Nothing Special   »   [go: up one dir, main page]

WO2014115695A1 - SnAgCu系はんだ粉末及びこの粉末を用いたはんだ用ペースト - Google Patents

SnAgCu系はんだ粉末及びこの粉末を用いたはんだ用ペースト Download PDF

Info

Publication number
WO2014115695A1
WO2014115695A1 PCT/JP2014/051037 JP2014051037W WO2014115695A1 WO 2014115695 A1 WO2014115695 A1 WO 2014115695A1 JP 2014051037 W JP2014051037 W JP 2014051037W WO 2014115695 A1 WO2014115695 A1 WO 2014115695A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
solder powder
solder
powder
silver
Prior art date
Application number
PCT/JP2014/051037
Other languages
English (en)
French (fr)
Inventor
広太郎 岩田
弘樹 村岡
久芳 完治
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US14/759,499 priority Critical patent/US20150343569A1/en
Priority to CN201480002818.5A priority patent/CN104768700A/zh
Priority to KR1020157007950A priority patent/KR20150110457A/ko
Publication of WO2014115695A1 publication Critical patent/WO2014115695A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3618Carboxylic acids or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0483Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3463Solder compositions in relation to features of the printed circuit board or the mounting process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/0425Solder powder or solder coated metal powder

Definitions

  • the present invention relates to a lead-free solder powder for fine pitch and a solder paste using this powder. More specifically, the present invention relates to a fine SnAgCu solder powder having an average particle size of 5 ⁇ m or less and a solder paste using this powder. Note that this international application claims priority based on Japanese Patent Application No. 012970 (Japanese Patent Application No. 2013-012970) filed on January 28, 2013. Incorporated into this international application.
  • solder powder mainly composed of tin is used.
  • atomizing methods such as gas atomizing method and rotating disk method, melt spinning method, rotating electrode method, mechanical process, chemical process, etc. are known.
  • the gas atomization method is a method in which after melting a metal in an induction furnace or a gas furnace, the molten metal is caused to flow down from a nozzle at the bottom of the tundish, and high pressure gas is sprayed from the surrounding area to pulverize.
  • the rotating disk method is also called a centrifugal force atomizing method, and is a method in which molten metal is dropped on a rotating disk at high speed, and a shearing force is applied in a tangential direction to break and make a fine powder.
  • Patent Documents a metal fine powder manufacturing method in which a mesh as metal fine powder size adjusting means is arranged on a rotating body and molten metal is scattered through the mesh.
  • Patent Documents a metal fine powder manufacturing method in which a mesh as metal fine powder size adjusting means is arranged on a rotating body and molten metal is scattered through the mesh.
  • solder powder obtained by a wet reduction method and having a very high yield with an average particle size of 5 ⁇ m or less is disclosed (for example, see Patent Document 3).
  • This solder powder is composed of a central core, a coating layer encapsulating the central core, and outermost metal particles encapsulating the coating layer in order to improve the wettability of the solder paste and the strength required for the solder bump.
  • It is a ternary solder powder. Since this solder powder consists of metal particles containing all three types of metal in one particle, the composition is more uniform than that obtained by simply mixing a single different type of metal powder.
  • the structure is such that the central core, the coating layer, and the outermost layer are coated in this order, so the process of reducing metal ions and precipitating the powder is not complicated. Excellent in mass productivity.
  • JP 2004-018956 A (Claim 1, paragraph [0014]) Japanese Patent Laid-Open No. 06-264116 (Claim 1, paragraph [0013], FIG. 3) JP 2008-149366 A (Claim 1, paragraphs [0014] to [0016])
  • the metal powder obtained by this method is further classified to 5 ⁇ m or less corresponding to fine pitch formation. It is necessary to collect the fine thing. For this reason, a yield will become very bad. On the other hand, if the powder is about 7 ⁇ m, the yield is improved even with this method, but a particle having this particle size cannot sufficiently cope with the recent fine pitch.
  • the particle size is as small as 5 ⁇ m or less, and further, the outermost layer is made of oxidizable tin, so that the powder surface is easily oxidized. When oxidized, it takes time at the time of melting when forming the solder bumps, resulting in a problem of poor wettability.
  • An object of the present invention is a fine solder powder suitable for a solder paste that realizes a fine pitch, an SnAgCu solder powder excellent in meltability and wettability during reflow, and a solder paste using this powder Is to provide.
  • Another object of the present invention is to provide a solder powder having an activity effect equivalent to that of an activator in a solder flux when it is made into a paste.
  • a first aspect of the present invention is a solder powder having an average particle size of 5 ⁇ m or less, and a dry product of a solution of hydroxybenzoic acid or an ester thereof having a melting point of 250 ° C. or less adheres to the surface of the solder powder as an additive.
  • This is a SnAgCu solder powder.
  • “attachment” is not a state obtained by simply mixing an additive powder and a solder powder, but an additive solution obtained by mixing and stirring an additive powder with water or the like is a compound of a metal component. This is a state obtained by adding to and mixing with the solder powder and stirring and then drying without solid-liquid separation.
  • a second aspect of the present invention is an invention based on the first aspect, wherein the additive is salicylic acid, ethyl 3,4 dihydroxybenzoate or ethyl 3,5 dihydroxybenzoate.
  • a third aspect of the present invention is the invention based on the first aspect, and the amount of the additive added is 0 with respect to 100 parts by mass of the total amount of tin, silver and copper components contained in the solder powder. 0.01 to 1.0 part by mass, and the silver content is 0.1 to 10% by mass when the total amount of tin, silver and copper components is 100% by mass, and the copper content is tin, When the total amount of silver and copper components is 100% by mass, it is 0.1 to 2.0% by mass, with the balance being tin.
  • a fourth aspect of the present invention is an invention based on the first aspect, wherein at least one of bismuth, germanium, nickel or indium is 1.0% by mass or less when the total amount of solder powder is 100% by mass. It is characterized by including in the ratio.
  • a fifth aspect of the present invention is a solder paste obtained by mixing the SnAgCu-based solder powder of the first aspect and a solder flux into a paste.
  • a sixth aspect of the present invention is the solder paste according to the fifth aspect used for mounting electronic components.
  • the SnAgCu-based solder powder according to the first aspect of the present invention has a very fine particle size of 5 ⁇ m or less because hydroxybenzoic acid or an ester thereof having a melting point of 250 ° C. or less adheres to the surface of the solder powder as an additive. Despite being, oxidation of the solder powder surface hardly occurs. Therefore, it has excellent meltability and wettability during reflow. In addition, when preparing the paste, the antioxidant effect functions more effectively than the solder paste obtained by adding an additional antioxidant, so even if a small amount of antioxidant is added, A paste having excellent wettability and melt diffusibility can be prepared.
  • the above additive exhibits the same active effect as the activator (specifically, the effect of removing the oxide film on the surface of the solder powder), so that wettability during reflow and melt diffusion A paste having excellent properties can be prepared.
  • this solder powder is a fine powder having an average particle size of 5 ⁇ m or less, it can be printed with a fine pitch pattern when a solder paste made of this solder powder is used as a raw material.
  • the additive since the additive has a melting point of 250 ° C. or less, the additive is thermally decomposed and evaporated before the solder powder is melted.
  • the SnAgCu-based solder powder according to the third aspect of the present invention has an adhesion amount of the above additive of 0.01 to 1.0 mass relative to 100 mass parts of the total amount of tin, silver and copper components contained in the solder powder.
  • the content ratio of silver is 0.1 to 10% by mass when the total amount of tin, silver and copper components is 100% by mass, and the content rate of copper is the total amount of tin, silver and copper components. 0.1 to 2.0% by mass with respect to 100% by mass, with the balance being tin.
  • the content ratios of tin, silver, and copper are within the above ranges, respectively, to prevent the composition from deviating from the eutectic point to lower the melting point of the solder powder and to increase the electrical resistance of the solder alloy in the formed solder bump. This is to suppress the increase in the mechanical strength and improve the mechanical strength.
  • the solder powder according to the fourth aspect of the present invention is 1.0 mass when the total amount of the solder powder is 100 mass%, in addition to at least one of bismuth, germanium, nickel or indium in addition to the tin, silver and copper. % May be included.
  • solder paste according to the fifth aspect of the present invention is obtained using the solder powder of the present invention. For this reason, this solder paste is rapidly melted at the time of reflow and has very good wettability, so that the paste melted at the time of solder bump formation becomes a fine sphere and scatters so-called solder balls are greatly suppressed. be able to.
  • the solder paste according to the sixth aspect of the present invention is suitable for mounting electronic components because it is rapidly melted during reflow and has very good wettability, and can be printed with a fine pitch pattern on a substrate or the like. Can do.
  • the SnAgCu solder powder of the present invention is a solder powder having an average particle size of 5 ⁇ m or less, preferably 1 to 5 ⁇ m.
  • the solder powder may be composed of a central core, a coating layer that covers the central core, and an outermost layer that covers the coating layer.
  • the reason why the average particle size of the solder powder is limited to 5 ⁇ m or less is that if it exceeds 5 ⁇ m, the solder paste cannot be printed on the substrate or the like in a fine pitch pattern, and a fine electronic component cannot be mounted with the solder paste.
  • the average particle size of the solder powder is measured by a particle size distribution measuring device using a laser diffraction scattering method (Horiba, Ltd., laser diffraction / scattering particle size distribution measuring device LA-950). Volume median diameter (Median diameter, D 50 ). Moreover, since it is a fine powder with an average particle size of 5 ⁇ m or less, it can be printed with a fine pitch pattern when a solder paste made from this powder is printed on a substrate or the like.
  • the solder powder when the solder powder is composed of a central core, a coating layer that covers the central core, and an outermost layer that covers the coating layer, the coating layer not only covers the central core completely, Also included is a structure interposed so as to cover a part of the structure.
  • the content of silver in the solder powder is 0.1 to 10% by mass when the total amount of tin, silver and copper components is 100% by mass, and the content of copper is the total content of tin, silver and copper components.
  • the content is 100% by mass, it is preferably 0.1 to 2.0% by mass, and the balance is preferably made of tin.
  • the reason why the content ratio of each metal is preferably in the above range is that the melting point of the solder powder is lowered by preventing the composition from deviating from the eutectic point, and the electrical resistance of the solder alloy in the formed solder bump. This is to suppress the increase in the mechanical strength and improve the mechanical strength.
  • the proportion of silver or copper is too small or too large, the wettability during paste reflow tends to deteriorate. This is thought to be due to the fact that if the proportion of silver or copper is too small, the powder will approach the composition of tin that is easily oxidized, whereas if the proportion of silver or copper is too large, the solid-liquid coexistence region. This is considered to be because the fluidity of the melt is low. Moreover, if the proportion of silver or copper is extremely large, the proportion of tin is reduced and the low melting point required for solder powder is not exhibited. In addition, if the proportion of silver or copper is extremely small, the proportion of tin increases, wettability decreases, and the mechanical strength of the formed solder bumps decreases.
  • the silver content is 1.0 to 5.0% by mass when the total amount of tin, silver and copper components is 100% by mass, and the copper content is the entire tin, silver and copper components.
  • the amount is 100% by mass, it is 0.3 to 0.7% by mass, and the balance is particularly preferably made of tin.
  • the SnAgCu solder powder of the present invention is formed by adhering hydroxybenzoic acid or an ester thereof having a melting point of 250 ° C. or lower as an additive to the surface of the solder powder.
  • these additives are attached to the surface of the solder powder, the surface of the solder powder hardly oxidizes even though the outermost layer is made of tin. Therefore, it has excellent meltability and wettability during reflow.
  • the SnAgCu solder powder of the present invention has a structure in which these additives are attached to the surface of the solder powder.
  • the solder powder has a structure in which the additive adheres to the surface of the solder powder, the contact between the solder powder and the additive will not occur. Therefore, the antioxidant effect can be obtained even with a smaller amount. Therefore, if the solder powder of the present invention is used, a solder paste excellent in wettability and melt diffusibility can be prepared as compared with a paste obtained by adding an additive separately.
  • the adhesion amount of the additive is preferably 0.01 to 1.0 part by mass with respect to 100 parts by mass of the total amount of tin, silver and copper contained in the solder powder.
  • the adhesion amount of the additive is less than the lower limit value, the antioxidant effect is not sufficiently obtained.
  • the upper limit value is exceeded, the meltability may be lowered.
  • the adhesion amount of the additive is particularly preferably 0.05 to 0.5 parts by mass with respect to 100 parts by mass of the total amount of tin, silver and copper contained in the solder powder.
  • the solder powder further includes at least one of bismuth, germanium, nickel, and indium when the total amount of the solder powder is 100% by mass, 1.0% by mass or less. May be included in the ratio.
  • a solvent is prepared by adding and mixing a compound containing silver, a compound containing copper, a compound containing tin, and a dispersant to the solvent.
  • the content ratio of the compound containing silver, the compound containing copper, and the compound containing tin in the solution is adjusted so that the content ratio of each metal element is within the above range after the production of the solder powder.
  • bismuth, germanium, nickel, or indium is included, a compound containing these is added to the solution.
  • silver powder is used in the solution, and the silver powder and a dispersant are added and mixed in a solvent to prepare a silver powder dispersion, in which the copper-containing compound is prepared.
  • a solution obtained by mixing and in which silver powder is dispersed is adjusted so that the content ratio of each metal element falls within the above range after the solder powder is manufactured.
  • the silver compound used for preparing the solution examples include silver sulfate (I), silver chloride (I), and silver nitrate (I).
  • the silver powder used in place of the silver compound has an average particle diameter of 0.1 to 2.0 ⁇ m.
  • a physical powder such as an atomizing method is used.
  • Silver powder obtained by the technique can also be used.
  • Examples of the copper compound used for preparing the solution include copper (II) chloride, copper (II) sulfate or copper acetate, and the tin compound includes tin (II) chloride, tin (II) sulfate, Examples include tin (II) acetate and tin (II) oxalate.
  • the silver compound, the copper compound, and the tin compound are all silver sulfate (II) sulfate and copper sulfate.
  • Examples of the solvent include water, alcohol, ether, ketone, ester and the like.
  • Examples of the dispersant include cellulose-based, vinyl-based, and polyhydric alcohols. In addition, gelatin, casein, and the like can be used.
  • the pH of the prepared solution is adjusted. The pH is preferably adjusted to a range of 0 to 2.0 in consideration of remelting of the generated solder powder.
  • dissolve after adding a complexing agent and complexing each metal element, you may add a dispersing agent. By adding a complexing agent, metal ions do not precipitate even when the pH is alkaline, and synthesis in a wide range is possible.
  • the complexing agent examples include succinic acid, tartaric acid, glycolic acid, lactic acid, phthalic acid, malic acid, citric acid, oxalic acid, ethylenediaminetetraacetic acid, iminodiacetic acid, nitrilotriacetic acid, and salts thereof.
  • an aqueous solution in which the reducing agent is dissolved is prepared, and the pH of the aqueous solution is adjusted to the same level as the above-prepared dissolving solution.
  • the reducing agent include boron hydrides such as sodium tetrahydroborate and dimethylamine borane, nitrogen compounds such as hydrazine, metal ions such as trivalent titanium ions and divalent chromium ions, and the like.
  • an aqueous reducing agent solution is added to the solution and mixed, whereby each metal ion in the solution is reduced and a dispersion in which metal powder is dispersed in the solution is obtained.
  • a solution containing the compound containing silver, the compound containing copper, and the compound containing tin is used, first, silver nobler than tin and copper is reduced, and then nobler than tin. Copper is reduced, and finally tin is reduced.
  • a solution in which silver powder is dispersed first, copper that is nobler than tin is reduced, copper is deposited on the surface of the silver particles, and then tin is reduced.
  • a metal powder having an average particle diameter of 5 ⁇ m or less is formed, which is composed of a central core made of silver, a coating layer made of copper covering the central core, and an outermost layer made of tin covering the coating layer.
  • the reducing agent aqueous solution is dropped into the dissolving solution in the container at a predetermined addition rate and stirred with a stirrer or a reaction tube having a predetermined diameter. Examples include a method of pouring both solutions into a reaction tube at a predetermined flow rate and mixing them.
  • this dispersion is subjected to solid-liquid separation by decantation or the like, and the collected solid content is water or a hydrochloric acid aqueous solution, a nitric acid aqueous solution, a sulfuric acid aqueous solution adjusted to pH 2 to 2, or methanol, ethanol, acetone, etc. Wash. After washing, the solid content is recovered by solid-liquid separation again. The steps from washing to solid-liquid separation are preferably repeated 2 to 5 times.
  • an additive solution is prepared by dissolving an additive of hydroxybenzoic acid having a melting point of 250 ° C. or lower, or an ester thereof, preferably in a solvent such as water, ethanol or acetone.
  • the amount of the additive used is adjusted so that the amount of the additive attached to the surface of the solder powder falls within the above range.
  • the concentration of the additive solution is preferably adjusted to a concentration of about 1 to 20% by mass for reasons of solubility and drying efficiency of the additive.
  • the additive solution is added to the solid content which has been separated into solid and liquid after washing and before drying, and preferably stirred for 5 to 60 minutes under the condition of a rotational speed of 100 to 500 rpm.
  • the rotational speed and time are less than the lower limit, there may be a problem that the dispersion stirring is not sufficiently performed, and even if the upper limit is exceeded, the degree of dispersion stirring does not change.
  • the solder powder of the present invention can be obtained by vacuum drying without solid-liquid separation.
  • the SnAgCu solder powder of the present invention can be obtained.
  • This solder powder is suitably used as a material for a solder paste obtained by mixing with a solder flux to form a paste.
  • the solder paste is prepared, for example, by mixing a solder flux, preferably 10 to 30% by mass, more preferably 10 to 25% by mass, into a paste.
  • the mixing amount of soldering flux is 10-30% by mass. If it is less than 10% by mass, it cannot be made into a paste due to insufficient flux, and if it exceeds 30% by mass, the content of the flux in the paste is too high and the metal content This is because the ratio decreases, and a solder bump having a desired size cannot be obtained when the solder is melted.
  • this solder paste is made of the above-described solder powder of the present invention, it has excellent meltability and wettability, and is excellent in that it does not easily generate solder balls.
  • this solder paste is prepared with a fine solder powder of 5 ⁇ m or less, if this solder paste is used, it can be printed on a substrate or the like with a fine pitch pattern, and a solder bump with less height variation can be formed. it can. Therefore, this solder paste can be suitably used for mounting a finer electronic component.
  • Example 1 First, 1.59 ⁇ 10 ⁇ 4 mol of copper (II) sulfate, 4.10 ⁇ 10 ⁇ 4 mol of silver (I) sulfate, and 2.62 ⁇ 10 ⁇ 2 mol of tin (II) sulfide are added to 50 mL of water. The solution was stirred using a stirrer at a rotation speed of 300 rpm for 5 minutes to prepare a solution. After adjusting the pH of this solution to 0.5 with sulfuric acid, 0.5 g of polyvinyl alcohol 500 (polyvinyl alcohol having an average molecular weight of 500) was added as a dispersant, and the mixture was further stirred at a rotational speed of 300 rpm for 10 minutes.
  • polyvinyl alcohol 500 polyvinyl alcohol having an average molecular weight of 500
  • Example 2 A solder powder was obtained in the same manner as in Example 1 except that 0.80 mg of salicylic acid was used as an additive. On the surface of this solder powder, 0.02 parts by mass of salicylic acid was adhered to 100 parts by mass of the total amount of tin, silver and copper contained in the solder powder.
  • Example 3 A solder powder was obtained in the same manner as in Example 1 except that 40 mg of salicylic acid was used as an additive. On the surface of the solder powder, 0.99 parts by mass of salicylic acid was adhered to 100 parts by mass of the total amount of tin, silver, and copper contained in the solder powder.
  • Example 4 A solder powder was obtained in the same manner as in Example 1 except that 20 mg of ethyl 3,4 dihydroxybenzoate, which is an ester of hydroxybenzoic acid, was used as an additive. On the surface of this solder powder, 0.46 parts by mass of ethyl 3,4 dihydroxybenzoate was adhered to 100 parts by mass of the total amount of tin, silver and copper contained in the solder powder.
  • Example 5 A solder powder was obtained in the same manner as in Example 1 except that 20 mg of ethyl 3,5-dihydroxybenzoate, which is an ester of hydroxybenzoic acid, was used as an additive. On the surface of this solder powder, 0.48 parts by mass of ethyl 3,5-dihydroxybenzoate was adhered to 100 parts by mass of the total amount of tin, silver and copper contained in the solder powder.
  • Example 2 A solder powder was obtained in the same manner as in Example 1 except that 80 mg of salicylic acid was used as an additive. On the surface of the solder powder, 1.9 parts by mass of salicylic acid was adhered to 100 parts by mass of the total amount of tin, silver, and copper contained in the solder powder.
  • Example 3 A solder powder was obtained in the same manner as in Example 1 except that 0.4 mg of salicylic acid was used as an additive. On the surface of the solder powder, 0.00093 parts by mass of salicylic acid was adhered to 100 parts by mass of the total amount of tin, silver and copper contained in the solder powder.
  • Example 4 A solder powder was obtained in the same manner as in Example 1 except that 20 mg of gallic acid was used as an additive. On this solder powder surface, 0.45 parts by mass of gallic acid adhered to 100 parts by mass of the total amount of tin, silver and copper components contained in the solder powder.
  • Average particle size the particle size distribution is measured by a particle size distribution measuring device using a laser diffraction scattering method (Horiba, Ltd., laser diffraction / scattering particle size distribution measuring device LA-950), and the volume is accumulated.
  • the median diameter (Median diameter, D 50 ) was defined as the average particle size of the solder powder.
  • Soot composition Metal element content by inductively coupled plasma emission spectroscopy (ICP-AES) using an ICP emission spectrometer (ICP emission analyzer: ICPS-7510 manufactured by Shimadzu Corporation) was measured. Further, the content of each additive was measured by high performance liquid chromatography / ultraviolet absorbance detector (High-performance liquid chromatography / Ultra-Violet Absorbance Detector: HPLC / UV).
  • Non-aggregated powder The surface of the solder bump after melting was observed with a SEM at a magnification of 2000 times in a 50 ⁇ m ⁇ 50 ⁇ m field of view, and the amount of unaggregated powder in one field of view was evaluated visually.
  • Comparative Example 1 of the solder powder to which no additive is attached is inferior in wettability to Examples 1 to 5.
  • the number of unaggregated components was 10 times or more.
  • Examples 1 to 5 and Comparative Examples 2 to 3 are compared, the examples are excellent in wettability and the number of unaggregated parts is within 10, whereas in the comparative example, the wettability is 2.
  • the number of unaggregated components was about 100. Accordingly, the degree of wetting and the number of unaggregated components when the additive is adhered in the range of 0.02 to 0.99 parts by mass with respect to 100 parts by mass of the total amount of tin, silver and copper components. It was confirmed that the effect was exerted.
  • solder powder of the present invention can be used as a lead-free solder powder for fine pitch, and the solder paste obtained using this solder powder as a raw material can be suitably used for mounting fine electronic components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

平均粒径5μm以下のはんだ粉末であって、はんだ粉末表面に融点が250℃以下のヒドロキシ安息香酸又はそのエステルの溶液の乾燥物が添加剤として付着してなるSnAgCu系はんだ粉末である。添加剤は、サリチル酸、3,4ジヒドロキシ安息香酸エチル又は3,5ジヒドロキシ安息香酸エチルであることが好ましい。添加剤の付着量がはんだ粉末に含有する錫、銀、銅の成分全体量の100質量部に対して0.01~1.0質量部であり、銀の含有割合が錫、銀、銅の成分全体量を100質量%としたときに0.1~10質量%であり、銅の含有割合が錫、銀、銅の成分全体量を100質量%としたときに0.1~2.0質量%であり、残部が錫からなることが好ましい。

Description

SnAgCu系はんだ粉末及びこの粉末を用いたはんだ用ペースト
 本発明は、ファインピッチ用鉛フリーのはんだ粉末及びこの粉末を用いたはんだ用ペーストに関する。更に詳しくは、平均粒径が5μm以下の微細なSnAgCu系はんだ粉末及びこの粉末を用いたはんだ用ペーストに関するものである。なお、本国際出願は、2013年1月28日に出願した日本国特許出願第012970号(特願2013-012970)に基づく優先権を主張するものであり、特願2013-012970の全内容を本国際出願に援用する。
 電子部品の接合に用いられるはんだは環境の面から鉛フリー化が進められ、現在では、錫を主成分としたはんだ粉末が採用されている。はんだ粉末のような微細な金属粉末を得る方法としては、ガスアトマイズ法や回転ディスク法等のアトマイズ法の他に、メルトスピニング法、回転電極法、機械的プロセス、化学的プロセス等が知られている。ガスアトマイズ法は、誘導炉やガス炉で金属を溶融した後、タンディッシュの底のノズルから溶融金属を流下させ、その周囲より高圧ガスを吹き付けて粉化する方法である。また回転ディスク法は、遠心力アトマイズ法とも呼ばれ、溶融した金属を高速で回転するディスク上に落下させて、接線方向に剪断力を加えて破断して微細粉を作る方法である。
 一方、電子部品の微細化とともに接合部品のファインピッチ化も進んでおり、より微細な粒径のはんだ粉末が求められているため、こうしたファインピッチ化に向けた技術の改良も盛んに行われている。例えば、ガスアトマイズ法を改良した技術として、ガスを巻き込ませた状態の金属溶湯をノズルから噴出させ、このノズルの周囲から高圧ガスを吹き付ける金属微粉末の製造方法が開示されている(例えば、特許文献1参照。)。この特許文献1に記載の方法では、溶湯がノズルを通過する際にガスを巻き込ませることによって、ノズルから出湯した時点で溶湯がすでに分断され、より小さな粉末を製造することができる。
 また、回転ディスク法を改良した技術として、回転体に金属微粉末サイズ調整手段としてのメッシュを配し、このメッシュを通して溶融金属を飛散させる金属微粉末の製法が開示されている(例えば、特許文献2参照。)。この特許文献2に記載の方法では、従来の回転ディスク法に比べて微細な金属微粉末を効率良く生成できる。
 更に、湿式還元法によって得られたはんだ粉末であって、平均粒径5μm以下の歩留まりが非常に高いはんだ粉末が開示されている(例えば、特許文献3参照。)。このはんだ粉末は、はんだ用ペーストの濡れ性やはんだバンプに求められる強度を改善するため、中心核と、中心核を被包する被覆層と、被覆層を被包する最外層の金属粒子からなる3元系のはんだ粉末である。このはんだ粉末は、一粒子内に3種類の金属すべてが含まれる金属粒子からなるため、単一の異なる種類の金属粉末を単に混合したものに比べ、組成がより均一となる。また、各層を形成する金属元素のイオン化傾向に依存して、中心核、被覆層、最外層の順に被覆する構造になっているため、金属イオンを還元し、粉末を析出させる工程が煩雑でなく、量産性にも優れる。
特開2004-018956号公報(請求項1、段落[0014]) 特開平06-264116号公報(請求項1、段落[0013]、図3) 特開2008-149366号公報(請求項1、段落[0014]~段落[0016])
 しかしながら、上記従来の特許文献1,2に示された、いわゆるアトマイズ法により微細な粉末を得るためには、この方法によって得られた金属粉末を更に分級して、ファインピッチ化に対応する5μm以下の微細なものを採取する必要がある。このため、歩留まりが非常に悪くなる。一方、7μm程度の粉末であれば、この方法でも歩留まりは良くなるものの、この程度の粒径のものでは、近年のファインピッチ化には十分に対応できない。
 また、上記特許文献3に示されたはんだ粉末では、粒径が5μm以下と非常に小さく、更に、最外層が酸化されやすい錫によって構成されているため、粉末表面の酸化が起こりやすい。酸化されると、はんだバンプを形成する際の溶融時に時間が掛かり、濡れ性が悪いという問題が生じる。
 本発明の目的は、ファインピッチ化を実現するはんだ用ペーストに好適な微細なはんだ粉末であって、リフロー時の溶融性及び濡れ性に優れたSnAgCu系はんだ粉末及びこの粉末を用いたはんだ用ペーストを提供することにある。
 本発明の別の目的は、ペースト化したときにハンダ用フラックス中の活性剤と同等の活性効果を有するはんだ粉末を提供することにある。
 本発明の第1の観点は、平均粒径5μm以下のはんだ粉末であって、前記はんだ粉末表面に融点が250℃以下のヒドロキシ安息香酸又はそのエステルの溶液の乾燥物が添加剤として付着してなるSnAgCu系はんだ粉末である。なお、本明細書で「付着」とは、単に添加剤粉末とはんだ粉末とを混合して得られる状態ではなく、添加剤の粉末を水等と混合し撹拌した添加剤溶液を金属成分の化合物であるはんだ粉末に添加混合して攪拌した後、固液分離せずに乾燥することにより得られる状態をいう。
 本発明の第2の観点は、第1の観点に基づく発明であって、上記添加剤は、サリチル酸、3,4ジヒドロキシ安息香酸エチル又は3,5ジヒドロキシ安息香酸エチルであることにある。
 本発明の第3の観点は、第1の観点に基づく発明であって、更に上記添加剤の付着量がはんだ粉末に含有する錫、銀、銅の成分全体量の100質量部に対して0.01~1.0質量部であり、銀の含有割合が錫、銀、銅の成分全体量を100質量%としたときに0.1~10質量%であり、銅の含有割合が錫、銀、銅の成分全体量を100質量%としたときに0.1~2.0質量%であり、残部が錫からなることを特徴とする。
 本発明の第4の観点は、第1の観点に基づく発明であって、ビスマス、ゲルマニウム、ニッケル又はインジウムの少なくとも1種をはんだ粉末全体量を100質量%としたときに1.0質量%以下の割合で含むことを特徴とする。
 本発明の第5の観点は、第1の観点のSnAgCu系はんだ粉末とはんだ用フラックスを混合してペースト化することにより得られたはんだ用ペーストである。
 本発明の第6の観点は、電子部品の実装に用いられる第5の観点のはんだ用ペーストである。
 本発明の第1の観点のSnAgCu系はんだ粉末は、はんだ粉末表面に添加剤として融点が250℃以下のヒドロキシ安息香酸又はそのエステルが付着してなるため、粒径が5μm以下と非常に微細であるにも拘わらず、はんだ粉末表面の酸化が起こり難い。そのため、リフロー時の溶融性及び濡れ性に優れる。また、ペーストを調製する際に、別途抗酸化剤を添加して得られたはんだペーストに比べ、有効に抗酸化効果が機能するため、添加する抗酸化剤が少量であっても、リフロー時の濡れ性や溶融拡散性に優れたペーストを調製することができる。また、このはんだ粉末を用いれば、上記添加剤が活性剤と同等の活性効果(具体的には、はんだ粉末表面の酸化皮膜を除去する効果)を発現するため、リフロー時の濡れ性や溶融拡散性に優れたペーストを調製することができる。また、このはんだ粉末は平均粒径5μm以下と微細な粉末であるため、このはんだ粉末を原料としたはんだ用ペーストを基板等に印刷する際に、ファインピッチパターンで印刷できる。また、添加剤は、融点が250℃以下であるから、はんだ粉末が溶融する前に、添加剤が熱分解し、蒸発するため、はんだ工程において添加剤の影響がなく好適である。
 本発明の第2の観点のSnAgCu系はんだ粉末の上記添加剤としてサリチル酸、3,4ジヒドロキシ安息香酸エチル、又は、3,5ジヒドロキシ安息香酸エチルを採用することで、リフロー時の濡れ性や溶融拡散性に優れたペーストを調製することができる。
 本発明の第3の観点のSnAgCu系はんだ粉末は、上記添加剤の付着量がはんだ粉末に含有する錫、銀、銅の成分全体量の100質量部に対して0.01~1.0質量部であり、銀の含有割合が錫、銀、銅の成分全体量を100質量%としたときに0.1~10質量%であり、銅の含有割合が錫、銀、銅の成分全体量を100質量%としたときに0.1~2.0質量%であり、残部が錫からなる。このように、本発明のはんだ粉末では、所定の付着量ではんだ粉末表面に上記添加剤が付着しているため、はんだ粉末の酸化防止効果が非常に高い。また、錫、銀、銅の含有割合がそれぞれ上記範囲であるのは、共晶点から組成がずれるのを防止してはんだ粉末の融点を低くするとともに、形成したはんだバンプにおけるはんだ合金の電気抵抗の増加を抑え、機械的強度を向上させるためである。
 本発明の第4の観点のはんだ粉末は、上記錫、銀、銅以外に、更にビスマス、ゲルマニウム、ニッケル又はインジウムの少なくとも1種をはんだ粉末全体量を100質量%としたときに1.0質量%以下の割合で含んでもよい。上記元素の添加により、はんだ粉末の低融点化、強度の向上などの効果が得られる。
 本発明の第5の観点のはんだ用ペーストは、上記本発明のはんだ粉末を用いて得られる。そのため、このはんだ用ペーストは、リフロー時の溶融が速く、濡れ性が非常に良いため、はんだバンプ形成時に溶融したペーストが微細な球状になって飛散する、いわゆるソルダボールの発生を大幅に抑制することができる。
 本発明の第6の観点のはんだ用ペーストは、リフロー時の溶融が速く、濡れ性が非常に良いため、また、基板等にファインピッチパターンで印刷できることから、電子部品の実装に好適に用いることができる。
 次に本発明を実施するための形態を説明する。本発明のSnAgCu系はんだ粉末は、平均粒径が5μm以下、好ましくは1~5μmのはんだ粉末である。このはんだ粉末を中心核とこの中心核を被覆する被覆層及びこの被覆層を被覆する最外層で構成してもよい。はんだ粉末の平均粒径を5μm以下に限定したのは、5μmを越えるとはんだ用ペーストを基板等にファインピッチパターンで印刷できず、微細な電子部品をはんだ用ペーストにより実装できないからである。なお、本明細書において、はんだ粉末の平均粒径とは、レーザー回折散乱法を用いた粒度分布測定装置(堀場製作所社製、レーザー回折/散乱式粒子径分布測定装置LA-950)にて測定した体積累積中位径(Median径、D50)をいう。また、平均粒径5μm以下と微細な粉末であるため、この粉末を原料としたはんだ用ペーストを基板等に印刷する際に、ファインピッチパターンで印刷できる。
 また、はんだ粉末を中心核とこの中心核を被覆する被覆層及びこの被覆層を被覆する最外層で構成した場合、被覆層が中心核を完全に被覆した状態のみならず、被覆層が中心核の一部を被覆するように介在した構造も含まれる。はんだ粉末における銀の含有割合は錫、銀、銅の成分全体量を100質量%としたときに0.1~10質量%であり、銅の含有割合は錫、銀、銅の成分全体量を100質量%としたときに0.1~2.0質量%であり、残部が錫からなるのが好ましい。ここで、各金属の含有割合を上記範囲とするのが好ましい理由は、共晶点から組成がずれるのを防止してはんだ粉末の融点を低くするとともに、形成したはんだバンプにおけるはんだ合金の電気抵抗の増加を抑え、機械的強度を向上させるためである。
 また、銀や銅の割合が極端に少なすぎる、或いは極端に多すぎると、ペーストのリフロー時における濡れ性が悪くなる傾向がみられるからである。これは、銀や銅の割合が極端に少なすぎると、粉末が、酸化しやすい錫単体の組成に近づくためと考えられ、一方、銀や銅の割合が極端に多すぎると、固液共存領域が広く、融液の流動性が低くなるためと考えられる。また、銀や銅の割合が極端に多すぎると、錫の割合が少なくなり、はんだ粉末として必要とされる低融点を示さないからである。また、銀や銅の割合が極端に少なすぎると、錫の割合が多くなり、濡れ性が低下する他、形成したはんだバンプの機械的強度が低下するからである。このうち、銀の含有割合は錫、銀、銅の成分全体量を100質量%としたときに1.0~5.0質量%であり、銅の含有割合は錫、銀、銅の成分全体量を100質量%としたときに0.3~0.7質量%であり、残部が錫からなるのが特に好ましい。
 そして、本発明のSnAgCu系はんだ粉末は、はんだ粉末表面に添加剤として融点が250℃以下のヒドロキシ安息香酸又はそのエステルが付着してなる。このように、本発明のはんだ粉末では、はんだ粉末表面にこれらの添加剤が付着しているため、最外層が錫で構成されているにも拘わらず、はんだ粉末表面の酸化が起こり難い。そのため、リフロー時の溶融性及び濡れ性に優れる。
 また、本発明のSnAgCu系はんだ粉末では、はんだ粉末表面にこれらの添加剤が付着した構造になっている。ペーストを調製する際に、別途添加剤をペースト中に添加する方法も考えられるが、はんだ粉末が、はんだ粉末表面に添加剤が付着した構造になっていると、はんだ粉末と添加剤の接触が多くなるため、より少量であっても抗酸化効果が得られる。そのため、本発明のはんだ粉末を用いれば、別途添加剤を添加して得られたペーストに比べ、濡れ性、溶融拡散性に優れたはんだペーストを調製することができる。
 添加剤の付着量は、はんだ粉末に含有する錫、銀、銅の成分全体量の100質量部に対して0.01~1.0質量部であるのが好ましい。添加剤の付着量が下限値未満では、抗酸化効果が十分に得られず、一方、上限値を越えると、溶融性の低下を生じる場合がある。このうち、添加剤の付着量は、はんだ粉末に含有する錫、銀、銅の成分全体量の100質量部に対して0.05~0.5質量部であるのが特に好ましい。
 また、はんだ粉末には、上記錫、銀、銅以外の金属以外に、更にビスマス、ゲルマニウム、ニッケル又はインジウムの少なくとも1種をはんだ粉末全体量を100質量%としたときに1.0質量%以下の割合で含んでもよい。上記元素の添加により、はんだ粉末の低融点化、強度の向上などの効果が得られる。
 続いて、上記本発明のSnAgCu系はんだ粉末を製造する方法について説明する。先ず、溶媒に、銀を含む化合物と、銅を含む化合物と、錫を含む化合物及び分散剤とをそれぞれ添加して混合することにより、溶解液を調製する。溶解液中における銀を含む化合物、銅を含む化合物、錫を含む化合物の含有割合は、はんだ粉末製造後に、各金属元素の含有割合が上記範囲になるように調整する。また、ビスマス、ゲルマニウム、ニッケル又はインジウムを含ませる場合には、これらを含む化合物を溶解液に添加する。
 また、上記溶解液には、上記銀を含む化合物の代わりに銀粉末を用い、この銀粉末と分散剤を溶媒に添加混合して銀粉末の分散液を調製し、これに上記銅を含む化合物と錫を含む化合物を直接添加混合し溶解させるか、或いは銅を含む化合物、錫を含む化合物をそれぞれ溶媒に溶解させて2つの金属溶液を予め調製し、これらを上記銀粉末の分散液に添加混合して得られる、銀粉末が分散する溶解液を使用することもできる。この場合に使用される銀粉末、銅を含む化合物、錫を含む化合物の割合は、はんだ粉末製造後に、各金属元素の含有割合が上記範囲になるように調整する。
 溶解液の調製に用いられる銀化合物としては、硫酸銀(I)、塩化銀(I)又は硝酸銀(I)等が挙げられる。一方、銀化合物の代わりに用いられる銀粉末としては、平均粒径が0.1~2.0μmであり、還元反応による化学的手法で得られた銀粉末の他、アトマイズ法のような物理的手法によって得られた銀粉末も使用可能である。また、溶解液の調製に用いられる銅化合物としては、塩化銅(II)、硫酸銅(II)又は酢酸銅等が挙げられ、錫化合物としては、塩化錫(II)、硫酸錫(II)、酢酸錫(II)、シュウ酸錫(II)等が挙げられる。このうち、銀を含む化合物、銅を含む化合物、錫を含む化合物が溶解する溶解液を用いる場合は、銀化合物、銅化合物、錫化合物として、いずれも硫酸塩の硫酸銀(II)、硫酸銅(II)、硫酸錫(II)を使用するのが特に好ましい。それは、銀化合物を使用する場合に銅及び錫の塩化物を使用すると、塩化銀の粗大粒子が発生し、これを中心核として得られたはんだ粉末が目的とする平均粒径より大きくなる場合があるからである。
 一方、銀粉末が分散する溶解液を用いる場合は、銅化合物、錫化合物として、いずれも硫酸塩の硫酸銅(II)、硫酸錫(II)を使用するか、或いはいずれも塩酸塩の塩化銅(II)、塩化錫(II)を用いるのが特に好ましい。銀粉末が分散する溶解液を用いる方法では、溶解液の調製に硫酸塩のみならず、塩酸塩も好適に用いられるのは、銀粉末の表面のみが塩化物となり、銀粉末の平均粒子径はあまり変わらず、これを中心核として得られるはんだ粉末は目的とする平均粒子径になりやすいからである。
 溶媒としては、水、アルコール、エーテル、ケトン、エステル等が挙げられる。また、分散剤としては、セルロース系、ビニル系、多価アルコール等が挙げられ、その他にゼラチン、カゼイン等を用いることができる。調製した溶解液はpH調整する。pHは、生成したはんだ粉末の再溶解等を考慮して、0~2.0の範囲に調整するのが好ましい。なお、溶媒に上記金属化合物をそれぞれ添加して溶解させた後、錯化剤を加えて、各金属元素を錯体化した後に、分散剤を添加しても良い。錯化剤を加えることでpHがアルカリ側でも金属イオンが沈殿せず、広い範囲での合成が可能となる。錯化剤としては、コハク酸、酒石酸、グリコール酸、乳酸、フタル酸、リンゴ酸、クエン酸、シュウ酸、エチレンジアミン四酢酸、イミノ二酢酸、ニトリロ三酢酸又はその塩等が挙げられる。
 次に、還元剤を溶解した水溶液を調製し、この水溶液のpHを、上記調製した溶解液と同程度に調整する。還元剤としては、テトラヒドロホウ酸ナトリウム、ジメチルアミンボラン等のホウ素水素化物、ヒドラジン等の窒素化合物、三価のチタンイオンや二価のクロムイオン等の金属イオン等が挙げられる。
 次に、上記溶解液に還元剤水溶液を添加して混合することにより、溶解液中の各金属イオンが還元され、液中に金属粉末が分散した分散液が得られる。この還元反応では、上記銀を含む化合物、銅を含む化合物、錫を含む化合物が溶解する溶解液を用いた場合は、先ず、錫及び銅よりも貴な銀が還元され、次いで錫よりも貴な銅が還元され、最後に錫が還元される。一方、銀粉末が分散する溶解液を用いた場合は、先ず、錫よりも貴な銅が還元されて銀粒子の表面に銅が析出し、次いで錫が還元される。これにより、銀からなる中心核と、この中心核を被覆する銅からなる被覆層と、この被覆層を被覆する錫からなる最外層で構成された、平均粒径5μm以下の金属粉末が形成される。溶解液と還元剤水溶液を混合する方法としては、容器内の溶解液に所定の添加速度で還元剤水溶液を滴下し、スターラ等で攪拌する方法や、所定の径を有する反応チューブを用い、この反応チューブ内に両液を所定の流量で注ぎ込み、混合させる方法等が挙げられる。
 次いで、この分散液を、デカンテーション等によって固液分離し、回収した固形分を水又はpHを0.5~2に調整した塩酸水溶液、硝酸水溶液、硫酸水溶液、或いはメタノール、エタノール、アセトン等で洗浄する。洗浄後は、再度固液分離して固形分を回収する。洗浄から固液分離までの工程を、好ましくは2~5回繰り返す。
 次に、融点が250℃以下のヒドロキシ安息香酸又はそのエステルの添加剤を、好ましくは水、エタノール又はアセトン等の溶媒に溶解させた添加剤溶液を調製する。このとき、添加剤の使用量は、はんだ粉末表面に付着する添加剤の付着量が上述の範囲になるように調整する。また、添加剤溶液の濃度は、添加剤の溶解度及び乾燥効率の理由から、1~20質量%程度の濃度に調製するのが好ましい。
 そして、添加剤溶液を、上記洗浄後、乾燥する前の固液分離した固形分に添加し、好ましくは、回転速度100~500rpmの条件で、5~60分間撹拌する。このとき、上記回転速度及び時間が下限値未満では、十分に分散攪拌しない不具合が生じる場合があり、上限値を越えても分散攪拌程度が変わらない。
 これを、固液分離せずに真空乾燥させることにより、本発明のはんだ粉末を得ることができる。
 以上の工程により、本発明のSnAgCu系はんだ粉末を得ることができる。このはんだ粉末は、はんだ用フラックスと混合してペースト化して得られるはんだ用ペーストの材料として好適に用いられる。はんだ用ペーストの調製は、例えばはんだ用フラックスを、好ましくは10~30質量%、更に好ましくは10~25質量%混合してペースト化することにより行われる。はんだ用フラックスの混合量を10~30質量%とするのは、10質量%未満ではフラックス不足でペースト化できず、30質量%を越えるとペースト中のフラックスの含有割合が多すぎて金属の含有割合が少なくなってしまい、はんだ溶融時に所望のサイズのはんだバンプを得ることができないからである。
 このはんだ用ペーストは、上記本発明のはんだ粉末を材料としているため、溶融性及び濡れ性が非常に良く、ソルダボールが生じにくい点で優れる。またこのはんだ用ペーストは5μm以下の微細なはんだ粉末によって調製されるため、このはんだ用ペーストを用いれば、基板等にファインピッチパターンで印刷でき、高さのバラツキが少ないはんだバンプを形成することができる。そのため、このはんだ用ペーストは、より微細な電子部品の実装に好適に用いることができる。
 次に本発明の実施例を比較例とともに詳しく説明する。
 <実施例1>
 先ず、水50mLに硫酸銅(II)を1.59×10-4mol、硫酸銀(I)を4.10×10-4mol、硫化錫(II)を2.62×10-2mol加え、スターラを用いて回転速度300rpmにて5分間攪拌し、溶解液を調製した。この溶解液を硫酸にてpHを0.5に調整した後、分散剤としてポリビニルアルコール500(平均分子量が500のポリビニルアルコール)を0.5g加え、更に回転速度300rpmにて10分間攪拌した。
 次いで、この溶解液にpHを0.5に調整した1.58mol/Lの二価クロムイオン水溶液50mLを、添加速度50mL/secにて加え、回転速度500rpmにて10分間攪拌して各金属イオンを還元し、液中に金属粉末が分散する分散液を得た。この分散液を60分間静置して生成した金属粉末を沈降させた後、上澄み液を捨て、ここに水100mLを加えて回転速度300rpmにて10分間攪拌する操作を3回繰返し、洗浄を行った。
 次に、添加剤としてサリチル酸(2-ヒドロキシ安息香酸)20mgを水20mLに加えて添加剤溶液を調製した。この添加剤溶液を、洗浄後、乾燥する前の上記金属粉末4.0gに添加し、回転速度300rpmの条件で30分間攪拌した。
 その後、これを真空乾燥機にて乾燥することにより、はんだ粉末表面にはんだ粉末に含有する錫、銀、銅の成分全体量の100質量部に対して0.49質量部のサリチル酸が付着しているSnAgCu系のはんだ粉末を得た。得られはんだ粉末を元素分析したところ、Snが96.5質量%、Agが3質量%、Cuが0.5質量%であった。なお、表1には、錫、銀、銅の成分全体量である乾燥前の金属粉末を100質量部としたときの添加剤の使用量(質量部)を示す。
 <実施例2>
 添加剤としてサリチル酸0.80mgを使用したこと以外は、実施例1と同様にして、はんだ粉末を得た。このはんだ粉末表面には、はんだ粉末に含有する錫、銀、銅の成分全体量の100質量部に対して0.02質量部のサリチル酸が付着していた。
 <実施例3>
 添加剤としてサリチル酸40mgを使用したこと以外は、実施例1と同様にして、はんだ粉末を得た。このはんだ粉末表面には、はんだ粉末に含有する錫、銀、銅の成分全体量の100質量部に対して0.99質量部のサリチル酸が付着していた。
 <実施例4>
 添加剤としてヒドロキシ安息香酸のエステルである3,4ジヒドロキシ安息香酸エチル20mgを使用したこと以外は、実施例1と同様にして、はんだ粉末を得た。このはんだ粉末表面には、はんだ粉末に含有する錫、銀、銅の成分全体量の100質量部に対して0.46質量部の3,4ジヒドロキシ安息香酸エチルが付着していた。
 <実施例5>
 添加剤としてヒドロキシ安息香酸のエステルである3,5ジヒドロキシ安息香酸エチル20mgを使用したこと以外は、実施例1と同様にして、はんだ粉末を得た。このはんだ粉末表面には、はんだ粉末に含有する錫、銀、銅の成分全体量の100質量部に対して0.48質量部の3,5ジヒドロキシ安息香酸エチルが付着していた。
 <比較例1>
 添加剤を添加しなかったこと以外は、実施例1と同様にして、はんだ粉末を得た。
 <比較例2>
 添加剤としてサリチル酸80mgを使用したこと以外は、実施例1と同様にして、はんだ粉末を得た。このはんだ粉末表面には、はんだ粉末に含有する錫、銀、銅の成分全体量の100質量部に対して1.9質量部のサリチル酸が付着していた。
 <比較例3>
 添加剤としてサリチル酸0.4mgを使用したこと以外は、実施例1と同様にして、はんだ粉末を得た。このはんだ粉末表面には、はんだ粉末に含有する錫、銀、銅の成分全体量の100質量部に対して0.00093質量部のサリチル酸が付着していた。
 <比較例4>
 添加剤として没食子酸20mgを使用したこと以外は、実施例1と同様にして、はんだ粉末を得た。このはんだ粉末表面には、はんだ粉末に含有する錫、銀、銅の成分全体量の100質量部に対して0.45質量部の没食子酸が付着していた。
 <比較例5>
 比較例1にて得られたはんだ粉末とサリチル酸粉末20mgを混合して、はんだ粉末を得た。
 <比較試験及び評価>
 実施例1~5及び比較例1~5で得られたはんだ粉末について、次に述べる方法により、粉末の平均粒径、組成の分析又は測定を行い、また未凝集粉の割合及び濡れ性を評価した。これらの結果を以下の表1に示す。
 (i) 平均粒径:レーザー回折散乱法を用いた粒度分布測定装置(堀場製作所社製、レーザー回折/散乱式粒子径分布測定装置LA-950)にて粒径分布を測定し、その体積累積中位径(Median径、D50)をはんだ粉末の平均粒径とした。
 (ii) 組成:ICP発光分析装置(島津製作所社製 ICP発光分析装置:ICPS-7510)を用いた誘導結合プラズマ発光分光分析(Inductively Coupled Plasma-Atomic Emission Spectroscopy:ICP-AES)により金属元素含有量を測定した。また、高速液体クロマトグラフィー/紫外線吸光度検出器(High performance liquid chromatography/Ultra-Violet Absorbance Detector:HPLC/UV)により各添加剤の含有量を測定した。
 (iii) 未凝集粉:溶融後のはんだバンプの表面をSEMにて2000倍の倍率で50μm×50μmの視野にて観察し、一視野中の未凝集粉の多寡を目視にて評価した。
 (iv) 濡れ性:JISZ3284に記されている「ぬれ効力及びディウエッティング試験」に準じて行った。評価についても同様に濡れ広がり度合いを1~4に区分した。なお、表1において、「1」が濡れ広がり度合いが最も濡れ性に優れることを示し、「4」が最も濡れ性が悪いことを示す。
Figure JPOXMLDOC01-appb-T000001
 先ず、実施例1~5と比較例1を比べると、表1から明らかなように、添加剤が付着していないはんだ粉末の比較例1では、実施例1~5よりも、濡れ性が劣り、未凝集分の個数が10倍以上となる結果となった。
 次いで、実施例1~5と比較例2~3を比べると、実施例は、濡れ性が優れ、未凝集分の個数も10個以内であるのに対し、比較例では、濡れ性が2であり、未凝集分の個数も100個程度の結果となった。このことから、少なくとも錫、銀、銅の成分全体量の100質量部に対して0.02~0.99質量部の範囲で添加剤が付着した場合に濡れ広がり度合い及び、未凝集分の個数において効力を発揮していることが確認できた。
 次に、添加剤として、没食子酸を用いた比較例4では、実施例1~5よりも、濡れ性が劣り、未凝集分の個数が多い結果となった。
 更に、はんだ粉末の乾燥前にサリチル酸を添加した実施例と比較して、はんだ粉末の乾燥後にサリチル酸粉末を添加した比較例5では濡れ性が劣り、未凝集分の個数が多い結果となった。このことからはんだ粉末の乾燥前にサリチル酸を添加することではんだ粉末表面にサリチル酸が付着し、より一層抗酸化効果が得られることが確認された。
 実施例1~5では、いずれの評価においても比較例1~5に比べ、優れた結果が得られた。
 本発明のはんだ粉末は、ファインピッチ用鉛フリーのはんだ粉末として利用でき、このはんだ粉末を原料として得られるはんだ用ペーストは、微細な電子部品の実装に好適に用いることができる。

Claims (6)

  1.  平均粒径5μm以下のはんだ粉末であって、前記はんだ粉末表面に融点が250℃以下のヒドロキシ安息香酸又はそのエステルの溶液の乾燥物が添加剤として付着してなるSnAgCu系はんだ粉末。
  2.  前記添加剤は、サリチル酸、3,4ジヒドロキシ安息香酸エチル又は3,5ジヒドロキシ安息香酸エチルである請求項1記載のSnAgCu系はんだ粉末。
  3.  前記添加剤の付着量がはんだ粉末に含有する錫、銀、銅の成分全体量の100質量部に対して0.01~1.0質量部であり、
     銀の含有割合が錫、銀、銅の成分全体量を100質量%としたときに0.1~10質量%であり、
     銅の含有割合が錫、銀、銅の成分全体量を100質量%としたときに0.1~2.0質量%であり、
     残部が錫からなる請求項1記載のSnAgCu系はんだ粉末。
  4.  ビスマス、ゲルマニウム、ニッケル又はインジウムの少なくとも1種をはんだ粉末全体量を100質量%としたときに1.0質量%以下の割合で含む請求項1記載のSnAgCu系はんだ粉末。
  5.  請求項1記載のSnAgCu系はんだ粉末とはんだ用フラックスを混合してペースト化することにより得られたはんだ用ペースト。
  6.  電子部品の実装に用いられる請求項5記載のはんだ用ペースト。
PCT/JP2014/051037 2013-01-28 2014-01-21 SnAgCu系はんだ粉末及びこの粉末を用いたはんだ用ペースト WO2014115695A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/759,499 US20150343569A1 (en) 2013-01-28 2014-01-21 Sn-ag-cu-based solder powder and solder paste using said powder
CN201480002818.5A CN104768700A (zh) 2013-01-28 2014-01-21 SnAgCu系焊料粉末及使用该粉末的焊料用浆料
KR1020157007950A KR20150110457A (ko) 2013-01-28 2014-01-21 SnAgCu 계 땜납 분말 및 이 분말을 사용한 땜납용 페이스트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013012970A JP6191143B2 (ja) 2013-01-28 2013-01-28 SnAgCu系はんだ粉末の製造方法及びこの粉末を用いたはんだ用ペーストの調製方法
JP2013-012970 2013-01-28

Publications (1)

Publication Number Publication Date
WO2014115695A1 true WO2014115695A1 (ja) 2014-07-31

Family

ID=51227486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051037 WO2014115695A1 (ja) 2013-01-28 2014-01-21 SnAgCu系はんだ粉末及びこの粉末を用いたはんだ用ペースト

Country Status (6)

Country Link
US (1) US20150343569A1 (ja)
JP (1) JP6191143B2 (ja)
KR (1) KR20150110457A (ja)
CN (1) CN104768700A (ja)
TW (1) TW201431637A (ja)
WO (1) WO2014115695A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105290642B (zh) * 2015-11-28 2018-02-23 上海一远电子科技有限公司 一种抗氧化锡铜系合金钎料
US11337423B1 (en) * 2021-06-30 2022-05-24 Lanny Leo Johnson Candida auris disinfectant
CN115488546B (zh) * 2022-09-30 2024-01-30 西南石油大学 一种银纳米线改性锡银铜复合焊膏及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020460A1 (en) * 1994-01-27 1995-08-03 Indium Corporation Of America Solder paste utilizing aromatic carboxylic acids
JPH11245079A (ja) * 1998-02-27 1999-09-14 Toshiba Corp ソルダペースト用金属粉末とその製造方法
JP2005254246A (ja) * 2004-03-09 2005-09-22 Hitachi Metals Ltd はんだボール及びその製造方法
JP2006009125A (ja) * 2004-06-29 2006-01-12 Kumamoto Technology & Industry Foundation 表面修飾金属微粒子および該金属微粒子を含有するペースト
JP2008272779A (ja) * 2007-04-26 2008-11-13 Nippon Steel Materials Co Ltd 表面処理はんだボール及びはんだボールの表面処理方法
JP2012115861A (ja) * 2010-11-30 2012-06-21 Mitsubishi Materials Corp ハンダ粉末の製造方法及び該方法により得られたハンダ粉末
JP2012152782A (ja) * 2011-01-26 2012-08-16 Mitsubishi Materials Corp ハンダ粉末及びその製造方法
JP2014008506A (ja) * 2012-06-27 2014-01-20 Mitsubishi Materials Corp SnAgCu系はんだ粉末及びこの粉末を用いたはんだ用ペースト

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298407A (en) * 1980-08-04 1981-11-03 E. I. Du Pont De Nemours And Company Flux treated solder powder composition
GB2380964B (en) * 2001-09-04 2005-01-12 Multicore Solders Ltd Lead-free solder paste
US20050077502A1 (en) * 2003-10-09 2005-04-14 Munie Gregory C. Surface reactive preservative for use with solder preforms
CN1972779A (zh) * 2004-05-28 2007-05-30 P·凯金属公司 焊膏和方法
JP4787384B1 (ja) * 2010-10-29 2011-10-05 ハリマ化成株式会社 低銀はんだ合金およびはんだペースト組成物
CN103907179B (zh) * 2011-10-26 2017-07-07 日立化成株式会社 回流膜、焊料凸块形成方法、焊料接合的形成方法以及半导体装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020460A1 (en) * 1994-01-27 1995-08-03 Indium Corporation Of America Solder paste utilizing aromatic carboxylic acids
JPH11245079A (ja) * 1998-02-27 1999-09-14 Toshiba Corp ソルダペースト用金属粉末とその製造方法
JP2005254246A (ja) * 2004-03-09 2005-09-22 Hitachi Metals Ltd はんだボール及びその製造方法
JP2006009125A (ja) * 2004-06-29 2006-01-12 Kumamoto Technology & Industry Foundation 表面修飾金属微粒子および該金属微粒子を含有するペースト
JP2008272779A (ja) * 2007-04-26 2008-11-13 Nippon Steel Materials Co Ltd 表面処理はんだボール及びはんだボールの表面処理方法
JP2012115861A (ja) * 2010-11-30 2012-06-21 Mitsubishi Materials Corp ハンダ粉末の製造方法及び該方法により得られたハンダ粉末
JP2012152782A (ja) * 2011-01-26 2012-08-16 Mitsubishi Materials Corp ハンダ粉末及びその製造方法
JP2014008506A (ja) * 2012-06-27 2014-01-20 Mitsubishi Materials Corp SnAgCu系はんだ粉末及びこの粉末を用いたはんだ用ペースト

Also Published As

Publication number Publication date
JP2014144461A (ja) 2014-08-14
US20150343569A1 (en) 2015-12-03
CN104768700A (zh) 2015-07-08
TW201431637A (zh) 2014-08-16
KR20150110457A (ko) 2015-10-02
JP6191143B2 (ja) 2017-09-06

Similar Documents

Publication Publication Date Title
WO2013031588A1 (ja) ハンダ粉末及びこの粉末を用いたハンダ用ペースト
JP5895344B2 (ja) ハンダ粉末の製造方法及びこの方法により製造されたハンダ粉末を用いてハンダ用ペーストを製造する方法
JP2008138266A (ja) ハンダ粉末及び該粉末を用いたハンダ用ペースト
JP5754582B2 (ja) プリコート用ハンダペースト
JP5927745B2 (ja) SnAgCu系はんだ粉末及びこの粉末を用いたはんだ用ペースト
JP5736799B2 (ja) ハンダ粉末及びその製造方法
JP5750913B2 (ja) ハンダ粉末及びこの粉末を用いたハンダ用ペースト
JP2012076086A (ja) ハンダ粉末及びこの粉末を用いたハンダ用ペースト
JP6191143B2 (ja) SnAgCu系はんだ粉末の製造方法及びこの粉末を用いたはんだ用ペーストの調製方法
JP4797968B2 (ja) ハンダ粉末及びこの粉末を用いたハンダ用ペースト
JP2013094836A (ja) プリコート用ハンダペースト及びその製造方法
JP6102280B2 (ja) SnAgCu系はんだ粉末の製造方法及びこの粉末を用いたはんだ用ペースト
JP2011177719A (ja) ハンダ粉末及びこの粉末を用いたハンダ用ペースト
JP2012115861A (ja) ハンダ粉末の製造方法及び該方法により得られたハンダ粉末
JP2020063487A (ja) AgPdコアシェル粒子およびその利用
JP6244869B2 (ja) SnAgCu系はんだ粉末及びこの粉末を用いたはんだ用ペーストの製造方法
JP2012115860A (ja) ハンダ粉末の製造方法及び該方法により得られたハンダ粉末
JP2008149366A (ja) ハンダ粉末及びこのハンダ粉末を用いたハンダ用ペースト
JP4826453B2 (ja) ハンダ粉末及び該粉末を用いたハンダ用ペースト
JP5488553B2 (ja) ハンダ粉末及びこの粉末を用いたハンダ用ペースト
JP5447464B2 (ja) ハンダ粉末及びこの粉末を用いたハンダ用ペースト
JP2010070776A (ja) Snを含有する粉末の製造方法及び該方法により製造されたSnを含有する粉末並びに該Snを含有する粉末を用いたはんだ用ペースト
JP2010070775A (ja) Snを含有する粉末の製造方法及びSnを含有する粉末並びに該Snを含有する粉末を用いたはんだ用ペースト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14742993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157007950

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14759499

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14742993

Country of ref document: EP

Kind code of ref document: A1