Nothing Special   »   [go: up one dir, main page]

WO2014196378A1 - Polyester resin, and polyester resin composition for surface-mount-type led reflective plate which comprises same - Google Patents

Polyester resin, and polyester resin composition for surface-mount-type led reflective plate which comprises same Download PDF

Info

Publication number
WO2014196378A1
WO2014196378A1 PCT/JP2014/063679 JP2014063679W WO2014196378A1 WO 2014196378 A1 WO2014196378 A1 WO 2014196378A1 JP 2014063679 W JP2014063679 W JP 2014063679W WO 2014196378 A1 WO2014196378 A1 WO 2014196378A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
acid
resin composition
parts
mass
Prior art date
Application number
PCT/JP2014/063679
Other languages
French (fr)
Japanese (ja)
Inventor
戸川 惠一朗
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to CN201480028826.7A priority Critical patent/CN105246941B/en
Priority to JP2014541249A priority patent/JP5915948B2/en
Priority to KR1020157035467A priority patent/KR102158764B1/en
Publication of WO2014196378A1 publication Critical patent/WO2014196378A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • halogen flame retardant is preferably a combination of dibromopolystyrene and the flame retardant auxiliary is any combination of antimony trioxide, sodium antimonate, and zinc stannate.
  • Non-halogen flame retardants include melamine cyanurate, red phosphorus, phosphinic acid metal salts, and nitrogen-containing phosphoric acid compounds. In particular, a combination of a phosphinic acid metal salt and a nitrogen-containing phosphoric acid compound is preferable.
  • the resin under slight pressure was discharged into water as a strand, cooled, and then cut with a cutter to obtain a cylindrical pellet having a length of about 3 mm and a diameter of about 2 mm.
  • the polyester obtained had an intrinsic viscosity of 0.60 dl / g, a resin composition of 100 mol% terephthalic acid, 65.0 mol% 4,4′-biphenyldimethanol, ethylene glycol as determined by 1 H-NMR measurement. Was 34.5 mol% and diethylene glycol was 0.5 mol%.
  • the composition and characteristic values of the obtained polyester resin are shown in Table 1.
  • the obtained polyester had an IV of 0.61 dl / g, and the resin composition was 100 mol% terephthalic acid, 98.0 mol% ethylene glycol, and 2.0 mol% diethylene glycol, as determined by 1 H-NMR. It was.
  • the composition and characteristic values of the obtained polyester resin are shown in Table 2.
  • Reinforcing material C: Glass fiber (manufactured by Nittobo Co., Ltd., CS-3J-324), acicular wallast (manufactured by NYCO, NYGLOS8) Filler (D): Talc (Micron White 5000A, Hayashi Kasei Co., Ltd.)
  • Mold release agent Magnesium stearate Stabilizer: Pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (Irganox 1010, manufactured by Ciba Specialty Chemicals)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Led Device Packages (AREA)

Abstract

Disclosed is a polyester resin which comprises a dicarboxylic acid component containing 50 mol% or more of an aromatic dicarboxylic acid and a glycol component containing 15 mol% or more of 4,4'-biphenyldimethanol, and which has a melting point of 280ºC or higher. Also disclosed is a polyester resin composition comprising the polyester resin (A), titanium oxide (B), at least one reinforcing material (C) selected from the group consisting of a fibrous reinforcing material and a needle-like reinforcing material, and a non-fibrous or non-needle-like filler (D), wherein titanium oxide (B), the reinforcing material (C) and the non-fibrous or non-needle-like filler (D) are contained in amounts of 0.5 to 100 parts by mass, 0 to 100 parts by mass and 0 to 50 parts by mass, respectively, relative to 100 parts by mass of the polyester resin (A). The polyester resin composition can be used suitably for a reflective plate for a surface-mount-type LED.

Description

ポリエステル樹脂、及びそれを使用した表面実装型LED反射板用ポリエステル樹脂組成物Polyester resin and polyester resin composition for surface mounted LED reflector using the same
 本発明は、成形性、流動性、寸法安定性、低吸水性、ハンダ耐熱性、表面反射率等に優れ、さらには、金/錫ハンダ耐熱性、耐光性、低吸水性にも優れるポリエステル樹脂、及びそれを使用した、表面実装型LED用反射板に使用するために好適なポリエステル樹脂組成物に関する。 The present invention is excellent in moldability, fluidity, dimensional stability, low water absorption, solder heat resistance, surface reflectance, and the like, and further, a polyester resin excellent in gold / tin solder heat resistance, light resistance, and low water absorption. And a polyester resin composition suitable for use in a reflector for a surface-mounted LED using the same.
 近年、LED(発光ダイオード)は、低消費電力、長寿命、高輝度、小型化可能などの特徴を活用して、照明器具、光学素子、携帯電話、液晶ディスプレイ用バックライト、自動車コンソールパネル、信号機、表示板などに応用されている。また、意匠性、携帯性を重視する用途では、軽薄短小化を実現するために表面実装技術が使用されている。 In recent years, LEDs (light-emitting diodes) are used for lighting fixtures, optical elements, mobile phones, backlights for liquid crystal displays, automobile console panels, traffic lights, etc. by utilizing features such as low power consumption, long life, high brightness, and miniaturization. It is applied to display boards. In applications where design and portability are important, surface mounting technology is used to achieve lightness, thinness, and miniaturization.
 表面実装型LEDは一般に、発光するLEDチップ、リード線、ケースを兼ねた反射板、封止樹脂から構成されているが、電子基板上に実装された部品全体を非鉛化ハンダで接合するために、各部品がハンダ付けリフロー温度260℃に耐えられる材料で形成されることが必要である。材料の融点(融解ピーク温度)としては、280℃以上が必要とされる。特に反射板に関しては、これら耐熱性に加え、光を効率的に取り出すための表面反射率、熱や紫外線に対する耐久性が求められる。かかる観点から、セラミックや半芳香族ポリアミド、液晶ポリマー、熱硬化性シリコーン等の種々の耐熱プラスチック材料が検討されており、なかでも、半芳香族ポリアミドやポリエステルに酸化チタン等の高屈折フィラーを分散させた樹脂は量産性、耐熱性、表面反射率などのバランスが良く、最も汎用的に使用されている。最近では、LEDの汎用化にともない、反射板には加工性や信頼性のさらなる向上が必要となっており、長期の耐熱着色性、耐光性の向上が求められている。 A surface-mounted LED is generally composed of a light-emitting LED chip, a lead wire, a reflector that also serves as a case, and a sealing resin. In order to join the entire component mounted on an electronic board with lead-free solder In addition, each component must be formed of a material that can withstand the soldering reflow temperature of 260 ° C. The melting point (melting peak temperature) of the material is required to be 280 ° C. or higher. In particular, regarding the reflector, in addition to these heat resistances, surface reflectivity for efficiently extracting light and durability against heat and ultraviolet rays are required. From this point of view, various heat-resistant plastic materials such as ceramics, semi-aromatic polyamides, liquid crystal polymers, and thermosetting silicones have been studied. Among them, high refractive fillers such as titanium oxide are dispersed in semi-aromatic polyamides and polyesters. The resin made has a good balance of mass productivity, heat resistance, surface reflectance, etc., and is most commonly used. Recently, with the generalization of LEDs, it is necessary to further improve the workability and reliability of the reflector, and long-term heat-resistant coloring and light resistance are required to be improved.
 LED反射板用のポリエステル樹脂組成物としては、例えば特許文献1~5が提案されている。 Patent Documents 1 to 5 have been proposed as polyester resin compositions for LED reflectors, for example.
 特許文献1,2では、(a)i)テレフタル酸残基70~100モル%;ii)炭素数20以下の芳香族ジカルボン酸残基0~30モル%;及びiii)炭素数16以下の脂肪族ジカルボン酸残基0~10モル%を含むジカルボン酸成分;並びに(b)i)2,2,4,4-テトラメチル-1,3-シクロブタンジオール残基1~99モル%;及びii)1,4-シクロヘキサンジメタノール残基1~99モル%を含むグリコール成分(ここでジカルボン酸成分の総モル%は100モル%であり、グリコール成分の総モル%は100モル%である)からなるポリエステル樹脂が開示されているが、機械物性が良好傾向にあるものの、成形性、耐光性に問題がある。 In Patent Documents 1 and 2, (a) i) terephthalic acid residues 70 to 100 mol%; ii) aromatic dicarboxylic acid residues 0 to 30 mol% having 20 or less carbon atoms; and iii) fats having 16 or less carbon atoms A dicarboxylic acid component comprising from 0 to 10 mol% of an aromatic dicarboxylic acid residue; and (b) i) a 2,2,4,4-tetramethyl-1,3-cyclobutanediol residue from 1 to 99 mol%; and ii) A glycol component containing 1 to 99 mol% of 1,4-cyclohexanedimethanol residues (wherein the total mol% of the dicarboxylic acid component is 100 mol% and the total mol% of the glycol component is 100 mol%) Although a polyester resin is disclosed, although mechanical properties tend to be good, there are problems in moldability and light resistance.
 また、特許文献3では、(A)ポリエステル樹脂100質量部に対し、(B)アニオン部分がホスフィン酸のカルシウム塩又はアルミニウム塩であるホスフィン酸塩2~50質量部、(C)二酸化チタン0.5~30質量部、及び(D)極性基を有するポリオレフィン樹脂0.01~3質量部を配合したことを特徴とする、半導体発光素子を光源とする照明装置反射板用難燃性ポリエステル樹脂組成物が開示されているが、金/錫ハンダ耐熱性、耐熱性、耐光性に問題がある。 In Patent Document 3, (A) 100 parts by mass of a polyester resin, (B) 2 to 50 parts by mass of a phosphinic acid salt in which the anion portion is a calcium salt or aluminum salt of phosphinic acid, (C) 0. 5 to 30 parts by mass and (D) 0.01 to 3 parts by mass of a polyolefin resin having a polar group, and a flame retardant polyester resin composition for a reflector of an illuminating device using a semiconductor light emitting element as a light source Although a product is disclosed, there are problems in heat resistance, heat resistance, and light resistance of gold / tin solder.
 また、特許文献4では、全芳香族サーモトロピック液晶ポリエステル100質量部、焙焼工程を含む製法で得られた酸化チタン97~85質量%を酸化アルミニウム(水和物を含む)3~15質量%(両者を合わせて100質量%とする。)で表面処理してなる酸化チタン粒子8~42質量部、ガラス繊維25~50質量部、およびその他の無機充填材0~8質量部からなり、二軸混練機を使用して、前記ガラス繊維の少なくとも一部を、二軸混練機のシリンダーの全長に対して30%以上下流側の位置から供給する工程を含む溶融混練工程を経て得られる樹脂組成物が開示されているが、耐熱性、耐候性に問題がある。 In Patent Document 4, 100 parts by mass of wholly aromatic thermotropic liquid crystal polyester, 97 to 85% by mass of titanium oxide obtained by a production method including a roasting step, 3 to 15% by mass of aluminum oxide (including hydrate) (Total of 100% by mass of both) comprising 8 to 42 parts by mass of titanium oxide particles surface-treated, 25 to 50 parts by mass of glass fibers, and 0 to 8 parts by mass of other inorganic fillers. Resin composition obtained through a melt-kneading step including a step of supplying at least a part of the glass fiber from a position 30% or more downstream with respect to the total length of the cylinder of the biaxial kneader using a shaft kneader. Although a product is disclosed, there are problems in heat resistance and weather resistance.
 また、特許文献5では、不飽和ポリエステル樹脂、重合開始剤、無機充填剤、白色顔料、離型剤、及び補強材を少なくとも含む乾式不飽和ポリエステル樹脂組成物であって、前記不飽和ポリエステル樹脂が、前記組成物全体量に対して14~40質量%の範囲内であり、前記無機充填剤と前記白色顔料の配合量の合計が、前記組成物全体量に対して44~74質量%の範囲内であり、前記無機充填剤と前記白色顔料の配合量の合計に占める前記白色顔料の割合が30質量%以上であり、前記不飽和ポリエステル樹脂が、不飽和アルキッド樹脂と架橋剤が混合されたものであることを特徴とするLEDリフレクター用不飽和ポリエステル樹脂組成物が開示されているが、成形性、耐光性に問題がある。
 また、これまで表面実装型LED用反射板としては、各種ポリアミドが使用されてきたが、耐熱着色性、耐光性、吸水性に問題があった。
Patent Document 5 discloses a dry unsaturated polyester resin composition containing at least an unsaturated polyester resin, a polymerization initiator, an inorganic filler, a white pigment, a release agent, and a reinforcing material, wherein the unsaturated polyester resin is The total amount of the inorganic filler and the white pigment is in the range of 44 to 74% by mass with respect to the total amount of the composition. The proportion of the white pigment in the total amount of the inorganic filler and the white pigment is 30% by mass or more, and the unsaturated polyester resin is mixed with the unsaturated alkyd resin and the crosslinking agent. Although the unsaturated polyester resin composition for LED reflectors characterized by being is disclosed, there exists a problem in a moldability and light resistance.
In addition, various polyamides have been used as surface mount LED reflectors, but there are problems with heat-resistant coloring, light resistance, and water absorption.
 以上のように、従来提案されているポリエステルやポリアミドでは、耐熱着色性、耐光性、成形性に課題を抱えながら使用している実情がある。 As described above, conventionally proposed polyesters and polyamides are used while having problems in heat-resistant coloring, light resistance and moldability.
 さらに、近年では、照明用途への展開も積極的に行われている。照明用途への展開を考えた場合、コストダウンやハイパワー化、寿命の向上、長期信頼性の向上がさらに求められている。そのため、信頼性の向上策として、リードフレームとLEDチップの接合には、従来のエポキシ樹脂/銀ペーストではなく、劣化が少なく、熱伝導率の高い金/錫共晶ハンダが使用されつつある。しかしながら、金/錫共晶ハンダの加工には、280℃以上290℃未満の温度がかかるため、使用される樹脂には、工程に耐えるために290℃以上の融点が求められる。また、金/錫共晶ハンダの加工時においても、樹脂中の水分による成型品の表面に膨れ(ブリスター)の発生を防ぐために、樹脂には低吸水であることが求められる。 Furthermore, in recent years, it has been actively developed for lighting applications. When considering the development of lighting applications, further cost reduction, higher power, longer life, and long-term reliability are required. Therefore, as a measure for improving the reliability, gold / tin eutectic solder having a low deterioration and a high thermal conductivity is being used instead of the conventional epoxy resin / silver paste for bonding the lead frame and the LED chip. However, since processing of gold / tin eutectic solder requires a temperature of 280 ° C. or higher and lower than 290 ° C., the resin to be used is required to have a melting point of 290 ° C. or higher in order to withstand the process. Further, even when processing gold / tin eutectic solder, the resin is required to have low water absorption in order to prevent blisters from occurring on the surface of the molded product due to moisture in the resin.
 以上の通り、表面実装型LED用反射板に使用可能な特性を十分に満足したポリエステル樹脂組成物は、これまで報告されていない。 As described above, a polyester resin composition that has sufficiently satisfied the characteristics that can be used for a reflector for a surface-mounted LED has not been reported so far.
特表2008-544030号公報Special table 2008-544030 gazette 特表2008-544031号公報Special table 2008-54031 特開2010-270177号公報JP 2010-270177 A 特開2008-231368号公報JP 2008-231368 A 特許4844699号公報Japanese Patent No. 4844699
 本発明は、上記の従来技術の問題点に鑑み創案されたものであり、その目的は、射出成形時の成形性、流動性、寸法安定性、低吸水性、ハンダ耐熱性、表面反射率、耐光性に優れ、さらには、長期的な信頼性を確保すべく、金/錫共晶ハンダ工程が適応可能な高融点、ハンダ工程での水分による成型品の膨らみ低減のための低吸水性、屋外使用や長期使用時の耐光性を達成した、ポリエステル樹脂、及びそれを使用した表面実装型LED用反射板用ポリエステル樹脂組成物を提供することにある。 The present invention was devised in view of the above-mentioned problems of the prior art, and its purpose is moldability during injection molding, fluidity, dimensional stability, low water absorption, solder heat resistance, surface reflectance, Excellent light resistance, and high-melting point applicable to gold / tin eutectic solder process to ensure long-term reliability, low water absorption for reducing swelling of molded products due to moisture in solder process, It is providing the polyester resin which achieved the light resistance at the time of outdoor use or long-term use, and the polyester resin composition for reflectors for surface mount type LED using the same.
 本発明者は、上記目的を達成するために、LED用反射板としての特性を満たしながら射出成形やリフローハンダ工程を有利に行うことができ、さらには、金/錫共晶ハンダ耐熱性、低吸水性、耐光性にも優れたポリエステルの組成を鋭意検討した結果、本発明の完成に至った。 In order to achieve the above object, the present inventor can advantageously carry out injection molding and reflow soldering processes while satisfying the characteristics as a reflector for LED, and further has a gold / tin eutectic solder heat resistance, low resistance. As a result of intensive studies on the composition of the polyester excellent in water absorption and light resistance, the present invention has been completed.
 即ち、本発明は、以下の(1)~(11)の構成を有するものである。
(1)芳香族ジカルボン酸を50モル%以上含有するジカルボン酸成分と、4,4’-ビフェニルジメタノールを15モル%以上含有するグリコール成分とからなるポリエステル樹脂であって、融点が280℃以上であることを特徴とするポリエステル樹脂。
(2)芳香族ジカルボン酸が4,4’-ビフェニルジカルボン酸、テレフタル酸、及び2,6-ナフタレンジカルボン酸からなる群から選択される少なくとも一種のジカルボン酸を含むことを特徴とする(1)に記載のポリエステル樹脂。
(3)ポリエステル樹脂を構成する4,4’-ビフェニルジメタノール以外のグリコール成分が、エチレングリコール、1,4-シクロヘキサンジメタノール、1,3-プロパンジオール、ネオペンチルグリコール、及び1,4-ブタンジオールからなる群から選択される少なくとも一種のグリコールを含むことを特徴とする(1)又は(2)に記載のポリエステル樹脂。
(4)ポリエステル樹脂の融点(Tm)と降温結晶化温度(Tc2)の差が、42℃以下であることを特徴とする(1)~(3)のいずれかに記載のポリエステル樹脂。
(5)ポリエステル樹脂の酸価が、1~40eq/tであることを特徴とする(1)~(4)のいずれかに記載のポリエステル樹脂。
(6)(1)~(5)のいずれかに記載のポリエステル樹脂(A)、酸化チタン(B)、繊維状強化材及び針状強化材からなる群より選択される少なくとも1種の強化材(C)、及び非繊維状又は非針状充填材(D)を含有し、ポリエステル樹脂(A)100質量部に対して酸化チタン(B)、強化材(C)、及び非繊維状又は非針状充填材(D)がそれぞれ0.5~100質量部、0~100質量部、及び0~50質量部の割合で存在することを特徴とする表面実装型LED用反射板に使用するためのポリエステル樹脂組成物。
(7)非繊維状又は非針状充填材(D)がタルクであり、ポリエステル樹脂(A)100質量部に対してタルク0.1~5質量部の割合で含有することを特徴とする(6)に記載のポリエステル樹脂組成物。
(8)ハンダリフロー耐熱温度が260℃以上であることを特徴とする(6)または(7)に記載のポリエステル樹脂組成物。
(9)ハンダリフロー耐熱温度が280℃以上であることを特徴とする(6)~(8)のいずれかに記載のポリエステル樹脂組成物。
(10)ポリエステル樹脂組成物の融解ピーク温度(Tm)が280℃以上であり、融解ピーク温度(Tm)と降温結晶化温度(Tc2)の差が、42℃以下であることを特徴とする(6)~(9)のいずれかに記載のポリエステル樹脂組成物。
(11)(6)~(10)のいずれかに記載のポリエステル樹脂組成物を用いて成形して得られることを特徴とする表面実装型LED用反射板。
That is, the present invention has the following configurations (1) to (11).
(1) A polyester resin comprising a dicarboxylic acid component containing 50 mol% or more of an aromatic dicarboxylic acid and a glycol component containing 15 mol% or more of 4,4′-biphenyldimethanol, having a melting point of 280 ° C. or more Polyester resin characterized by being.
(2) The aromatic dicarboxylic acid contains at least one dicarboxylic acid selected from the group consisting of 4,4′-biphenyldicarboxylic acid, terephthalic acid, and 2,6-naphthalenedicarboxylic acid (1) The polyester resin as described in.
(3) The glycol component other than 4,4′-biphenyldimethanol constituting the polyester resin is ethylene glycol, 1,4-cyclohexanedimethanol, 1,3-propanediol, neopentyl glycol, and 1,4-butane. The polyester resin according to (1) or (2), comprising at least one glycol selected from the group consisting of diols.
(4) The polyester resin according to any one of (1) to (3), wherein the difference between the melting point (Tm) of the polyester resin and the cooling crystallization temperature (Tc2) is 42 ° C. or less.
(5) The polyester resin according to any one of (1) to (4), wherein the acid value of the polyester resin is 1 to 40 eq / t.
(6) At least one reinforcing material selected from the group consisting of the polyester resin (A), titanium oxide (B), fibrous reinforcing material and acicular reinforcing material according to any one of (1) to (5) (C) and non-fibrous or non-needle-like filler (D), and 100 parts by mass of polyester resin (A), titanium oxide (B), reinforcing material (C), and non-fibrous or non-fibrous To be used for a reflector for a surface-mounted LED, wherein the needle-like filler (D) is present in a ratio of 0.5 to 100 parts by mass, 0 to 100 parts by mass, and 0 to 50 parts by mass, respectively. Polyester resin composition.
(7) The non-fibrous or non-needle filler (D) is talc and is contained in a proportion of 0.1 to 5 parts by mass of talc with respect to 100 parts by mass of the polyester resin (A) ( The polyester resin composition as described in 6).
(8) Solder reflow heat-resistant temperature is 260 degreeC or more, The polyester resin composition as described in (6) or (7) characterized by the above-mentioned.
(9) The polyester resin composition according to any one of (6) to (8), wherein the solder reflow heat-resistant temperature is 280 ° C. or higher.
(10) The polyester resin composition has a melting peak temperature (Tm) of 280 ° C. or higher, and a difference between the melting peak temperature (Tm) and the cooling crystallization temperature (Tc2) is 42 ° C. or lower ( The polyester resin composition according to any one of 6) to (9).
(11) A surface-mounted LED reflector obtained by molding the polyester resin composition according to any one of (6) to (10).
 本発明のポリエステル樹脂は、高い耐熱性、低い吸水性に加えて、射出成形時の成形性やハンダ耐熱性など加工性に優れている。従って、本発明のポリエステル樹脂組成物は、かかるポリエステル樹脂を使用しているので、全ての必要な特性を高度に満足する表面実装型LED用反射板を工業的に有利に製造することができる。 The polyester resin of the present invention is excellent in workability such as moldability during injection molding and solder heat resistance in addition to high heat resistance and low water absorption. Therefore, since the polyester resin composition of the present invention uses such a polyester resin, it is possible to industrially advantageously produce a reflector for a surface mount LED that highly satisfies all necessary characteristics.
 また、本発明のポリエステル樹脂組成物は、主成分のポリエステル樹脂が280℃以上の高融点で耐熱性にも優れるため、金/錫共晶ハンダ工程にも適応可能であり、さらには、芳香環濃度が高いので、耐熱性、強靭性、耐光性に優れるとともに、封止材との密着性にも優れるなどの特徴を示すことができる。 In addition, the polyester resin composition of the present invention can be applied to a gold / tin eutectic solder process because the main component polyester resin has a high melting point of 280 ° C. or more and excellent heat resistance. Since the concentration is high, characteristics such as excellent heat resistance, toughness, and light resistance and excellent adhesion to a sealing material can be exhibited.
 本発明のポリエステル樹脂は、フィルム、シート、射出成形体、異形成形体などの成形体、特に表面実装型LED用反射板に使用する材料として好適な特性を有するものである。また、本発明のポリエステル樹脂組成物は、表面実装型LED用反射板に使用することを意図するものである。表面実装型LEDには、プリント配線板を用いたチップLED型、リードフレームを用いたガルウィング型、PLCC型などが挙げられるが、本発明のポリエステル樹脂組成物はこれらの全ての反射板を射出成形により製造することができる。 The polyester resin of the present invention has characteristics suitable as a material to be used for a molded body such as a film, a sheet, an injection molded body, a deformed body, particularly a surface mount LED reflector. Further, the polyester resin composition of the present invention is intended to be used for a reflector for a surface mount LED. The surface mount type LED includes a chip LED type using a printed wiring board, a gull wing type using a lead frame, and a PLCC type. The polyester resin composition of the present invention injection-molds all these reflectors. Can be manufactured.
 本発明のポリエステル樹脂組成物は、ポリエステル樹脂(A)、酸化チタン(B)、繊維状強化材及び針状強化材からなる群より選択される少なくとも1種の強化材(C)、及び非繊維状又は非針状充填材(D)を含有するものである。 The polyester resin composition of the present invention comprises a polyester resin (A), titanium oxide (B), at least one reinforcing material (C) selected from the group consisting of a fibrous reinforcing material and a needle-shaped reinforcing material, and a non-fiber. Or a non-needle-like filler (D).
 ポリエステル樹脂(A)は、高い信頼性を付与するために、高融点、低吸水性に加えて、優れた耐UV性を実現するために配合されるものであり、芳香族ジカルボン酸を50モル%以上含有するジカルボン酸成分と、4,4’-ビフェニルジメタノールを15モル%以上含有するグリコール成分とからなり、融点が280℃以上であることを特徴とする。ポリエステル樹脂(A)の融点は、好ましくは290℃以上、より好ましくは300℃以上、さらに好ましくは310℃以上である。ポリエステル樹脂(A)の融点の上限は、特に限定されないが、使用できる原料成分の制限より、340℃以下である。融点は、実施例の項に記載された方法で測定される。 The polyester resin (A) is blended to realize excellent UV resistance in addition to high melting point and low water absorption in order to impart high reliability, and 50 mol of aromatic dicarboxylic acid. % Dicarboxylic acid component and a glycol component containing 15 mol% or more of 4,4′-biphenyldimethanol, and has a melting point of 280 ° C. or more. The melting point of the polyester resin (A) is preferably 290 ° C. or higher, more preferably 300 ° C. or higher, and further preferably 310 ° C. or higher. Although the upper limit of melting | fusing point of a polyester resin (A) is not specifically limited, From the restriction | limiting of the raw material component which can be used, it is 340 degrees C or less. The melting point is measured by the method described in the Examples section.
 ポリエステル樹脂(A)のジカルボン酸成分として用いられる芳香族ジカルボン酸としては、4,4’-ビフェニルジカルボン酸、テレフタル酸、2、6-ナフタレンジカルボン酸、イソフタル酸、ジフェノキシエタンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルケトンジカルボン酸等が挙げられる。上記の芳香族ジカルボン酸の中では、重合性、コスト、耐熱性の点から、4,4’-ビフェニルジカルボン酸、テレフタル酸、2、6-ナフタレンジカルボン酸、またはこれらの混合物が好ましい。芳香族ジカルボン酸は、耐熱性の観点から、ジカルボン酸成分の50モル%以上であり、好ましくは60モル%以上、より好ましくは70モル%以上、さらに好ましくは80モル%以上、特に好ましくは90モル%以上であり、100モル%であっても構わない。また、芳香族ジカルボン酸以外のジカルボン酸としては、アジピン酸、セバシン酸、コハク酸、グルタル酸、ダイマー酸等の脂肪族ジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環族ジカルボン酸などが挙げられる。また、p-オキシ安息香酸、オキシカプロン酸等のオキシ酸、トリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、ビフェニルスルホンテトラカルボン酸、ビフェニルテトラカルボン酸などの多価カルボン酸及びその無水物を併用しても構わない。 Examples of the aromatic dicarboxylic acid used as the dicarboxylic acid component of the polyester resin (A) include 4,4′-biphenyldicarboxylic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, isophthalic acid, diphenoxyethanedicarboxylic acid, 4, Examples include 4′-diphenyl ether dicarboxylic acid, 4,4′-diphenyl ketone dicarboxylic acid, and the like. Among the above aromatic dicarboxylic acids, 4,4′-biphenyldicarboxylic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, or a mixture thereof is preferable from the viewpoint of polymerizability, cost, and heat resistance. From the viewpoint of heat resistance, the aromatic dicarboxylic acid is 50 mol% or more of the dicarboxylic acid component, preferably 60 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% or more, and particularly preferably 90 mol%. It may be 100% by mole or more. Dicarboxylic acids other than aromatic dicarboxylic acids include aliphatic dicarboxylic acids such as adipic acid, sebacic acid, succinic acid, glutaric acid, and dimer acid, hexahydroterephthalic acid, hexahydroisophthalic acid, and 1,2-cyclohexanedicarboxylic acid. And alicyclic dicarboxylic acids such as acid, 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid. Also, polyoxycarboxylic acids such as p-oxybenzoic acid and oxycaproic acid, trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid, biphenylsulfonetetracarboxylic acid, biphenyltetracarboxylic acid, and anhydrides thereof You may use together.
 また、ポリエステル樹脂(A)のグリコール成分として用いられる4,4’-ビフェニルジメタノールは、全グリコール成分の15モル%以上含むことが必要であり、好ましくは4,4’-ビフェニルジメタノールが50モル%以上、より好ましくは60モル%以上、更に好ましくは65モル%以上、最も好ましくは70モル%以上である。4,4’-ビフェニルジメタノールは、成形性、ハンダ耐熱性、耐光性を高めるために添加されるものであり、その割合が上記数値未満では、これらの特性が低下する傾向にある。4,4’-ビフェニルジメタノール以外のグリコ-ル成分としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール、3-メチル-1,5-ペンタンジオール、2-メチル-1,5-ペンタンジオール、2-メチル-1,3-プロパンジオール、2-エチル-1,3-プロパンジオール、ネオペンチルグリコール、2-エチル-2-メチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-メチル-2-n-ブチル-1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、2-エチル-2-n-ヘキシル-1,3-プロパンジオール、2,2-ジ-n-ヘキシル-1,3-プロパンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール、トリエチレングリコール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール、ポリプロピレングリコールなどの脂肪族グリコール、ヒドロキノン、4,4’-ジヒドロキシビスフェノール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-ビス(β-ヒドロキシエトキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)エーテル、ビス(p-ヒドロキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)メタン、1,2-ビス(p-ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールAのアルキレンオキサイド付加物などの芳香族グリコールなどが挙げられる。上記のグリコールの中では、耐熱性、重合性、成形性、コストなどから、エチレングリコール、1,4-シクロヘキサンジメタノール、1,3-プロパンジオール、ネオペンチルグリコール、1,4-ブタンジオールから選ばれる一種または二種以上の混合物が好ましい。更に好ましくは、エチレングリコール、1,4-ブタンジオールから選ばれる一種または二種以上の混合物である。なお、グリコール成分にエチレングリコールを用いた場合、ポリエステル樹脂(A)の製造時に、ジエチレングリコールが副生し、共重合成分となることがある。この場合、副生するジエチレングリコールは、製造条件にもよるが、ポリエステル樹脂に組み込まれるエチレングリコールに対して1~5モル%程度である。また、トリメチロールエタン、トリメチロールプロパン、グリセリン、ペンタエリスリトール等の多価ポリオールを併用しても構わない。 Further, 4,4′-biphenyldimethanol used as the glycol component of the polyester resin (A) needs to contain 15 mol% or more of the total glycol component, and preferably 4,4′-biphenyldimethanol is 50%. The mol% or more, more preferably 60 mol% or more, still more preferably 65 mol% or more, and most preferably 70 mol% or more. 4,4'-biphenyldimethanol is added to improve moldability, solder heat resistance, and light resistance. If the ratio is less than the above values, these characteristics tend to be lowered. Examples of glycol components other than 4,4′-biphenyldimethanol include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butylene glycol, 1,2-butylene glycol, 1, 3-butylene glycol, 2,3-butylene glycol, 1,5-pentanediol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2 -Cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 3-methyl-1,5-pentanediol, 2-methyl-1,5-pentanediol, 2-methyl-1,3-propa Diol, 2-ethyl-1,3-propanediol, neopentyl glycol, 2-ethyl-2-methyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-methyl-2 N-butyl-1,3-propanediol, 2-n-butyl-2-ethyl-1,3-propanediol, 2,2-di-n-butyl-1,3-propanediol, 2-ethyl- 2-n-hexyl-1,3-propanediol, 2,2-di-n-hexyl-1,3-propanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol , Aliphatic glycols such as triethylene glycol, polyethylene glycol, polytrimethylene glycol, polytetramethylene glycol, polypropylene glycol, Droquinone, 4,4'-dihydroxybisphenol, 1,4-bis (β-hydroxyethoxy) benzene, 1,4-bis (β-hydroxyethoxyphenyl) sulfone, bis (p-hydroxyphenyl) ether, bis (p- Examples include aromatic glycols such as hydroxyphenyl) sulfone, bis (p-hydroxyphenyl) methane, 1,2-bis (p-hydroxyphenyl) ethane, bisphenol A, and alkylene oxide adducts of bisphenol A. Among the above glycols, ethylene glycol, 1,4-cyclohexanedimethanol, 1,3-propanediol, neopentyl glycol, and 1,4-butanediol are selected from the viewpoints of heat resistance, polymerizability, moldability, and cost. One or a mixture of two or more thereof is preferred. More preferably, it is one or a mixture of two or more selected from ethylene glycol and 1,4-butanediol. In addition, when ethylene glycol is used for the glycol component, diethylene glycol may be by-produced during the production of the polyester resin (A) to become a copolymer component. In this case, the by-produced diethylene glycol is about 1 to 5 mol% with respect to ethylene glycol incorporated in the polyester resin, although it depends on the production conditions. Moreover, you may use together polyhydric polyols, such as a trimethylol ethane, a trimethylol propane, glycerol, and a pentaerythritol.
 ポリエステル樹脂は、全構成成分を200モル%としたとき、上記のジカルボン酸成分とグリコール成分の合計で、160モル%以上であることが好ましく、より好ましくは180モル%以上、さらに好ましくは190モル%以上であり、200モル%であっても構わない。但し、いずれの場合もジカルボン酸成分が100モル%、グリコール成分が100モル%を超えることはない。 The polyester resin is preferably 160 mol% or more, more preferably 180 mol% or more, still more preferably 190 mol in terms of the total of the above dicarboxylic acid component and glycol component when the total constituent components are 200 mol%. % Or more, and may be 200 mol%. However, in either case, the dicarboxylic acid component does not exceed 100 mol% and the glycol component does not exceed 100 mol%.
 また、5-スルホイソフタル酸、4-スルホナフタレン-2,7-ジカルボン酸、5-[4-スルホフェノキシ]イソフタル酸等の金属塩、または2-スルホ-1,4-ブタンジオール、2,5-ジメチル-3-スルホ-2,5-ヘキサンジオール等の金属塩などのスルホン酸金属塩基を含有するジカルボン酸またはジオールを、全酸成分または全ジオール成分の20モル%以下の範囲で使用してもよい。 Further, metal salts such as 5-sulfoisophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, 5- [4-sulfophenoxy] isophthalic acid, or 2-sulfo-1,4-butanediol, 2,5 A dicarboxylic acid or diol containing a sulfonic acid metal base such as a metal salt such as dimethyl-3-sulfo-2,5-hexanediol is used within a range of 20 mol% or less of the total acid component or the total diol component Also good.
 ポリエステル樹脂(A)を製造する際に使用する触媒としては、特に限定されないが、Ge、Ti、Sb、Al、MnまたはMgの化合物から選ばれる少なくとも一種の化合物が用いられることが好ましい。これらの化合物は、粉体、水溶液、エチレングリコール溶液、エチレングリコールのスラリー等として反応系に添加される。 Although it does not specifically limit as a catalyst used when manufacturing a polyester resin (A), It is preferable that at least 1 type of compound chosen from the compound of Ge, Ti, Sb, Al, Mn, or Mg is used. These compounds are added to the reaction system as powders, aqueous solutions, ethylene glycol solutions, ethylene glycol slurries and the like.
 また、樹脂の安定剤として、燐酸、ポリ燐酸やトリメチルフォスフェート等の燐酸エステル類、ホスホン酸系化合物、ホスフィン酸系化合物、ホスフィンオキサイド系化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物、ホスフィン系化合物からなる群より選ばれる少なくとも一種のリン化合物を使用するのが好ましい。 Also, as stabilizers for resins, phosphoric acid, phosphoric acid esters such as polyphosphoric acid and trimethyl phosphate, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphonous acid compounds, phosphinic acid compounds, phosphine It is preferable to use at least one phosphorus compound selected from the group consisting of a series compound.
 ポリエステル樹脂(A)の酸価としては、1~40eq/tonであることが好ましい。酸価が40eq/tonを超えると、耐光性が低下する傾向にある。また、酸価が1eq/ton未満では、重縮合反応性が低下して生産性が悪くなる傾向にある。 The acid value of the polyester resin (A) is preferably 1 to 40 eq / ton. When the acid value exceeds 40 eq / ton, light resistance tends to decrease. On the other hand, when the acid value is less than 1 eq / ton, the polycondensation reactivity tends to decrease and the productivity tends to deteriorate.
 本発明のポリエステル樹脂(A)は、DSC測定における融点(Tm)が280℃以上であり、好ましくは290℃以上、更に好ましくは300℃以上、特に好ましくは310℃以上、最も好ましくは320℃以上である。一方、本発明のポリエステル樹脂の融点(Tm)の上限は、340℃以下であることが好ましい。Tmが340℃を超える場合、本発明のポリエステル樹脂(A)を用いた組成物を射出成形する際に必要となる加工温度が極めて高くなるため、加工時にポリエステル樹脂が分解し、目的の物性や外観が得られない場合がある。逆に、Tmが上記下限未満の場合、結晶化速度が遅くなり、いずれも成形が困難になる場合があり、さらには、ハンダ耐熱性の低下を招く恐れがある。Tmが310℃以上であると、280℃のリフローハンダ耐熱性を満足し、金/錫共晶ハンダ工程にも適応可能になるので好ましい。 The polyester resin (A) of the present invention has a melting point (Tm) in DSC measurement of 280 ° C. or higher, preferably 290 ° C. or higher, more preferably 300 ° C. or higher, particularly preferably 310 ° C. or higher, and most preferably 320 ° C. or higher. It is. On the other hand, the upper limit of the melting point (Tm) of the polyester resin of the present invention is preferably 340 ° C. or lower. When Tm exceeds 340 ° C., the processing temperature required for injection molding the composition using the polyester resin (A) of the present invention becomes extremely high, so that the polyester resin decomposes during processing, and the desired physical properties and The appearance may not be obtained. On the other hand, when Tm is less than the above lower limit, the crystallization rate is slow, and in some cases, molding may be difficult, and further, solder heat resistance may be reduced. A Tm of 310 ° C. or higher is preferable because it satisfies the reflow solder heat resistance of 280 ° C. and can be applied to a gold / tin eutectic solder process.
 さらに、本発明のポリエステル樹脂(A)は、DSC測定において融点(Tm)と降温結晶化温度(Tc2)の差が、42℃以下であることが好ましく、更に好ましくは40℃以下、更に好ましくは35℃以下、最も好ましくは30℃以下である。降温結晶化温度(Tc2)とは、DSC測定において、融点より10℃以上高い温度から降温させた際に、結晶化し始める温度である。融点(Tm)と降温結晶化温度(Tc2)は、実施例の項に記載された方法で測定される。融点(Tm)と降温結晶化温度(Tc2)差が上記温度以下では、容易に結晶化が進行し、寸法安定性や物性などを十分に発揮することができる。一方、融点(Tm)と昇温結晶化温度(Tc2)差が上記温度を超える場合、LED用反射板は射出成形の短いサイクルで成形するため十分に結晶化が進まないことがあり、離型不足等の成形難を引き起こしたり、十分に結晶化が終了していないため、後工程の加熱時に変形や結晶収縮が発生し、封止材やリードフレームから剥離する問題が発生し、信頼性に欠ける。 Furthermore, in the polyester resin (A) of the present invention, the difference between the melting point (Tm) and the temperature-falling crystallization temperature (Tc2) in DSC measurement is preferably 42 ° C. or less, more preferably 40 ° C. or less, more preferably 35 ° C. or lower, most preferably 30 ° C. or lower. The temperature-falling crystallization temperature (Tc2) is a temperature at which crystallization starts when the temperature is lowered from a temperature higher by 10 ° C. or more than the melting point in DSC measurement. The melting point (Tm) and the cooling crystallization temperature (Tc2) are measured by the methods described in the Examples section. When the difference between the melting point (Tm) and the cooling crystallization temperature (Tc2) is not more than the above temperature, crystallization proceeds easily, and dimensional stability and physical properties can be sufficiently exhibited. On the other hand, when the difference between the melting point (Tm) and the temperature rising crystallization temperature (Tc2) exceeds the above temperature, the LED reflector is molded in a short cycle of injection molding, so that the crystallization may not proceed sufficiently. Insufficient molding, etc., or crystallization has not been completed sufficiently, causing deformation and crystal shrinkage during heating in the subsequent process, causing problems of peeling from the sealing material and lead frame, resulting in increased reliability Lack.
 ポリエステル樹脂(A)の極限粘度(IV)は、0.10~0.70dl/gであることが好ましく、より好ましくは0.20~0.65dl/g、さらに好ましくは0.25~0.60dl/gである。 The intrinsic viscosity (IV) of the polyester resin (A) is preferably 0.10 to 0.70 dl / g, more preferably 0.20 to 0.65 dl / g, still more preferably 0.25 to 0.00. 60 dl / g.
 ポリエステル樹脂(A)は、本発明のポリエステル樹脂組成物において、好ましくは25~90質量%、より好ましくは40~75質量%の割合で存在する。ポリエステル樹脂(A)の割合が上記下限未満であると、機械的強度が低くなり、上記上限を超えると、酸化チタン(B)や強化材(C)の配合量が不足し、所望の効果が得られにくくなる。 The polyester resin (A) is preferably present in a proportion of 25 to 90% by mass, more preferably 40 to 75% by mass in the polyester resin composition of the present invention. When the ratio of the polyester resin (A) is less than the above lower limit, the mechanical strength becomes low. When the ratio exceeds the above upper limit, the blending amount of the titanium oxide (B) and the reinforcing material (C) is insufficient, and a desired effect is obtained. It becomes difficult to obtain.
 酸化チタン(B)は、反射板の表面反射率を高めるために配合されるものであり、例えば硫酸法や塩素法により作製されたルチル型およびアナターゼ型の二酸化チタン(TiO)、一酸化チタン(TiO)、三酸化二チタン(Ti)などが挙げられるが、特にルチル型の二酸化チタン(TiO)が好ましく使用される。酸化チタン(B)の平均粒径は、一般に0.05~2.0μm、好ましくは0.15~0.5μmの範囲であり、1種で使用しても良いし、異なる粒径を有する酸化チタンを組み合わせて使用しても良い。酸化チタン成分濃度としては、90質量%以上、好ましくは95質量%以上、さらに好ましくは97質量%以上である。また、酸化チタン(B)は、シリカ、アルミナ、酸化亜鉛、ジルコニア等の金属酸化物、カップリング剤、有機酸、有機多価アルコール、シロキサン等で表面処理を施されたものを使用することができる。 Titanium oxide (B) is blended to increase the surface reflectance of the reflector. For example, rutile type and anatase type titanium dioxide (TiO 2 ) and titanium monoxide produced by the sulfuric acid method and the chlorine method. (TiO), dititanium trioxide (Ti 2 O 3 ) and the like can be mentioned, and rutile type titanium dioxide (TiO 2 ) is particularly preferably used. The average particle diameter of titanium oxide (B) is generally in the range of 0.05 to 2.0 μm, preferably 0.15 to 0.5 μm, and may be used alone or may have different particle diameters. Titanium may be used in combination. As a titanium oxide component density | concentration, it is 90 mass% or more, Preferably it is 95 mass% or more, More preferably, it is 97 mass% or more. In addition, the titanium oxide (B) may be one that has been surface-treated with a metal oxide such as silica, alumina, zinc oxide, zirconia, a coupling agent, an organic acid, an organic polyhydric alcohol, or siloxane. it can.
 酸化チタン(B)の割合は、ポリエステル樹脂(A)100質量部に対して0.5~100質量部、好ましくは10~80質量部である。酸化チタン(B)の割合が上記下限未満であると、表面反射率が低下し、上記上限を超えると、物性の大幅な低下や流動性が低下するなど成形加工性が低下するおそれがある。 The proportion of titanium oxide (B) is 0.5 to 100 parts by mass, preferably 10 to 80 parts by mass with respect to 100 parts by mass of the polyester resin (A). If the ratio of titanium oxide (B) is less than the above lower limit, the surface reflectivity is lowered, and if it exceeds the upper limit, molding processability may be lowered, such as a significant decrease in physical properties and fluidity.
 強化材(C)は、ポリエステル樹脂組成物の成形性と成形品の強度を向上するために配合されるものであり、繊維状強化材及び針状強化材から選択される少なくとも1種を使用する。繊維状強化材としては、例えばガラス繊維、炭素繊維、ホウ素繊維、セラミック繊維、金属繊維などが挙げられ、針状強化材としては、例えばチタン酸カリウムウィスカー、ホウ酸アルミニウムウィスカー、酸化亜鉛ウィスカー、炭酸カルシウムウィスカー、硫酸マグネシウムウィスカー、ワラストナイトなどが挙げられる。ガラス繊維としては、0.1mm~100mmの長さを有するチョップドストランドまたは連続フィラメント繊維を使用することが可能である。ガラス繊維の断面形状としては、円形断面及び非円形断面のガラス繊維を用いることができる。円形断面ガラス繊維の直径は、好ましくは20μm以下、より好ましくは15μm以下、さらに好ましくは10μm以下である。また、物性面や流動性より非円形断面のガラス繊維が好ましい。非円形断面のガラス繊維としては、繊維長の長さ方向に対して垂直な断面において略楕円形、略長円形、略繭形であるものをも含み、偏平度が1.5~8であることが好ましい。ここで偏平度とは、ガラス繊維の長手方向に対して垂直な断面に外接する最小面積の長方形を想定し、この長方形の長辺の長さを長径とし、短辺の長さを短径としたときの、長径/短径の比である。ガラス繊維の太さは特に限定されるものではないが、短径が1~20μm、長径2~100μm程度である。また、ガラス繊維は繊維束となって、繊維長1~20mm程度に切断されたチョップドストランド状のものが好ましく使用できる。さらには、ポリエステル樹脂組成物の表面反射率を高めるためには、ポリエステル樹脂との屈折率差が大きいことが好ましいため、ガラス組成の変更や表面処理により、屈折率を高めたものを使用することが好ましい。 The reinforcing material (C) is blended in order to improve the moldability of the polyester resin composition and the strength of the molded product, and uses at least one selected from a fibrous reinforcing material and an acicular reinforcing material. . Examples of the fibrous reinforcing material include glass fiber, carbon fiber, boron fiber, ceramic fiber, and metal fiber. Examples of the acicular reinforcing material include potassium titanate whisker, aluminum borate whisker, zinc oxide whisker, and carbonic acid. Calcium whiskers, magnesium sulfate whiskers, wollastonite and the like can be mentioned. As glass fibers, chopped strands or continuous filament fibers having a length of 0.1 mm to 100 mm can be used. As the cross-sectional shape of the glass fiber, a glass fiber having a circular cross section and a non-circular cross section can be used. The diameter of the circular cross-section glass fiber is preferably 20 μm or less, more preferably 15 μm or less, and even more preferably 10 μm or less. Further, a glass fiber having a non-circular cross section is preferred from the viewpoint of physical properties and fluidity. Non-circular cross-section glass fibers include those that are substantially oval, substantially oval, or substantially bowl-shaped in a cross section perpendicular to the length direction of the fiber length, and have a flatness of 1.5 to 8. It is preferable. Here, the flatness is assumed to be a rectangle with the smallest area circumscribing a cross section perpendicular to the longitudinal direction of the glass fiber, the length of the long side of the rectangle is the major axis, and the length of the short side is the minor axis. It is the ratio of major axis / minor axis. The thickness of the glass fiber is not particularly limited, but the minor axis is about 1 to 20 μm and the major axis is about 2 to 100 μm. Further, glass fibers are preferably used in the form of chopped strands which are formed into fiber bundles and cut to a fiber length of about 1 to 20 mm. Furthermore, in order to increase the surface reflectance of the polyester resin composition, it is preferable that the difference in refractive index from the polyester resin is large, so use a glass composition that has a higher refractive index by changing the surface composition or by surface treatment. Is preferred.
 強化材(C)の割合は、ポリエステル樹脂(A)100質量部に対して0~100質量部、好ましくは5~100質量部、より好ましくは10~60質量部である。強化材(C)は必須成分ではないが、その割合が5質量部以上であると、成形品の機械的強度が向上して好ましい。強化材(C)の割合が上記上限を超えると、表面反射率、成形加工性が低下する傾向がある。 The ratio of the reinforcing material (C) is 0 to 100 parts by mass, preferably 5 to 100 parts by mass, and more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the polyester resin (A). The reinforcing material (C) is not an essential component, but the proportion of 5 parts by mass or more is preferable because the mechanical strength of the molded product is improved. When the ratio of the reinforcing material (C) exceeds the above upper limit, the surface reflectance and the moldability tend to be lowered.
 非繊維状又は非針状充填材(D)としては、目的別には強化用フィラーや導電性フィラー、磁性フィラー、難燃フィラー、熱伝導フィラー、熱黄変抑制用フィラーなどが挙げられ、具体的にはガラスビーズ、ガラスフレーク、ガラスバルーン、シリカ、タルク、カオリン、マイカ、アルミナ、ハイドロタルサイト、モンモリロナイト、グラファイト、カーボンナノチューブ、フラーレン、酸化インジウム、酸化錫、酸化鉄、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、赤燐、炭酸カルシウム、酢酸マグネシウム、チタン酸ジルコン酸鉛、チタン酸バリウム、窒化アルミニウム、窒化ホウ素、ホウ酸亜鉛、硫酸バリウム、および針状ではないワラストナイト、チタン酸カリウム、ホウ酸アルミニウム、硫酸マグネシウム、酸化亜鉛、炭酸カルシウム等が挙げられる。これら充填材は、1種のみの単独使用だけではなく、数種を組み合わせて用いても良い。これらの中では、タルクが結晶化を速める効果を有し、成形性が向上することから好ましい。充填材の添加量は最適な量を選択すれば良いが、ポリエステル樹脂(A)100質量部に対して最大50質量部を添加することが可能であるが、樹脂組成物の機械的強度の観点から、0.1~20質量部が好ましく、より好ましくは1~10質量部である。タルクを使用する場合、ポリエステル樹脂(A)100質量部に対して0.1~5質量部が好ましく、より好ましくは、0.5~3質量部である。また、繊維状強化材、充填材はポリエステル樹脂との親和性を向上させるため、有機処理やカップリング剤処理したものを使用するか、または溶融コンパウンド時にカップリング剤と併用することが好ましく、カップリング剤としては、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤のいずれを使用しても良いが、その中でも、特にアミノシランカップリング剤、エポキシシランカップリング剤が好ましい。 Examples of the non-fibrous or non-needle filler (D) include reinforcing fillers, conductive fillers, magnetic fillers, flame retardant fillers, thermal conductive fillers, thermal yellowing suppression fillers, etc., according to purpose. Glass beads, glass flakes, glass balloons, silica, talc, kaolin, mica, alumina, hydrotalcite, montmorillonite, graphite, carbon nanotubes, fullerene, indium oxide, tin oxide, iron oxide, magnesium oxide, aluminum hydroxide, Magnesium hydroxide, calcium hydroxide, red phosphorus, calcium carbonate, magnesium acetate, lead zirconate titanate, barium titanate, aluminum nitride, boron nitride, zinc borate, barium sulfate, and non-acicular wollastonite, titanium Potassium oxide, aluminum borate, Magnesium, zinc oxide, calcium carbonate, and the like. These fillers may be used not only alone but also in combination of several kinds. Among these, talc is preferable because it has an effect of accelerating crystallization and improves moldability. The addition amount of the filler may be selected as an optimal amount, but it is possible to add a maximum of 50 parts by mass with respect to 100 parts by mass of the polyester resin (A), but from the viewpoint of the mechanical strength of the resin composition Therefore, 0.1 to 20 parts by mass is preferable, and 1 to 10 parts by mass is more preferable. When talc is used, it is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the polyester resin (A). In order to improve the affinity with the polyester resin, the fibrous reinforcing material and the filler are preferably used after being treated with an organic treatment or a coupling agent, or used in combination with a coupling agent at the time of melt compounding. As the ring agent, any of a silane coupling agent, a titanate coupling agent, and an aluminum coupling agent may be used, and among them, an aminosilane coupling agent and an epoxy silane coupling agent are particularly preferable.
 本発明のポリエステル樹脂組成物には、従来のLED反射板用ポリエステル樹脂組成物の各種添加剤を使用することができる。添加剤としては、安定剤、衝撃改良材、難燃剤、離型剤、摺動性改良材、着色剤、蛍光増白剤、可塑剤、結晶核剤、ポリエステル以外の熱可塑性樹脂などが挙げられる。 In the polyester resin composition of the present invention, various additives of conventional polyester resin compositions for LED reflectors can be used. Additives include stabilizers, impact modifiers, flame retardants, mold release agents, slidability improvers, colorants, fluorescent brighteners, plasticizers, crystal nucleating agents, thermoplastic resins other than polyester, and the like. .
 樹脂組成物の安定剤としては、ヒンダードフェノール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤などの有機系酸化防止剤や熱安定剤、ヒンダードアミン系、ベンゾフェノン系、イミダゾール系等の光安定剤や紫外線吸収剤、金属不活性化剤、銅化合物などが挙げられる。銅化合物としては、塩化第一銅、臭化第一銅、ヨウ化第一銅、塩化第二銅、臭化第二銅、ヨウ化第二銅、燐酸第二銅、ピロリン酸第二銅、硫化銅、硝酸銅、酢酸銅などの有機カルボン酸の銅塩などを用いることができる。さらに銅化合物以外の構成成分としては、ハロゲン化アルカリ金属化合物を含有することが好ましく、ハロゲン化アルカリ金属化合物としては、塩化リチウム、臭化リチウム、ヨウ化リチウム、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウムなどが挙げられる。これら添加剤は、1種のみの単独使用だけではなく、数種を組み合わせて用いても良い。安定剤の添加量は最適な量を選択すれば良いが、ポリエステル樹脂(A)100質量部に対して最大5質量部を添加することが可能である。 Resin composition stabilizers include organic antioxidants such as hindered phenol antioxidants, sulfur antioxidants, phosphorus antioxidants, heat stabilizers, hindered amines, benzophenones, imidazoles, etc. Examples thereof include a light stabilizer, an ultraviolet absorber, a metal deactivator, and a copper compound. Copper compounds include cuprous chloride, cuprous bromide, cuprous iodide, cupric chloride, cupric bromide, cupric iodide, cupric phosphate, cupric pyrophosphate, Copper salts of organic carboxylic acids such as copper sulfide, copper nitrate, and copper acetate can be used. Further, as a component other than the copper compound, an alkali metal halide compound is preferably contained. Examples of the alkali metal halide compound include lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, bromide. Examples thereof include sodium, sodium iodide, potassium fluoride, potassium chloride, potassium bromide, potassium iodide and the like. These additives may be used alone or in combination of several kinds. Although the addition amount of a stabilizer should just select an optimal quantity, it is possible to add a maximum of 5 mass parts with respect to 100 mass parts of polyester resins (A).
 本発明のポリエステル樹脂組成物には、ポリエステル樹脂(A)とは異なる熱可塑性樹脂を添加しても良い。例えば、ポリアミド(PA)、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ポリテトラフルオロエチレン(PTFE)、フッ素樹脂、アラミド樹脂、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)、ポリエーテルイミド(PEI)、熱可塑性ポリイミド、ポリアミドイミド(PAI)、ポリエーテルケトンケトン(PEKK)、ポリフェニレンエーテル(PPE)、ポリエーテルスルホン(PES)、ポリサルホン(PSU)、ポリアリレート(PAR)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリカーボネート(PC)、ポリオキシメチレン(POM)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリメチルペンテン(TPX)、ポリスチレン(PS)、ポリメタクリル酸メチル、アクリロニトリル-スチレン共重合体(AS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)が挙げられる。これら熱可塑性樹脂は、溶融混練により、溶融状態でブレンドすることも可能であるが、熱可塑性樹脂を繊維状、粒子状にし、本発明のポリエステル樹脂組成物に分散しても良い。熱可塑性樹脂の添加量は最適な量を選択すれば良いが、ポリエステル樹脂(A)100質量部に対して最大50質量部を添加することが可能である。 A thermoplastic resin different from the polyester resin (A) may be added to the polyester resin composition of the present invention. For example, polyamide (PA), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polytetrafluoroethylene (PTFE), fluororesin, aramid resin, polyetheretherketone (PEEK), polyetherketone (PEK), polyether Imide (PEI), thermoplastic polyimide, polyamideimide (PAI), polyether ketone ketone (PEKK), polyphenylene ether (PPE), polyethersulfone (PES), polysulfone (PSU), polyarylate (PAR), polyethylene terephthalate, Polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polycarbonate (PC), polyoxymethylene (POM), polypropylene (PP), polyethylene (PE) Polymethyl pentene (TPX), polystyrene (PS), polymethyl methacrylate, acrylonitrile - styrene copolymer (AS), acrylonitrile - butadiene - styrene copolymer (ABS) and the like. These thermoplastic resins can be blended in a molten state by melt kneading. However, the thermoplastic resin may be made into a fiber or particle and dispersed in the polyester resin composition of the present invention. The optimum amount of the thermoplastic resin may be selected, but a maximum of 50 parts by mass can be added to 100 parts by mass of the polyester resin (A).
 衝撃改良剤としては、エチレン-プロピレンゴム(EPM)、エチレン-プロピレン-ジエンゴム(EPDM)、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸エステル共重合体、エチレン酢酸ビニル共重合体等のポリオレフィン系樹脂、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-イソプレン-スチレン共重合体(SIS)、アクリル酸エステル共重合体等のビニルポリマー系樹脂、ポリブチレンテレフタレートまたはポリブチレンナフタレートをハードセグメントとし、ポリテトラメチレングリコールまたはポリカプロラクトンまたはポリカーボネートジオールをソフトセグメントとしたポリエステルブロック共重合体、ナイロンエラストマー、ウレタンエラストマー、アクリルエラストマー、シリコンゴム、フッ素系ゴム、異なる2種のポリマーより構成されたコアシェル構造を有するポリマー粒子などが挙げられる。衝撃改良剤の添加量は最適な量を選択すれば良いが、ポリエステル樹脂(A)100質量部に対して最大30質量部を添加することが可能である。 Impact modifiers include ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid copolymer, ethylene- Polyolefin resins such as methacrylic acid ester copolymer, ethylene vinyl acetate copolymer, styrene-butadiene-styrene block copolymer (SBS), styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene -Styrene copolymer (SIS), vinyl polymer resin such as acrylate copolymer, polybutylene terephthalate or polybutylene naphthalate as hard segment, polytetramethylene glycol or polycaprolactone or poly Polyester block copolymer in which the turbo sulfonate diol as a soft segment, a nylon elastomer, urethane elastomer, acrylic elastomer, silicone rubber, fluorinated rubber, and the like polymer particles having a core-shell structure constituted from two different polymers. The impact modifier may be added in an optimum amount, but it is possible to add a maximum of 30 parts by mass with respect to 100 parts by mass of the polyester resin (A).
 本発明のポリエステル樹脂組成物に対して、ポリエステル樹脂(A)以外の熱可塑性樹脂および耐衝撃改良材を添加する場合にはポリエステルと反応可能な反応性基が共重合されていることが好ましく、反応性基としてはポリエステル樹脂の末端基である水酸基及び/又はカルボキシル基と反応しうる基である。具体的には酸無水物基、エポキシ基、オキサゾリン基、アミノ基、イソシアネート基等が例示されるが、それらの中でもエポキシ基、イソシアネート基が最も反応性に優れている。このようにポリエステル樹脂と反応する反応性基を有する熱可塑性樹脂はポリエステル中に微分散し、微分散するがゆえに粒子間の距離が短くなり耐衝撃性が大幅に改良されるという報告もある。 When adding a thermoplastic resin other than the polyester resin (A) and an impact resistance improving material to the polyester resin composition of the present invention, it is preferable that a reactive group capable of reacting with the polyester is copolymerized, The reactive group is a group capable of reacting with a hydroxyl group and / or a carboxyl group which is a terminal group of the polyester resin. Specific examples include an acid anhydride group, an epoxy group, an oxazoline group, an amino group, and an isocyanate group. Among these, an epoxy group and an isocyanate group are most excellent in reactivity. There is also a report that the thermoplastic resin having a reactive group that reacts with the polyester resin is finely dispersed in the polyester and finely dispersed, so that the distance between the particles is shortened and the impact resistance is greatly improved.
 難燃剤としては、ハロゲン系難燃剤と難燃助剤の組み合わせが良く、ハロゲン系難燃剤としては、臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ビスフェノール型エポキシ系重合体、臭素化スチレン無水マレイン酸重合体、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、デカブロモジフェニルエーテル、デカブロモビフェニル、臭素化ポリカーボネート、パークロロシクロペンタデカン及び臭素化架橋芳香族重合体等が好ましく、難燃助剤としては、三酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウム、錫酸亜鉛、ホウ酸亜鉛、モンモリロナイトなどの層状ケイ酸塩、フッ素系ポリマー、シリコーンなどが挙げられる。中でも、熱安定性の面より、ハロゲン系難燃剤としては、ジブロムポリスチレン、難燃助剤としては、三酸化アンチモン、アンチモン酸ナトリウム、錫酸亜鉛のいずれかとの組み合わせが好ましい。また、非ハロゲン系難燃剤としては、メラミンシアヌレート、赤リン、ホスフィン酸の金属塩、含窒素リン酸系の化合物が挙げられる。特に、ホスフィン酸金属塩と含窒素リン酸系化合物との組み合わせが好ましく、含窒素リン酸系化合物としては、メラミンまたは、メラム、メレム、メロンのようなメラミンの縮合物とポリリン酸の反応生成物またはそれらの混合物を含む。その他難燃剤、難燃助剤としては、これら難燃剤の使用の際、金型等の金属腐食防止として、ハイドロタルサイト系化合物やアルカリ化合物の添加が好ましい。難燃剤の添加量は最適な量を選択すれば良いが、ポリアミド樹脂(A)100質量部に対して最大50質量部を添加することが可能である。 As a flame retardant, a combination of a halogen flame retardant and a flame retardant aid is good. As a halogen flame retardant, brominated polystyrene, brominated polyphenylene ether, brominated bisphenol type epoxy polymer, brominated styrene maleic anhydride Polymers, brominated epoxy resins, brominated phenoxy resins, decabromodiphenyl ether, decabromobiphenyl, brominated polycarbonate, perchlorocyclopentadecane, brominated cross-linked aromatic polymers, etc. are preferred. Examples include layered silicates such as antimony, antimony pentoxide, sodium antimonate, zinc stannate, zinc borate, and montmorillonite, fluorine-based polymers, and silicones. Among these, from the viewpoint of thermal stability, the halogen flame retardant is preferably a combination of dibromopolystyrene and the flame retardant auxiliary is any combination of antimony trioxide, sodium antimonate, and zinc stannate. Non-halogen flame retardants include melamine cyanurate, red phosphorus, phosphinic acid metal salts, and nitrogen-containing phosphoric acid compounds. In particular, a combination of a phosphinic acid metal salt and a nitrogen-containing phosphoric acid compound is preferable. As the nitrogen-containing phosphoric acid compound, a reaction product of melamine or a melamine condensate such as melam, melem, melon and polyphosphoric acid Or a mixture thereof. As other flame retardants and flame retardant aids, addition of hydrotalcite-based compounds and alkali compounds is preferable as metal corrosion prevention for molds and the like when these flame retardants are used. Although the addition amount of a flame retardant should just select an optimal quantity, it is possible to add a maximum of 50 mass parts with respect to 100 mass parts of polyamide resins (A).
 離型剤としては、長鎖脂肪酸またはそのエステルや金属塩、アマイド系化合物、ポリエチレンワックス、シリコーン、ポリエチレンオキシド等が挙げられる。長鎖脂肪酸としては、特に炭素数12以上が好ましく、例えばステアリン酸、12-ヒドロキシステアリン酸、ベヘン酸、モンタン酸などが挙げられ、部分的もしくは全カルボン酸が、モノグリコールやポリグリコールによりエステル化されていてもよく、または金属塩を形成していても良い。アマイド系化合物としては、エチレンビステレフタルアミド、メチレンビスステアリルアミドなどが挙げられる。これら離型剤は、単独であるいは混合物として用いても良い。離型剤の添加量は最適な量を選択すれば良いが、ポリエステル樹脂(A)100質量部に対して最大5質量部を添加することが可能である。 Examples of the release agent include long chain fatty acids or esters thereof, metal salts, amide compounds, polyethylene wax, silicone, polyethylene oxide, and the like. The long chain fatty acid preferably has 12 or more carbon atoms, and examples thereof include stearic acid, 12-hydroxystearic acid, behenic acid, and montanic acid. Partial or total carboxylic acid is esterified with monoglycol or polyglycol. Or a metal salt may be formed. Examples of the amide compound include ethylene bisterephthalamide and methylene bisstearyl amide. These release agents may be used alone or as a mixture. Although the addition amount of a mold release agent should just select an optimal quantity, it is possible to add a maximum of 5 mass parts with respect to 100 mass parts of polyester resins (A).
 本発明のポリエステル樹脂組成物は、上述のようなポリエステル樹脂(A)を含んでいるため、DSC測定において融解ピーク温度(Tm)が280℃以上であることが好ましく、より好ましくは、290℃以上、更に好ましくは300℃以上、特に好ましくは310℃以上、最も好ましくは320℃以上である。一方、本発明のポリエステル樹脂組成物のTmの上限は、340℃以下であることが好ましい。 Since the polyester resin composition of the present invention contains the polyester resin (A) as described above, the melting peak temperature (Tm) is preferably 280 ° C. or higher in DSC measurement, more preferably 290 ° C. or higher. More preferably, it is 300 ° C. or higher, particularly preferably 310 ° C. or higher, and most preferably 320 ° C. or higher. On the other hand, the upper limit of Tm of the polyester resin composition of the present invention is preferably 340 ° C. or lower.
 さらに、本発明のポリエステル樹脂組成物は、上述のようなポリエステル樹脂(A)を含んでいるため、DSC測定において融解ピーク温度(Tm)と降温結晶化温度(Tc2)の差が42℃以下であることが好ましく、更に好ましくは40℃以下、より好ましくは35℃以下、更に好ましくは30℃以下である。 Furthermore, since the polyester resin composition of the present invention contains the polyester resin (A) as described above, the difference between the melting peak temperature (Tm) and the cooling crystallization temperature (Tc2) is 42 ° C. or less in DSC measurement. Preferably, it is 40 ° C. or lower, more preferably 35 ° C. or lower, still more preferably 30 ° C. or lower.
 ポリエステル樹脂(A)は、高融点や成形性に加え、低吸水性や流動性のバランスに優れ、さらには耐光性に優れる。このため、かかるポリエステル樹脂(A)から得られる本発明のポリエステル樹脂組成物は、表面実装型LEDの反射板の成形においては、280℃以上の高融点、低吸水であることに加え、薄肉、ハイサイクルな成形が可能である。 Polyester resin (A) is excellent in the balance of low water absorption and fluidity, in addition to high melting point and moldability, and also excellent in light resistance. For this reason, the polyester resin composition of the present invention obtained from the polyester resin (A) has a high melting point of 280 ° C. or higher and low water absorption, in addition to a thin wall, High cycle molding is possible.
 本発明のポリエステル樹脂組成物は、上述の各構成成分を従来公知の方法で配合することにより製造されることができる。例えば、ポリエステル樹脂(A)の重縮合反応時に各成分を添加したり、ポリエステル樹脂(A)とその他の成分をドライブレンドしたり、または、二軸スクリュー型の押出機を用いて各構成成分を溶融混練する方法を挙げることができる。 The polyester resin composition of the present invention can be produced by blending the above-described constituent components by a conventionally known method. For example, each component is added during the polycondensation reaction of the polyester resin (A), the polyester resin (A) and other components are dry blended, or each component is added using a twin screw type extruder. The method of melt-kneading can be mentioned.
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例に記載された測定値は、以下の方法によって測定したものである。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, the measured value described in the Example is measured by the following method.
(1)ポリエステル樹脂の極限粘度(IV)
 1,1,2,2-テトラクロルエタン/フェノ-ル(2:3重量比)混合溶媒中、30℃での溶液粘度から求めた。
(2)酸価
 ポリエステル樹脂0.1gをベンジルアルコール10mlに加熱溶解した後、0.1NのNaOHのメタノール/ベンジルアルコール(1/9容積比)の溶液を使用して滴定して求めた。
(3)ポリエステル樹脂の融点(Tm)、および樹脂組成物の融解ピーク温度(Tm)、降温結晶化温度(Tc2)
 セイコ-電子工業株式会社製の示差熱分析計(DSC)、RDC-220で測定した。昇温速度20℃/分で昇温し、330℃で3分間保持したのち、330℃から130℃までを10℃/分で降温した。なお、330℃で融解しない場合は、340℃で3分間保持したのち、340℃から130℃までを10℃/分で降温した。昇温時に観察される融解ピ-クの頂点温度を融点(Tm)、降温時に観察される結晶化ピ-クの頂点温度を降温結晶化温度(Tc2)とした。
(1) Intrinsic viscosity of polyester resin (IV)
The viscosity was determined from the solution viscosity at 30 ° C. in a 1,1,2,2-tetrachloroethane / phenol (2: 3 weight ratio) mixed solvent.
(2) Acid value The polyester resin (0.1 g) was dissolved by heating in 10 ml of benzyl alcohol, and then titrated with a 0.1N NaOH methanol / benzyl alcohol (1/9 volume ratio) solution.
(3) Melting point (Tm) of polyester resin, melting peak temperature (Tm) of resin composition, temperature drop crystallization temperature (Tc2)
Measurements were made with a differential thermal analyzer (DSC), RDC-220, manufactured by Seiko Denshi Kogyo Co., Ltd. The temperature was raised at a rate of temperature increase of 20 ° C./min, held at 330 ° C. for 3 minutes, and then cooled from 330 ° C. to 130 ° C. at a rate of 10 ° C./min. In addition, when not melting | dissolving at 330 degreeC, after hold | maintaining at 340 degreeC for 3 minutes, 340 to 130 degreeC was temperature-fallen at 10 degree-C / min. The peak temperature of the melting peak observed when the temperature was raised was defined as the melting point (Tm), and the peak temperature of the crystallization peak observed when the temperature was decreased was the lowered crystallization temperature (Tc2).
(4)成形性および寸法安定性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は125℃に設定し、フィルムゲートを有する縦100mm、横100mm、厚み1mmtの平板作製用金型を使用し、射出成形を実施した。射出速度50mm/秒、保圧30MPa、射出時間10秒、冷却時間10秒で成型を行い、成形性の評価は以下のような基準で行った。
 ○:問題なく成型品が得られる。
 △:時々スプルーが金型に残る。
 ×:離型性が不十分であり、成型品が金型に貼り付いたり変形する。
 さらに、得られた成型品の寸法安定性の評価を行うために、上記成型品を180℃で1時間加熱した。加熱前後における、流動方向に垂直な方向の寸法を測定し、寸法変化量は以下のように求めた。
 寸法変化量(%)={加熱前の寸法(mm)-加熱後の寸法(mm)}/加熱前の寸法(mm)×100
 寸法安定性の評価は以下のような基準で行なった。
 〇:寸法変化量が0.2%未満
 ×:寸法変化量が0.2%以上
(4) Moldability and dimensional stability Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature was set to the melting point of the resin + 20 ° C., the mold temperature was set to 125 ° C., and the film gate had a length of 100 mm, a width of 100 mm, Injection molding was performed using a flat plate mold having a thickness of 1 mmt. Molding was performed at an injection speed of 50 mm / second, a holding pressure of 30 MPa, an injection time of 10 seconds, and a cooling time of 10 seconds. The moldability was evaluated according to the following criteria.
○: A molded product can be obtained without problems.
Δ: Sprue sometimes remains in the mold.
X: The releasability is insufficient, and the molded product sticks to the mold or deforms.
Furthermore, in order to evaluate the dimensional stability of the obtained molded product, the molded product was heated at 180 ° C. for 1 hour. The dimension in the direction perpendicular to the flow direction before and after heating was measured, and the amount of dimensional change was determined as follows.
Dimensional change (%) = {Dimension before heating (mm) −Dimension after heating (mm)} / Dimension before heating (mm) × 100
The dimensional stability was evaluated according to the following criteria.
○: Dimensional change is less than 0.2% ×: Dimensional change is 0.2% or more
(5)ハンダ耐熱性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、長さ127mm、幅12.6mm、厚み0.8mmtのUL燃焼試験用テストピースを射出成形し、試験片を作製した。試験片は85℃、85%RH(相対湿度)の雰囲気中に72時間放置した。試験片はエアリフロー炉中(エイテック製 AIS-20-82C)、室温から150℃まで60秒かけて昇温させ予備加熱を行った後、190℃まで0.5℃/分の昇温速度でプレヒートを実施した。その後、100℃/分の速度で所定の設定温度まで昇温し、所定の温度で10秒間保持した後、冷却を行った。設定温度は240℃から5℃おきに増加させ、表面の膨れや変形が発生しなかった最高の設定温度をリフロー耐熱温度とし、以下の基準でハンダ耐熱性を評価した。
 ◎:リフロー耐熱温度が280℃以上
 ○:リフロー耐熱温度が260℃以上280℃未満
 ×:リフロー耐熱温度が260℃未満
(5) Solder heat resistance Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C., the mold temperature is set to 140 ° C., the length is 127 mm, the width is 12.6 mm, and the thickness is 0.8 mm. The test piece for the UL combustion test was injection molded to produce a test piece. The test piece was left in an atmosphere of 85 ° C. and 85% RH (relative humidity) for 72 hours. The specimen was heated in an air reflow furnace (AIS-20-82C manufactured by ATEC) from room temperature to 150 ° C over 60 seconds, preheated, and then heated to 190 ° C at a rate of 0.5 ° C / min. Preheating was performed. Thereafter, the temperature was raised to a predetermined set temperature at a rate of 100 ° C./min, held at the predetermined temperature for 10 seconds, and then cooled. The set temperature was increased from 240 ° C. every 5 ° C., and the highest set temperature at which surface swelling and deformation did not occur was defined as the reflow heat resistant temperature, and the solder heat resistance was evaluated according to the following criteria.
A: Reflow heat resistant temperature is 280 ° C or higher. ○: Reflow heat resistant temperature is 260 ° C or higher and lower than 280 ° C. X: Reflow heat resistant temperature is lower than 260 ° C.
(6)拡散反射率
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、縦100mm、横100mm、厚み2mmの平板を射出成形し、評価用試験片を作製した。この試験片を用いて、日立製作所製の自記分光光度計「U3500」に同社製の積分球を設置し、350nmから800nmの波長の反射率を測定した。反射率の比較には460nmの波長における拡散反射率を求めた。リファレンスには硫酸バリウムを用いた。
(6) Diffuse reflectance Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 140 ° C, and a flat plate of 100mm in length, 100mm in width and 2mm in thickness is injection molded. Then, a test piece for evaluation was produced. Using this test piece, an integrating sphere manufactured by Hitachi, Ltd. was installed in a self-recording spectrophotometer “U3500” manufactured by Hitachi, Ltd., and the reflectance at wavelengths from 350 nm to 800 nm was measured. For comparison of reflectance, diffuse reflectance at a wavelength of 460 nm was obtained. Barium sulfate was used as a reference.
(7)飽和吸水率
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、縦100mm、横100mm、厚み1mmの平板を射出成形し、評価用試験片を作製した。この試験片を80℃熱水中に50時間浸漬させ、飽和吸水時及び乾燥時の重量から以下の式より飽和吸水率を求めた。
 飽和吸水率(%)={(飽和吸水時の重量-乾燥時の重量)/乾燥時の重量}×100
(7) Saturated water absorption Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 140 ° C, and a flat plate of 100mm length, 100mm width and 1mm thickness is injection molded. Then, a test piece for evaluation was produced. This test piece was immersed in hot water at 80 ° C. for 50 hours, and the saturated water absorption was determined from the following equation from the weight at the time of saturated water absorption and drying.
Saturated water absorption (%) = {(weight at saturated water absorption−weight at drying) / weight at drying} × 100
(8)流動性
 東芝機械製射出成形機IS-100を用い、シリンダー温度は330℃、金型温度は120℃に設定し、射出圧設定値40%、射出速度設定値40%、計量35mm、射出時間6秒、冷却時間10秒の条件で、幅1mm、厚み0.5mmの流動長測定用金型で射出成形し、評価用試験片を作製した。流動性の評価として、この試験片の流動長さ(mm)を測定した。
(8) Fluidity Using Toshiba Machine's injection molding machine IS-100, cylinder temperature is set to 330 ° C, mold temperature is set to 120 ° C, injection pressure set value is 40%, injection speed set value is 40%, weighing is 35mm, Under the conditions of an injection time of 6 seconds and a cooling time of 10 seconds, injection molding was performed with a flow length measuring mold having a width of 1 mm and a thickness of 0.5 mm to prepare an evaluation test piece. As an evaluation of fluidity, the flow length (mm) of this test piece was measured.
(9)シリコーン密着性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、縦100mm、横100mm、厚み2mmの平板を射出成形し、評価用試験片を作製した。この試験片の片面に、シリコーン封止材(信越シリコーン社製、ASP-1110、封止材硬度D60)をコーティング厚み約100μmになるようにコーティングし、100℃×1時間のプレヒーティング後、150℃×4時間の硬化処理をして試験片の片面に封止材皮膜を形成させた。
 次いで、試験片上の封止材皮膜に対して、JIS K5400に基づく碁盤目試験(1mm幅クロスカット100マス)を行ない、以下の基準で密着性を評価した。
 ○:剥離マス目数10以下
 ×:剥離試験前のマス目形成時に剥離あり
(9) Adhesion of silicone Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 140 ° C, and a flat plate of 100mm length, 100mm width and 2mm thickness is injection molded. Then, a test piece for evaluation was produced. One side of this test piece was coated with a silicone sealing material (Shin-Etsu Silicone Co., ASP-1110, sealing material hardness D60) to a coating thickness of about 100 μm, and after preheating at 100 ° C. for 1 hour, A curing treatment was performed at 150 ° C. for 4 hours to form a sealing material film on one side of the test piece.
Next, a cross-cut test (1 mm width crosscut 100 mass) based on JIS K5400 was performed on the sealing material film on the test piece, and the adhesion was evaluated according to the following criteria.
○: No more than 10 peeling cells ×: There is peeling when forming the cells before the peeling test
(10)耐光性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、縦100mm、横100mm、厚み2mmの平板を射出成形し、評価用試験片を作製した。この試験片について、超促進耐候試験機「アイスーパーUVテスターSUV-F11」を用い、63℃50%RHの環境下、50mW/cmの照度でUV照射を実施した。試験片の波長460nmの光反射率を、照射前と照射60時間後に測定した。照射前試験片の光反射率に対する、照射後試験片の光反射率の保持率により、耐光性を以下の基準で評価した。
 ◎:保持率95%以上
 ○:保持率95%未満~90%以上
 △:保持率90%未満~85%以上
 ×:保持率85%未満
(10) Light resistance Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 140 ° C, and a flat plate 100mm long, 100mm wide and 2mm thick is injection molded. A test piece for evaluation was prepared. This test piece was irradiated with UV light at an illuminance of 50 mW / cm 2 in an environment of 63 ° C. and 50% RH using a super accelerated weathering tester “I Super UV Tester SUV-F11”. The light reflectance at a wavelength of 460 nm of the test piece was measured before irradiation and 60 hours after irradiation. The light resistance was evaluated according to the following criteria based on the retention of the light reflectance of the test piece after irradiation with respect to the light reflectance of the test piece before irradiation.
◎: Retention rate 95% or more ○: Retention rate less than 95% to 90% or more △: Retention rate less than 90% to 85% or more ×: Retention rate less than 85%
(11)耐熱黄変性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、縦100mm、横100mm、厚み2mmの平板を射出成形し、評価用試験片を作製した。この試験片を用いて、熱風乾燥機にて150℃で2時間処理して、目視にて黄変性を確認し、以下の基準で評価した。
 ○:変化なし
 △:若干黄変する
 ×:黄変する
(11) Heat-resistant yellowing Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 140 ° C, and a flat plate of 100mm length, 100mm width and 2mm thickness is injection molded. Then, a test piece for evaluation was produced. Using this test piece, it processed at 150 degreeC with a hot air dryer for 2 hours, confirmed yellowing visually, and evaluated it on the following references | standards.
○: No change △: Slightly yellow ×: Yellowish
(実施例1)
 攪拌機付き20リッターステンレス製オートクレーブに、高純度ジメチルテレフタル酸3880g、4,4’-ビフェニルジメタノール2782g、エチレングリコール1922g、酢酸マンガン2g、二酸化ゲルマニウム0.86gを仕込み、エステル交換後、60分間かけて300℃まで昇温しつつ、反応系の圧力を徐々に下げて13.3Pa(0.1Torr)として、さらに310℃、13.3Paで重縮合反応を実施した。放圧に続き、微加圧下のレジンを水中にストランド状に吐出して冷却後、カッターで切断して長さ約3mm、直径約2mmのシリンダー形状のペレットを得た。得られたポリエステルの極限粘度は、0.60dl/g、樹脂組成は、H-NMR測定により、テレフタル酸が100モル%、4,4’-ビフェニルジメタノールが65.0モル%、エチレングリコールが34.5モル%、ジエチレングリコールが0.5モル%であった。得られたポリエステル樹脂の組成及び特性値を表1に示す。
(Example 1)
A 20-liter stainless steel autoclave equipped with a stirrer was charged with 3880 g of high-purity dimethyl terephthalic acid, 2782 g of 4,4′-biphenyldimethanol, 1922 g of ethylene glycol, 2 g of manganese acetate, and 0.86 g of germanium dioxide. While raising the temperature to 300 ° C., the pressure of the reaction system was gradually decreased to 13.3 Pa (0.1 Torr), and a polycondensation reaction was further performed at 310 ° C. and 13.3 Pa. Subsequent to releasing the pressure, the resin under slight pressure was discharged into water as a strand, cooled, and then cut with a cutter to obtain a cylindrical pellet having a length of about 3 mm and a diameter of about 2 mm. The polyester obtained had an intrinsic viscosity of 0.60 dl / g, a resin composition of 100 mol% terephthalic acid, 65.0 mol% 4,4′-biphenyldimethanol, ethylene glycol as determined by 1 H-NMR measurement. Was 34.5 mol% and diethylene glycol was 0.5 mol%. The composition and characteristic values of the obtained polyester resin are shown in Table 1.
(実施例2~4)
 使用する原料の量や種類を変更する以外は、実施例1のポリエステル樹脂の重合と同様にして、各ポリエステル樹脂を得た。得られた各ポリエステル樹脂の組成及び特性値を表1に示す。なお、ジエチレングリコールは、エチレングリコールが縮合して副生したものである。
(Examples 2 to 4)
Each polyester resin was obtained in the same manner as in the polymerization of the polyester resin of Example 1 except that the amount and type of raw materials used were changed. Table 1 shows the composition and characteristic values of the obtained polyester resins. Diethylene glycol is a by-product of condensation of ethylene glycol.
(実施例5)
 攪拌機付き20リッターステンレス製オートクレーブに、高純度ジメチルテレフタル酸3880g、4,4’-ビフェニルジメタノール2782g、エチレングリコール1922g、酢酸マンガン2g、二酸化ゲルマニウム0.86gを仕込み、エステル交換後、高純度テレフタル酸を8g添加して、60分間かけて300℃まで昇温しつつ、反応系の圧力を徐々に下げて13.3Pa(0.1Torr)として、さらに310℃、13.3Paで重縮合反応を実施した。放圧に続き、微加圧下のレジンを水中にストランド状に吐出して冷却後、カッターで切断して長さ約3mm、直径約2mmのシリンダー形状のペレットを得た。得られたポリエステルの極限粘度は、0.60dl/g、樹脂組成は、H-NMR測定により、テレフタル酸が100モル%、4,4’-ビフェニルジメタノールが65.0モル%、エチレングリコールが34.5モル%、ジエチレングリコールが0.5モル%であった。得られたポリエステル樹脂の組成及び特性値を表1に示す。
(Example 5)
A 20-liter stainless steel autoclave equipped with a stirrer was charged with 3880 g of high-purity dimethyl terephthalic acid, 2782 g of 4,4′-biphenyldimethanol, 1922 g of ethylene glycol, 2 g of manganese acetate, and 0.86 g of germanium dioxide. Was added, and the temperature of the reaction system was gradually decreased to 13.3 Pa (0.1 Torr) while raising the temperature to 300 ° C. over 60 minutes, and further polycondensation reaction was performed at 310 ° C. and 13.3 Pa. did. Subsequent to releasing the pressure, the resin under slight pressure was discharged into water as a strand, cooled, and then cut with a cutter to obtain a cylindrical pellet having a length of about 3 mm and a diameter of about 2 mm. The polyester obtained had an intrinsic viscosity of 0.60 dl / g, a resin composition of 100 mol% terephthalic acid, 65.0 mol% 4,4′-biphenyldimethanol, ethylene glycol as determined by 1 H-NMR measurement. Was 34.5 mol% and diethylene glycol was 0.5 mol%. The composition and characteristic values of the obtained polyester resin are shown in Table 1.
(比較例1)
 攪拌機付き20リッターステンレス製オートクレーブに、高純度テレフタル酸とその2倍モル量のエチレングリコールを仕込み、トリエチルアミンを酸成分に対して0.3モル%加え、0.25MPaの加圧下250℃にて水を系外に留去しながらエステル化反応を行い、エステル化率が約95%のビス(2-ヒドロキシエチル)テレフタレートおよびオリゴマーの混合物(以下BHET混合物という)を得た。このBHET混合物に重合触媒として、二酸化ゲルマニウム(Geとして100ppm)を加え、次いで、窒素雰囲気下、常圧にて250℃で10分間攪拌した。その後、60分間かけて280℃まで昇温しつつ反応系の圧力を徐々に下げて13.3Pa(0.1Torr)として、さらに280℃、13.3Paで重縮合反応を実施した。放圧に続き、微加圧下のレジンを水中にストランド状に吐出して冷却後、カッターで切断して長さ約3mm、直径約2mmのシリンダー形状のペレットを得た。得られたポリエステルのIVは0.61dl/gで、樹脂組成は、H-NMR測定により、テレフタル酸が100モル%、エチレングリコールが98.0モル%、ジエチレングリコールが2.0モル%であった。得られたポリエステル樹脂の組成及び特性値を表2に示す。
(Comparative Example 1)
A 20-liter stainless steel autoclave with a stirrer is charged with high-purity terephthalic acid and twice its amount of ethylene glycol, and 0.3 mol% of triethylamine is added to the acid component, and water is added at 250 ° C. under a pressure of 0.25 MPa. The esterification reaction was carried out while distilling out of the system to obtain a mixture of bis (2-hydroxyethyl) terephthalate and oligomer (hereinafter referred to as BHET mixture) having an esterification rate of about 95%. To this BHET mixture, germanium dioxide (100 ppm as Ge) was added as a polymerization catalyst, and then stirred at 250 ° C. for 10 minutes under a nitrogen atmosphere at normal pressure. Thereafter, the pressure in the reaction system was gradually decreased to 13.3 Pa (0.1 Torr) while the temperature was raised to 280 ° C. over 60 minutes, and a polycondensation reaction was further performed at 280 ° C. and 13.3 Pa. Subsequent to releasing the pressure, the resin under slight pressure was discharged into water as a strand, cooled, and then cut with a cutter to obtain a cylindrical pellet having a length of about 3 mm and a diameter of about 2 mm. The obtained polyester had an IV of 0.61 dl / g, and the resin composition was 100 mol% terephthalic acid, 98.0 mol% ethylene glycol, and 2.0 mol% diethylene glycol, as determined by 1 H-NMR. It was. The composition and characteristic values of the obtained polyester resin are shown in Table 2.
(比較例2~4)
 使用する原料の種類を変更する以外は、比較例1のポリエステル樹脂の重合と同様にして、各ポリエステル樹脂を得た。得られた各ポリエステル樹脂の組成及び特性値を表2に示す。
(Comparative Examples 2 to 4)
Each polyester resin was obtained in the same manner as in the polymerization of the polyester resin of Comparative Example 1 except that the type of raw material used was changed. Table 2 shows the composition and characteristic values of the obtained polyester resins.
(比較例5:ポリアミド樹脂)
 テレフタル酸3272.9g(19.70モル)、1,9-ノナンジアミン2849.2g(18.0モル)、2-メチル-1,8-オクタンジアミン316.58g(2.0モル)、安息香酸73.27g(0.60モル)、次亜リン酸ナトリウム一水和物6.5g(原料に対して0.1重量%)および蒸留水6リットルを内容積20リットルのオートクレーブに入れ、窒素置換した。100℃で30分間撹拌し、2時間かけて内部温度を210℃に昇温した。この時、オートクレーブは22kg/cmまで昇圧した。そのまま1時間反応を続けた後230℃に昇温し、その後2時間、230℃に温度を保ち、水蒸気を徐々に抜いて圧力を22kg/cmに保ちながら反応させた。次に、30分かけて圧力を10kg/cmまで下げ、更に1時間反応させて、極限粘度[η]が0.25dl/gのプレポリマーを得た。これを、100℃、減圧下で12時間乾燥し、2mm以下の大きさまで粉砕した。これを230℃、0.1mmHg下にて、10時間固相重合し、融点が310℃、極限粘度[η]が1.33dl/g、末端の封止率が90%である白色のポリアミド樹脂を得た。得られたポリアミド樹脂の組成及び特性値を表2に示す。
(Comparative Example 5: Polyamide resin)
Terephthalic acid 3272.9 g (19.70 mol), 1,9-nonanediamine 2849.2 g (18.0 mol), 2-methyl-1,8-octanediamine 316.58 g (2.0 mol), benzoic acid 73 .27 g (0.60 mol), 6.5 g of sodium hypophosphite monohydrate (0.1% by weight based on the raw material) and 6 liters of distilled water were placed in an autoclave having an internal volume of 20 liters and purged with nitrogen. . The mixture was stirred at 100 ° C. for 30 minutes, and the internal temperature was raised to 210 ° C. over 2 hours. At this time, the autoclave was pressurized to 22 kg / cm 2 . The reaction was continued for 1 hour, and then the temperature was raised to 230 ° C., and then the temperature was maintained at 230 ° C. for 2 hours. The reaction was carried out while gradually removing water vapor and maintaining the pressure at 22 kg / cm 2 . Next, the pressure was reduced to 10 kg / cm 2 over 30 minutes and the reaction was further continued for 1 hour to obtain a prepolymer having an intrinsic viscosity [η] of 0.25 dl / g. This was dried at 100 ° C. under reduced pressure for 12 hours and pulverized to a size of 2 mm or less. A white polyamide resin obtained by solid-phase polymerization at 230 ° C. and 0.1 mmHg for 10 hours, having a melting point of 310 ° C., an intrinsic viscosity [η] of 1.33 dl / g, and a terminal sealing rate of 90%. Got. The composition and characteristic values of the obtained polyamide resin are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例6~13、比較例6~10)
 表3、4に記載の成分と質量割合で、コペリオン(株)製二軸押出機STS-35を用いて、ポリエステル樹脂(A)またはポリアミド樹脂の融点+15℃で溶融混練し、実施例6~13、比較例6~10の樹脂組成物を得た。表3、4中、ポリエステル樹脂(A)以外の使用材料の詳細は以下の通りである。
 酸化チタン(B):石原産業(株)製 タイペークCR-60、ルチル型TiO、平均粒径0.2μm
 強化材(C):ガラス繊維(日東紡績(株)製、CS-3J-324)、針状ワラスト((株)NYCO製、NYGLOS8)
 充填材(D):タルク(林化成(株)製 ミクロンホワイト5000A)
 離型剤:ステアリン酸マグネシウム
 安定剤:ペンタエリスリチル・テトラキス[3-(3、5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](チバ・スペシャリティーケミカルズ製、イルガノックス1010)
(Examples 6 to 13, Comparative Examples 6 to 10)
The components and mass ratios shown in Tables 3 and 4 were melt-kneaded at a melting point of polyester resin (A) or polyamide resin + 15 ° C. using a twin screw extruder STS-35 manufactured by Coperion Co., Ltd. 13. Resin compositions of Comparative Examples 6 to 10 were obtained. In Tables 3 and 4, the details of the materials used other than the polyester resin (A) are as follows.
Titanium oxide (B): Ipehara Sangyo Co., Ltd. Typek CR-60, rutile TiO 2 , average particle size 0.2 μm
Reinforcing material (C): Glass fiber (manufactured by Nittobo Co., Ltd., CS-3J-324), acicular wallast (manufactured by NYCO, NYGLOS8)
Filler (D): Talc (Micron White 5000A, Hayashi Kasei Co., Ltd.)
Mold release agent: Magnesium stearate Stabilizer: Pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (Irganox 1010, manufactured by Ciba Specialty Chemicals)
 実施例6~13、比較例6~10で得られた樹脂組成物を各種特性の評価に供した。その評価結果も表3、4に示す。 The resin compositions obtained in Examples 6 to 13 and Comparative Examples 6 to 10 were used for evaluation of various properties. The evaluation results are also shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1及び表3から、本発明の要件を満たすポリエステル樹脂(実施例1~5)を使用した樹脂組成物(実施例6~13)では、ポリエステル樹脂組成物のDSCによる融解ピーク温度が280℃以上の場合は、リフローハンダ工程に適応可能であり、さらに融解ピーク温度が310℃を超える場合は、リフロー耐熱温度が280℃以上であることから、金/錫共晶ハンダ工程にも適応可能なハンダ耐熱性を示すとともに、LED用途で重要な特性である封止材との密着性、表面反射率に優れ、さらには成形性、流動性、寸法安定性、低吸水性、耐光性、耐熱黄変性にも優れるという、格別な効果が確認できた。一方、表2及び表4から、本発明の要件を満たさないポリエステル樹脂(比較例1~4)を使用した樹脂組成物(比較例6~9)では、これらの特性を全て満足させることはできなかった。比較例5のポリアミド樹脂は高融点であるが、アミド構造に起因する吸水性のため、比較例5のポリアミド樹脂を使用した樹脂組成物(比較例10)は、リフロー耐熱温度が280℃以上を満足できず、耐光性、耐熱黄変性にも劣っていた。 From Table 1 and Table 3, in the resin compositions (Examples 6 to 13) using the polyester resins (Examples 1 to 5) that satisfy the requirements of the present invention, the melting peak temperature by DSC of the polyester resin compositions is 280 ° C. In the above case, it can be applied to the reflow soldering process. Further, when the melting peak temperature exceeds 310 ° C, the reflow heat resistance temperature is 280 ° C or higher, so it can be applied to the gold / tin eutectic soldering process. In addition to exhibiting solder heat resistance, it has excellent adhesion to the encapsulant, which is an important characteristic for LED applications, and surface reflectance. Furthermore, it has moldability, fluidity, dimensional stability, low water absorption, light resistance, and heat resistance. A special effect of being excellent in denaturation was confirmed. On the other hand, from Tables 2 and 4, the resin compositions (Comparative Examples 6 to 9) using the polyester resins (Comparative Examples 1 to 4) that do not satisfy the requirements of the present invention can satisfy all these characteristics. There wasn't. Although the polyamide resin of Comparative Example 5 has a high melting point, the resin composition (Comparative Example 10) using the polyamide resin of Comparative Example 5 has a reflow heat resistance temperature of 280 ° C. or higher because of water absorption due to the amide structure. It was not satisfactory, and it was inferior to light resistance and heat yellowing.
 本発明のポリエステル樹脂組成物は、耐熱性、成形性、流動性、低吸水性に優れるのみならず、LED用途での封止材との密着性に優れ、さらには耐光性にも優れる特定のポリエステル樹脂を使用しているので、必要な特性を高度に満足しながら、表面実装型LED用反射板に好適に使用することができる。 The polyester resin composition of the present invention is not only excellent in heat resistance, moldability, fluidity, and low water absorption, but also has excellent adhesion to a sealing material in LED applications, and also has excellent light resistance. Since the polyester resin is used, it can be suitably used for a reflector for a surface-mounted LED while highly satisfying necessary characteristics.

Claims (11)

  1.  芳香族ジカルボン酸を50モル%以上含有するジカルボン酸成分と、4,4’-ビフェニルジメタノールを15モル%以上含有するグリコール成分とからなるポリエステル樹脂であって、融点が280℃以上であることを特徴とするポリエステル樹脂。 A polyester resin comprising a dicarboxylic acid component containing 50 mol% or more of aromatic dicarboxylic acid and a glycol component containing 15 mol% or more of 4,4′-biphenyldimethanol, and has a melting point of 280 ° C. or more. Polyester resin characterized by
  2.  芳香族ジカルボン酸が4,4’-ビフェニルジカルボン酸、テレフタル酸、及び2,6-ナフタレンジカルボン酸からなる群から選択される少なくとも一種のジカルボン酸を含むことを特徴とする請求項1に記載のポリエステル樹脂。 The aromatic dicarboxylic acid according to claim 1, comprising at least one dicarboxylic acid selected from the group consisting of 4,4'-biphenyldicarboxylic acid, terephthalic acid, and 2,6-naphthalenedicarboxylic acid. Polyester resin.
  3.  ポリエステル樹脂を構成する4,4’-ビフェニルジメタノール以外のグリコール成分が、エチレングリコール、1,4-シクロヘキサンジメタノール、1,3-プロパンジオール、ネオペンチルグリコール、及び1,4-ブタンジオールからなる群から選択される少なくとも一種のグリコールを含むことを特徴とする請求項1又は2に記載のポリエステル樹脂。 The glycol component other than 4,4′-biphenyldimethanol constituting the polyester resin is composed of ethylene glycol, 1,4-cyclohexanedimethanol, 1,3-propanediol, neopentyl glycol, and 1,4-butanediol. The polyester resin according to claim 1, comprising at least one glycol selected from the group.
  4.  ポリエステル樹脂の融点(Tm)と降温結晶化温度(Tc2)の差が、42℃以下であることを特徴とする請求項1~3のいずれかに記載のポリエステル樹脂。 The polyester resin according to any one of claims 1 to 3, wherein the difference between the melting point (Tm) of the polyester resin and the cooling crystallization temperature (Tc2) is 42 ° C or less.
  5.  ポリエステル樹脂の酸価が、1~40eq/tであることを特徴とする請求項1~4のいずれかに記載のポリエステル樹脂。 The polyester resin according to any one of claims 1 to 4, wherein the polyester resin has an acid value of 1 to 40 eq / t.
  6.  請求項1~5のいずれかに記載のポリエステル樹脂(A)、酸化チタン(B)、繊維状強化材及び針状強化材からなる群より選択される少なくとも1種の強化材(C)、及び非繊維状又は非針状充填材(D)を含有し、ポリエステル樹脂(A)100質量部に対して酸化チタン(B)、強化材(C)、及び非繊維状又は非針状充填材(D)がそれぞれ0.5~100質量部、0~100質量部、及び0~50質量部の割合で存在することを特徴とする表面実装型LED用反射板に使用するためのポリエステル樹脂組成物。 The polyester resin (A) according to any one of claims 1 to 5, titanium oxide (B), at least one reinforcing material (C) selected from the group consisting of a fibrous reinforcing material and a needle-shaped reinforcing material, and Contains non-fibrous or non-needle filler (D), and 100 parts by mass of polyester resin (A), titanium oxide (B), reinforcing material (C), and non-fibrous or non-needle filler ( D) is present in a proportion of 0.5 to 100 parts by weight, 0 to 100 parts by weight, and 0 to 50 parts by weight, respectively, and a polyester resin composition for use in a reflector for a surface mount LED .
  7.  非繊維状又は非針状充填材(D)がタルクであり、ポリエステル樹脂(A)100質量部に対してタルク0.1~5質量部の割合で含有することを特徴とする請求項6に記載のポリエステル樹脂組成物。 The non-fibrous or non-needle-like filler (D) is talc, and is contained at a ratio of 0.1 to 5 parts by mass of talc with respect to 100 parts by mass of the polyester resin (A). The polyester resin composition as described.
  8.  ハンダリフロー耐熱温度が260℃以上であることを特徴とする請求項6または7に記載のポリエステル樹脂組成物。 Solder reflow heat-resistant temperature is 260 degreeC or more, The polyester resin composition of Claim 6 or 7 characterized by the above-mentioned.
  9.  ハンダリフロー耐熱温度が280℃以上であることを特徴とする請求項6~8のいずれかに記載のポリエステル樹脂組成物。 The polyester resin composition according to any one of claims 6 to 8, which has a solder reflow heat-resistant temperature of 280 ° C or higher.
  10.  ポリエステル樹脂組成物の融解ピーク温度(Tm)が280℃以上であり、融解ピーク温度(Tm)と降温結晶化温度(Tc2)の差が、42℃以下であることを特徴とする請求項6~9のいずれかに記載のポリエステル樹脂組成物。 The melting peak temperature (Tm) of the polyester resin composition is 280 ° C. or higher, and the difference between the melting peak temperature (Tm) and the cooling crystallization temperature (Tc2) is 42 ° C. or lower. The polyester resin composition according to any one of 9.
  11.  請求項6~10のいずれかに記載のポリエステル樹脂組成物を用いて成形して得られることを特徴とする表面実装型LED用反射板。 A surface-mount type LED reflector obtained by molding the polyester resin composition according to any one of claims 6 to 10.
PCT/JP2014/063679 2013-06-03 2014-05-23 Polyester resin, and polyester resin composition for surface-mount-type led reflective plate which comprises same WO2014196378A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480028826.7A CN105246941B (en) 2013-06-03 2014-05-23 Polyester resin and the surface mounting LED reflecting plate polyester and resin composition using polyester resin
JP2014541249A JP5915948B2 (en) 2013-06-03 2014-05-23 Polyester resin and polyester resin composition for surface mounted LED reflector using the same
KR1020157035467A KR102158764B1 (en) 2013-06-03 2014-05-23 Polyester resin, and polyester resin composition for surface-mount-type LED reflective plate which comprises same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013116764 2013-06-03
JP2013-116764 2013-06-03
JP2013119893 2013-06-06
JP2013-119893 2013-06-06

Publications (1)

Publication Number Publication Date
WO2014196378A1 true WO2014196378A1 (en) 2014-12-11

Family

ID=52008029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063679 WO2014196378A1 (en) 2013-06-03 2014-05-23 Polyester resin, and polyester resin composition for surface-mount-type led reflective plate which comprises same

Country Status (5)

Country Link
JP (1) JP5915948B2 (en)
KR (1) KR102158764B1 (en)
CN (1) CN105246941B (en)
TW (1) TWI599594B (en)
WO (1) WO2014196378A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018160655A (en) * 2016-07-19 2018-10-11 パナソニックIpマネジメント株式会社 Molding material for light reflector and manufacturing method thereof, light reflector, base body and manufacturing method thereof, and light-emitting device
CN113292708A (en) * 2021-05-25 2021-08-24 吉林建筑大学 Bio-based copolyester and preparation method and application thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2567456B (en) * 2017-10-12 2021-08-11 Si Group Switzerland Chaa Gmbh Antidegradant blend
US11220599B2 (en) * 2018-11-26 2022-01-11 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition and article comprising the same
EP3956400B1 (en) * 2019-04-18 2023-06-28 Covestro Intellectual Property GmbH & Co. KG Thermally conductive polycarbonates with improved flame protection by means of barium sulfate
JP6687793B1 (en) * 2019-08-09 2020-04-28 住友化学株式会社 Resin composition and molded article
CN110804284A (en) * 2019-11-29 2020-02-18 江苏胜帆电子科技有限公司 High-strength LCP substrate packaging material and preparation method thereof
CN114685766B (en) * 2020-12-31 2024-02-02 中国石油化工股份有限公司 Modified biodegradable polyester and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106222A (en) * 1979-02-08 1980-08-14 Toray Ind Inc Preparation of modified polyester
JPH06116373A (en) * 1992-10-02 1994-04-26 Polyplastics Co Copolymer polyester and polyester resin composition
JPH06239982A (en) * 1993-02-16 1994-08-30 Polyplastics Co Copolyester and polyester resin composition
JP2000212118A (en) * 1999-01-20 2000-08-02 Daicel Chem Ind Ltd Purification of acetic acid
JP2011075628A (en) * 2009-09-29 2011-04-14 Sumitomo Chemical Co Ltd Base material for light reflecting component
JP2013177491A (en) * 2012-02-28 2013-09-09 Sumitomo Chemical Co Ltd Liquid crystal polyester composition and molded article
JP2013199625A (en) * 2012-03-26 2013-10-03 Sumitomo Chemical Co Ltd Liquid crystal polyester resin composition and molded product

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844699B1 (en) 1970-01-28 1973-12-26
JPH10316741A (en) * 1997-05-20 1998-12-02 Teijin Ltd Material for electronic part adaptable to surface mounting
JP3679641B2 (en) * 1999-02-05 2005-08-03 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4082836B2 (en) * 1999-11-08 2008-04-30 日本化薬株式会社 Resin composition and cured products thereof
JP2001131397A (en) * 1999-11-08 2001-05-15 Nippon Kayaku Co Ltd Resin compositions and their cured products
US20070270569A1 (en) 2005-06-17 2007-11-22 Crawford Emmett D Film(s) and/or sheet(s) made from polyester compositions containing cyclobutanediol and articles made therefrom
JP2008231368A (en) 2007-03-23 2008-10-02 Nippon Oil Corp Liquid crystal polyester resin composition excellent in light reflectance and hardness
JP2009001707A (en) * 2007-06-22 2009-01-08 Toyo Ink Mfg Co Ltd Polyester resin and pressure-sensitive adhesive composition
JP5321239B2 (en) 2009-05-19 2013-10-23 三菱エンジニアリングプラスチックス株式会社 Flame Retardant Polyester Resin Composition for Lighting Device Reflector with LED as Light Source
WO2013125453A1 (en) * 2012-02-24 2013-08-29 東洋紡株式会社 Polyester resin composition used in reflective plate for surface-mounted led

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106222A (en) * 1979-02-08 1980-08-14 Toray Ind Inc Preparation of modified polyester
JPH06116373A (en) * 1992-10-02 1994-04-26 Polyplastics Co Copolymer polyester and polyester resin composition
JPH06239982A (en) * 1993-02-16 1994-08-30 Polyplastics Co Copolyester and polyester resin composition
JP2000212118A (en) * 1999-01-20 2000-08-02 Daicel Chem Ind Ltd Purification of acetic acid
JP2011075628A (en) * 2009-09-29 2011-04-14 Sumitomo Chemical Co Ltd Base material for light reflecting component
JP2013177491A (en) * 2012-02-28 2013-09-09 Sumitomo Chemical Co Ltd Liquid crystal polyester composition and molded article
JP2013199625A (en) * 2012-03-26 2013-10-03 Sumitomo Chemical Co Ltd Liquid crystal polyester resin composition and molded product

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018160655A (en) * 2016-07-19 2018-10-11 パナソニックIpマネジメント株式会社 Molding material for light reflector and manufacturing method thereof, light reflector, base body and manufacturing method thereof, and light-emitting device
JP2018160654A (en) * 2016-07-19 2018-10-11 パナソニックIpマネジメント株式会社 Light reflector, base body, light-emitting device, and method for manufacturing base body
JP7065382B2 (en) 2016-07-19 2022-05-12 パナソニックIpマネジメント株式会社 Molding material for light reflector and its manufacturing method, light reflector, base body and its manufacturing method, and light emitting device
JP7065381B2 (en) 2016-07-19 2022-05-12 パナソニックIpマネジメント株式会社 Manufacturing method of light reflector, base body, light emitting device and base body
CN113292708A (en) * 2021-05-25 2021-08-24 吉林建筑大学 Bio-based copolyester and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2014196378A1 (en) 2017-02-23
KR102158764B1 (en) 2020-09-22
JP5915948B2 (en) 2016-05-11
TWI599594B (en) 2017-09-21
CN105246941A (en) 2016-01-13
CN105246941B (en) 2017-06-16
TW201504274A (en) 2015-02-01
KR20160016858A (en) 2016-02-15

Similar Documents

Publication Publication Date Title
JP6048833B2 (en) Polyester resin composition used for reflector for surface mount LED
JP5915948B2 (en) Polyester resin and polyester resin composition for surface mounted LED reflector using the same
JP6260085B2 (en) Polyester resin composition for LED reflector
JP6015652B2 (en) Thermoplastic resin composition for LED reflector
US7009029B2 (en) Polyamide composition
KR101638674B1 (en) Thermoplastic resin composition for reflector, reflector plate, and light-emitting diode element
WO2012026413A1 (en) Polyamide resin composition used for reflective plate for surface mount led
JP6492078B2 (en) RESIN COMPOSITION FOR REFLECTOR AND REFLECTOR CONTAINING THE SAME
JP2018059044A (en) Polyester resin composition, method for manufacturing reflection plate, and method for manufacturing light-emitting diode (led) element
JP6048832B2 (en) Polyester resin for surface mount LED reflector
JP2020019914A (en) Polyester resin composition for reflector and reflector
JP2019127545A (en) Polyester resin composition for reflection material and reflection material
WO2016002193A1 (en) Polyester resin composition for reflective materials and reflection plate containing same
JP6221662B2 (en) Polyester resin composition for LED reflector
JP6042271B2 (en) Polyester resin composition for reflector and reflector
KR101762484B1 (en) Thermoplastic Resin Composition Having Excellent Light stability in High Temperature
JP2019142986A (en) Polyester resin composition for reflective material, and reflective material
JP2019112501A (en) Polyester resin composition for reflector, and reflector
JP2014132053A (en) Polyester resin composition for molding led light reflector and led light reflector

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014541249

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157035467

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14807306

Country of ref document: EP

Kind code of ref document: A1