、セリア(CeO2))を担持させたものである。排気浄化触媒20、24は、所定の活性温度に達すると、未燃ガス(HCやCO等)と窒素酸化物(NOx)とを同時に浄化する触媒作用に加えて、酸素吸蔵能力を発揮する。
 排気浄化触媒20、24の酸素吸蔵能力によれば、排気浄化触媒20、24は、排気浄化触媒20、24に流入する排気ガスの空燃比が理論空燃比よりもリーン(以下、「リーン空燃比」という)であるときには排気ガス中の酸素を吸蔵する。一方、排気浄化触媒20、24は、流入する排気ガスの空燃比が理論空燃比よりもリッチ(以下、「リッチ空燃比」という)であるときには、排気浄化触媒20、24に吸蔵されている酸素を放出する。この結果、排気浄化触媒20、24の酸素吸蔵能力が維持されている限り、排気浄化触媒20、24に流入する排気ガスの空燃比に関わらず、排気浄化触媒20、24から流出する排気ガスの空燃比はほぼ理論空燃比となる。
 <空燃比センサの説明>
 本実施形態では、空燃比センサ40、41としては、コップ型の限界電流式空燃比センサが用いられる。図2を用いて、空燃比センサ40、41の構造について簡単に説明する。空燃比センサ40、41は、固体電解質層51と、その一方の側面上に配置された排気側電極52と、その他方の側面上に配置された大気側電極53と、通過する排気ガスの拡散律速を行う拡散律速層54と、基準ガス室55と、空燃比センサ40、41の加熱を行うヒータ部56とを具備する。
 特に、本実施形態のコップ型の空燃比センサ40、41では、固体電解質層51は一端が閉じられた円筒状に形成される。その内部に画成された基準ガス室55には、大気ガス(空気)が導入されると共に、ヒータ部56が配置される。固体電解質層51の内面上に大気側電極53が配置され、その外面上に排気側電極52が配置される。固体電解質層51及び排気側電極52の外面上にはこれらを覆うように拡散律速層54が配置される。なお、拡散律速層54の外側には、拡散律速層54の表面上に液体等が付着するのを防止するための保護層(図示せず)が設けられてもよい。
 固体電解質層51は、ZrO2(ジルコニア)、HfO2、ThO2、Bi23等にCaO、MgO、Y23、Yb23等を安定剤として配当した酸素イオン伝導性酸化物の焼結体により形成されている。また、拡散律速層54は、アルミナ、マグネシア、けい石質、スピネル、ムライト等の耐熱性無機物質の多孔質焼結体により形成されている。さらに、排気側電極52及び大気側電極53は、白金等の触媒活性の高い貴金属により形成されている。
 また、排気側電極52と大気側電極53との間には、ECU31に搭載された印加電圧制御装置60によりセンサ印加電圧Vが印加される。加えて、ECU31には、センサ印加電圧を印加したときに固体電解質層を介してこれら電極52、53間に流れる電流Iを検出する電流検出装置61が設けられる。この電流検出装置61によって検出される電流が空燃比センサ40、41の出力電流である。
 このように構成された空燃比センサ40、41は、図3に示したような電圧-電流(V-I)特性を有する。図3からわかるように、出力電流Iは、排気空燃比が高くなるほど(リーンになるほど)、大きくなる。また、各排気空燃比におけるV-I線には、V軸に平行な領域、すなわちセンサ印加電圧が変化しても出力電流がほとんど変化しない領域が存在する。この電圧領域は限界電流領域と称され、このときの電流は限界電流と称される。図3では、排気空燃比が18であるときの限界電流領域及び限界電流をそれぞれW18、I18で示している。
 図4は、印加電圧を0.45V程度で一定にしたときの、排気空燃比と出力電流Iとの関係を示す図である。図4からわかるように、空燃比センサ40、41では、排気空燃比が高くなるほど(すなわち、リーンになるほど)、空燃比センサ40、41からの出力電流Iが大きくなる。加えて、空燃比センサ40、41は、排気空燃比が理論空燃比であるときに出力電流Iが零になるように構成される。また、排気空燃比が一定以上に大きくなったとき、或いは一定以下に小さくなったときには、排気空燃比の変化に対する出力電流の変化の割合が小さくなる。
 なお、上記例では、空燃比センサ40、41として図2に示した構造の限界電流式の空燃比センサを用いている。しかしながら、上流側空燃比センサ40としては例えば積層型の限界電流式空燃比センサ等の他の構造の限界電流式の空燃比センサや、限界電流式ではない空燃比センサ等、如何なる空燃比センサを用いてもよい。
 <基本的な制御>
 このように構成された内燃機関では、上流側空燃比センサ40及び下流側空燃比センサ41の出力に基づいて、上流側排気浄化触媒20に流入する排気ガスの空燃比が機関運転状態に基づいた最適な空燃比となるように、燃料噴射弁11からの燃料噴射量が設定される。このような燃料噴射量の設定方法としては、上流側空燃比センサ40の出力に基づいて上流側排気浄化触媒20に流入する排気ガスの空燃比(或いは、機関本体から流出する排気ガスの目標空燃比)が目標空燃比となるように制御すると共に、下流側空燃比センサ41の出力に基づいて上流側空燃比センサ40の出力を補正したり、目標空燃比を変更したりする方法が挙げられる。
 図5を参照して、このような目標空燃比の制御の例について、簡単に説明する。図5は、内燃機関の通常運転(通常制御)時における、上流側排気浄化触媒の酸素吸蔵量、目標空燃比、上流側空燃比センサの出力空燃比及び下流側空燃比センサの出力空燃比のタイムチャートである。なお、「出力空燃比」は、空燃比センサの出力に相当する空燃比を意味する。また、「通常運転(通常制御)時」は、内燃機関の特定の運転状態に応じて燃料噴射量を調整する制御(例えば、内燃機関を搭載した車両の加速時に行われる燃料噴射量の増量補正や、後述する燃料カット制御等)を行っていない運転状態(制御状態)を意味する。
 図5に示した例では、下流側空燃比センサ41の出力空燃比がリッチ判定基準空燃比(例えば、14.55)以下となったときに、目標空燃比はリーン設定空燃比AFlean(例えば、15)に設定され、維持される。その後、上流側排気浄化触媒20の酸素吸蔵量が推定され、この推定値が予め定められた判定基準吸蔵量Cref(最大酸素吸蔵量Cmaxよりも少ない量)以上になると、目標空燃比はリッチ設定空燃比AFrich(例えば、14.4)に設定され、維持される。図5に示した例では、このような操作が繰り返し行われる。
 具体的には、図5に示した例では、時刻t1前において、目標空燃比がリッチ設定空燃比AFrichとされ、これに伴って、上流側空燃比センサ40の出力空燃比もリッチ空燃比となっている。また、上流側排気浄化触媒20には酸素が吸蔵されていることから、下流側空燃比センサ41の出力空燃比はほぼ理論空燃比(14.6)となっている。このとき、上流側排気浄化触媒20に流入する排気ガスの空燃比はリッチ空燃比となっていることから、上流側排気浄化触媒20の酸素吸蔵量は徐々に低下する。
 その後、時刻t1においては、上流側排気浄化触媒20の酸素吸蔵量がゼロに近づくことにより、上流側排気浄化触媒20に流入した未燃ガスの一部は上流側排気浄化触媒20で浄化されずに流出し始める。その結果、時刻t2において、下流側空燃比センサ41の出力空燃比が理論空燃比よりも僅かにリッチなリッチ判定基準空燃比AFrefriとなり、このとき目標空燃比はリッチ設定空燃比AFrichからリーン設定空燃比AFleanへ切り替えられる。
 目標空燃比の切替により、上流側排気浄化触媒20に流入する排気ガスの空燃比はリーン空燃比になり、未燃ガスの流出は減少、停止する。また、上流側排気浄化触媒20の酸素吸蔵量は徐々に増加し、時刻t3において、判定基準吸蔵量Crefに到達する。このように、酸素吸蔵量が判定基準吸蔵量Crefに到達すると、目標空燃比は、再びリーン設定空燃比AFlenaからリッチ設定空燃比AFrichへと切り替えられる。この目標空燃比の切替により、上流側排気浄化触媒20に流入する排気ガスの空燃比は再びリーン空燃比となり、その結果、上流側排気浄化触媒20の酸素吸蔵量は徐々に減少し、以降は、このような操作が繰り返し行われる。このような制御を行うことにより、上流側排気浄化触媒20からNOxが流出するのを防止することができる。
 なお、通常制御として行われる上流側空燃比センサ40及び下流側空燃比センサ41の出力に基づく目標空燃比の制御は上述したような制御に限定されるものではない。これら空燃比センサ40、41の出力に基づく制御であれば、如何なる制御であってもよい。したがって、例えば、通常制御として、目標空燃比を理論空燃比に固定して、上流側空燃比センサ40の出力空燃比が理論空燃比になるようにフィードバック制御を行うと共に、下流側空燃比センサ41の出力空燃比に基づいて上流側空燃比センサ40の出力空燃比を補正するような制御を行ってもよい。
 <空燃比センサの素子割れ>
 ところで、上述したような空燃比センサ40、41に生じる異常として、空燃比センサ40、41を構成する素子に割れが生じる素子割れという現象が挙げられる。具体的には、固体電解質層51及び拡散律速層54を貫通する割れ(図6のC1)や、固体電解質層51及び拡散律速層54に加えて両電極52、53を貫通する割れ(図6にC2)が発生する。このような素子割れが発生すると、図6に示したように割れた部分を介して排気ガスが基準ガス室55内に進入する。
 この結果、空燃比センサ40、41周りの排気ガスの空燃比がリッチ空燃比である場合には、リッチ空燃比の排気ガスが基準ガス室55内に進入する。これにより、基準ガス室55内にリッチ空燃比の排気ガスが拡散し、大気側電極53はリッチ空燃比の排気ガスに曝されることになる。一方、この場合でも、排気側電極52は拡散律速層54を介して排気ガスに曝されることになる。このため、大気側電極53に対して排気側電極52の方が相対的にリーンとなり、結果的に、空燃比センサ40、41の出力空燃比がリーン空燃比となる。すなわち、空燃比センサ40、41に素子割れが発生すると、空燃比センサ40、41周りの排気ガスの空燃比がリッチ空燃比であっても、空燃比センサ40、41の出力空燃比はリーン空燃比となってしまう。一方、空燃比センサ40、41周りの排気ガスの空燃比がリーン空燃比である場合には、このような出力空燃比の逆転現象は発生しない。これは、排気ガスの空燃比がリーン空燃比である場合には、空燃比センサ40、41の出力電流は固体電解質層51の両側の空燃比の差よりも拡散律速層54を介して排気側電極53表面上に到達する酸素の量に依存するためである。
 <異常診断>
 本実施形態では、上述したような下流側空燃比センサ41の素子割れ異常の性質を利用して、下流側空燃比センサ41の素子割れに基づく異常診断を行うようにしている。具体的には、ECU31は、所定の実行条件が成立する場合に、アクティブ制御を実行する。アクティブ制御では、上流側排気浄化触媒20に流入する排気ガスの目標空燃比(或いは、機関本体から流出する排気ガスの目標空燃比)がリッチ空燃比となるように、燃料噴射弁11からの燃料噴射量が制御される。また、これに伴って、上流側排気浄化触媒20に流入する排気ガスの実際の空燃比もリッチ空燃比になる。
 図7は、アクティブ制御を行った場合における空燃比センサの出力空燃比のタイムチャートである。図7に示した例では、時刻t4において、アクティブ制御の実行が開始される。時刻t4においてアクティブ制御の実行が開始されると、目標空燃比がリッチ空燃比に設定される。特に、図示した例では、アクティブ制御実行時の目標空燃比は、通常運転時に設定されるリッチ設定空燃比よりもリッチなアクティブ制御時空燃比AFactとされる。このとき、上流側空燃比センサ40の出力空燃比はリッチ空燃比になる。一方、上流側排気浄化触媒20に流入した排気ガス中の未燃HC等は上流側排気浄化触媒20に吸蔵されている酸素と反応して浄化される。このため、下流側空燃比センサ41の出力空燃比は、ほぼ理論空燃比となっている。
 アクティブ制御の実行により、上流側排気浄化触媒20にはリッチ空燃比の排気ガスが流入することから、上流側排気浄化触媒20の酸素吸蔵量は徐々に減少していく。この間も、上流側空燃比センサ40の出力空燃比はリッチ空燃比になっており、下流側空燃比センサ41の出力空燃比はほぼ理論空燃比となっている。やがて、酸素吸蔵量はほぼゼロになり、これにより、上流側排気浄化触媒20から未燃HC等を含んだリッチ空燃比の排気ガスが流出する。すなわち、下流側空燃比センサ41周りを流通する排気ガスの実際の空燃比はリッチ空燃比となる。
 ここで、下流側空燃比センサ41に素子割れの異常が発生していないときには、図7に実線で示したように、実際の空燃比に従って、下流側空燃比センサ41の出力空燃比もリッチ空燃比となる。そこで、本実施形態では、上流側空燃比センサ40の出力空燃比がリッチ空燃比となっている場合、特に、上流側空燃比センサ40の出力空燃比が理論空燃比よりもリーンなリーン空燃比からリッチ空燃比に変化してリッチ空燃比に維持されている場合に、下流側空燃比センサ41の出力空燃比がリッチ判定基準空燃比AFrefriよりもリーンな空燃比(例えば、ほぼ理論空燃比)からこれよりもリッチな空燃比に変化したとき(時刻t5)には、下流側空燃比センサ41には素子割れの異常は発生していないと判定する。なお、本実施形態では、このときのリッチ判定基準空燃比AFrefriは、通常運転時におけるリッチ判定基準空燃比AFrefriと同一であるが、異なる値であってもよい。この結果、異常判定フラグはOffのままとされる。
 一方、下流側空燃比センサ41に素子割れの異常が発生しているときには、図7に破線で示したように、実際の空燃比とは異なり、下流側空燃比センサ41の出力空燃比がリーン空燃比となる。そこで、本実施形態では、上流側空燃比センサ40の出力空燃比がリッチ空燃比となっている場合に、下流側空燃比センサ41の出力空燃比が、理論空燃比よりも僅かにリーンなリーン判定基準空燃比AFrefleよりもリッチな空燃比(例えば、ほぼ理論空燃比)からこれよりもリーンな空燃比に変化したとき(時刻t5)には、下流側空燃比センサ41に素子割れの異常が発生していると判定する。この結果、異常判定フラグはOnとされる。
 このようにして下流側空燃比センサ41の異常診断が行われると、アクティブ制御が停止せしめられ、通常運転が再開される。特に、図7に示した例では、時刻t5において下流側空燃比センサ41の異常診断が行われていることから、時刻t5においてアクティブ制御が停止せしめられる。その後、通常運転が再開されると、下流側空燃比センサ41の出力空燃比がリッチ判定基準空燃比AFrefri以下となっていることから、目標空燃比がリーン設定空燃比AFleanに設定され、図5に示した制御が繰り返し行われる。
 このように、本実施形態によれば、上流側空燃比センサの出力空燃比がリッチ空燃比となっている場合に、下流側空燃比センサ41の出力空燃比が一旦ほぼ理論空燃比となった後に、如何なる空燃比に変化するかに基づいて下流側空燃比センサ41の異常診断が行われる。これにより、空燃比センサである下流側のセンサについて、素子割れの異常を診断することができる。
 なお、上述したリッチ判定基準空燃比AFrefri及びリーン判定基準空燃比AFrefleは、上流側排気浄化触媒20の酸素吸蔵量が中間程度の量であるときに、正常の空燃比センサの出力空燃比が理論空燃比近傍で変動する範囲外の空燃比とされる。
 ところで、本実施形態では、アクティブ制御は、一定の実行条件が成立している場合に実行され、成立していない場合には実行されない。換言すると、下流側空燃比センサ41の異常診断は一定の実行条件が成立している場合に実行され、成立していない場合には実行されない。
 ここで、一定の実行条件が成立している場合とは、例えば、以下の条件全てを満たす場合を意味する。一つ目の条件は、両空燃比センサ40、41が活性していること、すなわち両空燃比センサ40、41の温度が活性温度以上になっていることである。空燃比センサ40、41が活性していないと、そもそも排気ガスの空燃比を正確に検出することができないうえ、素子割れの異常が発生しても出力空燃比のずれが生じにくいためである。
 二つ目の条件は、下流側空燃比センサ41周りを流通する排気ガスの流量が予め定められた下限流量以上であることである。図8は、下流側空燃比センサ41周りを流通する排気ガスの流量と、下流側空燃比センサ41の出力空燃比との関係を示した図である。図示した例では、下流側空燃比センサ41周りを流通する排気ガスの空燃比は理論空燃比よりも僅かにリッチなリッチ空燃比となっている。
 図8からわかるように、下流側空燃比センサ41周りを流通する排気ガスの流量が少ないときには、正常なセンサと素子割れが生じているセンサとの間で、出力空燃比にほとんど差がない。これに対して、排気ガスの流量が多くなると、素子割れが生じているセンサでは出力空燃比がリーンとなる。したがって、下流側空燃比センサ41周りを流通する排気ガスの流量が少ないと、素子割れの異常が生じていても出力空燃比に変化が生じない。
 加えて、図8に示したように、素子割れが生じているセンサでは、下流側空燃比センサ41周りを流通する排気ガスの流量が多くなるにつれて、下流側空燃比センサ41の出力空燃比がリーン側にシフトする。したがって、下流側空燃比センサ41周りを流通する排気ガスの流量が少ない場合には、素子割れが生じている場合であっても、下流側空燃比センサ41の出力空燃比におけるリーン度合いは小さく、リーン判定基準空燃比AFrefriまで到達しない場合がある。
 そこで、本実施形態では、排気ガスの流量が、予め定められた下限流量、すなわち正常なセンサと素子割れの生じているセンサとで出力空燃比が変わるような流量(例えば、図8のG1)以上であることが、アクティブ制御の実行条件とされている。
 なお、下流側空燃比センサ41周りを流通する排気ガスの流量は、例えば、エアフロメータ39によって検出された空気流量等に基づいて算出される。しかしながら、斯かる排気ガスの流量は、その他の手法によって推定されてもよい。或いは、下流側空燃比センサ41近傍において排気通路内を流れる排気ガスの流量を検出するエアフロメータ等を設け、このエアフロメータ等によって直接検出されてもよい。
 三つ目の条件は、燃料カット制御の終了からの経過時間が基準経過時間以上であることである。燃料カット制御とは、内燃機関が作動している状態(クランクシャフトが回転している状態)で燃焼室への燃料供給を停止又は大幅に減量する制御である。斯かる燃料カット制御は、例えば、アクセルペダル42の踏込み量がゼロ又はほぼゼロ(すなわち、機関負荷がゼロ又はほぼゼロ)であり且つ機関回転数がアイドリング時の回転数よりも高い所定の回転数以上であるときに実施される。
 このような燃料カット制御の終了直後には、機関本体から排出される排気ガスの空燃比がリッチ空燃比となるように燃料噴射量を制御した場合であっても、素子割れの生じていない正常な空燃比センサでも出力空燃比がリーン空燃比となる。このため、燃料カット制御が終了してから或る程度の経過時間が経過するまでは、下流側空燃比センサ41の素子割れを正確に診断することができない。そこで、本実施形態では、燃料カット制御終了からの経過時間が、基準経過時間以上、すなわち正常な空燃比センサにおいて燃料カット制御を終了してから出力空燃比が安定するまでに必要な時間以上であることが、アクティブ制御の実行条件とされている。
 四つ目の条件は、内燃機関を搭載した車両のイグニッションスイッチがONにされてから現在まで、下流側空燃比センサ41の異常判定が完了していないことである。下流側空燃比センサ41の異常判定はそれほど頻繁に行う必要はないため、異常判定が完了していないときにのみ異常判定を行うようにしたものである。具体的には、下流側空燃比センサ41の異常判定において異常と判定されたときにONとされる異常フラグ、又は下流側空燃比センサ41の異常判定が完了したときにONとされる判定完了フラグがONとなっていないことが条件とされる。
 なお、上記実施形態では、通常運転時において、上流側排気浄化触媒20に流入する排気ガスの目標空燃比をリッチ空燃比とリーン空燃比とに交互に変更するようにしている。このような場合には、アクティブ制御の実行時には、目標空燃比は、排気浄化触媒に流入する排気ガスの空燃比が通常運転(通常制御)時におけるリッチ空燃比(上記実施形態では、リッチ設定空燃比AFrich)よりもリッチな空燃比とされる。しかしながら、通常運転時においては、必ずしも目標空燃比をリッチ空燃比とリーン空燃比とを交互に変更する必要はなく、例えば、目標空燃比を常に理論空燃比に設定するようにしてもよい。
 また、上記実施形態では、下流側空燃比センサ41の異常診断を行うにあたって、アクティブ制御を行っている。しかしながら、下流側空燃比センサ41の異常診断を行うにあたって必ずしもアクティブ制御を行う必要はない。
 例えば、燃料カット制御の終了直後には、一般に、上流側排気浄化触媒20に流入する排気ガスの空燃比をリッチ空燃比にする復帰後リッチ制御が行われる。これは、燃料カット制御中に上流側排気浄化触媒20に吸蔵された酸素の一部又は全部を放出するために行われる。下流側空燃比センサ41の異常診断は、この復帰後リッチ制御の実行中に行われてもよい。ただし、この場合であっても、上述したように、燃料カット制御の終了からの経過時間が基準経過時間以上であることが必要である。
 <フローチャート>
 図9は、下流側空燃比センサ41の異常診断制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔の割り込みによって行われる。
 まず、ステップS11において、内燃機関の始動後、或いは内燃機関を搭載した車両のイグニッションキーがオンにされた後、下流側空燃比センサ41の異常判定が未了であるか否かが判定される。内燃機関の始動後に異常判定が既に行われていた場合には制御ルーチンが終了せしめられる。一方、異常判定が未了であると判定された場合にはステップS12へと進む。ステップS12では、アクティブ制御フラグFaが0であるか否かが判定される。アクティブ制御フラグFaは、アクティブ制御が実行されているときには1とされ、それ以外のときには0とされるフラグである。アクティブ制御が未だ実行されていないときには、ステップS13へと進む。
 ステップS13では、アクティブ制御の実行条件が成立しているか否かが判定される。上述したアクティブ制御の実行条件が成立していない場合には制御ルーチンが終了せしめられる。一方、アクティブ制御の実行条件が成立しているときには、ステップS14へと進み、目標空燃比がアクティブ制御時空燃比に設定される。次いで、ステップS15では、アクティブ制御フラグFaが1にセットされ、制御ルーチンが終了せしめられる。
 次の制御ルーチンでは、アクティブ制御フラグFaが1にセットされていることから、ステップS12からステップS16へと進む。ステップS16では、ストイキフラグFsが0であるか否かが判定される。ストイキフラグFsは、アクティブ制御開始後、下流側空燃比センサ41の出力空燃比がほぼ理論空燃比に達したときに1とされ、それ以外のときには0とされるフラグである。ステップS16において、ストイキフラグFsが0である場合にはステップS17へと進む。ステップS17では、下流側空燃比センサ41の出力空燃比がリッチ判定基準空燃比AFrefriとリーン判定基準空燃比AFrefleとの間の空燃比であるか否か、すなわち理論空燃比に実質的に収束しているか否かが判定される。ステップS17において、下流側空燃比センサ41の出力空燃比が理論空燃比には収束していないと判定された場合には制御ルーチンが終了せしめられる。一方、ステップS17において、下流側空燃比センサ41の出力空燃比が理論空燃比に収束していると判定された場合には、ステップS18へと進む。ステップS18では、ストイキフラグFsが1にセットされ、制御ルーチンが終了せしめられる。
 次の制御ルーチンでは、ストイキフラグFsが1にセットされていることからステップS16からステップS19、S20へと進む。ステップS19では、下流側空燃比センサ41の出力空燃比がリーン判定基準空燃比AFrefle以上であるか否かが判定され、ステップS20では下流側空燃比センサ41の出力空燃比がリッチ判定基準空燃比AFrefri以下であるか否かが判定される。ステップS19、S20において、下流側空燃比センサ41の出力空燃比がリッチ判定基準空燃比AFrefriとリーン判定基準空燃比AFrefleとの間の空燃比であると判定された場合には制御ルーチンが終了せしめられる。
 一方、ステップS19において、出力空燃比がリーン判定基準空燃比AFrefle以上であると判定された場合にはステップS21へと進む。ステップS21では、下流側空燃比センサ41に異常が生じていると判定され、異常判定フラグがOnとされ、これにより、例えば、内燃機関を搭載した車両の警告ランプが点灯せしめられる。また、ステップS20において、出力空燃比がリッチ判定基準空燃比AFrefri以下であると判定された場合にはステップS22へと進む。ステップS22では、下流側空燃比センサ41は正常であると判定され、異常判定フラグはOffのままとされる。
 ステップS21及びステップS22の後には、ステップS23へと進む。ステップS23では、目標空燃比がアクティブ制御時空燃比に設定されていたのが解除されて、通常運転が開始せしめられる。次いで、ステップS24では、アクティブ制御フラグFa及びストイキフラグFsが0にリセットされ、制御ルーチンが終了せしめられる。
 <第二実施形態>
 次に、図10及び図11を参照して、本発明の第二実施形態の異常診断装置について説明する。本発明の第二実施形態の異常診断装置の構成等は、基本的に第一実施形態の異常診断装置の構成等と同様である。しかしながら、第一実施形態では、下流側空燃比センサ41の異常を判定する閾値であるリーン判定基準空燃比が予め定められた一定値であるのに対して、本実施形態ではリーン判定基準空燃比は下流側空燃比センサ41周りを流通する排気ガスの流量に応じて変化する。
 ところで、下流側空燃比センサ41に異常が発生しておらず、正常な状態であったとしても、アクティブ制御の実行中に下流側空燃比センサ41の出力空燃比がリーン空燃比になる場合がある。例えば、機関本体から排出された排気ガス中に水素が多量に含まれていると、上流側空燃比センサ40の出力空燃比は実際の排気空燃比よりもリッチになる。このような場合に、上流側空燃比センサ40の出力空燃比に基づいて燃料噴射量をフィードバック制御すると、目標空燃比がリッチ空燃比である場合であっても、上流側排気浄化触媒20に流入する排気ガスの実際の空燃比がリーン空燃比となっている場合があり得る。この結果、アクティブ制御の実行中であっても、下流側空燃比センサ41の出力空燃比がリーン空燃比になってしまう。
 この場合、リーン判定基準空燃比が、比較的低い空燃比、すなわちリーン度合いの低い空燃比に設定されていると、実際には下流側空燃比センサ41は正常な状態であるにも関わらず、誤って下流側空燃比センサ41に異常があると判定してしまうことになる。このような誤判定を低減するためには、できる限りリーン判定基準空燃比を高い空燃比、すなわちリーン度合いの高い空燃比に設定することが好ましい。
 ここで、図8を参照して説明したように、素子割れが発生していた場合の下流側空燃比センサ41の出力空燃比は、センサ周りを流通する排気ガスの流量が多いほど高くなる。そこで、本実施形態では、下流側空燃比センサ41周りを流通する排気ガスの流量に基づいてリーン判定基準空燃比AFrefleを設定するようにしている。より具体的には、図10に示したように、下流側空燃比センサ41周りを流通する排気ガスの流量が多くなるほど、リーン判定基準空燃比AFrefleを高く(リーンに)設定するようにしている。これにより、下流側空燃比センサ41を誤って異常判定してしまうことが抑制される。
 図11は、第二実施形態における下流側空燃比センサ41の異常診断制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔の割り込みによって行われる。なお、図11のステップS31~S44は、図9のステップS11~S24と同様であるため、説明を省略する。
 ステップS36において、ストイキフラグFsが1にセットされていると判定された場合には、ステップS45へと進む。ステップS45では、例えば、エアフロメータ39の出力に基づいて下流側空燃比センサ41周りを流通する排気ガスの流量が算出されると共に、この流量に基づいて図10に示したマップを用いてリーン判定基準空燃比AFrefleが算出される。なお、この場合には、図10に示したマップの代わりに、予め実験的又は計算によって求めた計算式等を用いてリーン判定基準空燃比AFrefleを算出してもよい。
 <第三実施形態>
 次に、図12及び図13を参照して、本発明の第三実施形態の異常診断装置について説明する。本発明の第三実施形態の異常診断装置の構成等は、基本的に第一実施形態及び第二実施形態の異常診断装置の構成等と同様である。しかしながら、本実施形態では、リーン判定基準空燃比が上流側空燃比センサ40の出力空燃比に基づいて設定される。
 図12は、下流側空燃比センサ41周りを流通する排気ガスの実際の空燃比と、下流側空燃比センサ41の出力空燃比との関係を示す図である。図12の破線は、下流側空燃比センサ41が正常な状態である場合における実際の空燃比と出力空燃比との関係を示している。図12からわかるように、素子割れが発生しているセンサでは、実際の空燃比がリッチになるにつれて、出力空燃比が高く(リーンに)なっている。これは、実際の空燃比がリッチになるほど、素子割れが生じた空燃比センサの両電極52、53周りの空燃比の差が大きくなるためである。
 そこで、本実施形態では、上流側空燃比センサ40の出力空燃比に基づいてリーン判定基準空燃比AFrefleを設定するようにしている。より具体的には、図13に示したように、上流側空燃比センサ40の出力空燃比が低くなるほど、リーン判定基準空燃比AFrefleを高く(リーンに~設定するようにしている。これにより、下流側空燃比センサ41を誤って異常判定してしまうことが抑制される。
 なお、本実施形態においても、図11のステップS45において、上流側空燃比センサ40の出力空燃比に基づいて、図13に示したマップを用いてリーン判定基準空燃比AFrefleが算出される。また、この場合には、図13に示したマップの代わりに、予め実験的又は計算によって求めた計算式等を用いてリーン判定基準空燃比AFrefleを算出してもよい。
 また、第二実施形態と第三実施形態とを組み合わせることも可能である。この場合には、リーン判定基準空燃比AFrefleは、下流側空燃比センサ41周りを流通する排気ガスの流量と上流側空燃比センサ40の出力空燃比とに基づいて設定される。
 1  機関本体
 5  燃焼室
 7  吸気ポート
 9  排気ポート
 19  排気マニホルド
 20  上流側排気浄化触媒
 24  下流側排気浄化触媒
 31  ECU
 40  上流側空燃比センサ
 41  下流側空燃比センサ

Claims (12)

  1.  内燃機関の排気通路に設けられた排気浄化触媒と、該排気浄化触媒よりも排気流れ方向上流側において前記排気通路に設けられた上流側空燃比センサと、前記排気浄化触媒よりも排気流れ方向下流側において前記排気通路に設けられた下流側空燃比センサと、これら空燃比センサの出力に基づいて下流側空燃比センサの異常診断を行う診断装置とを具備する空燃比センサの異常診断装置において、
     前記診断装置は、前記上流側空燃比センサの出力空燃比が理論空燃比よりもリッチなリッチ空燃比となっている場合に、前記下流側空燃比センサの出力空燃比が理論空燃比よりもリーンなリーン判定基準空燃比よりもリッチな空燃比から該リーン判定基準空燃比よりもリーンな空燃比に変化したときには、前記下流側空燃比センサに異常が生じていると判定する、空燃比センサの異常診断装置。
  2.  前記診断装置は、前記上流側空燃比センサの出力空燃比が理論空燃比よりもリーンなリーン空燃比からリッチ空燃比に変化してリッチ空燃比に維持されている場合に、前記下流側空燃比センサの出力空燃比が理論空燃比よりもリーンなリーン判定基準空燃比よりもリッチな空燃比から該リーン判定基準空燃比よりもリーンな空燃比に変化したときには、前記下流側空燃比センサに異常が生じていると判定する、請求項1に記載の空燃比センサの異常診断装置。
  3.  前記下流側空燃比センサ周りを流通する排気ガスの流量を検出又は推定する流量検出装置を更に具備し、
     前記診断装置は、前記流量検出装置によって検出又は推定された流量が予め定められた下限流量以上であるときにのみ前記下流側空燃比センサの異常診断を行う、請求項1又は2に記載の空燃比センサの異常診断装置。
  4.  前記リーン判定基準空燃比は、前記流量検出装置によって検出又は推定された排気ガスの流量に基づいて設定される、請求項3に記載の空燃比センサの異常診断装置。
  5.  前記リーン判定基準空燃比は、前記流量検出装置によって検出又は推定された排気ガスの流量が多くなるほどリーンに設定される、請求項4に記載の空燃比センサの異常診断装置。
  6.  前記リーン判定基準空燃比は、前記上流側空燃比センサによって検出された空燃比に基づいて設定される、請求項1~5のいずれか1項に記載の空燃比センサの異常診断装置。
  7.  前記リーン判定基準空燃比は、前記上流側空燃比センサによって検出された空燃比が低くなるほどリーンに設定される、請求項6に記載の空燃比センサの異常診断装置。
  8.  前記内燃機関は、内燃機関の作動中に燃焼室への燃料供給を停止又は減量する燃料カット制御を実行可能であり、
     前記診断装置は、燃料カット制御の終了からの経過時間が基準経過時間以下である場合には前記下流側空燃比センサの異常診断を行わない、請求項1~7のいずれか1項に記載の空燃比センサの異常診断装置。
  9.  前記内燃機関は、内燃機関の作動中に燃焼室への燃料供給を停止又は減量する燃料カット制御と、該燃料カット制御の終了後に前記排気浄化触媒に流入する排気ガスの空燃比をリッチ空燃比にする復帰後リッチ制御とを実行可能であり、
     前記診断装置は、前記復帰後リッチ制御の実行中に前記下流側空燃比センサの異常診断を行う、請求項1~8のいずれか1項に記載の空燃比センサの異常診断装置。
  10.  前記内燃機関は、前記排気浄化触媒に流入する排気ガスの空燃比をリッチ空燃比と理論空燃比よりもリーンなリーン空燃比とに交互に変更する通常制御と、前記排気浄化触媒に流入する排気ガスの空燃比を前記通常制御時におけるリッチ空燃比よりもリッチにするアクティブ制御とを実行可能であり、
     前記診断装置は、前記アクティブ制御の実行中に前記下流側空燃比センサの異常診断を行う、請求項1~8のいずれか1項に記載の空燃比センサの異常診断装置。
  11.  前記下流側空燃比センサは、コップ型の空燃比センサである、請求項1~10のいずれか1項に記載の空燃比センサの異常診断装置。
  12.  前記下流側空燃比センサに異常が生じていると判定されたときには、警告ランプを点灯させる、請求項1~11のいずれか1項に記載の空燃比センサの異常診断装置。
PCT/JP2013/076719 2013-10-01 2013-10-01 空燃比センサの異常診断装置 WO2015049726A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112016007345A BR112016007345A2 (pt) 2013-10-01 2013-10-01 sistema de diagnose de anormalidade de sensor da relação de ar e combustível
AU2013402365A AU2013402365B2 (en) 2013-10-01 2013-10-01 Abnormality diagnosis system for air-fuel ratio sensor
RU2016111947A RU2643169C2 (ru) 2013-10-01 2013-10-01 Система диагностики неисправности датчика воздушно-топливного отношения
EP13895060.5A EP3054135B1 (en) 2013-10-01 2013-10-01 Abnormality diagnosis system for air-fuel ratio sensor
CN201380079915.XA CN105593501B (zh) 2013-10-01 2013-10-01 空燃比传感器的异常诊断装置
JP2015540290A JP6020739B2 (ja) 2013-10-01 2013-10-01 空燃比センサの異常診断装置
PCT/JP2013/076719 WO2015049726A1 (ja) 2013-10-01 2013-10-01 空燃比センサの異常診断装置
US15/026,099 US10365183B2 (en) 2013-10-01 2013-10-01 Abnormality diagnosis system of air-fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/076719 WO2015049726A1 (ja) 2013-10-01 2013-10-01 空燃比センサの異常診断装置

Publications (1)

Publication Number Publication Date
WO2015049726A1 true WO2015049726A1 (ja) 2015-04-09

Family

ID=52778340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076719 WO2015049726A1 (ja) 2013-10-01 2013-10-01 空燃比センサの異常診断装置

Country Status (8)

Country Link
US (1) US10365183B2 (ja)
EP (1) EP3054135B1 (ja)
JP (1) JP6020739B2 (ja)
CN (1) CN105593501B (ja)
AU (1) AU2013402365B2 (ja)
BR (1) BR112016007345A2 (ja)
RU (1) RU2643169C2 (ja)
WO (1) WO2015049726A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194289A (ja) * 2015-03-31 2016-11-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2016194268A (ja) * 2015-03-31 2016-11-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
US9903292B2 (en) 2014-10-23 2018-02-27 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis system of air-fuel ratio sensor
US10316779B2 (en) 2013-10-01 2019-06-11 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis system of air-fuel ratio sensor
US10365183B2 (en) 2013-10-01 2019-07-30 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis system of air-fuel ratio sensor

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101822562B1 (ko) * 2015-03-31 2018-01-29 도요타지도샤가부시키가이샤 내연 기관의 배기 정화 장치
CN116104619A (zh) * 2016-12-09 2023-05-12 康明斯有限公司 用于催化剂传感器诊断的系统和方法
JP6537148B2 (ja) * 2017-08-04 2019-07-03 株式会社Subaru 触媒異常診断装置及び触媒異常診断方法
US20200049091A1 (en) * 2018-08-07 2020-02-13 GM Global Technology Operations LLC Oxygen sensor diagnostic
US10690036B1 (en) 2018-12-20 2020-06-23 Denso International America, Inc. Diagnostic test for engine exhaust system
JP7534092B2 (ja) * 2020-01-24 2024-08-14 トヨタ自動車株式会社 下流側空燃比検出装置の異常診断装置
JP7234956B2 (ja) * 2020-02-03 2023-03-08 トヨタ自動車株式会社 空燃比検出装置の異常検出装置
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
JP7268693B2 (ja) * 2021-02-15 2023-05-08 トヨタ自動車株式会社 エンジン制御装置
JP7363860B2 (ja) * 2021-06-22 2023-10-18 トヨタ自動車株式会社 内燃機関の制御装置および制御方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229742A (ja) * 1985-08-01 1987-02-07 Toyota Motor Corp 内燃機関の空燃比制御装置
JPH07259613A (ja) * 1994-03-25 1995-10-09 Mazda Motor Corp 空燃比センサの故障検出装置
JPH09166569A (ja) * 1995-12-15 1997-06-24 Denso Corp 空燃比センサ異常検出装置
JPH10169494A (ja) * 1996-12-11 1998-06-23 Unisia Jecs Corp 排気浄化触媒の診断装置及び酸素センサの異常診断装置
JP2003343339A (ja) * 2002-05-29 2003-12-03 Denso Corp 触媒下流酸素センサの異常検出装置
JP2004019542A (ja) 2002-06-17 2004-01-22 Toyota Motor Corp 酸素センサの異常検出装置
JP2004308574A (ja) 2003-04-08 2004-11-04 Toyota Motor Corp 排気ガスセンサの異常検出装置
JP2005337089A (ja) * 2004-05-26 2005-12-08 Hitachi Ltd エンジンの排気系診断装置及び排気系診断方法
JP2007032537A (ja) 2005-07-29 2007-02-08 Suzuki Motor Corp 下流側排気ガスセンサの故障診断装置
JP2009156227A (ja) * 2007-12-27 2009-07-16 Toyota Motor Corp 下流側酸素センサ故障診断装置
JP2010025090A (ja) 2008-07-24 2010-02-04 Toyota Motor Corp 空燃比センサの異常診断装置
JP2010196483A (ja) 2009-02-23 2010-09-09 Toyota Motor Corp 酸素センサの異常判定装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4365952A (en) * 1979-03-20 1982-12-28 Matsushita Electric Industrial Co., Ltd. Liquid gas burner
US4739614A (en) * 1985-02-22 1988-04-26 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system in internal combustion engine
JPH04365952A (ja) * 1991-06-13 1992-12-17 Daihatsu Motor Co Ltd 酸素センサの劣化検出方法
JPH05272384A (ja) * 1992-03-25 1993-10-19 Toyota Motor Corp 触媒下流側空燃比センサの異常検出装置
JP2826564B2 (ja) * 1992-07-22 1998-11-18 三菱自動車工業株式会社 酸素センサの故障判別方法
US5357791A (en) * 1993-03-15 1994-10-25 Ford Motor Company OBD-II exhaust gas oxygen sensor
DE19612212B4 (de) * 1995-03-31 2005-12-08 Denso Corp., Kariya Diagnosevorrichtung für einen Luft/Brennstoffverhältnis-Sensor
US5964208A (en) 1995-03-31 1999-10-12 Denso Corporation Abnormality diagnosing system for air/fuel ratio feedback control system
US5781878A (en) * 1995-06-05 1998-07-14 Nippondenso Co., Ltd. Apparatus and method for diagnosing degradation or malfunction of oxygen sensor
US5845489A (en) * 1995-11-08 1998-12-08 Denso Corporation Abnormality detector for air-fuel ratio control system
JP3674017B2 (ja) * 1996-03-19 2005-07-20 株式会社デンソー 排出ガス浄化用触媒劣化検出装置
US5852228A (en) * 1996-07-10 1998-12-22 Denso Corporation Apparatus and method for controlling oxygen sensor heating
DE19627856A1 (de) * 1996-07-11 1998-01-15 Happich Fahrzeug & Ind Teile Beleuchtungsleiste und Verfahren zur Herstellung
JP3733660B2 (ja) * 1996-10-03 2006-01-11 日産自動車株式会社 内燃機関における酸素センサの劣化診断装置
JP3956435B2 (ja) * 1997-08-07 2007-08-08 株式会社デンソー 酸素センサ素子
JP3623881B2 (ja) * 1998-03-19 2005-02-23 株式会社日立ユニシアオートモティブ 広域空燃比センサの異常診断装置
DE10038338A1 (de) * 2000-08-05 2002-02-14 Bosch Gmbh Robert Verfahren und Vorrichtung zur Überwachung eines Sensors
JP2003193903A (ja) * 2001-12-25 2003-07-09 Mitsubishi Motors Corp 空燃比検出手段の故障判定装置
JP4161771B2 (ja) 2002-11-27 2008-10-08 トヨタ自動車株式会社 酸素センサの異常検出装置
JP4135563B2 (ja) * 2003-06-04 2008-08-20 トヨタ自動車株式会社 空燃比センサの異常検出装置
JP2005133620A (ja) 2003-10-29 2005-05-26 Toyota Motor Corp 内燃機関の排気浄化装置
JP2005273636A (ja) * 2004-03-26 2005-10-06 Mitsubishi Electric Corp 酸素センサ劣化診断装置
JP4353070B2 (ja) 2004-10-27 2009-10-28 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP4647393B2 (ja) * 2005-05-23 2011-03-09 富士重工業株式会社 空燃比センサの異常診断装置
JP4483715B2 (ja) 2005-06-10 2010-06-16 トヨタ自動車株式会社 排気ガスセンサの故障検出装置
JP2008190454A (ja) * 2007-02-06 2008-08-21 Toyota Motor Corp 空燃比センサの異常診断装置及び異常診断方法
JP4919169B2 (ja) 2007-04-23 2012-04-18 トヨタ自動車株式会社 酸素センサの故障診断装置
JP4548443B2 (ja) 2007-04-27 2010-09-22 トヨタ自動車株式会社 内燃機関の酸素センサ故障診断装置
JP4803502B2 (ja) * 2007-06-22 2011-10-26 トヨタ自動車株式会社 空燃比センサの異常診断装置
JP5035688B2 (ja) 2008-03-03 2012-09-26 トヨタ自動車株式会社 空燃比センサの異常診断装置
JP2010116857A (ja) * 2008-11-13 2010-05-27 Mitsubishi Fuso Truck & Bus Corp エアフロセンサの異常診断装置及び異常診断方法
DE102008058008B3 (de) * 2008-11-19 2010-02-18 Continental Automotive Gmbh Vorrichtung zum Betreiben einer Brennkraftmaschine
JP2010159720A (ja) 2009-01-09 2010-07-22 Toyota Motor Corp 空燃比センサの診断装置
EP2657495A4 (en) * 2010-12-24 2014-07-30 Toyota Motor Co Ltd DEVICE AND METHOD FOR ERROR DETECTION OF INTER-CYLINDER AIR TO FUEL RATIO
WO2015049726A1 (ja) 2013-10-01 2015-04-09 トヨタ自動車株式会社 空燃比センサの異常診断装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229742A (ja) * 1985-08-01 1987-02-07 Toyota Motor Corp 内燃機関の空燃比制御装置
JPH07259613A (ja) * 1994-03-25 1995-10-09 Mazda Motor Corp 空燃比センサの故障検出装置
JPH09166569A (ja) * 1995-12-15 1997-06-24 Denso Corp 空燃比センサ異常検出装置
JPH10169494A (ja) * 1996-12-11 1998-06-23 Unisia Jecs Corp 排気浄化触媒の診断装置及び酸素センサの異常診断装置
JP2003343339A (ja) * 2002-05-29 2003-12-03 Denso Corp 触媒下流酸素センサの異常検出装置
JP2004019542A (ja) 2002-06-17 2004-01-22 Toyota Motor Corp 酸素センサの異常検出装置
JP2004308574A (ja) 2003-04-08 2004-11-04 Toyota Motor Corp 排気ガスセンサの異常検出装置
JP2005337089A (ja) * 2004-05-26 2005-12-08 Hitachi Ltd エンジンの排気系診断装置及び排気系診断方法
JP2007032537A (ja) 2005-07-29 2007-02-08 Suzuki Motor Corp 下流側排気ガスセンサの故障診断装置
JP2009156227A (ja) * 2007-12-27 2009-07-16 Toyota Motor Corp 下流側酸素センサ故障診断装置
JP2010025090A (ja) 2008-07-24 2010-02-04 Toyota Motor Corp 空燃比センサの異常診断装置
JP2010196483A (ja) 2009-02-23 2010-09-09 Toyota Motor Corp 酸素センサの異常判定装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10316779B2 (en) 2013-10-01 2019-06-11 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis system of air-fuel ratio sensor
US10365183B2 (en) 2013-10-01 2019-07-30 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis system of air-fuel ratio sensor
US9903292B2 (en) 2014-10-23 2018-02-27 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis system of air-fuel ratio sensor
JP2016194289A (ja) * 2015-03-31 2016-11-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2016194268A (ja) * 2015-03-31 2016-11-17 トヨタ自動車株式会社 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
JP6020739B2 (ja) 2016-11-02
EP3054135A1 (en) 2016-08-10
AU2013402365A1 (en) 2016-03-24
BR112016007345A2 (pt) 2017-08-01
RU2643169C2 (ru) 2018-01-31
EP3054135B1 (en) 2019-03-06
RU2016111947A (ru) 2017-11-13
EP3054135A4 (en) 2016-10-19
CN105593501B (zh) 2020-07-31
AU2013402365B2 (en) 2016-09-22
JPWO2015049726A1 (ja) 2017-03-09
CN105593501A (zh) 2016-05-18
US20160245723A1 (en) 2016-08-25
US10365183B2 (en) 2019-07-30

Similar Documents

Publication Publication Date Title
JP6020739B2 (ja) 空燃比センサの異常診断装置
JP6237460B2 (ja) 内燃機関の異常診断装置
JP6179371B2 (ja) 空燃比センサの異常診断装置
JP5983879B2 (ja) 内燃機関の診断装置
CN107076045B (zh) 内燃发动机的控制装置和控制方法
JP6311578B2 (ja) 空燃比センサの異常診断装置
JP6350434B2 (ja) 下流側空燃比センサの異常診断装置
JP6090092B2 (ja) 空燃比センサの異常診断装置
JP5962856B2 (ja) 内燃機関の診断装置
JP6222037B2 (ja) 空燃比センサの異常診断装置
WO2014207843A1 (ja) 内燃機関の診断装置
JP6288011B2 (ja) 内燃機関
JP2016056731A (ja) 空燃比センサの異常診断装置
JP6110270B2 (ja) 内燃機関の異常診断装置
JP5858178B2 (ja) 内燃機関の制御装置
JP6268976B2 (ja) 内燃機関の制御装置
JP6217739B2 (ja) 内燃機関の排気浄化装置
JP2015075082A (ja) 空燃比センサの制御装置
JP6734019B2 (ja) 下流側空燃比センサの異常診断装置
JP2016196854A (ja) 空燃比センサの異常診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015540290

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013895060

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013895060

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013402365

Country of ref document: AU

Date of ref document: 20131001

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15026099

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016007345

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016111947

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016007345

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160401