Nothing Special   »   [go: up one dir, main page]

WO2014203319A1 - 二酸化塩素ガス処理構造、二酸化塩素ガス処理装置、滅菌装置および環境浄化装置 - Google Patents

二酸化塩素ガス処理構造、二酸化塩素ガス処理装置、滅菌装置および環境浄化装置 Download PDF

Info

Publication number
WO2014203319A1
WO2014203319A1 PCT/JP2013/066639 JP2013066639W WO2014203319A1 WO 2014203319 A1 WO2014203319 A1 WO 2014203319A1 JP 2013066639 W JP2013066639 W JP 2013066639W WO 2014203319 A1 WO2014203319 A1 WO 2014203319A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorine dioxide
dioxide gas
air
concentration
treated
Prior art date
Application number
PCT/JP2013/066639
Other languages
English (en)
French (fr)
Inventor
敏宏 松永
山本 秀樹
健三 石井
Original Assignee
株式会社Fmi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fmi filed Critical 株式会社Fmi
Priority to KR1020147025816A priority Critical patent/KR101537029B1/ko
Priority to JP2013543066A priority patent/JP5409978B1/ja
Priority to PCT/JP2013/066639 priority patent/WO2014203319A1/ja
Priority to TW103107695A priority patent/TWI603775B/zh
Publication of WO2014203319A1 publication Critical patent/WO2014203319A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine
    • C01B11/022Chlorine dioxide (ClO2)
    • C01B11/028Separation; Purification
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/24Medical instruments, e.g. endoscopes, catheters, sharps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1122Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/804UV light

Definitions

  • the present invention relates to a chlorine dioxide gas treatment structure, a chlorine dioxide gas treatment device, a sterilization device, and an environment purification device that reduce chlorine dioxide gas that has acted to purify the surrounding environment to a safe concentration for the human body in a short time.
  • the space in which people live includes, for example, ultrafine particles such as dust and cigarette smoke, various air pollutants, airborne fungi, organic volatile gases from chemical substances such as paint, odors from the human body and various products, etc. Contains various fine particles, gas, sputum, harmful bacteria, etc.
  • chlorine dioxide gas is extremely excellent in purification effects such as sterilization and deodorization.
  • chlorine dioxide gas has an irritating odor like chlorine and ozone at normal temperature and normal pressure, and is unstable to light and heat. Therefore, stabilized chlorine dioxide was developed by stabilizing chlorine dioxide gas in pure water with alkali so that chlorine dioxide gas can be used in a stable state without danger. Then, a technology has been proposed in which the stabilized chlorine dioxide in the gel state, liquid state or solid state is activated to take out chlorine dioxide gas and contact the object to be purified in the space to purify the interior of the space widely. ing.
  • the air conditioner is equipped with an exhaust duct so that chlorine dioxide gas can be discharged directly to the outdoors, dilute the chlorine dioxide gas discharged from the exhaust duct into a large amount of air outdoors. be able to.
  • the sterilized chlorine dioxide gas is diffused around the device at a concentration lower than a predetermined level safe for the human body.
  • the concentration safe for the human body means that the concentration of chlorine dioxide gas according to the standard of the US Occupational Safety and Health Administration (OSHA) is the time load average value (TWA) within a period of 8 hours per day or 40 hours per week. And 0.1 ppm or less.
  • the short-term exposure limit value (STEL) for 15 minutes is always set to 0.3 ppm, and chlorine dioxide gas is within this low concentration range. It is said that it is necessary to maintain it continuously.
  • the adsorption action becomes slow after the concentration becomes lower than a predetermined concentration, so that the chlorine dioxide gas can be released at a low concentration. It took a long time before.
  • Patent Document 2 dissolved chlorine dioxide can be included at a high concentration by a pure chlorine dioxide gas solution, and the concentration can be adjusted from a high concentration to a low concentration
  • Patent Document 3 discloses a technique for fumigating contaminated spaces and objects using chlorine dioxide at a higher concentration than before. According to Patent Document 3, it is also disclosed that at least chlorine dioxide is removed over 5 to 6 hours (Patent Document; Paragraph 0024).
  • the present inventors have conducted various experiments while irradiating chlorine dioxide gas with ultraviolet rays, and in order to reduce chlorine dioxide gas in a short time, chlorine dioxide gas having a desired low concentration by an activated carbon filter or the like is added to water. It was found that chlorine dioxide gas can be reduced or eliminated to a low concentration that is safe for the human body in a short time by repeatedly contacting the steel wool wetted with UV light repeatedly with ultraviolet light, and the present invention has been achieved.
  • a chlorine dioxide gas treatment structure for reducing chlorine dioxide gas in the air to be treated containing chlorine dioxide gas, a space in which the air to be treated is circulated, an air flow generating means, and a contact
  • the contact layer is a contact layer in which water is moistened with steel wool obtained by solidifying an iron fine wire in a cotton shape, and the air flow generating means
  • the treatment air is repeatedly contacted with the contact layer in a state in which the contact layer is irradiated with ultraviolet rays in the circulation path of the treatment air.
  • air to be treated refers to air containing chlorine dioxide gas that has acted by sterilization, deodorization, deodorization, etc. in a space where various fine particles, gas, soot and harmful bacteria exist.
  • the space to be circulated may be a space in which the air to be treated is circulated and repeatedly contacted with the contact layer.
  • the concentration of chlorine dioxide gas is not limited.
  • the wavelength of ultraviolet light is preferably ultraviolet light having a wavelength of 254 nm to 270 nm, which is considered to have high absorbance to chlorine dioxide gas by ultraviolet visible absorption spectrum analysis, but is not limited thereto (see FIG. 8).
  • the graph of FIG. 8 is a graph of measurement results obtained by diluting 500 ppm of stabilized chlorine dioxide 100 times with pure water as a diluted solution, and conducting an ultraviolet-visible absorption spectrum analysis experiment.
  • the abscissa indicates the absorbance, and the abscissa indicates the ultraviolet wavelength.
  • the chlorine dioxide gas When the chlorine dioxide gas is irradiated with ultraviolet rays, the chlorine dioxide gas is likely to react. As a result, chlorine dioxide gas, which has become easy to react, is circulated and contacted by the air flow generating means to the contact layer in which water is moistened with steel wool in which iron fine wires are hardened in a cotton form, and iron is oxidized. Even in a low concentration where the reduction is slow in this treatment method, there is an advantageous effect that chlorine dioxide gas in the air to be treated is reduced in a short time.
  • the intensity of ultraviolet rays is not limited, and an effect of reducing chlorine dioxide gas according to the intensity of ultraviolet rays is recognized (see FIG. 9). The graph in FIG.
  • the air flow generation means may be a known fan that generates an air flow.
  • a fan having an appropriate blowing capacity can be selected according to the amount of air to be treated and the number of times the air to be treated contacts the contact layer.
  • the steel wool is stored in a bag that allows air to be treated to pass through and can be replaced. .
  • a second invention of the present invention is characterized in that, in the chlorine dioxide gas treatment structure of the first invention, the diameter of the fine wire is 0.02 mm to 0.04 mm. Even if the weight of steel wool is the same, the smaller the diameter of the fine wire, the larger the surface area and the larger the contact area of chlorine dioxide gas. On the other hand, if the diameter of the fine line becomes too small, the fine line is broken and easily scattered. Steel wool having a fine wire diameter of 0.02 mm to 0.04 mm is suitable as a thickness that increases the surface area and prevents the fine wire from breaking and scattering even when the same steel wool is used.
  • an ultraviolet reflecting surface is provided on an inner surface of the space irradiated with ultraviolet rays from the ultraviolet irradiation means. It is said. It is preferable that an aluminum thin film or plate having a high ultraviolet reflectance is attached to the inner surface of the space. According to the third invention, it is possible to irradiate strong ultraviolet rays even if the same ultraviolet lamp is used.
  • the steel wool is provided with a wetting means for wetting the water.
  • the wetting means may cause the steel wool to appear in a water tank in which water is stored and make the steel wool wet, or spray the water with a sprayer to make the steel wool wet.
  • the chlorine dioxide gas treatment apparatus for reducing the chlorine dioxide gas contained in the air to be treated after the air purification with the chlorine dioxide gas, the chlorine dioxide gas is lowered to a desired concentration.
  • the first treatment means comprises a first air flow generation means and an activated carbon filter
  • the conventional activated carbon filter adsorption treatment technique is set to a desired concentration, for example, a concentration in the range of 2.5 ppm to 5.0 ppm by the first treatment means, and then the first to fourth aspects of the invention.
  • the chlorine dioxide gas treatment structure reduces the concentration of chlorine dioxide gas to a level safe for the human body.
  • the adsorption treatment by the activated carbon filter of the prior art after the chlorine dioxide gas reaches a predetermined concentration, the adsorption action becomes slow. For this reason, it took a long time to make chlorine dioxide gas less than a desired concentration, for example, 0.1 ppm.
  • the chlorine dioxide gas is reduced by the activated carbon filter to a concentration that maintains the high reduction efficiency of the conventional activated carbon filter, and then the chlorine dioxide gas is treated by the chlorine dioxide gas treatment structure of the first to fourth inventions.
  • the chlorine dioxide gas treatment structure of the first to fourth inventions By reducing the gas concentration, the time until the desired low concentration safe for the human body is shortened.
  • the chlorine dioxide gas treatment apparatus for reducing the chlorine dioxide gas contained in the air to be treated after air purification with chlorine dioxide gas
  • the chlorine dioxide gas is lowered to a desired concentration.
  • the primary treatment means comprises a first air flow generation means, an ultraviolet irradiation means, and an iron Steel wool with fine wires hardened as cotton is used as a contact layer
  • chlorine dioxide gas in the air to be treated is applied by the first airflow generation means in a state where the contact layer is irradiated with ultraviolet rays by the ultraviolet irradiation means.
  • the chlorine dioxide gas contained in the air to be treated after the first treatment is reduced by the chlorine dioxide gas treatment structure. It is characterized.
  • the steel wool layer is used as a contact layer and the treatment air is circulated and contacted while irradiating ultraviolet rays.
  • the means for contacting the layer is the primary treatment means for chlorine dioxide gas. Even if steel wool is irradiated with ultraviolet rays while being exposed to air, it will exhibit substantially the same effect as an activated carbon filter, as will be described later (Evaluation Result 2-1) and (Evaluation Result 2-2). Was confirmed.
  • the diameter of the fine wire of the steel wool steel wire is preferably 0.02 mm to 0.04 mm.
  • the chlorine dioxide gas treatment structure according to any one of the first to fourth aspects is provided. It is a feature.
  • the time until the high-concentration chlorine dioxide gas that has acted on sterilization is smaller than a desired concentration, for example, 0.1 ppm, is short. Therefore, the medical device can be sterilized in a short cycle by the sterilization device, and the sterilization device can be effectively used.
  • an environmental purification device for introducing chlorine dioxide gas into a closed environment where an air purification device is installed, and bringing the chlorine dioxide gas into contact with an object in the environment for purification treatment.
  • the chlorine dioxide gas processing structure according to any one of the first to fourth inventions is provided.
  • a large amount and a high concentration of chlorine dioxide gas that has acted on environmental purification such as removal can be obtained at a desired concentration, for example, The time until the concentration becomes 0.1 ppm is shortened, and the object to be purified by chlorine dioxide gas is expanded. For example, even in an area where there are many residential buildings, cover the entire residential building with a sheet, and remove and disinfect all the items provided in the house with chlorine dioxide gas, reducing the chlorine dioxide gas in a short time. It becomes possible to take allergy measures for residents.
  • chlorine dioxide gas which has been easily reacted, is circulated and contacted by the air flow generating means in the contact layer in which water is moistened with steel wool obtained by solidifying fine iron wires in a cotton shape.
  • the air flow generating means in which water is moistened with steel wool obtained by solidifying fine iron wires in a cotton shape.
  • chlorine dioxide gas in the air to be treated is reduced in a short time.
  • the surface area of iron reacting with chlorine dioxide gas with the same weight is increased and the fine line is not broken and scattered.
  • strong ultraviolet light can be irradiated even when the same ultraviolet lamp is used.
  • the fourth aspect of the present invention by providing the wetting means, the steel wool that is first moistened and disposed in the space does not dry, and the effect of the contact layer is continued.
  • the concentration of chlorine dioxide gas is reduced by the activated carbon filter at a concentration at which the reduction efficiency of the activated carbon filter is maintained at a high level, and from the concentration at which the tendency of reduction by the activated carbon filter becomes slow,
  • the first to fourth By reducing the concentration of chlorine dioxide gas by any of the chlorine dioxide gas treatment structures of the invention, the time until a desired low concentration safe for the human body is shortened.
  • the time until the chlorine dioxide gas is brought to a desired concentration, for example, 0.1 ppm, is shortened, and the medical device can be sterilized by a sterilization apparatus in a short cycle. It becomes possible, and the sterilizer can be used effectively.
  • a large amount of high-concentration chlorine dioxide gas that has acted for environmental purification such as removal is reduced to a desired concentration, for example, a concentration of 0.1 ppm,
  • a desired concentration for example, a concentration of 0.1 ppm
  • the purpose of reducing chlorine dioxide gas to a concentration safe for the human body in a short time is to reduce the concentration of chlorine dioxide gas to the desired low concentration by the first treatment means, and then to make the body safe by the chlorine dioxide treatment structure. Realized by further lowering to a low concentration.
  • FIG. 1 shows a schematic diagram of a configuration of a chlorine dioxide gas processing apparatus 100 of the first embodiment.
  • the activated carbon filter 11 is used to adsorb chlorine dioxide gas, and the concentration of chlorine dioxide gas in the introduction air 30 before treatment with a high concentration of chlorine dioxide gas is set to a low concentration intermediate treatment air 40 of 2.0 ppm to 5.0 ppm.
  • the chlorine dioxide gas treatment structure 20 that treats the intermediate treatment air 40 to a concentration lower than 0.1 ppm, which is a safe chlorine dioxide gas concentration for the human body, and discharges it as the discharge air 50.
  • the main component of the chlorine dioxide gas processing apparatus 100 which consists of these is typically shown.
  • Example 1 Although the primary processing means 10 of Example 1 is accommodated in the cube-shaped container 12 comprised from the acrylic board by which each side was 1 m, the shape and magnitude
  • a fan 13 that circulates the introduction air 30 is provided in the container 12. The air flow generated by the fan 13 passes through the activated air filter 11 provided in front of the fan 13 and is included in the introduced air 30 as indicated by the arrow 14 shown in the primary processing means 10. Adsorbed chlorine dioxide gas to the activated carbon filter 11.
  • the air volume of the fan 13 and the size / thickness / active carbon capacity of the activated carbon filter 11 are appropriately selected according to the concentration and amount of chlorine dioxide gas contained in the introduction air 30 introduced into the container 12. Just do it.
  • the activated carbon filter 11 can be suitably used as long as it is an activated carbon filter 11 capable of adsorbing acidic gas, and may be powdered coal or granular coal. Needless to say, the activated carbon layer for neutral gas and the activated carbon layer for basic gas may be used in combination.
  • the primary processing means 10 is provided with a detection suction port 15 that can be opened and closed near the discharge port of the intermediate processing air 40 so that the detection suction port 15 can be opened and closed. Air is sucked into the chlorine dioxide gas detection tube 16 to measure the chlorine dioxide gas concentration, and the configuration of the primary processing means 10 is simplified.
  • a gas concentration detector tube of GASTEC registered trademark
  • a known detection means may be provided as a chlorine dioxide gas concentration detection means to measure the concentration of chlorine dioxide gas.
  • the intermediate processing air 40 Is derived from the primary treatment means 10 to the chlorine dioxide gas treatment structure 20.
  • the chlorine dioxide gas treatment structure 20 is also housed in a cubic container 22 made of an acrylic plate having a side of 1 m.
  • the container 22 includes a fan 23, ultraviolet irradiation means 24, and wet steel wool 21.
  • an aluminum foil 28 is attached to the inner surface of the container 22.
  • An aluminum material is suitable so that the ultraviolet light irradiated from the ultraviolet irradiation means 24 does not leak to the outside, and the ultraviolet light is reflected in the container and the intensity of the ultraviolet light is increased. It may be a body or a plate.
  • the air flow generated by the fan 23 provided in the chlorine dioxide gas treatment structure 20 contacts the contact layer of the laid steel wool 21 as indicated by an arrow 25 in the chlorine dioxide gas treatment structure 20 of FIG. Be cycled as is.
  • the steel wool 21 laid in the chlorine dioxide gas treatment structure 20 is moistened with water and irradiated with ultraviolet rays by ultraviolet irradiation means.
  • the intermediate processing air 40 is brought into contact with the steel wool 21, and the chlorine dioxide gas contained in the intermediate processing air 40 is processed so as to obtain a low concentration discharge air 50 that is safe for the human body.
  • the steel wool 21 forming the contact layer 325 g of steel wool having a thin wire diameter of 0.02 mm to 0.04 mm is used.
  • the steel wool 21 may be provided with a water pallet 26 in which water is stored below, and may be appropriately brought in and out by an unillustrated unillustrated means so as to be kept in a wet state.
  • the ultraviolet irradiation means 24 As the ultraviolet irradiation means 24, six ultraviolet lamps GPL9 having a wavelength of 254 nm manufactured by Sankyo Electric Co., Ltd. and six GPL27s were used to obtain an ultraviolet lamp having a total output of 216 W.
  • the ultraviolet illuminance is measured to be 0.345 mW / cm 2 at the position where the contact layer is installed by measurement with a custom ultraviolet intensity meter. The measurement experiment was performed in a room temperature environment where the room temperature was stable at 20 ° C.
  • the intermediate treatment air is detected by the chlorine dioxide gas concentration detection means provided at the concentration detection position 27 in the vicinity of the discharge port, and the concentration of the chlorine dioxide gas is detected to be a human safe concentration, for example, 0.1 ppm or less. After being confirmed, it is dissipated to the outside air as discharge air 50.
  • the introduced air 30 having a chlorine dioxide concentration of 50 ppm is treated by the primary treatment means into the intermediate treatment air 40 of 3.6 ppm when 8 minutes have passed after the treatment is started, and further, the chlorine dioxide treatment structure 20 performs the intermediate treatment. After 6 minutes have elapsed from the start of treatment, the treatment air 20 has a chlorine dioxide concentration of 0.1 ppm or less, which is the safe concentration. After 14 minutes from the start of the first treatment, chlorine dioxide gas is not detected, and the discharge air 50 It was in a suitable state.
  • FIG. 2 is a diagram showing a graph of evaluation results and comparison results of the chlorine dioxide gas treatment structure.
  • (Evaluation result 1-1) is when the chlorine dioxide gas treatment structure 20 is operated, (Comparison result 1-1) is when the steel wool of the contact layer is not wetted and irradiated with ultraviolet rays (Comparison result 1-2) ) Shows a decreasing tendency of the chlorine dioxide gas concentration of each intermediate processing air 40 when the steel wool is removed and only the ultraviolet ray is irradiated.
  • the concentration of chlorine dioxide gas was detected by a gas detector tube of GASTEC (registered trademark).
  • the concentration of chlorine dioxide gas is about 0.12 ppm at 4 minutes after the start of treatment from 3.6 ppm, and 0.00 ppm at the time 6 minutes have elapsed, and the results are shown below (Comparative result 1-1) and (Comparative result 1- Compared to 2), the concentration of chlorine dioxide gas could be reduced to a safe concentration in a short time.
  • Comparison results when the steel wool 21 is not wetted with water but irradiated only with ultraviolet rays (line graph with a triangle mark): the steel wool 21 of the contact layer of the chlorine dioxide gas treatment structure 20 of Example 1 is in water The intermediate treatment air 40 was introduced without being wetted, and the chlorine dioxide gas was treated from the state where the concentration of the chlorine dioxide gas was 2.76 ppm. The decrease in the concentration of chlorine dioxide gas is shown by a line graph with a ⁇ mark. The concentration of chlorine dioxide gas is from 2.76 ppm to 0.24 ppm after 6 minutes from the start of treatment and about 0.01 ppm after 10 minutes.
  • Comparison results when removing steel wool 21 and irradiating only ultraviolet rays (circle graph with circles): The steel wool contact layer of the chlorine dioxide gas treatment structure 20 of Example 1 was removed, and the intermediate treatment air 40 Then, chlorine dioxide gas was treated from a state where the concentration of chlorine dioxide gas was 2.52 ppm. The decrease in the concentration of chlorine dioxide gas is shown by a line graph with a circle. The concentration of chlorine dioxide gas became 2.55 ppm at 0.45 ppm after 6 minutes from the start of treatment, but it was 0.36 ppm even after 10 minutes, and the concentration remained significantly above 0.1 ppm. Yes, the concentration was not safe for the human body.
  • FIG. 3 is a diagram showing a graph of the evaluation result of the small chlorine dioxide gas treatment structure in Evaluation Experiment 2.
  • (Evaluation result 2-1) is when the chlorine dioxide gas treatment structure 20 is operated, (Comparison result 2-1) is when the steel wool of the contact layer is not wetted and irradiated with ultraviolet rays (Comparison result 2-2) ) Shows the decreasing tendency of the chlorine dioxide gas concentration of each intermediate processing air when steel wool is removed and only ultraviolet rays are irradiated.
  • the ultraviolet irradiation means 24 six ultraviolet lamps GPL9 having a wavelength of 254 nm manufactured by Sankyo Electric Co., Ltd. were used, and a total of 54 W ultraviolet rays were used.
  • the steel wool forming the contact layer was the same as in Evaluation Experiment 1. The same applies to the point that the aluminum foil is attached to the inner surface of the container and the room temperature conditions.
  • Evaluation result 2-1 Evaluation result of small chlorine dioxide gas treatment structure ( ⁇ -line graph): At room temperature of 20 ° C., intermediate treatment air 40 is introduced into the chlorine dioxide gas treatment structure 20 of the small container, and the concentration of chlorine dioxide gas is 2. From the state of 52 ppm, chlorine dioxide gas was treated with the above-described configuration. This decrease in the concentration of chlorine dioxide gas is shown by a line graph marked with ⁇ in FIG. The concentration of chlorine dioxide gas is from 2.52 ppm to 0.30 ppm when 2 minutes have elapsed from the start of treatment, and to 0.00 ppm when 4 minutes have elapsed.
  • Comparison results when only ultraviolet rays are irradiated without wetting the steel wool (line graph with ⁇ mark):
  • the steel wool in the contact layer is not wetted with water.
  • the intermediate treatment air 40 was introduced to treat the chlorine dioxide gas from a state where the concentration of the chlorine dioxide gas was 2.16 ppm.
  • the decrease in the concentration of chlorine dioxide gas is shown by a graph with a ⁇ mark in FIG.
  • the concentration of chlorine dioxide gas was 2.16 ppm, 0.78 ppm after 2 minutes from the start of treatment, and 0.30 ppm after 4 minutes, and did not reach a safe concentration.
  • Comparison results when steel wool is removed and only ultraviolet rays are irradiated (circle graph with a circle):
  • the steel wool contact layer is removed and intermediate treatment air 40 is introduced.
  • Chlorine dioxide gas was treated from the state where the concentration of chlorine dioxide gas was 2.10 ppm.
  • the decrease in the concentration of chlorine dioxide gas is shown by a line graph with a circle.
  • the concentration of chlorine dioxide gas was 2.10 ppm, which was 1.08 pm at 2 minutes after the start of treatment and exceeded 0.48 ppm at 4 minutes, and was not a safe concentration.
  • FIG. 4 is a schematic diagram of the configuration of the chlorine dioxide gas processing apparatus 200.
  • the chlorine dioxide gas in the introduction air 30 having a high concentration of chlorine dioxide gas is brought into contact with the steel wool that has been irradiated with ultraviolet rays, so that the chlorine dioxide gas is desired.
  • the primary processing means 60 is a low-concentration intermediate processing air 40.
  • the chlorine dioxide gas treatment structure 20 in which the intermediate treatment air 40 is treated at a concentration lower than 0.1 ppm, which is considered to be a safe chlorine dioxide gas concentration for the human body, and is used as the discharge air 50 is the same as in the first embodiment. Therefore, the same reference numerals are attached to the drawings and description thereof is omitted.
  • the primary processing means 60 of the second embodiment is accommodated in a cube-shaped container 62 made of an acrylic plate having a side of 1 m, but the shape of the container 62 is the same as that of the first embodiment. Of course, the size is not limited.
  • the container 62 is provided with a fan 63 for circulating the introduced air 30. An air flow is generated by the fan 63 as indicated by an arrow shown in the primary processing means 60.
  • a steel wool 61 In front of the fan 63, a steel wool 61 in a state in which ultraviolet rays are irradiated by the ultraviolet irradiation means 64 is provided.
  • the introduced air 30 is passed through the steel wool 61, and the chlorine dioxide gas contained in the introduced air 30 is brought into contact with the steel wool 61 in the state of being irradiated with the ultraviolet rays from the ultraviolet irradiation means, so that the chlorine dioxide concentration is desired. Processing is performed so that the intermediate processing air 40 has a concentration.
  • the ultraviolet irradiation means six ultraviolet lamps GPL9 having a wavelength of 254 nm manufactured by Sankyo Electric Co., Ltd. were used, and a total of 54 W ultraviolet rays were used.
  • the steel wool forming the contact layer was the same as in Evaluation Experiment 1. The same applies to the point that the aluminum foil is attached to the inner surface of the container and the room temperature conditions.
  • Evaluation result 3-1 Evaluation result of primary treatment means of Example 1 in which chlorine dioxide gas of introduced air is adsorbed to the activated carbon filter (a line graph with a circle):
  • the primary treatment means of Example 1 is high in the activated carbon filter.
  • the concentration of chlorine dioxide gas was reduced by bringing the introduction air containing chlorine dioxide gas at a concentration into contact therewith to adsorb the chlorine dioxide gas on the activated carbon filter.
  • This decrease in the concentration of chlorine dioxide gas is shown by a line graph with a circle in FIG. It decreases from 50 ppm to 6.24 ppm when 5 minutes have elapsed since the start of the treatment, and is 1.20 ppm when 10 minutes have elapsed. After that, the decrease in concentration becomes slow, and when it reaches 20 minutes, it becomes 0.12 ppm, and it takes 25 minutes after the start of treatment until it reaches 0.1 ppm.
  • Comparison result 3-1 Comparison result of reducing chlorine dioxide gas by irradiating only chlorine dioxide gas of the introduced air with ultraviolet rays (schematic line graph with ⁇ ): In a container of the same size under the same temperature conditions as in Example 1, high concentration The concentration of chlorine dioxide gas was lowered by irradiating the introduction air 30 containing chlorine dioxide gas with ultraviolet rays by ultraviolet irradiation means. This decrease in the concentration of chlorine dioxide gas is shown by a line graph marked with ⁇ in FIG. After a lapse of 20 minutes from the start of the treatment, it decreased from 50 ppm to 47.5 ppm, but the reduction tendency was slow. On the other hand, there was a similar trend of reducing chlorine dioxide gas at any irradiation time zone.
  • FIG. 6 is a schematic diagram of the configuration of the chlorine dioxide gas treatment apparatus 300, and portions having the same configuration as in the first embodiment are denoted by the same reference numerals in the drawing and description thereof is omitted.
  • the introduction air 30 having a high concentration of chlorine dioxide gas introduced into the container 70 is first circulated to the activated carbon filter 11 of the primary treatment means 71 with the chlorine dioxide gas treatment structure 72 stopped, and chlorine dioxide. Gas concentration is reduced.
  • the primary treatment means 71 is then stopped, and the chlorine dioxide gas treatment structure While being irradiated with ultraviolet rays by the ultraviolet irradiation means 24 by 72, the air to be treated is brought into contact with the steel wool 21 in a wet state and circulated. Thereby, it is possible to reduce the concentration of chlorine dioxide gas in a single container in a short time.
  • FIG. 7 is a process diagram of the sterilization apparatus
  • FIG. 7A shows a process of generating high concentration chlorine dioxide gas
  • FIG. 7B shows a high concentration after sterilization of the medical device
  • 7C shows a process of reducing the chlorine dioxide gas at a desired concentration, for example, from 2.0 ppm to 5.0 ppm
  • FIG. 7C shows that the chlorine dioxide gas that has been lowered to the desired concentration is safe for the human body. It is explanatory drawing which shows the process made to reduce to a sufficient density
  • the sterilizer 400 includes a chlorine dioxide gas generating means 81, a primary processing means 82, and a chlorine dioxide gas processing structure 83 in contact with the medical instrument housing 80.
  • the chlorine dioxide gas generating means 81 the gel or liquid stabilized chlorine dioxide water 85 is irradiated with ultraviolet rays by the ultraviolet irradiation means 86 in a state where the vent hole 84 with the medical instrument housing portion 80 is opened, and the high concentration.
  • the chlorine dioxide gas is sent out by the fan 87 to the medical instrument housing 80 as shown by the arrow in FIG. After the concentration of chlorine dioxide gas in the medical instrument housing 80 reaches a predetermined concentration, the vent 84 may be closed and the fan 87 may be stopped (see FIG. 7A).
  • the vent hole 88 of the primary processing means 82 is opened while the vent hole 84 of the chlorine dioxide gas generating means 81 is closed, and the gas in the medical instrument housing portion 80 is opened by the fan 89.
  • the activated carbon filter 90 is circulated through the activated carbon filter 90 as indicated by the arrow shown in FIG. 7B to adsorb chlorine dioxide gas, and the concentration is lowered to a desired concentration.
  • the desired concentration may be a concentration from 2.0 ppm to 5.0 ppm, but is not limited to this range (see FIG. 7B).
  • the vent 88 of the primary processing means is closed, and ventilation between the chlorine dioxide gas processing means and the medical instrument housing section is performed.
  • the low-concentration chlorine dioxide gas is circulated as shown by the arrow in FIG. 7C in a state in which the mouth 91 is opened and the steel wool 92 in a wet state is irradiated with ultraviolet rays by the ultraviolet irradiation means 93. As a result, the concentration of chlorine dioxide gas is lowered (see FIG. 7C).
  • the processing time of the chlorine dioxide gas generating means 81, the processing time of the primary processing means 82, and the processing time of each of the chlorine dioxide gas processing structures 83 are determined, and timer control is performed. Each of them may be actuated by providing a chlorine dioxide gas concentration detecting means (not shown in the figure) in the medical instrument housing portion 80 of the sterilizer, and depending on the detection result, the chlorine dioxide gas generating means 81, the second The primary processing means 82 and the chlorine dioxide gas processing structure 83 may be operated in order.
  • the output of the ultraviolet irradiation means, the capacity of the activated carbon filter, and the mass of the steel wool may be appropriately selected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

【課題】周囲環境の浄化に作用した二酸化塩素ガスを人に安全な低濃度とさせるまでに長時間を要することである。 【解決手段】二酸化塩素ガスを含んだ被処理空気中の二酸化塩素ガスを低減させる二酸化塩素ガス処理構造20であって、被処理空気が循環される空間と、ファン23と、接触層と、紫外線照射手段とを備え、接触層が鉄製の細線を綿状に固めたスチールウール21に水を湿潤させたものであって、ファン23が空間内で被処理空気を循環させて、その循環経路において接触層に紫外線照射手段24により紫外線を照射させた状態で、被処理空気を接触層に接触させる。

Description

二酸化塩素ガス処理構造、二酸化塩素ガス処理装置、滅菌装置および環境浄化装置
 本発明は、周囲環境の浄化に作用した二酸化塩素ガスを、短時間で人体に安全な濃度に低下させる二酸化塩素ガス処理構造、二酸化塩素ガス処理装置、滅菌装置および環境浄化装置に関する。
 人が生活する空間内には、例えば塵埃、タバコの煙等の極小微粒子、各種大気汚染物質、浮遊菌類、塗料等の化学物質からの有機揮発ガス、人体や各種製品等からの臭気などを含む各種の微粒子、気体、黴、有害な細菌等が含まれている。
 人体にとって有害なこれらの細菌等を低減するため、その殺菌・消臭等の浄化処理が行われている。二酸化塩素ガスは、殺菌・消臭等の浄化作用にきわめて優れていることが以前から知られていた。しかし二酸化塩素ガスは常温、常圧では塩素やオゾンのような刺激臭があり、光や熱に対して不安定なものである。そこで、危険性のない安定した状態で二酸化塩素ガスが使用できるように、二酸化塩素ガスを純水の中にアルカリで安定化させて、安定化二酸化塩素が開発された。そして、ゲル状態、液体状態又は固体状態の安定化二酸化塩素を活性化させて二酸化塩素ガスを取り出して、空間内にある浄化する対象物に接触させて、空間内部を広く浄化する技術が提案されている。
 従来の二酸化塩素ガスによる浄化処理によれば、処理後の気体に含まれている残余の二酸化塩素ガスは、水又は活性炭等に濾過・吸着させて低濃度とされていた。また、二酸化塩素ガスの光分解の作用には不明な点が多かったが、二酸化塩素ガスは紫外線により分解されることが知られていた(特許文献1;段落0004)。そこで、浄化処理に作用した二酸化塩素ガスは、前記のように低濃度とされてから、大気中に放出され、拡散されてきた。
 二酸化塩素ガスを屋外に直接排出可能とするように排気ダクトが付設されている空気調和装置であれば、排気ダクトから排出される二酸化塩素ガスを屋外の大量の空気中に排出させて、希釈させることができる。しかし、病院内で使用される医療機器を浄化させる滅菌装置では、滅菌後の二酸化塩素ガスは人体に安全な所定の濃度以下とされて機器の周囲に放散されている。ここで、人体に安全な濃度とは、米国労働安全衛生局(OSHA)の基準によれば二酸化塩素ガスの濃度は、1日8時間又は週40時間の期間内における時間荷重平均値(TWA)で0.1ppm以下とされている。また、米国産業衛生専門家会議(ACGIH)の基準では、これに加えて常に、15分間の短時間暴露限界値(STEL)が0.3ppmとされ、二酸化塩素ガスをこの低い濃度の範囲内で持続的に維持させることが必要であるとされている。しかし、従来の活性炭等への吸着による二酸化塩素ガスの低減処理方法によれば、所定の濃度より低い濃度となってからは吸着作用が緩慢になるため、二酸化塩素ガスが放出できる低濃度となるまでに長時間を要していた。
 一方、高濃度の二酸化塩素ガスを空間内に放出して、空間内の環境を浄化する技術も提案されている。例えば、特許文献2では、純粋二酸化塩素ガス液剤により、溶存二酸化塩素を高濃度に包含させることができると共に、高濃度から低濃度に至るまで濃度調整が可能とされている(特許文献2;段落0072)。更に、特許文献3には汚染された空間や物を、従来よりも高い濃度で二酸化塩素を使用して燻蒸する技術が開示されている。特許文献3によれば、少なくとも二酸化塩素を5から6時間をかけて除去することも開示されている(特許文献;段落0024)。
 特許文献2や特許文献3の技術のように、高濃度の二酸化塩素を使用した場合には、二酸化塩素の除去に長時間を必要とするという課題があり、高濃度の二酸化塩素ガスを利用した環境浄化の普及を妨げていた。また、低濃度であっても、その量によっては二酸化塩素ガスが外部環境に影響を与えるため、二酸化塩素ガスを短時間で効率的に低減させる処理構造及び装置が求められていた。
 本発明者らは、二酸化塩素ガスに紫外線を照射させながら各種の実験を行い、二酸化塩素ガスを短時間で低減させるために、活性炭フィルター等により所望の低濃度とさせた二酸化塩素ガスを、水に湿潤させたスチールウールに紫外線を照射させた状態で、繰り返し接触させることにより、二酸化塩素ガスを短時間で人体に安全な低濃度まで低減又は消滅できることを見出し、本発明に到達した。
特開平4-300201号公報 特開平11-278808号公報 特表2005-528930号公報
 周囲環境の浄化に作用した二酸化塩素ガスを、人体に安全な濃度まで低下させるために長時間を要することである。
 本発明の第1の発明は、二酸化塩素ガスを含んだ被処理空気中の二酸化塩素ガスを低減させる二酸化塩素ガス処理構造において、前記被処理空気が循環される空間と、気流発生手段と、接触層と、紫外線照射手段とを備え、前記接触層が、鉄製の細線を綿状に固めたスチールウールに水を湿潤させた接触層であり、前記気流発生手段が前記空間内で被処理空気を循環させ、前記紫外線照射手段が、前記被処理空気の循環経路において前記接触層に紫外線を照射させた状態で、前記被処理空気が前記接触層に繰り返し接触されることを特徴としている。
 ここで被処理空気とは、各種の微粒子、気体、黴、有害な細菌等が存在する空間内において殺菌、消臭、除黴等により作用した二酸化塩素ガスが含まれている空気をいい、人が生活する空間に限定されず、例えば滅菌装置の中の空気も含まれる。また、循環される空間とは、被処理空気が循環されて接触層に繰り返し接触される空間であればよい。また、二酸化塩素ガスの濃度は限定されない。
 紫外線の波長は、紫外可視吸収スペクトル分析により、二酸化塩素ガスに対して吸光度が高いとされている波長254nmから270nmの紫外線が好適であるが、これに限定されない(図8参照)。なお、図8のグラフは、500ppmの安定化二酸化塩素を、純水を希釈溶液として100倍に希釈して、それを紫外可視吸収スペクトル分析実験し、得られた測定結果のグラフであり、縦軸に吸光度、横軸に紫外線の波長を示している。
 二酸化塩素ガスに紫外線が照射されることにより、二酸化塩素ガスが反応しやすくなる。これにより、鉄製の細線を綿状に固めたスチールウールに水を湿潤させた接触層に、反応しやすくなった二酸化塩素ガスが、気流発生手段により循環して接触されて鉄を酸化させ、従来の処理方法では低減が緩慢となった低濃度においても、被処理空気中の二酸化塩素ガスが短時間で低減されるという有利な効果がある。ここで紫外線の強度は限定されず、紫外線の強度に応じた二酸化塩素ガスの低減効果が認められる(図9参照)。図9のグラフは、各辺が1mとされた、外光を遮断したアクリル板から構成されている立方体形状の容器内の二酸化塩素ガスに、紫外線の強度を変えて照射させて、二酸化塩素ガスの濃度の低下傾向を確認したグラフである。概ねすべての時間帯において紫外線の強度を2倍とした方が(△印を付した折線)、他方(□印を付した折線)に対して二酸化塩素ガスの濃度の低下効果が高いことが確認されている。
 気流発生手段は、空気の流れを発生させる公知のファンであればよい。被処理空気の量、接触層への被処理空気の接触回数に応じて適宜の送風能力のファンが選択可能である。また、スチールウールは、その表面が二酸化塩素ガスに酸化され、二酸化塩素ガスの低減効果が低下していくため、被処理空気を通過させる袋に収容されて交換可能とされていると好適である。
 本発明の第2の発明は、第1の発明の二酸化塩素ガス処理構造において、前記細線の直径が0.02mmから0.04mmであることを特徴としている。スチールウールの重量が同一でも、細線の直径が小さい程、その表面積は大きくなり、二酸化塩素ガスの接触面積が大きくなる。一方、細線の直径が小さくなりすぎると細線が折れて、散乱しやすくなる。細線の直径が0.02mmから0.04mmのスチールウールが、同一のスチールウールの使用重量であっても、その表面積を大きくすると共に、細線が折れて散乱しない太さとして好適である。
 本発明の第3の発明は、第1又は第2の発明の二酸化塩素ガス処理構造において、前記紫外線照射手段からの紫外線が照射される前記空間の内面に紫外線反射面を備えていることを特徴としている。前記空間の内面に紫外線の反射率の高いアルミ材質の薄膜又は板材が添着されるのが好適である。第3の発明によれば、同一の紫外線ランプを使っても強い紫外線が照射可能である。
 本発明の第4の発明は、第1から第3の発明の二酸化塩素ガス処理構造において、前記スチールウールに前記水を湿潤させる湿潤手段を備えていることを特徴としている。湿潤手段は、水を蓄えた水槽にスチールウールを出没させて、スチールウールを湿潤状態とさせてもよく、また噴霧器により水を噴霧させてスチールウールを湿潤状態とさせてもよい。湿潤手段を備えることにより、最初に湿潤させて前記空間内に配設したスチールウールが乾くことがなく、接触層の効果が継続される。
 本発明の第5の発明は、二酸化塩素ガスによる空気浄化後の被処理空気中に含まれている二酸化塩素ガスを低減させる二酸化塩素ガス処理装置において、前記二酸化塩素ガスを所望の濃度に低下させる第1次処理手段と、第1から第4の発明のいずれかの前記二酸化塩素ガス処理構造とを含み、第1次処理手段が、第1の気流発生手段と、活性炭フィルターとを備え、第1の気流発生手段によって前記被処理空気中の二酸化塩素ガスを前記活性炭フィルターに吸着させる第1次処理を行ってから、前記第1次処理後の被処理空気中に含まれている二酸化塩素ガスを前記二酸化塩素ガス処理構造により低減させることを特徴としている。
 第5の発明によれば、従来の活性炭フィルター吸着処理の技術を第1次処理手段により所望の濃度、例えば2.5ppmから5.0ppmの範囲の濃度としてから、第1から第4の発明の二酸化塩素ガス処理構造により二酸化塩素ガスの濃度を人体に安全な濃度まで低下させている。従来技術の活性炭フィルターによる吸着処理によれば、二酸化塩素ガスが所定の濃度となってから、吸着作用が緩慢となっていた。このため、二酸化塩素ガスを所望の濃度、例えば0.1ppmよりも小さくするために長時間を要していた。しかし本発明によれば、従来の活性炭フィルターの高い低減効率が維持される濃度まで、活性炭フィルターにより二酸化塩素ガスを低減させてから、第1から第4の発明の二酸化塩素ガス処理構造により二酸化塩素ガスの濃度を低下させることにより、人体に安全な所望の低濃度とするまでの時間が短くなる。
 また、低濃度となってから、スチールウールに二酸化塩素ガスを反応させているため、スチールウールの使用量が少なくてもよい。また、スチールウールの交換頻度も少なくなる。
 本発明の第6の発明は、二酸化塩素ガスによる空気浄化後の被処理空気中に含まれている二酸化塩素ガスを低減させる二酸化塩素ガス処理装置において、前記二酸化塩素ガスを所望の濃度に低下させる第1次処理手段と、第1から第4の発明のいずれかの前記二酸化塩素ガス処理構造とを含み、第1次処理手段が、第1の気流発生手段と、紫外線照射手段と、鉄製の細線を綿状に固めたスチールウールを接触層として備え、前記紫外線照射手段により紫外線を前記接触層に照射させた状態で、前記第1の気流発生手段によって前記被処理空気中の二酸化塩素ガスを前記接触層に循環させて接触させる第1次処理を行ってから、第1次処理後の被処理空気中に含まれている二酸化塩素ガスを前記二酸化塩素ガス処理構造により低減させることを特徴としている。
 本発明の第6の発明では、第5の発明の第1次処理手段の活性炭フィルターによる吸着作用に替えて、スチールウール層を接触層として、紫外線を照射させながら、被処理空気を循環させ接触層に接触させる手段を、二酸化塩素ガスの第1次処理手段としている。スチールウールに紫外線を照射させながら被処理空気を接触させても、後述する(評価結果2‐1)および(評価結果2‐2)に示すように、活性炭フィルターと略同様の効果を発揮することが確認された。ここでスチールウールの鉄線の細線の直径は0.02mmから0.04mmが好適である。
 本発明の第7の発明は、医療用機器を二酸化塩素ガスに接触させて滅菌処理する滅菌装置において、第1から第4のいずれかの発明の前記二酸化塩素ガス処理構造を備えていることを特徴としている。本発明の第1から第4の二酸化塩素ガス処理構造を備えていることにより、滅菌に作用した高濃度の二酸化塩素ガスを所望の濃度、例えば0.1ppmの濃度より小さくするまでの時間が短くなり、滅菌装置により医療機器を短時間のサイクルで滅菌することが可能になり、滅菌装置を有効に活用できるようになる。
 本発明の第8の発明は、空気浄化装置が設置された閉じた環境内に二酸化塩素ガスを導入し、前記環境内にある物に前記二酸化塩素ガスを接触させて浄化処理する環境浄化装置において、第1から第4の発明のいずれかの前記二酸化塩素ガス処理構造を備えていることを特徴としている。本発明の第1から第4のいずれかの発明の二酸化塩素ガス処理構造を備えていることにより、除黴等の環境浄化に作用した大量かつ高濃度の二酸化塩素ガスを、所望の濃度、例えば0.1ppmの濃度とするまでの時間が短くなり、二酸化塩素ガスによる浄化対象が拡大される。例えば住宅建物が多い地域においても、住宅建物全体をシートで覆って、住宅内に備えられた全ての物を二酸化塩素ガスにより除黴及び殺菌して、その二酸化塩素ガスを短い時間で低減させて、居住者のためにアレルギー対策をすることも可能になる。
・本発明の第1の発明によれば、鉄製の細線を綿状に固めたスチールウールに水を湿潤させた接触層に、反応しやすくなった二酸化塩素ガスが気流発生手段により循環して接触されて鉄を酸化させ、従来の処理方法では低減が緩慢となった低濃度においても、被処理空気中の二酸化塩素ガスが短時間で低減されるという有利な効果がある。
・本発明の第2の発明によれば、同一の重量で二酸化塩素ガスに反応する鉄の表面積を大きくすると共に、細線が折れて散乱せず好適である。
・本発明の第3の発明によれば、同一の紫外線ランプを使っても強い紫外線が照射可能である。
・本発明の第4の発明によれば、湿潤手段を備えることにより、最初に湿潤させて前記空間内に配設したスチールウールが乾くことがなく、接触層の効果が継続される。
・本発明の第5の発明によれば、活性炭フィルターの低減効率が高く維持される濃度において活性炭フィルターにより二酸化塩素ガス濃度を低減させ、活性炭フィルターによる低減傾向が緩慢となった濃度からは、第1から第4の発明のいずれかの二酸化塩素ガス処理構造により二酸化塩素ガスの濃度を低下させることにより、人体に安全な所望の低濃度とするまでの時間が短くなる。
・本発明の第6の発明によれば、第5の発明と同様に、スチールウールの接触層に紫外線を照射させる二酸化塩素ガスの低減傾向が緩慢となった濃度から、第1から第4の発明のいずれかの二酸化塩素ガス処理構造により二酸化塩素ガスの濃度を低下させることにより、人体に安全な所望の低濃度とするまでの時間が短くなる。
・本発明の第7の発明によれば、二酸化塩素ガスを所望の濃度、例えば0.1ppmの濃度とするまでの時間が短くなり、短時間のサイクルで滅菌装置により医療機器を滅菌することが可能になり、滅菌装置を有効に活用できるようになる。
・本発明の第8の発明によれば、除黴等の環境浄化に作用した大量かつ高濃度の二酸化塩素ガスを、所望の濃度、例えば0.1ppmの濃度とするまでの時間が短くなり、二酸化塩素ガスによる浄化対象が拡大される。
二酸化塩素ガス処理装置の構成の模式図(実施例1) 二酸化塩素ガス処理構造の評価結果のグラフを示す図(実施例1) 小型の二酸化塩素ガス処理構造の評価グラフを示す図(実施例1) 二酸化塩素ガス処理装置の構成の模式図(実施例2) 第1次処理手段の評価結果のグラフを示す図(実施例2) 二酸化塩素ガス処理装置の構成の模式図(実施例3) 滅菌装置の処理工程図(実施例4) 紫外可視吸収スペクトル分析実験のグラフを示す図 紫外線の強度と二酸化塩素ガスの低減傾向のグラフを示す図
 二酸化塩素ガスを人体に安全な濃度まで短い時間で低下させるという目的を、第1次処理手段により二酸化塩素ガスの濃度を所望の低濃度まで低下させてから、二酸化塩素処理構造により人体に安全な低濃度まで更に低下させることにより実現した。
 図1を参照して、実施例1の二酸化塩素ガス処理装置100を説明する。図1は、実施例1の二酸化塩素ガス処理装置100の構成の模式図を示している。活性炭フィルター11を使って二酸化塩素ガスを吸着させて、二酸化塩素ガスの濃度が高い処理前の導入空気30の二酸化塩素ガスの濃度を2.0ppmから5.0ppmの低濃度の中間処理空気40とさせる第1次処理手段10と、中間処理空気40を人体に安全な二酸化塩素ガス濃度とされている0.1ppmよりも低濃度に処理して、放出空気50として放出させる二酸化塩素ガス処理構造20とからなる二酸化塩素ガス処理装置100の主要構成要素を模式的に示している。
 実施例1の第1次処理手段10は、各辺が1mとされたアクリル板から構成されている立方体形状の容器12の中に収容されているが、容器12の形状・大きさが限定されないことは勿論のことである。容器12の中には、導入空気30を循環させるファン13が設けられている。ファン13により発生された気流が、第1次処理手段10に示した矢印14に示すように、ファン13の前方に設けられた活性炭フィルター11に導入空気30を通過させて、導入空気30に含まれている二酸化塩素ガスを活性炭フィルター11に吸着させる。
 ファン13の風量および活性炭フィルター11の大きさ・厚さ・活性炭の容量は、容器12の中に導入される導入空気30に含まれている二酸化塩素ガスの濃度、量に応じて、適宜選択されればよい。ここで活性炭フィルター11は、酸性ガスを吸着することができる活性炭フィルター11であれば好適に使用でき、粉末炭、粒状炭であってもよい。また、中性ガス用活性炭層と、塩基性ガス用活性炭層とを併用してもよいことは勿論のことである。
 第1次処理手段10には、中間処理空気40の排出口の近くに開閉可能な検知吸引口15を設けて、検知吸引口15を開閉可能な状態とし、そこから容器12の中の被処理空気を二酸化塩素ガス用検知管16に吸引して、二酸化塩素ガス濃度を測定させるようにし、第1次処理手段10の構成を簡易なものとしている。二酸化塩素ガス用検知管16としては、株式会社GASTEC(登録商標)のガス濃度検知管を使用することができる。一方、図示していないが二酸化塩素ガス濃度検知手段として、公知の検知手段(特開2007-68612号公報参照)を設けて、二酸化塩素ガスの濃度を測定するようにしてもよい。
 空気浄化に作用され、二酸化塩素ガスの濃度が高いままの導入空気30の二酸化塩素ガス濃度が、第1次処理手段10により所望の低濃度とされたことが検知された後、中間処理空気40として第1次処理手段10から二酸化塩素ガス処理構造20に導出される。
 二酸化塩素ガス処理構造20も、各辺が1mとされたアクリル板から構成されている立方体形状の容器22に収容されているが、容器22の形状・大きさが限定されないことは勿論のことである。容器22には、ファン23と、紫外線照射手段24と、湿潤状態とされたスチールウール21とが含まれている。更に、容器22の内面には、アルミ箔28が添着されている。紫外線照射手段24から照射される紫外線が外部に漏れず、紫外線が容器内で反射され、紫外線の強度が高くなるように、アルミ材料が好適であるが、アルミ材料に限定されず、薄膜の箔体であっても板体であってもよい。
 二酸化塩素ガス処理構造20内に設けられたファン23により発生された気流が、図1の二酸化塩素ガス処理構造20の中の矢印25に示すように、敷設されたスチールウール21の接触層に接触されるように循環される。二酸化塩素ガス処理構造20の中に敷設されたスチールウール21には、水が湿潤され、紫外線照射手段により紫外線が照射されている。スチールウール21に中間処理空気40が接触され、中間処理空気40に含まれている二酸化塩素ガスが、人体に安全な低濃度の放出空気50とされるように処理される。
 ここで、接触層をなすスチールウール21は、細線の直径が0.02mmから0.04mmのスチールウールを325g使用している。スチールウール21は、二酸化塩素ガス処理構造20内に敷設される際に、予め霧吹きにて水約50mLを吹き付けて、水に湿潤させた状態とさせている。スチールウール21は、下方に水を貯留させた水パレット26を設けて、図示しない出没手段により適宜出没させて湿潤状態が保たれるようにしてもよい。
 紫外線照射手段24としては、三共電気株式会社製の254nmの波長の紫外線ランプGPL9を6本と、GPL27を6本使用して、合計216Wの出力の紫外線ランプとした。紫外線照度は、株式会社カスタムの紫外線強度計による測定により、前記接触層を設置した位置において0.345mW/cm2が計測されている。なお、室温は20℃で安定した室温環境下で計測実験を行った。
 中間処理空気は、放散口近傍の位置の濃度検知位置27に設けた二酸化塩素ガス濃度検知手段により、その二酸化塩素ガスの濃度が、人体に安全な濃度、例えば0.1ppm以下であることが検知・確認されてから、放出空気50として外気に放散される。実施例1では、二酸化塩素濃度が50ppmの導入空気30が、第1次処理手段により処理開始後8分経過時点で3.6ppmの中間処理空気40に処理され、更に二酸化塩素処理構造20により中間処理空気20が処理開始後6分経過後に二酸化塩素濃度が安全濃度とされる0.1ppm以下とされ、第1次処理開始後14分で二酸化塩素ガスが検出されない状態になり、放出空気50に適した状態とされた。
(評価実験1)
 ここで、実施例1の二酸化塩素ガス処理構造20の主要構成要素の効果を評価するために、実施例1の二酸化塩素ガス処理構造20により二酸化塩素ガスの濃度を低下処理させた場合と、二酸化塩素ガス処理構造20から主要構成要素を外した場合を比較して、主要構成要素の効果を確認する実験をした(評価実験1)。その結果を、図2を参照して説明する。図2は、二酸化塩素ガス処理構造の評価結果および比較結果のグラフを示す図である。(評価結果1-1)は二酸化塩素ガス処理構造20を作動させた場合、(比較結果1-1)は接触層のスチールウールを湿潤させないで紫外線を照射させた場合、(比較結果1-2)はスチールウールを取り外して紫外線のみを照射させた場合の、各々の中間処理空気40の二酸化塩素ガス濃度の低下傾向を示している。二酸化塩素ガスの濃度は、株式会社GASTEC社(登録商標)のガス検知管により検知した。
(評価結果1-1)
 二酸化塩素ガス処理構造の評価結果(□印の折線グラフ):室温20℃において、アクリル板で構成した1mの容積の容器の二酸化塩素ガス処理構造20に中間処理空気40を導入させ、二酸化塩素ガスの濃度が3.6ppmの状態から、実施例1の二酸化塩素ガス処理構造20の構成で二酸化塩素ガスを処理させた。この二酸化塩素ガスの濃度の低下を、□印を付した折線グラフで示している。二酸化塩素ガスの濃度は3.6ppmから処理開始後4分経過時点で約0.12ppmとなり、6分経過時点で0.00ppmとなり、下記に示す(比較結果1-1)、(比較結果1-2)に比べて、二酸化塩素ガスの濃度を安全な濃度まで短時間で低下できた。
(比較結果1-1)
 スチールウール21を水に湿潤させず、紫外線だけを照射させた場合の比較結果(△印を付した折線グラフ):実施例1の二酸化塩素ガス処理構造20の接触層のスチールウール21を水に湿潤させない状態のままとし中間処理空気40を導入させ、二酸化塩素ガスの濃度が2.76ppmの状態から二酸化塩素ガスを処理させた。この二酸化塩素ガスの濃度の低下を、△印を付した折線グラフで示している。二酸化塩素ガスの濃度は2.76ppmから処理開始後6分経過時点で0.24ppm、10分経過時点で約0.01ppmとなっている。
(比較結果1-2)
 スチールウール21を取り外し、紫外線だけを照射させた場合の比較結果(○印を付した折線グラフ):実施例1の二酸化塩素ガス処理構造20のスチールウールの接触層を取り外して、中間処理空気40を導入させ、二酸化塩素ガスの濃度が2.52ppmの状態から、二酸化塩素ガスを処理させた。この二酸化塩素ガスの濃度の低下を、○印を付した折線グラフで示している。二酸化塩素ガスの濃度は2.52ppmから処理開始後6分経過時点で0.45ppmとなったが、10分経過しても0.36ppmであり、0.1ppmを大幅に超えたままの濃度であり、人体に安全とされる濃度とはならなかった。
(評価実験2)
 次に、一辺が65cmの立方体の滅菌装置を想定して、実施例1の二酸化塩素ガス処理構造の容量を0.25mとして、容量の大小にかかわらず、小型の二酸化塩素ガス処理構造であっても、その効果が発揮されることを確認する評価実験2を行った。その結果を、図3を参照して説明する。図3は、評価実験2の小型の二酸化塩素ガス処理構造の評価結果のグラフを示す図である。(評価結果2‐1)は二酸化塩素ガス処理構造20を作動させた場合、(比較結果2‐1)は接触層のスチールウールを湿潤させないで紫外線を照射させた場合、(比較結果2‐2)はスチールウールを取り外して紫外線のみを照射させた場合の、各々の中間処理空気の二酸化塩素ガス濃度の低下傾向を示している。紫外線照射手段24としては、三共電気株式会社製の254nmの波長の紫外線ランプGPL9を6本使用し、合計54Wの紫外線を使用した。接触層をなすスチールウールは、評価実験1と同様とした。容器の内面にアルミ箔を添着した点、室温条件等も同様である。
(評価結果2-1)
 小型の二酸化塩素ガス処理構造の評価結果(□印の折線グラフ):室温20℃において、小型容器の二酸化塩素ガス処理構造20に、中間処理空気40を導入させ、二酸化塩素ガスの濃度が2.52ppmの状態から、上記の構成で二酸化塩素ガスを処理させた。この二酸化塩素ガスの濃度の低下を、図3において、□印を付した折線グラフで示している。二酸化塩素ガスの濃度は2.52ppmから処理開始後2分経過時点で0.30ppmとなり、4分経過時点で0.00ppmとなっている。二酸化塩素ガス処理構造の容量にかかわらず、紫外線の強度を適宜決定すれば、容量の大きな実施例1と同様な二酸化塩素ガスの低減傾向が得られることが確認された。下記に示す(比較結果2‐1)、(比較結果2‐2)に比較して、二酸化塩素ガスの濃度を短時間で安全な濃度まで低下できた。
(比較結果2‐1)
 スチールウールを湿潤させず、紫外線だけを照射させた場合の比較結果(△印を付した折線グラフ):小型の二酸化塩素ガス処理構造において、接触層のスチールウールを水に湿潤させない状態のままとし、中間処理空気40を導入させ二酸化塩素ガスの濃度が2.16ppmの状態から、二酸化塩素ガスを処理させた。この二酸化塩素ガスの濃度の低下を、図3において△印を付したグラフで示している。二酸化塩素ガスの濃度は2.16ppmから処理開始後2分経過時点で0.78ppm、4分経過時点で0.30ppmとなり安全な濃度にはならなかった。
(比較結果2‐2)
 スチールウールを取り外し、紫外線だけを照射させた場合の比較結果(○印を付した折線グラフ):小型の二酸化塩素ガス処理構造において、スチールウールの接触層を取り外して、中間処理空気40を導入させ二酸化塩素ガスの濃度が2.10ppmの状態から、二酸化塩素ガスを処理させた。この二酸化塩素ガスの濃度の低下を、○印を付した折線グラフで示している。二酸化塩素ガスの濃度は2.10ppmから処理開始後2分経過時点で1.08pm、4分経過時点で0.48ppmを超える濃度であり、安全濃度とはならなかった。
 図4を参照して、実施例2の二酸化塩素ガス処理装置200を説明する。図4は二酸化塩素ガス処理装置200の構成の模式図である。実施例1の第1次処理手段10に替えて、二酸化塩素ガスの濃度が高い導入空気30の二酸化塩素ガスを、紫外線を照射させた状態のスチールウールに接触させて、二酸化塩素ガスが所望の低濃度の中間処理空気40とされる第1次処理手段60としている。中間処理空気40を、人体に安全な二酸化塩素ガス濃度とされている0.1ppmよりも低濃度に処理し、放出空気50とさせる二酸化塩素ガス処理構造20については、実施例1と同様であるので、図面に同一の符号を付して説明を省略する。
 実施例2の第1次処理手段60は、各辺が1mとされたアクリル板から構成されている立方体形状の容器62の内に収容されているが、実施例1と同じく、容器62の形状・大きさが限定されないことは勿論のことである。容器62には、導入空気30を循環させるファン63が設けられている。ファン63により、第1次処理手段60に示した矢印に示すように、気流が発生される。ファン63の前方には、紫外線照射手段64により紫外線が照射される状態のスチールウール61が設けられている。スチールウール61に導入空気30が通過され、導入空気30に含まれている二酸化塩素ガスが紫外線照射手段からの紫外線に照射された状態のスチールウール61に接触されて、その二酸化塩素濃度が所望の濃度の中間処理空気40とされるように処理される。
(評価実験3)
 ここで図5を参照して、二酸化塩素濃度が高い導入空気30の二酸化塩素濃度を低減させ、中間処理空気40とさせる第1次処理手段を評価する評価実験3の結果を示す。(評価結果3-1)は活性炭フィルターに二酸化塩素ガスを吸着させる実施例1の第1次処理手段であり、(評価結果3-2)はスチールウールフィルターに紫外線を照射させた状態で二酸化塩素ガスを接触させる実施例2の第1次処理手段であり、(比較結果3-1)は紫外線のみを照射させて二酸化塩素ガスの濃度を低下させた場合の実験結果を示している。紫外線照射手段としては、三共電気株式会社製の254nmの波長の紫外線ランプGPL9を6本使用し、合計54Wの紫外線を使用した。接触層をなすスチールウールは、評価実験1と同様とした。容器の内面にアルミ箔を添着した点、室温条件等も同様である。
(評価結果3-1)
 活性炭フィルターに、導入空気の二酸化塩素ガスを吸着させる実施例1の第1次処理手段の評価結果(○印を付した折線グラフ):実施例1の第1次処理手段で、活性炭フィルターに高濃度の二酸化塩素ガスが含まれている導入空気を接触させて、活性炭フィルターに二酸化塩素ガスを吸着させて、二酸化塩素ガスの濃度を低下させた。この二酸化塩素ガスの濃度の低下を、図5において○印を付した折線グラフで示している。処理開始後5分経過時点で50ppmから6.24ppmに低下し、10分経過時点で1.20ppmとなっている。それから後は、濃度の低下が緩慢となり、20分経過時点で0.12ppmとなり、0.1ppmとなるまでに、処理開始後25分の時間を必要としている。
(評価結果3-2)
 紫外線を照射させながら、スチールウールに導入空気の二酸化塩素ガスを接触させる実施例2の第1次処理手段の評価結果(△印を付した折線グラフ):実施例2の第1次処理手段で、スチールウールに紫外線を照射させた状態で、高濃度の二酸化塩素ガスが含まれている導入空気30を接触させて、二酸化塩素ガスの濃度を低下させた。この二酸化塩素ガスの濃度の低下を、図5において△印を付した折線グラフで示している。処理開始後10分経過時点で40ppmから2.40ppmに低下したが、その後は緩やかに二酸化塩素ガス濃度が低下するようになり、0.1ppmとなるまでには、処理開始後20分の時間を必要とした。しかし、処理開始後20分の時間で二酸化塩素ガスは検出されないようになっていた。これを実施例1の第1次処理手段と比較すると、実施例1の活性炭フィルターの方が、10分経過時点分までは僅かに優れた低減効果が認められたが、安全濃度の0.1ppmとなるまでには長時間を要する結果であった。一方、二酸化塩素濃度が2.5ppmの低濃度となるまでには、実施例2の第1次処理手段と、実施例1の第1次処理手段とはともに約10分経過すればよく、第1次処理手段としてはいずれも適していると評価された。
(比較結果3-1)
 導入空気の二酸化塩素ガスに紫外線のみを照射させて二酸化塩素ガスを低減させた比較結果(□印を付した折線グラフ):実施例1と同一温度条件で同じ大きさの容器において、高濃度の二酸化塩素ガスが含まれている導入空気30に紫外線照射手段により紫外線を照射させて、二酸化塩素ガスの濃度を低下させた。この二酸化塩素ガスの濃度の低下を、図5において□印を付した折線グラフで示している。処理開始後20分間経過後には50ppmから47.5ppmまで低下したが、低減傾向は緩慢であった。反面、どの照射時間帯においても、同様な割合で二酸化塩素ガスの低減傾向がみられた。
 実施例3では、第1次処理手段と二酸化塩素ガス処理構造が同一の容器70の中に備えられた実施例を、図6を参照して説明する。図6は二酸化塩素ガス処理装置300の構成の模式図であり、実施例1と同一の構成の部分については、図面に同一の符号を付して説明を省略している。容器70の中に導入された二酸化塩素ガスの濃度が高い導入空気30は、まず二酸化塩素ガス処理構造72を停止させた状態で、第1次処理手段71の活性炭フィルター11に循環されて二酸化塩素ガス濃度が低下される。そして、検知手段により容器の中の被処理空気の二酸化塩素ガス濃度が所望の濃度よりも小さくなったことが検知されたら、次に第1次処理手段71を停止させて、二酸化塩素ガス処理構造72により紫外線照射手段24により紫外線を照射させながら、湿潤状態にあるスチールウール21に被処理空気を接触させ、循環させる。これにより、一つの容器で二酸化塩素ガスの濃度を短時間で低下させることが可能である。
 実施例4では、医療用器具の滅菌装置の実施例を、図7を参照して説明する。図7は、滅菌装置の処理工程図であり、図7(A)図は高い濃度の二酸化塩素ガスを発生させている工程を示し、図7(B)図は医療器具の滅菌後に、高い濃度の二酸化塩素ガスを所望の濃度、例えば2.0ppmから5.0ppmの濃度まで低下させている工程を示し、図7(C)図は予め所望の濃度まで低下させた二酸化塩素ガスを人体に安全な濃度まで低下させている工程を示している説明図である。
 滅菌装置400には、医療器具収容部80に接して、二酸化塩素ガス発生手段81、第1次処理手段82、二酸化塩素ガス処理構造83が含まれている。二酸化塩素ガス発生手段81においては、医療器具収容部80との通気口84を開放させた状態で、ゲル又は液体状の安定化二酸化塩素水85に紫外線照射手段86により紫外線が照射され、高濃度の二酸化塩素ガスがファン87により、図7(A)図に示す矢印のように医療器具収容部80に送り出され、循環される。医療器具収容部80の二酸化塩素ガスの濃度が所定の濃度となってからは、通気口84が閉じられ、ファン87が停止されてもよい(図7(A)図参照)。
 医療器具の滅菌がされてから、二酸化塩素ガス発生手段81の通気口84が閉じられた状態で、第1次処理手段82の通気口88が開放され、ファン89により医療器具収容部80の気体が、図7(B)図に示す矢印のように活性炭フィルター90に循環されて二酸化塩素ガスが吸着され、所望の濃度まで低下される。ここで所望の濃度とは、2.0ppmから5.0ppmまでの濃度とされればよいが、この範囲の濃度に限定されない(図7(B)図参照)。
 医療器具収容部80の二酸化塩素ガス濃度が第1次処理手段により所望の濃度とされてから、第1次処理手段の通気口88が閉鎖され、二酸化塩素ガス処理手段と医療器具収容部の通気口91が開放され、湿潤状態とされたスチールウール92に紫外線照射手段93により紫外線が照射された状態で、低濃度となった二酸化塩素ガスが図7(C)図に示す矢印のように循環され接触されて、二酸化塩素ガスの濃度が低下される(図7(C)図参照)。
 医療器具収容部80の大きさに応じて、二酸化塩素ガス発生手段81の処理時間、第1次処理手段82の処理時間、二酸化塩素ガス処理構造83の各々の処理時間を決定して、タイマー制御により各々を作動させてもよく、滅菌装置の医療器具収容部80に、図では省略している二酸化塩素ガス濃度検知手段を設けて、その検知結果に応じて、二酸化塩素ガス発生手段81、第1次処理手段82、二酸化塩素ガス処理構造83を順に作動させてもよい。なお、紫外線照射手段の出力、活性炭フィルターの容量、スチールウールの質量は適宜選択されればよい。
(その他)
・前記の実施例では、具体的な寸法、出力、位置を示して説明したが、これに限定されず、本発明の趣旨を逸脱しない範囲で、変更がされてもよいことは勿論のことである。
・前記の実施例では、安定化二酸化塩素により二酸化塩素ガスを発生させたが、これに限定されない。
・今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の技術的範囲は、上記した説明に限られず、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
100,200,300…二酸化塩素ガス処理装置、
400…滅菌装置、
10…第1次処理手段、20…二酸化塩素ガス処理構造、30…導入空気、
40…中間処理空気、50…放出空気、
11…活性炭フィルター、12…容器、13…ファン、14…矢印、
15…検知吸引口、16…二酸化塩素ガス用検知管、
21…スチールウール、22…容器、23…ファン、24…紫外線照射手段、
25…矢印、26…水パレット、27…濃度検知位置、28…アルミ箔、
60…第1次処理手段、61…スチールウール、62…容器、
63…ファン、64…紫外線照射手段、
70…容器、71…第1次処理手段、72…二酸化塩素ガス処理構造、
80…医療器具収容部、81…二酸化塩素ガス発生手段、82…第1次処理手段、
83…二酸化塩素ガス処理構造、84…通気口、85…安定化二酸化塩素水、
86…紫外線照射手段、87…ファン、88…通気口、89…ファン、
90…活性炭フィルター、91…通気口、92…スチールウール

Claims (8)

  1.  二酸化塩素ガスを含んだ被処理空気中の二酸化塩素ガスを低減させる二酸化塩素ガス処理構造において、
     前記被処理空気が循環される空間と、気流発生手段と、接触層と、紫外線照射手段とを備え、
     前記接触層が、鉄製の細線を綿状に固めたスチールウールに水を湿潤させた接触層であり、
     前記気流発生手段が前記空間内で被処理空気を循環させ、
     前記紫外線照射手段が、前記被処理空気の循環経路において前記接触層に紫外線を照射させた状態で、
     前記被処理空気が前記接触層に繰り返し接触される、
    ことを特徴とする二酸化塩素ガス処理構造。
  2.  前記細線の直径が0.02mmから0.04mmである、
    ことを特徴とする請求項1に記載の二酸化塩素ガス処理構造。
  3.  前記紫外線照射手段からの紫外線が照射される前記空間の内面に紫外線反射面を備えている、
    ことを特徴とする請求項1又は請求項2に記載の二酸化塩素ガス処理構造。
  4.  前記スチールウールに前記水を湿潤させる湿潤手段を備えている、
    ことを特徴としている請求項1乃至請求項3のいずれか一項に記載の二酸化塩素ガス処理構造。
  5.  二酸化塩素ガスによる空気浄化後の被処理空気中に含まれている二酸化塩素ガスを低減させる二酸化塩素ガス処理装置において、
     前記二酸化塩素ガスを所望の濃度に低下させる第1次処理手段と、
     請求項1乃至請求項4のいずれか一項に記載の前記二酸化塩素ガス処理構造とを含み、
     第1次処理手段が、第1の気流発生手段と、活性炭フィルターとを備え、
     第1の気流発生手段によって前記被処理空気中の二酸化塩素ガスを前記活性炭フィルターに吸着させる第1次処理を行ってから、前記第1次処理後の被処理空気中に含まれている二酸化塩素ガスを前記二酸化塩素ガス処理構造により低減させる、
    ことを特徴としている二酸化塩素ガス処理装置。
  6.  二酸化塩素ガスによる空気浄化後の被処理空気中に含まれている二酸化塩素ガスを低減させる二酸化塩素ガス処理装置において、
     前記二酸化塩素ガスを所望の濃度に低下させる第1次処理手段と、
     請求項1乃至請求項4のいずれか一項に記載の前記二酸化塩素ガス処理構造とを含み、
     第1次処理手段が、第1の気流発生手段と、紫外線照射手段と、鉄製の細線を綿状に固めたスチールウールを接触層として備え、
     前記紫外線照射手段により紫外線を前記接触層に照射させた状態で、
     前記第1の気流発生手段によって前記被処理空気中の二酸化塩素ガスを前記接触層に循環させて接触させる第1次処理を行ってから、第1次処理後の被処理空気中に含まれている二酸化塩素ガスを前記二酸化塩素ガス処理構造により低減させる、
    ことを特徴としている二酸化塩素ガス処理装置。
  7.  医療用機器を二酸化塩素ガスに接触させて滅菌処理する滅菌装置において、
    請求項1乃至請求項4のいずれか一項に記載の前記二酸化塩素ガス処理構造を備えている、
    ことを特徴としている滅菌装置。
  8.  空気浄化装置が設置された閉じた環境内に二酸化塩素ガスを導入し、前記環境内にある物に前記二酸化塩素ガスを接触させて浄化処理する環境浄化装置において、
    請求項1乃至請求項4のいずれか一項に記載の前記二酸化塩素ガス処理構造を備えている、
    ことを特徴としている環境浄化装置。
PCT/JP2013/066639 2013-06-18 2013-06-18 二酸化塩素ガス処理構造、二酸化塩素ガス処理装置、滅菌装置および環境浄化装置 WO2014203319A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147025816A KR101537029B1 (ko) 2013-06-18 2013-06-18 이산화염소가스 처리구조, 이산화염소가스 처리장치, 멸균장치 및 환경정화장치
JP2013543066A JP5409978B1 (ja) 2013-06-18 2013-06-18 二酸化塩素ガス処理構造、二酸化塩素ガス処理装置、滅菌装置および環境浄化装置
PCT/JP2013/066639 WO2014203319A1 (ja) 2013-06-18 2013-06-18 二酸化塩素ガス処理構造、二酸化塩素ガス処理装置、滅菌装置および環境浄化装置
TW103107695A TWI603775B (zh) 2013-06-18 2014-03-06 二氧化氯氣體處理結構、二氧化氯氣體處理裝置、殺菌裝置及環境淨化裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066639 WO2014203319A1 (ja) 2013-06-18 2013-06-18 二酸化塩素ガス処理構造、二酸化塩素ガス処理装置、滅菌装置および環境浄化装置

Publications (1)

Publication Number Publication Date
WO2014203319A1 true WO2014203319A1 (ja) 2014-12-24

Family

ID=50202678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066639 WO2014203319A1 (ja) 2013-06-18 2013-06-18 二酸化塩素ガス処理構造、二酸化塩素ガス処理装置、滅菌装置および環境浄化装置

Country Status (4)

Country Link
JP (1) JP5409978B1 (ja)
KR (1) KR101537029B1 (ja)
TW (1) TWI603775B (ja)
WO (1) WO2014203319A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222491A (ja) * 2015-05-29 2016-12-28 株式会社デンソー 二酸化塩素発生装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102063478B1 (ko) * 2019-06-04 2020-01-08 주식회사 투위 이산화염소가스를 이용한 악취제거 및 과잉 이산화염소 제거장치
CN112167263A (zh) * 2020-10-09 2021-01-05 上海骏恺环境工程股份有限公司 一种以分子筛为载体缓释即时灭活新冠病毒的空气滤芯

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399069A (en) * 1977-02-10 1978-08-30 Santo Tekkosho Kk Method and apparatus for treating chlorine dioxide gas
JP2005027753A (ja) * 2003-07-08 2005-02-03 Daiichi Seidenki Kk 二酸化塩素ガス使用の滅菌装置
JP2005103519A (ja) * 2003-10-02 2005-04-21 Canon Inc 汚染物質分解方法及びその装置
WO2010077862A2 (en) * 2008-12-15 2010-07-08 Tbs Technologies, Llc Apparatus and methods for controlling chlorine dioxide concentration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399069A (en) * 1977-02-10 1978-08-30 Santo Tekkosho Kk Method and apparatus for treating chlorine dioxide gas
JP2005027753A (ja) * 2003-07-08 2005-02-03 Daiichi Seidenki Kk 二酸化塩素ガス使用の滅菌装置
JP2005103519A (ja) * 2003-10-02 2005-04-21 Canon Inc 汚染物質分解方法及びその装置
WO2010077862A2 (en) * 2008-12-15 2010-07-08 Tbs Technologies, Llc Apparatus and methods for controlling chlorine dioxide concentration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222491A (ja) * 2015-05-29 2016-12-28 株式会社デンソー 二酸化塩素発生装置

Also Published As

Publication number Publication date
JPWO2014203319A1 (ja) 2017-02-23
KR20150028763A (ko) 2015-03-16
JP5409978B1 (ja) 2014-02-05
TW201500102A (zh) 2015-01-01
KR101537029B1 (ko) 2015-07-15
TWI603775B (zh) 2017-11-01

Similar Documents

Publication Publication Date Title
JP6060245B2 (ja) 所与の設備または機器を消毒するモバイル消毒ユニットおよび前記ユニットを使用する方法
ES2661740T3 (es) Método y dispositivo para limpiar aire
JP5614559B2 (ja) トイレを消毒・脱臭する方法と装置
EP2175894B1 (en) Uv air treatment method and device
EP2968632B1 (en) Process for focused gas phase application of biocide
JP2008504094A (ja) 空気汚染除去機器及び方法
JP2008516652A (ja) 周囲空気を滅菌するための方法及び装置
JP2012517862A (ja) 紫外光空気処理方法、及び紫外光空気処理装置
KR101430120B1 (ko) 기체의 정화기구
JP3516380B2 (ja) 空気清浄装置
JP2000157621A (ja) 空気清浄機
JP2004016649A (ja) 殺菌方法、殺菌装置及びそれを用いた機器、建造物、移動体
JP5409978B1 (ja) 二酸化塩素ガス処理構造、二酸化塩素ガス処理装置、滅菌装置および環境浄化装置
JP2014506496A (ja) オゾンおよび噴霧流体を用いる浄化システム
KR20110004617A (ko) 고도산화공정을 이용한 고효율 탈취ㆍ공기살균 장치 및 그방법
JP2021504076A (ja) 空気処理システム、および空気処理システムの使用方法
JP2005201586A (ja) 空気調和機の空気清浄ユニット
JP7549831B2 (ja) 脱臭工法及び脱臭施工システム
US20230233726A1 (en) A portable air treatment system and a method of using said air treatment system
KR20050117658A (ko) 탈취 및 살균 기능의 플라즈마 가습장치
EP4424331A1 (en) Device for air purification and sanitization
CN208032322U (zh) 一种紫外光催化去除有机物设备
WO1994024043A1 (en) Method and apparatus for ozone decomposition by stimulated emission of electromagnetic wave
JP2007033017A (ja) 光触媒空気循環装置
JP2023097107A (ja) 空気浄化装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013543066

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147025816

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887236

Country of ref document: EP

Kind code of ref document: A1