WO2015045824A1 - リング状部材の熱処理方法およびリング状部材の熱処理設備 - Google Patents
リング状部材の熱処理方法およびリング状部材の熱処理設備 Download PDFInfo
- Publication number
- WO2015045824A1 WO2015045824A1 PCT/JP2014/073619 JP2014073619W WO2015045824A1 WO 2015045824 A1 WO2015045824 A1 WO 2015045824A1 JP 2014073619 W JP2014073619 W JP 2014073619W WO 2015045824 A1 WO2015045824 A1 WO 2015045824A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ring
- heating
- heating coil
- shaped member
- output
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
- C21D1/42—Induction heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
- C21D1/09—Surface hardening by direct application of electrical or wave energy; by particle radiation
- C21D1/10—Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/40—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/64—Special methods of manufacture
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/06—Control, e.g. of temperature, of power
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/101—Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
- H05B6/103—Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces multiple metal pieces successively being moved close to the inductor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/36—Coil arrangements
- H05B6/44—Coil arrangements having more than one coil or coil segment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2204/00—Metallic materials; Alloys
- F16C2204/60—Ferrous alloys, e.g. steel alloys
- F16C2204/62—Low carbon steel, i.e. carbon content below 0.4 wt%
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2204/00—Metallic materials; Alloys
- F16C2204/60—Ferrous alloys, e.g. steel alloys
- F16C2204/64—Medium carbon steel, i.e. carbon content from 0.4 to 0,8 wt%
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2223/00—Surface treatments; Hardening; Coating
- F16C2223/10—Hardening, e.g. carburizing, carbo-nitriding
- F16C2223/18—Hardening, e.g. carburizing, carbo-nitriding with induction hardening
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to a heat treatment method for a ring-shaped member and a heat treatment facility for the ring-shaped member.
- This quench hardening process includes a heating process for heating the ring-shaped member to a target temperature, a cooling process for cooling the ring-shaped member heated to the target temperature, and the like.
- a heating process can be implemented using atmosphere heating furnaces, such as a mesh belt type continuous furnace, for example.
- the atmosphere heating furnace has the advantage that a large number of workpieces can be heated simultaneously.
- the atmosphere heating furnace needs to heat not only the workpiece but also the atmosphere, there is a problem of low energy efficiency. Therefore, in the heating process, the workpiece may be heated to a target temperature by induction heating (high frequency induction heating) (see, for example, Patent Document 1). If induction heating is used, the work can be directly heated, so that high energy efficiency can be achieved.
- the workpiece to be heated is a ring-shaped member, as described in Patent Document 1, a plurality of coaxially held ring-shaped members are arranged in the opposing region (inner circumference) of the heating coil. In this state, a method of energizing the heating coil can be adopted. In this way, since a plurality of ring-shaped members can be induction-heated at the same time, the heat treatment efficiency can be increased.
- the continuous heating method of continuously heating each part in the longitudinal direction of the workpiece by moving the workpiece having a long axial dimension (for example, billet) in the axial direction relative to the energized heating coil is a long dimension.
- the so-called workpiece can be efficiently soaked and heated. Therefore, the inventors of the present application tried to induction-heat the ring-shaped member by the continuous heating method. Specifically, a plurality of ring-shaped members held coaxially and a heating coil energized so as to have a constant output are moved relative to each other in the axial direction, so that the plurality of ring-shaped members are sequentially guided to a target temperature. Attempted to heat.
- the output of the heating coil in the continuous heating method is usually aimed at all the ring-shaped members in a state where the ring-shaped member is present in the entire region opposite to the heating coil (the inner periphery of the heating coil is filled with the ring-shaped member). It is set to a constant value that can be heated to a temperature. For this reason, in the stage immediately after the start and immediately before the end of the heating process in which the ring-shaped member is present only in a part of the opposed region of the heating coil, the amount of induced current generated in each ring-shaped member is increased and overheated. .
- the present invention devised to achieve the above object is a method for heat treatment of a ring-shaped member including a heating step of induction heating a steel ring-shaped member to a target temperature, and is held coaxially in the heating step.
- the plurality of ring-shaped members are sequentially aimed at the plurality of ring-shaped members by sequentially passing through the opposed regions of the first heating coil with constant output and the second heating coil with variable output arranged coaxially on the outlet side thereof. It is characterized by induction heating to temperature.
- the plurality of ring-shaped members can be additionally induction-heated when passing the plurality of ring-shaped members held coaxially through the opposing region of the second heating coil whose output is variable.
- the function of the first heating coil can be covered by appropriately adjusting the output of the two heating coils. Accordingly, it is possible to effectively prevent the occurrence of an insufficiently heated product.
- the second heating coil whose output is variable is coaxially arranged on the outlet side of the first heating coil with constant output, compared to the conventional method in which the ring-shaped member is induction-heated to the target temperature with a single heating coil,
- the output of the first heating coil can be lowered. Therefore, it is possible to prevent, as much as possible, one or a plurality of ring-shaped members arranged on the start side and the end side of the heating process among the plurality of ring-shaped members arranged in the axial direction as much as possible. it can. Further, if the output of the first heating coil can be reduced, the deterioration rate of the first heating coil can be reduced, so that there is an advantage that the maintenance cost can be reduced.
- the heating step is carried out by a so-called continuous heating method in which a plurality of ring-shaped members held coaxially are moved relative to the heating section (first and second heating coils) in the axial direction. Therefore, it is possible to effectively enjoy the operational effects that can be enjoyed by adopting the continuous heating method, specifically, that each ring-shaped member can be soaked and heated efficiently. it can. Therefore, according to the present invention, the quench hardening treatment for the steel ring-shaped member can be performed efficiently and appropriately without generating defective products as much as possible.
- the heating step includes an output increasing step for increasing the output of the second heating coil in stages, and an output for decreasing the output of the second heating coil in stages. It is conceivable to provide a reduction step. In this case, it is preferable to make the output increasing mode of the second heating coil in the output increasing step different from the output decreasing mode of the second heating coil in the output decreasing step. This is because the electrical conductivity and magnetism of the work to be heated change as the temperature rises (the temperature rise mode of the work changes according to the progress of the heating process). “The output increasing mode of the second heating coil in the output increasing step and the output decreasing mode of the second heating coil in the output decreasing step” are different from each other in the output waveform of the second heating coil in both steps. This means that the two output waveforms do not match when one of them is inverted and superimposed on the other (see, for example, FIG. 3).
- a holding portion that holds a plurality of ring-shaped members coaxially is provided, and the output of the second heating coil can be set according to the axial relative position of the holding portion with respect to the first heating coil. If it does in this way, it will become easy to set the output of the 2nd heating coil appropriately according to the progress of a heating process.
- each heating unit can be easily set to an appropriate value, and versatility is enhanced.
- the heat treatment method according to the present invention may further include a cooling step for cooling the ring-shaped member induction-heated to a target temperature.
- a ring-shaped member can be hardened and hardened appropriately.
- the heat treatment method according to the present invention can be applied, for example, when heat-treating a ring-shaped member formed of a steel material having a carbon content of less than 0.8% by mass.
- the above object is a heat treatment facility for a ring-shaped member that includes a heating unit that induction-heats a steel ring-shaped member to a target temperature, and includes a holding unit that coaxially holds the ring-shaped member, and a holding unit
- Driving means for moving the shaft relative to the heating portion in the axial direction, the heating portion has a first heating coil having a constant output, and a second heating coil having a variable output arranged coaxially on the outlet side thereof,
- the driving means relatively moves the holding part and the heating part in the axial direction so that the plurality of ring-shaped members held coaxially by the holding part sequentially pass through the opposed regions of the first heating coil and the second heating coil.
- This can also be achieved by a heat treatment facility for the ring-shaped member, which is characterized by being moved.
- the quench hardening treatment for the steel ring-shaped member can be performed efficiently and appropriately without generating defective products as much as possible. Thereby, the manufacturing cost of steel ring-shaped members, such as a bearing ring of a rolling bearing, can be reduced.
- FIG. 1 It is a schematic diagram which shows the initial state of the heat processing equipment used when implementing the heat processing method which concerns on this invention. It is a flowchart of the process included in quench hardening processing. It is a figure for demonstrating the output setting of the 1st and 2nd heating coil used at a heating process. It is a schematic diagram which shows the state in use of the heat processing equipment shown in FIG. It is a figure which shows the comparison verification result of the conventional method and the method which concerns on this invention.
- FIG. 1 is a schematic diagram showing an initial state of heat treatment equipment used when carrying out the heat treatment method for a ring-shaped member according to the present invention.
- the heat treatment equipment 1 shown in the figure is a heat treatment equipment for quenching and hardening a steel ring-shaped member R (for example, an outer ring of a rolling bearing), and the heating step shown in FIG. S1, conveyance process S2, and cooling process S3 are sequentially performed.
- the heat treatment facility 1 includes a heating unit 2 and a holding unit 3 used in the heating step S1, a transport unit 5 used in the transport step S2, and a cooling unit 4 used in the cooling step S3. And the holding portion 3 are arranged coaxially.
- the holding portion 3 can hold a plurality of ring-shaped members R coaxially, and the holding portion 3 of the present embodiment stacks the plurality of ring-shaped members R in the vertical direction so that the respective central axes coincide with each other. Hold in state.
- the holding unit 3 and the plurality of ring-shaped members R held coaxially therewith are arranged vertically below the heating unit 2 by a predetermined dimension.
- the holding unit 3 can be moved relative to the heating unit 2 in the axial direction.
- the holding unit 3 is connected to driving means such as a hydraulic cylinder (not shown), and the holding unit 3 receives pitch output or continuous feed in response to the output of the driving means.
- the heating unit 2 includes a first heating coil 21 and a second heating coil 22 that are coaxially arranged side by side, and both the coils 21 and 22 surround the ring-shaped member R to be heated from the outside in the radial direction. It can be done.
- the first heating coil 21 is disposed on the relatively lower side, and the second heating coil 22 is disposed on the relatively upper side (the outlet side of the first heating coil 21).
- the first heating coil 21 is a coil having an axial dimension of L ⁇ n (where n ⁇ 2) where L is the axial dimension of the ring-shaped member R to be heated.
- a coil having an axial dimension of L ⁇ 5 is used.
- the second heating coil 22 a coil having an axial dimension substantially the same as the axial dimension L of the ring-shaped member R is used.
- Both coils 21 and 22 are electrically connected to high-frequency power sources 23 and 24, respectively.
- the outputs of both the coils 21 and 22 can be easily set arbitrarily, thereby improving versatility. .
- the output of the first heating coil 21 is kept constant.
- the predetermined temperature not lower than the a 1 transformation point ring-shaped member R is aimed temperature which is heated to a high temperature output of the first heating coil 21 is set to be.
- the ring-shaped member R heated to the highest temperature is normally the end (upper end) on the heating start side, the end (lower end) on the heating end side, and the ring-shaped member R disposed in the vicinity thereof. It is.
- an output of the second heating coil 22 is set to vary according to the relative axial position of the holding portion 3 to the heating section 2,
- a 3 transformation the ring member R here temperature range above the point (more specifically, a temperature not lower than a 3 transformation point, and with rough metal structure of the ring-shaped member R, the predetermined temperature can be avoided from being brittle) configured to allow heat to ⁇ Controlled.
- the heating step S ⁇ b> 1 includes an initial step S ⁇ b> 1 a that sets the output of the second heating coil 22 to 0, an output increase step S ⁇ b> 1 b that increases the output of the second heating coil 22 step by step, and the second heating coil 22.
- the initial step S1a generally includes a ring-shaped member Ra (first head) disposed at the end of the heating start side after the start of the heating step S1.
- the ring-shaped member Ra) is continued until the lower end of the second heating coil 22 is reached, and the output increasing step S1b is started when the leading ring-shaped member Ra starts entering the facing region of the second heating coil 22.
- the ring-shaped member Rc arranged at the substantially central portion in the axial direction is arranged until it is arranged at the central portion in the axial direction of the first heating coil 21.
- the output increasing mode of the second heating coil 22 in the output increasing step S1b and the output decreasing mode of the second heating coil 22 in the output decreasing step S1d are set to be different from each other. That is, as schematically shown in FIG. 3, when one of the output waveforms of the second heating coil 22 in both steps S1b and S1d is inverted and superimposed on the other, the output waveforms do not match.
- the output of the second heating coil 22 in the output increasing step S1b increases stepwise in the order of 35% ⁇ 70% ⁇ 85% when the output of the second heating coil 22 in the intermediate step S1c is 100%. Is set.
- the output of the second heating coil 22 in the output reduction step S1d is set so as to decrease stepwise in the order of 80% ⁇ 65% ⁇ 20%.
- the output change mode of the second heating coil 22 described above is merely an example, and can be changed as appropriate depending on the shape and size of the ring-shaped member to be heated.
- the aspect of the output change of the second heating coil 22 described above is, for example, that the first heating coil 21 is heated by a radiation thermometer installed near the outlet of the first heating coil 21 before mass production of the ring-shaped member R.
- the temperature of the ring-shaped member R thus obtained can be experimentally measured and determined based on the difference between the actually measured temperature and the target temperature.
- a mutual induction preventing means 25 is interposed in order to prevent mutual induction from occurring when both the coils 21 and 22 are energized.
- an air gap is employed as the mutual induction preventing means 25. That is, the first heating coil 21 and the second heating coil 22 are spaced apart from each other by a predetermined dimension so that mutual induction does not occur.
- a shield member may be employed as the mutual induction preventing means 25.
- the cooling unit 4 includes a cooling liquid tank 41 in which a cooling liquid (for example, quenching oil) 42 held at an appropriate temperature is stored.
- the heat treatment facility 1 further includes a transport unit 5 that transports the ring-shaped member R heated to the target temperature by the heating unit 2 to the cooling liquid tank 41.
- a ring-shaped member manufacturing step is performed, and the ring-shaped member R is prepared and manufactured.
- a steel material having a carbon content of less than 0.8% by mass for example, S45C and S53C classified as carbon steel for machine structure defined in JIS G4051
- plastic processing such as forging or turning is performed on this steel material.
- the ring-shaped member R having a predetermined shape is manufactured by performing the machining.
- the quench hardening process includes a heating step S1 in which the ring-shaped member R manufactured in the ring-shaped member manufacturing step is induction-heated to a target temperature, and the ring-shaped member R heated to the target temperature is cooled. It has conveyance process S2 conveyed to the part 4 (coolant liquid tank 41), and cooling process S3 which cools the ring-shaped member R and quenches and hardens it.
- (A) Heating step S1 In the heating step S1, a plurality of ring-shaped member R that is coaxially held by the holding unit 3 (here a temperature range exceeding the A 3 transformation point) sequentially mark temperatures heating to. Specifically, first, a plurality of ring-shaped members R are stacked on the holding unit 3 in the vertical direction so that the central axes thereof coincide with each other. The ring-shaped member R has a smaller axial dimension than the radial dimension. Therefore, when the ring-shaped member R is stacked in the vertical direction as in the present embodiment, there is an advantage that the posture of the ring-shaped member R during the heating step S1 is stabilized. Although detailed illustration is omitted, the operation of stacking the plurality of ring-shaped members R in the vertical direction can be performed automatically.
- a driving means (not shown) is activated and a vertical upward feed force is applied to the holding unit 3, the plurality of ring-shaped members R held coaxially by the holding unit 3 are opposed to the first heating coil 21. And sequentially enters the opposing region of the second heating coil 22.
- a high-frequency current flows through the first heating coil 21 by the power supplied from the high-frequency power source 23.
- the power supply from the high-frequency power source 23 to the main heating coil 21 is continued until all the ring-shaped members R pass through the opposing region of the first heating coil 21 and are discharged to the upper side of the first heating coil 21.
- the power supply from the high-frequency power source 23 to the first heating coil 21 is such that the leading ring-shaped member Ra of the plurality of ring-shaped members R held by the holding unit 3 enters the area facing the first heating coil 21. It may be started at the same time or just before entering. Further, power is supplied to the second heating coil 22 from the high frequency power supply 24 so that an output in the form shown in FIG. 3 is obtained. Each ring member R is heated to a predetermined temperature above the A 1 transformation point while passing through the region opposed to the first heating coil 21, then, while passing through the opposite region of the second heating coil 22 It is heated to a temperature above the a 3 transformation point.
- Cooling step S3 In the cooling step S3, a ring-shaped member R that has been transferred to the cooling liquid bath 41 by the conveying means 5, the temperature of more than A 3 transformation point by being immersed in the cooling liquid 42 pooled in the coolant bath 41 It is cooled from the zone to a temperature range below the Ms point and hardened by hardening.
- the quench hardening treatment of the ring-shaped member R using the heat treatment equipment 1 is completed.
- the ring-shaped member R that has been subjected to the quenching and hardening process is then subjected to predetermined processes such as a tempering process and various finishing processes, whereby a finished product is obtained.
- the plurality of ring-shaped members R held coaxially are connected to the first heating coil 21 having a constant output (the first heating that is energized to obtain a constant output).
- the plurality of ring-shaped members R are sequentially heated to a target temperature by passing the coil 21) and the opposing region of the variable output second heating coil 22 coaxially disposed on the outlet side thereof.
- the plurality of ring-shaped members R can be additionally induction-heated when passing through the opposing region of the second heating coil 22 whose output is variable. Therefore, it is possible to prevent as much as possible the occurrence of a ring-shaped member R that is insufficiently heated.
- the second heating coil 22 with variable output is coaxially arranged on the outlet side of the first heating coil 21 with a constant output, a method of induction heating the ring-shaped member from the normal temperature to the target temperature with a single heating coil.
- the output of the first heating coil 21 can be reduced, that is, the amount of induced current generated in the ring-shaped member R when the ring-shaped member R passes through the opposing region of the first heating coil 21 can be reduced. This prevents, as much as possible, one or more ring-shaped members R disposed on the heating start side and the end side among the plurality of ring-shaped members R held side by side in the axial direction from being overheated. be able to.
- the output of the 1st heating coil 21 can be reduced, since the deterioration rate of the 1st heating coil 21 can be reduced, there also exists an advantage that a maintenance cost can be reduced.
- the heating step S1 includes an output increasing step S1b for increasing the output of the second heating coil 22 stepwise, and thereafter an output decreasing step S1d for decreasing the output of the second heating coil 22 stepwise.
- an output increasing step S1b for increasing the output of the second heating coil 22 stepwise
- an output decreasing step S1d for decreasing the output of the second heating coil 22 stepwise.
- the reason why the output increasing mode and the output decreasing mode of the second heating coil 22 are different from each other is that the electrical conductivity and magnetism of the work to be induction-heated change as the temperature rises, that is, the temperature rising mode of the work. This is because it changes according to the progress of the heating process. In short, even if the number of the ring-shaped members R arranged in the opposed region of the first heating coil 21 is the same, the ring-shaped member R arranged at a position relatively close to the heating start side and the heating end side relatively. There is a difference in the temperature rise mode from the ring-shaped member R arranged at a close position.
- the heating step S1 is a so-called continuous heating in which a plurality of ring-shaped members R held coaxially are moved relative to the heating unit 2 (the first heating coil 21 and the second heating coil 22) in the axial direction.
- the effects that can be enjoyed by adopting the continuous heating method specifically, the effects such as that each ring-shaped member R can be soaked and heated, and the heating step S1 can be performed efficiently are effective.
- the heat treatment for the steel material having a carbon content of less than 0.8% by mass, such as S45C is usually performed by simply dissolving all the carbon in the iron structure. No control is required. This Therefore, heating the ring-shaped member R in the first heating coil 21 is heated to the A 1 transformation point or more temperature range, then the ring-shaped member R in the second heating coil 22 to the A 3 temperature range of not lower than the transformation point
- the heating method of the embodiment can be said to be suitable as a method for heating the ring-shaped member R made of a steel material having a carbon content of less than 0.8 mass% to a target temperature.
- the heat treatment method according to the present invention is, for example, a bearing steel defined in JIS G4805 represented by SUJ2 or SUJ3, or a tool steel defined in JIS G4404 represented by SKD11, SKD12, SKD3, and SKD31.
- the present invention can also be applied when a heat treatment is performed on a ring-shaped member R made of a steel material having a carbon content of 0.8% by mass or more.
- the ring-like member R in the first heating coil 21 is heated to a predetermined temperature not lower than the A 1 transformation point, then, given the ring-like member R in the above A 3 transformation point in the second heating coil 22 may be heated to a temperature, so that the ring-shaped member R in the second heating coil 22 is heated to a predetermined temperature not lower than the a 1 transformation point, the output of the first and second heating coils 21 and 22 You may make it control.
- the second heating coil 22 that is short in the axial direction is provided. If it is difficult to heat the under-heated ring-shaped member R to the target temperature with only one, it is possible to arrange two or more second heating coils 22 coaxially.
- the output of the second heating coil 22 is changed in a predetermined manner. For example, even when the ring-shaped member R is mass-produced, the outlet side of the first heating coil 21 is used. Further, a radiation thermometer may be disposed on the second heating coil 22 and the output of the second heating coil 22 may be appropriately changed based on the temperature of the ring-shaped member R measured near the outlet of the first heating coil 21. In this way, it is possible to more effectively prevent defective heating from occurring.
- the plurality of ring-shaped members R are sequentially induction-heated to the target temperature, and the ring-shaped members R induction-heated to the target temperature are sequentially transferred to the transporting step S2 and further to the cooling step S3.
- the feeding step S2 and the cooling step S3 may be performed collectively on the plurality of ring-shaped members R that are induction-heated to the target temperature.
- the relative movement direction of the heating unit 2 and the holding unit 3 (the plurality of ring-shaped members R held side by side in the axial direction by the holding unit 3) is the vertical direction. It can also be applied when the heating unit 2 and the holding unit 3 are relatively moved in the horizontal direction.
- the heat treatment method according to the present invention includes, for example, an inner ring of a rolling bearing, a sliding bearing, an outer joint member that constitutes a constant velocity universal joint, an inner joint member, a rolling bearing, and a constant velocity universal joint. It can be preferably applied when a heat treatment is performed on a steel ring-shaped member such as a cage incorporated in the steel.
- a plurality of ring-shaped members are induction-heated using the conventional method, and a plurality of ring-shaped members are induction-heated using the method according to the present invention. Whether or not a difference occurs in the heating mode of the ring-shaped member was compared and verified.
- the conventional method here refers to a plurality of ring-shaped members that are coaxially held relative to a single heating coil having a constant output in the axial direction, thereby sequentially guiding the plurality of ring-shaped members to a target temperature. It is a heating method, and the method according to the present invention is a method carried out using the heat treatment equipment 1 shown in FIG.
- a coil in the conventional method, a single heating coil is used to heat the outer ring of 15 SUJ2 rolling bearings held side by side in the axial direction to a temperature range of 850 to 900 ° C.
- the outputs of the first and second heating coils were appropriately set.
- the five outer ring temperatures arranged on the heating start side, the five outer ring temperatures arranged near the center, and the five outer ring temperatures arranged on the heating end side Were measured after completion of induction heating. The measurement results are shown in FIG.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electromagnetism (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Heat Treatment Of Articles (AREA)
- Rolling Contact Bearings (AREA)
- General Induction Heating (AREA)
Abstract
鋼製のリング状部材Rを狙い温度に誘導加熱する加熱工程S1において、保持部3により同軸的に保持された複数のリング状部材Rを、出力一定の第1加熱コイル21、およびその出口側に同軸配置された出力可変の第2加熱コイル22の対向領域を順次通過させることにより、複数のリング状部材Rを順次狙い温度に誘導加熱する。
Description
本発明は、リング状部材の熱処理方法およびリング状部材の熱処理設備に関する。
周知のように、転がり軸受の軌道輪、等速自在継手の外側継手部材や内側継手部材などといった鋼製のリング状部材の製造(量産)過程においては、リング状部材に必要とされる機械的強度等を付与するために熱処理(焼入硬化処理)が施される。この焼入硬化処理は、リング状部材を狙い温度に加熱する加熱工程や、狙い温度に加熱されたリング状部材を冷却する冷却工程などを含んでいる。加熱工程は、例えば、メッシュベルト型連続炉などの雰囲気加熱炉を用いて実施することができる。
雰囲気加熱炉は、多数のワークを同時に加熱することができるという利点がある。しかしながら、雰囲気加熱炉は、ワークだけでなく雰囲気をも加熱する必要があるため、エネルギー効率が低いという問題がある。そこで、加熱工程では、誘導加熱(高周波誘導加熱)によりワークを狙い温度に加熱する場合がある(例えば、特許文献1を参照)。誘導加熱であれば、ワークを直接加熱することができるため、高いエネルギー効率を達成することができる。また、加熱対象のワークがリング状部材である場合には、特許文献1に記載されているように、同軸的に保持した複数のリング状部材を加熱コイルの対向領域(内周)に配置し、その状態で加熱コイルに通電する方法を採ることができる。このようにすれば、複数のリング状部材を同時に誘導加熱することができるので、熱処理効率を高めることができる。
ところで、軸方向寸法が長寸のワーク(例えばビレット)を通電状態の加熱コイルに対して軸方向に相対移動させることにより、ワークの長手方向各部を連続的に加熱する連続加熱法は、長寸のワークを効率良く均熱加熱することができるという利点がある。そこで、本願発明者らは、リング状部材を上記の連続加熱法で誘導加熱することを試みた。具体的には、同軸的に保持した複数のリング状部材と、一定出力となるように通電された加熱コイルとを軸方向に相対移動させることにより、複数のリング状部材を順次狙い温度に誘導加熱することを試みた。
しかしながら、このようにすると、同軸的に保持した複数のリング状部材のうち、特に加熱開始側および加熱終了側の端部並びにそれらの近傍に配置された一又は複数のリング状部材が過加熱されてしまった。過加熱されたリング状部材は、所望の機械的強度等を確保することが難しくなるために廃棄処分せざるを得ず、従って、製品歩留の低下問題を招来する。なお、上述の過加熱の問題は、次のような理由に起因して生じるものと考えられる。連続加熱法における加熱コイルの出力は、通常、加熱コイルの対向領域全域にリング状部材が存在する状態(加熱コイルの内周がリング状部材で充足された状態)において全てのリング状部材を狙い温度に加熱できるような一定値に設定される。このため、加熱コイルの対向領域の一部にしかリング状部材が存在しない加熱工程の開始直後および終了直前の段階においては、個々のリング状部材に生じる誘導電流量が増加し、過加熱される。
上述の過加熱の問題は、加熱コイルの出力を下げることによって可及的に回避し得るが、軸方向に並べた複数のリング状部材の全てを狙い温度に誘導加熱することが難しくなる。
このような実情に鑑み、本発明は、鋼製のリング状部材に対する焼入硬化処理を効率的に、しかも不良品を極力発生させることなく適切に実施可能とすることを目的とする。
上記の目的を達成するために創案された本発明は、鋼製のリング状部材を狙い温度に誘導加熱する加熱工程を含むリング状部材の熱処理方法であって、加熱工程では、同軸的に保持した複数のリング状部材を、出力一定の第1加熱コイル、およびその出口側に同軸配置された出力可変の第2加熱コイルの対向領域を順次通過させることにより、複数のリング状部材を順次狙い温度に誘導加熱することを特徴とする。
このようにすれば、同軸的に保持した複数のリング状部材を出力可変の第2加熱コイルの対向領域を通過させる際に、上記複数のリング状部材を追加的に誘導加熱することができる。また、例えば、第1加熱コイルによるリング状部材の加熱状況を断続的あるいは連続的に測温することにより、リング状部材が想定していた温度にまで加熱されていないことが判明した場合、第2加熱コイルの出力を適宜調整することで第1加熱コイルの機能をカバーすることができる。従って、加熱不足品の発生を効果的に防止することができる。
また、出力一定の第1加熱コイルの出口側に出力可変の第2加熱コイルが同軸配置されていれば、単一の加熱コイルでリング状部材を狙い温度にまで誘導加熱する従来方法に比べ、第1加熱コイルの出力を下げることができる。そのため、軸方向に並べた複数のリング状部材のうち、特に加熱工程の開始側および終了側に配置された一又は複数のリング状部材が過加熱されるのを可及的に防止することができる。また、第1加熱コイルの出力を下げることができれば、第1加熱コイルの劣化速度を減じることができるので、メンテナンスコストを低減することができるという利点もある。
その一方、加熱工程は、同軸的に保持した複数のリング状部材を、加熱部(第1および第2加熱コイル)に対して軸方向に相対移動させる、いわゆる連続加熱法により実施される。そのため、連続加熱法を採用することによって享受し得る作用効果、具体的には、各リング状部材を均熱加熱することができる、加熱処理を効率良く行い得る、などといった作用効果を有効に享受できる。従って、本発明によれば、鋼製のリング状部材に対する焼入硬化処理を効率的に、しかも不良品を極力発生させることなく適切に実施することができる。
上記の作用効果を有効に享受するための具体的手段として、加熱工程に、第2加熱コイルの出力を段階的に増加させる出力増加ステップと、第2加熱コイルの出力を段階的に減少させる出力減少ステップと、を設けることが考えられる。この場合、出力増加ステップにおける第2加熱コイルの出力増加態様と、出力減少ステップにおける第2加熱コイルの出力減少態様とは互いに異ならせるのが好ましい。加熱すべきワークの電気伝導率や磁性は温度上昇に伴って変化する(ワークの温度上昇態様は加熱工程の進行度合いに応じて変化する)からである。なお、「出力増加ステップにおける第2加熱コイルの出力増加態様と、出力減少ステップにおける第2加熱コイルの出力減少態様とを互いに異ならせる」とは、両ステップにおける第2加熱コイルの出力波形の何れか一方を反転させて他方に重ね合わせたときに、2つの出力波形が一致しないことを意味する(例えば図3を参照)。
以上の構成において、複数のリング状部材を同軸的に保持する保持部を設け、第2加熱コイルの出力を、第1加熱コイルに対する保持部の軸方向相対位置に応じて設定することができる。このようにすれば、加熱工程の進行度合いに応じて、第2加熱コイルの出力を適切に設定し易くなる。
以上の構成において、第1加熱コイルと第2加熱コイルとを別個の高周波電源に接続しておけば、各加熱部の出力を適切な値に設定し易くなり、汎用性が高まる。
本発明に係る熱処理方法は、狙い温度に誘導加熱されたリング状部材を冷却する冷却工程をさらに有するものとすることができる。これにより、リング状部材を適切に焼入硬化させることができる。
本発明に係る熱処理方法は、例えば、炭素含有量0.8質量%未満の鋼材で形成されたリング状部材を熱処理する際に適用することができる。
また、上記の目的は、鋼製のリング状部材を狙い温度に誘導加熱する加熱部を備えたリング状部材の熱処理設備であって、リング状部材を同軸的に保持する保持部と、保持部を加熱部に対して軸方向に相対移動させる駆動手段とを備え、加熱部は、出力一定の第1加熱コイル、およびその出口側に同軸配置された出力可変の第2加熱コイルを有し、駆動手段は、保持部により同軸的に保持された複数のリング状部材を、第1加熱コイルおよび第2加熱コイルの対向領域を順次通過させるように、保持部と加熱部とを軸方向に相対移動させることを特徴とするリング状部材の熱処理設備、によっても達成できる。
以上から、本発明によれば、鋼製のリング状部材に対する焼入硬化処理を効率的に、しかも不良品を極力発生させることなく適切に実施することができる。これにより、転がり軸受の軌道輪などといった鋼製のリング状部材の製造コストを低減することができる。
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明に係るリング状部材の熱処理方法を実施する際に使用する熱処理設備の初期状態を示す概要図である。同図に示す熱処理設備1は、鋼製のリング状部材R(例えば、転がり軸受の外輪)を焼入硬化するための熱処理設備であって、リング状部材Rに対し、図2に示す加熱工程S1、搬送工程S2および冷却工程S3を順次施す。熱処理設備1は、加熱工程S1で使用される加熱部2および保持部3と、搬送工程S2で使用される搬送手段5と、冷却工程S3で使用される冷却部4とを備え、加熱部2と保持部3とは同軸配置されている。
保持部3は、複数のリング状部材Rを同軸的に保持可能であり、本実施形態の保持部3は、複数のリング状部材Rをそれぞれの中心軸が一致するように鉛直方向に積み重ねた状態で保持する。図1に示す熱処理設備1の初期状態において、保持部3およびこれに同軸的に保持された複数のリング状部材Rは、加熱部2よりも所定寸法だけ鉛直方向下方に配置されている。保持部3は加熱部2に対して軸方向に相対移動可能とされる。本実施形態では、保持部3が図示しない油圧シリンダ等の駆動手段に接続されており、保持部3は駆動手段の出力を受けてピッチ送りあるいは連続送りされる。
加熱部2は、上下に並べて同軸配置された第1加熱コイル21および第2加熱コイル22を有し、両コイル21,22は、加熱すべきリング状部材Rをその径方向外側から取り囲むことができるようになっている。第1加熱コイル21は相対的に下側に配置され、第2加熱コイル22は相対的に上側(第1加熱コイル21の出口側)に配置されている。第1加熱コイル21としては、加熱すべきリング状部材Rの軸方向寸法よりも長寸のコイルが使用される。具体的にいうと、第1加熱コイル21としては、加熱すべきリング状部材Rの軸方向寸法をLとしたとき、L×n(但し、n≧2)の軸方向寸法を有するコイルが使用され、本実施形態ではL×5の軸方向寸法を有するコイルが使用される。一方、第2加熱コイル22としては、リング状部材Rの軸方向寸法Lと略同寸の軸方向寸法を有するコイルが使用される。両コイル21,22は、それぞれ、高周波電源23,24に電気的に接続されている。このように、第1加熱コイル21および第2加熱コイル22を別個の高周波電源に電気的に接続しておけば、両コイル21,22の出力を任意に設定し易くなるので汎用性が向上する。
図3に示すように、加熱工程S1の実施中、第1加熱コイル21の出力は一定とされる。ここでは、同軸的に保持した複数のリング状部材Rと、通電状態の第1加熱コイル21とを(軸方向に)相対移動させることにより、複数のリング状部材Rを順次加熱したとき、最も高温に加熱されるリング状部材Rが狙い温度(ここでは、A1変態点以上の所定温度)となるように第1加熱コイル21の出力が設定される。なお、最も高温に加熱されるリング状部材Rは、通常は、加熱開始側の端部(上端部)および加熱終了側の端部(下端部)、並びにその近傍に配置されるリング状部材Rである。
一方、加熱工程S1の実施中、第2加熱コイル22の出力は、加熱部2に対する保持部3の軸方向相対位置に応じて変化するように設定され、ここではリング状部材RをA3変態点以上の温度域(より具体的には、A3変態点以上の温度であって、かつリング状部材Rの金属組織が荒れて、脆くなるのを回避できる所定温度)に加熱できるように設定・制御される。加熱工程S1は、図3に示すように、第2加熱コイル22の出力を0とする初期ステップS1a、第2加熱コイル22の出力を段階的に増加させる出力増加ステップS1b、第2加熱コイル22の出力を一定値に維持する中間ステップS1c、および第2加熱コイル22の出力が0になるまで第2加熱コイル22の出力を段階的に減少させる出力減少ステップS1dを有する。
本実施形態における上記各ステップS1a~S1dの実施時期について詳細に述べると、初期ステップS1aは、加熱工程S1の開始後、概ね、加熱開始側の端部に配置されたリング状部材Ra(先頭のリング状部材Ra)が第2加熱コイル22の下端部に到達するまでの間継続され、出力増加ステップS1bは、先頭のリング状部材Raが第2加熱コイル22の対向領域に進入を開始してから、複数のリング状部材Rのうち、軸方向略中央部に配置されたリング状部材Rcが第1加熱コイル21の軸方向中央部に配置されるに至るまでの間実施される。そして、中間ステップS1cは、加熱終了側の端部に配置されたリング状部材Rbが第1加熱コイル21の対向領域に進入するまでの間継続して実施され、その後、全てのリング状部材Rが第1加熱コイル21の対向領域を通過するまでの間(リング状部材Rbが第1加熱コイル21の上側に排出されるまでの間)、出力減少ステップS1dが実施される。
出力増加ステップS1bにおける第2加熱コイル22の出力増加態様と、出力減少ステップS1dにおける第2加熱コイル22の出力減少態様とは互いに異なるように設定されている。すなわち、図3に模式的に示すように、両ステップS1b,S1dにおける第2加熱コイル22の出力波形の何れか一方を反転させて他方に重ね合わせたとき、両出力波形は一致しない。出力増加ステップS1bにおける第2加熱コイル22の出力は、中間ステップS1cにおける第2加熱コイル22の出力を100%としたとき、35%→70%→85%の順で段階的に増加するように設定される。これに対し、出力減少ステップS1dにおける第2加熱コイル22の出力は、80%→65%→20%の順で段階的に減少するように設定される。なお、上述の第2加熱コイル22の出力変化態様はあくまでも例示であり、加熱すべきリング状部材の形状や大きさなどによって適宜変更可能である。
以上で述べた第2加熱コイル22の出力変化の態様は、例えば、リング状部材Rの量産前に、第1加熱コイル21の出口付近に設置した放射温度計により、第1加熱コイル21で加熱されたリング状部材Rの温度を試験的に測定し、この実測温度と狙い温度の差に基づいて決定することができる。
第1加熱コイル21と第2加熱コイル22の間には、両コイル21,22に通電したときに相互誘導が生じるのを防止するために、相互誘導防止手段25が介設されている。本実施形態では、相互誘導防止手段25としてエアギャップを採用している。すなわち、第1加熱コイル21と第2加熱コイル22とは、相互誘導が生じない程度に所定寸法離間して配置されている。なお、相互誘導防止手段25としては、シールド部材を採用しても良い。
冷却部4は、適温に保持された冷却液(例えば、焼入油)42が貯留された冷却液漕41で構成されている。熱処理設備1は、加熱部2により狙い温度に加熱されたリング状部材Rを冷却液漕41へと搬送する搬送手段5をさらに備える。
以下、以上で説明した熱処理設備1を用いて実施されるリング状部材Rの焼入硬化処理の手順について説明する。
焼入硬化処理の実施に先立って、リング状部材作製工程が実施され、リング状部材Rが準備・作製される。ここでは、炭素含有量0.8質量%未満の鋼材(例えば、JIS G4051に規定の機械構造用炭素鋼に分類されるS45CやS53C)を準備し、この鋼材に鍛造等の塑性加工や旋削等の機械加工を施すことにより、所定形状のリング状部材Rを作製する。
次に、上記の熱処理設備1を用いて焼入硬化処理が実施される。焼入硬化処理は、図2に示すように、リング状部材作製工程で作製されたリング状部材Rを狙い温度に誘導加熱する加熱工程S1と、狙い温度に加熱されたリング状部材Rを冷却部4(冷却液漕41)へと搬送する搬送工程S2と、リング状部材Rを冷却して焼入硬化させる冷却工程S3とを有する。
(A)加熱工程S1
この加熱工程S1では、保持部3により同軸的に保持された複数のリング状部材Rを、順次狙い温度(ここではA3変態点を超える温度域)に加熱する。具体的には、まず、保持部3上に、それぞれの中心軸を一致させるようにして複数のリング状部材Rを鉛直方向に積み重ねる。リング状部材Rは、径方向寸法に対して軸方向寸法が小さい。そのため、本実施形態のように、リング状部材Rを鉛直方向に積み重ねると、加熱工程S1の実施中におけるリング状部材Rの姿勢が安定するという利点がある。詳細な図示は省略するが、複数のリング状部材Rを鉛直方向に積み重ねる作業は、自動で実施することができる。
この加熱工程S1では、保持部3により同軸的に保持された複数のリング状部材Rを、順次狙い温度(ここではA3変態点を超える温度域)に加熱する。具体的には、まず、保持部3上に、それぞれの中心軸を一致させるようにして複数のリング状部材Rを鉛直方向に積み重ねる。リング状部材Rは、径方向寸法に対して軸方向寸法が小さい。そのため、本実施形態のように、リング状部材Rを鉛直方向に積み重ねると、加熱工程S1の実施中におけるリング状部材Rの姿勢が安定するという利点がある。詳細な図示は省略するが、複数のリング状部材Rを鉛直方向に積み重ねる作業は、自動で実施することができる。
図示しない駆動手段が作動し、保持部3に鉛直方向上向きの送り力が付与されると、保持部3により同軸的に保持された複数のリング状部材Rは、第1加熱コイル21の対向領域および第2加熱コイル22の対向領域に順次進入する。図3に示すように、加熱工程S1の開始後、第1加熱コイル21には、高周波電源23から供給された電力により高周波電流が流れる。高周波電源23から本加熱コイル21への電力供給は、全てのリング状部材Rが第1加熱コイル21の対向領域を通過して第1加熱コイル21の上側に排出されるまでの間、継続される。なお、高周波電源23から第1加熱コイル21への電力供給は、保持部3により保持された複数のリング状部材Rのうち、先頭のリング状部材Raが第1加熱コイル21の対向領域に進入するのと同時に、あるいは進入する直前に開始するようにしても構わない。また、第2加熱コイル22には、図3に示す態様での出力が得られるように、高周波電源24から電力が供給される。そして、各リング状部材Rは、第1加熱コイル21の対向領域を通過する間にA1変態点を超えた所定温度に加熱され、その後、第2加熱コイル22の対向領域を通過する間にA3変態点を超える温度に加熱される。
(B)搬送工程S2
この搬送工程S2では、図4に示すように、狙い温度に加熱されたリング状部材Rが、搬送手段5により冷却部4(冷却液漕41)へと順次搬送される。
この搬送工程S2では、図4に示すように、狙い温度に加熱されたリング状部材Rが、搬送手段5により冷却部4(冷却液漕41)へと順次搬送される。
(C)冷却工程S3
この冷却工程S3では、搬送手段5によって冷却液漕41へと搬送されたリング状部材Rが、冷却液漕41内に貯留された冷却液42に浸漬されることによってA3変態点以上の温度域からMs点以下の温度域にまで冷却され、焼入硬化される。
この冷却工程S3では、搬送手段5によって冷却液漕41へと搬送されたリング状部材Rが、冷却液漕41内に貯留された冷却液42に浸漬されることによってA3変態点以上の温度域からMs点以下の温度域にまで冷却され、焼入硬化される。
以上の手順により、熱処理設備1を用いたリング状部材Rの焼入硬化処理が完了する。焼入硬化処理が完了したリング状部材Rには、その後、焼き戻し処理や各種仕上げ処理などの所定の処理が実施されることにより、完成品となる。
以上で説明したように、本発明では、加熱工程S1において、同軸的に保持した複数のリング状部材Rを、出力一定の第1加熱コイル21(一定出力となるように通電された第1加熱コイル21)、およびその出口側に同軸配置された出力可変の第2加熱コイル22の対向領域を通過させることにより、複数のリング状部材Rを順次狙い温度に加熱するようにした。このようにすれば、複数のリング状部材Rを出力可変の第2加熱コイル22の対向領域を通過させる際に追加的に誘導加熱することができる。そのため、加熱不足のリング状部材Rが生じるのを可及的に防止することができる。また、出力一定の第1加熱コイル21の出口側に出力可変の第2加熱コイル22が同軸配置されていれば、単一の加熱コイルでリング状部材を常温から狙い温度に誘導加熱する方法に比べ、第1加熱コイル21の出力を下げることが、すなわち、第1加熱コイル21の対向領域をリング状部材Rが通過する際にリング状部材Rに生じる誘導電流量を減じることができる。これにより、軸方向に並べて保持した複数のリング状部材Rのうち、特に加熱開始側および終了側に配置された一又は複数のリング状部材Rが過加熱されるのを可及的に防止することができる。また、第1加熱コイル21の出力を下げることができれば、第1加熱コイル21の劣化速度を減じることができるので、メンテナンスコストを低減することができるという利点もある。
特に本実施形態では、加熱工程S1に、第2加熱コイル22の出力を段階的に増加させる出力増加ステップS1bと、その後、第2加熱コイル22の出力を段階的に減少させる出力減少ステップS1dを設けた。このようにすれば、同軸的に保持した複数のリング状部材Rのうち、特に、加熱開始側および加熱終了側に配置された一又は複数のリング状部材Rが過加熱されるのを効果的に防止することができる。さらに、出力増加ステップS1bにおける第2加熱コイル22の出力増加態様と、出力減少ステップS1dにおける第2加熱コイル22の出力減少態様とを互いに異ならせた。これにより同軸的に保持したリング状部材Rの全てを狙い温度に加熱することができる。なお、第2加熱コイル22の出力増加態様および出力減少態様を互いに異ならせたのは、誘導加熱すべきワークの電気伝導率や磁性は温度上昇に伴って変化する、すなわち、ワークの温度上昇態様は加熱工程の進行度合いに応じて変化するからである。要するに、第1加熱コイル21の対向領域に配置されたリング状部材Rの個数が同じでも、相対的に加熱開始側に近い位置に配置されたリング状部材Rと、相対的に加熱終了側に近い位置に配置されたリング状部材Rとでは温度上昇態様に違いがある。
その一方、加熱工程S1は、同軸的に保持した複数のリング状部材Rを、加熱部2(第1加熱コイル21および第2加熱コイル22)に対して軸方向に相対移動させる、いわゆる連続加熱法により実施される。そのため、連続加熱法を採用することによって享受し得る作用効果、具体的には、各リング状部材Rを均熱加熱することができる、加熱工程S1を効率良く行い得る、などといった作用効果を有効に享受できる。従って、本発明によれば、転がり軸受の外輪などといった鋼製のリング状部材Rに対する焼入硬化処理を効率的に、しかも不良品を極力発生させることなく適切に実施することができる。
ここで、S45Cなどのように、炭素含有量0.8質量%未満の鋼材に対する加熱処理は、通常、単純に炭素を全て鉄組織中に溶け込ませるようにして行われることから、炭素溶け込み量の制御が不要である。そのため、第1加熱コイル21でリング状部材RをA1変態点以上の温度域に加熱し、その後、第2加熱コイル22でリング状部材RをA3変態点以上の温度域に加熱する本実施形態の加熱方法は、炭素含有量0.8質量%未満の鋼材で作製されたリング状部材Rを狙い温度に加熱するための方法として好適であると言える。
但し、本発明に係る熱処理方法は、例えば、SUJ2やSUJ3に代表されるJIS G4805に規定の軸受鋼、あるいは、SKD11、SKD12、SKD3およびSKD31などに代表されるJIS G4404に規定の工具鋼などといった炭素含有量が0.8質量%以上の鋼材で作製されたリング状部材Rに熱処理を施す際にも適用することができる。この場合、上記同様に、第1加熱コイル21でリング状部材RをA1変態点以上の所定温度に加熱し、その後、第2加熱コイル22でリング状部材RをA3変態点以上の所定温度に加熱するようにしても良いし、第2加熱コイル22でリング状部材RがA1変態点以上の所定温度に加熱されるように、第1および第2加熱コイル21,22の出力を制御するようにしても構わない。
以上、本発明の実施の形態の一例について具体的に説明を行ったが、本発明の実施の形態はこれに限定されるものではない。
例えば、加熱すべきリング状部材Rが大型(厚肉)な場合や、加熱部2に対する保持部3の相対移動速度が速い場合などのように、軸方向に短寸の第2加熱コイル22を1個用いただけでは加熱不足のリング状部材Rを狙い温度にまで加熱するのが難しい場合には、2以上の第2加熱コイル22を同軸配置することも可能である。
また、以上で説明した実施の形態は、第2加熱コイル22の出力を予め定めた態様で変化させるものであるが、例えば、リング状部材Rの量産時においても第1加熱コイル21の出口側に放射温度計を配置しておき、第1加熱コイル21の出口付近で測定したリング状部材Rの温度に基づいて、第2加熱コイル22の出力を適宜変化させるようにしても良い。このようにすれば、加熱不良品の発生を一層効果的に防止することができる。
また、以上で説明した実施形態では、複数のリング状部材Rを順次狙い温度に誘導加熱すると共に、狙い温度に誘導加熱されたリング状部材Rを、順次搬送工程S2、さらには冷却工程S3に送り込むようにしたが、搬送工程S2および冷却工程S3は、狙い温度に誘導加熱された複数のリング状部材Rに対してまとめて実施するようにしても良い。
また、以上で説明した実施形態では、加熱部2と保持部3(保持部3により軸方向に並べて保持された複数のリング状部材R)の相対移動方向を鉛直方向としたが、本発明は、加熱部2と保持部3とを水平方向に相対移動させる際にも適用することができる。
また、本発明に係る熱処理方法は、転がり軸受の外輪以外にも、例えば、転がり軸受の内輪、すべり軸受、等速自在継手を構成する外側継手部材や内側継手部材、転がり軸受や等速自在継手に組み込まれる保持器などといった鋼製のリング状部材に熱処理を施す際に好ましく適用することができる。
本発明の有用性を実証するため、従来方法を用いて複数のリング状部材を誘導加熱した場合と、本発明に係る方法を用いて複数のリング状部材を誘導加熱した場合とで、複数のリング状部材の加熱態様に差異が生じるか否かを比較検証した。ここでいう従来方法とは、同軸的に保持した複数のリング状部材を、一定出力の単一の加熱コイルに対して軸方向に相対移動させることにより複数のリング状部材を順次狙い温度に誘導加熱する方法であり、本発明に係る方法とは、図1等に示す熱処理設備1を用いて実施した方法である。なお、この比較試験では、軸方向に15個並べて保持したSUJ2製の転がり軸受の外輪を850~900℃の温度範囲に加熱すべく、コイル(従来方法では単一の加熱コイルであり、本発明に係る方法では第1および第2加熱コイルである)の出力を適宜設定した。そして、軸方向に並べて保持した複数の外輪のうち、加熱開始側に配置した5個の外輪温度、中央部付近に配置した5個の外輪温度、および加熱終了側に配置した5個の外輪温度を、誘導加熱完了後にそれぞれ測定した。測定結果を図5に示す。
図5から明らかなように、従来方法(比較例)では、中央部付近に配置した外輪のみしか狙い温度に加熱されず、加熱開始側に配置した外輪および加熱終了側に配置した外輪については、全てが狙い温度を超えて加熱された。これに対し、本発明に係る方法(実施例)では、加熱開始側、中央部付近および加熱終了側に配置した外輪が、何れも、狙い温度の範囲内に加熱された。従って、本発明の有用性が実証される。
1 熱処理設備
2 加熱部
3 保持部
4 冷却部
21 第1加熱コイル
22 第2加熱コイル
23 高周波電源
24 高周波電源
R 鋼製のリング状部材
Ra 加熱開始側の端部に配置されたリング状部材
Rb 加熱終了側の端部に配置されたリング状部材
S1 加熱工程
S1a 初期ステップ
S1b 出力増加ステップ
S1c 中間ステップ
S1d 出力減少ステップ
S3 冷却工程
2 加熱部
3 保持部
4 冷却部
21 第1加熱コイル
22 第2加熱コイル
23 高周波電源
24 高周波電源
R 鋼製のリング状部材
Ra 加熱開始側の端部に配置されたリング状部材
Rb 加熱終了側の端部に配置されたリング状部材
S1 加熱工程
S1a 初期ステップ
S1b 出力増加ステップ
S1c 中間ステップ
S1d 出力減少ステップ
S3 冷却工程
Claims (8)
- 鋼製のリング状部材を狙い温度に誘導加熱する加熱工程を含むリング状部材の熱処理方法であって、
加熱工程では、同軸的に保持した複数のリング状部材を、出力一定の第1加熱コイル、およびその出口側に同軸配置された出力可変の第2加熱コイルの対向領域を順次通過させることにより、前記複数のリング状部材を順次狙い温度に誘導加熱することを特徴とするリング状部材の熱処理方法。 - 加熱工程は、第2加熱コイルの出力を段階的に増加させる出力増加ステップと、第2加熱コイルの出力を段階的に減少させる出力減少ステップとを有する請求項1に記載のリング状部材の熱処理方法。
- 出力増加ステップにおける第2加熱コイルの出力増加態様と、出力減少ステップにおける第2加熱コイルの出力減少態様とを互いに異ならせる請求項2に記載のリング状部材の熱処理方法。
- 複数のリング状部材を同軸的に保持する保持部を有し、第1加熱コイルに対する保持部の軸方向相対位置に応じて第2加熱コイルの出力を変化させる請求項1~3の何れか一項に記載のリング状部材の熱処理方法。
- 第1加熱コイルと第2加熱コイルとを別個の高周波電源に電気的に接続した請求項1~4の何れか一項に記載のリング状部材の熱処理方法。
- 狙い温度に誘導加熱されたリング状部材を冷却する冷却工程をさらに有する請求項1~5の何れか一項に記載のリング状部材の熱処理方法。
- リング状部材が、炭素含有量0.8質量%未満の鋼材で形成されている請求項1~6の何れか一項に記載のリング状部材の熱処理方法。
- 鋼製のリング状部材を狙い温度に誘導加熱する加熱部を備えたリング状部材の熱処理設備であって、
リング状部材を同軸的に保持する保持部と、保持部を加熱部に対して軸方向に相対移動させる駆動手段とを備え、
加熱部は、出力一定の第1加熱コイル、およびその出口側に同軸配置された出力可変の第2加熱コイルを有し、
駆動手段は、保持部により同軸的に保持された複数のリング状部材を、第1加熱コイルおよび第2加熱コイルの対向領域を順次通過させるように、保持部と加熱部とを軸方向に相対移動させることを特徴とするリング状部材の熱処理設備。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/023,540 US20160208353A1 (en) | 2013-09-30 | 2014-09-08 | Heat treatment method for ring-shaped member and heat treatment equipment for ring-shaped member |
CN201480053748.6A CN105593383A (zh) | 2013-09-30 | 2014-09-08 | 环状构件的热处理方法以及环状构件的热处理设备 |
EP14848098.1A EP3054020A4 (en) | 2013-09-30 | 2014-09-08 | Heat treatment method for ring-shaped member and heat treatment equipment for ring-shaped member |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-204328 | 2013-09-30 | ||
JP2013204328A JP6211366B2 (ja) | 2013-09-30 | 2013-09-30 | リング状部材の熱処理方法およびリング状部材の熱処理設備 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015045824A1 true WO2015045824A1 (ja) | 2015-04-02 |
Family
ID=52742971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/073619 WO2015045824A1 (ja) | 2013-09-30 | 2014-09-08 | リング状部材の熱処理方法およびリング状部材の熱処理設備 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160208353A1 (ja) |
EP (1) | EP3054020A4 (ja) |
JP (1) | JP6211366B2 (ja) |
CN (1) | CN105593383A (ja) |
WO (1) | WO2015045824A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017203915A1 (ja) * | 2016-05-23 | 2017-11-30 | Ntn株式会社 | リング状部材の熱処理方法、リング状部材の製造方法、転がり軸受の軌道輪および転がり軸受 |
CN108605388A (zh) * | 2016-03-02 | 2018-09-28 | Ntn株式会社 | 热处理装置以及热处理方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6211364B2 (ja) * | 2013-09-30 | 2017-10-11 | Ntn株式会社 | リング状部材の熱処理方法およびリング状部材の熱処理設備 |
JP6211365B2 (ja) * | 2013-09-30 | 2017-10-11 | Ntn株式会社 | リング状部材の熱処理方法 |
JP2017226873A (ja) * | 2016-06-22 | 2017-12-28 | Ntn株式会社 | 軸受部品の製造方法 |
CN109396807A (zh) * | 2018-12-14 | 2019-03-01 | 山西天海泵业有限公司 | 一种电机平衡环高效热装装置及热装方法 |
JP7375300B2 (ja) * | 2018-12-25 | 2023-11-08 | 株式会社ジェイテクト | 等速ジョイントの構成部材の製造方法 |
DE102020213411A1 (de) | 2020-10-23 | 2022-04-28 | Thyssenkrupp Ag | Verfahren zur Herstellung eines Lagerrings für ein Wälzlager und Lagerring |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53123320A (en) * | 1977-04-02 | 1978-10-27 | Aeg Elotherm Gmbh | Continuous heating process for long and narrow metal products |
JPS549034A (en) * | 1977-06-22 | 1979-01-23 | Nippon Kokan Kk <Nkk> | Induction heater |
JP2006200019A (ja) | 2005-01-21 | 2006-08-03 | Ntn Corp | スラスト軸受の軌道盤の製造方法およびスラスト軸受の製造方法 |
JP2013216959A (ja) * | 2012-04-11 | 2013-10-24 | Ntn Corp | リング状部材の熱処理設備 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3057985A (en) * | 1959-01-20 | 1962-10-09 | Paul P Biringer | Method and system for dual frequency heating having a single frequency power source |
JPS5316939A (en) * | 1976-07-30 | 1978-02-16 | Nippon Steel Corp | Inducton heating method |
US4093839A (en) * | 1976-04-02 | 1978-06-06 | Ajax Magnethermic Corporation | Apparatus and method for inductively heating metallic tubing having an upset portion |
US5245148A (en) * | 1990-12-06 | 1993-09-14 | Mohr Glenn R | Apparatus for and method of heating thick metal slabs |
CN201089778Y (zh) * | 2007-09-19 | 2008-07-23 | 南平华闽汽车配件工业有限公司 | 衬环高频处理装置 |
CN202009508U (zh) * | 2011-03-01 | 2011-10-12 | 宝山钢铁股份有限公司 | 圆棒坯料感应加热复合线圈 |
JP6211364B2 (ja) * | 2013-09-30 | 2017-10-11 | Ntn株式会社 | リング状部材の熱処理方法およびリング状部材の熱処理設備 |
-
2013
- 2013-09-30 JP JP2013204328A patent/JP6211366B2/ja not_active Expired - Fee Related
-
2014
- 2014-09-08 EP EP14848098.1A patent/EP3054020A4/en not_active Withdrawn
- 2014-09-08 CN CN201480053748.6A patent/CN105593383A/zh active Pending
- 2014-09-08 WO PCT/JP2014/073619 patent/WO2015045824A1/ja active Application Filing
- 2014-09-08 US US15/023,540 patent/US20160208353A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53123320A (en) * | 1977-04-02 | 1978-10-27 | Aeg Elotherm Gmbh | Continuous heating process for long and narrow metal products |
JPS549034A (en) * | 1977-06-22 | 1979-01-23 | Nippon Kokan Kk <Nkk> | Induction heater |
JP2006200019A (ja) | 2005-01-21 | 2006-08-03 | Ntn Corp | スラスト軸受の軌道盤の製造方法およびスラスト軸受の製造方法 |
JP2013216959A (ja) * | 2012-04-11 | 2013-10-24 | Ntn Corp | リング状部材の熱処理設備 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3054020A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108605388A (zh) * | 2016-03-02 | 2018-09-28 | Ntn株式会社 | 热处理装置以及热处理方法 |
CN108605388B (zh) * | 2016-03-02 | 2021-08-31 | Ntn株式会社 | 热处理装置以及热处理方法 |
WO2017203915A1 (ja) * | 2016-05-23 | 2017-11-30 | Ntn株式会社 | リング状部材の熱処理方法、リング状部材の製造方法、転がり軸受の軌道輪および転がり軸受 |
Also Published As
Publication number | Publication date |
---|---|
EP3054020A4 (en) | 2017-06-07 |
JP2015067882A (ja) | 2015-04-13 |
US20160208353A1 (en) | 2016-07-21 |
CN105593383A (zh) | 2016-05-18 |
JP6211366B2 (ja) | 2017-10-11 |
EP3054020A1 (en) | 2016-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6211366B2 (ja) | リング状部材の熱処理方法およびリング状部材の熱処理設備 | |
JP6211364B2 (ja) | リング状部材の熱処理方法およびリング状部材の熱処理設備 | |
JP6211365B2 (ja) | リング状部材の熱処理方法 | |
JP2009203498A (ja) | 高周波誘導加熱方法、加熱装置、及び軸受 | |
JP2009197312A (ja) | 環状部材の変形矯正方法 | |
WO2017221963A1 (ja) | 軸受部品の製造方法 | |
JP5026175B2 (ja) | ワークの製造方法 | |
CN106002096B (zh) | 一种m50钢制轴承套圈锻件单次火锻造方法 | |
EP2695954B1 (en) | Annular workpiece quenching method and quenching apparatus used in the method | |
JP6767144B2 (ja) | 熱処理装置および熱処理方法 | |
JP2004043909A (ja) | 被加熱物の加熱方法および加熱設備 | |
JP2013216959A (ja) | リング状部材の熱処理設備 | |
JP2009203525A (ja) | 転がり軸受の製造ライン | |
TWI648122B (zh) | 導引軌之接近終輪廓的熱滾壓方法 | |
JP2019157166A (ja) | ワークの焼き戻し方法、及びこの方法で得られた機械部品 | |
JP2019185882A (ja) | 誘導加熱装置および誘導加熱方法 | |
JP7563650B2 (ja) | リング状部材の誘導加熱方法および製造方法、リング状部材、軸受、誘導加熱装置、軸受の製造方法、車両の製造方法、並びに、機械装置の製造方法 | |
US9133530B2 (en) | High magnetic hardening assembly and method | |
JP2005133215A (ja) | 熱処理システム | |
JP2017006945A (ja) | 熱間鍛造方法および熱間鍛造装置 | |
JP2016089182A (ja) | ワークの加熱方法及び焼入方法 | |
JP2004277863A (ja) | 高周波熱処理装置 | |
JP2017157435A (ja) | 熱処理装置および熱処理方法 | |
JP2016147286A (ja) | ビレットヒータおよびビレットの加熱方法 | |
JP2006124791A (ja) | 高周波熱処理方法、高周波熱処理装置および高周波熱処理品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14848098 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15023540 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014848098 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014848098 Country of ref document: EP |