Nothing Special   »   [go: up one dir, main page]

WO2014192515A1 - 蛍光体材料及びその製造方法 - Google Patents

蛍光体材料及びその製造方法 Download PDF

Info

Publication number
WO2014192515A1
WO2014192515A1 PCT/JP2014/062396 JP2014062396W WO2014192515A1 WO 2014192515 A1 WO2014192515 A1 WO 2014192515A1 JP 2014062396 W JP2014062396 W JP 2014062396W WO 2014192515 A1 WO2014192515 A1 WO 2014192515A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
phosphor material
less
zirconium
metal element
Prior art date
Application number
PCT/JP2014/062396
Other languages
English (en)
French (fr)
Inventor
中島 靖
Original Assignee
第一稀元素化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一稀元素化学工業株式会社 filed Critical 第一稀元素化学工業株式会社
Publication of WO2014192515A1 publication Critical patent/WO2014192515A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/71Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus also containing alkaline earth metals

Definitions

  • the present invention relates to a phosphor material and a manufacturing method thereof.
  • the “phosphor material” in this specification means “a material used for an application utilizing photoluminescence (that is, a phenomenon in which visible light is emitted by ultraviolet irradiation)”.
  • a phosphor material that emits visible light (generally, light having a wavelength of 380 nm or more and less than 830 nm) by ultraviolet irradiation is used for lighting devices, backlights for liquid crystal display devices, and the like.
  • Patent Documents 1 to 3 Many known phosphor materials contain rare earth elements as light emitting elements (for example, Patent Documents 1 to 3). However, rare earth elements have problems such as a small reserve, a limited production country such as China, and a high cost for separation and purification. Therefore, a phosphor material using an element other than a rare earth element as a light emitting element is required.
  • the oxide-based material is excellent in stability, 3.6MgO ⁇ 4CaF 2 ⁇ which a light emitting element and Mn 4+ as a red phosphor GeO 2 : 0.01Mn (for example, Patent Document 4) is known.
  • a green phosphor ZnGa 2 O 4 : Mn (for example, Patent Document 5) using Mn 2+ as a light emitting element is known.
  • ZnO having an oxygen defect as a light emission center for example, Patent Document 6 is known. It has also been shown that faujasite-type zeolite containing Ag ions becomes an orange to green phosphor (for example, Patent Document 7).
  • the above oxide materials also have the following problems.
  • ZnGa 2 O 4: Ga 2 O 3 is the main component of Mn is reserves as with any rare earth element There are few and it is very expensive as a raw material. Ag in zeolite containing Ag ions is also an expensive raw material.
  • An object of the present invention is to provide a phosphor material using an element other than a rare earth element as a light-emitting element, which is an inexpensive phosphor material and has high emission efficiency. Moreover, it aims at providing the manufacturing method.
  • the present invention has found that an oxide-based phosphor material having a specific composition can achieve the above object, and has completed the present invention.
  • this invention relates to the following phosphor material and its manufacturing method.
  • H 1-x Zr 2 P 3 O 12- (x / 2) (1) [Wherein x is 0.005 or more and less than 0.4. ]
  • a phosphor material characterized by the following: 2. (M n + y H 1-ny ) 1-x Zr 2 P 3 O 12- (x / 2) (2) [In the formula, M represents a metal element, and n represents an average valence of the metal element M. Moreover, x is 0.005 or more and less than 0.4, and y is 0.01 or more and less than 0.90 / n. ]
  • a phosphor material characterized by the following: 3.
  • Item 4. The method according to Item 3, which is a method for manufacturing the phosphor material according to Item 1. 5.
  • M represents a metal element, n represents an average valence of the metal element M, and R represents H, H 3 O, or NH 4.
  • y is the number of moles of the metal element M, and y is 0.01 or more and less than 0.90 / n.), and the starting material B is heat-treated at 400 to 850 ° C. in a reducing atmosphere.
  • the phosphor material of the present invention is roughly classified into the phosphor material of the first aspect (not including the metal element M) and the phosphor material of the second aspect (including the metal element M). Can do.
  • the phosphor material of the first aspect is H 1-x Zr 2 P 3 O 12- (x / 2) (1) [Wherein x is 0.005 or more and less than 0.4. ] It is represented by.
  • the phosphor material of the second aspect is (M n + y H 1-ny ) 1-x Zr 2 P 3 O 12- (x / 2) (2)
  • M represents a metal element
  • n represents an average valence of the metal element M.
  • x is 0.005 or more and less than 0.4
  • y is 0.01 or more and less than 0.90 / n.
  • It is represented by.
  • the phosphor material of the first embodiment and the second embodiment is a zirconium phosphate-based phosphor material using an element other than a rare earth element as a light emitting element, and visible light (light having a wavelength of 380 nm or more and less than 830 nm) by ultraviolet irradiation. Is emitted. Specifically, for example, fluorescence (395 nm) is obtained by irradiating excitation light (254 nm).
  • the phosphor material of the present invention can be widely used for phosphor materials such as lighting devices and backlights for liquid crystal display devices.
  • x is 0.005 or more and less than 0.4, x is preferably 0.01 or more and 0.35 or less, and is 0.01 or more and 0.2 or less. More preferred.
  • the range of x is defined as 0.005 or more and less than 0.4.
  • N represents the average valence of the metal element M (details will be described later).
  • M is composed of a trivalent metal element (0.3 mol) and a tetravalent metal element (0.7 mol)
  • Y is 0.01 or more and less than 0.90 / n.
  • y is preferably 0.1 or more and 0.45 or less.
  • the range of y is defined as 0.01 or more and less than 0.90 / n.
  • the metal element M examples include, but are not limited to, alkali metals (Li, Na, K, Rb, Cs, etc.), alkaline earth metals (Be, Mg, Ca, Sr, Ba, Ra), titanium group (Ti , Zr, Hf), vanadium group (V, Nb, Ta), chromium group (Cr, Mo, W), manganese group (Mn, Tc, Re), iron group (Fe, Co, Ni), platinum group (Pd , Pt, etc.), copper group (Cu, Ag, Au), zinc group (Zn, Cd, Hg), boron group (Al, In, etc.), carbon group (Sn, Pb), and the like.
  • These metal elements M can be used alone or in combination of two or more.
  • the metal element M at least one of an alkali metal and an alkaline earth metal is preferable.
  • the phosphor material of the second aspect has pores depending on the embodiment, and the inorganic acid salt and / or organic acid salt of the metal element M is adsorbed on the surface of the phosphor material and / or the pores. You may do it.
  • inorganic acid salts include forms such as nitrates, sulfates, and carbonates.
  • forms, such as an oxalate and acetate, are mentioned as organic acid salt.
  • the method for producing the phosphor material of the present invention is not limited as long as the phosphor materials of the first aspect and the second aspect described above are obtained, respectively, but are produced by the following production method. It is preferable.
  • the phosphor material according to the first aspect is obtained by using a starting material A represented by RZr 2 P 3 O 12 (where R represents H, H 3 O or NH 4 ) in a reducing atmosphere at 400 to 850 ° C. It is preferable to manufacture by the manufacturing method characterized by heat-treating.
  • the phosphor material of the second aspect is M n + y R 1-ny Zr 2 P 3 O 12 (where M represents a metal element, n represents an average valence of the metal element M, R represents H, H 3 O or NH 4 where y is the number of moles of the metal element M, and y is 0.01 or more and less than 0.90 / n). It is preferably produced by a production method characterized by heat treatment at 400 to 850 ° C.
  • the starting material A is crystalline zirconium phosphate represented by RZr 2 P 3 O 12 (where R represents H, H 3 O or NH 4 ), and in particular, zirconium ammonium phosphate (NH 4 Zr 2 P 3 O 12 ) is preferably used as the starting material A.
  • HZr 2 P 3 O 12 is obtained by heat-treating zirconium ammonium phosphate (NH 4 Zr 2 P 3 O 12 ), and by contacting HZr 2 P 3 O 12 with water, (H 3 O ) Zr 2 P 3 O 12 is produced. Details of the generation will be described later.
  • zirconium phosphate ammonium (NH 4 Zr 2 P 3 O 12), zirconium compounds, chemical synthesis using a carboxylic acid compound and phosphoric acid compound, a raw material mixture containing at least one ammonium compounds and ammine compound It is preferable to use those prepared by the method (direct crystal precipitation method). Further, as NH 4 Zr 2 P 3 O 12 prepared by the direct crystal precipitation method, for example, those prepared according to the description in JP-A-60-239313 or commercially available products can be used.
  • a phosphoric acid compound or an aqueous solution thereof is added to a mixed solution containing a zirconium compound and a carboxylic acid compound.
  • the zirconium compound is preferably a zirconium compound that is water-soluble or water-soluble by an acid.
  • zirconium halides such as zirconium oxychloride, zirconium hydroxide chloride, zirconium tetrachloride and zirconium bromide; zirconium salts of mineral acids such as zirconium sulfate, basic zirconium sulfate and zirconium nitrate; organic acids such as zirconyl acetate and zirconyl formate
  • Zirconium salts such as ammonium zirconium carbonate, sodium zirconium sulfate, ammonium zirconium acetate, sodium zirconium oxalate, and zirconium ammonium citrate can be used.
  • zirconium compounds at least one of zirconium oxychloride and zirconium sulfate is preferable.
  • an aliphatic polycarboxylic acid and a salt thereof that are water-soluble or water-soluble by an acid and have two or more carboxyl groups (—COOH) are preferable.
  • aliphatic dibasic acids and salts thereof such as oxalic acid, sodium oxalate, sodium hydrogen oxalate, ammonium oxalate, ammonium hydrogen oxalate, lithium oxalate, maleic acid, malonic acid, succinic acid and salts thereof;
  • Examples thereof include aliphatic oxyacids such as citric acid, ammonium citrate, tartaric acid and malic acid, and salts thereof.
  • oxalic acid and at least one of its sodium salt and ammonium salt are preferable.
  • the phosphoric acid compound is preferably water-soluble or water-soluble by acid.
  • alkali metal and ammonium salts of orthophosphoric acid such as phosphoric acid, monobasic sodium phosphate, dibasic ammonium phosphate, and tribasic sodium phosphate; at least one P—O—P such as metaphosphoric acid and pyrophosphoric acid
  • P—O—P such as metaphosphoric acid and pyrophosphoric acid
  • alkali metal salts and ammonium salts of condensed phosphoric acid having a bond At least one ammonium salt of phosphoric acid and orthophosphoric acid is preferable.
  • ammonium compound a compound that is water-soluble or water-soluble by an acid is preferable.
  • the ammonium compound include inorganic ammonium compounds such as ammonium chloride, ammonium sulfate, ammonium nitrate, and ammonium hydrogen carbonate; and organic ammonium compounds such as tetrapropylammonium hydroxide and tetraethylammonium hydroxide.
  • inorganic ammonium compounds such as ammonium chloride, ammonium sulfate, ammonium nitrate, and ammonium hydrogen carbonate
  • organic ammonium compounds such as tetrapropylammonium hydroxide and tetraethylammonium hydroxide.
  • at least 1 sort (s) of the above-mentioned zirconium compound, carboxylic acid compound, and phosphoric acid compound is an ammonium containing compound, they can also be considered and used as an ammonium ion source.
  • ammonium compound among the above, at least one of ammonium phosphate, aqueous ammonia, ammonium chloride, and ammonium oxalate is more preferable.
  • the ratio of the zirconium compound (as Zr), the carboxylic acid compound (as C 2 O 4 ), and the phosphoric acid compound (as PO 4 ) in the raw material mixed solution is A (28, 3, 69), B (63, 6, 31), C (44, 43, 13) and D (1, 97, 2) are within a region surrounded by a straight line, and Zr is It is desirable to adjust so that the ammonium compound is about 0.2 to 100 mol per mol.
  • the form of the raw material mixed solution in which each component is uniformly dissolved or dispersed may be either a solution or a slurry containing undissolved excess raw material.
  • the concentration of the raw material mixture is preferably adjusted to a concentration at which Zr is 0.01 to 25% by mass, particularly 0.1 to 10% by mass.
  • a dilute solution having a Zr of less than 0.01% by mass may be economically disadvantageous because it takes a long time to crystallize the target product.
  • Zr exceeds 25% by mass carboxylate, phosphate and the like are precipitated as crystals, which may make it difficult to filter and wash the crystalline zirconium phosphate as a product.
  • the pH of the raw material mixture is not limited, but is preferably 10 or less, more preferably 0.5 to 7. When the pH exceeds 10, crystalline zirconium phosphate having a low crystallinity tends to be generated.
  • pH adjusters used for adjusting the pH of the raw material mixture include mineral acids such as hydrochloric acid, sulfuric acid and nitric acid; ammonium and alkali such as ammonium hydroxide, ammonium hydrogen carbonate, sodium hydroxide, potassium hydroxide and sodium carbonate. Examples are metal hydroxides and carbonates.
  • reaction temperature of the raw material mixture (in the present invention, the reaction of each component and the crystallization reaction of crystalline zirconium phosphate by aging are collectively referred to as reaction) is preferably 50 ° C. or higher. If the reaction temperature is less than 50 ° C., it takes a long time to crystallize the target product, which may be economically disadvantageous.
  • the upper limit of the reaction temperature is not limited, but may be about 200 ° C. from the viewpoint of economy and the like.
  • the reaction time varies depending on the type of raw material (that is, the reactivity of the raw material); the mixing ratio of the raw material; the concentration, temperature and pH of the raw material mixture; the desired crystallinity of the reaction product, etc. It is preferable that it is a grade.
  • the produced NH 4 Zr 2 P 3 O 12 is subjected to solid-liquid separation by known means such as filtration, decantation, and centrifugation, washed, and then dehydrated and dried according to a conventional method.
  • a drying method in addition to heat drying or air drying, a method of removing adsorbed water with a drying agent such as phosphorus pentoxide, calcium chloride, silica gel, or the like can be applied.
  • the obtained NH 4 Zr 2 P 3 O 12 is put into various ceramic crucibles such as alumina or platinum crucible and heat-treated at about 500 to about 700 ° C. for about 1 hour to about 5 hours, so that HZr 2 It can be changed to P 3 O 12 .
  • HZr 2 P 3 O 12 generally has a chemically and thermally stable three-dimensional network structure, and partially contains ammonium ions, hydrogen ions, H 2 O molecules having a small molecular diameter, and the like. It has a zeolitic tunnel structure contained in the microscopic pores of the network structure.
  • These crystalline zirconium phosphates are represented by the general formula shown at the beginning: RZr 2 P 3 O 12 (where R represents H, H 3 O or NH 4 ), and can be used as the starting material A. it can.
  • the starting material B which is a material for producing the phosphor material of the second aspect, can be prepared using the starting material A.
  • the starting material B can be prepared by preparing a mixed solution containing the starting material A and the metal element M, and heat-treating the mixed solution or one obtained by evaporating and drying the mixed solution.
  • the metal element M examples include, but are not limited to, alkali metals (Li, Na, K, Rb, Cs, etc.), alkaline earth metals (Be, Mg, Ca, Sr, Ba, Ra), titanium group (Ti , Zr, Hf), vanadium group (V, Nb, Ta), chromium group (Cr, Mo, W), manganese group (Mn, Tc, Re), iron group (Fe, Co, Ni), platinum group (Pd , Pt, etc.), copper group (Cu, Ag, Au), zinc group (Zn, Cd, Hg), boron group (Al, In, etc.), carbon group (Sn, Pb), and the like.
  • These metal elements M can be used alone or in combination of two or more.
  • the metal element M at least one of an alkali metal and an alkaline earth metal is preferable.
  • the solvent of the mixed solution is not limited as long as the cation of the metal element M can exist stably, and water is optimal from the economical and environmental aspects. Further, it may be acidic (for example, hydrochloric acid, sulfuric acid, nitric acid or an aqueous solution thereof) or alkaline (for example, aqueous ammonia).
  • acidic for example, hydrochloric acid, sulfuric acid, nitric acid or an aqueous solution thereof
  • alkaline for example, aqueous ammonia
  • the metal element M can be introduced into the crystalline zirconium phosphate.
  • the metal element M can be adsorbed on the surface and / or pores of crystalline zirconium phosphate in the form of inorganic acid salt or organic acid salt. Therefore, as a result, even when the ratio exceeds 1 / n, the fluorescence characteristic is expressed.
  • the above mixed solution can also be prepared by mixing a solution having a metal ion concentration of the metal element M of 500 ppm by weight or less (particularly 250 ppm by weight or less) with crystalline zirconium phosphate.
  • a solution having a metal ion concentration of the metal element M of 500 ppm by weight or less (particularly 250 ppm by weight or less) with crystalline zirconium phosphate By the method of the present invention, even when the metal element M has a small metal ion content, the metal ions can be effectively adsorbed.
  • the lower limit value of the metal ion concentration of the metal element M is not particularly limited, but is usually about 10 ppm by weight.
  • the heat treatment conditions for the heat treatment of the mixed solution or the evaporated and dried product thereof are that crystalline zirconium phosphate is changed to HZr 2 P 3 O 12 by heat treatment, and ion substitution between H in the molecule and the metal element M is performed. There is no limitation as long as the conditions are satisfied.
  • the heat treatment condition is preferably about 600 to 800 ° C., more preferably about 650 to 750 ° C.
  • the heat treatment atmosphere at this time is not particularly limited, and can be performed in the air. After the heat treatment, for example, the starting material B (M n + y R 1-ny Zr 2 P 3 O 12 ) can be obtained through washing and drying in pure water.
  • the phosphor material of the first aspect and the phosphor material of the second aspect are obtained by heat-treating the starting material A and the starting material B, respectively, in a reducing atmosphere at 400 to 850 ° C.
  • the heat treatment temperature may be 400 to 850 ° C, and 600 to 800 ° C is particularly preferable.
  • the range of x in the general formula of the phosphor material may not be 0.005 or more and less than 0.4, which is not preferable.
  • the heat treatment time can be appropriately set according to the heat treatment temperature, but generally a short time is required when the heat treatment is performed at a high temperature, and a long time is required when the heat treatment is performed at a low temperature.
  • the heat treatment can be performed under normal pressure, but can also be performed under pressure.
  • the pressure in the case of carrying out under pressure is not limited, but generally it is preferably about 0.1 to 40 MPa.
  • the reducing atmosphere is not limited.
  • a reducing gas containing at least one of hydrogen and carbon monoxide can be used.
  • the present invention is characterized in that heat treatment is performed in a reducing atmosphere, and a phosphor material having desired fluorescence characteristics cannot be obtained even if heat treatment is performed in an air atmosphere or an oxidizing atmosphere.
  • the volatile metal element M does not flow out of the autoclave, so that the peripheral equipment is not eroded and no special material equipment is required. It will be advantageous.
  • the phosphor material of the present invention is a zirconium phosphate-based phosphor material using an element other than a rare earth element as a light-emitting element, and emits visible light (light having a wavelength of 380 nm or more and less than 830 nm) by ultraviolet irradiation. Specifically, for example, fluorescence (395 nm) is obtained by irradiating excitation light (254 nm).
  • the phosphor material of the present invention can be widely used for phosphor materials such as lighting devices and backlights for liquid crystal display devices.
  • Preferred zirconium compound (as Zr), carboxylic acid compound (as C 2 O 4 ), and phosphoric acid compound (as PO 4 ) in the raw material mixture when preparing NH 4 Zr 2 P 3 O 12 by direct crystal precipitation method It is a molar ratio triangular component figure which shows a ratio (area
  • FIG. (1) relates to Experimental Example 2, and shows the results of thermogravimetric analysis (TG) -differential thermal analysis (DTA) of NH 4 Zr 2 P 3 O 12 (the pyrolysis product is HZr 2 P 3 O 12).
  • TG thermogravimetric analysis
  • DTA thermodifferential thermal analysis
  • Experimental Example 1 (phosphor material of the first aspect) HZr 2 P 3 obtained by heat-treating NH 4 Zr 2 P 3 O 12 prepared by the direct crystal precipitation method at 575 ° C. for 5 hours in the atmosphere as crystalline zirconium phosphate (sample 1) used in Experimental Example 1 the O 12 was prepared.
  • Sample 1 was placed in an alumina boat and subjected to a reduction heat treatment for 2 hours at 350 to 900 ° C. (12 kinds of temperatures shown in Table 1) in a 3 mass% H 2 (N 2 balance) gas stream.
  • Table 1 shows the relative fluorescence intensity value and chemical composition at 395 nm with excitation light of 254 nm in each reduction heat treatment product.
  • the relative fluorescence intensity value was measured using an absolute PL electron yield measuring device (Quantaurus-QY, C11347-01) manufactured by Hamamatsu Photonics Co., Ltd.
  • the reduction heat-treated product at 350 ° C. maintained the H 1.00 Zr 2 P 3 O 12.000 composition before the reduction heat treatment.
  • the chemical composition of the heat-treated reduction product at 400 to 850 ° C. was a chemical composition in which hydrogen and oxygen escaped from zirconium phosphate. The amount of hydrogen and oxygen released from the zirconium phosphate increased as the reduction heat treatment temperature increased.
  • the cell volume of the reduced heat treatment was smaller than the cell volume of the atmospheric heat treatment. This supports the phenomenon that hydrogen and oxygen escaped from zirconium phosphate by the reduction heat treatment, as can be seen from the chemical composition results shown in Table 1.
  • FIG. 2 shows the fluorescence spectrum and excitation spectrum of the reduced heat-treated product at 700 ° C. that showed the highest relative fluorescence intensity value. Moreover, the internal quantum yield of this heat-reduced product was 41%, the absorption rate was 43%, and the external quantum yield was 18%. Further, the fluorescence lifetime of this reduced heat-treated product was measured with a small fluorescence lifetime measuring device (Quantaurus-Tau, C11267-01) manufactured by Hamamatsu Photonics Co., Ltd., and found to be 6.4 ns.
  • a small fluorescence lifetime measuring device Quantantaurus-Tau, C11267-01
  • Experimental Example 2 (phosphor material of the first aspect) As crystalline zirconium phosphate (sample 2) used in Experimental Example 2, NH 4 Zr 2 P 3 O 12 prepared by a direct crystal precipitation method was prepared.
  • Sample 2 was placed in an alumina boat and subjected to reduction heat treatment for 2 hours at 400 to 900 ° C. (same as twelve temperatures shown in Table 1) in a 3% by mass H 2 (N 2 balance) gas stream. Further, heat treatment was performed for 2 hours at 400 to 900 ° C. (same as twelve kinds of temperatures shown in Table 1) in an air atmosphere.
  • thermogravimetric analysis of Sample 2 measured at a heating rate of 10 ⁇ min ⁇ 1 in an air stream of 20 ml ⁇ min ⁇ 1 shown in FIG. (TG) —As is clear from the results of differential thermal analysis (DTA), Sample 2: NH 4 Zr 2 P 3 O 12 is temporarily changed to HZr 2 P 3 O 12 by heat treatment at 350 ° C. or higher for 2 hours. Further, this is considered to be due to the change to H 1-X Zr 2 P 3 O 12- (X / 2) .
  • Experimental Example 3 (phosphor material of the first aspect) (H 3 O) Zr 2 P 3 O 12 was prepared as crystalline zirconium phosphate (sample 3) used in Experimental Example 3. Specifically, be immersed 3 days HZr 2 P 3 O 12 where the NH 4 Zr 2 P 3 O 12 prepared from direct crystallization method was obtained by heat treatment for 5 hours at 575 ° C. in air into pure water (H 3 O) Zr 2 P 3 O 12 was obtained.
  • Sample 3 was placed in an alumina boat and subjected to a reduction heat treatment for 2 hours at 400 to 900 ° C. (same as twelve temperatures shown in Table 1) in a 3% by mass H 2 (N 2 balance) gas stream. Further, heat treatment was performed for 2 hours at 400 to 900 ° C. (same as twelve kinds of temperatures shown in Table 1) in an air atmosphere.
  • Experimental Example 4 (phosphor material of the second aspect) HZr 2 P 3 obtained by heat-treating NH 4 Zr 2 P 3 O 12 prepared by the direct crystal precipitation method at 575 ° C. for 5 hours in the atmosphere as crystalline zirconium phosphate (sample 4) used in Experimental Example 4 the O 12 was prepared.
  • Li y R 1-y Zr 2 P 3 O 12 (y: less than 0.90) and Sr y R 1-2y Zr 2 P 3 O 12 (y: less than 0.45) were put in an alumina boat, respectively.
  • Reductive heat treatment was performed for 2 hours at 400 to 900 ° C. (same as 11 kinds of temperatures shown in Table 1) in a 3 mass% H 2 (N 2 balance) gas stream.
  • the relative fluorescence intensity values at 395 nm with excitation light of 254 nm of all the heat-treated products were all 0.10 or more.
  • Li y R 1-y Zr 2 P 3 O 12 (y: 0.90 or more) and Sr y R 1-2y Zr 2 P 3 O 12 (y: 0.45 or more) were each used as an alumina boat. Then, reduction heat treatment was performed for 2 hours at 400 to 900 ° C. (the same as 11 kinds of temperatures shown in Table 1) in a gas flow of 3 mass% H 2 (N 2 balance). The relative fluorescence intensity values at 395 nm with excitation light of 254 nm of each heat-treated product were all 0.05 or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

 本発明は、発光元素として希土類元素以外の元素を用いた蛍光体材料であって、原料が安価であり且つ発光効率が高い酸化物系の蛍光体材料を提供する。 本発明は、具体的には、H1-xZr12-(x/2) (1) 〔式中、xは0.005以上0.4未満である。〕 で表されることを特徴とする蛍光体材料、並びに、 (Mn+ 1-ny1-xZr12-(x/2) (2) 〔式中、Mは金属元素を示し、nは金属元素Mの平均価数を示す。また、xは0.005以上0.4未満であり、yは0.01以上0.90/n未満である。〕 で表わされることを特徴とする蛍光体材料を提供する。

Description

蛍光体材料及びその製造方法
 本発明は、蛍光体材料及びその製造方法に関する。
 なお、本明細書における「蛍光体(phosphor)材料」とは、「フォトルミネセンス(photoluminescence、即ち紫外線照射によって可視光を発光する現象)を利用する用途に用いられる材料」を意味する。
 紫外線照射によって可視光(一般に波長が380nm以上830nm未満の光)を発光する蛍光体材料は、照明装置、液晶表示装置用バックライト等に使用されている。
 従来の蛍光体材料には、発光元素として希土類元素を含有するものが多く知られている(例えば、特許文献1~3)。しかしながら、希土類元素は、埋蔵量が少ないこと、産出国が中国などに限定されていること、分離精製コストが高いこと等の問題がある。そこで、発光元素として希土類元素以外の元素を用いた蛍光体材料が求められている。
 発光元素として希土類元素以外の元素を用いた蛍光体材料の中で、安定性の優れている酸化物系材料としては、赤色蛍光体としてはMn4+を発光元素とした3.6MgO・4CaF・GeO:0.01Mn(例えば、特許文献4)が知られている。緑色蛍光体としてはMn2+を発光元素としたZnGa:Mn(例えば、特許文献5)が知られている。緑色及び青色蛍光体としては、酸素欠陥を発光中心としたZnO(例えば、特許文献6)が知られている。また、Agイオンを含有するフォージャサイト型ゼオライトが橙色~緑色蛍光体になることも示されている(例えば、特許文献7)。
 しかしながら、上記酸化物系材料にも次のような問題がある。例えば、3.6MgO・4CaF・GeO:0.01Mnの主成分であるGeO,ZnGa:Mnの主成分であるGaは、いずれも希土類元素と同様に埋蔵量が少なく、原料として極めて高価である。また、Agイオンを含有するゼオライト中のAgも高価な原料である。更に、3.6MgO・4CaF・GeO:0.01Mn,ZnGa:Mn,ZnGa:ZnO,Agイオンを含有するゼオライトのいずれも、発光元素として希土類元素を用いた蛍光体材料と比べて発光輝度が低い。
 よって、発光元素として希土類元素以外の元素を用いた蛍光体材料であって、原料が安価であり且つ発光効率が高い酸化物系の蛍光体材料の開発が望まれている。
特表2000-516296号公報 特開2005-48107号公報 特開2008-69290号公報 特開2008-202044号公報 特開2000-80363号公報 特開2006-233047号公報 特開2012-52102号公報
 本発明は、発光元素として希土類元素以外の元素を用いた蛍光体材料であって、原料が安価であり且つ発光効率が高い酸化物系の蛍光体材料を提供することを目的とする。また、その製造方法を提供することを目的とする。
 本発明は、上記目的を達成すべく鋭意研究を重ねた結果、特定の組成からなる酸化物系の蛍光体材料が上記目的を達成できることを見出し、本発明を完成するに至った。
 即ち、本発明は、下記の蛍光体材料及びその製造方法に関する。
1.H1-xZr12-(x/2) (1)
〔式中、xは0.005以上0.4未満である。〕
で表されることを特徴とする蛍光体材料。
2.(Mn+ 1-ny1-xZr12-(x/2) (2)
〔式中、Mは金属元素を示し、nは金属元素Mの平均価数を示す。また、xは0.005以上0.4未満であり、yは0.01以上0.90/n未満である。〕
で表されることを特徴とする蛍光体材料。
3.RZr12(但し、RはH、HO又はNHを示す。)で表される出発原料Aを還元性雰囲気中400~850℃で熱処理することを特徴とする蛍光体材料の製造方法。
4.上記項1に記載の蛍光体材料の製造方法である、上記項3に記載の製造方法。
5.Mn+ 1-nyZr12(但し、Mは金属元素を示し、nは金属元素Mの平均価数を示し、RはH、HO又はNHを示す。また、yは金属元素Mのモル数であり、yは0.01以上0.90/n未満である。)で表される出発原料Bを還元性雰囲気中400~850℃で熱処理することを特徴とする蛍光体材料の製造方法。
6.上記項2に記載の蛍光体材料の製造方法である、上記項5に記載の製造方法。
 以下、本発明の蛍光体材料及びその製造方法について詳細に説明する。
 本発明の蛍光体材料
 本発明の蛍光体材料は、第一態様の蛍光体材料(金属元素Mを含まない)と第二態様の蛍光体材料(金属元素Mを含む)とに大別することができる。
 第一態様の蛍光体材料は、H1-xZr12-(x/2) (1)
〔式中、xは0.005以上0.4未満である。〕
で表されることを特徴とする。
 また、第二態様の蛍光体材料は、(Mn+ 1-ny1-xZr12-(x/2) (2)
〔式中、Mは金属元素を示し、nは金属元素Mの平均価数を示す。また、xは0.005以上0.4未満であり、yは0.01以上0.90/n未満である。〕
で表されることを特徴とする。
 第一態様及び第二態様の蛍光体材料は、発光元素として希土類元素以外の元素を用いたリン酸ジルコニウム系の蛍光体材料であり、紫外線照射によって可視光(波長が380nm以上830nm未満の光)を発光する。具体的には、例えば、励起光(254nm)を照射することにより、蛍光(395nm)が得られる。
 それにより、本発明の蛍光体材料は、照明装置、液晶表示装置用バックライト等をはじめとする蛍光体材料の用途に幅広く利用することができる。
 第一態様の蛍光体材料において、xは0.005以上0.4未満であり、xは0.01以上0.35以下であることが好ましく、0.01以上0.2以下であることがより好ましい。なお、xが0.005未満の場合には、得られる蛍光強度が弱くなり、0.4以上の場合にも蛍光強度が低下する。そのため、本発明ではxの範囲は0.005以上0.4未満と規定している。
 第二態様の蛍光体材料において、xの範囲の説明は上記と同じである。
 nは金属元素M(詳細は後述)の平均価数を示す。例えば、1モルのMが、3価の金属元素(0.3モル)と4価の金属元素(0.7モル)とで構成されている場合には、平均価数は(3×0.3+4×0.7)/(0.3+0.7)=3.7である。
 yは0.01以上0.90/n未満である。yは0.1以上0.45以下であることが好ましい。なお、yが0.01未満の場合には、得られる蛍光強度が弱くなり、0.90/n以上の場合にも蛍光強度が低下する。そのため、本発明ではyの範囲は0.01以上0.90/n未満と規定している。
 金属元素Mは、限定的ではないが、例えば、アルカリ金属(Li、Na、K、Rb、Cs等)、アルカリ土類金属(Be、Mg、Ca、Sr、Ba、Ra)、チタン族(Ti、Zr、Hf)、バナジウム族(V、Nb、Ta)、クロム族(Cr、Mo、W)、マンガン族(Mn、Tc、Re)、鉄族(Fe、Co、Ni)、白金族(Pd、Pt等)、銅族(Cu、Ag、Au)、亜鉛族(Zn、Cd、Hg)、ホウ素族(Al、In等)、炭素族(Sn、Pb)等が挙げられる。これらの金属元素Mは単独又は2種以上を組み合わせて使用することができる。これらの中でも、金属元素Mとして、アルカリ金属及びアルカリ土類金属の少なくとも1種が好ましい。
 なお、第二態様の蛍光体材料は、実施形態によっては細孔を有しており、蛍光体材料の表面及び/又は前記細孔に金属元素Mの無機酸塩及び/又は有機酸塩が吸着していてもよい。無機酸塩としては、例えば、硝酸塩、硫酸塩、炭酸塩等の形態が挙げられる。また、有機酸塩としては、シュウ酸塩、酢酸塩等の形態が挙げられる。
 本発明の蛍光体材料の製造方法
 本発明の蛍光体材料の製造方法は、上記説明した第一態様及び第二態様の蛍光体材料がそれぞれ得られる限り限定されないが、下記の製造方法により製造することが好ましい。
 即ち、第一態様の蛍光体材料は、RZr12(但し、RはH、HO又はNHを示す。)で表される出発原料Aを還元性雰囲気中400~850℃で熱処理することを特徴とする製造方法により製造することが好ましい。
 また、第二態様の蛍光体材料は、Mn+ 1-nyZr12(但し、Mは金属元素を示し、nは金属元素Mの平均価数を示し、RはH、HO又はNHを示す。また、yは金属元素Mのモル数であり、yは0.01以上0.90/n未満である。)で表される出発原料Bを還元性雰囲気中400~850℃で熱処理することを特徴とする製造方法により製造することが好ましい。
 先ず、出発原料A及び出発原料Bについてそれぞれ説明する。
 出発原料Aは、RZr12(但し、RはH、HO又はNHを示す。)で表される結晶質リン酸ジルコニウムであり、特にリン酸ジルコニウムアンモニウム(NHZr12)を出発原料Aとすることが好ましい。なお、リン酸ジルコニウムアンモニウム(NHZr12)を熱処理することにより、HZr12が得られ、HZr12を水と接触させることにより、(HO)Zr12が生成する。これらの生成について詳しくは後述する。
 上記リン酸ジルコニウムアンモニウム(NHZr12)としては、ジルコニウム化合物、カルボン酸化合物及びリン酸化合物と、アンモニウム化合物及びアンミン化合物の少なくとも1種とを含む原料混合液を用いた化学合成方法(直接結晶析出法)により調製されたものを使用することが好ましい。また、直接結晶析出法より調製されるNHZr12としては、例えば、特開昭60-239313号公報などの記載に準じて調製したもの又は市販品を使用することもできる。
 以下、上記ジルコニウム化合物、カルボン酸化合物及びリン酸化合物と、アンモニウム化合物及びアンミン化合物の少なくとも1種とを含む原料混合液を用いた化学合成方法(直接結晶析出法)について説明する。
 当該調製方法では、具体的に、先ず、ジルコニウム化合物及びカルボン酸化合物を含む混合液に対して、リン酸化合物又はその水溶液を加える。
 上記ジルコニウム化合物としては、水溶性又は酸により水可溶性となるジルコニウム化合物が好ましい。例えば、オキシ塩化ジルコニウム、ヒドロオキシ塩化ジルコニウム、四塩化ジルコニウム、臭化ジルコニウム等のハロゲン化ジルコニウム;硫酸ジルコニウム、塩基性硫酸ジルコニウム、硝酸ジルコニウム等の鉱酸のジルコニウム塩;酢酸ジルコニル、ギ酸ジルコニル等の有機酸のジルコニウム塩;炭酸ジルコニウムアンモニウム、硫酸ジルコニウムナトリウム、酢酸ジルコニウムアンモニウム、シュウ酸ジルコニウムナトリウム、クエン酸ジルコニウムアンモニウム等のジルコニウム錯塩等が使用できる。これらのジルコニウム化合物の中では、オキシ塩化ジルコニウム及び硫酸ジルコニウムの少なくとも1種が好ましい。
 カルボン酸化合物としては、水溶性又は酸により水可溶性となり、且つ、カルボキシル基(-COOH)を2個以上有する脂肪族ポリカルボン酸及びその塩が好ましい。例えば、シュウ酸、シュウ酸ナトリウム、シュウ酸水素ナトリウム、シュウ酸アンモニウム、シュウ酸水素アンモニウム、シュウ酸リチウム、マレイン酸、マロン酸、コハク酸及びこれらの塩類等の脂肪族二塩基酸及びその塩類;クエン酸、クエン酸アンモニウム、酒石酸、リンゴ酸等の脂肪族オキシ酸及びそれらの塩類等が挙げられる。これらの中では、シュウ酸並びにそのナトリウム塩及びアンモニウム塩の少なくとも1種が好ましい。
 リン酸化合物は、水溶性又は酸により水可溶性となるものが好ましい。例えば、リン酸、第一リン酸ナトリウム、第二リン酸アンモニウム、第三リン酸ナトリウム等のオルトリン酸のアルカリ金属塩及びアンモニウム塩;メタリン酸、ピロリン酸等の少なくとも1個のP-O-P結合を有する縮合リン酸のアルカリ金属塩及びアンモニウム塩等が挙げられる。これらの中では、リン酸及びオルトリン酸のアンモニウム塩の少なくとも1種が好ましい。
 次に、得られた混合液に対して、アンモニウム化合物及びアンミン化合物の少なくとも1種を添加する。
 アンモニウム化合物としては、水溶性又は酸により水可溶性となる化合物が好ましい。アンモニウム化合物としては、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、炭酸水素アンモニウム等の無機アンモニウム化合物;水酸化テトラプロピルアンモニウム、水酸化テトラエチルアンモニウム等の有機アンモニウム化合物等が挙げられる。なお、前述のジルコニウム化合物、カルボン酸化合物及びリン酸化合物の少なくとも1種がアンモニウム含有化合物である場合には、それらをアンモニウムイオン源ともみなして使用することもできる。
 アンモニウム化合物としては、上記の中でもリン酸アンモニウム、アンモニア水、塩化アンモニウム及びシュウ酸アンモニウムの少なくとも1種がより好ましい。
 各成分の混合に際しては攪拌を行うことが望ましい。特にリン酸又はその水溶液を添加する際には、部分的にリン酸濃度が高くなる状態をなるべく回避できるように十分に攪拌を行うことが望ましい。
 原料混合液は、ジルコニウム化合物(Zrとして)、カルボン酸化合物(Cとして)及びリン酸化合物(POとして)の割合が、図1に示すモル比三角成分図において、A(28、3、69)、B(63、6、31)、C(44、43、13)及びD(1、97、2)の各点を結ぶ直線で囲まれた領域内に入り、且つ、Zrが1モル当りアンモニウム化合物が0.2~100モル程度となるように調節することが望ましい。
 原料混合液中の各成分の組成比が上記領域外となる場合には、結晶化速度が遅い、収率が低い、非晶質生成物が混在するする、未反応原料が残存する、所望外の結晶形を含む結晶質となる等の問題点の1又は2以上が生じるおそれがある。
 各成分を均一に溶解又は分散させた原料混合液の形態は、溶液又は未溶解の過剰原料を含むスラリー状のいずれであってもよい。
 原料混合液の濃度は、Zrが0.01~25質量%、特に0.1~10質量%となる濃度に調整することが好ましい。Zrが0.01質量%未満の稀薄溶液では、目的生成物の晶出に長時間を要するので経済的に不利になるおそれがある。一方、Zrが25質量%を上回る場合には、カルボン酸塩、リン酸塩等が結晶として析出するので、生成物たる結晶質リン酸ジルコニウムの濾過及び水洗が困難となるおそれがある。
 上記原料混合液のpHは限定的ではないが、10以下であることが好ましく、特に0.5~7であることがより好ましい。上記pHが10を超える場合には、結晶化度の低い結晶質リン酸ジルコニウムが生成される傾向がある。原料混合液のpHを調整する際に用いるpH調整剤としては、塩酸、硫酸、硝酸等の鉱酸;水酸化アンモニウム、炭酸水素アンモニウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等のアンモニウム及びアルカリ金属の水酸化物及び炭酸塩が例示される。
 原料混合液の反応温度(本発明においては、各成分の反応及び熟成による結晶質リン酸ジルコニウムの晶出反応を一括して反応という)は、50℃以上とすることが好ましい。反応温度が50℃未満では、目的生成物の晶出に長時間を要するので経済的に不利になるおそれがある。
 反応温度の上限は限定されないが、経済性等の観点からは200℃程度とすればよい。反応時間は、原料の種類(即ち原料の反応性);原料の配合比;原料混合液の濃度、温度及びpH;反応生成物の所望の結晶化度等により異なるが、通常30分~20日程度であることが好ましい。
 生成したNHZr12は、濾過、デカンテーション、遠心分離等の公知の手段によって固液分離し、洗浄した後、常法に従って脱水・乾操する。乾操方法としては、加熱乾操又は風乾の他、五酸化リン、塩化カルシウム、シリカゲル等の乾燥剤により吸着水を除去する方法等が適用できる。また、必要に応じて800℃以下で加熱処理してもよい。なお、加熱処理温度が800℃を超える場合には、所望の結晶形が変形して二リン酸ジルコニウム(ZrP)等に変換される場合がある。
 得られたNHZr12は、アルミナをはじめとする各種セラミックス製坩堝又は白金坩堝に入れて、約500~約700℃で約1時間~約5時間熱処理することにより、HZr12に変化させることができる。
 また、HZr12は、一般的に、化学的及び熱的に安定な三次元網状構造を有しており、アンモニウムイオン、水素イオン、分子径の小さいHO分子等を部分的に網目構造のミクロな細孔中に含むゼオライト状トンネル構造を備えている。
 HZr12は、大気中に放置すると、大気中の水分とHZr12のHが置換して、H1-Z(HO)Zr12(Z=0~1)が得られることが知られており、水と接触させることにより、同様の変化が起こり、最終的には(HO)Zr12に変化させることができる。
 このように、NHZr12を熱処理することによりHZr12が生成し、HZr12が吸水することによりH1-X(HO)Zr12(Z=0~1)を経て、最終的には(HO)Zr12が生成する。これらの結晶質リン酸ジルコニウムは、冒頭で示した一般式:RZr12(但し、RはH、HO又はNHを示す。)で表され、出発原料Aとして用いることができる。
 第二態様の蛍光体材料を製造するための原料となる出発原料Bは、出発原料Aを用いて調製することができる。具体的には、出発原料Aと金属元素Mとを含有する混合液を調製し、当該混合液又はそれを蒸発乾固したものを熱処理することにより出発原料Bを調製することができる。
 金属元素Mは、限定的ではないが、例えば、アルカリ金属(Li、Na、K、Rb、Cs等)、アルカリ土類金属(Be、Mg、Ca、Sr、Ba、Ra)、チタン族(Ti、Zr、Hf)、バナジウム族(V、Nb、Ta)、クロム族(Cr、Mo、W)、マンガン族(Mn、Tc、Re)、鉄族(Fe、Co、Ni)、白金族(Pd、Pt等)、銅族(Cu、Ag、Au)、亜鉛族(Zn、Cd、Hg)、ホウ素族(Al、In等)、炭素族(Sn、Pb)等が挙げられる。これらの金属元素Mは単独又は2種以上を組み合わせて使用することができる。これらの中でも、金属元素Mとして、アルカリ金属及びアルカリ土類金属の少なくとも1種が好ましい。
 混合液の溶媒は、金属元素Mの陽イオンが安定して存在できればよく、水が経済面及び環境面から最適である。また、酸性(例えば、塩酸、硫酸、硝酸等又はこれらの水溶液)又はアルカリ性(例えば、アンモニア水)のいずれであってもよい。
 結晶質リン酸ジルコニウム(RZr12(但し、RはH、HO又はNHを示す。))と金属元素Mの配合割合は、結晶質リン酸ジルコニウムに対して金属元素M(n=価数)をモル比で換算して、1/0.6n以下が好ましく、1/0.8n以下がより好ましく、1/n以下が最も好ましい。
 具体的には、n=3の金属元素Mを用いる場合は、結晶質リン酸ジルコニウム1モルに対して金属元素Mを約0.56モル(1/1.8=約0.56)以下に設定することが好ましく。約0.42モル(1/2.4=約0.42)以下に設定することがより好ましく、約0.33モル(1/3=約0.33)以下に設定することが最も好ましい。
 かかる比率に設定することにより、結晶質リン酸ジルコニウム内に金属元素Mを導入することができる。なお、本発明では、上記比率が1/nを超えた場合でも、金属元素Mが結晶質リン酸ジルコニウムの表面及び/又は細孔に無機酸塩又は有機酸塩の形態で吸着することもできるため、結果として1/nを超えている場合も蛍光特性は発現される。
 上記混合液は、金属元素Mの金属イオン濃度が500重量ppm以下(特に250重量ppm以下)である溶液と結晶質リン酸ジルコニウムとを混合することによっても調製することができる。本発明方法によって、金属元素Mの金属イオン含有量が僅かな溶液でもその金属イオンの吸着を効果的に行うことができる。なお、金属元素Mの金属イオン濃度の下限値は特に制限されないが、通常は10重量ppm程度とすればよい。
 上記混合液又はその蒸発乾固物を熱処理する際の熱処理条件としては、結晶質リン酸ジルコニウムが熱処理によりHZr12に変化し、その分子中のHと金属元素Mとのイオン置換が行われる条件であれば限定されない。熱処理条件としては、600~800℃程度が好ましく、650~750℃程度がより好ましい。このときの熱処理雰囲気は特に限定されず、大気中で行うことができる。熱処理後は、例えば、純水中での洗浄、乾燥を経て出発原料B(Mn+ 1-nyZr12)を得ることができる。
 出発原料A及び出発原料Bをそれぞれ還元性雰囲気中400~850℃で熱処理することにより、第一態様の蛍光体材料及び第二態様の蛍光体材料がそれぞれ得られる。
 熱処理温度は400~850℃であればよく、特に600~800℃が好ましい。熱処理温度が400~850℃の範囲を外れる場合には、蛍光体材料の一般式中、xの範囲が0.005以上0.4未満とならない場合があるため好ましくない。
 熱処理時間は、熱処理温度に応じて適宜設定できるが、一般に高温で熱処理を行う場合には短時間でよく、低温で熱処理を行う場合には長時間を要する。熱処理は、常圧下で行うことができるが、加圧下で実施することもできる。加圧下で実施する場合の圧力は限定されないが、一般に0.1~40MPa程度であることが好ましい。
 熱処理時は還元性雰囲気を用いる。還元性雰囲気としては限定的ではないが、例えば、水素及び一酸化炭素の少なくとも1種を含む還元性ガスを用いることができる。本発明では、還元性雰囲気中で熱処理を行うのが特徴であり、大気雰囲気又は酸化性雰囲気で熱処理しても所望の蛍光特性を有する蛍光体材料は得られない。
 上記熱処理をオートクレーブ中で行う場合には、揮発性の金属元素Mでもオートクレーブ外へ流出することがないため、周辺設備が侵食されることがなく、特殊な材質の設備等を必要としない点で有利となる。
 本発明の蛍光体材料は、発光元素として希土類元素以外の元素を用いたリン酸ジルコニウム系の蛍光体材料であり、紫外線照射によって可視光(波長が380nm以上830nm未満の光)を発光する。具体的には、例えば、励起光(254nm)を照射することにより、蛍光(395nm)が得られる。
 それにより、本発明の蛍光体材料は、照明装置、液晶表示装置用バックライト等をはじめとする蛍光体材料の用途に幅広く利用することができる。
直接結晶析出法によりNHZr12を調製する際の原料混合液においてジルコニウム化合物(Zrとして)、カルボン酸化合物(Cとして)及びリン酸化合物(POとして)の好ましい割合(領域)を示すモル比三角成分図である。具体的には、A(28,3,69)、B(63,6,31)、C(44,43,13)及びD(1,97,2)の各点を結ぶ直線で囲まれた領域が好ましいことを示す図である。 実験例1において、試料:HZr12を3質量%H(Nバランス)ガス気流中700℃で2時間還元熱処理を行うことにより得られた還元熱処理物の蛍光スペクトル及び励起スペクトルを示す図である。 (1)は、実験例2に関連し、NHZr12の熱重量分析(TG)-示差熱分析(DTA)の結果を示す図である(熱分解物はHZr12)。(2)は、実験例3に関連し、(HO)Zr12のTG-DTAの結果を示す図である(熱分解物はHZr12)。
 以下に実験例を示して本発明を具体的に説明する。
 実験例1(第1態様の蛍光体材料)
 実験例1で用いる結晶質リン酸ジルコニウム(試料1)として、直接結晶析出法より調製されたNHZr12を大気中575℃で5時間熱処理することにより得たHZr12を用意した。
 試料1をアルミナボートに入れ、3質量%H(Nバランス)ガス気流中350~900℃(表1に示す12種類の温度)で各2時間還元熱処理を行った。
 表1に、各還元熱処理物における、励起光254nmでの395nmの相対蛍光強度値及び化学組成を示す。なお、相対蛍光強度値は、浜松ホトニクス株式会社製、絶対PL電子収率測定装置(Quantaurus-QY、C11347-01)を用いて測定した。
Figure JPOXMLDOC01-appb-T000001
 400~850℃における各還元熱処理物では、励起光254nmで395nmに蛍光が観測された。相対蛍光強度値は700℃での還元熱処理物が最も高かった。
 他方、350℃(比較例)における還元熱処理物では、殆ど蛍光が観測されなくなり、900℃(比較例)における還元熱処理物の場合も400~850℃における還元熱処理物と比べて蛍光強度が低くなった。
 表1に示す通り、350℃における還元熱処理物は還元熱処理前のH1.00Zr12.000組成を維持していた。これに対して、400~850℃における還元熱処理物の化学組成は、水素及び酸素がリン酸ジルコニウムから抜けた化学組成となった。水素及び酸素がリン酸ジルコニウムから抜ける量は、還元熱処理温度の上昇に従って多くなった。
 なお、化学組成中の水素と酸素の定量は、(HORIBA製、EMGA-930)を用いて、「不活性ガス融解-非分散型赤外線吸収法」により行った。
 次いで、X線光電子分光装置を用いて各還元熱処理物中のZr及びPの価数の変化の有無を確認した。具体的には、還元熱処理前の試料1及び各還元熱処理物について、結合エネルギー分析範囲0~1400eVで広域光電子スペクトルを測定し、定性分析を行った。その後、定性分析で検出された元素Zr、P、Oの狭域光電子スペクトル測定を行い、光電子ピーク結合エネルギー位置からZrとPの化学状態を推定した。
 還元熱処理前の試料1及び各還元熱処理物中において得られた結果には、差が認められなかった。よって、還元熱処理前の試料1及び各還元熱処理物共に、含有されるZrは4価であり、Pは5価であることが分かった。
 参考のため、還元熱処理前の試料1及び大気中350~900℃(表1に示す12種類の温度と同じ)で各2時間熱処理を行った各熱処理物の蛍光特性を調べたところ、いずれも蛍光は観察されなかった。
 次いで、大気雰囲気中350~900℃(表1に示す12種類の温度と同じ)で各2時間熱処理を行った各熱処理物、並びに、3質量%H(Nバランス)ガス気流中350~900℃(表1に示す12種類の温度)で各2時間還元熱処理を行った各還元熱処理物について、粉末X線回折測定結果から計算したセル体積値をまとめた(表2)。
Figure JPOXMLDOC01-appb-T000002
 大気中熱処理及び3質量%Hガス還元熱処理のいずれにおいても、800℃以下で熱処理した場合には、HZr12に観測されるX線回折パターンが観測された。850℃で熱処理した場合には、HZr12に観測されるX線回折パターンの他に、ZrP(二リン酸ジルコニム)に観測されるX線回折ピークが観測された。900℃で熱処理した場合には、ZrPに観測されるX線回折ピーク強度がHZr12に観測されるX線回折ピークより非常に強くなり、リン酸ジルコニウムのセル体積を求めることができなかった。前記表1で、900℃における還元熱処理物の化学組成を記載していないのは、HZr12組成がZrPに変化してしまったためである。
 同じ熱処理温度では、大気熱処理物のセル体積と比べて還元熱処理物のセル体積の方が小さくなった。このことは、表1に示す化学組成の結果から分かるように、還元熱処理によって水素及び酸素がリン酸ジルコニウムから抜けた現象を支持している。
 最も高い相対蛍光強度値を示した700℃における還元熱処理物の蛍光スペクトル及び励起スペクトルを図2に示す。また、この還元熱処理物の内部量子収率は41%、吸収率は43%、外部量子収率は18%であった。更に、この還元熱処理物の蛍光寿命を浜松ホトニクス株式会社製の小型蛍光寿命測定装置(Quantaurus-Tau、C11267-01)で測定したところ、6.4nsであった。
 実験例2(第1態様の蛍光体材料)
 実験例2で用いる結晶質リン酸ジルコニウム(試料2)として、直接結晶析出法より調製されたNHZr12を用意した。
 試料2をアルミナボートに入れ、3質量%H(Nバランス)ガス気流中400~900℃(表1に示す12種類の温度と同じ)で各2時間還元熱処理を行った。また、大気雰囲気中400~900℃(表1に示す12種類の温度と同じ)で各2時間熱処理を行った。
 試料2を出発物質とした場合も、試料1を出発物質とした実験例1と全く同じ結果(相対蛍光強度値、化学組成及びセル体積の評価)が得られた。
 実験例1と全く同じ結果が得られた理由としては、図3(1)に示す20ml・min-1の空気気流中で昇温速度10・min-1にて測定した試料2の熱重量分析(TG)-示差熱分析(DTA)の結果から明らかな通り、試料2:NHZr12は350℃以上で2時間熱処理することによって、一旦、HZr12に変化し、更にH1-XZr12-(X/2)に変化しているためであると考えられる。
 実験例3(第1態様の蛍光体材料)
 実験例3で用いる結晶質リン酸ジルコニウム(試料3)として、(HO)Zr12を用意した。具体的には、直接結晶析出法より調製されたNHZr12を大気中575℃で5時間熱処理して得たHZr12を純水中に3日間浸することにより(HO)Zr12を得た。
 試料3をアルミナボートに入れ、3質量%H(Nバランス)ガス気流中400~900℃(表1に示す12種類の温度と同じ)で各2時間還元熱処理を行った。また、大気雰囲気中400~900℃(表1に示す12種類の温度と同じ)で各2時間熱処理を行った。
 試料3を出発物質とした場合も、試料1を出発物質とした実験例1と全く同じ結果(相対蛍光強度値、化学組成及びセル体積の評価)が得られた。
 試料3を出発物質とした場合も、試料1を出発物質とした実験例1と全く同じ結果(相対蛍光強度値、化学組成及びセル体積の評価)が得られた。
 実験例1と全く同じ結果が得られた理由としては、図3(2)に示す20ml・min-1の空気気流中で昇温速度10・min-1にて測定した試料3の熱重量分析(TG)-示差熱分析(DTA)の結果から明らかな通り、試料3:(HO)Zr12は200℃以上で2時間熱処理することによって、一旦、HZr12に変化し、更にH1-XZr12-(X/2)に変化しているためであると考えられる。
 実験例4(第2態様の蛍光体材料)
 実験例4で用いる結晶質リン酸ジルコニウム(試料4)として、直接結晶析出法より調製されたNHZr12を大気中575℃で5時間熱処理することにより得たHZr12を用意した。
 試料4に、HZr12及び各金属硝酸塩LiNO、Sr(NOの水溶液をそれぞれ加えて混練した。LiNOを加える際は、HZr12とLa(NOとのモル比が、LiNO/HZr12=0.90未満となるように加えた。また、Sr(NOを加える際は、HZr12とSr(NOとのモル比が、Sr(NO/HZr12=0.45未満になるように加えた。
 次いで、蒸発乾固した後、700℃で熱処理することでHと各金属イオンとのイオン置換を行い、更に純水中にて洗浄後、100℃で乾燥し、それぞれLi1-yZr12(y:0.90未満)、Sr1-2yZr12(y:0.45未満)を得た。
 得られたLi1-yZr12(y:0.90未満)、Sr1-2yZr12(y:0.45未満)をそれぞれアルミナボートに入れ、3質量%H(Nバランス)ガス気流中400~900℃(表1に示す11種類の温度と同じ)で各2時間還元熱処理を行った。各還元熱処理物の励起光254nmでの395nmの相対蛍光強度値は、すべて0.10以上であった。
 参考のために、Li1-yZr12(y:0.90以上)、Sr1-2yZr12(y:0.45以上)をそれぞれアルミナボートに入れ、3質量%H(Nバランス)ガス気流中400~900℃(表1に示す11種類の温度と同じ)で各2時間還元熱処理を行った。各還元熱処理物の励起光254nmでの395nmの相対蛍光強度値は、すべて0.05以下であった。
 これらの結果を表3にまとめて示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実験例5
 Mg(NOを用いて実験例4と同様に還元熱処理物を調製し、相対蛍光強度を測定した結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005

Claims (6)

  1.  H1-xZr12-(x/2) (1)
    〔式中、xは0.005以上0.4未満である。〕
    で表されることを特徴とする蛍光体材料。
  2.  (Mn+ 1-ny1-xZr12-(x/2) (2)
    〔式中、Mは金属元素を示し、nは金属元素Mの平均価数を示す。また、xは0.005以上0.4未満であり、yは0.01以上0.90/n未満である。〕
    で表されることを特徴とする蛍光体材料。
  3.  RZr12(但し、RはH、HO又はNHを示す。)で表される出発原料Aを還元性雰囲気中400~850℃で熱処理することを特徴とする蛍光体材料の製造方法。
  4.  請求項1に記載の蛍光体材料の製造方法である、請求項3に記載の製造方法。
  5.  Mn+ 1-nyZr12(但し、Mは金属元素を示し、nは金属元素Mの平均価数を示し、RはH、HO又はNHを示す。また、yは金属元素Mのモル数であり、yは0.01以上0.90/n未満である。)で表される出発原料Bを還元性雰囲気中400~850℃で熱処理することを特徴とする蛍光体材料の製造方法。
  6.  請求項2に記載の蛍光体材料の製造方法である、請求項5に記載の製造方法。
PCT/JP2014/062396 2013-05-28 2014-05-08 蛍光体材料及びその製造方法 WO2014192515A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013112380A JP6153383B2 (ja) 2013-05-28 2013-05-28 蛍光体材料及びその製造方法
JP2013-112380 2013-05-28

Publications (1)

Publication Number Publication Date
WO2014192515A1 true WO2014192515A1 (ja) 2014-12-04

Family

ID=51988553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062396 WO2014192515A1 (ja) 2013-05-28 2014-05-08 蛍光体材料及びその製造方法

Country Status (2)

Country Link
JP (1) JP6153383B2 (ja)
WO (1) WO2014192515A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298584A (ja) * 2004-04-08 2005-10-27 Shin Etsu Chem Co Ltd 希土類元素りん酸塩組成物及びその製造方法
JP2005298583A (ja) * 2004-04-08 2005-10-27 Shin Etsu Chem Co Ltd ジルコニウム又はハフニウム含有酸化物
JP2006206619A (ja) * 2005-01-25 2006-08-10 Osaka Univ 蛍光体
JP2006282907A (ja) * 2005-04-01 2006-10-19 Shin Etsu Chem Co Ltd ジルコニウム又はハフニウム、及びマンガン含有りん酸塩

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298584A (ja) * 2004-04-08 2005-10-27 Shin Etsu Chem Co Ltd 希土類元素りん酸塩組成物及びその製造方法
JP2005298583A (ja) * 2004-04-08 2005-10-27 Shin Etsu Chem Co Ltd ジルコニウム又はハフニウム含有酸化物
JP2006206619A (ja) * 2005-01-25 2006-08-10 Osaka Univ 蛍光体
JP2006282907A (ja) * 2005-04-01 2006-10-19 Shin Etsu Chem Co Ltd ジルコニウム又はハフニウム、及びマンガン含有りん酸塩

Also Published As

Publication number Publication date
JP6153383B2 (ja) 2017-06-28
JP2014231551A (ja) 2014-12-11

Similar Documents

Publication Publication Date Title
US5340556A (en) Cerium/lanthanum/terbium mixed phosphates
JP2914602B2 (ja) 希土類燐酸塩の製造法及びそれによって得られた生成物
KR20190111811A (ko) 적색 불화물 형광체 및 그 모체 결정의 제조 방법
JP5034033B2 (ja) 板状蛍光体とそれを使用したディスプレイ
CN105712299A (zh) 不溶于水的金属氢氧化物及其制备方法
US5314641A (en) Production of crystallites of cerium/lanthanum/terbium phosphates from insoluble rare earth salts
JP2001521055A (ja) プラズマ又はx線の装置系におけるけい光体としてのツリウム含有燐酸ランタンの使用
JP4923242B2 (ja) ウィレマイト結晶の製造方法及びウィレマイト結晶を母結晶とした蛍光物質の製造方法
Pan et al. Hydrothermally-mediated preparation and photoluminescent properties of Sr3Al2O6: Eu3+ phosphor
JP6153383B2 (ja) 蛍光体材料及びその製造方法
KR101382823B1 (ko) 란탄을 임의로 함유하는 세륨 및/또는 테르븀 포스페이트, 상기 포스페이트로부터 생성된 인광체 및 그의 제조 방법
JP2013079342A (ja) テルビウムまたはネオジムとセリウムとで共付活した高発光効率の板状蛍光体およびその製造方法
KR101495454B1 (ko) 란탄을 임의로 함유하는 세륨 및/또는 테르븀 포스페이트, 상기 포스페이트로부터 생성된 인광체 및 그의 제조 방법
JP3804804B2 (ja) 希土類元素りん酸塩組成物及びその製造方法
KR101380449B1 (ko) 란탄을 임의로 함유하는 세륨 및/또는 테르븀 포스페이트, 상기 포스페이트로부터 생성된 인광체 및 그의 제조 방법
WO2014006755A1 (ja) シリケート蛍光体およびその製造方法
JP7011750B1 (ja) リン酸ジルコニウム
KR101407783B1 (ko) 란탄을 임의로 함유하는 세륨 및/또는 테르븀 포스페이트, 상기 포스페이트로부터 생성된 인광체 및 그의 제조 방법
KR20190111812A (ko) 적색 불화물 형광체의 제조 방법
JP2012144689A5 (ja)
JP2012144689A (ja) シリケート蛍光体およびその製造方法
JP5058475B2 (ja) アルミナ及びその製造方法
JP2004284945A (ja) 結晶質リン酸ジルコニウム
CN101767780B (zh) 一种稀土磷酸盐绿色荧光粉前驱体、绿色荧光粉及其制备方法
JPH04227787A (ja) ランタン・セリウム・テルビウムりん酸塩蛍光体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14803493

Country of ref document: EP

Kind code of ref document: A1