Nothing Special   »   [go: up one dir, main page]

KR20160016858A - Polyester resin, and polyester resin composition for surface-mount-type LED reflective plate which comprises same - Google Patents

Polyester resin, and polyester resin composition for surface-mount-type LED reflective plate which comprises same Download PDF

Info

Publication number
KR20160016858A
KR20160016858A KR1020157035467A KR20157035467A KR20160016858A KR 20160016858 A KR20160016858 A KR 20160016858A KR 1020157035467 A KR1020157035467 A KR 1020157035467A KR 20157035467 A KR20157035467 A KR 20157035467A KR 20160016858 A KR20160016858 A KR 20160016858A
Authority
KR
South Korea
Prior art keywords
polyester resin
mass
parts
temperature
acid
Prior art date
Application number
KR1020157035467A
Other languages
Korean (ko)
Other versions
KR102158764B1 (en
Inventor
게이이치로 도가와
Original Assignee
도요보 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도요보 가부시키가이샤 filed Critical 도요보 가부시키가이샤
Publication of KR20160016858A publication Critical patent/KR20160016858A/en
Application granted granted Critical
Publication of KR102158764B1 publication Critical patent/KR102158764B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • C08K3/0033
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Led Device Packages (AREA)

Abstract

방향족 디카르복실산을 50 몰% 이상 함유하는 디카르복실산 성분과 4,4'-비페닐디메탄올을 15 몰% 이상 함유하는 글리콜 성분으로 이루어지는 폴리에스테르 수지로서, 융점이 280℃ 이상인 폴리에스테르 수지가 개시된다. 또한 상기 폴리에스테르 수지(A), 산화티탄(B), 섬유상 강화재 및 침상 강화재로 이루어진 군으로부터 선택되는 1종 이상의 강화재(C), 및 비섬유상 또는 비침상 충전재(D)를 함유하고, 폴리에스테르 수지(A) 100 질량부에 대해 산화티탄(B), 강화재(C), 및 비섬유상 또는 비침상 충전재(D)가 각각 0.5~100 질량부, 0~100 질량부 및 0~50 질량부의 비율로 존재하는 것을 특징으로 하는 폴리에스테르 수지 조성물도 개시된다. 이러한 폴리에스테르 수지 조성물은 표면 실장형 LED용 반사판에 사용하기에 적합하다.A polyester resin comprising a dicarboxylic acid component containing an aromatic dicarboxylic acid in an amount of 50 mol% or more and a glycol component containing 4,4'-biphenyldimethanol in an amount of 15 mol% or more, Resin is disclosed. (C) selected from the group consisting of the polyester resin (A), the titanium oxide (B), the fibrous reinforcement and the needle reinforcement, and the nonfibrous or non-needle filler (D) , 0.5 to 100 parts by mass, 0 to 100 parts by mass and 0 to 50 parts by mass of the titanium oxide (B), the reinforcing material (C) and the nonfibrous or non-needle filler (D) are added to 100 parts by mass of the resin (A) The present invention also provides a polyester resin composition which is characterized in that it is present as a polyester resin. Such a polyester resin composition is suitable for use in a surface-mounted LED reflector.

Description

폴리에스테르 수지 및 그것을 사용한 표면 실장형 LED 반사판용 폴리에스테르 수지 조성물{Polyester resin, and polyester resin composition for surface-mount-type LED reflective plate which comprises same}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyester resin and a polyester resin composition for a surface mount type LED reflector using the polyester resin,

본 발명은 성형성, 유동성, 치수 안정성, 저 수흡수성, 납땜 내열성, 표면 반사율 등이 우수하고, 더 나아가서는 금/주석 납땜 내열성, 내광성, 저 수흡수성도 우수한 폴리에스테르 수지 및 그것을 사용한 표면 실장형 LED용 반사판에 사용하기에 적합한 폴리에스테르 수지 조성물에 관한 것이다. The present invention relates to a polyester resin which is excellent in moldability, fluidity, dimensional stability, low water absorbency, solder heat resistance, surface reflectance and the like and further has excellent resistance to gold / tin soldering heat resistance, light resistance, And a polyester resin composition suitable for use in a reflector for LED.

최근 들어 LED(발광 다이오드)는 저소비전력, 장수명, 고휘도, 소형화 가능 등의 특징을 활용하여 조명기구, 광학소자, 휴대전화, 액정 디스플레이용 백라이트, 자동차 콘솔 패널, 신호기, 표시판 등에 응용되고 있다. 또한 의장성, 휴대성을 중시하는 용도에서는 경박단소화를 실현하기 위해 표면 실장 기술이 사용되고 있다. BACKGROUND ART Recently, LED (light emitting diode) has been applied to a lighting apparatus, an optical element, a cellular phone, a backlight for a liquid crystal display, an automobile console panel, a signaling apparatus, a display board and the like by taking advantage of features such as low power consumption, long life, high brightness and miniaturization. In addition, surface mounting technology is used to realize light weight shortening in applications that emphasize designability and portability.

표면 실장형 LED는 일반적으로 발광하는 LED 칩, 리드선, 케이스를 겸한 반사판, 봉지 수지로 구성되어 있는데, 전자 기판 상에 실장된 부품 전체를 무연 땜납으로 접합하기 때문에, 각 부품이 납땜 리플로우 온도 260℃에 견딜 수 있는 재료로 형성될 필요가 있다. 재료의 융점(융해 피크 온도)으로서는 280℃ 이상이 필요해진다. 특히 반사판에 관해서는 이들 내열성에 더하여, 빛을 효율적으로 취출하기 위한 표면 반사율, 열이나 자외선에 대한 내구성이 요구된다. 이러한 관점에서 세라믹이나 반방향족 폴리아미드, 액정 폴리머, 열경화성 실리콘 등의 각종 내열 플라스틱 재료가 검토되고 있고, 그 중에서도 반방향족 폴리아미드나 폴리에스테르에 산화티탄 등의 고굴절 필러를 분산시킨 수지는 양산성, 내열성, 표면 반사율 등의 밸런스가 좋아 가장 범용적으로 사용되고 있다. 최근 들어서는 LED의 범용화에 수반하여 반사판에는 가공성과 신뢰성의 추가적인 향상이 필요해져, 장기의 내열착색성, 내광성의 향상이 요구되고 있다.Surface mount LEDs are generally composed of LED chips, lead wires, reflectors, and encapsulant resin that emit light. Since all the components mounted on the electronic board are bonded by lead-free solder, each component has a solder reflow temperature of 260 Lt; RTI ID = 0.0 > C. ≪ / RTI > A melting point (melting peak temperature) of 280 DEG C or more is required as the material. In particular, reflectors are required to have surface reflectance and durability against heat or ultraviolet rays in order to efficiently extract light, in addition to these heat resistance. From these viewpoints, various heat-resistant plastic materials such as ceramics, semi-aromatic polyamides, liquid crystal polymers, and thermosetting silicon have been studied. Among them, resins obtained by dispersing a high refractive index filler such as titanium oxide or the like in a semiaromatic polyamide or polyester, Heat resistance, surface reflectance, and the like, and thus it is most widely used. In recent years, along with the commercialization of LEDs, it has been required to further improve workability and reliability of the reflector, and it is required to improve the heat-resistant coloring property and light resistance of the long-term.

LED 반사판용 폴리에스테르 수지 조성물로서는, 예를 들면 특허문헌 1~5가 제안되어 있다. As a polyester resin composition for an LED reflector, for example, Patent Documents 1 to 5 have been proposed.

특허문헌 1, 2에서는 (a) i) 테레프탈산 잔기 70~100 몰%;ii) 탄소수 20 이하의 방향족 디카르복실산 잔기 0~30 몰%;및 iii) 탄소수 16 이하의 지방족 디카르복실산 잔기 0~10 몰%를 포함하는 디카르복실산 성분;및 (b) i) 2,2,4,4-테트라메틸-1,3-시클로부탄디올 잔기 1~99 몰%;및 ii) 1,4-시클로헥산디메탄올 잔기 1~99 몰%를 포함하는 글리콜 성분(여기서 디카르복실산 성분의 총 몰%는 100 몰%이고, 글리콜 성분의 총 몰%는 100 몰%이다)으로 이루어지는 폴리에스테르 수지가 개시되어 있는데, 기계 물성은 양호한 경향이 있으나 성형성, 내광성에 문제가 있다. In Patent Documents 1 and 2, (a) i) 70 to 100 mol% of terephthalic acid residue, ii) 0 to 30 mol% of aromatic dicarboxylic acid residue having 20 or less carbon atoms, and iii) aliphatic dicarboxylic acid residue (I) 1 to 99 mol% of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues, and ii) 1,4- - a glycol component comprising 1 to 99 mol% of cyclohexane dimethanol residues, wherein the total molar percentage of the dicarboxylic acid component is 100 mol% and the total molar percentage of the glycol component is 100 mol% Has been disclosed, which tends to be good in mechanical properties but has a problem in moldability and light resistance.

또한 특허문헌 3에서는 (A) 폴리에스테르 수지 100 질량부에 대해 (B) 음이온 부분이 포스핀산의 칼슘염 또는 알루미늄염인 포스핀산염 2~50 질량부, (C) 이산화티탄 0.5~30 질량부 및 (D) 극성기를 갖는 폴리올레핀 수지 0.01~3 질량부를 배합한 것을 특징으로 하는, 반도체 발광소자를 광원으로 하는 조명장치 반사판용 난연성 폴리에스테르 수지 조성물이 개시되어 있는데, 금/주석 납땜 내열성, 내열성, 내광성에 문제가 있다. In Patent Document 3, (A) 2 to 50 parts by mass of a phosphinic acid salt (B) in which the anion moiety is a calcium salt or aluminum salt of phosphinic acid with respect to 100 parts by mass of a polyester resin, (C) 0.5 to 30 parts by mass And (D) 0.01 to 3 parts by mass of a polyolefin resin having a polar group. The flame retardant polyester resin composition for a reflector of a lighting device according to claim 1, wherein the flame retardant polyester resin composition comprises a gold / tin solder heat resistance, There is a problem in light resistance.

또한 특허문헌 4에서는 전방향족 서모트로픽 액정 폴리에스테르 100 질량부, 배소공정을 포함하는 제법으로 얻어진 산화티탄 97~85 질량%를 산화알루미늄(수화물을 포함한다) 3~15 질량%(양자를 합하여 100 질량%로 한다.)로 표면 처리하여 이루어지는 산화티탄 입자 8~42 질량부, 유리 섬유 25~50 질량부 및 기타 무기 충전재 0~8 질량부로 이루어지고, 2축 혼련기를 사용하여 상기 유리 섬유의 적어도 일부를 2축 혼련기의 실린더 전체 길이에 대해 30% 이상 하류 측의 위치에서 공급하는 공정을 포함하는 용융 혼련 공정을 거쳐 얻어지는 수지 조성물이 개시되어 있는데, 내열성, 내후성에 문제가 있다. In Patent Document 4, 100 parts by mass of a wholly aromatic thermotropic liquid crystal polyester, 97 to 85% by mass of titanium oxide obtained by a process including a roasting process, and 3 to 15% by mass of aluminum oxide (including a hydrate) 8 to 42 parts by mass of titanium oxide particles obtained by surface-treating the above glass fibers with 10 to 50% by mass of the glass fibers, 25 to 50 parts by mass of glass fibers and 0 to 8 parts by mass of other inorganic fillers, And a step of supplying a part of the component at a position on the downstream side of not less than 30% with respect to the entire length of the cylinder of the biaxial kneader through a melt-kneading step. However, the resin composition has a problem in heat resistance and weather resistance.

또한 특허문헌 5에서는 불포화 폴리에스테르 수지, 중합개시제, 무기 충전제, 백색 안료, 이형제 및 보강재를 적어도 포함하는 건식 불포화 폴리에스테르 수지 조성물로서, 상기 불포화 폴리에스테르 수지가 상기 조성물 전체량에 대해 14~40 질량%의 범위 내이고, 상기 무기 충전제와 상기 백색 안료 배합량의 합계가 상기 조성물 전체량에 대해 44~74 질량%의 범위 내이며, 상기 무기 충전제와 상기 백색 안료 배합량의 합계에 차지하는 상기 백색 안료의 비율이 30 질량% 이상이고, 상기 불포화 폴리에스테르 수지가 불포화 알키드 수지와 가교제가 혼합된 것인 것을 특징으로 하는 LED 리플렉터용 불포화 폴리에스테르 수지 조성물이 개시되어 있는데, 성형성, 내광성에 문제가 있다. Patent Document 5 discloses a dry unsaturated polyester resin composition comprising at least an unsaturated polyester resin, a polymerization initiator, an inorganic filler, a white pigment, a releasing agent and a reinforcing material, wherein the unsaturated polyester resin is contained in an amount of 14 to 40 mass % Of the total amount of the inorganic filler and the white pigment is in the range of 44 to 74% by mass with respect to the total amount of the composition, and the ratio of the white pigment to the total amount of the inorganic filler and the white pigment Is not less than 30% by mass, and the unsaturated polyester resin is a mixture of an unsaturated alkyd resin and a crosslinking agent. The unsaturated polyester resin composition for LED reflector has problems in moldability and light resistance.

또한 지금까지 표면 실장형 LED용 반사판으로서는 각종 폴리아미드가 사용되어 왔으나 내열착색성, 내광성, 수흡수성에 문제가 있었다. In addition, various polyamides have been used as reflectors for surface mount type LEDs up to now, but there has been a problem in heat resistance coloring property, light resistance and water absorbability.

이상과 같이, 종래 제안되어 있는 폴리에스테르나 폴리아미드의 경우는 내열착색성, 내광성, 성형성에 과제를 가지고 있으면서 사용하고 있는 실정이 있다. As described above, conventionally proposed polyesters and polyamides have problems in terms of heat resistance, heat resistance, and moldability.

또한 최근 들어서는 조명 용도로의 전개도 적극적으로 행해지고 있다. 조명 용도로의 전개를 고려한 경우, 생산비 절감이나 고성능화, 수명의 향상, 장기 신뢰성의 향상이 더욱 요구되고 있다. 이 때문에 신뢰성의 향상책으로서 리드프레임과 LED 칩의 접합에는 종래의 에폭시 수지/은 페이스트가 아니라, 열화(劣化)가 적고 열전도율이 높은 금/주석 공정 납땜이 사용되고 있다. 그러나 금/주석 공정 납땜의 가공에는 280℃ 이상 290℃ 미만의 온도가 가해지기 때문에, 사용되는 수지에는 공정에 견디기 위해 290℃ 이상의 융점이 요구된다. 또한 금/주석 공정 납땜의 가공 시에 있어서도 수지 중의 수분에 의한 성형품의 표면에 부풀어오름(블리스터)의 발생을 방지하기 위해 수지에는 저 수흡수인 것이 요구된다. In recent years, development for lighting purposes has also been actively carried out. In consideration of the development for lighting purposes, further reduction in production cost, improvement in performance, improvement in lifetime, and improvement in long-term reliability are further demanded. For this reason, gold / tin process soldering which is less deteriorated and has high thermal conductivity is used instead of the conventional epoxy resin / silver paste for bonding the lead frame and the LED chip as an improvement of reliability. However, in the case of the gold / tin process soldering, a temperature of 280 ° C or more and less than 290 ° C is applied, and thus the resin used requires a melting point of 290 ° C or more in order to withstand the process. Furthermore, in order to prevent the occurrence of swelling (blister) on the surface of the molded article due to moisture in the resin even in the processing of the gold / tin process soldering, the resin is required to have low water absorption.

이상과 같이, 표면 실장형 LED용 반사판에 사용 가능한 특성을 충분히 만족시킨 폴리에스테르 수지 조성물은 지금까지 보고되어 있지 않다. As described above, a polyester resin composition sufficiently satisfying the characteristics usable for the surface-mounted LED reflector has not been reported so far.

일본국 특허공표 제2008-544030호 공보Japanese Patent Publication No. 2008-544030 일본국 특허공표 제2008-544031호 공보Japanese Patent Publication No. 2008-544031 일본국 특허공개 제2010-270177호 공보Japanese Patent Application Laid-Open No. 2010-270177 일본국 특허공개 제2008-231368호 공보Japanese Patent Application Laid-Open No. 2008-231368 일본국 특허 제4844699호 공보Japanese Patent No. 4844699

본 발명은 상기 종래기술의 문제점을 감안하여 창안된 것으로, 그 목적은 사출 성형 시의 성형성, 유동성, 치수 안정성, 저 수흡수성, 납땜 내열성, 표면 반사율, 내광성이 우수하고, 더 나아가서는 장기적인 신뢰성을 확보하기 위해, 금/주석 공정 납땜 공정이 적용 가능한 고융점, 납땜 공정에서의 수분에 의한 성형품의 부풀어오름 저감을 위한 저 수흡수성, 옥외 사용이나 장기 사용 시의 내광성을 달성한, 폴리에스테르 수지 및 그것을 사용한 표면 실장형 LED용 반사판용 폴리에스테르 수지 조성물을 제공하는 것에 있다. SUMMARY OF THE INVENTION The present invention has been made in view of the problems of the prior art described above, and its object is to provide a resin composition which is excellent in moldability, fluidity, dimensional stability, low water absorbency, solder heat resistance, surface reflectance and light resistance at the time of injection molding, A polyester resin which achieves a high melting point to which a gold / tin process soldering process is applicable, a low water absorbency for reducing the swelling of a molded article due to moisture in a brazing process, and a light resistance during outdoor use or long- And a polyester resin composition for a surface mount LED reflector using the same.

본 발명자는 상기 목적을 달성하기 위해, LED용 반사판으로서의 특성을 만족시키면서 사출 성형이나 리플로우 납땜 공정을 유리하게 행할 수 있고, 더 나아가서는 금/주석 공정 납땜 내열성, 저 수흡수성, 내광성도 우수한 폴리에스테르의 조성을 예의 검토한 결과, 본 발명의 완성에 도달하였다. In order to achieve the above object, the inventors of the present invention have found that it is possible to advantageously perform an injection molding or a reflow soldering process while satisfying the characteristics as a reflector for an LED, and furthermore to provide a poly As a result of intensive studies on the composition of the ester, the present invention has been completed.

즉, 본 발명은 아래의 (1) 내지 (11)의 구성을 갖는 것이다. That is, the present invention has the following constitutions (1) to (11).

(1) 방향족 디카르복실산을 50 몰% 이상 함유하는 디카르복실산 성분과 4,4'-비페닐디메탄올을 15 몰% 이상 함유하는 글리콜 성분으로 이루어지는 폴리에스테르 수지로서, 융점이 280℃ 이상인 것을 특징으로 하는 폴리에스테르 수지. (1) A polyester resin comprising a dicarboxylic acid component containing at least 50 mol% of an aromatic dicarboxylic acid and a glycol component containing at least 15 mol% of 4,4'-biphenyl dimethanol, Lt; / RTI > or more.

(2) 방향족 디카르복실산이 4,4'-비페닐디카르복실산, 테레프탈산 및 2,6-나프탈렌디카르복실산으로 이루어진 군으로부터 선택되는 1종 이상의 디카르복실산을 포함하는 것을 특징으로 하는 (1)에 기재된 폴리에스테르 수지. (2) the aromatic dicarboxylic acid comprises at least one dicarboxylic acid selected from the group consisting of 4,4'-biphenyldicarboxylic acid, terephthalic acid and 2,6-naphthalene dicarboxylic acid (1).

(3) 폴리에스테르 수지를 구성하는 4,4'-비페닐디메탄올 이외의 글리콜 성분이 에틸렌글리콜, 1,4-시클로헥산디메탄올, 1,3-프로판디올, 네오펜틸글리콜 및 1,4-부탄디올로 이루어진 군으로부터 선택되는 1종 이상의 글리콜을 포함하는 것을 특징으로 하는 (1) 또는 (2)에 기재된 폴리에스테르 수지. (3) the glycol component other than 4,4'-biphenyl dimethanol constituting the polyester resin is at least one selected from the group consisting of ethylene glycol, 1,4-cyclohexanedimethanol, 1,3-propanediol, neopentyl glycol, The polyester resin according to (1) or (2), wherein the polyester resin comprises at least one glycol selected from the group consisting of butanediol.

(4) 폴리에스테르 수지의 융점(Tm)과 강온 결정화 온도(Tc2)의 차가 42℃ 이하인 것을 특징으로 하는 (1) 내지 (3) 중 어느 하나에 기재된 폴리에스테르 수지. (4) The polyester resin according to any one of (1) to (3), wherein the difference between the melting point (Tm) of the polyester resin and the crystallization temperature (Tc2)

(5) 폴리에스테르 수지의 산가가 1~40 eq/t인 것을 특징으로 하는 (1) 내지 (4) 중 어느 하나에 기재된 폴리에스테르 수지. (5) The polyester resin according to any one of (1) to (4), wherein the acid value of the polyester resin is 1 to 40 eq / t.

(6) (1) 내지 (5) 중 어느 하나에 기재된 폴리에스테르 수지(A), 산화티탄(B), 섬유상 강화재 및 침상(針狀) 강화재로 이루어진 군으로부터 선택되는 1종 이상의 강화재(C), 및 비섬유상 또는 비침상 충전재(D)를 함유하고, 폴리에스테르 수지(A) 100 질량부에 대해 산화티탄(B), 강화재(C), 및 비섬유상 또는 비침상 충전재(D)가 각각 0.5~100 질량부, 0~100 질량부 및 0~50 질량부의 비율로 존재하는 것을 특징으로 하는 표면 실장형 LED용 반사판에 사용하기 위한 폴리에스테르 수지 조성물. (6) One or more reinforcements (C) selected from the group consisting of the polyester resin (A), the titanium oxide (B), the fibrous reinforcement material and the needle-like reinforcement material according to any one of (1) (B), the reinforcing material (C), and the nonfibrous or non-needle-like filler (D) are contained in an amount of 0.5% by weight based on 100 parts by weight of the polyester resin (A) To 100 parts by mass, 0 to 100 parts by mass, and 0 to 50 parts by mass, based on 100 parts by mass of the resin composition.

(7) 비섬유상 또는 비침상 충전재(D)가 탈크이고, 폴리에스테르 수지(A) 100 질량부에 대해 탈크 0.1~5 질량부의 비율로 함유하는 것을 특징으로 하는 (6)에 기재된 폴리에스테르 수지 조성물. (7) The polyester resin composition according to (6), wherein the non-fibrous or non-needle-like filler (D) is talc and contains 0.1-5 parts by mass of talc with respect to 100 parts by mass of the polyester resin (A) .

(8) 납땜 리플로우 내열온도가 260℃ 이상인 것을 특징으로 하는 (6) 또는 (7)에 기재된 폴리에스테르 수지 조성물. (8) The polyester resin composition according to (6) or (7), wherein the reflow soldering heat resistance temperature is 260 占 폚 or higher.

(9) 납땜 리플로우 내열온도가 280℃ 이상인 것을 특징으로 하는 (6) 내지 (8) 중 어느 하나에 기재된 폴리에스테르 수지 조성물. (9) The polyester resin composition according to any one of (6) to (8), wherein the solder reflow endothermic temperature is 280 占 폚 or higher.

(10) 폴리에스테르 수지 조성물의 융해 피크 온도(Tm)가 280℃ 이상이고, 융해 피크 온도(Tm)와 강온 결정화 온도(Tc2)의 차가 42℃ 이하인 것을 특징으로 하는 (6) 내지 (9) 중 어느 하나에 기재된 폴리에스테르 수지 조성물. (10) The polyester resin composition according to any one of (6) to (9), wherein the melting peak temperature (Tm) of the polyester resin composition is 280 占 폚 or more and the difference between the melting peak temperature (Tm) A polyester resin composition according to any one of the preceding claims.

(11) (6) 내지 (10) 중 어느 하나에 기재된 폴리에스테르 수지 조성물을 사용해서 성형하여 얻어지는 것을 특징으로 하는 표면 실장형 LED용 반사판. (11) A reflector for surface-mount type LED, which is obtained by molding using the polyester resin composition according to any one of (6) to (10).

본 발명의 폴리에스테르 수지는 높은 내열성, 낮은 수흡수성에 더하여, 사출 성형 시의 성형성이나 납땜 내열성 등 가공성이 우수하다. 따라서 본 발명의 폴리에스테르 수지 조성물은 이러한 폴리에스테르 수지를 사용하고 있기 때문에, 모든 필요한 특성을 고도로 만족시키는 표면 실장형 LED용 반사판을 공업적으로 유리하게 제조할 수 있다. The polyester resin of the present invention is excellent in workability such as moldability at the time of injection molding and heat resistance of soldering, in addition to high heat resistance and low water absorption. Therefore, since the polyester resin composition of the present invention uses such a polyester resin, it is industrially advantageous to produce a reflector for surface-mounted type LED which satisfies all the necessary characteristics.

또한 본 발명의 폴리에스테르 수지 조성물은 주성분인 폴리에스테르 수지가 280℃ 이상의 고융점이고 내열성도 우수하기 때문에, 금/주석 공정 납땜 공정에도 적용 가능하며, 더 나아가서는 방향족 고리 농도가 높기 때문에 내열성, 강인성, 내광성이 우수한 동시에 봉지재와의 밀착성도 우수한 등의 특징을 나타낼 수 있다. The polyester resin composition of the present invention can be applied to a soldering process of a gold / tin process because the polyester resin as a main component has a high melting point of 280 DEG C or more and excellent heat resistance, and furthermore, the aromatic ring concentration is high, , And can exhibit characteristics such as excellent light resistance and excellent adhesion to an encapsulating material.

본 발명의 폴리에스테르 수지는 필름, 시트, 사출 성형체, 이형(異形) 성형체 등의 성형체, 특히 표면 실장형 LED용 반사판에 사용하는 재료로서 적합한 특성을 갖는 것이다. 또한 본 발명의 폴리에스테르 수지 조성물은 표면 실장형 LED용 반사판에 사용하는 것을 의도하는 것이다. 표면 실장형 LED에는 프린트 배선판을 사용한 칩 LED형, 리드프레임을 사용한 걸윙형, PLCC형 등을 들 수 있는데, 본 발명의 폴리에스테르 수지 조성물은 이들 모든 반사판을 사출 성형에 의해 제조할 수 있다. The polyester resin of the present invention has properties suitable as a material used for a molded article such as a film, a sheet, an injection molded article, a deformed molded article and the like, particularly, a surface mounted LED reflector. The polyester resin composition of the present invention is also intended to be used for a surface-mounted LED reflector. The surface mount type LED includes a chip LED type using a printed wiring board, a Gull wing type using a lead frame, a PLCC type, and the like. The polyester resin composition of the present invention can be produced by injection molding all of these reflectors.

본 발명의 폴리에스테르 수지 조성물은 폴리에스테르 수지(A), 산화티탄(B), 섬유상 강화재 및 침상 강화재로 이루어진 군으로부터 선택되는 1종 이상의 강화재(C), 및 비섬유상 또는 비침상 충전재(D)를 함유하는 것이다. The polyester resin composition of the present invention comprises at least one reinforcing material (C) selected from the group consisting of a polyester resin (A), a titanium oxide (B), a fibrous reinforcing material and a needle reinforcing material, and a fibrous or non- .

폴리에스테르 수지(A)는 높은 신뢰성을 부여하기 위해 고융점, 저 수흡수성에 더하여, 우수한 내UV성을 실현하기 위해 배합되는 것으로, 방향족 디카르복실산을 50 몰% 이상 함유하는 디카르복실산 성분과 4,4'-비페닐디메탄올을 15 몰% 이상 함유하는 글리콜 성분으로 이루어지고, 융점이 280℃ 이상인 것을 특징으로 한다. 폴리에스테르 수지(A)의 융점은 바람직하게는 290℃ 이상, 보다 바람직하게는 300℃ 이상, 더욱 바람직하게는 310℃ 이상이다. 폴리에스테르 수지(A) 융점의 상한은 특별히 한정되지 않으나, 사용할 수 있는 원료 성분의 제한으로부터 340℃ 이하이다. 융점은 실시예의 항목에 기재된 방법으로 측정된다. The polyester resin (A) is blended for realizing excellent anti-UV property in addition to a high melting point and a low water absorbency in order to give high reliability. The polyester resin (A) is a dicarboxylic acid containing an aromatic dicarboxylic acid in an amount of 50 mol% Component and 4,4'-biphenyl dimethanol in an amount of 15 mol% or more, and has a melting point of 280 ° C or higher. The melting point of the polyester resin (A) is preferably 290 DEG C or higher, more preferably 300 DEG C or higher, and still more preferably 310 DEG C or higher. The upper limit of the melting point of the polyester resin (A) is not particularly limited, but is 340 占 폚 or lower from the limit of the usable raw material components. The melting point is measured by the method described in the section of the embodiment.

폴리에스테르 수지(A)의 디카르복실산 성분으로서 사용되는 방향족 디카르복실산으로서는 4,4'-비페닐디카르복실산, 테레프탈산, 2,6-나프탈렌디카르복실산, 이소프탈산, 디페녹시에탄디카르복실산, 4,4'-디페닐에테르디카르복실산, 4,4'-디페닐케톤디카르복실산 등을 들 수 있다. 상기 방향족 디카르복실산 중에서는 중합성, 비용, 내열성의 관점에서 4,4'-비페닐디카르복실산, 테레프탈산, 2,6-나프탈렌디카르복실산 또는 이들의 혼합물이 바람직하다. 방향족 디카르복실산은 내열성의 관점에서 디카르복실산 성분의 50 몰% 이상이고, 바람직하게는 60 몰% 이상, 보다 바람직하게는 70 몰% 이상, 더욱 바람직하게는 80 몰% 이상, 특히 바람직하게는 90 몰% 이상이며, 100 몰%여도 상관없다. 또한 방향족 디카르복실산 이외의 디카르복실산으로서는 아디프산, 세바스산, 숙신산, 글루타르산, 다이머산 등의 지방족 디카르복실산, 헥사히드로테레프탈산, 헥사히드로이소프탈산, 1,2-시클로헥산디카르복실산, 1,3-시클로헥산디카르복실산, 1,4-시클로헥산디카르복실산 등의 지환족 디카르복실산 등을 들 수 있다. 또한 p-옥시안식향산, 옥시카프로산 등의 옥시산, 트리멜리트산, 피로멜리트산, 벤조페논테트라카르복실산, 비페닐설폰테트라카르복실산, 비페닐테트라카르복실산 등의 다가 카르복실산 및 그의 무수물을 병용해도 상관없다. Examples of the aromatic dicarboxylic acid used as the dicarboxylic acid component of the polyester resin (A) include 4,4'-biphenyldicarboxylic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, isophthalic acid, 4,4'-diphenyl ether dicarboxylic acid, 4,4'-diphenyl ketone dicarboxylic acid, and the like. Of the above aromatic dicarboxylic acids, 4,4'-biphenyldicarboxylic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, or a mixture thereof are preferable from the viewpoints of polymerizability, cost and heat resistance. The aromatic dicarboxylic acid is at least 50 mol%, preferably at least 60 mol%, more preferably at least 70 mol%, still more preferably at least 80 mol%, particularly preferably at least 50 mol% of the dicarboxylic acid component from the viewpoint of heat resistance Is 90 mol% or more, and may be 100 mol%. Examples of dicarboxylic acids other than aromatic dicarboxylic acids include aliphatic dicarboxylic acids such as adipic acid, sebacic acid, succinic acid, glutaric acid and dimeric acid, hexahydroterephthalic acid, hexahydroisophthalic acid, 1,2-cyclo And alicyclic dicarboxylic acids such as hexane dicarboxylic acid, 1,3-cyclohexane dicarboxylic acid and 1,4-cyclohexane dicarboxylic acid. Further, polyvalent carboxylic acids such as oxyacids such as p-oxybenzoic acid and oxycaproic acid, trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid, biphenylsulfonetetracarboxylic acid and biphenyltetracarboxylic acid, The anhydride thereof may be used in combination.

또한 폴리에스테르 수지(A)의 글리콜 성분으로서 사용되는 4,4'-비페닐디메탄올은 전체 글리콜 성분의 15 몰% 이상 포함하는 것이 필요하고, 바람직하게는 4,4'-비페닐디메탄올이 50 몰% 이상, 보다 바람직하게는 60 몰% 이상, 더욱 바람직하게는 65 몰% 이상, 가장 바람직하게는 70 몰% 이상이다. 4,4'-비페닐디메탄올은 성형성, 납땜 내열성, 내광성을 높이기 위해 첨가되는 것으로, 그 비율이 상기 수치 미만에서는 이들 특성이 저하되는 경향이 있다. 4,4'-비페닐디메탄올 이외의 글리콜 성분으로서는, 예를 들면 에틸렌글리콜, 디에틸렌글리콜, 프로필렌글리콜, 1,3-프로판디올, 1,4-부틸렌글리콜, 1,2-부틸렌글리콜, 1,3-부틸렌글리콜, 2,3-부틸렌글리콜, 1,5-펜탄디올, 1,6-헥산디올, 1,2-시클로헥산디올, 1,3-시클로헥산디올, 1,4-시클로헥산디올, 1,2-시클로헥산디메탄올, 1,3-시클로헥산디메탄올, 1,4-시클로헥산디메탄올, 1,4-시클로헥산디에탄올, 3-메틸-1,5-펜탄디올, 2-메틸-1,5-펜탄디올, 2-메틸-1,3-프로판디올, 2-에틸-1,3-프로판디올, 네오펜틸글리콜, 2-에틸-2-메틸-1,3-프로판디올, 2,2-디에틸-1,3-프로판디올, 2-메틸-2-n-부틸-1,3-프로판디올, 2-n-부틸-2-에틸-1,3-프로판디올, 2,2-디-n-부틸-1,3-프로판디올, 2-에틸-2-n-헥실-1,3-프로판디올, 2,2-디-n-헥실-1,3-프로판디올, 1,9-노난디올, 1,10-데칸디올, 1,12-도데칸디올, 트리에틸렌글리콜, 폴리에틸렌글리콜, 폴리트리메틸렌글리콜, 폴리테트라메틸렌글리콜, 폴리프로필렌글리콜 등의 지방족 글리콜, 히드로퀴논, 4,4'-디히드록시비스페놀, 1,4-비스(β-히드록시에톡시)벤젠, 1,4-비스(β-히드록시에톡시페닐)설폰, 비스(p-히드록시페닐)에테르, 비스(p-히드록시페닐)설폰, 비스(p-히드록시페닐)메탄, 1,2-비스(p-히드록시페닐)에탄, 비스페놀 A, 비스페놀 A의 알킬렌옥사이드 부가물 등의 방향족 글리콜 등을 들 수 있다. 상기 글리콜 중에서는 내열성, 중합성, 성형성, 비용 등으로부터, 에틸렌글리콜, 1,4-시클로헥산디메탄올, 1,3-프로판디올, 네오펜틸글리콜 1,4-부탄디올로부터 선택되는 1종 또는 2종 이상의 혼합물이 바람직하다. 더욱 바람직하게는 에틸렌글리콜, 1,4-부탄디올로부터 선택되는 1종 또는 2종 이상의 혼합물이다. 또한 글리콜 성분으로 에틸렌글리콜을 사용한 경우, 폴리에스테르 수지(A)의 제조 시에 디에틸렌글리콜이 부생되어 공중합 성분이 되는 경우가 있다. 이 경우, 부생되는 디에틸렌글리콜은 제조 조건에 따라 다르기는 하나, 폴리에스테르 수지에 투입되는 에틸렌글리콜에 대해 1~5 몰% 정도이다. 또한 트리메틸올에탄, 트리메틸올프로판, 글리세린, 펜타에리스리톨 등의 다가 폴리올을 병용해도 상관없다. The 4,4'-biphenyl dimethanol used as the glycol component of the polyester resin (A) should contain at least 15 mol% of the total glycol component, and preferably 4,4'-biphenyl dimethanol More preferably 50 mol% or more, more preferably 60 mol% or more, still more preferably 65 mol% or more, and most preferably 70 mol% or more. 4,4'-biphenyldimethanol is added to improve moldability, solder heat resistance, and light resistance. If the ratio is less than the above-mentioned value, these properties tend to deteriorate. Examples of glycol components other than 4,4'-biphenyldimethanol include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butylene glycol, 1,2-butylene glycol 1,3-butylene glycol, 2,3-butylene glycol, 1,5-pentanediol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4 - cyclohexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediol ethanol, 3-methyl- Methyl-1,5-pentanediol, 2-methyl-1,3-propanediol, 2-ethyl-1,3-propanediol, neopentyl glycol, Propane diol, 2,2-diethyl-1,3-propanediol, 2-methyl-2-n-butyl- Di-n-butyl-1,3-propanediol, 2-ethyl-2-n-hexyl-1,3-propanediol, 2,2- Propanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, triethylene glycol Recycled, aliphatic glycols such as polyethylene glycol, polytrimethylene glycol, polytetramethylene glycol and polypropylene glycol, hydroquinone, 4,4'-dihydroxybisphenol, 1,4-bis (? -Hydroxyethoxy) Bis (p-hydroxyphenyl) sulfone, bis (p-hydroxyphenyl) methane, 1,2- Bis (p-hydroxyphenyl) ethane, bisphenol A, an alkylene oxide adduct of bisphenol A, and the like. Among the above-mentioned glycols, one or two selected from ethylene glycol, 1,4-cyclohexanedimethanol, 1,3-propanediol, neopentyl glycol 1,4-butanediol and the like are preferably selected from heat resistance, Mixtures of species or more are preferred. More preferably, it is one or a mixture of two or more selected from ethylene glycol and 1,4-butanediol. When ethylene glycol is used as the glycol component, diethylene glycol may be produced as a by-product in the production of the polyester resin (A) to form a copolymerized component. In this case, diethylene glycol as a by-product is about 1 to 5 mol% based on the ethylene glycol charged into the polyester resin although it depends on the production conditions. Further, multivalent polyols such as trimethylolethane, trimethylolpropane, glycerin, and pentaerythritol may be used in combination.

폴리에스테르 수지는 전체 구성 성분을 200 몰%로 했을 때, 상기 디카르복실산 성분과 글리콜 성분의 합계로 160 몰% 이상인 것이 바람직하고, 보다 바람직하게는 180 몰% 이상, 더욱 바람직하게는 190 몰% 이상이며, 200 몰%여도 상관없다. 단, 어느 경우도 디카르복실산 성분이 100 몰%, 글리콜 성분이 100 몰%를 초과하는 경우는 없다. The polyester resin is preferably at least 160 mol%, more preferably at least 180 mol%, further preferably at least 190 mol%, based on the total amount of the dicarboxylic acid component and the glycol component, %, And may be 200 mol%. However, in any case, the dicarboxylic acid component is 100 mol% and the glycol component is not more than 100 mol%.

또한 5-설포이소프탈산, 4-설포나프탈렌-2,7-디카르복실산, 5-[4-설포페녹시]이소프탈산 등의 금속염, 또는 2-설포-1,4-부탄디올, 2,5-디메틸-3-설포-2,5-헥산디올 등의 금속염 등의 설폰산 금속 염기를 함유하는 디카르복실산 또는 디올을 전체 산 성분 또는 전체 디올 성분의 20 몰% 이하의 범위에서 사용해도 된다. Also, metal salts such as 5-sulfoisophthalic acid, 4-sulfonated naphthalene-2,7-dicarboxylic acid and 5- [4-sulfophenoxy] isophthalic acid, 5-dimethyl-3-sulfo-2,5-hexanediol, and other dicarboxylic acids or diols containing a sulfonic acid metal base in the range of 20 mol% or less of the total acid component or the entire diol component do.

폴리에스테르 수지(A)를 제조할 때 사용하는 촉매로서는 특별히 한정되지 않으나, Ge, Ti, Sb, Al, Mn 또는 Mg의 화합물로부터 선택되는 1종 이상의 화합물이 사용되는 것이 바람직하다. 이들 화합물은 분체, 수용액, 에틸렌글리콜 용액, 에틸렌글리콜의 슬러리 등으로서 반응계에 첨가된다. The catalyst used in producing the polyester resin (A) is not particularly limited, but it is preferable to use at least one compound selected from compounds of Ge, Ti, Sb, Al, Mn or Mg. These compounds are added to the reaction system as a powder, an aqueous solution, an ethylene glycol solution, a slurry of ethylene glycol or the like.

또한 수지의 안정제로서 인산, 폴리인산이나 트리메틸포스페이트 등의 인산 에스테르류, 포스폰산계 화합물, 포스핀산계 화합물, 포스핀옥사이드계 화합물, 아포스폰산계 화합물, 아포스핀산계 화합물, 포스핀계 화합물로 이루어진 군으로부터 선택되는 1종 이상의 인화합물을 사용하는 것이 바람직하다. Further, as a stabilizer for the resin, there may be mentioned a group consisting of phosphoric acid esters such as phosphoric acid, polyphosphoric acid and trimethylphosphate, phosphonic acid-based compounds, phosphinic acid-based compounds, phosphine oxide-based compounds, aposphonic acid-based compounds, Is preferably used as the phosphorus compound.

폴리에스테르 수지(A)의 산가로서는 1~40 eq/ton인 것이 바람직하다. 산가가 40 eq/ton을 초과하면 내광성이 저하되는 경향이 있다. 또한 산가가 1 eq/ton 미만인 경우는 중축합 반응성이 저하되어 생산성이 나빠지는 경향이 있다. The acid value of the polyester resin (A) is preferably 1 to 40 eq / ton. When the acid value exceeds 40 eq / ton, the light resistance tends to decrease. When the acid value is less than 1 eq / ton, the polycondensation reactivity is lowered and the productivity tends to deteriorate.

본 발명의 폴리에스테르 수지(A)는 DSC 측정에 있어서의 융점(Tm)이 280℃ 이상이고, 바람직하게는 290℃ 이상, 더욱 바람직하게는 300℃ 이상, 특히 바람직하게는 310℃ 이상, 가장 바람직하게는 320℃ 이상이다. 한편 본 발명의 폴리에스테르 수지 융점(Tm)의 상한은 340℃ 이하인 것이 바람직하다. Tm이 340℃를 초과하는 경우, 본 발명의 폴리에스테르 수지(A)를 사용한 조성물을 사출 성형할 때 필요해지는 가공 온도가 매우 높아지기 때문에, 가공 시에 폴리에스테르 수지가 분해되어 목적의 물성과 외관이 얻어지지 않는 경우가 있다. 반대로 Tm이 상기 하한 미만인 경우, 결정화 속도가 느려져 모두 성형이 곤란해지는 경우가 있으며, 더 나아가서는 납땜 내열성의 저하를 초래할 우려가 있다. Tm이 310℃ 이상이면 280℃의 리플로우 납땜 내열성을 만족시켜 금/주석 공정 납땜 공정에도 적용 가능해지기 때문에 바람직하다.The polyester resin (A) of the present invention has a melting point (Tm) in the DSC measurement of 280 占 폚 or higher, preferably 290 占 폚 or higher, more preferably 300 占 폚 or higher, particularly preferably 310 占 폚 or higher, Gt; 320 < / RTI > On the other hand, the upper limit of the polyester resin melting point (Tm) of the present invention is preferably 340 ° C or lower. When the Tm exceeds 340 캜, the processing temperature required for injection molding of the composition using the polyester resin (A) of the present invention becomes extremely high, so that the polyester resin is decomposed at the time of processing, May not be obtained. On the contrary, when the Tm is less than the lower limit, the crystallization speed is slowed, and molding may become difficult in some cases, and furthermore, the soldering heat resistance may be lowered. When Tm is 310 占 폚 or more, it is preferable because it satisfies reflow soldering heat resistance at 280 占 폚 and is applicable to a gold / tin process brazing process.

또한 본 발명의 폴리에스테르 수지(A)는 DSC 측정에 있어서 융점(Tm)과 강온 결정화 온도(Tc2)의 차가 42℃ 이하인 것이 바람직하고, 보다 바람직하게는 40℃ 이하, 더욱 바람직하게는 35℃ 이하, 가장 바람직하게는 30℃ 이하이다. 강온 결정화 온도(Tc2)란 DSC 측정에 있어서 융점보다 10℃ 이상 높은 온도에서 강온시켰을 때 결정화되기 시작하는 온도이다. 융점(Tm)과 강온 결정화 온도(Tc2)는 실시예의 항목에 기재된 방법으로 측정된다. 융점(Tm)과 강온 결정화 온도(Tc2) 차가 상기 온도 이하인 경우는 용이하게 결정화가 진행되어 치수 안정성이나 물성 등을 충분히 발휘할 수 있다. 한편 융점(Tm)과 강온 결정화 온도(Tc2) 차가 상기 온도를 초과하는 경우, LED용 반사판은 사출 성형이 짧은 사이클로 성형하기 때문에 충분히 결정화가 진행되지 않는 경우가 있어, 이형(離型) 부족 등의 성형 곤란을 일으키거나 충분히 결정화가 종료되어 있지 않기 때문에, 후공정의 가열 시에 변형이나 결정 수축이 발생하여 봉지재나 리드프레임으로부터 박리되는 문제가 발생해 신뢰성이 부족하다. In the polyester resin (A) of the present invention, the difference between the melting point (Tm) and the crystallization temperature (Tc2) of the temperature during the DSC measurement is preferably 42 ° C or lower, more preferably 40 ° C or lower, still more preferably 35 ° C or lower , And most preferably 30 DEG C or less. (Tc2) is a temperature at which crystallization starts when the temperature is lowered by at least 10 deg. C higher than the melting point in the DSC measurement. The melting point (Tm) and the temperature for crystallization at a low temperature (Tc2) are measured by the method described in the embodiment. When the difference between the melting point (Tm) and the temperature-lowering crystallization temperature (Tc2) is lower than the above-mentioned temperature, the crystallization proceeds easily, and the dimensional stability and physical properties can be sufficiently exhibited. On the other hand, when the difference between the melting point (Tm) and the cold crystallization temperature (Tc2) exceeds the above-mentioned temperature, since the reflection plate for LED is formed by a short cycle of injection molding, crystallization may not proceed sufficiently, There is a problem that deformation or crystal shrinkage occurs during heating in a post-process, causing peeling from the encapsulant or the lead frame, resulting in lack of reliability.

폴리에스테르 수지(A)의 극한점도(IV)는 0.10~0.70 ㎗/g인 것이 바람직하고, 보다 바람직하게는 0.20~0.65 ㎗/g, 더욱 바람직하게는 0.25~0.60 ㎗/g이다.The intrinsic viscosity (IV) of the polyester resin (A) is preferably from 0.10 to 0.70 dl / g, more preferably from 0.20 to 0.65 dl / g, and still more preferably from 0.25 to 0.60 dl / g.

폴리에스테르 수지(A)는 본 발명의 폴리에스테르 수지 조성물에 있어서 바람직하게는 25~90 질량%, 보다 바람직하게는 40~75 질량%의 비율로 존재한다. 폴리에스테르 수지(A)의 비율이 상기 하한 미만이면 기계적 강도가 낮아지고, 상기 상한을 초과하면 산화티탄(B)이나 강화재(C)의 배합량이 부족하여 목적하는 효과가 얻어지기 어려워진다. The polyester resin (A) is present in the polyester resin composition of the present invention preferably in a proportion of 25 to 90 mass%, more preferably 40 to 75 mass%. If the proportion of the polyester resin (A) is less than the above lower limit, the mechanical strength is lowered, and if it exceeds the upper limit, the blending amount of the titanium oxide (B) and the reinforcement (C) is insufficient.

산화티탄(B)은 반사판의 표면 반사율을 높이기 위해 배합되는 것으로, 예를 들면 황산법이나 염소법에 의해 제작된 루틸형 및 아나타제형의 이산화티탄(TiO2), 일산화티탄(TiO), 삼산화이티탄(Ti2O3) 등을 들 수 있는데, 특히 루틸형의 이산화티탄(TiO2)이 바람직하게 사용된다. 산화티탄(B)의 평균 입경은 일반적으로 0.05~2.0 ㎛, 바람직하게는 0.15~0.5 ㎛의 범위로, 1종으로 사용해도 되고 상이한 입경을 갖는 산화티탄을 조합해서 사용해도 된다. 산화티탄 성분 농도로서는 90 질량% 이상, 바람직하게는 95 질량% 이상, 더욱 바람직하게는 97 질량% 이상이다. 또한 산화티탄(B)은 실리카, 알루미나, 산화아연, 지르코니아 등의 금속 산화물, 커플링제, 유기산, 유기 다가 알코올, 실록산 등으로 표면 처리가 행해진 것을 사용할 수 있다. The titanium oxide (B) is blended to increase the surface reflectance of the reflector. For example, titanium dioxide (TiO 2 ), rutile type and anatase type titanium dioxide (TiO 2 ) produced by a sulfuric acid method or a chlorine method, Ti 2 O 3 ), and particularly, rutile type titanium dioxide (TiO 2 ) is preferably used. The average particle diameter of the titanium oxide (B) is generally in the range of 0.05 to 2.0 占 퐉, preferably 0.15 to 0.5 占 퐉. The titanium oxide (B) may be used singly or in combination with titanium oxide having different particle diameters. The titanium oxide component concentration is at least 90 mass%, preferably at least 95 mass%, and more preferably at least 97 mass%. The titanium oxide (B) may be a product obtained by surface-treating with a metal oxide such as silica, alumina, zinc oxide or zirconia, a coupling agent, an organic acid, an organic polyhydric alcohol or a siloxane.

산화티탄(B)의 비율은 폴리에스테르 수지(A) 100 질량부에 대해 0.5~100 질량부, 바람직하게는 10~80 질량부이다. 산화티탄(B)의 비율이 상기 하한 미만이면 표면 반사율이 저하되고, 상기 상한을 초과하면 물성의 대폭 저하나 유동성이 저하되는 등 성형 가공성이 저하될 우려가 있다. The proportion of the titanium oxide (B) is 0.5 to 100 parts by mass, preferably 10 to 80 parts by mass, based on 100 parts by mass of the polyester resin (A). If the ratio of the titanium oxide (B) is less than the lower limit, the surface reflectance is lowered. If the ratio is higher than the upper limit, the physical properties are drastically reduced but the flowability is lowered.

강화재(C)는 폴리에스테르 수지 조성물의 성형성과 성형품의 강도를 향상시키기 위해 배합되는 것으로, 섬유상 강화재 및 침상 강화재로부터 선택되는 1종 이상을 사용한다. 섬유상 강화재로서는, 예를 들면 유리 섬유, 탄소 섬유, 붕소 섬유, 세라믹 섬유, 금속 섬유 등을 들 수 있고, 침상 강화재로서는, 예를 들면 티탄산칼륨 위스커, 붕산알루미늄 위스커, 산화아연 위스커, 탄산칼슘 위스커, 황산마그네슘 위스커, 월라스토나이트 등을 들 수 있다. 유리 섬유로서는, 0.1 ㎜~100 ㎜의 길이를 갖는 촙드 스트랜드 또는 연속 필라멘트 섬유를 사용하는 것이 가능하다. 유리 섬유의 단면 형상으로서는 원형 단면 및 비원형 단면의 유리 섬유를 사용할 수 있다. 원형 단면 유리 섬유의 직경은 바람직하게는 20 ㎛ 이하, 보다 바람직하게는 15 ㎛ 이하, 더욱 바람직하게는 10 ㎛ 이하이다. 또한 물성면이나 유동성으로부터 비원형 단면의 유리 섬유가 바람직하다. 비원형 단면의 유리 섬유로서는 섬유의 길이방향에 대해 수직인 단면에 있어서 대략 타원형, 대략 장원형, 대략 누에고치 모양인 것도 포함하고, 편평도가 1.5~8인 것이 바람직하다. 여기서 편평도란, 유리 섬유의 길이방향에 대해 수직인 단면에 외접하는 최소면적의 직사각형을 상정하여, 이 직사각형의 장변의 길이를 장경으로 하고, 단변의 길이를 단경으로 했을 때의 장경/단경의 비이다. 유리 섬유의 굵기는 특별히 한정되는 것은 아니나, 단경이 1~20 ㎛, 장경이 2~100 ㎛ 정도이다. 또한 유리 섬유는 섬유다발이 되어 섬유길이 1~20 ㎜ 정도로 절단된 촙드 스트랜드 형상의 것을 바람직하게 사용할 수 있다. 더 나아가서는 폴리에스테르 수지 조성물의 표면 반사율을 높이기 위해서는 폴리에스테르 수지와의 굴절률 차가 큰 것이 바람직하게 때문에, 유리 조성의 변경이나 표면 처리에 의해 굴절률을 높인 것을 사용하는 것이 바람직하다. The reinforcing material (C) is blended to improve the moldability of the polyester resin composition and the strength of the molded article, and at least one selected from a fibrous reinforcement material and an acicular reinforcement material is used. Examples of the fibrous reinforcement material include glass fiber, carbon fiber, boron fiber, ceramic fiber and metal fiber. Examples of the reinforcement material include potassium titanate whisker, aluminum borate whisker, zinc oxide whisker, calcium carbonate whisker, Magnesium sulfate whiskers, wollastonite, and the like. As the glass fiber, it is possible to use a cord strand or continuous filament fiber having a length of 0.1 mm to 100 mm. As the cross-sectional shape of the glass fiber, glass fibers having a circular cross section and a non-circular cross section can be used. The diameter of the circular cross-section glass fiber is preferably 20 占 퐉 or less, more preferably 15 占 퐉 or less, and further preferably 10 占 퐉 or less. Further, glass fibers having a non-circular cross section are preferable from the viewpoints of physical properties and fluidity. As the non-circular cross section glass fiber, it is preferable that the cross section perpendicular to the longitudinal direction of the fiber includes a substantially oval shape, a substantially circular shape, and a cocoon shape, and the flatness is 1.5 to 8. Here, the flatness is a rectangle having a minimum area circumscribing a cross section perpendicular to the longitudinal direction of the glass fiber. The length of the long side of the rectangle is referred to as a long diameter, and the ratio of the long diameter to the short diameter to be. The thickness of the glass fiber is not particularly limited, but it has a short diameter of 1 to 20 mu m and a long diameter of about 2 to 100 mu m. Further, the glass fiber may be preferably a fiber strand having a fiber bundle cut into a fiber length of about 1 to 20 mm. Further, in order to increase the surface reflectance of the polyester resin composition, it is preferable that the difference in refractive index from the polyester resin is large. Therefore, it is preferable to use a resin having an increased refractive index by changing the glass composition or surface treatment.

강화재(C)의 비율은 폴리에스테르 수지(A) 100 질량부에 대해 0~100 질량부, 바람직하게는 5~100 질량부, 보다 바람직하게는 10~60 질량부이다. 강화재(C)는 필수 성분은 아니지만, 그 비율이 5 질량부 이상이면 성형품의 기계적 강도가 향상되어 바람직하다. 강화재(C)의 비율이 상기 상한을 초과하면 표면 반사율, 성형 가공성이 저하되는 경향이 있다. The ratio of the reinforcing material (C) is 0 to 100 parts by mass, preferably 5 to 100 parts by mass, and more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the polyester resin (A). Although the reinforcing material (C) is not an essential component, if the ratio is 5 parts by mass or more, the mechanical strength of the molded product is improved, which is preferable. When the ratio of the reinforcing material (C) exceeds the upper limit, surface reflectivity and molding processability tend to be lowered.

비섬유상 또는 비침상 충전재(D)로서는 목적별로는 강화용 필러나 도전성 필러, 자성 필러, 난연 필러, 열전도 필러, 열황변 억제용 필러 등을 들 수 있고, 구체적으로는 글래스 비드, 글래스 플레이크, 글래스 벌룬, 실리카, 탈크, 카올린, 마이카, 알루미나, 하이드로탈사이트, 몬모릴로나이트, 그라파이트, 카본나노튜브, 플러렌, 산화인듐, 산화주석, 산화철, 산화마그네슘, 수산화알루미늄, 수산화마그네슘, 수산화칼슘, 적린, 탄산칼슘, 초산마그네슘, 티탄산지르콘산납, 티탄산바륨, 질화알루미늄, 질화붕소, 붕산아연, 황산바륨 및 침상이 아닌 월라스토나이트, 티탄산칼륨, 붕산알루미늄, 황산마그네슘, 산화아연, 탄산칼슘 등을 들 수 있다. 이들 충전재는 1종만의 단독 사용이 아니라 여러 종을 조합해서 사용해도 된다. 이들 중에서는 탈크가 결정화를 가속시키는 효과를 가져 성형성이 향상되는 것으로부터 바람직하다. 충전재의 첨가량은 최적의 양을 선택하면 되는데, 폴리에스테르 수지(A) 100 질량부에 대해 최대 50 질량부를 첨가하는 것이 가능하나, 수지 조성물의 기계적 강도의 관점에서 0.1~20 질량부가 바람직하고, 보다 바람직하게는 1~10 질량부이다. 탈크를 사용하는 경우, 폴리에스테르 수지(A) 100 질량부에 대해 0.1~5 질량부가 바람직하고, 보다 바람직하게는 0.5~3 질량부이다. 또한 섬유상 강화재, 충전재는 폴리에스테르 수지와의 친화성을 향상시키기 위해 유기 처리나 커플링제 처리한 것을 사용하거나, 또는 용융 합성 시에 커플링제와 병용하는 것이 바람직하고, 커플링제로서는 실란계 커플링제, 티타네이트계 커플링제, 알루미늄계 커플링제 중 어느 것을 사용해도 되나, 그 중에서도 특히 아미노실란 커플링제, 에폭시실란 커플링제가 바람직하다. Examples of the non-fibrous or non-needle-like filler (D) include reinforcing fillers, conductive fillers, magnetic fillers, flame retardant fillers, heat conductive fillers and heat yellowing inhibiting fillers. Specific examples thereof include glass beads, glass flakes, , Silica, talc, kaolin, mica, alumina, hydrotalcite, montmorillonite, graphite, carbon nanotube, fullerene, indium oxide, tin oxide, iron oxide, magnesium oxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, Magnesium hydroxide, zinc oxide, magnesium carbonate, lead zirconate titanate, barium titanate, aluminum nitride, boron nitride, zinc borate, barium sulfate and wollastonite other than needle beds, potassium titanate, aluminum borate, zinc sulfate and calcium carbonate. These fillers may be used alone or in combination of several species. Of these, talc is preferable because it has an effect of accelerating the crystallization and improves the moldability. The amount of the filler to be added may be selected in an optimum amount. It is possible to add up to 50 parts by mass to 100 parts by mass of the polyester resin (A), but it is preferably 0.1 to 20 parts by mass from the viewpoint of the mechanical strength of the resin composition, And preferably 1 to 10 parts by mass. When talc is used, it is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass, based on 100 parts by mass of the polyester resin (A). The fibrous reinforcement and the filler are preferably treated with an organic treatment or a coupling agent to improve the affinity with the polyester resin, or used in combination with a coupling agent during the melt synthesis. Examples of the coupling agent include silane coupling agents, A titanate-based coupling agent, and an aluminum-based coupling agent may be used. Of these, an aminosilane coupling agent and an epoxy silane coupling agent are particularly preferable.

본 발명의 폴리에스테르 수지 조성물에는 종래의 LED 반사판용 폴리에스테르 수지 조성물의 각종 첨가제를 사용할 수 있다. 첨가제로서는 안정제, 충격 개량제, 난연제, 이형제, 슬라이딩성 개량제, 착색제, 형광 증백제, 가소제, 결정핵제, 폴리에스테르 이외의 열가소성 수지 등을 들 수 있다. Various additives of the conventional polyester resin composition for LED reflector can be used in the polyester resin composition of the present invention. Examples of additives include stabilizers, impact modifiers, flame retardants, release agents, sliding improvers, colorants, fluorescent whitening agents, plasticizers, nucleating agents, and thermoplastic resins other than polyester.

수지 조성물의 안정제로서는 힌더드 페놀계 산화방지제, 황계 산화방지제, 인계 산화방지제 등의 유기계 산화방지제나 열안정제, 힌더드 아민계, 벤조페논계, 이미다졸계 등의 광안정제나 자외선흡수제, 금속 불활성화제, 구리 화합물 등을 들 수 있다. 구리 화합물로서는 염화제1구리, 브롬화제1구리, 요오드화제1구리, 염화제2구리, 브롬화제2구리, 요오드화제2구리, 인산제2구리, 피로인산제2구리, 황화구리, 질산구리, 초산구리 등의 유기 카르복실산의 구리염 등을 사용할 수 있다. 또한 구리 화합물 이외의 구성 성분으로서는 할로겐화 알칼리금속 화합물을 함유하는 것이 바람직하고, 할로겐화 알칼리금속 화합물로서는 염화리튬, 브롬화리튬, 요오드화리튬, 불화나트륨, 염화나트륨, 브롬화나트륨, 요오드화나트륨, 불화칼륨, 염화칼륨, 브롬화칼륨, 요오드화칼륨 등을 들 수 있다. 이들 첨가제는 1종만의 단독 사용이 아니라 여러 종을 조합해서 사용해도 된다. 안정제의 첨가량은 최적의 양을 선택하면 되는데, 폴리에스테르 수지(A) 100 질량부에 대해 최대 5 질량부를 첨가하는 것이 가능하다. Examples of the stabilizer for the resin composition include organic antioxidants such as hindered phenol antioxidants, sulfur-based antioxidants and phosphorus antioxidants, heat stabilizers, light stabilizers such as hindered amines, benzophenones and imidazoles, ultraviolet absorbers, A copper compound, and the like. Examples of the copper compound include cuprous chloride, cuprous bromide, cuprous iodide, cupric iodide, cupric bromide, cupric bromide, cupric iodide, cupric phosphate, cupric pyrophosphate, copper sulfide, And copper salts of organic carboxylic acids such as copper acetate and the like. As the constituent components other than the copper compound, those containing a halogenated alkali metal compound are preferable. Examples of the halogenated alkali metal compound include lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, sodium bromide, sodium iodide, potassium fluoride, Potassium, potassium iodide, and the like. These additives may be used alone or in combination of several species. The amount of the stabilizer to be added may be selected in an optimum amount, and it is possible to add up to 5 parts by mass to 100 parts by mass of the polyester resin (A).

본 발명의 폴리에스테르 수지 조성물에는 폴리에스테르 수지(A)와는 다른 열가소성 수지를 첨가해도 된다. 예를 들면 폴리아미드(PA), 폴리페닐렌설파이드(PPS), 액정 폴리머(LCP), 폴리테트라플루오로에틸렌(PTFE), 불소 수지, 아라미드 수지, 폴리에테르에테르케톤(PEEK), 폴리에테르케톤(PEK), 폴리에테르이미드(PEI), 열가소성 폴리이미드, 폴리아미드이미드(PAI), 폴리에테르케톤케톤(PEKK), 폴리페닐렌에테르(PPE), 폴리에테르설폰(PES), 폴리설폰(PSU), 폴리아릴레이트(PAR), 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리부틸렌나프탈레이트, 폴리카보네이트(PC), 폴리옥시메틸렌(POM), 폴리프로필렌(PP), 폴리에틸렌(PE), 폴리메틸펜텐(TPX), 폴리스티렌(PS), 폴리메타크릴산메틸, 아크릴로니트릴-스티렌 공중합체(AS), 아크릴로니트릴-부타디엔-스티렌 공중합체(ABS)를 들 수 있다. 이들 열가소성 수지는 용융 혼련에 의해 용융 상태로 블렌드하는 것도 가능하지만, 열가소성 수지를 섬유상, 입자상으로 하여 본 발명의 폴리에스테르 수지 조성물에 분산해도 된다. 열가소성 수지의 첨가량은 최적의 양을 선택하면 되는데, 폴리에스테르 수지(A) 100 질량부에 대해 최대 50 질량부를 첨가하는 것이 가능하다. A thermoplastic resin different from the polyester resin (A) may be added to the polyester resin composition of the present invention. For example, polyamide (PA), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polytetrafluoroethylene (PTFE), fluororesin, aramid resin, polyetheretherketone (PEEK) (PEK), polyetherimide (PEI), thermoplastic polyimide, polyamideimide (PAI), polyetherketone ketone (PEKK), polyphenylene ether (PPE), polyether sulfone (PES) (PC), polyoxymethylene (POM), polypropylene (PP), polyethylene (PE), polyethylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polycarbonate Styrene copolymer (ABS), polymethylpentene (TPX), polystyrene (PS), polymethyl methacrylate, acrylonitrile-styrene copolymer (AS) and acrylonitrile-butadiene-styrene copolymer (ABS). These thermoplastic resins may be blended in a molten state by melt kneading, but the thermoplastic resin may be dispersed in the polyester resin composition of the present invention as a fibrous or granular phase. The amount of the thermoplastic resin to be added may be selected in an optimum amount, and it is possible to add up to 50 parts by mass to 100 parts by mass of the polyester resin (A).

충격 개량제로서는 에틸렌-프로필렌 고무(EPM), 에틸렌-프로필렌-디엔 고무(EPDM), 에틸렌-아크릴산 공중합체, 에틸렌-아크릴산에스테르 공중합체, 에틸렌-메타크릴산 공중합체, 에틸렌-메타크릴산에스테르 공중합체, 에틸렌 초산비닐 공중합체 등의 폴리올레핀계 수지, 스티렌-부타디엔-스티렌 블록 공중합체(SBS), 스티렌-에틸렌-부틸렌-스티렌 블록 공중합체(SEBS), 스티렌-이소프렌-스티렌 공중합체(SIS), 아크릴산에스테르 공중합체 등의 비닐 폴리머계 수지, 폴리부틸렌테레프탈레이트 또는 폴리부틸렌나프탈레이트를 하드세그먼트로 하고, 폴리테트라메틸렌글리콜 또는 폴리카프로락톤 또는 폴리카보네이트디올을 소프트세그먼트로 한 폴리에스테르 블록 공중합체, 나일론 엘라스토머, 우레탄 엘라스토머, 아크릴 엘라스토머, 실리콘 고무, 불소계 고무, 상이한 2종의 폴리머로 구성된 코어쉘 구조를 갖는 폴리머 입자 등을 들 수 있다. 충격 개량제의 첨가량은 최적의 양을 선택하면 되는데, 폴리에스테르 수지(A) 100 질량부에 대해 최대 30 질량부를 첨가하는 것이 가능하다. Examples of the impact modifier include an ethylene-propylene rubber (EPM), an ethylene-propylene-diene rubber (EPDM), an ethylene-acrylic acid copolymer, an ethylene-acrylic acid ester copolymer, an ethylene-methacrylic acid copolymer, , Styrene-butadiene-styrene block copolymer (SBS), styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene-styrene copolymer (SIS) Acrylic ester copolymer, a polyester block copolymer having polybutylene terephthalate or polybutylene naphthalate as a hard segment and polytetramethylene glycol or polycaprolactone or polycarbonate diol as a soft segment, Nylon elastomer, urethane elastomer, acrylic elastomer, silicone rubber, fluorine-based elastomer There may be mentioned polymer particles having a core shell structure consisting of polymers of different kinds. The amount of the impact modifier may be selected in an optimum amount, and it is possible to add up to 30 parts by mass to 100 parts by mass of the polyester resin (A).

본 발명의 폴리에스테르 수지 조성물에 대해 폴리에스테르 수지(A) 이외의 열가소성 수지 및 내충격 개량제를 첨가하는 경우에는 폴리에스테르와 반응 가능한 반응성기가 공중합되어 있는 것이 바람직하고, 반응성기로서는 폴리에스테르 수지의 말단기인 수산기 및/또는 카르복실기와 반응 가능한 기이다. 구체적으로는 산 무수물기, 에폭시기, 옥사졸린기, 아미노기, 이소시아네이트기 등이 예시되는데, 그들 중에서도 에폭시기, 이소시아네이트기가 가장 반응성이 우수하다. 이와 같이 폴리에스테르 수지와 반응하는 반응성기를 갖는 열가소성 수지는 폴리에스테르 중에 미분산됨으로써 입자 간의 거리가 짧아져 내충격성이 대폭 개량된다는 보고도 있다. When a thermoplastic resin other than the polyester resin (A) and an impact resistance improver are added to the polyester resin composition of the present invention, a reactive group capable of reacting with the polyester is preferably copolymerized. As the reactive group, A group capable of reacting with a hydroxyl group and / or a carboxyl group. Specific examples thereof include an acid anhydride group, an epoxy group, an oxazoline group, an amino group, and an isocyanate group. Among them, an epoxy group and an isocyanate group are most excellent in reactivity. It has been reported that the thermoplastic resin having a reactive group reacting with the polyester resin is finely dispersed in the polyester, thereby shortening the distance between the particles and greatly improving the impact resistance.

난연제로서는 할로겐계 난연제와 난연 보조제의 조합이 좋고, 할로겐계 난연제로서는 브롬화폴리스티렌, 브롬화폴리페닐렌에테르, 브롬화비스페놀형 에폭시계 중합체, 브롬화스티렌 무수 말레산 중합체, 브롬화에폭시 수지, 브롬화페녹시 수지, 데카브로모디페닐에테르, 데카브로모비페닐, 브롬화폴리카보네이트, 퍼클로로시클로펜타데칸 및 브롬화 가교 방향족 중합체 등이 바람직하고, 난연 보조제로서는 삼산화안티몬, 오산화안티몬, 안티몬산나트륨, 주석산아연, 붕산아연, 몬모릴로나이트 등의 층상 규산염, 불소계 폴리머, 실리콘 등을 들 수 있다. 그 중에서도 열안정성 측면에서 할로겐계 난연제로서는 디브롬폴리스티렌, 난연 보조제로서는 삼산화안티몬, 안티몬산나트륨, 주석산아연 중 어느 하나와의 조합이 바람직하다. 또한 비할로겐계 난연제로서는 멜라민시아누레이트, 적린, 포스핀산의 금속염, 함질소 인산계의 화합물을 들 수 있다. 특히 포스핀산 금속염과 함질소 인산계 화합물의 조합이 바람직하고, 함질소 인산계 화합물로서는 멜라민 또는 멜람, 멜렘, 멜론과 같은 멜라민의 축합물과 폴리인산의 반응 생성물 또는 그들의 혼합물을 포함한다. 기타 난연제, 난연 보조제로서는 이들 난연제의 사용 시에 금형 등의 금속 부식 방지로서 하이드로탈사이트계 화합물이나 알칼리 화합물의 첨가가 바람직하다. 난연제의 첨가량은 최적의 양을 선택하면 되는데, 폴리에스테르 수지(A) 100 질량부에 대해 최대 50 질량부를 첨가하는 것이 가능하다. As the flame retardant, a combination of a halogen-based flame retardant and a flame retardant auxiliary is preferable. Examples of the halogen-based flame retardant include brominated polystyrene, brominated polyphenylene ether, brominated bisphenol type epoxy polymer, brominated styrene maleic anhydride polymer, brominated epoxy resin, Brominated diphenylmethane, bromodiphenyl ether, decabromobiphenyl, brominated polycarbonate, perchlorocyclopentadecane, and brominated crosslinked aromatic polymer. As the flame retardant auxiliary, antimony trioxide, antimony pentoxide, sodium antimonate, zinc tartrate, zinc borate, montmorillonite Layer silicate, fluorine-based polymer, silicon, and the like. Among them, a combination of dibromo styrene as the halogen-based flame retardant and antimony trioxide, sodium antimonate, and zinc stannate is preferable as the flame retardant aid in terms of heat stability. Examples of the non-halogen flame retardant include melamine cyanurate, lignin, metal salts of phosphinic acid, and compounds of nitrogen-phosphorous acid-based compounds. In particular, a combination of a phosphinic acid metal salt and a nitrogen-phosphorus-based compound is preferable, and the nitrogen-phosphorus-based compound includes a reaction product of a melamine or a condensate of melamine such as melam, melem or melon with polyphosphoric acid or a mixture thereof. As other flame retardant and flame retardant, it is preferable to add a hydrotalcite compound or an alkaline compound as a metal corrosion preventive such as a mold when these flame retardants are used. The amount of the flame retardant to be added may be selected in an optimal amount, and it is possible to add up to 50 parts by mass to 100 parts by mass of the polyester resin (A).

이형제로서는 장쇄 지방산 또는 그의 에스테르나 금속염, 아마이드계 화합물, 폴리에틸렌 왁스, 실리콘, 폴리에틸렌옥시드 등을 들 수 있다. 장쇄 지방산으로서는 특히 탄소수 12 이상이 바람직하고, 예를 들면 스테아르산, 12-히드록시스테아르산, 베헨산, 몬탄산 등을 들 수 있고, 부분적 또는 전체 카르복실산이 모노글리콜이나 폴리글리콜에 의해 에스테르화되어 있어도 되며, 또는 금속염을 형성하고 있어도 된다. 아마이드계 화합물로서는 에틸렌비스테레프탈아미드, 메틸렌비스스테아릴아미드 등을 들 수 있다. 이들 이형제는 단독으로 또는 혼합물로서 사용해도 된다. 이형제의 첨가량은 최적의 양을 선택하면 되는데, 폴리에스테르 수지(A) 100 질량부에 대해 최대 5 질량부를 첨가하는 것이 가능하다. Examples of the release agent include long-chain fatty acids or esters or metal salts thereof, amide compounds, polyethylene waxes, silicones, and polyethylene oxides. As long-chain fatty acids, the number of carbon atoms is preferably at least 12, and examples thereof include stearic acid, 12-hydroxystearic acid, behenic acid, montanic acid and the like. Partial or total carboxylic acid is esterified with monoglycol or polyglycol Or a metal salt may be formed. Examples of the amide compound include ethylene bisterephthalamide and methylene bis stearyl amide. These release agents may be used alone or as a mixture. The amount of the releasing agent to be added may be selected in an optimum amount, and it is possible to add up to 5 parts by mass to 100 parts by mass of the polyester resin (A).

본 발명의 폴리에스테르 수지 조성물은 전술한 바와 같은 폴리에스테르 수지(A)를 포함하고 있기 때문에, DSC 측정에 있어서 융해 피크 온도(Tm)가 280℃ 이상인 것이 바람직하고, 보다 바람직하게는 290℃ 이상, 더욱 바람직하게는 300℃ 이상, 특히 바람직하게는 310℃ 이상, 가장 바람직하게는 320℃ 이상이다. 한편 본 발명의 폴리에스테르 수지 조성물의 Tm의 상한은 340℃ 이하인 것이 바람직하다.Since the polyester resin composition of the present invention contains the polyester resin (A) as described above, the melting peak temperature (Tm) in the DSC measurement is preferably 280 ° C or higher, more preferably 290 ° C or higher, More preferably 300 DEG C or more, particularly preferably 310 DEG C or more, and most preferably 320 DEG C or more. On the other hand, the upper limit of the Tm of the polyester resin composition of the present invention is preferably not higher than 340 캜.

또한 본 발명의 폴리에스테르 수지 조성물은 전술한 바와 같은 폴리에스테르 수지(A)를 포함하고 있기 때문에, DSC 측정에 있어서 융해 피크 온도(Tm)와 강온 결정화 온도(Tc2)의 차가 42℃ 이하인 것이 바람직하고, 더욱 바람직하게는 40℃ 이하, 보다 바람직하게는 35℃ 이하, 더욱 바람직하게는 30℃ 이하이다.Further, since the polyester resin composition of the present invention contains the polyester resin (A) as described above, it is preferable that the difference between the melting peak temperature (Tm) and the temperature-lowering crystallization temperature (Tc2) More preferably 40 占 폚 or lower, more preferably 35 占 폚 or lower, still more preferably 30 占 폚 or lower.

폴리에스테르 수지(A)는 고융점과 성형성에 더하여, 저 수흡수성과 유동성의 밸런스가 우수하고, 더 나아가서는 내광성이 우수하다. 이 때문에 이러한 폴리에스테르 수지(A)로부터 얻어지는 본 발명의 폴리에스테르 수지 조성물은 표면 실장형 LED의 반사판 성형에 있어서는 280℃ 이상의 고융점, 저 수흡수인 것에 더하여, 박육, 하이사이클 성형이 가능하다. The polyester resin (A) is excellent in balance of low water absorbency and fluidity in addition to high melting point and moldability, and furthermore, excellent in light resistance. For this reason, the polyester resin composition of the present invention obtained from such a polyester resin (A) is capable of forming a thin film and a high cycle in addition to having a high melting point and a low water absorption of 280 ° C or more in reflector molding of the surface mount type LED.

본 발명의 폴리에스테르 수지 조성물은 전술한 각 구성 성분을 종래 공지의 방법으로 배합함으로써 제조될 수 있다. 예를 들면 폴리에스테르 수지(A)의 중축합 반응 시에 각 성분을 첨가하거나, 폴리에스테르 수지(A)와 기타 성분을 드라이 블렌드하거나, 또는 2축 스크류형 압출기를 사용하여 각 구성 성분을 용융 혼련하는 방법을 들 수 있다. The polyester resin composition of the present invention can be produced by compounding each of the above-described components in a conventionally known method. For example, each component may be added at the time of the polycondensation reaction of the polyester resin (A), or the polyester resin (A) and other components may be dry-blended, or each component may be melt-kneaded using a twin screw extruder .

실시예Example

아래에 실시예에 의해 본 발명을 더욱 구체적으로 설명하나, 본 발명은 이들 실시예에 한정되는 것은 아니다. 또한 실시예에 기재된 측정값은 아래의 방법으로 측정한 것이다. EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. The measured values described in the examples were measured by the following methods.

(1) 폴리에스테르 수지의 극한점도(IV)(1) Intrinsic viscosity of polyester resin (IV)

1,1,2,2-테트라클로로에탄/페놀(2:3 중량비) 혼합 용매 중 30℃에서의 용액 점도로부터 구하였다. Was determined from the solution viscosity at 30 DEG C in a mixed solvent of 1,1,2,2-tetrachloroethane / phenol (2: 3 weight ratio).

(2) 산가(2) Acid value

폴리에스테르 수지 0.1 g을 벤질알코올 10 ㎖에 가열 용해한 후, 0.1 N의 NaOH의 메탄올/벤질알코올(1/9 용적비)의 용액을 사용하여 적정해서 구하였다. 0.1 g of the polyester resin was dissolved in 10 ml of benzyl alcohol, and the solution was titrated using a solution of 0.1 N of NaOH in methanol / benzyl alcohol (1/9 by volume).

(3) 폴리에스테르 수지의 융점(Tm) 및 수지 조성물의 융해 피크 온도(Tm), 강온 결정화 온도(Tc2)(3) the melting point (Tm) of the polyester resin, the melting peak temperature (Tm) of the resin composition, the crystallization temperature (Tc2)

세이코 전자공업 주식회사 제조의 시차열분석계(DSC), RDC-220으로 측정하였다. 승온 속도 20℃/분으로 승온하여 330℃에서 3분간 유지한 후, 330℃부터 130℃까지를 10℃/분으로 강온하였다. 또한 330℃에서 융해되지 않는 경우는 340℃에서 3분간 유지한 후, 340℃부터 130℃까지를 10℃/분으로 강온하였다. 승온 시에 관찰되는 융해 피크의 정점 온도를 융점(Tm), 강온 시에 관찰되는 결정화 피크의 정점 온도를 강온 결정화 온도(Tc2)로 하였다.(DSC) manufactured by Seiko Electronics Industry Co., Ltd., RDC-220. The temperature was raised at a rate of temperature rise of 20 占 폚 / min, maintained at 330 占 폚 for 3 minutes, and then decreased from 330 占 폚 to 130 占 폚 at 10 占 폚 / min. In the case where it was not melted at 330 ° C, the temperature was maintained at 340 ° C for 3 minutes and then decreased from 340 ° C to 130 ° C at 10 ° C / minute. The melting point (Tm) of the melting peak observed at the time of temperature rise and the peak temperature of the crystallization peak observed at the time of temperature lowering were determined as the temperature-lowering crystallization temperature (Tc2).

(4) 성형성 및 치수 안정성(4) Moldability and dimensional stability

도시바 기계 제조 사출 성형기 EC-100을 사용하여 실린더 온도는 수지의 융점+20℃, 금형 온도는 125℃로 설정하고, 필름 게이트를 갖는 세로 100 ㎜, 가로 100 ㎜, 두께 1 ㎜의 평판 제작용 금형을 사용하여 사출 성형을 실시하였다. 사출 속도 50 ㎜/초, 보압 30 ㎫, 사출 시간 10초, 냉각 시간 10초로 성형을 행하고, 성형성 평가는 아래와 같은 기준으로 행하였다. Using Toshiba Mechanical Injection Molding Machine EC-100, the cylinder temperature was set at the melting point of the resin + 20 캜, the mold temperature was set at 125 캜, and a mold for flat plate having a length of 100 mm, a width of 100 mm and a thickness of 1 mm Injection molding was carried out. Molding at an injection speed of 50 mm / sec, a holding pressure of 30 MPa, an injection time of 10 seconds, and a cooling time of 10 seconds. Moldability evaluation was carried out on the basis of the following criteria.

○:문제없이 성형품이 얻어진다.&Amp; cir &: A molded article is obtained without any problem.

△:가끔 스풀이 금형에 남는다. △: Sometimes the spool remains in the mold.

×:이형성이 불충분하여 성형품이 금형에 첩부(貼付)되거나 변형된다.X: The releasability is insufficient and the molded article is stuck or deformed to the mold.

또한 얻어진 성형품의 치수 안정성 평가를 행하기 위해 상기 성형품을 180℃에서 1시간 가열하였다. 가열 전후에 있어서의 유동방향에 수직인 방향의 치수를 측정하고, 치수 변화량은 아래와 같이 구하였다. Further, in order to evaluate the dimensional stability of the obtained molded article, the molded article was heated at 180 캜 for 1 hour. Dimensions in the direction perpendicular to the flow direction before and after heating were measured, and the amount of dimensional change was obtained as follows.

Figure pct00001
Figure pct00001

치수 안정성 평가는 아래와 같은 기준으로 행하였다. The dimensional stability evaluation was carried out according to the following criteria.

○:치수 변화량이 0.2% 미만○: The dimensional change is less than 0.2%

×:치수 변화량이 0.2% 이상X: The dimensional change amount is 0.2% or more

(5) 납땜 내열성(5) Soldering heat resistance

도시바 기계 제조 사출 성형기 EC-100을 사용하여 실린더 온도는 수지의 융점+20℃, 금형 온도는 140℃로 설정하고, 길이 127 ㎜, 폭 12.6 ㎜, 두께 0.8 ㎜의 UL 연소 시험용 테스트 피스를 사출 성형하여 시험편을 제작하였다. 시험편은 85℃, 85%RH(상대 습도)의 분위기 중에 72시간 방치하였다. 시험편은 에어 리플로우 로 중(에이텍 제조 AIS-20-82C), 실온에서 150℃까지 60초에 걸쳐서 승온시켜 예비 가열을 행한 후, 190℃까지 0.5℃/분의 승온 속도로 프리히팅을 실시하였다. 그 후, 100℃/분의 속도로 소정의 설정 온도까지 승온하고 소정의 온도에서 10초간 유지한 후 냉각을 행하였다. 설정 온도는 240℃부터 5℃ 간격으로 증가시키고, 표면의 부풀어오름이나 변형이 발생하지 않은 최고의 설정 온도를 리플로우 내열 온도로 하여, 아래의 기준으로 납땜 내열성을 평가하였다.Using a Toshiba machine injection molding machine EC-100, a test piece for UL combustion test having a length of 127 mm, a width of 12.6 mm, and a thickness of 0.8 mm was set at a cylinder temperature set at a melting point of the resin + 20 ° C and a mold temperature of 140 ° C, A test piece was prepared. The test piece was allowed to stand in an atmosphere at 85 캜 and 85% RH (relative humidity) for 72 hours. The test piece was preheated by raising the temperature from room temperature to 150 ° C over 60 seconds in an air reflow furnace (manufactured by Aitec Corporation, AIS-20-82C), and then preheating was carried out at a heating rate of 0.5 ° C / min up to 190 ° C . Thereafter, the temperature was raised to a predetermined set temperature at a rate of 100 ° C / minute, maintained at a predetermined temperature for 10 seconds, and then cooled. The set temperature was increased from 240 deg. C to 5 deg. C intervals, and the soldering heat resistance was evaluated based on the following criteria, with the highest set temperature at which no surface swelling or deformation occurred, as the reflow heat resisting temperature.

◎:리플로우 내열온도가 280℃ 이상◎: Reflow heat resistance temperature is 280 ° C or higher

○:리플로우 내열온도가 260℃ 이상 280℃ 미만O: Reflow heat resistance temperature is 260 占 폚 or more and less than 280 占 폚

×:리플로우 내열온도가 260℃ 미만X: Reflow heat resistance temperature is less than 260 占

(6) 확산 반사율(6) Diffuse reflectance

도시바 기계 제조 사출 성형기 EC-100을 사용하여 실린더 온도는 수지의 융점+20℃, 금형 온도는 140℃로 설정하고, 세로 100 ㎜, 가로 100 ㎜, 두께 2 ㎜의 평판을 사출 성형하여 평가용 시험편을 제작하였다. 이 시험편을 사용하여 히타치 제작소 제조의 자기 분광 광도계 「U3500」에 동사 제조의 적분구를 설치하고, 350 nm 내지 800 nm 파장의 반사율을 측정하였다. 반사율의 비교에는 460 nm의 파장에 있어서의 확산 반사율을 구하였다. 레퍼런스로는 황산바륨을 사용하였다. Using Toshiba Mechanical Injection Molding Machine EC-100, the cylinder temperature was set to the melting point of the resin + 20 캜, the mold temperature was set at 140 캜, a flat plate having a length of 100 mm, a width of 100 mm and a thickness of 2 mm was injection- Respectively. Using this test piece, an integrating sphere manufactured by the company was installed in a magnetic spectrophotometer " U3500 " manufactured by Hitachi, Ltd., and the reflectance at a wavelength of 350 nm to 800 nm was measured. For the comparison of reflectance, the diffuse reflectance at a wavelength of 460 nm was determined. Barium sulphate was used as a reference.

(7) 포화 수흡수율(7) Saturated water absorption rate

도시바 기계 제조 사출 성형기 EC-100을 사용하여 실린더 온도는 수지의 융점+20℃, 금형 온도는 140℃로 설정하고, 세로 100 ㎜, 가로 100 ㎜, 두께 1 ㎜의 평판을 사출 성형하여 평가용 시험편을 제작하였다. 이 시험편을 80℃ 열수 중에 50시간 침지시켜, 포화 수흡수 시 및 건조 시의 중량으로부터 아래의 식으로 포화 수흡수율을 구하였다. Using Toshiba Mechanical Injection Molding Machine EC-100, the cylinder temperature was set to the melting point of the resin + 20 占 폚, the mold temperature was set at 140 占 폚, a flat plate having a length of 100 mm, a width of 100 mm and a thickness of 1 mm was injection- Respectively. The test piece was immersed in hot water at 80 캜 for 50 hours, and the saturated water uptake rate was determined from the following equation in terms of the weight at the time of absorption of saturated water and at the time of drying.

Figure pct00002
Figure pct00002

(8) 유동성(8) Fluidity

도시바 기계 제조 사출 성형기 EC-100을 사용하여 실린더 온도는 330℃, 금형 온도는 120℃로 설정하고, 사출압 설정값 40%, 사출 속도 설정값 40%, 계량 35 ㎜, 사출 시간 6초, 냉각 시간 10초의 조건으로, 폭 1 ㎜, 두께 0.5 ㎜의 유동길이 측정용 금형으로 사출 성형하여 평가용 시험편을 제작하였다. 유동성 평가로서 이 시험편의 유동길이(㎜)를 측정하였다. Toshiba Machine Manufacturing Injection Molding Machine EC-100 was used to set the cylinder temperature to 330 캜 and the mold temperature to 120 캜 and set injection pressure set value 40%, injection rate set value 40%, weighing 35 ㎜, injection time 6 sec, A test piece for evaluation was prepared by injection molding with a measuring mold of a flow length of 1 mm in width and 0.5 mm in thickness under the condition of a time of 10 seconds. The flow rate (mm) of this specimen was measured as a flowability evaluation.

(9) 실리콘 밀착성(9) Silicone adhesion

도시바 기계 제조 사출 성형기 EC-100을 사용하여 실린더 온도는 수지의 융점+20℃, 금형 온도는 140℃로 설정하고, 세로 100 ㎜, 가로 100 ㎜, 두께 2 ㎜의 평판을 사출 성형하여 평가용 시험편을 제작하였다. 이 시험편의 한쪽 면에 실리콘 봉지재(신에쯔 실리콘사 제조, ASP-1110, 봉지재 경도 D60)를 코팅 두께 약 100 ㎛가 되도록 코팅하여 100℃×1시간의 프리히팅 후, 150℃×4시간의 경화 처리를 하여 시험편의 한쪽 면에 봉지재 피막을 형성시켰다. Using Toshiba Mechanical Injection Molding Machine EC-100, the cylinder temperature was set to the melting point of the resin + 20 캜, the mold temperature was set at 140 캜, a flat plate having a length of 100 mm, a width of 100 mm and a thickness of 2 mm was injection- Respectively. A silicone sealing material (ASP-1110, manufactured by Shinetsu Silicone Co., Ltd., sealant hardness D60) was coated on one side of the test piece so as to have a coating thickness of about 100 占 퐉, preheated at 100 占 폚 for 1 hour, Curing treatment was performed for one hour to form a sealant film on one side of the test piece.

이어서 시험편 상의 봉지재 피막에 대해 JIS K5400에 기초하는 바둑판눈 시험(1 ㎜ 폭 크로스컷 100 바둑판눈)을 행하여 아래의 기준으로 밀착성을 평가하였다.Next, a checkerboard test (1 mm wide cross cut 100 checkerboards) based on JIS K5400 was performed on the encapsulating material coat on the test piece, and the adhesion was evaluated based on the following criteria.

 ○:박리된 바둑판눈 수 10 이하○: Number of peeled checkerboards 10 or less

 ×:박리 시험 전의 바둑판눈 형성 시에 박리 있음X: peeling at the formation of checkerboard before peeling test

(10) 내광성(10) Light fastness

도시바 기계 제조 사출 성형기 EC-100을 사용하여 실린더 온도는 수지의 융점+20℃, 금형 온도는 140℃로 설정하고, 세로 100 ㎜, 가로 100 ㎜, 두께 2 ㎜의 평판을 사출 성형하여 평가용 시험편을 제작하였다. 이 시험편에 대해서 초촉진 내후성 시험기 「아이슈퍼 UV 테스터 SUV-F11」을 사용하여 63℃ 50%RH의 환경하, 50 mW/㎠의 조도로 UV 조사를 실시하였다. 시험편의 파장 460 nm의 광반사율을 조사 전과 조사 60시간 후에 측정하였다. 조사 전 시험편의 광반사율에 대한 조사 후 시험편의 광반사율의 유지율로 내광성을 아래의 기준으로 평가하였다. Using Toshiba Mechanical Injection Molding Machine EC-100, the cylinder temperature was set to the melting point of the resin + 20 캜, the mold temperature was set at 140 캜, a flat plate having a length of 100 mm, a width of 100 mm and a thickness of 2 mm was injection- Respectively. This specimen was subjected to ultraviolet irradiation at an illuminance of 50 mW / cm 2 under an environment of 63 ° C and 50% RH by using a super-accelerated weathering tester "Eye Super UV Tester SUV-F11". The light reflectance of the test piece at a wavelength of 460 nm was measured before irradiation and after 60 hours of irradiation. The light reflectance of the test piece before irradiation was evaluated by the following standard.

◎:유지율 95% 이상◎: 95% or higher retention rate

○:유지율 95% 미만~90% 이상○: Maintenance rate less than 95% ~ 90%

△:유지율 90% 미만~85% 이상△: Maintenance rate less than 90% ~ 85%

×:유지율 85% 미만 X: Less than 85% maintenance rate

(11) 내열 황변성(11) Heat Sulfur Degeneration

도시바 기계 제조 사출 성형기 EC-100을 사용하여 실린더 온도는 수지의 융점+20℃, 금형 온도는 140℃로 설정하고, 세로 100 ㎜, 가로 100 ㎜, 두께 2 ㎜의 평판을 사출 성형하여 평가용 시험편을 제작하였다. 이 시험편을 사용하여 열풍 건조기에서 150℃로 2시간 처리하여 육안으로 황변성을 확인하고 아래의 기준으로 평가하였다. Using Toshiba Mechanical Injection Molding Machine EC-100, the cylinder temperature was set to the melting point of the resin + 20 캜, the mold temperature was set at 140 캜, a flat plate having a length of 100 mm, a width of 100 mm and a thickness of 2 mm was injection- Respectively. This specimen was treated in a hot-air dryer at 150 ° C for 2 hours to confirm the yellowing of the sample by the naked eye and evaluated according to the following criteria.

○:변화 없음○: No change

△:약간 황변됨Δ: Slightly yellowed

×:황변됨×: yellowed

(실시예 1)(Example 1)

교반기 부착 20리터 스테인리스제 오토클레이브에 고순도 디메틸테레프탈산 3,880 g, 4,4'-비페닐디메탄올 2,782 g, 에틸렌글리콜 1,922 g, 초산망간 2 g, 이산화게르마늄 0.86 g을 넣고 에스테르 교환 후, 60분간에 걸쳐 300℃까지 승온하면서 반응계의 압력을 서서히 낮춰 13.3 ㎩(0.1 Torr)로 하고, 추가로 310℃, 13.3 ㎩에서 중축합 반응을 실시하였다. 방압(放壓)에 이어 미가압하의 레진을 수중에 스트랜드 형상으로 토출하여 냉각 후, 커터로 절단하여 길이 약 3 ㎜, 직경 약 2 ㎜의 실린더 형상의 펠릿을 얻었다. 얻어진 폴리에스테르의 극한점도는 0.60 ㎗/g, 수지 조성은 1H-NMR 측정에 의해 테레프탈산이 100 몰%, 4,4'-비페닐디메탄올이 65.0 몰%, 에틸렌글리콜이 34.5 몰%, 디에틸렌글리콜이 0.5 몰%였다. 얻어진 폴리에스테르 수지의 조성 및 특성값을 표 1에 나타낸다. 3,880 g of high purity dimethyl terephthalic acid, 2,782 g of 4,4'-biphenyl dimethanol, 1,922 g of ethylene glycol, 2 g of manganese dioxide and 0.86 g of germanium dioxide were placed in a 20-liter stainless steel autoclave equipped with a stirrer, The pressure of the reaction system was gradually lowered to 13.3 Pa (0.1 Torr) while raising the temperature to 300 DEG C, and a polycondensation reaction was further performed at 310 DEG C and 13.3 Pa. After the pressure was released, unpressed resin was discharged in the form of strands in water, cooled and cut with a cutter to obtain a cylindrical pellet having a length of about 3 mm and a diameter of about 2 mm. The intrinsic viscosity is 0.60 ㎗ / g, the resin composition of the resulting polyester is 1 to 100 mole% of terephthalic acid by the H-NMR measurement, 4,4'-it is 65.0 mol% phenyl-dimethanol, ethylene glycol and 34.5 mol%, D And ethylene glycol was 0.5 mol%. The composition and characteristic values of the obtained polyester resin are shown in Table 1.

(실시예 2~4)(Examples 2 to 4)

사용하는 원료의 양이나 종류를 변경하는 이외는 실시예 1의 폴리에스테르 수지의 중합과 동일하게 하여 각 폴리에스테르 수지를 얻었다. 얻어진 각 폴리에스테르 수지의 조성 및 특성값을 표 1에 나타낸다. 또한 디에틸렌글리콜은 에틸렌글리콜이 축합되어 부생된 것이다. Each polyester resin was obtained in the same manner as in the polymerization of the polyester resin of Example 1, except that the amount and type of raw materials used were changed. Table 1 shows the composition and the characteristic values of each of the obtained polyester resins. Also, diethylene glycol is a byproduct of ethylene glycol condensation.

(실시예 5)(Example 5)

교반기 부착 20리터 스테인리스제 오토클레이브에 고순도 디메틸테레프탈산 3,880 g, 4,4'-비페닐디메탄올 2,782 g, 에틸렌글리콜 1,922 g, 초산망간 2 g, 이산화게르마늄 0.86 g을 넣고 에스테르 교환 후, 고순도 테레프탈산을 8 g 첨가하여 60분간에 걸쳐 300℃까지 승온하면서 반응계의 압력을 서서히 낮춰 13.3 ㎩(0.1 Torr)로 하고, 추가로 310℃, 13.3 ㎩에서 중축합 반응을 실시하였다. 방압에 이어 미가압하의 레진을 수중에 스트랜드 형상으로 토출하여 냉각 후, 커터로 절단하여 길이 약 3 ㎜, 직경 약 2 ㎜의 실린더 형상의 펠릿을 얻었다. 얻어진 폴리에스테르의 극한점도는 0.60 ㎗/g, 수지 조성은 1H-NMR 측정에 의해 테레프탈산이 100 몰%, 4,4'-비페닐디메탄올이 65.0 몰%, 에틸렌글리콜이 34.5 몰%, 디에틸렌글리콜이 0.5 몰%였다. 얻어진 폴리에스테르 수지의 조성 및 특성값을 표 1에 나타낸다.3,880 g of high purity dimethyl terephthalic acid, 2,782 g of 4,4'-biphenyl dimethanol, 1,922 g of ethylene glycol, 2 g of manganese dioxide and 0.86 g of germanium dioxide were placed in a 20-liter stainless steel autoclave equipped with a stirrer, 8 g was added and the temperature of the reaction system was gradually lowered to 13.3 Pa (0.1 Torr) while raising the temperature to 300 deg. C over 60 minutes, and further polycondensation reaction was carried out at 310 deg. C and 13.3 Pa. Subsequent to the pneumatic pressure, the unpressed resin was discharged in the form of strands in water, cooled and cut with a cutter to obtain a cylindrical pellet having a length of about 3 mm and a diameter of about 2 mm. The intrinsic viscosity is 0.60 ㎗ / g, the resin composition of the resulting polyester is 1 to 100 mole% of terephthalic acid by the H-NMR measurement, 4,4'-it is 65.0 mol% phenyl-dimethanol, ethylene glycol and 34.5 mol%, D And ethylene glycol was 0.5 mol%. The composition and characteristic values of the obtained polyester resin are shown in Table 1.

(비교예 1)(Comparative Example 1)

교반기 부착 20리터 스테인리스제 오토클레이브에 고순도 테레프탈산과 그의 2배 몰량의 에틸렌글리콜을 넣고, 트리에틸아민을 산 성분에 대해 0.3 몰% 첨가하여, 0.25 ㎫의 가압하 250℃에서 물을 계외로 증류 제거하면서 에스테르화 반응을 행하여, 에스테르화율이 약 95%인 비스(2-히드록시에틸)테레프탈레이트 및 올리고머의 혼합물(이하 BHET 혼합물이라 한다)을 얻었다. 이 BHET 혼합물에 중합 촉매로서 이산화게르마늄(Ge로서 100 ppm)을 첨가하고, 이어서 질소 분위기하 상압에서 250℃로 10분간 교반하였다. 그 후, 60분간에 걸쳐 280℃까지 승온하면서 반응계의 압력을 서서히 낮춰 13.3 ㎩(0.1 Torr)로 하고, 추가로 280℃, 13.3 ㎩에서 중축합 반응을 실시하였다. 방압에 이어 미가압하의 레진을 수중에 스트랜드 형상으로 토출하여 냉각 후, 커터로 절단하여 길이 약 3 ㎜, 직경 약 2 ㎜의 실린더 형상의 펠릿을 얻었다. 얻어진 폴리에스테르의 극한점도는 0.61 ㎗/g이고, 수지 조성은 1H-NMR 측정에 의해 테레프탈산이 100 몰%, 에틸렌글리콜이 98.0 몰%, 디에틸렌글리콜이 2.0 몰%였다. 얻어진 폴리에스테르 수지의 조성 및 특성값을 표 2에 나타낸다. To a 20-liter stainless steel autoclave equipped with a stirrer, high-purity terephthalic acid and two-fold molar amount of ethylene glycol were charged, and triethylamine was added in an amount of 0.3 mol% based on the acid component. Water was distilled off at 250 DEG C under a pressure of 0.25 MPa To obtain a mixture (hereinafter referred to as a BHET mixture) of bis (2-hydroxyethyl) terephthalate and an oligomer having an esterification ratio of about 95%. To this BHET mixture was added germanium dioxide (100 ppm as Ge) as a polymerization catalyst, followed by stirring at 250 캜 for 10 minutes under atmospheric pressure in a nitrogen atmosphere. Thereafter, the temperature of the reaction system was gradually lowered to 13.3 Pa (0.1 Torr) while the temperature was raised to 280 deg. C over 60 minutes, and a polycondensation reaction was further carried out at 280 deg. C and 13.3 Pa. Subsequent to the pneumatic pressure, the unpressed resin was discharged in the form of strands in water, cooled and cut with a cutter to obtain a cylindrical pellet having a length of about 3 mm and a diameter of about 2 mm. The obtained polyester had an intrinsic viscosity of 0.61 dl / g. The resin composition had 100 mol% of terephthalic acid, 98.0 mol% of ethylene glycol and 2.0 mol% of diethylene glycol by 1 H-NMR measurement. Table 2 shows the composition and the characteristic values of the obtained polyester resin.

(비교예 2~4)(Comparative Examples 2 to 4)

사용하는 원료의 종류를 변경하는 이외는 비교예 1의 폴리에스테르 수지의 중합과 동일하게 하여 각 폴리에스테르 수지를 얻었다. 얻어진 각 폴리에스테르 수지의 조성 및 특성값을 표 2에 나타낸다. Each polyester resin was obtained in the same manner as in the polymerization of the polyester resin of Comparative Example 1, except that the kind of raw materials used was changed. Table 2 shows the composition and the characteristic values of each of the obtained polyester resins.

(비교예 5:폴리아미드 수지)(Comparative Example 5: polyamide resin)

테레프탈산 3,272.9 g(19.70몰), 1,9-노난디아민 2,849.2 g(18.0몰), 2-메틸-1,8-옥탄디아민 316.58 g(2.0몰), 안식향산 73.27 g(0.60몰), 차아인산나트륨 일수화물 6.5 g(원료에 대해 0.1 중량%) 및 증류수 6리터를 내용적 20리터의 오토클레이브에 넣고 질소 치환하였다. 100℃에서 30분간 교반하고 2시간에 걸쳐 내부 온도를 210℃로 승온하였다. 이때 오토클레이브는 22 ㎏/㎠까지 승압하였다. 그대로 1시간 반응을 계속한 후 230℃로 승온하여, 그 후 2시간 230℃로 온도를 유지하고, 수증기를 서서히 빼서 압력을 22 ㎏/㎠로 유지하면서 반응시켰다. 다음으로 30분에 걸쳐 압력을 10 ㎏/㎠까지 낮추고, 추가로 1시간 반응시켜서 극한점도[η]가 0.25 ㎗/g인 프리폴리머를 얻었다. 이것을 100℃, 감압하에서 12시간 건조하고, 2 ㎜ 이하의 크기까지 분쇄하였다. 이것을 230℃, 0.1 ㎜Hg하에서 10시간 고상 중합하여, 융점이 310℃, 극한점도[η]가 1.33 ㎗/g, 말단의 봉지율이 90%인 백색의 폴리아미드 수지를 얻었다. 얻어진 폴리아미드 수지의 조성 및 특성값을 표 2에 나타낸다. (18.0 mol) of 1,9-nonanediamine, 316.58 g (2.0 mol) of 2-methyl-1,8-octanediamine, 73.27 g (0.60 mol) of benzoic acid, 6.5 g of hydrate (0.1 wt% with respect to the raw material) and 6 liters of distilled water were placed in an autoclave having an internal volume of 20 liters and purged with nitrogen. The mixture was stirred at 100 占 폚 for 30 minutes and the internal temperature was raised to 210 占 폚 over 2 hours. At this time, the autoclave was stepped up to 22 kg / cm 2. The reaction was continued for 1 hour as it was, then the temperature was raised to 230 ° C, and then the temperature was maintained at 230 ° C for 2 hours. The steam was gradually removed and the reaction was carried out while maintaining the pressure at 22 kg / cm 2. Next, the pressure was lowered to 10 kg / cm < 2 > over 30 minutes and further reacted for 1 hour to obtain a prepolymer having an intrinsic viscosity [?] Of 0.25 dl / g. This was dried at 100 DEG C under reduced pressure for 12 hours and pulverized to a size of 2 mm or less. This was subjected to solid phase polymerization at 230 DEG C under 0.1 mmHg for 10 hours to obtain a white polyamide resin having a melting point of 310 DEG C, an intrinsic viscosity [?] Of 1.33 dl / g and an end sealing ratio of 90%. The composition and the characteristic values of the obtained polyamide resin are shown in Table 2.

Figure pct00003
Figure pct00003

Figure pct00004
Figure pct00004

(실시예 6~13, 비교예 6~10)(Examples 6 to 13 and Comparative Examples 6 to 10)

표 3, 4에 기재된 성분과 질량 비율로 코페리온(주) 제조 2축 압출기 STS-35를 사용하여, 폴리에스테르 수지(A) 또는 폴리아미드 수지의 융점+15℃에서 용융 혼련하여 실시예 6~13, 비교예 6~10의 수지 조성물을 얻었다. 표 3, 4 중 폴리에스테르 수지(A) 이외의 사용 재료의 상세는 아래와 같다. The polyester resin (A) or the polyamide resin was melted and kneaded at a melting point + 15 占 폚 using a twin-screw extruder STS-35 manufactured by Copper Co., Ltd. in mass ratios with the components shown in Tables 3 and 4, , And the resin compositions of Comparative Examples 6 to 10 were obtained. Details of the materials other than the polyester resin (A) in Tables 3 and 4 are as follows.

산화티탄(B):이시하라 산교(주) 제조 타이페이크 CR-60, 루틸형 TiO2, 평균 입경 0.2 ㎛Titanium oxide (B): Taipei CR-60 manufactured by Ishihara Sangyo Co., Ltd., rutile type TiO 2 , average particle diameter 0.2 μm

강화재(C):유리 섬유(닛토보(주) 제조, CS-3J-324), 침상 월라스토((주) NYCO 제조, NYGLOS8)Reinforced material (C): glass fiber (CS-3J-324 manufactured by Nitto Co., Ltd.), needle-shaped Walasato (NYGLOS8 manufactured by NYCO,

충전재(D):탈크(하야시 가세이(주) 제조 미크론화이트 5000A)Filler (D): Talc (Micron White 5000A manufactured by Hayashi Kasei Co., Ltd.)

이형제:스테아르산마그네슘Release agent: Magnesium stearate

안정제:펜타에리스리틸·테트라키스[3-(3,5-디-t-부틸-4-히드록시페닐)프로피오네이트](치바 스페셜티 케미컬즈 제조, 이르가녹스 1010)Stabilizer: pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by Ciba Specialty Chemicals, Irganox 1010)

실시예 6~13, 비교예 6~10에서 얻어진 수지 조성물을 각종 특성 평가에 제공하였다. 그 평가 결과도 표 3, 4에 나타낸다. The resin compositions obtained in Examples 6 to 13 and Comparative Examples 6 to 10 were provided for various characteristic evaluations. The evaluation results are also shown in Tables 3 and 4.

Figure pct00005
Figure pct00005

Figure pct00006
Figure pct00006

표 1 및 표 3으로부터 본 발명의 요건을 충족시키는 폴리에스테르 수지(실시예 1~5)를 사용한 수지 조성물(실시예 6~13)에서는, 폴리에스테르 수지 조성물의 DSC에 의한 융해 피크 온도가 280℃ 이상인 경우는 리플로우 납땜 공정에 적용 가능하고, 또한 융해 피크 온도가 310℃를 초과하는 경우는 리플로우 내열 온도가 280℃ 이상인 것으로부터, 금/주석 공정 납땜 공정에도 적용 가능한 납땜 내열성을 나타내는 동시에 LED 용도에서 중요한 특성인 봉지재와의 밀착성, 표면 반사율이 우수하며, 더 나아가서는 성형성, 유동성, 치수 안정성, 저 수흡수성, 내광성, 내열 황변성도 우수하다고 하는 각별한 효과를 확인할 수 있었다. 한편 표 2 및 표 4로부터 본 발명의 요건을 충족시키지 않는 폴리에스테르 수지(비교예 1~4)를 사용한 수지 조성물(비교예 6~9)에서는, 이들 특성을 모두 만족시키는 것은 불가능하였다. 비교예 5의 폴리아미드 수지는 고융점이지만 아미드 구조에 기인하는 수흡수성이기 때문에, 비교예 5의 폴리아미드 수지를 사용한 수지 조성물(비교예 10)은 리플로우 내열 온도가 280℃ 이상을 만족시키지 못하고 내광성, 내열 황변성도 뒤떨어졌다. From the Tables 1 and 3, it was confirmed that in the resin compositions (Examples 6 to 13) using the polyester resins (Examples 1 to 5) satisfying the requirements of the present invention, the melting peak temperature by DSC of the polyester resin composition was 280 ° C Or more, and when the melting peak temperature exceeds 310 DEG C, the reflow endothermic temperature is 280 DEG C or higher. Therefore, the solder heat resistance applicable to the gold / tin soldering process is exhibited, while the LED It is possible to confirm the remarkable effect that the adhesiveness to the sealing material and the surface reflectance which are important characteristics in use are excellent, and furthermore, the moldability, fluidity, dimensional stability, low water absorbability, light resistance and heat resistance yellowing are excellent. On the other hand, in Table 2 and Table 4, it was impossible to satisfy all of these characteristics in the resin compositions (Comparative Examples 6 to 9) using the polyester resins (Comparative Examples 1 to 4) which did not satisfy the requirements of the present invention. Since the polyamide resin of Comparative Example 5 has a high melting point but is water-absorbing due to the amide structure, the resin composition (Comparative Example 10) using the polyamide resin of Comparative Example 5 does not satisfy the reflow heat resistance temperature of 280 deg. Light resistance and heat resistance yellowing were also inferior.

본 발명의 폴리에스테르 수지 조성물은 내열성, 성형성, 유동성, 저 수흡수성이 우수할 뿐 아니라, LED 용도에서의 봉지재와의 밀착성이 우수하며, 더 나아가서는 내광성도 우수한 특정 폴리에스테르 수지를 사용하고 있기 때문에, 필요한 특성을 고도로 만족시키면서 표면 실장형 LED용 반사판에 적합하게 사용할 수 있다.The polyester resin composition of the present invention is not only excellent in heat resistance, moldability, fluidity and water absorbency, but also is excellent in adhesion to an encapsulating material for LED applications and further has a specific light resistance So that it can be suitably used for a reflector for a surface mount type LED while highly satisfying necessary characteristics.

Claims (11)

방향족 디카르복실산을 50 몰% 이상 함유하는 디카르복실산 성분과 4,4'-비페닐디메탄올을 15 몰% 이상 함유하는 글리콜 성분으로 이루어지는 폴리에스테르 수지로서, 융점이 280℃ 이상인 것을 특징으로 하는 폴리에스테르 수지. A polyester resin comprising a dicarboxylic acid component containing at least 50 mol% of aromatic dicarboxylic acid and a glycol component containing at least 15 mol% of 4,4'-biphenyldimethanol and having a melting point of 280 ° C or higher By weight. 제1항에 있어서,
방향족 디카르복실산이 4,4'-비페닐디카르복실산, 테레프탈산 및 2,6-나프탈렌디카르복실산으로 이루어진 군으로부터 선택되는 1종 이상의 디카르복실산을 포함하는 것을 특징으로 하는 폴리에스테르 수지.
The method according to claim 1,
Characterized in that the aromatic dicarboxylic acid comprises at least one dicarboxylic acid selected from the group consisting of 4,4'-biphenyldicarboxylic acid, terephthalic acid and 2,6-naphthalenedicarboxylic acid. Suzy.
제1항 또는 제2항에 있어서,
폴리에스테르 수지를 구성하는 4,4'-비페닐디메탄올 이외의 글리콜 성분이 에틸렌글리콜, 1,4-시클로헥산디메탄올, 1,3-프로판디올, 네오펜틸글리콜 및 1,4-부탄디올로 이루어진 군으로부터 선택되는 1종 이상의 글리콜을 포함하는 것을 특징으로 하는 폴리에스테르 수지.
3. The method according to claim 1 or 2,
The glycol component other than 4,4'-biphenyl dimethanol constituting the polyester resin is composed of ethylene glycol, 1,4-cyclohexanedimethanol, 1,3-propanediol, neopentyl glycol and 1,4-butanediol Lt; RTI ID = 0.0 > 1, < / RTI >
제1항 내지 제3항 중 어느 한 항에 있어서,
폴리에스테르 수지의 융점(Tm)과 강온 결정화 온도(Tc2)의 차가 42℃ 이하인 것을 특징으로 하는 폴리에스테르 수지.
4. The method according to any one of claims 1 to 3,
Wherein a difference between a melting point (Tm) of the polyester resin and a crystallization temperature (Tc2) at a temperature lower than 42 占 폚.
제1항 내지 제4항 중 어느 한 항에 있어서,
폴리에스테르 수지의 산가가 1~40 eq/t인 것을 특징으로 하는 폴리에스테르 수지.
5. The method according to any one of claims 1 to 4,
Wherein the polyester resin has an acid value of 1 to 40 eq / t.
제1항 내지 제5항 중 어느 한 항에 기재된 폴리에스테르 수지(A), 산화티탄(B), 섬유상 강화재 및 침상 강화재로 이루어진 군으로부터 선택되는 1종 이상의 강화재(C), 및 비섬유상 또는 비침상 충전재(D)를 함유하고, 폴리에스테르 수지(A) 100 질량부에 대해 산화티탄(B), 강화재(C), 및 비섬유상 또는 비침상 충전재(D)가 각각 0.5~100 질량부, 0~100 질량부 및 0~50 질량부의 비율로 존재하는 것을 특징으로 하는 표면 실장형 LED용 반사판에 사용하기 위한 폴리에스테르 수지 조성물. At least one reinforcing material (C) selected from the group consisting of the polyester resin (A), the titanium oxide (B), the fibrous reinforcement material and the needle reinforcing material according to any one of claims 1 to 5, (B), the reinforcing material (C), and the non-fibrous or non-needle-like filler (D) are contained in an amount of 0.5 to 100 parts by mass, and 0 to 100 parts by mass, respectively, based on 100 parts by mass of the polyester resin (A) To 100 parts by mass and 0 to 50 parts by mass of the polyester resin composition. 제6항에 있어서,
비섬유상 또는 비침상 충전재(D)가 탈크이고, 폴리에스테르 수지(A) 100 질량부에 대해 탈크 0.1~5 질량부의 비율로 함유하는 것을 특징으로 하는 폴리에스테르 수지 조성물.
The method according to claim 6,
Wherein the non-fibrous or non-needle-like filler (D) is talc and contains 0.1 to 5 parts by mass of talc with respect to 100 parts by mass of the polyester resin (A).
제6항 또는 제7항에 있어서,
납땜 리플로우 내열온도가 260℃ 이상인 것을 특징으로 하는 폴리에스테르 수지 조성물.
8. The method according to claim 6 or 7,
Wherein the solder reflow endothermic temperature is 260 占 폚 or higher.
제6항 내지 제8항 중 어느 한 항에 있어서,
납땜 리플로우 내열온도가 280℃ 이상인 것을 특징으로 하는 폴리에스테르 수지 조성물.
9. The method according to any one of claims 6 to 8,
And the solder reflow endothermic temperature is 280 占 폚 or higher.
제6항 내지 제9항 중 어느 한 항에 있어서,
폴리에스테르 수지 조성물의 융해 피크 온도(Tm)가 280℃ 이상이고, 융해 피크 온도(Tm)와 강온 결정화 온도(Tc2)의 차가 42℃ 이하인 것을 특징으로 하는 폴리에스테르 수지 조성물.
10. The method according to any one of claims 6 to 9,
Wherein the polyester resin composition has a melting peak temperature (Tm) of 280 占 폚 or more and a difference between a melting peak temperature (Tm) and a temperature-falling crystallization temperature (Tc2) of 42 占 폚 or less.
제6항 내지 제10항 중 어느 한 항에 기재된 폴리에스테르 수지 조성물을 사용해서 성형하여 얻어지는 것을 특징으로 하는 표면 실장형 LED용 반사판. A reflector for a surface-mount type LED, which is obtained by molding using the polyester resin composition according to any one of claims 6 to 10.
KR1020157035467A 2013-06-03 2014-05-23 Polyester resin, and polyester resin composition for surface-mount-type LED reflective plate which comprises same KR102158764B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013116764 2013-06-03
JPJP-P-2013-116764 2013-06-03
JP2013119893 2013-06-06
JPJP-P-2013-119893 2013-06-06
PCT/JP2014/063679 WO2014196378A1 (en) 2013-06-03 2014-05-23 Polyester resin, and polyester resin composition for surface-mount-type led reflective plate which comprises same

Publications (2)

Publication Number Publication Date
KR20160016858A true KR20160016858A (en) 2016-02-15
KR102158764B1 KR102158764B1 (en) 2020-09-22

Family

ID=52008029

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157035467A KR102158764B1 (en) 2013-06-03 2014-05-23 Polyester resin, and polyester resin composition for surface-mount-type LED reflective plate which comprises same

Country Status (5)

Country Link
JP (1) JP5915948B2 (en)
KR (1) KR102158764B1 (en)
CN (1) CN105246941B (en)
TW (1) TWI599594B (en)
WO (1) WO2014196378A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7065381B2 (en) * 2016-07-19 2022-05-12 パナソニックIpマネジメント株式会社 Manufacturing method of light reflector, base body, light emitting device and base body
GB2567456B (en) * 2017-10-12 2021-08-11 Si Group Switzerland Chaa Gmbh Antidegradant blend
US11220599B2 (en) * 2018-11-26 2022-01-11 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition and article comprising the same
EP3956400B1 (en) * 2019-04-18 2023-06-28 Covestro Intellectual Property GmbH & Co. KG Thermally conductive polycarbonates with improved flame protection by means of barium sulfate
JP6687793B1 (en) * 2019-08-09 2020-04-28 住友化学株式会社 Resin composition and molded article
CN110804284A (en) * 2019-11-29 2020-02-18 江苏胜帆电子科技有限公司 High-strength LCP substrate packaging material and preparation method thereof
CN114685766B (en) * 2020-12-31 2024-02-02 中国石油化工股份有限公司 Modified biodegradable polyester and preparation method thereof
CN113292708A (en) * 2021-05-25 2021-08-24 吉林建筑大学 Bio-based copolyester and preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844699B1 (en) 1970-01-28 1973-12-26
JPH06116373A (en) * 1992-10-02 1994-04-26 Polyplastics Co Copolymer polyester and polyester resin composition
JPH06239982A (en) * 1993-02-16 1994-08-30 Polyplastics Co Copolyester and polyester resin composition
JPH10316741A (en) * 1997-05-20 1998-12-02 Teijin Ltd Material for electronic part adaptable to surface mounting
JP2008231368A (en) 2007-03-23 2008-10-02 Nippon Oil Corp Liquid crystal polyester resin composition excellent in light reflectance and hardness
JP2008544031A (en) 2005-06-17 2008-12-04 イーストマン ケミカル カンパニー Outdoor sign comprising a polyester composition formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
JP2010270177A (en) 2009-05-19 2010-12-02 Mitsubishi Engineering Plastics Corp Flame-retardant polyester resin composition for illumination apparatus reflector using led as light source
JP2011075628A (en) * 2009-09-29 2011-04-14 Sumitomo Chemical Co Ltd Base material for light reflecting component
JP6048833B2 (en) * 2012-02-24 2016-12-21 東洋紡株式会社 Polyester resin composition used for reflector for surface mount LED

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106222A (en) * 1979-02-08 1980-08-14 Toray Ind Inc Preparation of modified polyester
JP4159160B2 (en) * 1999-01-20 2008-10-01 ダイセル化学工業株式会社 Method for purifying acetic acid
JP3679641B2 (en) * 1999-02-05 2005-08-03 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4082836B2 (en) * 1999-11-08 2008-04-30 日本化薬株式会社 Resin composition and cured products thereof
JP2001131397A (en) * 1999-11-08 2001-05-15 Nippon Kayaku Co Ltd Resin compositions and their cured products
JP2009001707A (en) * 2007-06-22 2009-01-08 Toyo Ink Mfg Co Ltd Polyester resin and pressure-sensitive adhesive composition
JP5903732B2 (en) * 2012-02-28 2016-04-13 住友化学株式会社 Liquid crystal polyester composition and molded body
JP5924525B2 (en) * 2012-03-26 2016-05-25 住友化学株式会社 Liquid crystal polyester resin composition and molded body

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844699B1 (en) 1970-01-28 1973-12-26
JPH06116373A (en) * 1992-10-02 1994-04-26 Polyplastics Co Copolymer polyester and polyester resin composition
JPH06239982A (en) * 1993-02-16 1994-08-30 Polyplastics Co Copolyester and polyester resin composition
JPH10316741A (en) * 1997-05-20 1998-12-02 Teijin Ltd Material for electronic part adaptable to surface mounting
JP2008544031A (en) 2005-06-17 2008-12-04 イーストマン ケミカル カンパニー Outdoor sign comprising a polyester composition formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
JP2008544030A (en) 2005-06-17 2008-12-04 イーストマン ケミカル カンパニー Store display including polyester composition
JP2008231368A (en) 2007-03-23 2008-10-02 Nippon Oil Corp Liquid crystal polyester resin composition excellent in light reflectance and hardness
JP2010270177A (en) 2009-05-19 2010-12-02 Mitsubishi Engineering Plastics Corp Flame-retardant polyester resin composition for illumination apparatus reflector using led as light source
JP2011075628A (en) * 2009-09-29 2011-04-14 Sumitomo Chemical Co Ltd Base material for light reflecting component
JP6048833B2 (en) * 2012-02-24 2016-12-21 東洋紡株式会社 Polyester resin composition used for reflector for surface mount LED

Also Published As

Publication number Publication date
WO2014196378A1 (en) 2014-12-11
JPWO2014196378A1 (en) 2017-02-23
KR102158764B1 (en) 2020-09-22
JP5915948B2 (en) 2016-05-11
TWI599594B (en) 2017-09-21
CN105246941A (en) 2016-01-13
CN105246941B (en) 2017-06-16
TW201504274A (en) 2015-02-01

Similar Documents

Publication Publication Date Title
JP6048833B2 (en) Polyester resin composition used for reflector for surface mount LED
KR102158764B1 (en) Polyester resin, and polyester resin composition for surface-mount-type LED reflective plate which comprises same
JP6260085B2 (en) Polyester resin composition for LED reflector
KR101910698B1 (en) Thermoplastic resin composition for led reflector plates
KR101638674B1 (en) Thermoplastic resin composition for reflector, reflector plate, and light-emitting diode element
TW201219486A (en) Liquid crystal polyester composition, reflective plate and light-emitting device
KR101831097B1 (en) Resin composition for reflective material, and reflective panel including same
JP2018059044A (en) Polyester resin composition, method for manufacturing reflection plate, and method for manufacturing light-emitting diode (led) element
TWI554543B (en) Polyester Resin for Surface Mount Type LED Reflector
JP2020019914A (en) Polyester resin composition for reflector and reflector
JP6042271B2 (en) Polyester resin composition for reflector and reflector
JP6221662B2 (en) Polyester resin composition for LED reflector
KR20170008779A (en) Polyester resin composition for reflective materials and reflection plate containing same
KR101762484B1 (en) Thermoplastic Resin Composition Having Excellent Light stability in High Temperature
JP2019142986A (en) Polyester resin composition for reflective material, and reflective material
CN114761488B (en) Thermoplastic resin composition and molded article comprising the same
JP2019143097A (en) Polyester resin composition for reflective material, and reflective material
JP2014132053A (en) Polyester resin composition for molding led light reflector and led light reflector

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant