Nothing Special   »   [go: up one dir, main page]

WO2014126220A1 - Fe基ナノ結晶軟磁性合金を用いた環状磁心、及びそれを用いた磁性部品 - Google Patents

Fe基ナノ結晶軟磁性合金を用いた環状磁心、及びそれを用いた磁性部品 Download PDF

Info

Publication number
WO2014126220A1
WO2014126220A1 PCT/JP2014/053536 JP2014053536W WO2014126220A1 WO 2014126220 A1 WO2014126220 A1 WO 2014126220A1 JP 2014053536 W JP2014053536 W JP 2014053536W WO 2014126220 A1 WO2014126220 A1 WO 2014126220A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic core
annular
atomic
frequency
Prior art date
Application number
PCT/JP2014/053536
Other languages
English (en)
French (fr)
Inventor
昌武 直江
康博 濱口
萩原 和弘
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN201480008901.3A priority Critical patent/CN105074843B/zh
Priority to EP14751452.5A priority patent/EP2958116B1/en
Priority to ES14751452T priority patent/ES2775211T3/es
Priority to JP2015500319A priority patent/JP6075438B2/ja
Publication of WO2014126220A1 publication Critical patent/WO2014126220A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/04Cores, Yokes, or armatures made from strips or ribbons

Definitions

  • the present invention relates to an annular magnetic core used for a noise filter or the like disposed between a power source and an electronic device in order to suppress noise at a large current, and a magnetic component using the same.
  • the noise filter 10 is inserted between the power source 201, the inverter 202, and the electronic device 203.
  • Fig. 10 shows the general configuration of the noise filter 10 for a three-phase power supply.
  • interphase capacitors C11, C12, C13, C21, C22, C23 for reducing normal mode noise and common mode noise are connected between the input terminal 101a on the power supply side and the output terminal 101b on the electronic equipment side.
  • a common mode choke coil 5 to be reduced and grounding capacitors C31, C32, and C33 are arranged.
  • a choke coil for suppressing normal mode noise may be arranged in series with the power supply path.
  • FIG. 11 shows an example of the common mode choke coil 5.
  • the common mode choke coil 5 includes, for example, an annular magnetic core 1 made of Mn-Zn ferrite, Fe-Si-B amorphous alloy, nanocrystalline soft magnetic alloy, or the like, as described in JP-A-2000-340437.
  • a plurality of coils 7a, 7b, 7c wound around the annular magnetic core 1 are configured.
  • the coil may be a bifilar winding.
  • the common mode choke coil 5 exhibits a large impedance to the common mode noise flowing through the power supply path, attenuates the common mode noise from the power supply by the inductances of the coils 7a, 7b, and 7c and the ground capacitors C31, C32, and C33, Normal mode noise to the input terminal due to interphase capacitors C11, C12, C13 connected between each phase of the input terminal, interphase capacitors C21, C22, C23 connected between each phase of the output terminal, and leakage inductance of each coil The noise of the power source and the electronic device is prevented from entering each other.
  • the noise regulation of VCCI standard or CISPR standard defines the limit of the noise terminal voltage in the frequency band of 150 kHz to 30 MHz.
  • the saturation magnetic flux density of the magnetic material used in the magnetic core for common mode choke coils is important for suppressing high-voltage noise, and the magnetic material permeability and its frequency characteristics are important for widening the frequency band for noise reduction. is there.
  • Japanese Patent Publication No. 7-74419 has a general formula: (Fe 1-a M a ) 100-XYZ- ⁇ Cu X Si Y B Z M ′ ⁇ (where M is Co and / or Ni, and M ′ is Nb , W, Ta, Zr, Hf, Ti, and Mo, at least one element selected from the group consisting of a, x, y, z, and ⁇ is 0 ⁇ a ⁇ 0.5, 0.1 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 30, 0 ⁇ z ⁇ 25, 5 ⁇ y + z ⁇ 30 and 0.1 ⁇ ⁇ ⁇ 30), and at least 50% of the structure has an average particle size of 100 nm or less.
  • An Fe-based soft magnetic alloy which is composed of fine crystal grains having a balance and is substantially amorphous. Although this Fe-based soft magnetic alloy has a high magnetic permeability even at high frequencies, it is likely to be magnetically saturated with a large current and may not function sufficiently as a choke coil. When the magnetic core is magnetically saturated by a large current, the magnetic permeability decreases and the inductance decreases. Therefore, when used in a noise filter, the attenuation performance of common mode noise and normal mode noise is low. If a magnetic gap is provided in the magnetic core in order to prevent a decrease in the damping performance, not only the magnetic core loss increases but also a problem of leakage magnetic flux in the magnetic gap occurs.
  • Special Table 2006-525655 is made of a super microcrystalline alloy with a relative magnetic permeability ⁇ of 500-15000 and a saturation magnetostriction ⁇ of less than 15 ppm, and has high operating characteristics with a linear BH loop and AC and DC.
  • a magnetic core having at least 50% of the ultrafine-crystalline alloy are occupied by the following microcrystal particles having an average particle size of 100 nm
  • the ultrafine-crystalline alloy is the general formula: Fe a Co b Ni c Cu d M e Si f B g X h (where M is at least one of V, Nb, Ta, Ti, Mo, W, Zr, Cr, Mn and Hf, X is P, Ge, C and inevitable impurities)
  • an object of the present invention is to provide an annular magnetic core that is less likely to be magnetically saturated with a large current and can maintain a high magnetic permeability, and a magnetic component such as a choke coil that can exhibit an excellent noise reduction effect.
  • the annular magnetic core of the present invention is composed of a Fe-based nanocrystalline soft magnetic alloy in which a part of Fe is substituted with Ni and / or Co, AC relative permeability ⁇ r 100k (50) at a frequency of 100 kHz and a DC applied magnetic field strength of 50 A / m is 4000 or more, AC relative permeability ⁇ r 100k (150) at a frequency of 100 kHz and a DC applied magnetic field strength of 150 A / m is 2500 or more, The maximum permeability ⁇ Max at a DC applied magnetic field strength of 400 A / m is 8000 or less, and the magnetic flux density B 400 is 1.3 T or more.
  • the annular magnetic core has an AC relative permeability ⁇ r 10k (150) of 4000 or more at a frequency of 10 kHz and a DC applied magnetic field strength of 150 A / m, and an AC ratio at a frequency of 10 kHz and DC applied magnetic field strength of 200 A / m.
  • the permeability ⁇ r 10k (200) is preferably 2000 or more.
  • the above-mentioned Fe-based nanocrystalline soft magnetic alloy has Fe and Ni and / or Co in total exceeding 75.5 atomic%, Ni and / or Co not exceeding 6 atomic%, Cu being 0.1 to 2 atomic%, and Nb being 0.1 to 4 atoms %, Si is contained in 8 to 12 atomic%, and B is preferably contained in 9 to 12 atomic%. More preferred compositions of Fe-based nanocrystalline soft magnetic alloys include Fe and Ni and / or Co totaling more than 75.5 atomic%, Ni and / or Co 4 to 6 atomic%, Si 10 to 11.5 atomic%, and B Is 9.2 to 10 atomic%.
  • the Fe-based nanocrystalline soft magnetic alloy is preferably in the form of a ribbon having a thickness of 10 to 25 ⁇ m.
  • the thickness of the ribbon is more preferably 14 to 25 ⁇ m.
  • the magnetic component of the present invention is characterized in that the annular magnetic core is accommodated in a resin case, and a part of the annular magnetic core is fixed with an adhesive.
  • a conductor passes through the hollow portion of the annular magnetic core.
  • a conductor is wound around the annular magnetic core.
  • the conductor is a conductor or a bus bar.
  • the annular magnetic core of the present invention is less likely to be magnetically saturated and can maintain a high magnetic permeability even at a large current. Therefore, it is excellent in high voltage noise reduction performance and pulse attenuation characteristics, and is a small and lightweight choke filter that reduces noise in a wide frequency band. Is preferred.
  • a magnetic gap required when using a high permeability Fe-based nanocrystalline soft magnetic alloy is not required, the number of processing steps can be reduced. Further, there is an advantage that the characteristic change due to magnetostriction is small as in the Fe-based amorphous alloy.
  • FIG. 1 is a perspective view showing an example (Example 1) of an annular magnetic core of the present invention.
  • 2 is a graph showing a direct current B-H loop of an annular magnetic core of Example 1.
  • FIG. 6 is a graph showing the relationship between the AC relative permeability ⁇ r of the annular magnetic core of Example 1 and the magnetic field strength.
  • 3 is a graph showing frequency characteristics of AC relative permeability ⁇ r of the annular magnetic core of Example 1.
  • 6 is a graph showing frequency characteristics of impedance of a choke coil of Example 2.
  • 3 is a graph showing direct current superimposed inductance characteristics of choke coils of Example 2 and Comparative Example 1. It is a perspective view which shows an example of a three-phase common mode choke coil.
  • FIG. 6 is a graph showing frequency characteristics of impedance and inductance of a three-phase common mode choke coil of Example 3. It is a block diagram which shows the circuit which has arrange
  • Fe and Ni and / or Co Fe is an element that largely controls the saturation magnetic flux density Bs.
  • the total of Fe, Ni and / or Co is preferably more than 75.5 atomic%.
  • the induced magnetic anisotropy can be increased, so that the relative permeability is intentionally reduced without significantly reducing the saturation magnetic flux density by heat treatment in a magnetic field. Therefore, it is possible to impart a characteristic that the magnetic saturation is difficult with respect to a large current.
  • the core loss Pcv can be reduced by adding Ni and / or Co.
  • the content of Ni and / or Co is preferably 6 atomic% or less.
  • the magnetic permeability decreases greatly, the AC relative permeability ⁇ r 100k (50) at a frequency of 100 kHz and a DC applied magnetic field strength of 50 A / m is set to 4000 or more, and a frequency of 100 It is difficult to make the AC relative permeability ⁇ r 100k (150) at 2500 and above with a DC applied magnetic field strength of 150 A / m 2500 or more. Therefore, the number of windings must be increased in order to obtain a required impedance, which is not suitable for a choke coil.
  • the magnetic permeability is obtained by applying a magnetic field perpendicular to the magnetic path direction of the magnetic core (alloy width direction) during the heat treatment.
  • Ni lowers the saturation magnetic flux density Bs, when it is added alone, it becomes difficult to make the magnetic flux density B 400 1.3 T or more if the content exceeds 6 atomic%.
  • the effect of inclining the BH curve is greater than that of Co in the range of 6 atomic% or less, the amount added can be reduced compared to Co.
  • ⁇ Co slightly increases the saturation magnetic flux density Bs, but it is more expensive than Ni, so there is a problem of increased cost.
  • Use in combination with Ni is preferable because it can suppress a decrease in the saturation magnetic flux density Bs depending on the proportion of Co.
  • Cu is an element necessary for the precipitation of fine crystal grains by heat treatment.
  • the Cu content is less than 0.1 atomic%, it is difficult to make 50 volume% or more of the alloy structure into fine crystal grains having an average crystal grain size of 100 ⁇ m or less.
  • the Cu content exceeds 2 atomic%, the amorphous alloy ribbon before heat treatment is brittle, and winding and punching are difficult. Accordingly, the Cu content is preferably 0.1 to 2 atomic%. A more preferable Cu content is 0.5 to 1.5 atomic%.
  • Nb contributes to the precipitation of fine crystal grains together with Cu. If Nb is less than 0.1 atomic%, the above effect cannot be obtained sufficiently. On the other hand, even if Nb exceeds 4 atomic%, there is no significant change in the effect of precipitating fine crystal grains, but the content of other metal elements may be reduced by that amount, which may deteriorate magnetic properties. . Therefore, the Nb content is preferably 0.1 to 4 atomic%. A more preferable Nb content is 1 to 3.5 atomic%. Note that a part or all of Nb may be replaced with an element (Ti, Zr, Hf, Mo, W, or Ta) having the same action.
  • an element Ti, Zr, Hf, Mo, W, or Ta
  • Both Si and B are amorphous phase forming elements.
  • Si is 8 atomic% or more, an amorphous phase can be stably formed by rapid cooling, and the coercive force Hc and the core loss Pcv are reduced.
  • the Si content exceeds 12 atomic%, the saturation magnetic flux density Bs decreases.
  • the induced magnetic anisotropy is affected by the amount of Si in the Fe grains with bcc structure. Accordingly, the Si content is preferably 8 to 12 atomic%. A more preferable Si content is 10 to 11.5 atomic%.
  • the B content is 9 atomic% or more, an amorphous phase can be stably formed by rapid cooling, and a uniform nanocrystalline phase can be obtained after heat treatment.
  • the B content exceeds 12 atomic%, the saturation magnetic flux density Bs decreases. Therefore, the B content is preferably 9 to 12 atomic%.
  • the B content is more preferably 9.2 to 10 atomic%.
  • the total amount of Si and B is preferably 22 atomic percent or less, more preferably 21 atomic percent or less.
  • the thickness of the Fe-based nanocrystalline soft magnetic alloy ribbon is preferably 10 to 25 ⁇ m. If the thickness is less than 10 ⁇ m, the mechanical strength of the ribbon is insufficient, and not only is it easy to break during handling, but also the coercive force Hc is increased. On the other hand, if the thickness exceeds 25 ⁇ m, it is difficult to stably obtain an amorphous state, and eddy current loss increases. When eddy current loss is not taken into consideration, the thickness of the ribbon is preferably 14 to 25 ⁇ m.
  • FIG. 1 shows an example of an annular magnetic core 1 formed by winding an Fe-based nanocrystalline soft magnetic alloy ribbon 100 of the present invention.
  • a magnetic core obtained by punching a ribbon into a donut shape and laminating a plurality of sheets may be used.
  • the annular magnetic core 1 is not limited to a circular shape, and may be a racetrack shape, a rectangular shape, or the like.
  • the obtained annular magnetic core is heat-treated at a temperature equal to or higher than the crystallization start temperature for 10 minutes or more in an inert gas atmosphere such as nitrogen gas or in the air while applying a magnetic field.
  • An annular magnetic core made of an Fe-based nanocrystalline soft magnetic alloy is obtained in which 50% by volume or more of the alloy structure is occupied by fine crystal grains of bcc structure having an average crystal grain size of 100 nm or less.
  • the temperature at which the bcc structure Fe crystal grains precipitate is about 480 to 560 ° C.
  • the crystallization start temperature is an exothermic start temperature obtained by differential scanning calorimetry. When a compound phase such as Fe 2 B precipitates, the coercive force Hc increases and the constant magnetic permeability is lost. Therefore, the upper limit of the heat treatment temperature is preferably set to a temperature at which the compound phase does not precipitate.
  • the holding time is important as well as the temperature. Since the induced magnetic anisotropy is affected by the amount of Si in the Fe crystal grains of the bcc structure, it is necessary to sufficiently dissolve Si in Fe during crystallization. Therefore, the maximum temperature holding time is preferably 10 minutes or longer. If the heat treatment temperature is lowered, the holding time becomes longer, but the upper limit is preferably 60 minutes in consideration of productivity.
  • the heat treatment in a magnetic field itself is a known method as disclosed in, for example, Japanese Patent Publication No. 7-74419.
  • the applied magnetic field is preferably at least 1000 A / m or more in order to saturate the alloy.
  • the solid solution of Si is insufficient and the anisotropy is not induced, but as the solid solution of Si advances, the induction of anisotropy proceeds rapidly. Therefore, it is preferable to apply the magnetic field from a temperature lower than the crystallization temperature.
  • the rate of temperature rise from the start of application of the magnetic field to the holding temperature is 5 ° C./min or less. If the rate of temperature increase is too fast, crystallization is completed quickly due to heat generated by crystallization. Although anisotropy can be induced even after crystallization, it is insufficient compared to the anisotropy obtained during crystallization. Further, crystallization may be completed in a state where the solid solution of Si is insufficient. In order to obtain sufficient induction of anisotropy, the rate of temperature rise is more preferably less than 1 ° C./min.
  • the AC relative permeability ⁇ r is a permeability obtained by the following equation (1) from the effective self-inductance of a coil having a closed magnetic path magnetic core in which leakage flux can be ignored.
  • ⁇ r (L ⁇ C1) / ( ⁇ 0 ⁇ N 2 ) ...
  • L Effective self-inductance (H)
  • N Total number of turns
  • ⁇ 0 Vacuum permeability (4 ⁇ ⁇ ⁇ 10 -7 )
  • C1 Magnetic constant (mm -1 )
  • the effective self-inductance L was measured with an LCR meter (Agilent Technologies, Inc. 4284A) and an impedance / gain phase analyzer (Agilent Technologies, Inc. 4194A).
  • the relationship between the magnetic field and the relative permeability ⁇ r is measured using a measuring device that can superimpose a DC current of up to 20 A in combination with an LCR meter 4284A and a bias current source (42841A made by Agilent Technologies, Inc.). It was determined by measuring the superimposed inductance.
  • the AC relative permeability ⁇ r was obtained from the effective self-inductance L at a predetermined frequency (for example, 100 kHz) by the above formula (1).
  • the bias current I for generating a predetermined DC applied magnetic field strength H (for example, 50 A / m) was obtained by the following equation (2).
  • H I ⁇ N / Le (2)
  • H DC applied magnetic field strength (A / m)
  • I Bias current (A)
  • N Total number of turns
  • Le Average track length (m)
  • the frequency characteristic of the AC relative permeability ⁇ r was measured using an impedance / gain phase analyzer 4194A at an operating magnetic field of 0.05 A / m and a frequency of 10 kHz to 10 MHz.
  • the maximum permeability ⁇ Max , the magnetic flux density B 400 and the coercive force Hc at a DC applied magnetic field strength of 400 A / m were measured together with a DC magnetization characteristic test apparatus (SK-110 model manufactured by Metron Engineering Co., Ltd.).
  • AC relative permeability ⁇ r 100k (50) and ⁇ r 100k (150) at a DC applied magnetic field strength of 50 A / m and 150 A / m at a frequency of 100 kHz respectively. It is specified as 4000 or more and 2500 or more. If the AC relative permeability ⁇ r 100k (50) is 4000 or more and the AC relative permeability ⁇ r 100k (150) is 2500 or more, the decrease in the attenuation performance of common mode noise and normal mode noise due to the decrease in permeability is suppressed. And exhibits an excellent noise suppression effect.
  • AC relative permeability .mu.r 10k at 10 kHz frequency and the applied DC magnetic field intensity 150 A / m (150) is not less than 4,000, and the AC relative permeability .mu.r 10k at 10 kHz frequency and the applied DC magnetic field strength 200 A / m (200) is more preferably 2000 or more.
  • the Fe-based nanocrystalline soft magnetic alloy used for the annular magnetic core of the present invention maintains the characteristic that a relatively higher magnetic permeability than other magnetic materials can be obtained even at high frequencies.
  • the noise filter using the magnetic component is also excellent in reducing noise in a wide frequency band as well as reducing high-voltage noise.
  • FIG. 11 shows a three-phase common mode choke coil having a configuration in which three conductors a, b, and c are passed through an annular magnetic core 5 ′ as an example of a magnetic component that penetrates a conductor through a hollow portion of the annular magnetic core.
  • FIG. 11 (b) shows a three-phase common mode choke coil in which three conductors a, b, and c are wound around an annular magnetic core 5 ′ as an example of a magnetic component in which a conductor is wound around an annular magnetic core.
  • FIG. 12 shows a state in which the annular magnetic core 5 ′ is put into an insulating core case composed of the upper case 11 and thus the case 12.
  • Example 1 By a single roll method, a molten metal having a composition of Fe 70.7 Ni 5.0 Cu 0.8 Nb 2.8 Si 10.9 B 9.8 (atomic%) is jetted onto the surface of a copper roll rotating at a high speed from a nozzle and rapidly cooled to a thickness of 16 ⁇ m. An alloy ribbon having a width of 53 mm was obtained at 18 ⁇ m and 23 ⁇ m. X-ray diffraction measurement confirmed that the structure of these alloy ribbons was substantially amorphous. The crystallization temperature Tx of this alloy determined by differential scanning calorimetry was 490 ° C.
  • Each slit was slit and two strips with a width of 25 mm were obtained.
  • Each thin ribbon was wound to obtain an annular wound core (space factor: 0.9) having an outer diameter of 24.5 mm, an inner diameter of 21 mm, and a height width of 25 mm.
  • An annular core is placed in a heat treatment furnace controlled in a nitrogen atmosphere, the temperature is raised from 420 ° C to the maximum temperature of 550 ° C at a rate of 0.54 ° C / min, held at the maximum temperature for 20 minutes, and then cooled in the furnace As a result, an annular wound core made of the Fe-based nanocrystalline soft magnetic alloy shown in FIG. 1 was obtained.
  • FIG. 2 shows a DC BH loop of an annular magnetic core using a ribbon having a thickness of 16 ⁇ m as a representative example.
  • each annular magnetic core in an insulating case apply 10 turns of winding, and change the AC ratio to the strength of 50 A / m, 150 A / m and 200 A / m of DC applied magnetic field with frequency of 10 kHz and 100 kHz at 25 ° C.
  • the relationship of magnetic permeability ⁇ r was obtained by LCR meter 4284A.
  • each annular magnetic core (sample No. 1-5) in an insulating case, wind 1 turn, and use an impedance / gain phase analyzer 4194A for voltage amplitude 0.5 Vrms, frequency 10-100 kHz, temperature 25 ° C AC
  • the relative magnetic permeability ⁇ r 10k and ⁇ r 100k were measured. Further, the frequency f50 at which the relative permeability ⁇ r of 50% of the relative permeability ⁇ r10k at the frequency of 10 kHz was obtained was obtained.
  • the results are shown in Table 1.
  • FIG. 4 shows the frequency characteristics of the relative permeability ⁇ r using a ribbon having a thickness of 16 ⁇ m.
  • the annular magnetic core of the present invention has a small squareness ratio and excellent constant permeability while maintaining a high magnetic flux density, and a small change in AC relative permeability with respect to frequency.
  • Both are 4000 or more
  • AC relative permeability ⁇ r 100k (150) at frequency 100 kHz and DC applied magnetic field strength 150 A / m is 2500 or more
  • the AC relative permeability ⁇ r 10k (200) is 2000 or more.
  • the annular magnetic core of the present invention has a high AC relative permeability from a low magnetic field region to a high magnetic field region. Furthermore, it can be seen that an annular magnetic core using a thin ribbon has little reduction in AC relative permeability and is excellent in frequency characteristics.
  • Comparative Example 1 An annular core with an outer diameter of 36.0 mm, an inner diameter of 17.5 mm, and a height of 25 mm was prepared using a thin ribbon (thickness 18 ⁇ m) of Fe-based nanocrystalline soft magnetic alloy FT-3KL (manufactured by Hitachi Metals, Ltd.). This was put into a case, and a choke coil was manufactured by winding an enameled wire with a wire diameter of 2.5 mm for 8 turns.
  • Example 2 An annular core having an outer diameter of 36.0 mm, an inner diameter of 17.5 mm, and a height width of 25 mm was produced using the ribbon (thickness 18 ⁇ m) produced in Example 1, and this was put in a case, and the wire diameter was 2.5 mm.
  • a choke coil was made by winding 17 turns of enameled wire.
  • Fig. 5 shows the impedance of the choke coil. As is apparent from FIG. 5, the choke coil of Example 2 exhibited excellent impedance performance from the low frequency range to the high frequency range.
  • Example 3 The three-phase common mode choke coil shown in FIG. 7 is formed using an annular core having an outer diameter of 17.8 mm, an inner diameter of 13.8 mm, and a height of 25 mm using the ribbon (thickness: 18 ⁇ m) produced in Example 1. Produced.
  • the annular magnetic core was placed in an insulating case 6, and a partition plate 8 for partitioning a winding region was provided at the center of the case.
  • the windings 7a, 7b, and 7c for each phase were formed by winding an enameled wire with a wire diameter of 2.5 mm for three turns.
  • Figure 8 shows the frequency characteristics of impedance and inductance of the three-phase common mode choke coil. In the figure, a solid line indicates inductance, and a broken line indicates impedance. As is apparent from FIG. 8, the three-phase common mode choke coil of Example 3 exhibited excellent impedance performance from a low frequency range to a high frequency range.
  • Example 4 A noise filter shown in FIG. 9 was produced using the three-phase common mode choke coil obtained in Example 2.
  • the obtained noise filter was excellent in the attenuation of low frequency noise, high frequency noise, and pulse noise, and was excellent in the effect of reducing the noise terminal voltage in a wide frequency band of 150 kHz to 30 MHz.
  • Example 5 In the same manner as in Example 1, an alloy ribbon having a thickness of 16 ⁇ m and a width of 53 mm was prepared from each molten metal having the composition (atomic%) shown in Table 2. Each strip was slit and two strips with a width of 25 mm were obtained. Each thin ribbon was wound to obtain an annular core (space factor: 0.9) having an outer diameter of 24.5 mm, an inner diameter of 21 mm, and a height width of 25 mm. Each of the annular cores was heat-treated in the same magnetic field as in Example 1 to obtain an annular core composed of an Fe-based nanocrystalline soft magnetic alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

 Feの一部をNi及び/又はCoで置換したFe基ナノ結晶軟磁性合金からなり、周波数100 kHz及び直流印加磁界強度50 A/mでの交流比透磁率μr100k(50)が4000以上であり、周波数100 kHz及び直流印加磁界強度150 A/mでの交流比透磁率μr100k(150)が2500以上であり、直流印加磁界強度が400 A/mでの最大透磁率μMaxが8000以下で、磁束密度B400が1.3 T以上である環状磁心。

Description

Fe基ナノ結晶軟磁性合金を用いた環状磁心、及びそれを用いた磁性部品
 本発明は、大電流におけるノイズを抑制するために電源と電子機器との間に配置されるノイズフィルタ等に用いられる環状磁心、及びそれを用いた磁性部品に関する。
 図9に示すように電源201、インバータ202、電子機器203等を含む電子回路では、電源201側のコンバータ部から発生する高周波スイッチングノイズ、モータ等の電子機器203から発生する高電圧パルス性ノイズ等のノイズがあり、誤動作の原因となる。このようなノイズを防ぐため、電源201とインバータ202及び電子機器203の間にノイズフィルタ10が挿入されている。
 図10は三相電源用のノイズフィルタ10の一般的な構成を示す。このノイズフィルタ10では、電源側の入力端子101aと電子機器側の出力端子101bとの間に、ノーマルモードノイズを低減する相間コンデンサC11,C12,C13,C21,C22,C23と、コモンモードノイズを低減するコモンモードチョークコイル5と、接地コンデンサC31,C32,C33とが配置されている。電源経路と直列にノーマルモードノイズを抑制するためのチョークコイルを配置することもある。
 図11はコモンモードチョークコイル5の一例を示す。このコモンモードチョークコイル5は、例えば特開2000-340437号に記載されるように、Mn-Zn系フェライトや、Fe-Si-B系アモルファス合金又はナノ結晶軟磁性合金等からなる環状磁心1と、環状磁心1に巻回された複数のコイル7a,7b,7cにより構成されている。コイルをバイファイラ巻としても良い。コモンモードチョークコイル5は、電源経路を流れるコモンモードノイズに対して大きなインピーダンスを示し、各コイル7a,7b,7cによるインダクタンスと接地コンデンサC31,C32,C33により電源からのコモンモードノイズを減衰させ、入力端子の各相間に接続された相間コンデンサC11,C12,C13と、出力端子の各相間に接続された相間コンデンサC21,C22,C23と、各コイルの漏洩インダクタンスによって、入力端子へのノーマルモードノイズを減衰させ、電源及び電子機器のノイズが相互に侵入するのを防止する。
 例えば、VCCI規格又はCISPR規格のノイズ規制では、150 kHz~30 MHzの周波数帯における雑音端子電圧の限度が定められており、ノイズフィルタとして高電圧のノイズの低減だけでなく、広い周波数範囲におけるノイズの低減も求められている。高電圧のノイズの抑制には、コモンモードチョークコイル用磁心に用いられる磁性材料の飽和磁束密度が重要であり、ノイズ低減の広周波数帯域化には磁性材料の透磁率及びその周波数特性が重要である。
 特公平7-74419号は、一般式:(Fe1-aMa)100-X-Y-Z-αCuXSiYBZM′α(ただし、MはCo及び/又はNiであり、M′はNb,W,Ta,Zr,Hf,Ti及びMoからなる群から選ばれた少なくとも1種の元素であり、a,x,y,z及びαはそれぞれ0≦a≦0.5,0.1≦x≦3,0≦y≦30,0≦z≦25,5≦y+z≦30及び0.1≦α≦30を満たす。)により表される組成を有し、組織の少なくとも50%が100 nm以下の平均粒径を有する微細な結晶粒からなり、残部が実質的に非晶質であるFe基軟磁性合金を開示している。このFe基軟磁性合金は高周波でも高透磁率を有するが、大電流に対して磁気飽和しやすく、チョークコイルとして十分に機能できないおそれがある。大電流により磁心が磁気飽和すると、透磁率が小さくなりインダクタンスは低下する。そのため、ノイズフィルタに用いた場合、コモンモードノイズ及びノーマルモードノイズの減衰性能が低い。減衰性能の低下を防ぐために磁心に磁気ギャップを設けると、磁心損失が増加するだけでなく、磁気ギャップでの漏洩磁束の問題も生じる。
 また特表2006-525655号は、500~15000の比透磁率μ、及び15 ppm未満の飽和磁気歪λを有する超微結晶合金からなり、直線的なB-Hループ及び交流及び直流で高い動作特性を有する磁心であって、超微結晶合金の少なくとも50%が平均粒径100 nm以下の微細結晶粒子により占められており、かつ前記超微結晶合金が一般式:FeaCobNicCudMeSifBgXh(ただし、MはV、Nb、Ta、Ti、Mo、W、Zr、Cr、Mn及びHfの少なくとも一種であり、XはP、Ge、C及び不可避的不純物であり、a、b、c、d、e、f、g及びhは原子%で表され、0≦b≦40、2<c<20、0.5≦d≦2、1≦e≦6、6.5≦f≦18、5≦g≦14、5≦b+c≦45、a+b+c+d+e+f=100、及びh<5、の条件を満たす。)により表される磁心を開示している。しかし、特表2006-525655号に具体的に記載された組成の磁心では、直流印加磁界強度が150 A/m以上になると、高い交流比透磁率μrを維持するのが難しくなるという欠点を有することが分った。
 従って、本発明の目的は、大電流に対して磁気飽和し難く、高い透磁率を維持できる環状磁心、及び優れたノイズ低減効果を発揮できるチョークコイル等の磁性部品を提供することである。
 本発明の環状磁心はFeの一部をNi及び/又はCoで置換したFe基ナノ結晶軟磁性合金からなり、
 周波数100 kHz及び直流印加磁界強度50 A/mでの交流比透磁率μr100k(50)が4000以上であり、
 周波数100 kHz及び直流印加磁界強度150 A/mでの交流比透磁率μr100k(150)が2500以上であり、
 直流印加磁界強度が400 A/mでの最大透磁率μMaxが8000以下で、磁束密度B400が1.3 T以上であることを特徴とする。
 上記環状磁心は、周波数10 kHz及び直流印加磁界強度150 A/mでの交流比透磁率μr10k(150)が4000以上であり、周波数10 kHz及び直流印加磁界強度200 A/mでの交流比透磁率μr10k(200)が2000以上であるのが好ましい。
 上記Fe基ナノ結晶軟磁性合金は、Fe及びNi及び/又はCoを合計で75.5原子%超、Ni及び/又はCoを6原子%以下、Cuを0.1~2原子%、Nbを0.1~4原子%、Siを8~12原子%、及びBを9~12原子%含有するのが好ましい。Fe基ナノ結晶軟磁性合金のより好ましい組成は、Fe及びNi及び/又はCoが合計で75.5原子%超、Ni及び/又はCoが4~6原子%、Siが10~11.5原子%、及びBが9.2~10原子%である。
 上記Fe基ナノ結晶軟磁性合金は厚さ10~25μmの薄帯状であるのが好ましい。上記薄帯の厚さは14~25μmであるのがより好ましい。
 本発明の磁性部品は、上記環状磁心を樹脂製ケース内に収容し、前記環状磁心の一部を接着剤により固定したことを特徴とする。第一の例では、前記環状磁心の中空部に導体が貫通している。第二の例では、前記環状磁心に導体が巻回されている。前記導体は導線又はバスバーである。
 本発明の環状磁心は磁気飽和しにくく、かつ大電流でも高い透磁率を維持できるので、高電圧ノイズの低減性能及びパルス減衰特性に優れ、広周波数帯域のノイズを低減する小型軽量のチョークフィルタに好適である。また、高透磁率のFe基ナノ結晶軟磁性合金を用いる場合に必要な磁気ギャップが必要ないので、加工工数を低減できる。さらに、Fe基アモルファス合金のような磁歪による特性変化が少ないという利点もある。
本発明の環状磁心の一例(実施例1)を示す斜視図である。 実施例1の環状磁心の直流B-Hループを示すグラフである。 実施例1の環状磁心の交流比透磁率μrと磁場強度との関係を示すグラフである。 実施例1の環状磁心の交流比透磁率μrの周波数特性を示すグラフである。 実施例2のチョークコイルのインピーダンスの周波数特性を示すグラフである。 実施例2及び比較例1のチョークコイルの直流電流重畳インダクタンス特性を示すグラフである。 三相コモンモードチョークコイルの一例を示す斜視図である。 実施例3の三相コモンモードチョークコイルのインピーダンス及びインダクタンスの周波数特性を示すグラフである。 ノイズフィルタを電源と電子機器との間に配置した回路を示すブロック図である。 三相電源用ノイズフィルタの回路構成の一例を示す図である。 コモンモードチョークコイルの一例を示す正面図である。 コモンモードチョークコイルの別の例を示す正面図である。 環状磁心を絶縁性コアケースに入れる様子を示す概略分解斜視図である。
 添付図面を参照して本発明の実施形態を以下詳細に説明するが、本発明はそれらに限定されるものではなく、本発明の思想を逸脱しない限り種々の変更をすることができる。また各実施形態の説明は特に断りがなければ他の実施形態にも当てはまる。
[1] Fe基ナノ結晶軟磁性合金
 本発明の環状磁心に用いるFe基ナノ結晶軟磁性合金は、Feの一部をNi及び/又はCoで置換した組成を有するが、望ましいB-H特性を有するためには、不純物を除いて、一般式:Fea(Ni, Co)bCucNbdSieBf(原子%)(ただし、75.5<a+b、b≦6、0.1≦c≦2、0.1≦d≦4、8≦e≦12、9≦f≦12、及びa+b+c+d+e+f=100)により表される組成を有するのが好ましい。ただし、上記式中の(Ni, Co)はNiおよび/又はCoを表す。
(1) Fe、及びNi及び/又はCo
 Feは飽和磁束密度Bsを大きく支配する元素である。直流印加磁界強度が400 A/mでの磁束密度B400を1.3 T以上とするには、Fe及びNi及び/又はCoは合計で75.5原子%超とするのが好ましい。
 Feの一部をNi及び/又はCoで置換することにより、誘導磁気異方性を大きくできるため、磁場中の熱処理により飽和磁束密度を大きく低下することなく、比透磁率を意図的に低下させることができ、もって大電流に対して磁気飽和しにくい特性を付与することができる。また、Ni及び/又はCoの添加により、磁心損失Pcvを低減することもできる。Ni及び/又はCoの含有量は6原子%以下であるのが好ましい。Ni及び/又はCoが6原子%を超えると透磁率の低下が大きくなり、周波数100 kHz及び直流印加磁界強度50 A/mでの交流比透磁率μr100k(50)を4000以上とし、周波数100 kHz及び直流印加磁界強度150 A/mでの交流比透磁率μr100k(150)を2500以上とするのが困難となる。そのため、必要なインピーダンスを得るために巻線数を増やさなければならなくなり、チョークコイル用に適さなくなる。なお、上記透磁率は、熱処理中に磁心の磁路方向に垂直(合金の幅方向)に磁場を印可させることにより得られる。
 Niは飽和磁束密度Bsを低下させるので、単独添加の場合には含有量が6原子%超えると磁束密度B400を1.3 T以上とするのが困難となる。また、6原子%以下の範囲でCoよりB-H曲線を傾斜させる効果(比透磁率を低下させる効果)が大きいので、Coより添加量を少なくできる。
 Coは僅かに飽和磁束密度Bsを上昇させるが、Niより高価であるのでコスト増の問題がある。Niと併用するとCoの割合に応じて飽和磁束密度Bsの低下を抑えることができるので好ましい。
 Cuは熱処理による微細結晶粒の析出に必要な元素である。Cu含有量が0.1原子%未満であると、合金組織の50体積%以上を平均結晶粒径100 nm以下の微細結晶粒とすることが困難である。またCu含有量が2原子%超であると、熱処理前のアモルファス合金薄帯が脆く、巻回や打ち抜きが困難である。従って、Cu含有量は0.1~2原子%が好ましい。より好ましいCu含有量は0.5~1.5原子%である。
 NbはCuとともに微細結晶粒の析出に寄与する。Nbが0.1原子%未満であると上記効果が十分に得られない。一方、Nbを4原子%超にしても微細結晶粒を析出させる効果に大きな変化はないが、その含有量の分だけ他の金属元素の含有量を減少させ、磁気特性を悪化させるおそれがある。そのため、Nb含有量は0.1~4原子%が好ましい。より好ましいNb含有量は1~3.5原子%である。なお、Nbの一部又は全部を、同様の作用をする元素(Ti,Zr,Hf,Mo,W又はTa)で置換しても良い。
 Si及びBはともにアモルファス相形成元素である。Siが8原子%以上であると、急冷によりアモルファス相が安定的に形成できるとともに、保磁力Hc及び磁心損失Pcvが低下する。しかし、Si含有量が12原子%超にすると、飽和磁束密度Bsが低下する。誘導磁気異方性はbcc構造のFe結晶粒中のSi量に影響される。従って、Si含有量は8~12原子%が好ましい。より好ましいSi含有量は10~11.5原子%である。
 Bの含有量が9原子%以上であると、急冷によりアモルファス相が安定的に形成できるとともに、熱処理後に均一なナノ結晶相が得られる。しかし、B含有量が12原子%超であると飽和磁束密度Bsが低下する。そのため、B含有量は9~12原子%が好ましい。また、広い周波数範囲にわたって大電流下(強い磁界中)で透磁率が飽和するのを防止するために、B含有量は9.2~10原子%であるのがより好ましい。Si及びBの合計量は好ましくは22原子%以下であり、より好ましくは21原子%以下である。
[2] Fe基ナノ結晶軟磁性合金薄帯
 Fe基ナノ結晶軟磁性合金薄帯の厚さは10~25μmであるのが好ましい。厚さが10μm未満では、薄帯の機械的強度が不十分でハンドリングの際に破断しやすいだけでなく、保磁力Hcが高くなってしまう。また厚さが25μmを超えると、アモルファス状態を安定に得られにくくなるだけでなく、渦電流損失が大きくなる。渦電流損失を考慮しない場合、薄帯の厚さは14~25μmが好ましい。
 図1は本発明のFe基ナノ結晶軟磁性合金薄帯100を巻回してなる環状磁心1の一例を示す。図1に示す巻磁心以外に、薄帯をドーナツ状に打ち抜き、複数枚積層した磁心でも良い。環状磁心1は円形状に限定されず、レーストラック状、矩形状等でも良い。
[3] 環状磁心の製造方法
(1) Fe基ナノ結晶軟磁性合金薄帯の製造
 Fe基ナノ結晶軟磁性合金薄帯は、例えば、所定の組成の合金溶湯を公知の単ロール法により急冷し、厚さ十数μm~30μm程度、好ましくは10~25μm、より好ましくは14~25μmのFe基アモルファス合金薄帯を作製する。なお、Fe基アモルファス合金薄帯は組織中に微細結晶粒を部分的に含んでも良い。Fe基アモルファス合金薄帯を巻回又は積層して環状磁心とする。その際、薄帯間に絶縁を施すのが好ましい。
(2) 磁場中熱処理
 得られた環状磁心に対して、磁場を印加しながら窒素ガス等の不活性ガス雰囲気中又は大気中で、結晶化開始温度以上の温度で10分以上熱処理することにより、合金組織の50体積%以上が平均結晶粒径100 nm以下の微細なbcc構造のFe結晶粒が占めるFe基ナノ結晶軟磁性合金からなる環状磁心を得る。Fe基ナノ結晶軟磁性合金の組成にもよるが、bcc構造のFe結晶粒が析出する温度(結晶化開始温度)は480~560℃程度である。結晶化開始温度は示差走査熱量測定により求めた発熱開始温度である。Fe2B等の化合物相が析出すると、保磁力Hcが増加し、恒透磁率性が失われる。そのため、熱処理温度の上限は化合物相が析出しない温度とするのが好ましい。
 磁場中熱処理においては温度とともに保持時間も重要である。誘導磁気異方性はbcc構造のFe結晶粒中のSi量に影響されるため、結晶化の際にFeにSiを十分に固溶させる必要がある。そのため、最高温度の保持時間は10分以上とするのが好ましい。熱処理温度が低下すれば保持時間は長くなるが、生産性を考慮して上限を60分とするのが好ましい。
 環状磁心の磁路と直角方向(薄帯の幅方向)に磁場を印加しながら熱処理すると、B-H曲線が傾斜するとともに直線性が向上して比透磁率が低下し、低角形比で恒透磁率性に優れたものとなる。磁場中熱処理自体は、例えば特公平7-74419号に開示されているように公知の方法である。印加する磁場は合金を飽和させるため、少なくとも1000 A/m以上とするのが好ましい。
 結晶化の初期段階ではSiの固溶が不十分で異方性が誘導されないが、Siの固溶が進むにつれて急激に異方性の誘導が進む。従って、結晶化温度より低い温度から磁場を印加するのが好ましい。
 磁場の印加開始から保持温度に到達するまでの間の昇温速度は5℃/分以下であるのが好ましい。昇温速度が速すぎると、結晶化に伴う発熱によって結晶化が早く完了してしまう。結晶化後でも異方性の誘導は可能だが、結晶化進行中に得られる異方性に比較して不十分である。また、Siの固溶が不十分な状態で結晶化が完了するおそれもある。異方性の誘導を十分に得ようとすれば、昇温速度は1℃/分未満とするのがより望ましい。
[4] 環状磁心の特性
 高飽和磁束密度、低損失及び低磁歪という優れた磁気性能を保持しつつ、Fe基ナノ結晶軟磁性合金を磁性部品(特にチョークコイル)に用いる場合の問題点を解消するための検討を行った結果、優れたノイズ抑制効果を発揮するためには、(a) 周波数100 kHz及び直流印加磁界強度50 A/mでの交流比透磁率μr100k(50)が4000以上であり、(b) 周波数100 kHz及び直流印加磁界強度150 A/mでの交流比透磁率μr100k(150)が2500以上であり、(c) 直流印加磁界強度が400 A/mでの最大透磁率μMaxが8000以下で、磁束密度B400が1.3 T以上である必要があることが分った。
 交流比透磁率μrは、漏れ磁束が無視できる閉磁路磁心を有するコイルの実効自己インダクタンスから下記式(1) により求められる透磁率である。
  μr=(L×C1)/(μ0×N2)・・・(1)
   L:実効自己インダクタンス(H)
   N:全巻回数
   μ0:真空透磁率(4×π×10-7
   C1:磁心定数(mm-1
 実効自己インダクタンスLはLCRメータ(Agilent Technologies, Inc.製4284A)とインピーダンス/ゲイン・フェイズアナライザ(Agilent Technologies, Inc.製4194A)で測定した。
 磁場と比透磁率μrとの関係は、LCRメータ4284Aとバイアス・カレント・ソース(Agilent Technologies, Inc.製42841A)とを組み合わせた最大20 Aまでの直流電流重畳が可能な測定装置により、直流電流重畳インダクタンスの測定により求めた。交流比透磁率μrは、所定の周波数(例えば、100 kHz)における実効自己インダクタンスLから上記式(1) により求めた。また、所定の直流印加磁界強度H(例えば、50 A/m)を発生させるバイアス電流Iは、下記式(2) により求めた。
H=I×N/Le・・・(2)
H:直流印加磁界強度(A/m)
I:バイアス電流(A)
N:全巻回数
Le:平均線路長(m)
 交流比透磁率μrの周波数特性は、インピーダンス/ゲイン・フェイズアナライザ4194Aを使用し、0.05 A/mの動作磁界及び10 kHz~10 MHzの周波数で測定した。直流印加磁界強度が400 A/mでの最大透磁率μMax、磁束密度B400及び保磁力Hcはとともに、直流磁化特性試験装置(メトロン技研(株)製SK-110型)により測定した。
 本発明では、ノイズを含む突入電流を想定し、周波数100 kHzにおいて50 A/m及び150 A/mの直流印加磁界強度での交流比透磁率μr100k(50)及びμr100k(150)をそれぞれ4000以上及び2500以上と規定する。交流比透磁率μr100k(50)が4000以上で、交流比透磁率μr100k(150)が2500以上であれば、透磁率の低下に伴うコモンモードノイズ、ノーマルモードノイズの減衰性能の低下は抑えられ、優れたノイズ抑制効果を発揮する。周波数10 kHz及び直流印加磁界強度150 A/mでの交流比透磁率μr10k(150)が4000以上であり、かつ周波数10 kHz及び直流印加磁界強度200 A/mでの交流比透磁率μr10k(200)が2000以上であるのがより好ましい。
 直流印加磁界強度が400 A/mでの最大透磁率μMaxが8000以下で、磁束密度B400が1.3 T以上であると、高電圧のノイズを低減するとともに、過渡的な電流のピーク値の上昇に伴う大電流に対しても磁気飽和を招くことがなく、またインダクタンスの著しい低下を防ぐことができる。
 本発明の環状磁心に用いるFe基ナノ結晶軟磁性合金は、高周波であっても相対的に他の磁性材料より高い透磁率が得られるという特徴を維持するので、本発明の環状磁心で構成された磁性部品(チョークコイル)を用いたノイズフィルタもまた、高電圧のノイズの低減とともに、広周波数帯域におけるノイズ低減に優れたものとなる。
[5] 磁性部品
 本発明の磁性部品は、上記環状磁心を絶縁性コアケースに入れるか、絶縁コーティングを施した後、(a) 環状磁心の中空部に導体を貫通させるか、(b) 環状磁心に導体を巻回することにより得られる。環状磁心の中空部に導体を貫通した磁性部品の一例として、環状磁心5’に3本の導体a,b,cが貫通した構成の三相コモンモードチョークコイルを図11(a) に示す。また、環状磁心に導体を巻回した磁性部品の一例として、環状磁心5’に3本の導体a,b,cが巻回された三相コモンモードチョークコイルを図11(b) に示す。環状磁心5’を、上ケース11及び従ってケース12からなる絶縁性コアケースに入れる様子を図12に示す。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
実施例1
 単ロール法により、Fe70.7Ni5.0Cu0.8Nb2.8Si10.9B9.8(原子%)の組成を有する溶湯を、ノズルより高速回転している銅ロール表面に噴出して急冷し、厚さがそれぞれ16μm、18μm及び23μmで、幅53 mmの合金薄帯を得た。X線回折測定により、これらの合金薄帯の組織が実質的にアモルファスであることを確認した。示差走査熱量測定により求めたこの合金の結晶化温度Txは490℃であった。
 各薄帯をスリット加工し、幅25 mmの2条の薄帯を得た。各薄帯を巻回し、外径24.5 mm、内径21 mm及び高さ幅25 mmの円環状巻磁心(占積率:0.9)を得た。窒素雰囲気に制御された熱処理炉内に円環状巻磁心を入れ、420℃から550℃の最高温度まで0.54℃/分の速度で昇温し、最高温度で20分保持した後、炉冷する熱処理を行い、図1に示すFe基ナノ結晶軟磁性合金からなる環状巻磁心を得た。昇温中及び最高温度に保持中、環状磁心の高さ方向(薄帯の幅方向)に280 kA/mの磁場を印加した。磁場中熱処理により、いずれの薄帯中にも平均粒径100 nm以下の微細結晶粒がほぼ70%の体積比率で生成していた。
 各環状磁心を絶縁性ケースに入れ、一次側に10ターン及び二次側に10ターンの巻線を施し、直流磁化特性試験装置SK-110型を用いて、25℃で最大透磁率μMax、磁束密度B400、保磁力Hc及び角型比を測定した。結果を表1に示す。また、厚さ16μmの薄帯を用いた環状磁心の直流B-Hループを代表例として図2に示す。
 各環状磁心を絶縁性ケースに入れて10ターンの巻線を施し、25℃で周波数10 kHz及び100 kHzの直流印可磁界の強度50 A/m、150 A/m及び200 A/mに対する交流比透磁率μrの関係をLCRメータ4284Aにより求めた。周波数100 kHz及び直流印加磁界強度50 A/mでの交流比透磁率μr100k(50)、周波数100 kHz及び直流印加磁界強度150 A/mでの交流比透磁率μr100k(150)、周波数10 kHz及び直流印加磁界強度150 A/mでの交流比透磁率μr10k(150)、及び周波数10 kHz及び直流印加磁界強度200 A/mでの交流比透磁率μr10k(200)を表1に示す。また、厚さ16μmの薄帯を用いた環状磁心の交流比透磁率μrと磁場強度(周波数10 kHz)との関係を図3に示す。
 各環状磁心(試料No. 1~5)を絶縁性ケースに入れて1ターンの巻線を施し、インピーダンス/ゲイン・フェイズアナライザ4194Aにより電圧振幅0.5 Vrms、周波数10~100 kHz、温度25℃で交流比透磁率μr10k及びμr100kを測定した。また、周波数10 kHzにおける比透磁率μr10kの50%の比透磁率μrが得られる周波数f50を求めた。結果を表1に示す。また、厚さ16μmの薄帯を用いた比透磁率μrの周波数特性を図4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
注:(1) 直流印加磁界強度400 A/mでの最大透磁率。
  (2) 周波数10 kHz及び直流印加磁界強度150 A/mで測定。
  (3) 周波数10 kHz及び直流印加磁界強度200 A/mで測定。
  (4) 周波数100 kHz及び直流印加磁界強度50 A/mで測定。
  (5) 周波数100 kHz及び直流印加磁界強度150 A/mで測定。
 
Figure JPOXMLDOC01-appb-T000003
 本発明の環状磁心は、高い磁束密度を保持しながら、角型比が小さく、恒透磁率性に優れ、周波数に対する交流比透磁率の変化が小さいことが分かる。また、周波数100 kHz及び直流印加磁界強度50 A/mでの交流比透磁率μr100k(50)及び周波数10 kHz及び直流印加磁界強度150 A/mでの交流比透磁率μr10k(150)がともに4000以上であり、周波数100 kHz及び直流印加磁界強度150 A/mでの交流比透磁率μr100k(150)が2500以上であり、かつ周波数10 kHz及び直流印加磁界強度200 A/mでの交流比透磁率μr10k(200)が2000以上である。このように、本発明の環状磁心は低磁場域から高磁場域まで高い交流比透磁率を有する。さらに、薄い薄帯を用いた環状磁心は、交流比透磁率の低下が少なく、周波数特性に優れていることがわかる。
比較例1
 Fe基ナノ結晶軟磁性合金FT-3KL(日立金属株式会社製)の薄帯(厚さ18μm)を用いて外径36.0 mm、内径17.5 mm及び高さ幅25 mmの円環状巻磁心を作製し、これをケースに入れ、線径2.5 mmのエナメル線を8ターン巻いてチョークコイルを作製した。
実施例2
 実施例1で作製した薄帯(厚さ18μm)を用いて外径36.0 mm、内径17.5 mm及び高さ幅25 mmの円環状巻磁心を作製し、これをケースに入れ、線径2.5 mmのエナメル線を17ターン巻いてチョークコイルを作製した。チョークコイルのインピーダンスを図5に示す。図5から明らかなように、実施例2のチョークコイルは低周波域から高周波域まで優れたインピーダンス性能を発揮した。
 実施例2のチョークコイル及び比較例1のチョークコイルの直流電流重畳インダクタンス特性を評価した。結果を図6に示す。図6から明らかなように、実施例2のチョークコイルは比較例1のチョークコイルより直流電流重畳インダクタンス特性に優れていた。
実施例3
 実施例1で作製した薄帯(厚さ18μm)を用いて外径17.8 mm、内径13.8 mm及び高さ幅25 mmの円環状巻磁心を用いて、図7に示す三相コモンモードチョークコイルを作製した。環状磁心は絶縁性のケース6に入れ、ケース中央に巻線領域を区画する仕切板8が設けた。各相の巻線7a、7b、7cは線径2.5 mmのエナメル線を3ターン巻回して形成した。三相コモンモードチョークコイルのインピーダンスとインダクタンスの周波数特性を図8に示す。図中、実線はインダクタンスを示し、破線はインピーダンスを示す。図8から明らかなように、実施例3の三相コモンモードチョークコイルは低周波域から高周波域まで優れたインピーダンス性能を発揮した。
実施例4
 実施例2で得られた三相コモンモードチョークコイルを用いて、図9に示すノイズフィルタを作製した。得られたノイズフィルタは低周波ノイズ、高周波ノイズ、パルス性ノイズの減衰に優れ、150 kHz~30 MHzの広い周波数帯における雑音端子電圧を低減する効果に優れていた。
実施例5
 実施例1と同様にして表2に示す組成(原子%)を有する各溶湯から厚さ16μmで、幅53 mmの合金薄帯を作製した。各薄帯をスリット加工し、幅25 mmの2条の薄帯を得た。各薄帯を巻回し、外径24.5 mm、内径21 mm及び高さ幅25 mmの円環状巻磁心(占積率:0.9)を得た。各円環状巻磁心に実施例1と同じ磁場中熱処理を施し、Fe基ナノ結晶軟磁性合金からなる環状巻磁心を得た。各環状巻磁心の交流比透磁率μr100k(50)、μr100k(150)、μr10k(150)及びμr10k(200)を実施例1と同様に測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
注:(1)~(4) 表1-2の注(2)~(5) と同じ。
 
 表2から明らかなように、特にBが9.32~9.78原子%の範囲で良好な交流比透磁率特性が得られた。

Claims (9)

  1. Feの一部をNi及び/又はCoで置換したFe基ナノ結晶軟磁性合金を用いた環状磁心であって、
     周波数100 kHz及び直流印加磁界強度50 A/mでの交流比透磁率μr100k(50)が4000以上であり、
     周波数100 kHz及び直流印加磁界強度150 A/mでの交流比透磁率μr100k(150)が2500以上であり、
     直流印加磁界強度が400 A/mでの最大透磁率μMaxが8000以下で、磁束密度B400が1.3 T以上であることを特徴とする環状磁心。
  2. 請求項1に記載の環状磁心において、周波数10 kHz及び直流印加磁界強度150 A/mでの交流比透磁率μr10k(150)が4000以上であり、周波数10 kHz及び直流印加磁強度界200 A/mでの交流比透磁率μr10k(200)が2000以上であることを特徴とする環状磁心。
  3. 請求項1又は2に記載の環状磁心において、前記Fe基ナノ結晶軟磁性合金が、Fe及びNi及び/又はCoを合計で75.5原子%超、Ni及び/又はCoを6原子%以下、Cuを0.1~2原子%、Nbを0.1~4原子%、Siを8~12原子%、及びBを9~12原子%含有することを特徴とする環状磁心。
  4. 請求項3に記載の環状磁心において、前記Fe基ナノ結晶軟磁性合金が、Fe及びNi及び/又はCoを合計で75.5原子%超、Ni及び/又はCoを4~6原子%、Siを10~11.5原子%、及びBを9.2~10原子%含有することを特徴とする環状磁心。
  5. 請求項1~4のいずれかに記載の環状磁心において、前記Fe基ナノ結晶軟磁性合金が厚さ10~25μmの薄帯状であることを特徴とする環状磁心。
  6. 請求項5に記載の環状磁心において、前記薄帯の厚さが14~25μmであることを特徴とする環状磁心。
  7. 請求項1~6のいずれかに記載の環状磁心を樹脂製ケース内に収容し、前記環状磁心の一部を接着剤により固定したことを特徴とする磁性部品。
  8. 請求項7に記載の磁性部品において、前記環状磁心の中空部に導体が貫通していることを特徴とする磁性部品。
  9. 請求項7に記載の磁性部品において、前記環状磁心に導体が巻回されていることを特徴とする磁性部品。
PCT/JP2014/053536 2013-02-15 2014-02-14 Fe基ナノ結晶軟磁性合金を用いた環状磁心、及びそれを用いた磁性部品 WO2014126220A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480008901.3A CN105074843B (zh) 2013-02-15 2014-02-14 使用了Fe基纳米晶体软磁性合金的环状磁芯、以及使用其的磁性部件
EP14751452.5A EP2958116B1 (en) 2013-02-15 2014-02-14 Production method of an annular magnetic core using iron-based nanocrystalline soft-magnetic alloy
ES14751452T ES2775211T3 (es) 2013-02-15 2014-02-14 Método de producción de un núcleo magnético anular realizado con aleación magnética blanda, nanocristalina, basada en Fe, y método de producción de un dispositivo magnético que comprende el mismo
JP2015500319A JP6075438B2 (ja) 2013-02-15 2014-02-14 Fe基ナノ結晶軟磁性合金を用いた環状磁心、及びそれを用いた磁性部品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013027500 2013-02-15
JP2013-027500 2013-02-15

Publications (1)

Publication Number Publication Date
WO2014126220A1 true WO2014126220A1 (ja) 2014-08-21

Family

ID=51354218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053536 WO2014126220A1 (ja) 2013-02-15 2014-02-14 Fe基ナノ結晶軟磁性合金を用いた環状磁心、及びそれを用いた磁性部品

Country Status (5)

Country Link
EP (1) EP2958116B1 (ja)
JP (1) JP6075438B2 (ja)
CN (1) CN105074843B (ja)
ES (1) ES2775211T3 (ja)
WO (1) WO2014126220A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019125670A (ja) * 2018-01-16 2019-07-25 日立金属株式会社 電子回路、及び、ノイズフィルタの設置方法
JP2020503676A (ja) * 2017-01-03 2020-01-30 エルジー イノテック カンパニー リミテッド インダクタ及びこれを含むemiフィルター
JP2022016456A (ja) * 2016-06-14 2022-01-21 株式会社Fuji 電気的特性取得装置
JP2022515597A (ja) * 2018-12-06 2022-02-21 ボード オブ スーパーバイザーズ オブ ルイジアナ ステイト ユニバーシティ アンド アグリカルチュラル アンド メカニカル カレッジ 磁性コアを使用して、高い均一性を備えたパルス電界を適用する方法およびシステム
CN114694908A (zh) * 2022-05-30 2022-07-01 天津三环奥纳科技有限公司 一种耐低温纳米晶软磁合金铁芯、制造方法及应用
WO2024023999A1 (ja) * 2022-07-27 2024-02-01 株式会社リケン ノイズ対策用環状磁性体及びノイズ対策用部材
JP7454518B2 (ja) 2021-02-16 2024-03-22 株式会社リケン ノイズ対策用環状磁性体及びノイズ対策用部材

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3553799B1 (en) * 2016-12-07 2021-07-14 Panasonic Corporation Method to produce an iron core
JP6601589B2 (ja) * 2017-02-22 2019-11-06 日立金属株式会社 磁心ユニット、カレントトランスおよびそれらの製造方法
US11170920B2 (en) * 2017-08-07 2021-11-09 Hitachi Metals, Ltd. Fe-based nanocrystalline alloy powder, method of producing the same, Fe-based amorphous alloy powder, and magnetic core
CN109295401A (zh) * 2018-12-11 2019-02-01 广东工业大学 一种新型铁基非晶纳米晶软磁合金及其制备方法
CN109797344A (zh) * 2019-01-25 2019-05-24 上海电力学院 一种Fe基软磁合金及软磁合金带材制备方法
JP6860716B1 (ja) * 2020-02-05 2021-04-21 株式会社リケン ノイズ対策用環状磁性体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167851A (ja) * 1985-06-13 1987-07-24 Hitachi Metals Ltd 低損失Fe基非晶質合金
JPS6479342A (en) * 1986-12-15 1989-03-24 Hitachi Metals Ltd Fe-base soft magnetic alloy and its production
JPH0774419B2 (ja) 1986-12-15 1995-08-09 日立金属株式会社 Fe基軟磁性合金の製造方法
JPH08153614A (ja) * 1995-03-13 1996-06-11 Hitachi Metals Ltd 磁 心
JP2000119821A (ja) * 1998-10-15 2000-04-25 Hitachi Metals Ltd 恒透磁率性に優れた高飽和磁束密度低損失磁性合金ならびにそれを用いた磁性部品
JP2000340437A (ja) 1999-05-31 2000-12-08 Toshiba Corp ノイズフィルタ
JP2006525655A (ja) 2003-04-02 2006-11-09 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト 鉄心とその製造および使用方法
WO2010084888A1 (ja) * 2009-01-20 2010-07-29 日立金属株式会社 軟磁性合金薄帯及びその製造方法、並びに軟磁性合金薄帯を有する磁性部品

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2698369B2 (ja) * 1988-03-23 1998-01-19 日立金属株式会社 低周波トランス用合金並びにこれを用いた低周波トランス
US5443664A (en) * 1988-11-16 1995-08-22 Hitachi Metals, Ltd. Surge current-suppressing circuit and magnetic device therein
CN1092201A (zh) * 1994-01-29 1994-09-14 冶金工业部钢铁研究总院 铁基快淬软磁合金铁芯的制造方法
JP3891448B2 (ja) * 1994-04-11 2007-03-14 日立金属株式会社 薄型アンテナおよびそれを用いたカード
JP2000100617A (ja) * 1998-09-25 2000-04-07 Masaaki Yagi 磁心付きコイル及びpam制御エアコン
CN1905091A (zh) * 2005-07-28 2007-01-31 黄付贵 一种纳米晶软磁铁芯及其热处理方法和应用
CN101241790B (zh) * 2007-11-16 2010-06-16 中国计量学院 软磁磁粉及其制造方法
EP2416329B1 (de) * 2010-08-06 2016-04-06 Vaccumschmelze Gmbh & Co. KG Magnetkern für Niederfrequenzanwendungen und Verfahren zur Herstellung eines Magnetkerns für Niederfrequenzanwendungen
US9773595B2 (en) * 2011-04-15 2017-09-26 Vacuumschmelze Gmbh & Co. Kg Alloy, magnetic core and process for the production of a tape from an alloy
DE102011002114A1 (de) * 2011-04-15 2012-10-18 Vacuumschmelze Gmbh & Co. Kg Legierung, Magnetkern und Verfahren zum Herstellen eines Bandes aus einer Legierung
WO2013051729A1 (ja) * 2011-10-06 2013-04-11 日立金属株式会社 Fe基初期超微結晶合金薄帯及び磁性部品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167851A (ja) * 1985-06-13 1987-07-24 Hitachi Metals Ltd 低損失Fe基非晶質合金
JPS6479342A (en) * 1986-12-15 1989-03-24 Hitachi Metals Ltd Fe-base soft magnetic alloy and its production
JPH0774419B2 (ja) 1986-12-15 1995-08-09 日立金属株式会社 Fe基軟磁性合金の製造方法
JPH08153614A (ja) * 1995-03-13 1996-06-11 Hitachi Metals Ltd 磁 心
JP2000119821A (ja) * 1998-10-15 2000-04-25 Hitachi Metals Ltd 恒透磁率性に優れた高飽和磁束密度低損失磁性合金ならびにそれを用いた磁性部品
JP2000340437A (ja) 1999-05-31 2000-12-08 Toshiba Corp ノイズフィルタ
JP2006525655A (ja) 2003-04-02 2006-11-09 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト 鉄心とその製造および使用方法
WO2010084888A1 (ja) * 2009-01-20 2010-07-29 日立金属株式会社 軟磁性合金薄帯及びその製造方法、並びに軟磁性合金薄帯を有する磁性部品

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022016456A (ja) * 2016-06-14 2022-01-21 株式会社Fuji 電気的特性取得装置
JP7223825B2 (ja) 2016-06-14 2023-02-16 株式会社Fuji 電気的特性取得装置
JP7345026B2 (ja) 2017-01-03 2023-09-14 エルジー イノテック カンパニー リミテッド インダクタ及びこれを含むemiフィルター
JP2020503676A (ja) * 2017-01-03 2020-01-30 エルジー イノテック カンパニー リミテッド インダクタ及びこれを含むemiフィルター
US11289252B2 (en) 2017-01-03 2022-03-29 Lg Innotek Co., Ltd. Inductor and EMI filter including the same
US11955262B2 (en) 2017-01-03 2024-04-09 Lg Innotek Co., Ltd. Inductor and EMI filter including the same
JP7130645B2 (ja) 2017-01-03 2022-09-05 エルジー イノテック カンパニー リミテッド インダクタ及びこれを含むemiフィルター
JP2022174101A (ja) * 2017-01-03 2022-11-22 エルジー イノテック カンパニー リミテッド インダクタ及びこれを含むemiフィルター
JP2019125670A (ja) * 2018-01-16 2019-07-25 日立金属株式会社 電子回路、及び、ノイズフィルタの設置方法
JP7082753B2 (ja) 2018-01-16 2022-06-09 日立金属株式会社 電子回路、及び、ノイズフィルタの設置方法
JP2022515597A (ja) * 2018-12-06 2022-02-21 ボード オブ スーパーバイザーズ オブ ルイジアナ ステイト ユニバーシティ アンド アグリカルチュラル アンド メカニカル カレッジ 磁性コアを使用して、高い均一性を備えたパルス電界を適用する方法およびシステム
JP7454518B2 (ja) 2021-02-16 2024-03-22 株式会社リケン ノイズ対策用環状磁性体及びノイズ対策用部材
CN114694908B (zh) * 2022-05-30 2023-11-24 天津三环奥纳科技有限公司 一种耐低温纳米晶软磁合金铁芯、制造方法及应用
CN114694908A (zh) * 2022-05-30 2022-07-01 天津三环奥纳科技有限公司 一种耐低温纳米晶软磁合金铁芯、制造方法及应用
WO2024023999A1 (ja) * 2022-07-27 2024-02-01 株式会社リケン ノイズ対策用環状磁性体及びノイズ対策用部材

Also Published As

Publication number Publication date
EP2958116A1 (en) 2015-12-23
JP6075438B2 (ja) 2017-02-08
EP2958116A4 (en) 2016-10-12
EP2958116B1 (en) 2020-01-01
CN105074843B (zh) 2018-06-08
JPWO2014126220A1 (ja) 2017-02-02
CN105074843A (zh) 2015-11-18
ES2775211T3 (es) 2020-07-24

Similar Documents

Publication Publication Date Title
JP6075438B2 (ja) Fe基ナノ結晶軟磁性合金を用いた環状磁心、及びそれを用いた磁性部品
JP5445889B2 (ja) 軟磁性合金、その製造方法、ならびに磁性部品
JP3233313B2 (ja) パルス減衰特性に優れたナノ結晶合金の製造方法
JP4210986B2 (ja) 磁性合金ならびにそれを用いた磁性部品
JP2008109080A (ja) 圧粉磁心及びその製造方法
CN107464649B (zh) 一种具有线性磁滞回线的磁芯
JP2007270271A (ja) 軟磁性合金、その製造方法ならびに磁性部品
JP5445891B2 (ja) 軟磁性薄帯、磁心、および磁性部品
EP0655753A1 (en) Active filter circuit and power supply apparatus including same
JP4547671B2 (ja) 高飽和磁束密度低損失磁性合金ならびにそれを用いた磁性部品
JPH05335154A (ja) 磁心及びその製造方法
WO2021157165A1 (ja) ノイズ対策用環状磁性体
JP2721165B2 (ja) チョークコイル用磁心
JP2008235525A (ja) リアクトル磁心およびリアクトル
JP4310738B2 (ja) 軟磁性合金並びに磁性部品
JPH0468382B2 (ja)
JP2009293132A (ja) 軟磁性薄帯、磁心、磁性部品、および軟磁性薄帯の製造方法
JP7082753B2 (ja) 電子回路、及び、ノイズフィルタの設置方法
JP4003166B2 (ja) Co基磁性合金ならびにそれを用いた磁性部品
Günther et al. A user guide to soft magnetic materials
JPH08115830A (ja) ライン・ノイズ・フィルタ
JP2002164208A (ja) 圧粉磁芯用粉末、圧粉磁芯およびその製造方法、およびそれを用いた高周波リアクトル
JP3638291B2 (ja) 低損失磁心
KR20170053480A (ko) 연자성 합금
JPH0468383B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480008901.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500319

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014751452

Country of ref document: EP