WO2014109360A1 - 高効率な異種タンパク質の製造方法 - Google Patents
高効率な異種タンパク質の製造方法 Download PDFInfo
- Publication number
- WO2014109360A1 WO2014109360A1 PCT/JP2014/050233 JP2014050233W WO2014109360A1 WO 2014109360 A1 WO2014109360 A1 WO 2014109360A1 JP 2014050233 W JP2014050233 W JP 2014050233W WO 2014109360 A1 WO2014109360 A1 WO 2014109360A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- base sequence
- heterologous protein
- protein
- expression vector
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/37—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
- C07K14/39—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/67—General methods for enhancing the expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/18—Carboxylic ester hydrolases (3.1.1)
Definitions
- This study relates to a nucleic acid molecule containing the base sequence of the high expression promoter of the foliar yeast Pseudozyma antarctica, an expression vector containing the nucleic acid molecule, and a highly efficient method for producing a heterologous protein using the expression vector.
- a means for discharging the produced target protein out of the cells and accumulating it in the medium can be said to be one of effective means for improving the protein production amount. It is also effective to use a promoter sequence or terminator sequence with high gene transcription activity to increase the target protein production rate by increasing the gene transcription rate.
- a promoter sequence or terminator sequence with high gene transcription activity to increase the target protein production rate by increasing the gene transcription rate.
- the genus Pseudozyma is a plant basidiomycetous yeast generally found from the surface of leaves and fruits.
- P. antartcica is found in rice stems and leaves, rice cakes, and brown rice, while P. aphidis, P. rugulosa, and P. tsukubaensis are found in the skins of vegetables and fruits such as pakchoi, mizuna and perilla.
- P. antarctica tens of thousands to hundreds of thousands of live bacteria are isolated per gram of ⁇ , and when analyzing the raw weight of raw vegetables 10 mg, Pseudozyma yeast is isolated from almost all, Humans have a history of eating Pseudozyma yeast with plant foods.
- Pseudozyma yeast is known to produce lipase, and P. antartcica lipase (CALA, CALB) has abundant industrial use results such as use in detergents.
- P. antartcica lipase (CALA, CALB)
- MELs glycolipid mannosyl erythritol lipids
- P. tsukubaensis ⁇ ⁇ have a high skin protective effect. It is used as an additive for enhancing the functionality of commercial cosmetics.
- the yeast of the genus Pseudozyma can be expected as a promising host for producing high secretion of heterologous proteins since it has an excellent ability to produce substances.
- Pseudozyma yeasts are thought to have less protease secretion than the Ascomycetes fungi, so the produced heterologous proteins can be stably accumulated in the medium.
- biodegradable mulch is about three times that of polyethylene mulch, but since it is poured and decomposed after use, there is no cost for stripping and disposal, and the unit area required for crop harvesting It is estimated that the cost related to multi-use is almost the same. If the usage increases in the future, the price can be expected to fall.
- Powerful biodegradable plastic-degrading bacteria such as the selected filamentous fungus NITE ⁇ P-573 (Patent Document 2) were selected, biodegradable plastic-degrading enzyme PaE derived from Pseudozyma antarctica, biodegradable plastic derived from filamentous fungus NITE P-573 Enzymes that efficiently decompose biodegradable plastic materials, such as the degrading enzyme PCLE, have been isolated and identified.
- the degrading enzyme PCLE by applying a PaE or PCLE solution to the surface of the biodegradable mulch, superior degradation characteristics with respect to the biodegradable mulch have been found.
- Enzymes produced by gene recombination technology are widely used for processing fibers and additives for detergents. Upon introduction, it was confirmed that there was no problem even if it was irritating, allergenic, or discharged into the environment. In addition, based on the safety examination standards of the Ministry of Health, Labor and Welfare, the safety assessment standard for food additives manufactured using genetically modified microorganisms established by the Food Safety Committee of the Cabinet Office (decided on March 25, 2004) ) In principle, genetically modified additives that can be evaluated for safety are limited to the use of recombinants derived from non-pathogenic hosts with experience in the manufacture of additives or food experience. Has been. Enzymes that are applied directly to agricultural mulches after crop harvesting are not directly ingested, but are most safe and suitable for enzymes produced in an experienced host such as Pseudozyma yeast. Therefore, its mass production technology is required.
- Non-patent Document 4 which induces expression of heterologous protein genes downstream of the promoter in the presence of vegetable oil, maltose, and xylose, respectively.
- the present invention developed a high-expression promoter of P. antarctica and constructed a heterologous protein production system using the obtained high-expression promoter, and the enzyme was efficiently used using the Ustilaginales (Krochomycetes) strain containing Pseudozyma yeast. It is an object of the present invention to provide a manufacturing method.
- the present inventors have cultivated foliar yeast P. antarctica using various carbon sources, and as a result, when xylose, which is a constituent of herbaceous biomass, is used as a carbon source, We discovered for the first time that there are unknown proteins produced in large quantities. Further investigation was conducted, and the gene sequence (PANT_8c00118) of this unknown protein was identified from the whole genome sequence of the P. antarctica T34 strain. Furthermore, using the promoter base sequence and terminator sequence, the biodegradable plastic-degrading enzyme (PaE mass production system derived from P. antarctica) was successfully constructed, and the present invention was completed.
- the novel protein is secreted and produced at a high concentration in the culture solution in the presence of xylose, the secretion amount of the heterologous protein into the culture solution can be controlled by using the secretory signal sequence. Furthermore, by culturing in the presence of xylose, it was confirmed that other yeasts of the genus Psudozyma also secreted a protein with the same molecular weight of about 33 kDa in the culture medium as in the case of P. antarctica. .
- the present invention provides a novel promoter nucleotide sequence upstream of the gene PANT_8c00118 derived from P. 18antarctica that induces the expression of downstream genes in the presence of xylose, in order to strongly and strictly control the expression of heterologous protein genes in Pseudozyma spp.
- An important feature is that it is used as a new promoter and enhances the secretion and productivity of heterologous proteins by placing or replacing the new signal sequence of PANT_8c00118 as a secretory signal sequence of the heterologous protein upstream of the target protein gene. And includes the following aspects.
- a nucleic acid molecule comprising the base sequence represented by SEQ ID NO: 1 or SEQ ID NO: 7.
- An expression vector comprising the nucleic acid molecule according to any one of (1) to (3) above or a fragment thereof having promoter activity.
- the expression vector according to (4) further comprising a sequence.
- the expression vector according to (4) or (5) above further comprising a base sequence encoding a heterologous protein operably linked to the nucleic acid molecule.
- the heterologous protein is a biodegradable plastic degrading enzyme PaE derived from yeast of the genus Pseudozyma or a biodegradable plastic degrading enzyme PCLE derived from the filamentous fungus NITE P-573.
- (12) a step of culturing the host cell according to any one of (9) to (11) above under conditions that allow the expression of the heterologous protein, and a step of recovering the heterologous protein from the culture solution.
- a method for producing a heterologous protein (13) The production method according to (12) above, wherein the host cell is cultured in a medium containing xylose (14) A protein encoded by the base sequence represented by SEQ ID NO: 4.
- a biodegradable plastic degradation preparation comprising the protein according to (14).
- heterologous proteins can be efficiently used with Pseudozyma yeast (for example, P. anatarctica) as a host.
- Pseudozyma yeast for example, P. anatarctica
- the remarkable effect is that it can be produced and accumulated in the medium.
- the production amount was about 10 times higher than the production amount of the parent strain having an origin isolated from rice straw.
- the target heterologous protein since the main component of the protein composition of the culture supernatant of the present invention is the target heterologous protein, it can be used directly as an enzyme solution by removing cells that are recombinants with a membrane filter or the like. .
- M: marker, 1: reference strain P. antarctica JCM10317 strain, 2-10: isolated rice straw P. antarctica, 11: P. antarcticaT34 strain Results of SDS-PAGE and CBB staining of Pseudozyma yeast and Ustilago yeast culture with modified FMM using xylose as carbon source.
- P. antarctica T34 strain This shows the PANT_8c00118 gene sequence of P. antarctica T34 strain and the base sequence including the promoter region and terminator region (SEQ ID NO: 5).
- the base sequence in the frame is the base sequence of the structural gene of the PANT_8c00118 gene (SEQ ID NO: 4). Intron sequences are underlined and the start codon ATG and stop codon TGA are further framed.
- the production of pPAX1-neo is shown.
- the production of pPAX1-neo-PaCLE1 is shown.
- Figure 2 shows halo formation by PBSA emulsion degradation.
- the production of pPAXn-PCLE is shown.
- Figure 2 shows halo formation by PBSA emulsion degradation.
- the time-dependent changes in dry cell weight and enzyme activity of pPAXn-PCLE transformant (GB4 (0) -PCLE21 strain) of P. antarctica GB-4 (0) strain in 5L Jar fermenter are shown.
- the base sequence in the frame is the base sequence of the structural gene of the xylose-derived protein. Intron sequences are underlined and the start codon ATG and stop codon TGA are further framed.
- the present invention relates to a nucleic acid molecule comprising the base sequence shown in SEQ ID NO: 1.
- the base sequence shown in SEQ ID NO: 1 is a sequence existing upstream of a base sequence (SEQ ID NO: 4) encoding a protein having a molecular weight of about 33 kDa newly found in yeast of Pseudozyma antarctica.
- the present invention further relates to a nucleic acid molecule comprising a base sequence having at least 80% homology with the base sequence shown in SEQ ID NO: 1 and having promoter activity.
- the base sequence is preferably at least 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 and the base sequence shown in SEQ ID NO: 1. %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% homology.
- the base sequence has promoter activity in the protein production method defined in the present invention, one or several bases may be deleted, substituted or added. More preferably, the nucleic acid molecule of the present invention consists of the base sequence shown in SEQ ID NO: 1.
- the present invention relates to a nucleic acid molecule comprising the base sequence shown in SEQ ID NO: 7.
- the base sequence shown in SEQ ID NO: 7 is a sequence existing upstream of the base sequence (SEQ ID NO: 10) encoding a protein of about 33 kDa molecular weight newly found in the yeast GB4 (0) strain of Pseudozyma antarctica. is there.
- the present invention further relates to a nucleic acid molecule comprising a base sequence having at least 80% homology with the base sequence shown in SEQ ID NO: 7, and having promoter activity.
- the base sequence is preferably at least 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 and the base sequence shown in SEQ ID NO: 7. %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% homology.
- the base sequence has promoter activity in the protein production method defined in the present invention, one or several bases may be deleted, substituted or added. More preferably, the nucleic acid molecule of the present invention consists of the base sequence shown in SEQ ID NO: 7.
- the present invention further relates to an expression vector comprising the above nucleic acid molecule or a fragment thereof having promoter activity.
- a fragment of the nucleic acid molecule of the present invention having promoter activity can be appropriately selected by a person skilled in the art by examining the promoter activity of the fragment according to a well-known method.
- the length (base length) of the above fragment is not particularly limited as long as it has promoter activity, and is 100, 150, 200, 250, 300, 350, 400, 450, 500, or 550 bases or more. It is preferable. More preferably, the length of the fragment is 555, 560, 565, 570, 575, 580, 585, or 590 bases or more.
- telomere sequences of 100, 150, 200, 250, 300, 350, 400, 450, 500, or 550 bases or more included in SEQ ID NO: 1 or SEQ ID NO: 7 are repeatedly linked.
- Vectors suitable for gene expression are known in the art, and can be appropriately selected by those skilled in the art in consideration of combinations with host cells described below.
- an expression vector for example, a plasmid pUXV1 (available from ATCC) or a chromosomal transfer vector can be appropriately modified as necessary.
- the expression vector of the present invention is a terminator sequence of the PANT_8c00118 gene defined in SEQ ID NO: 2, or a sequence defined in SEQ ID NO: 8 (terminator sequence of a PANT_8c00118 homologous gene derived from the GB-4 (0) strain of the same Pseudozyma antarctica) ) May be included.
- the expression vector of the present invention has at least 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78 with the nucleotide sequence shown in SEQ ID NO: 2 or SEQ ID NO: 8.
- % 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, It may contain a nucleotide sequence having 95%, 96%, 97%, 98%, 99% homology and having terminator activity. As long as the base sequence has terminator activity in the protein production method defined in the present invention, one or several bases may be deleted, substituted or added.
- the expression vector of the present invention may further comprise a base sequence encoding a heterologous protein operably linked to the nucleic acid molecule.
- “operably linked” means that transcription of a heterologous protein is regulated under the influence of the promoter activity of the nucleotide sequence shown in SEQ ID NO: 1 or SEQ ID NO: 7 in an expression vector. It means that it is connected.
- the heterologous protein can be appropriately selected by those skilled in the art as to the protein that needs to be expressed, and is not limited to the biodegradable plastic degrading enzyme shown in the Examples.
- Preferable heterologous proteins include, for example, biodegradable plastic degrading enzyme PaE derived from yeast of the genus Pseudozyma or biodegradable plastic degrading enzyme PCLE derived from filamentous fungus NITE P-573.
- the above base sequence may be a cDNA base sequence.
- the expression vector of the present invention is adjacent to the upstream of the base sequence encoding the heterologous protein, and is shown in SEQ ID NO: 3 or SEQ ID NO: 9, or shown in SEQ ID NO: 3 or SEQ ID NO: 9.
- SEQ ID NO: 3 is considered to correspond to the secretory signal sequence of the protein encoded from the start codon of the PANT_8c00118 gene (SEQ ID NO: 4) to 102 bp, and SEQ ID NO: 9 is the same Pseudozyma antarctica GB-4 (0 It is considered that it corresponds to the secretory signal sequence of the protein encoded from the start codon of the PANT_8c00118 homologous sequence (SEQ ID NO: 10) derived from the strain to 103 bp.
- the target heterologous protein can be highly secreted and produced outside the microbial cell using a host cell transformed with the expression vector.
- a promoter of a PANT_8c00118 gene, a heterologous protein cDNA base sequence, a terminator (eg, PANT_8c00118 gene terminator) gene base sequence is arranged, and a marker gene base sequence (eg, amino acid or It is possible to construct an expression cassette with a base synthesis gene and an antibiotic system gene).
- the present invention further relates to a host cell transformed with the above expression vector.
- the host cell can be appropriately selected by those skilled in the art in consideration of the combination with the expression vector to be used, and P. antarctica and its related species Pseudozyma genus yeast, such as P. antarctica, P. tsukubaensis, Examples include yeasts of the genus Pseudozyma such as P. rugulosa and P. aphidis, and Ustilaginales such as Ustilago genus such as Ustilago maydis.
- yeasts belonging to the genus Pseudozyma are preferable, and Pseudozyma antarctica is particularly preferable.
- the present invention further includes a step of culturing the above host cell containing a base sequence encoding a heterologous protein under conditions that allow expression of the heterologous protein, and a step of recovering the heterologous protein from the culture solution.
- the present invention relates to a method for producing a heterologous protein.
- the culture conditions can determine the composition of the medium and the culture temperature depending on the type of the vector and the host cell, and culture can be performed at 25 to 40 ° C., preferably 30 ° C.
- the heterologous protein can be highly expressed by culturing host cells in a medium containing xylose.
- Xylose can be added to the medium in an amount of 2 to 12% by mass, preferably 4 to 8% by mass.
- the culture is carried out while keeping the aeration conditions at 0.5-3 vvm (LPM / L), preferably 1-2 vvm, and maintaining the dissolved oxygen concentration at 20-50% of the saturation.
- LPM / L 0.5-3 vvm
- an inexpensive carbon source instead of xylose, for example, sucrose, glycerol is sufficient to obtain 2 to 4% by mass in the medium, or an equivalent amount of microbial cells.
- xylose with a final concentration of 10-20% by mass is continuously fed to induce enzyme production. Production is possible.
- the recovery of the heterologous protein from the culture solution can be performed by any method.
- ammonium sulfate may be added to the supernatant of the culture solution to obtain a precipitate, or the culture solution may be concentrated using a ultrafiltration method using Asahi Kasei Microza or the like.
- the precipitate may be dialyzed with a 20 mM Tris-HCl buffer or the like using a dialysis tube, and then the coexisting protein may be removed by passing through a DEAE-sepharose column, and if necessary, SP-sepharose.
- the enzyme may be purified through a column.
- concentration and contaminant removal may be performed in one step using the property (affinity) that the heterologous protein binds to the substrate.
- the present invention further relates to a protein encoded by the base sequence represented by SEQ ID NO: 4 and a biodegradable plastic degradation preparation containing the protein.
- Biodegradable plastic degradation preparations can be prepared by those skilled in the art by well-known methods, and can also be mixed with well-known solvents, additives and the like. EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by this.
- antarctica strains owned by the present inventors secrete unknown proteins having a molecular weight of about 33 kDa in the presence of xylose in the same manner as the reference strain.
- What was cultured in YM medium at 30 ° C. for 24 hours was used as a preculture solution.
- a modified FMM was used to sterilize the carbon source (8% xylose) and other medium components separately and mix under sterilized conditions in order to avoid the formation of culture inhibitors such as browning and furfural. .
- Each composition is shown below.
- YM medium Yeast extract Malt extract Medium
- Modified FMM Frazier minimum medium
- NaNO 3 0.2%
- a new gene sequence encoding this unknown protein was obtained.
- DNA was extracted from the cells and physically fragmented, and then a Mate-pair library having an inserted fragment length of 3 to 4 kb was prepared.
- the obtained Mate-pair library was mixed with microbeads for DNA addition, and the Mate-pair fragment was amplified by emulsion PCR, and then the microbeads were filled in a picotiter plate and aligned.
- This picotiter plate was attached to a DNA sequencer (FLX Titanium), and the genomic DNA sequence was analyzed.
- the obtained primary data was used to assemble a sequence to obtain a contig sequence, and the putative translation region on the genomic DNA sequence was comprehensively extracted by homology search.
- the amino acid sequence was estimated from the gene sequence, and the molecular weight from the N-terminal amino acid sequence of the secreted protein was estimated to be 32,899.48 Da, which was consistent with the value of SDS-PAGE, confirming that the unknown protein was a protein encoded by PANT_8c00118 It was.
- the protein from the start codon is determined based on the N-terminal amino acid sequence of this protein purified from the culture solution. It was speculated that there was a strong secretion signal in 102 bp immediately before the gene sequence encoding the N-terminal amino acid sequence.
- FIG. 5 shows that this plasmid incorporates the cDNA gene PaCLE1 encoding the biodegradable plastic-degrading enzyme PaE derived from P. antarctica JCM10317.
- the constructed plasmid pPAX1-neo-PaCLE1 was introduced into the P. antarctica T34 strain according to the following method.
- the recovered cells were suspended in 10 ml of ice-cold 1M sorbitol, and centrifuged at 4 ° C. and 3000 ⁇ g for 5 minutes to recover the cells.
- the collected cells were suspended in 1 ml of ice-cold 1M sorbitol.
- the above operation was performed on ice.
- 50 ⁇ l of the cell suspension and 50 ⁇ l of plasmid DNA (about 5 to 10 ⁇ g) were added to an electroporation cuvette (BIO-RAD) with a gap of 0.2 cm and incubated on ice for 5 minutes.
- a cuvette was set in E. coli pulser (BIO-RAD), and electroporation was performed under conditions of 1.5 kV, 25 kF, and 400 ⁇ .
- ice-cold YMS (YM + 1M sorbitol) was immediately added, mixed by pipetting, transferred to a 15 ml polyurethane tube, and incubated at 30 ° C. for 2 hours. Apply to a YMS plate containing antibiotic G418 (YMS + 0.05% G418, 2% agar) and incubate at 30 ° C until colonies form. The resulting transformant colonies contain the new antibiotic G418. Planted on YMS plate.
- Transformants grown on the YMS medium containing antibiotics were added to FMM plates containing PBSA emulsion (0.1% yeast extract, 0.2% NaNO 3 , 0.02% KH 2 PO 4 , 0.02% MgSO 4 .7H 2 O, 2 % Xylose, 1% PBSA emulsion (EM-301, Showa Denko KK, 2% agar), and statically cultured at 30 ° C.
- the T34 strain used as the parent strain does not produce biodegradable plastic-degrading enzyme PaE in the presence of xylose, but the transformant transforms the cloudy PBSA emulsion in the medium due to the activity of PaE induced by xylose.
- a transparent halo is formed ( Figure 6). Such a transformant was selected.
- transformants incorporating the previously selected pPAX1-neo-PaCLE1 were transformed into 1% yeast extract solution with 6% of various sugar sources (glucose, When cultured in media supplemented with galactose, xylose, arabinose, sucrose, and lactose, respectively, it was revealed that PBSA emulsion degradation activity was strongly induced only when xylose was used (FIG. 7).
- the enzyme activity was measured as follows.
- rugulosa JCM10323 which are yeasts belonging to the genus Pseudozyma, in the same manner as above, all strains of FMM containing PBSA emulsion
- the emulsion was dissolved in the vicinity of the bacteria to obtain a transformant that formed halo (see FIG. 8, transformant of P. rugulosa JCM10323 strain), and 6% in 1% yeast extract
- PBSA emulsion degradation activity was strongly induced in the culture filtrate by culturing in a liquid medium containing xylose (see FIG. 9, transformants of P. tsukubaensis JCM10324 and P. aphidis JCM10318).
- xylose fed-batch culture was performed using GB4 (0) -PaE14 strain.
- 3 L of medium with the following composition with low initial xylose concentration was added to 5 L Jar fermenter, inoculated with 30 ml of preculture, and cultured at 30 ° C. with stirring speed of 500 rpm and aeration rate of 8 LPM .
- a 50-fold diluted disinfectant Shin-Etsu Silicone KM-72F, Shin-Etsu Chemical Co., Ltd.
- Enzyme activity increased with the addition of fed-batch medium, and after 72 hours, 56.9 U / mL of enzyme was produced in the culture supernatant, but the subsequent enzyme production rate slowed down to 104 hours. Later, the maximum activity was 64.1 U / mL (see FIG. 10A).
- the cause was thought to be a lack of nutrient sources other than xylose in the medium.
- the protein production rate at the initial stage of the culture was low, and the protein production rate increased rapidly after 24 hours of culturing when the cells grew to some extent. It was decided to perform high-density fed-batch culture in a state where the protein production rate was kept high by performing only cell growth using the source and feeding xylose from 24 hours onward.
- the medium composition for high-density culture and the feed medium composition are shown below. Other culture conditions were the same as described above.
- Medium composition for high density culture in Jar fermenter Sucrose 3% NaNO 3 0.2% MgSO 4 ⁇ 7H 2 O 0.1% KH 2 PO 4 0.1% Yeast extract 0.5% (NH 4 ) 2 SO 4 1.0%
- Fed-batch medium composition for high-density culture Xylose 50% YNB w / o AA & AS 0.085% Yeast extract 0.2% The dry cell weight grew to 22.6 g / L in 24 hours from the start of the culture, and then maintained a high protein production rate from the start of the culture to 104 hours by the addition of xylose.
- a very high concentration of PaE of mL (about 3 g / L) was obtained (see FIG. 10B). This value was about 10 times higher than that of the parent strain.
- FIG. 11 shows pPAXn-PCLE in which the developed expression vector UARS was deleted by restriction enzyme SspI treatment and a cDNA gene sequence encoding PCLE (GenBank Accession No. AB823703) was incorporated. After pPAXn-PCLE was linearized by treatment with the restriction enzyme EcoRI, a transformant, T34-PCLE1 strain, incorporated into the P. antarctica T34 strain was prepared.
- T34 and T34-PCLE1 strains were inoculated on the FMM plate containing the PBSA emulsion described above, the T34-PCLE1 strain was decomposed by the production of PCLE, and the formation of halo was confirmed as shown in FIG. .
- GB-4 (0) -PCLE3 strain in which pPAXn-PCLE was incorporated into the GB-4 (0) strain was prepared in the same manner.
- the PBSA emulsion degrading activity of the parent strain GB-4 (0) was 1.8 U / ml due to the activity of the parent strain derived PaE after 96 hours of shaking culture.
- GB-4 (0) -PCLE3 strain showed 2.6 U / ml, and the value was remarkably increased by the production of PCLE.
- the enzyme PCLE of the filamentous fungus B47-9 strain has a dramatic increase in PBSA emulsion degradation activity by the addition of CaCl 2 (Suzuki K., et al., Appl. Microbiol. Biotechnol. DOI10.1007 / s00253). -013-5454-0), PBSA emulsion degradation activity with CaCl 2 added to 1 mM was measured.
- the parent strain GB-4 (0) was 3.5 U / ml
- GB- The strain of 4 (0) -PCLE3 was 5.8 U / ml, and the effect of increasing PCLE activity by adding CaCl 2 was confirmed.
- XynF1 5'-GAAGGCTGAAGCTTTGGCTCTGACAT-3 '
- XynF2 5'-CATGCTTGAAGCTCCAAGAAGATATAA-3
- XynF3 5'-CACTCGCAGCTGCCTTCGTGGGTGCAG-3
- XynF4 5'-GAAGGCAGTCTGCTCGGCCGCTCCCGA-3 '
- XynR1 5'-TGTGGTGTTTGTTTGGCGTTTTTGCTT-3 '
- XynR2 5'-ATCCCACGCGTACACCTTGCCCTTGTA-3 '
- XynR3 5'-CCCACGCAGTTGGACTGGGCCAGGCAG-3 '
- XynR4 5'-CGAGCGCGATTTTCTCCGAGTCTAAA-3 '
- the gene sequence of 1954 residues (SEQ ID NO: 11) shown in FIG. 14 was obtained from the genomic DNA of GB-4 (0) by direct PCR.
- This gene sequence shows 88% homology with the PANT_8c00118 gene promoter, structural gene, and terminator sequence (FIG. 3, SEQ ID NO: 5) of the T34 strain as a whole, and the structural gene sequence encoding the protein (SEQ ID NO: 10) Showed 94% homology with the sequence of the T34 strain (SEQ ID NO: 4).
- the promoter region (SEQ ID NO: 7) shows 83% homology with that of the T34 strain (SEQ ID NO: 1)
- the terminator region (SEQ ID NO: 8) has that of the T34 strain (SEQ ID NO: 2).
- the signal sequence (SEQ ID NO: 9) showed 93% homology with that of the T34 strain (SEQ ID NO: 3).
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Mycology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
P. antarcticaの高発現プロモーターの開発と得られた高発現プロモーターを用いて異種タンパク質生産系を構築し、Pseudozyma属酵母を含むUstilaginales目(クロホ菌目)株を用いて酵素を効率的に製造する方法を提供する。本発明の異種タンパク質の製造方法は、配列番号:1又は配列番号:7に示される塩基配列及び該配列に機能可能に連結した異種タンパク質をコードする塩基配列を含む発現ベクターで形質転換した宿主細胞を、前記異種タンパク質の発現を可能にする条件下で培養する工程、及び、培養液から異種タンパク質を回収する工程を含む。
Description
本研究は、葉面酵母Pseudozyma antarcticaの高発現プロモーターの塩基配列を含む核酸分子、該核酸分子を含む発現ベクター、及び該発現ベクターを用いた高効率な異種タンパク質の製造方法に関するものである。
石油等の化石資源の枯渇問題を背景として、再生可能資源の一つであるバイオマスを活用して、エネルギーや工業原料を生産する、いわゆるバイオリファイナリー技術の開発が世界的に進められている。特に、微生物を利用した有用タンパク質の生産には、この有用タンパク質をコードする遺伝子の上流に、強力な遺伝子発現プロモーターを連結させた発現ベクター、または遺伝子断片を、宿主となる細胞に導入して構築された、形質転換体が利用される。これまで、多くの微生物において宿主・発現ベクター系が構築されてきたが、目的とする有用タンパク質の生産性が低い場合がある。一般的に、目的とする有用タンパク質の生産性を向上させるために、より発現効率の優れた宿主ベクター系の開発が行われる。例えば、生産された目的のタンパク質を菌体外に排出させ、培地中に蓄積させる手段も、タンパク質生産量を向上させるために有効な手段の一つといえる。また、遺伝子の転写活性の高いプロモーター配列やターミネーター配列を活用して、遺伝子の転写速度を上げることで目的のタンパク質生産量の向上を図る手段も有効といえる。さらに、宿主となる微生物の性状は多岐に渡るため、例えば、炭素源の資化性や温度感受性の違う、多様な微生物について新たな宿主ベクター系を開発することは、異種タンパク質生産技術の向上のために極めて重要といえる。また、これらの技術開発によって、異種タンパク質を生産させる目的だけでなく、異種タンパク質を生産させることで形質を換え、機能性化学品等を生産可能な微生物を創出することも可能であり、新たなバイオリファイナリー技術の開発のためにも極めて重要な課題といえる。
目的とする異種タンパク質を生産させる場合、細胞内に生産させる手段(主に大腸菌を用いる場合)と細胞外に生産させる手段(主に酵母、糸状菌を用いる場合)とがある。一般的に、精製が容易であることや生産コストを低く抑えられることから、細胞外に生産させる手段のほうがより実用的であると考えられている。一方、糸状菌に比べ、酵母は単細胞生物であるため形質転換体の作成や培養制御が容易であるメリットがある。このため、酵母を宿主として用いる研究はこれまで数多くなされているが、主に子嚢菌系の酵母(Saccharomyces cerevisiaeやSchizosaccharomyces pombeなど)が用いられている。
Pseudozyma属酵母は、葉面や果実の表面から一般的に見出される植物常在性担子菌系酵母である。P. antartcicaは、稲の茎や葉、籾、玄米に、P. aphidis、P. rugulosa、P. tsukubaensisはパクチョイや水菜、シソなどの野菜や果物の果皮に広く生息している。たとえば、P. antarcticaは籾1gあたり数万~数十万の生菌が分離され、また、生食用の野菜類の生重10mgを分析すると、ほとんど全てからPseudozyma属酵母が分離されることから、ヒトは植物性の食品と共にPseudozyma属酵母を食べてきた歴史がある。Pseudozyma属酵母は、リパーゼを生産することが知られ、P. antartcicaのリパーゼ(CALA、CALB)は、洗剤等への利用など産業利用実績が豊富にある。また、多様な物性・機能を有するバイオサーファクタントの一種である、糖脂質マンノシルエリストールリピッド(MELs)を生産することが知られており、P. tsukubaensis 由来のMELsは、皮膚保護作用が高いことから市販の化粧品の機能性を高める添加剤として利用されている。このようにPseudozyma属酵母は、優れた物質生産能を有することから、異種タンパク質を高分泌生産する有望な宿主として期待できる。また、Pseudozyma属酵母は子嚢菌系糸状菌に比べてプロテアーゼ分泌量も少ないと考えられるため、生産した異種タンパク質を安定して培地中に蓄積できると考えられる。
Pseudozyma属酵母を宿主として異種タンパク質を高発現するためには、その細胞内で有効に機能または発現する、強力な発現プロモーターや分泌シグナル、およびターミネーターが必要である。P. flocculosa及びP. antarcticaでは、植物病原性酵母Ustilago maydis由来のheat shock protein 70やglyceraldehyde-3-phosphate dehydrogenaseのプロモーター(非特許文献1)、P. tsukubaensis由来のβ-glucosidaseのプロモーター(非特許文献2)、およびP. flocculosaのactinプロモーター(非特許文献3)などを用いた報告例がある。それぞれのプロモーターを用いた異種タンパク質生産系は様々なものが構築されているが、実用化にまでは至っていない。このため、より遺伝子の転写活性が高いプロモーターや効率的な分泌シグナル、また、発現時期を制御可能な発現誘導型のプロモーターなどの開発が、Pseudozyma属酵母による異種タンパク質生産技術を実用化するための課題となっている。さらに、多様な炭素源を利用できるPseudozyma属酵母の特徴を生かして、植物バイオマス等の安価な未利用資源を原料とした際に目的遺伝子を高発現できるプロモーターの開発も求められている。
一方で、ポリエチレン製の農業用マルチフィルムは、世界で年間約130万トン消費されており、回収処理に多くの労力が必要である。そこで、生分解性プラスチック製の農業用マルチフィルムが利用され始めた。現在の生分解性マルチの市場価格は、ポリエチレン製マルチの3倍程度であるが、使用後鋤き込んで分解させるため、はぎ取り作業と廃棄に費やす費用がかからず、作物収穫に要する単位面積あたりのマルチ利用に関わる費用はほぼ同等であると試算されている。今後、利用量が拡大すれば、価格が下がることが予想できる。
しかし、環境中での生分解性プラスチック資材の分解は緩やかであるため、使い終わった時点で適切に分解できていない場合があることが、生分解性プラスチック製の農業用マルチフィルム普及上の課題である。そこで、生分解性プラスチックの分解を早める酵素を処理することにより、使用済み資材を速やかに分解させる方法が提案され、既に、稲から分離されたP. antarctica(特許文献1)や、大麦から分離された糸状菌NITE P-573(特許文献2)など強力な生分解性プラスチック分解菌が選抜され、Pseudozyma antarctica由来の生分解性プラスチック分解酵素PaE、糸状菌NITE P-573由来の生分解性プラスチック分解酵素PCLEなど、生分解性プラスチック資材を効率よく分解する酵素が単離・同定されている。また、PaEやPCLE溶液を生分解性マルチ表面に散布処理することにより、生分解性マルチに対する従来にない優れた分解特性が見出されている。しかし、先に述べたように、現在の生分解性プラスチックの価格は、ポリエチレンマルチにはぎ取り処理費を加えた価格とほぼ同等であることから、酵素のコストは極力抑える方が望ましい。遺伝子組換え技術により効率的に生分解性プラスチック分解酵素を大量生産することができれば、より低価格な酵素が提供でき、延いては生分解性プラスチック製の農業用マルチフィルムの利用拡大につなげることができると考えられる。
遺伝子組換え技術で製造された酵素は、繊維等の加工や洗剤への添加物等に広く使われている。導入に際しては、刺激性やアレルギー性、および環境中に排出されても問題無いことが確認された。また、厚生労働省の安全性審査基準等を基に内閣府食品安全委員会が定めた遺伝子組換え微生物を利用して製造された食品添加物の安全性評価基準(平成16年3月25日決定)では、安全性評価が可能な遺伝子組換え添加物は、原則として、添加物製造への利用経験又は食品としての食経験のある非病原性の宿主に由来する組換え体の利用に限るとされている。作物収穫後の農業用マルチへ散布処理する酵素においては、直接経口摂取することは無いが、最も安全性が高いものとして、Pseudozyma属酵母等の食経験のある宿主で製造した酵素が適しており、その大量生産技術が求められている。
ここで、Pseudozyma属酵母と同じく担子菌系酵母に属するCryptococcus sp. S-2株では、クチナーゼ様酵素、アミラーゼ、キシラナーゼの各遺伝子上流のプロモーターおよび下流のターミネーターを利用した発現ベクターが開発されており(非特許文献4)、それぞれ植物油、マルトース、キシロース存在下でプロモーター下流の異種タンパク質遺伝子の発現を誘導するものである。
しかしながら、このCryptococcus sp. S-2株は土壌や空中飛散酵母から選抜された経緯があり、由来が不明である。また、至適培養温度が25℃であり、より高温(30℃以上)では生育しないことから、大量に培養する際には発熱に対する冷却コストがかかるといったデメリットがある。P. antarcticaは先に述べたように植物表面由来でヒトが自然に経口摂取してきた歴史があり、35℃でも生育が可能であるなど、Cryptococcus sp. S-2株と比べて優れた特徴を持つ。また、P. antarcticaはCryptococcus sp. S-2株と同じ担子菌系酵母であるが、系統的にはとても離れているため、特定の刺激に対して遺伝子発現が誘導される仕組みを利用する際に、Cryptococcus sp. S-2株で開発された発現ベクターがPseudozyma属酵母で働く可能性は非常に低い。そのため、Pseudozyma属酵母独自の強力な遺伝子発現システムの開発が必要である。また、P. antarctica由来の遺伝子だけで構成される(セルフクローニング)方法で、生分解性プラスチック分解酵素等P. antarctica由来の酵素の大量生産を行う方法は、酵素の生産と利用において安全性が高い。従って、上記の点からもPseudozyma属酵母等の食経験のある宿主を使用することができる酵素の大量生産技術が求められている。
Masaki K.,et.al.(2012) Appl. Microbiol. Biotechnol. 93, 1627-1636
Avis T.J., et.al.2005. Appl. Microbiol. Biotechnol. 69, 304-311
Cheng Y., et.al. 2008. Recombinant protein secretion in Pseudozyma flocculosa and Pseudozyma antarctica with a novel signal peptide.
Neveu B., et.al. Appl. Microbiol. Biotechnol. 74, 1300-1307
本発明は、P. antarcticaの高発現プロモーターの開発と得られた高発現プロモーターを用いて異種タンパク質生産系を構築し、Pseudozyma属酵母を含むUstilaginales目(クロホ菌目)株を用いて酵素を効率的に製造する方法を提供することを目的とする。
上記課題を達成するため、本願発明者らは葉面酵母P. antarcticaを様々な炭素源を用いて培養した結果、草本系バイオマスの構成成分であるキシロースを炭素源として用いた場合に、非常に大量に生産される未知なタンパク質が存在することをはじめて見出した。さらに検討を進め、P. antarctica T34株の全ゲノム塩基配列からこの未知なタンパク質の遺伝子配列(PANT_8c00118)を同定した。さらに、そのプロモーター塩基配列とターミネーター配列を利用し、P. antarctica由来の生分解性プラスチック分解酵素(PaEの大量生産系の構築に成功し、本願発明が完成するに至った。
当該新規タンパク質は、キシロース存在下で、培養液中に高濃度で分泌・生産されるため、その分泌シグナル配列を用いることによって、異種タンパク質の培養液中への分泌量を制御することができる。
さらに、キシロース存在下で培養することによって、他のPsudozyma属酵母も、P. antarcticaと同様に、培養液中に、先に見つけた新規蛋白質と同じ分子量約33kDaのタンパク質を分泌することを確認した。
当該新規タンパク質は、キシロース存在下で、培養液中に高濃度で分泌・生産されるため、その分泌シグナル配列を用いることによって、異種タンパク質の培養液中への分泌量を制御することができる。
さらに、キシロース存在下で培養することによって、他のPsudozyma属酵母も、P. antarcticaと同様に、培養液中に、先に見つけた新規蛋白質と同じ分子量約33kDaのタンパク質を分泌することを確認した。
本発明は、キシロース存在下で下流遺伝子の発現を誘導するP. antarctica由来の遺伝子PANT_8c00118上流の新規なプロモーター塩基配列を、Pseudozyma属酵母における異種タンパク質遺伝子の発現を強力かつ厳密に制御するために、新規プロモーターとして使用する点および、PANT_8c00118の新規シグナル配列を異種タンパク質の分泌シグナル配列として、目的蛋白質遺伝子の上流に配置あるいは置き換えることによって、異種タンパク質の分泌・生産性を高める点を重要な特徴として有するものであって、次の様態を包含するものである。
(1)配列番号:1又は配列番号:7に示される塩基配列を含む核酸分子。
(2)配列番号:1又は配列番号:7に示される塩基配列と少なくとも80%の相同性を有する塩基配列を含み、プロモーター活性を有する核酸分子。
(3)配列番号:1又は配列番号:7に示される塩基配列からなる核酸分子。
(4)上記(1)~(3)のいずれか1項記載の核酸分子又はプロモーター活性を有するその断片を含む発現ベクター。
(5)配列番号:2又は配列番号:8に示される塩基配列、或いは、配列番号:2又は配列番号:8に示される塩基配列と少なくとも70%の相同性を有し、ターミネーター活性を有する塩基配列をさらに含む、上記(4)記載の発現ベクター。
(6)前記核酸分子に機能可能に連結した異種タンパク質をコードする塩基配列をさらに含む、上記(4)又は(5)記載の発現ベクター。
(7)異種タンパク質が、Pseudozyma属酵母由来の生分解性プラスチック分解酵素PaE、又は、糸状菌NITE P-573由来の生分解性プラスチック分解酵素PCLEである、上記(6)記載の発現ベクター。
(8)異種タンパク質をコードする塩基配列の上流に隣接して、配列番号:3又は配列番号:9に示される塩基配列、或いは、配列番号:3又は配列番号:9に示される塩基配列と少なくとも90%の相同性を有し、分泌シグナルとしての機能を有する塩基配列をさらに含む、上記(6)又は(7)記載の発現ベクター。
(9)上記(6)~(8)のいずれか1項記載の発現ベクターで形質転換した宿主細胞。
(10)Pseudozyma属酵母、Ustilago属酵である、上記(9)記載の宿主細胞。
(11)Pseudozyma antarcticaである、上記(9)記載の宿主細胞。
(12)上記(9)~(11)のいずれか1項記載の宿主細胞を、前記異種タンパク質の発現を可能にする条件下で培養する工程、及び、培養液から異種タンパク質を回収する工程を含む、異種タンパク質の製造方法。
(13)キシロースを含む培地中で宿主細胞を培養する、上記(12)記載の製造方法
(14)配列番号:4に示される塩基配列によりコードされるタンパク質。
(15)上記(14)に記載のタンパク質を含む、生分解性プラスチック分解製剤。
(2)配列番号:1又は配列番号:7に示される塩基配列と少なくとも80%の相同性を有する塩基配列を含み、プロモーター活性を有する核酸分子。
(3)配列番号:1又は配列番号:7に示される塩基配列からなる核酸分子。
(4)上記(1)~(3)のいずれか1項記載の核酸分子又はプロモーター活性を有するその断片を含む発現ベクター。
(5)配列番号:2又は配列番号:8に示される塩基配列、或いは、配列番号:2又は配列番号:8に示される塩基配列と少なくとも70%の相同性を有し、ターミネーター活性を有する塩基配列をさらに含む、上記(4)記載の発現ベクター。
(6)前記核酸分子に機能可能に連結した異種タンパク質をコードする塩基配列をさらに含む、上記(4)又は(5)記載の発現ベクター。
(7)異種タンパク質が、Pseudozyma属酵母由来の生分解性プラスチック分解酵素PaE、又は、糸状菌NITE P-573由来の生分解性プラスチック分解酵素PCLEである、上記(6)記載の発現ベクター。
(8)異種タンパク質をコードする塩基配列の上流に隣接して、配列番号:3又は配列番号:9に示される塩基配列、或いは、配列番号:3又は配列番号:9に示される塩基配列と少なくとも90%の相同性を有し、分泌シグナルとしての機能を有する塩基配列をさらに含む、上記(6)又は(7)記載の発現ベクター。
(9)上記(6)~(8)のいずれか1項記載の発現ベクターで形質転換した宿主細胞。
(10)Pseudozyma属酵母、Ustilago属酵である、上記(9)記載の宿主細胞。
(11)Pseudozyma antarcticaである、上記(9)記載の宿主細胞。
(12)上記(9)~(11)のいずれか1項記載の宿主細胞を、前記異種タンパク質の発現を可能にする条件下で培養する工程、及び、培養液から異種タンパク質を回収する工程を含む、異種タンパク質の製造方法。
(13)キシロースを含む培地中で宿主細胞を培養する、上記(12)記載の製造方法
(14)配列番号:4に示される塩基配列によりコードされるタンパク質。
(15)上記(14)に記載のタンパク質を含む、生分解性プラスチック分解製剤。
本発明によれば、新規高発現プロモーターとしてP. antarcticaのPANT_8c00118遺伝子上流のプロモーターの塩基配列を新たに使用することによって、Pseudozyma属酵母(例えば、P. anatarctica)を宿主として、異種タンパク質を効率よく生産し、培地中に蓄積させることが出来るという著効が奏される。例えばPaEでは、稲籾から分離された由来を持つ親株での生産量と比較して約10倍という高い生産量を示すことが確認された。
また、本発明の培養上清のタンパク質の構成は、主成分が目的の異種タンパク質であるため、組換え体である細胞をメンブレンフィルター等で除去することにより、そのまま酵素液として使用することができる。
また、本発明の培養上清のタンパク質の構成は、主成分が目的の異種タンパク質であるため、組換え体である細胞をメンブレンフィルター等で除去することにより、そのまま酵素液として使用することができる。
本発明は、配列番号:1に示される塩基配列を含む核酸分子に関する。配列番号:1に示される塩基配列は、Pseudozyma antarctica の酵母から新たに見出された分子量約33kDaのタンパク質をコードする塩基配列(配列番号:4)の上流に存在する配列である。
本発明はさらに、配列番号:1に示される塩基配列と少なくとも80%の相同性を有する塩基配列を含み、プロモーター活性を有する核酸分子に関する。上記塩基配列は、好ましくは、配列番号:1に示される塩基配列と少なくとも81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%の相同性を有する。あるいは、塩基配列が本願発明に規定するタンパク質の製造方法においてプロモーター活性を有する限り、塩基の1もしくは数個が欠失、置換もしくは付加されていてもよい。さらに好ましくは、本発明の核酸分子は、配列番号:1に示される塩基配列からなる。
本発明はさらに、配列番号:1に示される塩基配列と少なくとも80%の相同性を有する塩基配列を含み、プロモーター活性を有する核酸分子に関する。上記塩基配列は、好ましくは、配列番号:1に示される塩基配列と少なくとも81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%の相同性を有する。あるいは、塩基配列が本願発明に規定するタンパク質の製造方法においてプロモーター活性を有する限り、塩基の1もしくは数個が欠失、置換もしくは付加されていてもよい。さらに好ましくは、本発明の核酸分子は、配列番号:1に示される塩基配列からなる。
さらに、本発明は、配列番号:7に示される塩基配列を含む核酸分子に関する。配列番号:7に示される塩基配列は、Pseudozyma antarctica の酵母GB4(0)株から新たに見出された分子量約33kDaのタンパク質をコードする塩基配列(配列番号:10)の上流に存在する配列である。
本発明はさらに、配列番号:7に示される塩基配列と少なくとも80%の相同性を有する塩基配列を含み、プロモーター活性を有する核酸分子に関する。上記塩基配列は、好ましくは、配列番号:7に示される塩基配列と少なくとも81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%の相同性を有する。あるいは、塩基配列が本願発明に規定するタンパク質の製造方法においてプロモーター活性を有する限り、塩基の1もしくは数個が欠失、置換もしくは付加されていてもよい。さらに好ましくは、本発明の核酸分子は、配列番号:7に示される塩基配列からなる。
本発明はさらに、配列番号:7に示される塩基配列と少なくとも80%の相同性を有する塩基配列を含み、プロモーター活性を有する核酸分子に関する。上記塩基配列は、好ましくは、配列番号:7に示される塩基配列と少なくとも81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%の相同性を有する。あるいは、塩基配列が本願発明に規定するタンパク質の製造方法においてプロモーター活性を有する限り、塩基の1もしくは数個が欠失、置換もしくは付加されていてもよい。さらに好ましくは、本発明の核酸分子は、配列番号:7に示される塩基配列からなる。
本発明はさらに、上記の核酸分子又はプロモーター活性を有するその断片を含む発現ベクターに関する。本発明の核酸分子の断片について、プロモーター活性を有するものは当業者が周知の方法に従って、その断片のプロモーター活性を調べることによって適宜選択することが可能である。また、上記の断片の長さ(塩基長)についても、プロモーター活性を有する限り特に限定はされず、100、150、200、250、300、350、400、450、500、又は550塩基以上であることが好ましい。さらに好ましくは、上記断片の長さは、555、560、565、570、575、580、585、又は590塩基以上である。さらには、配列番号:1又は配列番号:7に含まれる100、150、200、250、300、350、400、450、500、又は550塩基以上の配列を繰り返し連結させた配列を含むこともできる。また、遺伝子発現に適したベクターは当該技術分野に知られており、後述する宿主細胞との組み合わせなどを考慮して当業者が適宜選択することが可能である。発現ベクターとしては、例えば、プラスミドpUXV1(ATCCより入手可能)あるいは染色体導入用ベクターなどを、必要により適宜改変して使用することができる。
本発明の発現ベクターは、配列番号:2に規定するPANT_8c00118遺伝子のターミネーター配列、又は、配列番号:8に規定する配列(同じPseudozyma antarctica のGB-4(0)株由来のPANT_8c00118相同遺伝子のターミネーター配列)を含んでもよい。あるいは、本発明の発現ベクターは、配列番号:2又は配列番号:8に示される塩基配列と少なくとも70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%の相同性を有し、ターミネーター活性を有する塩基配列を含んでもよい。塩基配列が本願発明に規定するタンパク質の製造方法においてターミネーター活性を有する限り、塩基の1もしくは数個が欠失、置換もしくは付加されていてもよい。
さらに、本発明の発現ベクターは、前記核酸分子に機能可能に連結した異種タンパク質をコードする塩基配列をさらに含んでもよい。本発明において、「機能可能に連結した」とは、発現ベクター内において、異種タンパク質の転写が、配列番号:1又は配列番号:7に示す塩基配列のプロモーター活性の影響下に調節されるように連結していることを意味する。前記異種タンパク質は、発現させることを要するタンパク質を当業者が適宜選択することが可能であり、実施例に示した生分解性プラスチック分解酵素に限るものではない。好ましい異種タンパク質としては、例えば、Pseudozyma属酵母由来の生分解性プラスチック分解酵素PaE、又は、糸状菌NITE P-573由来の生分解性プラスチック分解酵素PCLEが挙げられる。上記の塩基配列は、cDNA塩基配列であってもよい。
本発明の発現ベクターは、異種タンパク質をコードする塩基配列の上流に隣接して、配列番号:3又は配列番号:9に示される塩基配列、或いは、配列番号:3又は配列番号:9に示される塩基配列と少なくとも90%、91%、92%、93%、94%、95%、96%、97%、98%、99%の相同性を有し、分泌シグナルとしての機能を有する塩基配列をさらに含んでもよい。配列番号:3は、PANT_8c00118遺伝子(配列番号:4)の開始コドンから102bpまでにコードされるタンパク質の分泌シグナル配列に相当すると考えられ、配列番号:9は、同じPseudozyma antarctica のGB-4(0)株由来のPANT_8c00118相同配列(配列番号:10)の開始コドンから103bpまでにコードされるタンパク質の分泌シグナル配列に相当すると考えられる。当該配列を含むことにより、後述するように、当該発現ベクターで形質転換した宿主細胞を用いて、目的とする異種タンパク質を菌体外へ高分泌生産させることができる。
本発明の発現ベクターにおいては、例えば上記のように、PANT_8c00118遺伝子のプロモーター、異種タンパク質cDNA塩基配列、ターミネーター(例えば、PANT_8c00118遺伝子ターミネーター)遺伝子塩基配列を配し、更にマーカー遺伝子塩基配列(例えば、アミノ酸や塩基合成遺伝子、抗生物質体制遺伝子)を配した発現カセットを構築することができる。
本発明の発現ベクターにおいては、例えば上記のように、PANT_8c00118遺伝子のプロモーター、異種タンパク質cDNA塩基配列、ターミネーター(例えば、PANT_8c00118遺伝子ターミネーター)遺伝子塩基配列を配し、更にマーカー遺伝子塩基配列(例えば、アミノ酸や塩基合成遺伝子、抗生物質体制遺伝子)を配した発現カセットを構築することができる。
本発明はさらに、上記の発現ベクターで形質転換した宿主細胞に関する。宿主細胞としては、使用する発現ベクターとの組み合わせを考慮して当業者が適宜選択することが可能であり、P. antarcticaおよびその近縁種Pseudozyma属酵母、例えば、P. antarctica、P. tsukubaensis、P. rugulosa、P. aphidisなどのPseudozyma属酵母、Ustilago maydisなどのUstilago属菌などのUstilaginales目菌が挙げられる。上記の宿主細胞のうち、Pseudozyma属酵母が好ましく、Pseudozyma antarcticaが特に好ましい。
本発明はさらに、異種タンパク質をコードする塩基配列を含む上記の宿主細胞を、前記異種タンパク質の発現を可能にする条件下で培養する工程、及び、培養液から異種タンパク質を回収する工程を含む、異種タンパク質の製造方法に関する。
培養条件は、前記ベクターおよび宿主細胞の種類に応じて培地の組成、培養温度を決定することができ、25~40℃、好ましくは30℃で培養することができる。
本願発明の方法においては、キシロースを含む培地中で宿主細胞を培養することによって、異種タンパク質を高発現させることが可能となる。キシロースは、培地中に2~12質量%、好ましくは4~8質量%の量で添加することができる。ジャー等の培養装置を用いて生産する時には通気条件を0.5~3vvm(LPM/L)、好ましくは1~2vvmにし、溶存酸素濃度を飽和度の20~50%に保ちながら培養を行う。
また、酵素生産効率が低い培養初期の24時間までに、キシロースの代わりに安価な炭素源、例えばスクロースでは培地中に2~4質量%、あるいは同等の菌体量を得るのに十分なグリセロール、糖蜜などを用いて高密度に菌体を増殖させた後、終濃度10~20質量%のキシロースを連続的に流加して酵素生産を誘導してやることで、より高濃度の異種タンパク質が安価で生産させることが可能となる。
培養条件は、前記ベクターおよび宿主細胞の種類に応じて培地の組成、培養温度を決定することができ、25~40℃、好ましくは30℃で培養することができる。
本願発明の方法においては、キシロースを含む培地中で宿主細胞を培養することによって、異種タンパク質を高発現させることが可能となる。キシロースは、培地中に2~12質量%、好ましくは4~8質量%の量で添加することができる。ジャー等の培養装置を用いて生産する時には通気条件を0.5~3vvm(LPM/L)、好ましくは1~2vvmにし、溶存酸素濃度を飽和度の20~50%に保ちながら培養を行う。
また、酵素生産効率が低い培養初期の24時間までに、キシロースの代わりに安価な炭素源、例えばスクロースでは培地中に2~4質量%、あるいは同等の菌体量を得るのに十分なグリセロール、糖蜜などを用いて高密度に菌体を増殖させた後、終濃度10~20質量%のキシロースを連続的に流加して酵素生産を誘導してやることで、より高濃度の異種タンパク質が安価で生産させることが可能となる。
培養液中からの異種タンパク質の回収は任意の方法で行うことができる。例えば、培養液の上清に硫酸アンモニウムを加えて沈殿物を得てもよいし、旭化成マイクローザ等を用いた限界濾過法を用いて、培養液を濃縮しても良い。さらに前記沈殿を透析チューブを使用して20mM Tris-HClバッファー等で透析してもよいし、さらにその後DEAE sepharose カラムを通過させて共在する蛋白質を除去してもよいし、必要によりさらにSP sepharoseカラムを通して酵素を精製してもよい。あるいは、異種タンパク質が基質へ結合する性質(アフィニティー)を利用して濃縮と夾雑物除去を1段階で行っても良い。
本発明はさらに、配列番号:4に示される塩基配列によりコードされるタンパク質、及び前記タンパク質を含む生分解性プラスチック分解製剤に関する。生分解性プラスチック分解製剤は当業者は周知の方法により作製することができ、周知の溶媒、添加剤などと混合することもできる。
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれにより限定されるものではない。
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれにより限定されるものではない。
1.キシロースで強力に発現が誘導される遺伝子の取得
本発明者らがPseudozyma antarcticaが産出する生分解性プラスチック分解酵素の産出条件を検討していた際、基準株Pseudozyma antarctica JCM10317を様々な炭素源を用いて培養した結果、キシロース存在下でのみ、強く発現が誘導され、培地中に大量に分泌される分子量約33kDaの未知のタンパク質があることを見出した。そこで本発明者らが所有している複数のP. antarctica株が、キシロース存在下で、基準株と同様に、分子量約33kDaの未知タンパク質を大量に分泌するかどうかを確認した。
YM培地で、30℃で24時間培養したもの前培養液として用いた。本培養では改変FMMを用い、褐変やフルフラールなどの培養阻害物質の生成を避けるため、炭素源(8%キシロース)とその他の培地成分を別々に滅菌した後、滅菌条件下で混合して作成した。それぞれの組成を以下に示す。
YM培地(Yeast extract Malt extract Medium)
Yeast extract 0.3%
Malt extract 0.3%
Bacto peptone 0.5%
Glucose 1.0%
改変FMM(Fungal minimum medium)
NaNO3 0.2%
KH2PO4 0.06%
MgSO4・7H2O 0.06%
Yeast extract 0.3%
Xylose 8.0%
本発明者らがPseudozyma antarcticaが産出する生分解性プラスチック分解酵素の産出条件を検討していた際、基準株Pseudozyma antarctica JCM10317を様々な炭素源を用いて培養した結果、キシロース存在下でのみ、強く発現が誘導され、培地中に大量に分泌される分子量約33kDaの未知のタンパク質があることを見出した。そこで本発明者らが所有している複数のP. antarctica株が、キシロース存在下で、基準株と同様に、分子量約33kDaの未知タンパク質を大量に分泌するかどうかを確認した。
YM培地で、30℃で24時間培養したもの前培養液として用いた。本培養では改変FMMを用い、褐変やフルフラールなどの培養阻害物質の生成を避けるため、炭素源(8%キシロース)とその他の培地成分を別々に滅菌した後、滅菌条件下で混合して作成した。それぞれの組成を以下に示す。
YM培地(Yeast extract Malt extract Medium)
Yeast extract 0.3%
Malt extract 0.3%
Bacto peptone 0.5%
Glucose 1.0%
改変FMM(Fungal minimum medium)
NaNO3 0.2%
KH2PO4 0.06%
MgSO4・7H2O 0.06%
Yeast extract 0.3%
Xylose 8.0%
各本培養液20mlを100ml容三角フラスコに入れ、前述の前培養液200μl接種し、30℃で200rpm、96h振とう培養を行った。得られた培養液をSDS-PAGEで電気泳動した後、CBB染色を行った結果、供試した11株のP. antarcticaのうち、10株の本培養液にマーカーの31kDaの位置より分子量が少し大きい約33kDa付近の未知タンパク質が高分泌されていることが確認できた(図1参照)。供試した中でも、P. antarctica T34株は、キシロースによって(今回発現させようと考えている)生分解性プラスチック分解酵素PaEを生産しないので、以後、これを用いた。
続いて、P. antarcticaの近縁種である、Pseudozyma属酵母6株とUstilago属酵母3株を用い、P. antarcticaと同様に、分子量約33kDaの未知タンパク質がキシロースによって分泌・生産されるか調べた。その結果、P. tsukubaensis JCM10324株、P. aphidis JCM10318株、P. flocculosa JCM10321株、P. rugulosa JCM10323株、U. zeae (maydis) MAFF235374株、MAFF236375株が、培養液中に、タンパク質分子量マーカーの31kDaに相当するバンドより少し大きい位置に相当する移動度を示す、未知タンパク質を大量に分泌することが分かった(図2参照)。このことから、上記の酵母は、P. antarcticaと同様にキシロース存在下で、分子量約33kDaの機能未知タンパク質を大量に分泌生産することが分かった。
次に、この未知タンパク質をコードしている新規遺伝子配列を取得した。まず、P. antarctica T-34株の遺伝子情報を得るために、菌体からDNAを抽出し、物理的に断片化した後、挿入断片長3~4kbのMate-pairライブラリーを作製した。得られたMate-pairライブラリーをDNA付加用マイクロビーズと混合し、エマルジョンPCR法でMate-pair断片を増幅した後、マイクロビーズをピコタイタープレートに充填し、整列化した。このピコタイタープレートをDNAシーケンサー(FLX Titanium)に装着し、ゲノムDNA配列の解析を行った。得られた一次データを用いて配列のアセンブリーを行い、コンティグ配列を得、さらに相同性検索によって、ゲノムDNA配列上の推定翻訳領域を網羅的に抽出した。
続いて、P. antarctica T34株由来の約33kDa付近の未知タンパク質をSDS-PAGEからPVDF膜にブロッティングした後、N末端アミノ酸配列を解析することにし、10残基の配列(AATTLNAAIK:配列番号:6)が得られた。作成したP. antarcticaの遺伝子情報からこの配列を有するものを検索した結果、遺伝子配列PANT_8c00118(図3参照)が100%一致した。遺伝子配列からアミノ酸配列を推定し、分泌タンパク質のN末端アミノ配列からの分子量は32,899.48Daと推計され、SDS-PAGEの値と一致したため、該未知タンパク質はPANT_8c00118がコードする蛋白質であることが確認された。
また、本未知タンパク質は培養液中に非常に高濃度に分泌される分泌性蛋白質であることから、培養液中から精製された本タンパク質のN末端アミノ配列をもとに、開始コドンから蛋白質のN末端アミノ酸配列をコードする遺伝子配列の直前の102bp中に強力な分泌シグナルが存在することが推測された。
また、本未知タンパク質は培養液中に非常に高濃度に分泌される分泌性蛋白質であることから、培養液中から精製された本タンパク質のN末端アミノ配列をもとに、開始コドンから蛋白質のN末端アミノ酸配列をコードする遺伝子配列の直前の102bp中に強力な分泌シグナルが存在することが推測された。
2.PANT_8c00118遺伝子のプロモーター領域を利用した遺伝子発現ベクターの構築
取得したPANT_8c00118遺伝子のプロモーター領域とターミネーター領域の末端に制限酵素サイトを付加し、図4に示すプラスミドpPAX1-neoを構築した。
このプラスミドは、市販のプラスミドpUXV1(ATCCより入手可能)をベースとし、Pgapの代わりにP. antarctica T34株のPANT_8c00118遺伝子プロモーター(配列番号:1)とターミネーター(配列番号:2)領域の間を複数の制限酵素サイトで連結した発現カセットと置き換え、ハイグロマイシン耐性遺伝子の代わりにT34株由来のhomocitrate synthaseプロモーターとその下流に大腸菌由来のネオマイシン耐性遺伝子を連結した遺伝子断片と置き換えたものである。
このプラスミドにP. antarctica JCM10317由来の生分解性プラスチック分解酵素PaEをコードするcDNA遺伝子のPaCLE1を組み込んだものが図5である。構築したプラスミドpPAX1-neo-PaCLE1は、以下の方法に従い、P. antarctica T34株に導入した。
取得したPANT_8c00118遺伝子のプロモーター領域とターミネーター領域の末端に制限酵素サイトを付加し、図4に示すプラスミドpPAX1-neoを構築した。
このプラスミドは、市販のプラスミドpUXV1(ATCCより入手可能)をベースとし、Pgapの代わりにP. antarctica T34株のPANT_8c00118遺伝子プロモーター(配列番号:1)とターミネーター(配列番号:2)領域の間を複数の制限酵素サイトで連結した発現カセットと置き換え、ハイグロマイシン耐性遺伝子の代わりにT34株由来のhomocitrate synthaseプロモーターとその下流に大腸菌由来のネオマイシン耐性遺伝子を連結した遺伝子断片と置き換えたものである。
このプラスミドにP. antarctica JCM10317由来の生分解性プラスチック分解酵素PaEをコードするcDNA遺伝子のPaCLE1を組み込んだものが図5である。構築したプラスミドpPAX1-neo-PaCLE1は、以下の方法に従い、P. antarctica T34株に導入した。
P. antarctica T34株を5ml YM培地(0.3% yeast extract、0.3% malt extract、0.5% peptone、1% D-glucose)にて30℃、オーバーナイトで前培養を行った。50ml YM培地に100μl の前培養液を植菌し、30℃でOD660=1.3~1.5となるまで培養を行った。
培養液を4℃、3000xgで5分間遠心分離を行い、菌体を回収した。回収した菌体を20mlの氷冷0.5M sorbitolに懸濁し、再度4℃、3000×gで5分間遠心分離を行い、菌体を洗浄・回収した。その後、回収した菌体を10mlの氷冷1M sorbitolに懸濁し、4℃、3000×gで5分間遠心分離を行い、菌体を回収した。回収した菌体を1mlの氷冷1M sorbitolに懸濁した。
以上の操作は、氷上で行った。
ギャップ0.2cmのエレクトロポレーションキュベット(BIO-RAD)に菌体懸濁液50μlとプラスミドDNA 50μl(約5~10μg)を加えて氷上で5分間インキュベートした。E. coli pulser(BIO-RAD)にキュベットをセットし、1.5kV、25kF、400Ωの条件でエレクトロポレーションを行った。その後、直ちに氷冷YMS(YM + 1M sorbitol)を加え、ピペッティングにより混合し、15mlのポリウレタン製チューブに移し、30℃で2時間、静置でインキュベートした。抗生物質G418を含むYMSプレート(YMS + 0.05% G418、2% agar)に塗布し、30℃でコロニーが形成するまでインキュベートを行い、得られた形質転換体のコロニーは新たな抗生物質G418を含むYMS プレートに植え継いだ。
培養液を4℃、3000xgで5分間遠心分離を行い、菌体を回収した。回収した菌体を20mlの氷冷0.5M sorbitolに懸濁し、再度4℃、3000×gで5分間遠心分離を行い、菌体を洗浄・回収した。その後、回収した菌体を10mlの氷冷1M sorbitolに懸濁し、4℃、3000×gで5分間遠心分離を行い、菌体を回収した。回収した菌体を1mlの氷冷1M sorbitolに懸濁した。
以上の操作は、氷上で行った。
ギャップ0.2cmのエレクトロポレーションキュベット(BIO-RAD)に菌体懸濁液50μlとプラスミドDNA 50μl(約5~10μg)を加えて氷上で5分間インキュベートした。E. coli pulser(BIO-RAD)にキュベットをセットし、1.5kV、25kF、400Ωの条件でエレクトロポレーションを行った。その後、直ちに氷冷YMS(YM + 1M sorbitol)を加え、ピペッティングにより混合し、15mlのポリウレタン製チューブに移し、30℃で2時間、静置でインキュベートした。抗生物質G418を含むYMSプレート(YMS + 0.05% G418、2% agar)に塗布し、30℃でコロニーが形成するまでインキュベートを行い、得られた形質転換体のコロニーは新たな抗生物質G418を含むYMS プレートに植え継いだ。
抗生物質を含む培地YMS上に生育してきた形質転換体を、PBSAエマルジョンを含むFMMプレート(0.1% yeast extract、0.2% NaNO3、0.02% KH2PO4、0.02% MgSO4・7H2O、2% キシロース、1% PBSAエマルジョン(EM-301、昭和電工株式会社)、2% agar)に植菌し、30℃で静置培養した。親株に用いたT34株は、キシロース存在下で生分解性プラスチック分解酵素PaEを生産しないが、形質転換体ではキシロースによって生産が誘導されるPaEの活性により、培地中の白濁のPBSAエマルジョンが分解され透明のハロが形成される(図6)。
このような形質転換体を選抜した。
このような形質転換体を選抜した。
PANT_8c00118遺伝子プロモーター制御下の遺伝子発現の基質誘導性を確認するため、先に選抜したpPAX1-neo-PaCLE1を組み込んだ形質転換体を、1% yeast extract溶液に6%の各種の糖源(グルコース、ガラクトース、キシロース、アラビノース、スクロース、ラクトース)をそれぞれ加えた培地で培養したところ、キシロースを用いた時のみPBSAエマルジョン分解活性が強く誘導されていることが明らかになった(図7)。
なお、酵素活性測定は、以下のように行った。20mM Tris HCl buffer(pH6.8)に吸光度(OD660)がおよそ0.65となるようPBSAエマルジョンを懸濁した水溶液1.9mlを内径10mmの試験管に入れ、培養上清を100μl加え、30℃で180rpm、15分間振とう処理し、吸光度の減少量を測定した。酵素活性の単位は一分間当たりに吸光度を1.0減少させる酵素量を1Uと定義した。
なお、酵素活性測定は、以下のように行った。20mM Tris HCl buffer(pH6.8)に吸光度(OD660)がおよそ0.65となるようPBSAエマルジョンを懸濁した水溶液1.9mlを内径10mmの試験管に入れ、培養上清を100μl加え、30℃で180rpm、15分間振とう処理し、吸光度の減少量を測定した。酵素活性の単位は一分間当たりに吸光度を1.0減少させる酵素量を1Uと定義した。
3.P. antarctica近縁種での形質転換体の作成と発現誘導性の確認
作製したプラスミドpPAX1-neoのキシロースによる発現誘導がP. antarcticaで良好に働くことを確認できたので、次にP. antarctica近縁種で形質転換体を作製し、キシロースによる遺伝子発現誘導性を確認した。
Pseudozyma属酵母であるP. tsukubaensis JCM10324株、P. aphidis JCM10318株、P. rugulosa JCM10323株に対し、上記と同様の手法でpPAX1-neo-PaCLE1を組み込んだところ、いずれの株でもPBSAエマルジョンを含むFMMプレート上で、菌の周辺ではエマルジョンが溶解され、ハロを形成するようになった形質転換体が得られ(図8参照、P. rugulosa JCM10323株の形質転換体)、1% yeast extractに6% キシロースを含む液体培地での培養により、培養ろ液中にPBSAエマルジョン分解活性が強く誘導されることを確認した(図9参照、P. tsukubaensis JCM10324株とP. aphidis JCM10318株の形質転換体)。これらの結果から、形質転換体はキシロースにより生分解性プラスチック分解酵素PaEが誘導生産されることを確認した。
この結果は、P. antarcticaのPANT_8c00118配列中のプロモーターが、Pseudozyma属酵母全般で活性を発現可能であることを示している。また、既にUstilagoもPseudozymaもUstilaginales目(クロホ菌目)に含まれ、rDNAのD1/D2配列を用いた類似性比較の結果から、両方の属が近縁であることが既に示されていることから、これらの遺伝子操作に使用できる可能性を示している。
作製したプラスミドpPAX1-neoのキシロースによる発現誘導がP. antarcticaで良好に働くことを確認できたので、次にP. antarctica近縁種で形質転換体を作製し、キシロースによる遺伝子発現誘導性を確認した。
Pseudozyma属酵母であるP. tsukubaensis JCM10324株、P. aphidis JCM10318株、P. rugulosa JCM10323株に対し、上記と同様の手法でpPAX1-neo-PaCLE1を組み込んだところ、いずれの株でもPBSAエマルジョンを含むFMMプレート上で、菌の周辺ではエマルジョンが溶解され、ハロを形成するようになった形質転換体が得られ(図8参照、P. rugulosa JCM10323株の形質転換体)、1% yeast extractに6% キシロースを含む液体培地での培養により、培養ろ液中にPBSAエマルジョン分解活性が強く誘導されることを確認した(図9参照、P. tsukubaensis JCM10324株とP. aphidis JCM10318株の形質転換体)。これらの結果から、形質転換体はキシロースにより生分解性プラスチック分解酵素PaEが誘導生産されることを確認した。
この結果は、P. antarcticaのPANT_8c00118配列中のプロモーターが、Pseudozyma属酵母全般で活性を発現可能であることを示している。また、既にUstilagoもPseudozymaもUstilaginales目(クロホ菌目)に含まれ、rDNAのD1/D2配列を用いた類似性比較の結果から、両方の属が近縁であることが既に示されていることから、これらの遺伝子操作に使用できる可能性を示している。
4.Jar fermenterでの大量生産の検討
続いて、作製した異種タンパク質発現系が、異種タンパク質の大量生産に有効であることを実証するため、5LスケールのJar fermenterを用いて、PaEの生産試験を行った。
pPAX1-neo-PaCLE1はU. maydisの自己複製遺伝子UARSを有するため、制限酵素処理によりそのまま直鎖状にしても染色体に組み込まれた形質転換体が得られにくい。そこで、制限酵素SspI処理によってUARSを削除して直鎖状にした後、P. antarctica GB-4(0)株に組み込んだ形質転換体GB4(0)-PaE14株を作製した。
続いて、作製した異種タンパク質発現系が、異種タンパク質の大量生産に有効であることを実証するため、5LスケールのJar fermenterを用いて、PaEの生産試験を行った。
pPAX1-neo-PaCLE1はU. maydisの自己複製遺伝子UARSを有するため、制限酵素処理によりそのまま直鎖状にしても染色体に組み込まれた形質転換体が得られにくい。そこで、制限酵素SspI処理によってUARSを削除して直鎖状にした後、P. antarctica GB-4(0)株に組み込んだ形質転換体GB4(0)-PaE14株を作製した。
GB4(0)-PaE14株を用いて、まず、キシロースの流加培養を行った。5L容Jar fermenterに、初期のキシロース濃度を低く設定した以下の組成の培地を3L加え、前培養液30mlを接種し、30℃で撹拌速度を500rpm、通気量は8LPMの条件で培養を行った。また適宜、高泡形成による培養液の流出を防ぐため、50倍希釈した消法剤(信越シリコーンKM-72F、信越化学工業株式会社)を添加した。なお、窒素源の追加もかねてアンモニアイオンの利用によるpH低下に対し、アンモニア水でpH6.0に調整するようにした。24時間以降に以下の酵素生産誘導用の流加培地を0.5L/dで流加した。
Jar fermenter用培地組成
Xylose 2%
NaNO3 0.2%
MgSO4・7H2O 0.04%
KH2PO4 0.04%
Yeast extract 0.2%
(NH4)2SO4 0.2%
酵素生産誘導用の流加培地組成
Xylose 20%
YNB w/o AA & AS 0.085%
Yeast extract 0.2%
Jar fermenter用培地組成
Xylose 2%
NaNO3 0.2%
MgSO4・7H2O 0.04%
KH2PO4 0.04%
Yeast extract 0.2%
(NH4)2SO4 0.2%
酵素生産誘導用の流加培地組成
Xylose 20%
YNB w/o AA & AS 0.085%
Yeast extract 0.2%
流加培地の流加に伴い酵素活性は増加していき、72時間後に培養遠心上清では56.9U/mLの酵素を生産することが出来たが、その後の酵素生産速度は減速し、104時間後に最大活性が64.1U/mLであった(図10A参照)。
この原因には、培地中のキシロース以外の栄養源の不足が考えられた。また、培養初期のタンパク質生産速度は低く、菌体がある程度増殖してきた培養24時間以後から、急激にタンパク質生産速度が上昇していたことから、培養開始から24時間まではスクロースなどの安価な炭素源を利用して菌体増殖のみを行い、24時間以降からキシロースを流加することによって、タンパク質生産速度を高く維持した状態での高密度流加培養を行うことにした。高密度培養用の培地組成および流加培地組成をそれぞれ以下に示す。なお、その他の培養条件は、上記と同様に行った。
Jar fermenterでの高密度培養用培地組成
Sucrose 3%
NaNO3 0.2%
MgSO4・7H2O 0.1%
KH2PO4 0.1%
Yeast extract 0.5%
(NH4)2SO4 1.0%
高密度培養用の流加培地組成
Xylose 50%
YNB w/o AA & AS 0.085%
Yeast extract 0.2%
培養開始から24時間で乾燥菌体重量が22.6g/Lまで増殖し、その後のキシロースの流加によって培養開始から104時間まで、高いタンパク質生産速度を維持し、最終的に144時間で208.0U/mL(約3g/L)という非常に高濃度のPaEが得られた(図10B参照)。この値は、親株での生産量と比較すると約10倍という高い生産量であった。
この原因には、培地中のキシロース以外の栄養源の不足が考えられた。また、培養初期のタンパク質生産速度は低く、菌体がある程度増殖してきた培養24時間以後から、急激にタンパク質生産速度が上昇していたことから、培養開始から24時間まではスクロースなどの安価な炭素源を利用して菌体増殖のみを行い、24時間以降からキシロースを流加することによって、タンパク質生産速度を高く維持した状態での高密度流加培養を行うことにした。高密度培養用の培地組成および流加培地組成をそれぞれ以下に示す。なお、その他の培養条件は、上記と同様に行った。
Jar fermenterでの高密度培養用培地組成
Sucrose 3%
NaNO3 0.2%
MgSO4・7H2O 0.1%
KH2PO4 0.1%
Yeast extract 0.5%
(NH4)2SO4 1.0%
高密度培養用の流加培地組成
Xylose 50%
YNB w/o AA & AS 0.085%
Yeast extract 0.2%
培養開始から24時間で乾燥菌体重量が22.6g/Lまで増殖し、その後のキシロースの流加によって培養開始から104時間まで、高いタンパク質生産速度を維持し、最終的に144時間で208.0U/mL(約3g/L)という非常に高濃度のPaEが得られた(図10B参照)。この値は、親株での生産量と比較すると約10倍という高い生産量であった。
5.開発した発現ベクターを利用した異種タンパク質生産
次に本発明者らは、開発した発現ベクターが異種タンパク質生産に有用であることを確かめるため、糸状菌B47-9株由来の生分解性プラスチックPCLEの生産を試みた。
開発した発現ベクターのUARSを制限酵素SspI処理によって削除し、PCLEをコードするcDNA遺伝子配列(GenBank Accession No. AB823703)を組み込んだpPAXn-PCLEが図11である。pPAXn-PCLEを制限酵素EcoRI処理によって直鎖状にした後、P. antarctica T34株に組み込んだ形質転換体、T34-PCLE1株を作製した。前述のPBSAエマルジョンを含むFMMプレートに親株T34株とT34-PCLE1株を接種したところ、T34-PCLE1株はPCLEの生産により、図12に示すようにエマルジョンが分解され、ハロの形成が確認された。
次に本発明者らは、開発した発現ベクターが異種タンパク質生産に有用であることを確かめるため、糸状菌B47-9株由来の生分解性プラスチックPCLEの生産を試みた。
開発した発現ベクターのUARSを制限酵素SspI処理によって削除し、PCLEをコードするcDNA遺伝子配列(GenBank Accession No. AB823703)を組み込んだpPAXn-PCLEが図11である。pPAXn-PCLEを制限酵素EcoRI処理によって直鎖状にした後、P. antarctica T34株に組み込んだ形質転換体、T34-PCLE1株を作製した。前述のPBSAエマルジョンを含むFMMプレートに親株T34株とT34-PCLE1株を接種したところ、T34-PCLE1株はPCLEの生産により、図12に示すようにエマルジョンが分解され、ハロの形成が確認された。
さらに、GB-4(0)株にも同様の手法でpPAXn-PCLEを組み込んだ形質転換体GB-4(0)-PCLE3株を作製した。まず、前述の改変FMMを用いてフラスコ培養を行ったところ、96時間の振とう培養で親株GB-4(0)株のPBSAエマルジョン分解活性は親株由来のPaEによる活性により1.8 U/mlを示したのに対し、GB-4(0)-PCLE3株は2.6 U/mlを示し、PCLEの生産により値が顕著に上昇していた。また、糸状菌B47-9株の酵素PCLEは、CaCl2の添加によりPBSAエマルジョン分解活性が飛躍的に上昇することから(Suzuki K., et al., Appl. Microbiol. Biotechnol. DOI10.1007/s00253-013-5454-0)、CaCl2を1 mMとなるように添加したPBSAエマルジョン分解活性を測定したところ、親株GB-4(0)株は3.5 U/mlであったのに対し、GB-4(0)-PCLE3株は5.8 U/mlであり、CaCl2の添加によるPCLEの活性上昇効果が確認された。
次に前述のGB-4(0)-PCLE3株を用い、「4.Jar fermenterでの大量生産の検討」で示した培養条件で、Jar-fermenterを用いた高密度培養を行ったところ、培養開始から72時間でCaCl2無添加でのPBSA分解活性が22 U/ml、CaCl2添加で30 U/mlという高い値が確認された(図13)。なお、親株GB-4(0)株で培養を行った時の値は、CaCl2無添加で17U/mlであったため、差し引き分の5 U/mlがPCLEによる分解活性と考えられる。この値は野生株である糸状菌B47-9株のフラスコを用いた3日間培養での生産量(0.3U /ml:特許第5082125号公報参照)の16.7倍の値である。
6.GB-4(0)株のキシロースで生産が強力に誘導されるタンパク質の遺伝子の取得
次に本発明者らは、P. antarctica GB-4(0)株においても、キシロースで生産が強力に誘導されるタンパク質の遺伝子の取得を試みた。
まず、P. antarctica T34株のPANT_8c00118遺伝子プロモーター、構造遺伝子、ターミネーター配列(図3、配列番号:5)を参考に、以下に示す8種類のPrimerを作成した。
XynF1:5’-GAAGGCTGAAGCTTTGGCTCTGACAT-3’
XynF2:5’-CATGCTTGAAGCTCCAAGAAGATATAA-3’
XynF3:5’-CACTCGCAGCTGCCTTCGTGGGTGCAG-3’
XynF4:5’-GAAGGCAGTCTGCTCGGCCGCTCCCGA-3’
XynR1:5’-TGTGGTGTTTGTTTGGCGTTTTTGCTT-3’
XynR2:5’-ATCCCACGCGTACACCTTGCCCTTGTA-3’
XynR3:5’-CCCACGCAGTTGGACTGGGCCAGGCAG-3’
XynR4:5’-CGAGCGCGATTTTCTCCGAGTCTAAA-3’
次に本発明者らは、P. antarctica GB-4(0)株においても、キシロースで生産が強力に誘導されるタンパク質の遺伝子の取得を試みた。
まず、P. antarctica T34株のPANT_8c00118遺伝子プロモーター、構造遺伝子、ターミネーター配列(図3、配列番号:5)を参考に、以下に示す8種類のPrimerを作成した。
XynF1:5’-GAAGGCTGAAGCTTTGGCTCTGACAT-3’
XynF2:5’-CATGCTTGAAGCTCCAAGAAGATATAA-3’
XynF3:5’-CACTCGCAGCTGCCTTCGTGGGTGCAG-3’
XynF4:5’-GAAGGCAGTCTGCTCGGCCGCTCCCGA-3’
XynR1:5’-TGTGGTGTTTGTTTGGCGTTTTTGCTT-3’
XynR2:5’-ATCCCACGCGTACACCTTGCCCTTGTA-3’
XynR3:5’-CCCACGCAGTTGGACTGGGCCAGGCAG-3’
XynR4:5’-CGAGCGCGATTTTCTCCGAGTCTAAA-3’
GB-4(0)のゲノムDNAからダイレクトPCRにより、図14に示す1954残基の遺伝子配列(配列番号:11)を取得した。本遺伝子配列は、全体でT34株のPANT_8c00118遺伝子プロモーター、構造遺伝子、ターミネーター配列(図3、配列番号:5)と88%の相同性を示し、タンパク質をコードする構造遺伝子配列(配列番号:10)では、T34株の配列(配列番号:4)と94%の相同性を示した。また、プロモーター領域(配列番号:7)では、T34株のもの(配列番号:1)と83%の相同性を示し、ターミネーター領域(配列番号:8)では、T34株のもの(配列番号:2)と72%の相同性を示した。シグナル配列(配列番号:9)はT34株のもの(配列番号:3)と93%の相同性を示した。
Claims (15)
- 配列番号:1又は配列番号:7に示される塩基配列を含む核酸分子。
- 配列番号:1又は配列番号:7に示される塩基配列と少なくとも80%の相同性を有する塩基配列を含み、プロモーター活性を有する核酸分子。
- 配列番号:1又は配列番号:7に示される塩基配列からなる核酸分子。
- 請求項1~3のいずれか1項記載の核酸分子又はプロモーター活性を有するその断片を含む発現ベクター。
- 配列番号:2又は配列番号:8に示される塩基配列、或いは、配列番号:2又は配列番号:8に示される塩基配列と少なくとも70%の相同性を有し、ターミネーター活性を有する塩基配列をさらに含む、請求項4記載の発現ベクター。
- 前記核酸分子に機能可能に連結した異種タンパク質をコードする塩基配列をさらに含む、請求項4又は5記載の発現ベクター。
- 異種タンパク質が、Pseudozyma属酵母由来の生分解性プラスチック分解酵素PaE、又は、糸状菌NITE P-573由来の生分解性プラスチック分解酵素PCLEである、請求項6記載の発現ベクター。
- 異種タンパク質をコードする塩基配列の上流に隣接して、配列番号:3又は配列番号:9に示される塩基配列、或いは、配列番号:3又は配列番号:9に示される塩基配列と少なくとも90%の相同性を有し、分泌シグナルとしての機能を有する塩基配列をさらに含む、請求項6又は7記載の発現ベクター。
- 請求項6~8のいずれか1項記載の発現ベクターで形質転換した宿主細胞。
- Pseudozyma属酵母、Ustilago属酵母である、請求項9記載の宿主細胞。
- Pseudozyma antarcticaである、請求項9記載の宿主細胞。
- 請求項9~11のいずれか1項記載の宿主細胞を、前記異種タンパク質の発現を可能にする条件下で培養する工程、及び、培養液から異種タンパク質を回収する工程を含む、異種タンパク質の製造方法。
- キシロースを含む培地中で宿主細胞を培養する、請求項12記載の製造方法。
- 配列番号:4に示される塩基配列によりコードされるタンパク質。
- 請求項14に記載のタンパク質を含む、生分解性プラスチック分解製剤。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014556435A JP6413117B2 (ja) | 2013-01-09 | 2014-01-09 | 高効率な異種タンパク質の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013002018 | 2013-01-09 | ||
JP2013-002018 | 2013-01-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014109360A1 true WO2014109360A1 (ja) | 2014-07-17 |
Family
ID=51167007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/050233 WO2014109360A1 (ja) | 2013-01-09 | 2014-01-09 | 高効率な異種タンパク質の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6413117B2 (ja) |
WO (1) | WO2014109360A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017204288A1 (ja) * | 2016-05-25 | 2017-11-30 | 国立研究開発法人農業・食品産業技術総合研究機構 | 植物の病害抵抗性増強用又は植物病害防除用組成物及びそれらの使用方法 |
JP2018157814A (ja) * | 2017-03-21 | 2018-10-11 | 国立研究開発法人農業・食品産業技術総合研究機構 | シュードザイマ・アンタクティカの新規菌株 |
JP2022049902A (ja) * | 2020-09-17 | 2022-03-30 | 国立研究開発法人農業・食品産業技術総合研究機構 | キシロース誘導性プロモーター及びその使用 |
WO2023140361A1 (ja) * | 2022-01-21 | 2023-07-27 | 国立研究開発法人農業・食品産業技術総合研究機構 | 転写因子及びその用途 |
WO2023176835A1 (ja) * | 2022-03-16 | 2023-09-21 | 国立研究開発法人農業・食品産業技術総合研究機構 | キシロース誘導性プロモーター及びその使用 |
JP7541314B2 (ja) | 2019-07-18 | 2024-08-28 | 国立研究開発法人産業技術総合研究所 | バイオサーファクタント産生組換え微生物 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008237212A (ja) * | 2007-02-28 | 2008-10-09 | National Institute For Agro-Environmental Science | 生分解性プラスチック分解菌およびその分解酵素製造方法 |
JP2009124995A (ja) * | 2007-11-22 | 2009-06-11 | Oji Paper Co Ltd | リグノセルロース分解酵素遺伝子およびその利用 |
JP2010099066A (ja) * | 2008-09-29 | 2010-05-06 | National Institute For Agro-Environmental Science | 新規微生物及び生分解性プラスチック分解酵素 |
WO2012092676A1 (en) * | 2011-01-06 | 2012-07-12 | Valorbec Societe En Commandite, Representee Par Gestion Valeo S.E.C. | Novel cell wall deconstruction enzymes and uses thereof |
-
2014
- 2014-01-09 WO PCT/JP2014/050233 patent/WO2014109360A1/ja active Application Filing
- 2014-01-09 JP JP2014556435A patent/JP6413117B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008237212A (ja) * | 2007-02-28 | 2008-10-09 | National Institute For Agro-Environmental Science | 生分解性プラスチック分解菌およびその分解酵素製造方法 |
JP2009124995A (ja) * | 2007-11-22 | 2009-06-11 | Oji Paper Co Ltd | リグノセルロース分解酵素遺伝子およびその利用 |
JP2010099066A (ja) * | 2008-09-29 | 2010-05-06 | National Institute For Agro-Environmental Science | 新規微生物及び生分解性プラスチック分解酵素 |
WO2012092676A1 (en) * | 2011-01-06 | 2012-07-12 | Valorbec Societe En Commandite, Representee Par Gestion Valeo S.E.C. | Novel cell wall deconstruction enzymes and uses thereof |
Non-Patent Citations (7)
Title |
---|
BERTRAND NEVEU ET AL.: "The Pseudozyma flocculosa actin promoter allows the strong expression of a recombinant protein in the Pseudozyma species", APPLIED GENETICS AND MOLECULAR BIOTECHNOLOGY, vol. 74, 6 January 2007 (2007-01-06), pages 1300 - 1307 * |
DURIYA CHANTASINGH ET AL.: "Cloning, expression, and characterization of a xylanase 10 from Aspergillus terreus (BCC129) in Pichia pastoris", PROTEIN EXPRESSION AND PURIFICATION, vol. 46, 2006, pages 143 - 149 * |
KAZUO MASAKI ET AL.: "Construction of a new recombinant protein expression system in the basidiomycetous yeast Cryptococcus sp. strain S-2 and enhancement of the production of a cutinase-like enzyme", APPLIED GENETICS AND MOLECULAR BIOTECHNOLOGY, vol. 93, 15 November 2011 (2011-11-15), pages 1627 - 1636 * |
KIMBERLY G. NUGENT ET AL.: "Gene expression during Ustilago maydis diploid filamentous growth: EST library creation and analyses", FUNGAL GENETICS AND BIOLOGY, vol. 41, 2004, pages 349 - 360 * |
T. J. AVIS ET AL.: "The potential of Pseudozyma yeastlike epiphytes for the production of heterologous recombinant proteins", APPLIED GENETICS AND MOLECULAR BIOTECHNOLOGY, vol. 69, 14 April 2005 (2005-04-14), pages 304 - 311 * |
XIAOXIAO GUO ET AL.: "A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan", BIORESOURCE TECHNOLOGY, vol. 128, 7 November 2012 (2012-11-07), pages 547 - 552 * |
YALI CHENG ET AL.: "Recombinant Protein Secretion in Pseudozyma flocculosa and Pseudozyma antarctica with a Novel Signal Peptide", BIOSCIENCE, BIOTECHNOLOGY, AND BIOCHEMISTRY, vol. 72, no. 12, 2008, pages 3158 - 3166 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017204288A1 (ja) * | 2016-05-25 | 2017-11-30 | 国立研究開発法人農業・食品産業技術総合研究機構 | 植物の病害抵抗性増強用又は植物病害防除用組成物及びそれらの使用方法 |
JPWO2017204288A1 (ja) * | 2016-05-25 | 2019-04-18 | 国立研究開発法人農業・食品産業技術総合研究機構 | 植物の病害抵抗性増強用又は植物病害防除用組成物及びそれらの使用方法 |
JP6997456B2 (ja) | 2016-05-25 | 2022-01-17 | 国立研究開発法人農業・食品産業技術総合研究機構 | 植物の病害抵抗性増強用又は植物病害防除用組成物及びそれらの使用方法 |
JP2018157814A (ja) * | 2017-03-21 | 2018-10-11 | 国立研究開発法人農業・食品産業技術総合研究機構 | シュードザイマ・アンタクティカの新規菌株 |
JP2022126864A (ja) * | 2017-03-21 | 2022-08-30 | 国立研究開発法人農業・食品産業技術総合研究機構 | シュードザイマ・アンタクティカの新規菌株 |
JP7181542B2 (ja) | 2017-03-21 | 2022-12-01 | 国立研究開発法人農業・食品産業技術総合研究機構 | シュードザイマ・アンタクティカの新規菌株 |
JP7544351B2 (ja) | 2017-03-21 | 2024-09-03 | 国立研究開発法人農業・食品産業技術総合研究機構 | シュードザイマ・アンタクティカの新規菌株 |
JP7541314B2 (ja) | 2019-07-18 | 2024-08-28 | 国立研究開発法人産業技術総合研究所 | バイオサーファクタント産生組換え微生物 |
JP2022049902A (ja) * | 2020-09-17 | 2022-03-30 | 国立研究開発法人農業・食品産業技術総合研究機構 | キシロース誘導性プロモーター及びその使用 |
JP7299623B2 (ja) | 2020-09-17 | 2023-06-28 | 国立研究開発法人農業・食品産業技術総合研究機構 | キシロース誘導性プロモーター及びその使用 |
WO2023140361A1 (ja) * | 2022-01-21 | 2023-07-27 | 国立研究開発法人農業・食品産業技術総合研究機構 | 転写因子及びその用途 |
WO2023176835A1 (ja) * | 2022-03-16 | 2023-09-21 | 国立研究開発法人農業・食品産業技術総合研究機構 | キシロース誘導性プロモーター及びその使用 |
Also Published As
Publication number | Publication date |
---|---|
JP6413117B2 (ja) | 2018-10-31 |
JPWO2014109360A1 (ja) | 2017-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6413117B2 (ja) | 高効率な異種タンパク質の製造方法 | |
Cui et al. | Direct conversion of inulin into single cell protein by the engineered Yarrowia lipolytica carrying inulinase gene | |
KR101576186B1 (ko) | 에탄올 생산 경로가 봉쇄된 클루이베로마이세스 막시아누스 균주 및 이의 용도 | |
JP7473137B2 (ja) | シュードザイマ・アンタクティカの新規菌株 | |
WO2023220060A1 (en) | Enzymatic lysis for extraction of bioproducts from yeast | |
Lorliam et al. | Diversity and fermentation products of xylose-utilizing yeasts isolated from buffalo feces in Thailand | |
KR101401413B1 (ko) | 클로스트리디움 속 균주, 상기 균주를 이용한 부티르산 생산방법 및 상기 균주의 분리방법 | |
JP5813977B2 (ja) | Kluyveromyces属の変異体酵母及びこれを用いたエタノールの製造方法 | |
WO2013015326A1 (ja) | 改善された発現特性を示す改変型ペルオキシダーゼ酵素遺伝子、及びそれを使用したペルオキシダーゼの生産方法 | |
KR101147450B1 (ko) | 신규 유지성 미세조류 krs101 균주 및 이를 이용한 바이오오일의 제조방법 | |
KR20100040438A (ko) | 신규한 아가레이즈 및 이를 이용한 아가로스로부터 아가로올리고사카라이드의 효소적 생산방법 | |
KR20140145397A (ko) | 1,3-프로판디올 생성 재조합 미생물 및 이를 이용한 1,3-프로판디올의 제조 방법 | |
JP2015012852A (ja) | 微細藻類バイオマスを原料とするバイオ燃料の製造方法 | |
US9340809B2 (en) | Microbial conversion of sugar acids and means therein | |
CN111757939B (zh) | 突变β-葡萄糖苷酶 | |
JP6916801B2 (ja) | セサミノールまたはセサミノール配糖体の生産方法 | |
KR101412468B1 (ko) | 활성이 증진된 변이 베타-글루코시다제 및 이를 이용한 바이오 에탄올의 제조방법 | |
KR101147451B1 (ko) | Thraustochytrid계 미세조류의 배양방법 | |
JP5588578B2 (ja) | 担子菌酵母変異体 | |
WO2012060389A1 (ja) | シゾサッカロミセス属酵母の形質転換体およびその製造方法 | |
CN105985939A (zh) | 一种聚羟基烷酸颗粒降解酶其用途及(r)-3hb生产方法 | |
El-Hamshary et al. | Molecular screening of chitinase gene in Bacillus spp | |
CN103540606A (zh) | 表达木质素过氧化物酶的大肠杆菌工程菌、制备方法及其应用 | |
JP6507469B2 (ja) | アスペルギルス属微生物が生産するタンパク質のn型糖鎖構造を改変する方法 | |
Aly et al. | Molecular characterization of chitiniolytic Bacillus pumilus isolated from marine habitats and enhancement of chitinase production by mutation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14737557 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014556435 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14737557 Country of ref document: EP Kind code of ref document: A1 |