Nothing Special   »   [go: up one dir, main page]

WO2014170945A1 - 樹脂接合用アルミ鋳造合金部材の製造方法及びこの方法で得られた樹脂接合用アルミ鋳造合金部材 - Google Patents

樹脂接合用アルミ鋳造合金部材の製造方法及びこの方法で得られた樹脂接合用アルミ鋳造合金部材 Download PDF

Info

Publication number
WO2014170945A1
WO2014170945A1 PCT/JP2013/061209 JP2013061209W WO2014170945A1 WO 2014170945 A1 WO2014170945 A1 WO 2014170945A1 JP 2013061209 W JP2013061209 W JP 2013061209W WO 2014170945 A1 WO2014170945 A1 WO 2014170945A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
resin
cast alloy
mass
alloy member
Prior art date
Application number
PCT/JP2013/061209
Other languages
English (en)
French (fr)
Inventor
正憲 遠藤
誠己 飯野
みゆき 吉田
昌司 磯部
鈴木 聡
織田 和宏
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to PCT/JP2013/061209 priority Critical patent/WO2014170945A1/ja
Publication of WO2014170945A1 publication Critical patent/WO2014170945A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/20Acidic compositions for etching aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8238Impact tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/026Chemical pre-treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30325Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined
    • B29C66/30326Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined in the form of porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium

Definitions

  • the present invention relates to a method for producing an aluminum cast alloy member for resin bonding made of an aluminum cast alloy and an aluminum cast alloy member for resin bonding obtained by this method, although not particularly limited, parts for automobiles,
  • the present invention relates to a method for producing a resin-bonded aluminum cast alloy member suitable for many applications including home appliance parts, industrial equipment parts, and the like, and an aluminum cast alloy member for resin bonding obtained by this method.
  • Aluminum alloys are lightweight and have excellent workability, as well as excellent mechanical properties, and excellent thermal conductivity, electrical conductivity, corrosion resistance, etc., so they are used for building materials, home appliance materials, vehicles and ships.
  • aluminum extruded alloy members especially aluminum cast alloy members are not only excellent in thermal conductivity and conductivity, but also have complicated shapes. Since parts can be easily manufactured, they are used in many applications that have complex shapes and require thermal conductivity, conductivity, etc. However, it is required to join a resin partially having a heat insulating property or an insulating property because of the need to thermally and / or electrically insulate a part thereof.
  • an aluminum cast alloy is usually obtained as an Al—Si based aluminum alloy by adding silicon (Si) as an additive metal at the time of die casting to ensure good castability.
  • the present inventors further studied to solve such a problem.
  • Si 5.0% by mass or more and 18% by mass or less
  • Fe 1.3% by mass or less
  • Cu 5.0% by mass or less
  • Mg 1.5% by mass or less
  • Ni 1.5% by mass or less
  • the eutectic Si solidification temperature during casting is 755.
  • the cooling rate in the region of 780 ° C. is 0.1-100 ° C./second, and the obtained aluminum cast alloy base material is adjusted in shape and size as necessary, and then the surface is etched with an acidic etchant.
  • the present inventors easily provide an aluminum cast alloy member having excellent aluminum resin bonding properties by imparting an uneven shape to the surface of an aluminum cast alloy base material made of an aluminum alloy prepared by die casting by a simple method.
  • an aluminum cast alloy base material containing Si atoms and Mg atoms within a predetermined range is prepared, and the surface of the aluminum cast alloy base material is prepared.
  • an object of the present invention is to provide a method for producing an aluminum cast alloy member for resin bonding, which can easily produce an aluminum cast alloy member excellent in aluminum resin bondability by a simple method.
  • An object of the present invention is to provide an aluminum cast alloy member for resin bonding obtained by this method.
  • the present invention prepares an aluminum cast alloy base material made of an aluminum cast alloy containing Si: 0.9 to 18% by mass and Mg: 1.0 to 10.0% by mass by die casting, Using an acidic etching solution composed of an aqueous solution of sulfuric acid and / or nitric acid, the aluminum cast alloy base material is etched at a processing temperature of 30 to 80 ° C. and a processing time of 5 to 15 minutes.
  • a method for producing an aluminum cast alloy member for resin bonding comprising melting an Mg 2 Si crystallized product and imparting a fine uneven shape excellent in resin bondability to the surface of the aluminum cast alloy base material.
  • the aluminum cast alloy base material prepared by die casting is 0.9 mass% or more and 18 mass% or less, preferably 3 at least Si atoms in addition to the matrix metal aluminum (Al). It is necessary to contain Mg atoms in the range of not less than 15% by mass and not more than 15% by mass, and in the range of not less than 1.0% by mass and not more than 10.0% by mass, preferably not less than 1.5% by mass and not more than 9% by mass. If the Si atom content is lower than 0.9% by mass, the molten metal flow at the time of die casting becomes worse. On the other hand, if the Si atom content exceeds 18% by mass, the toughness of the prepared aluminum casting alloy decreases, which is not preferable. When the atomic content is lower than 1.0% by mass, there is a problem that sufficient Mg 2 Si cannot be obtained. On the other hand, when the atomic content is higher than 10.0% by mass, there arises a problem that castability is remarkably lowered.
  • the aluminum cast alloy which comprises this aluminum cast alloy base material although Fe and Mn exist as an element normally required for the baking prevention to the metal mold
  • the Al-Fe-Si intermetallic compound which does not dissolve is formed, and the Si resin necessary for forming Mg 2 Si is consumed. 8% by mass or less, preferably 0.1% by mass or more and 0.7% by mass or less.
  • Mn is not dissolved in a specific acidic etching bath, and Al-Mn or Al-Mn.
  • the former increases the number of places where no recesses are formed during etching, and the latter adversely affects aluminum resin bonding properties, such as consuming Si required to form Mg 2 Si. 0.01 quality from giving % To 0.9 wt% or less, and it is preferably added in the range of less than 0.8 mass% 0.1 mass% or more.
  • Cu an element necessary for improving the material strength of the aluminum cast alloy base material, may be added.
  • Cu does not dissolve in a specific acidic etching bath.
  • Al-Cu-based and Al-Cu-Mg-based intermetallic compounds the former increases the number of places where recesses are not formed during etching, the latter consumes Mg necessary to form Mg 2 Si, etc. Since it adversely affects the aluminum resin bondability, it is usually added in the range of 0.01 to 1.0% by mass, preferably 0.02 to 0.8% by mass.
  • Ni is mixed as an inevitable impurity, but this Ni forms an Al-Ni-based or Al-Fe-Ni-based intermetallic compound that does not dissolve in a specific acidic etching bath. Since the number of places where the concave portions are not formed is increased and the aluminum resin bonding property is adversely affected, it is preferable to keep the amount to 0.1% by mass or less.
  • Mg 2 Si crystallized material on the surface Area ratio that is, analysis of Si element and Al element by reflection electron image observation (Fig. 1) and mapping analysis of energy dispersive X-ray analyzer (EMAX-7000 manufactured by Horiba, Ltd.
  • EMAX-7000 energy dispersive X-ray analyzer
  • Si element and Al The area ratio of the Mg 2 Si crystallized substance obtained by superimposing the elements and performing image processing as shown in FIG. 2 at a measurement visual field of 0.1 mm square is 5% or more and 60% or less, preferably 15% or more and 50% or less. There should be.
  • this Mg 2 Si crystallized substance is lower than 5%, it will adversely affect the formation of concave and convex shapes by etching, so that there is a problem of adversely affecting the resin bondability. There is a concern that the size of the uneven shape may become too large and adversely affect the resin bondability.
  • the aluminum cast alloy base material is subjected to an aging treatment prior to the next etching process. It is preferable to apply an aging treatment after the solution treatment, and to adjust the Mg 2 Si crystallized area ratio of the aluminum cast alloy substrate surface within the above range.
  • the treatment temperature is 180 ° C. or more and 400 ° C. or less, preferably 200 ° C. or more and 380 ° C. or less, and the treatment time is 0.5 hours or more and 20 hours or less
  • the treatment conditions are preferably 1 hour or more and 15 hours or less, and when the solution treatment is performed before this aging treatment, the treatment temperature is 480 ° C. or more and 600 ° C. as the treatment conditions for the solution treatment.
  • the processing time is 0.5 to 20 hours, preferably 1 to 15 hours, preferably 500 ° C. or less, preferably 500 to 580 ° C.
  • the aluminum cast alloy base material thus prepared is then subjected to an etching treatment using an acidic etchant composed of an aqueous solution of sulfuric acid and / or nitric acid, and Mg present on the surface of the aluminum cast alloy base material. 2 Dissolve the Si crystallized product to form the desired uneven shape on the surface of the aluminum cast alloy substrate.
  • the sulfuric acid and / or nitric acid aqueous solution used as the acidic etching solution has an acid concentration of 1% by weight to 60% by weight, preferably 5% by weight to 50% by weight in the case of sulfuric acid aqueous solution.
  • the acid concentration should be 5 to 60% by weight, preferably 10 to 50% by weight. It is preferable to add a nitric acid aqueous solution having an acid concentration of 5% by weight to 30% by weight to a sulfuric acid aqueous solution having an acid concentration of 5% by weight to 50% by weight.
  • the acid concentration of the acidic etching solution is lower than the above range, there is a possibility that the reaction does not proceed sufficiently and the amount of dissolution becomes insufficient. On the other hand, if the acid concentration is higher than the above range, the reaction rate becomes too fast and the amount of dissolution is high. It becomes difficult to control.
  • the above acidic etching solution for the purpose of controlling the amount of dissolution, chromic acid, phosphoric acid, acetic acid, oxalic acid, ascorbic acid, benzoic acid, butyric acid, citric acid, formic acid, lactic acid, Acids other than sulfuric acid and nitric acid such as isobutyric acid, malic acid, propionic acid, and tartaric acid may be added.
  • the processing temperature is usually 20 ° C. or higher and 90 ° C. or lower, preferably 30 ° C. or higher and 80 ° C. or lower, and the processing time is usually 1 minute or longer and 20 minutes or shorter. Hereinafter, it is preferably 5 minutes or more and 15 minutes or less. If the processing temperature under the processing conditions of this etching process is lower than 20 ° C., the reaction may not proceed sufficiently and the amount of dissolution may be insufficient. On the other hand, if the processing temperature is higher than 90 ° C., the reaction rate becomes too high and Control becomes difficult.
  • the processing time of the etching process is shorter than 1 minute, the reaction may not proceed sufficiently and the amount of dissolution may be insufficient. On the other hand, if the processing time is longer than 20 minutes, the production efficiency decreases and the mass productivity deteriorates. .
  • the present invention when contaminants and the like remain on the surface of the aluminum cast alloy base material obtained as described above, for the purpose of degreasing and surface adjustment, removal of surface deposits and contaminants, etc.
  • the acid aqueous solution used for this purpose include those prepared with commercially available acidic degreasing agents, mineral acids such as sulfuric acid, nitric acid, hydrofluoric acid, and phosphoric acid, organic acids such as acetic acid and citric acid, and these acids.
  • a 1 to 50% by weight aqueous solution of an acid such as that prepared by using an acid reagent such as a mixed acid obtained by mixing the above
  • examples of the alkaline aqueous solution include a commercially available alkaline degreasing agent. It is preferable to use a 1 to 50% by weight aqueous solution of an alkali such as one prepared, one prepared with an alkali reagent such as caustic soda, or one prepared by mixing these materials. In both cases, the alkaline aqueous solution is preferably about 0.5 to 10 minutes.
  • the trace of the Mg 2 Si crystallized material dissolved by the above etching process becomes a concave portion, forming a concave and convex shape on the surface of the aluminum cast alloy member.
  • the area ratio of the concave portions observed on the surface of the aluminum cast alloy member [ie, SEM image using an operation electron microscope (Hitachi FE-SEM, S-4500 type) (FIG. 3) and the area ratio of the concave portion in the measurement visual field 0.1 mm square obtained by image processing as shown in FIG. 4 is 20% or more and 90% or less, preferably 35% or more and 80%.
  • the area ratio of the concave portion on the surface of the aluminum cast alloy member is lower than 20%, the amount of resin entering the concave portion may be insufficient, which may cause a problem of adversely affecting the resin bondability.
  • the height is increased, the aluminum portion for supporting the resin that has entered the recess is extremely reduced, and as a result, there is a possibility that a problem of adversely affecting the resin bondability may occur.
  • the aluminum cast alloy member obtained by the method of the present invention has, for example, the aluminum cast alloy member set in an injection mold and melted in the mold due to the fine uneven shape formed on the surface thereof.
  • An aluminum-resin composite is formed by injecting a predetermined thermoplastic resin and solidifying it by injection molding of a thermoplastic resin using a so-called aluminum cast alloy member to join the resin molded body to a necessary portion of the aluminum cast alloy member. When it is manufactured, it exhibits excellent aluminum resin bondability.
  • thermoplastic resin used when producing the aluminum-resin composite using the cast aluminum alloy member of the present invention various thermoplastic resins can be used alone.
  • the thermoplastic resin is preferably a polypropylene resin, polyethylene resin, acrylonitrile / butadiene / styrene, for example.
  • ABS Polymers
  • PC polycarbonate resins
  • PA polyamide resins
  • PPS polyarylene sulfide resins
  • PES polyphenylene sulfide
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • Polyester resin polyoxymethylene resin, polyimi Resin, syndiotactic polystyrene resin, etc. and a mixture of two or more of these thermoplastic resins.
  • thermoplastic resins Adhesion between aluminum shaped body and resin molded body, mechanical strength, heat resistance, dimensional stability In order to further improve performance such as property (deformation resistance, warpage, etc.), electrical properties, etc., more preferably, these thermoplastic resins are filled with fibrous, granular, plate-like fillers, and various elastomer components. It is good to add.
  • Fillers added to thermoplastic resins include inorganic fiber fillers such as glass fibers, carbon fibers, metal fibers, asbestos fibers and boron fibers, and high melting point organic fibers such as polyamides, fluororesins and acrylic resins. And powder fillers such as silica powder, glass beads, glass powder, inorganic powders such as calcium carbonate, and plate fillers such as glass flakes, silicates such as talc and mica, etc. In addition, it is added in an amount of 250 parts by weight or less, preferably 20 parts by weight or more and 220 parts by weight or less, more preferably 30 parts by weight or more and 100 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin.
  • inorganic fiber fillers such as glass fibers, carbon fibers, metal fibers, asbestos fibers and boron fibers
  • high melting point organic fibers such as polyamides, fluororesins and acrylic resins.
  • powder fillers such as silica powder, glass beads, glass powder, inorganic powders
  • the elastomer component added to the thermoplastic resin examples include urethane type, core shell type, olefin type, polyester type, amide type, and styrene type elastomers.
  • the melting temperature of the thermoplastic resin at the time of injection molding, etc. it is selected in consideration of 30 parts by weight or less, preferably 3 to 25 parts by weight based on 100 parts by weight of the thermoplastic resin.
  • the added amount of the elastomer component exceeds 30 parts by weight, a further effect of improving the adhesion strength is not seen, and problems such as a decrease in mechanical properties occur.
  • This blending effect of the elastomer component is particularly prominent when a polyester resin is used as the thermoplastic resin.
  • thermoplastic resin for producing the aluminum-resin composite of the present invention includes known additives generally added to thermoplastic resins, that is, flame retardants, colorants such as dyes and pigments, antioxidants, Stabilizers such as ultraviolet absorbers, plasticizers, lubricants, lubricants, mold release agents, crystallization accelerators, crystal nucleating agents, and the like can be appropriately added according to the required performance.
  • the molding conditions required for the thermoplastic resin used can be adopted. It is important that the molten thermoplastic resin sometimes penetrates into the concave part of the aluminum cast alloy member and solidifies, and the mold temperature and cylinder temperature are within the range allowed by the type and physical properties of the thermoplastic resin and the molding cycle. It is preferable that the lower limit temperature be 90 ° C. or higher, preferably 130 ° C. or higher, but the upper limit depends on the type of thermoplastic resin used. From about 100 ° C. to a temperature about 20 ° C.
  • the lower limit mold temperature is preferably set so as not to be lowered by 140 ° C. or more from the melting point of the thermoplastic resin.
  • the aluminum-resin composite manufacturing method performed using the aluminum cast alloy member of the present invention is not limited to the above-described injection molding method of thermoplastic resin, and a thermocompression bonding method may be employed. That is, first, an aluminum cast alloy member is heated to a temperature of about 90 to 300 ° C. in accordance with the melting temperature of the thermoplastic resin to be used, and a thermoplastic resin molding is pressed against the surface under pressure. A desired aluminum-resin composite is manufactured by melting a part of the surface of the resin molded body and penetrating into the concave portion on the surface of the aluminum cast alloy member, and further cooling under pressure.
  • a concavo-convex shape can be formed by a simple method on the surface of an aluminum cast alloy base material prepared by die casting, and an aluminum cast alloy member excellent in aluminum resin bondability can be easily manufactured. Moreover, since Mg atoms are added as additive metals in addition to Si atoms, the material strength of the aluminum cast alloy member to be produced is further improved, and as a material for producing an aluminum-resin composite for a wider range of uses. Can be used.
  • FIG. 1 is a reflected electron image photograph obtained by measuring the surface of an aluminum cast alloy substrate obtained in Example 1 with an energy dispersive X-ray analyzer.
  • FIG. 2 shows the Mg of the region measured when the surface area of the cast aluminum alloy substrate obtained in Example 1 was measured with an energy dispersive X-ray analyzer to determine the area ratio of the Mg 2 Si crystallized product. It is a photograph which shows the image which overlapped the element and Si element.
  • FIG. 3 is an SEM photograph showing an image of a region observed when the surface ratio of the aluminum casting alloy member obtained in Example 1 was observed with a scanning electron microscope to determine the area ratio of the concave portions.
  • FIG. 4 is a binarized photograph for calculating the area ratio of the concave portion from the SEM photograph of FIG.
  • FIG. 5 is an SEM photograph showing an image of the region observed when the surface ratio of the aluminum cast alloy member obtained in Example 2 was observed with a scanning electron microscope to determine the area ratio of the concave portions.
  • FIG. 6 is an SEM photograph showing an image of a region observed when the surface ratio of the cast aluminum alloy member obtained in Example 3 was observed with a scanning electron microscope to determine the area ratio of the concave portions.
  • FIG. 7 is an SEM photograph showing an image of a region observed when the surface ratio of the aluminum casting alloy member obtained in Example 4 was observed with a scanning electron microscope to determine the area ratio of the concave portions.
  • FIG. 8 is an SEM photograph showing an image of a region observed when the surface ratio of the cast aluminum alloy member obtained in Example 5 was observed with a scanning electron microscope to determine the area ratio of the concave portions.
  • FIG. 9 is an SEM photograph showing an image of the region observed when the surface ratio of the cast aluminum alloy member obtained in Example 6 was observed with a scanning electron microscope to determine the area ratio of the concave portions.
  • FIG. 10 is an SEM photograph showing an image of a region observed when the surface ratio of the concave portion was obtained by observing the surface of the aluminum cast alloy member obtained in Comparative Example 1 with a scanning electron microscope.
  • FIG. 11 is an SEM photograph showing an image of a region observed when the surface ratio of the concave portion was obtained by observing the surface of the aluminum cast alloy member obtained in Comparative Example 2 with a scanning electron microscope.
  • FIG. 12 is an explanatory view showing an aluminum resin test piece (aluminum-resin composite) for a shear fracture load measurement test produced using the aluminum cast alloy member obtained in each example and each comparative example.
  • FIG. 13 is an explanatory diagram for explaining a state in which an aluminum resin test piece is fixed to a test piece fixing jig of a shear fracture load measurement tester and a shear fracture load is measured.
  • Example 1 Preparation of Aluminum Cast Alloy Base Material Si: 3.3% by mass, Fe: 0.4% by mass, Cu: 0.02% by mass, Mn: 0.4% by mass, Mg: 6.0% by mass, Ni: 0
  • a molten aluminum alloy containing 0.02% by mass was die-cast into a size of 180 mm ⁇ 150 mm ⁇ 3 mm.
  • the setting conditions are: mold temperature: 170 ° C., molten metal temperature: 720 ° C., injection speed: 1.7 m / s, product filling time: 10 ms, in-product average flow velocity: 11 m / s.
  • the cooling rate during casting is 40 ° C./second.
  • An aluminum base specimen having a size of 40 mm ⁇ 40 mm ⁇ 3 mm was cut out from the obtained aluminum cast alloy base.
  • the obtained aluminum base specimen was immersed in a 30 wt% -nitric acid aqueous solution at room temperature for 1 minute, then thoroughly washed with ion-exchanged water, and then into a 5 wt% -sodium hydroxide solution.
  • the sample was immersed in water at 50 ° C. for 1 minute and then washed with water, and further pretreated by immersing in a 30 wt% nitric acid aqueous solution at room temperature for 1 minute and then washing with water.
  • the aluminum base test piece thus pretreated was subjected to an etching treatment in which it was immersed in a 10 wt% -sulfuric acid solution at 40 ° C. for 10 minutes and then washed with water, and then washed with water and then heated with hot air at 80 ° C. for 5 minutes.
  • An aluminum member test piece (aluminum cast alloy member of Example 1) having a concave portion on the surface was produced by drying.
  • the amount of Si adhesion on the surface of the aluminum cast alloy member The adhesive tape / adhesive sheet test method performed under a load of 2 kg using a 2 kg roller in accordance with JIS Z 0237 was applied to the surface of the prepared aluminum member test piece. Then, Si present on the surface of the aluminum member test piece was attached to the tape, and the amount of Si attached to the tape was quantified by ICP emission spectrometry. As a result, the Si adhesion amount was 0 ⁇ g / cm 2 . The results are shown in Table 1.
  • Example 6 Shear fracture load measurement test
  • the aluminum member test piece of Example 1 obtained as described above was set in a mold of an injection molding machine (ST10R2V manufactured by NISSEI), and a polyphenylene sulfide resin containing a filler as a thermoplastic resin ( Polyplastics PPS grade name 1140A6), injection time (including holding time) 5 seconds, injection speed 60mm / second, holding pressure 90MPa, molding temperature 310 °C, mold temperature 180 °C As shown in FIG.
  • the resin molded body 2 having a size of 40 mm ⁇ 10 mm ⁇ 5 mm is bonded to the surface of the aluminum member test piece 1 having a size of 40 mm ⁇ 40 mm ⁇ 3 mm with a bonding area of 10 mm ⁇ 5 mm.
  • an aluminum resin test piece (aluminum-resin composite) for a shear strength measurement test in which the resin molded body 2 was integrally fixed to a part of the surface of the aluminum member test piece 1 was produced.
  • the above-mentioned shear fracture load measurement test aluminum resin test piece is placed on the test piece fixing jig 3. Fixing with a bolt (not shown), a pressing jig 4 is applied on the resin molded body 2 at a position 0.1 mm away from the joint, and a shear load is applied to the resin molded body 2 by the pressing jig 4 to test the aluminum member test piece 1. The peeled state of the joint between the resin molded body 2 and the resin molded body 2 was examined.
  • Example 2 Aluminum containing Si: 9.5% by mass, Fe: 0.01% by mass, Cu: 0.08% by mass, Mn: 0.10% by mass, Mg: 1.95% by mass, Ni: 0.01% by mass An aluminum substrate test piece (aluminum cast alloy substrate) of Example 2 was produced in the same manner as in Example 1 except that die casting of the molten alloy was performed and the cooling rate during casting was set to 90 ° C./second. In the same manner as in Example 1, the area ratio of Mg 2 Si crystallized matter on the surface was determined. As a result, the area ratio of the Mg 2 Si crystallized product was 21%, and there was almost no change even when the measurement location was changed. The results are shown in Table 1.
  • Example 2 the aluminum substrate test piece of Example 2 was pretreated in the same manner as in Example 1, and then subjected to an etching treatment of immersing in a 10 wt% sulfuric acid solution at 40 ° C. for 10 minutes and then washing with water. Washed with water and dried with hot air of 80 ° C. for 5 minutes to produce an aluminum member test piece (aluminum cast alloy member) of Example 2, and in the same manner as in Example 1, the area ratio of the concave portion on the surface and Si adhesion We asked for quantity.
  • the surface of the observed aluminum member test piece is as shown in the SEM photograph of FIG. 5, and the calculated area ratio of the concave portion is 42%, and there is almost no change even if the observation place is changed.
  • the amount of adhesion was 0 ⁇ g / cm 2 .
  • Example 1 an aluminum resin test piece (aluminum-resin composite) for a shear strength measurement test was prepared, and the shear strength of the aluminum resin test piece was measured and evaluated. The results are shown in Table 1 together with the results of Example 1.
  • Example 3 Aluminum containing Si: 0.99 mass%, Fe: 0.01 mass%, Cu: 0.01 mass%, Mn: 1.10 mass%, Mg: 3.60 mass%, Ni: 0.01 mass%
  • An aluminum substrate test piece (aluminum cast alloy substrate) of Example 3 was prepared in the same manner as in Example 1 except that die casting of the molten alloy was performed and the cooling rate during casting was set to 90 ° C./second.
  • the area ratio of Mg 2 Si crystallized matter on the surface was determined.
  • the area ratio of the Mg 2 Si crystallized product was 20%, and there was almost no change even when the measurement location was changed. The results are shown in Table 1.
  • Example 3 the aluminum substrate test piece of Example 3 was pretreated in the same manner as in Example 1, and then subjected to an etching treatment of immersing in a 10 wt% sulfuric acid solution at 40 ° C. for 10 minutes and then washing with water. Washed with water and dried with hot air at 80 ° C. for 5 minutes to prepare an aluminum member test piece (aluminum cast alloy member) of Example 3, and in the same manner as in Example 1, the area ratio of the concave portion on the surface and Si adhesion We asked for quantity.
  • the surface of the observed aluminum member test piece is as shown in the SEM photograph of FIG. 6, and the calculated area ratio of the concave portion is 43%, and there is almost no change even if the observation place is changed.
  • the amount of adhesion was 0 ⁇ g / cm 2 .
  • Example 1 an aluminum resin test piece (aluminum-resin composite) for a shear strength measurement test was prepared, and the shear strength of the aluminum resin test piece was measured and evaluated. The results are shown in Table 1 together with the results of Example 1.
  • Example 4 Si Aluminum containing 13.01% by mass, Fe: 0.01% by mass, Cu: 0.01% by mass, Mn: 1.10% by mass, Mg: 1.99% by mass, Ni: 0.01% by mass
  • An aluminum substrate test piece (aluminum cast alloy substrate) of Example 4 was produced in the same manner as in Example 1 except that die casting of the molten alloy was performed and the cooling rate during casting was 90 ° C./second, In the same manner as in Example 1, the area ratio of Mg 2 Si crystallized matter on the surface was determined. As a result, the area ratio of the Mg 2 Si crystallized product was 22%, and there was almost no change even when the measurement location was changed. The results are shown in Table 1.
  • Example 4 the aluminum substrate test piece of Example 4 was pretreated in the same manner as in Example 1, and after being immersed in a 10 wt% sulfuric acid solution at 40 ° C. for 10 minutes and then washed with water. Washed with water and dried with hot air at 80 ° C. for 5 minutes to produce an aluminum member test piece (aluminum cast alloy member) of Example 4, and in the same manner as in Example 1, the area ratio of the concave portion on the surface and Si adhesion We asked for quantity.
  • the observed surface of the aluminum member test piece is as shown in the SEM photograph of FIG. 7, and the calculated area ratio of the concave portion is 51%, and there is almost no change even if the observation place is changed.
  • the amount of adhesion was 0 ⁇ g / cm 2 .
  • Example 1 an aluminum resin test piece (aluminum-resin composite) for a shear strength measurement test was prepared, and the shear strength of the aluminum resin test piece was measured and evaluated. The results are shown in Table 1 together with the results of Example 1.
  • Example 5 Aluminum containing Si: 3.01% by mass, Fe: 0.01% by mass, Cu: 0.01% by mass, Mn: 1.10% by mass, Mg: 5.99% by mass, Ni: 0.01% by mass An aluminum cast alloy material was produced in the same manner as in Example 1 except that the molten alloy was die-cast and the cooling rate during casting was 90 ° C./sec. The aluminum cast alloy material was treated at a processing temperature of 540 ° C. Solution treatment is performed for 3 hours, and after quenching in water immediately, aging treatment is performed at a treatment temperature of 200 ° C. for 3 hours, and the resulting aluminum casting alloy material after aging treatment is obtained.
  • Example 5 An aluminum substrate test piece (aluminum cast alloy substrate) of Example 5 having the same size as that of Example 1 was cut out and produced, and the area ratio of Mg 2 Si crystallized material on the surface thereof was obtained in the same manner as in Example 1. Asked. As a result, the area ratio of the Mg 2 Si crystallized product was 30%, and there was almost no change even when the measurement location was changed. The results are shown in Table 1.
  • Example 5 the aluminum substrate test piece of Example 5 was pretreated in the same manner as in Example 1, and then subjected to an etching treatment of immersing in a 10 wt% sulfuric acid solution at 80 ° C. for 5 minutes and then washing with water. Washed with water and dried with hot air at 80 ° C. for 5 minutes to produce an aluminum member test piece (aluminum cast alloy member) of Example 5, and in the same manner as in Example 1, the area ratio of the concave portion on the surface and Si adhesion We asked for quantity.
  • the surface of the observed aluminum member test piece is as shown in the SEM photograph of FIG. 8, and the calculated area ratio of the concave portion is 55%, and there is almost no change even if the observation place is changed.
  • the amount of adhesion was 0 ⁇ g / cm 2 .
  • Example 1 an aluminum resin test piece (aluminum-resin composite) for a shear strength measurement test was prepared, and the shear strength of the aluminum resin test piece was measured and evaluated. The results are shown in Table 1 together with the results of Example 1.
  • Example 6 Aluminum containing Si: 3.01% by mass, Fe: 0.01% by mass, Cu: 0.01% by mass, Mn: 1.10% by mass, Mg: 5.99% by mass, Ni: 0.01% by mass An aluminum cast alloy material was produced in the same manner as in Example 1 except that the molten alloy was die-cast and the cooling rate during casting was 90 ° C./sec. The aluminum cast alloy material was treated at a processing temperature of 540 ° C. The aluminum casting alloy material after the aging treatment was obtained after solution treatment was performed for 3 hours, followed by rapid quenching in water followed by aging treatment at 300 ° C for 3 hours.
  • Example 6 An aluminum substrate test piece (aluminum cast alloy substrate) of Example 6 having the same size as that of Example 1 was cut out and produced, and the area ratio of Mg 2 Si crystallized material on the surface in the same manner as in Example 1 Asked. As a result, the area ratio of the Mg 2 Si crystallized product was 34%, and there was almost no change even when the measurement location was changed. The results are shown in Table 1.
  • Example 6 the aluminum substrate test piece of Example 6 was pretreated in the same manner as in Example 1, and then subjected to an etching treatment in which it was immersed in a 10 wt% sulfuric acid solution at 40 ° C. for 10 minutes and then washed with water. Washed with water and dried with hot air at 80 ° C. for 5 minutes to produce an aluminum member test piece (aluminum cast alloy member) of Example 6, and in the same manner as in Example 1, the area ratio of the concave portion on the surface and Si adhesion We asked for quantity.
  • the surface of the observed aluminum member test piece is as shown in the SEM photograph of FIG. 9, and the calculated area ratio of the concave portion is 70%, and there is almost no change even if the observation place is changed.
  • the amount of adhesion was 0 ⁇ g / cm 2 .
  • Example 1 an aluminum resin test piece (aluminum-resin composite) for a shear strength measurement test was prepared, and the shear strength of the aluminum resin test piece was measured and evaluated. The results are shown in Table 1 together with the results of Example 1.
  • Comparative Example 1 Aluminum containing Si: 11.03 mass%, Fe: 0.8 mass%, Cu: 3.07 mass%, Mn: 0.22 mass%, Mg: 0.27 mass%, Ni: 0.09 mass% An aluminum substrate test piece (aluminum cast alloy substrate) of Comparative Example 1 was prepared in the same manner as in Example 1 except that die casting of the molten alloy was performed and the cooling rate during casting was 90 ° C./second, In the same manner as in Example 1, the area ratio of Mg 2 Si crystallized matter on the surface was determined. As a result, the area ratio of the Mg 2 Si crystallized product was 2%, and there was almost no change even when the measurement location was changed. The results are shown in Table 1.
  • Example 1 an aluminum resin test piece (aluminum-resin composite) for a shear strength measurement test was prepared, and the shear strength of the aluminum resin test piece was measured and evaluated. The results are shown in Table 1 together with the results of Example 1.
  • Comparative Example 2 Aluminum containing Si: 3.3% by mass, Fe: 0.4% by mass, Cu: 0.02% by mass, Mn: 0.4% by mass, Mg: 6.0% by mass, Ni: 0.02% by mass An aluminum substrate test piece (aluminum cast alloy substrate) of Comparative Example 2 was prepared in the same manner as in Example 1 except that the molten alloy was die cast, and Mg 2 on the surface thereof was prepared in the same manner as in Example 1. The area ratio of the Si crystallized product was determined. As a result, the area ratio of the Mg 2 Si crystallized product was 32%, and there was almost no change even when the measurement location was changed. The results are shown in Table 1.
  • the aluminum substrate test piece of Comparative Example 2 was pretreated in the same manner as in Example 1, and then subjected to an etching treatment of immersing in a 10 wt% sulfuric acid solution at 40 ° C. for 60 minutes and then washing with water. Washed with water and dried with hot air at 80 ° C. for 5 minutes to produce an aluminum member test piece (aluminum cast alloy member) of Comparative Example 2, and in the same manner as in Example 1, the area ratio of the concave portion on the surface and Si adhesion We asked for quantity.
  • the surface of the observed aluminum member test piece is as shown in the SEM photograph of FIG. 11, and the calculated area ratio of the concave portion is 70%, and there is almost no change even if the observation place is changed.
  • the adhesion amount was 100 ⁇ g / cm 2 .
  • Example 1 an aluminum resin test piece (aluminum-resin composite) for a shear strength measurement test was prepared, and the shear strength of the aluminum resin test piece was measured and evaluated. The results are shown in Table 1 together with the results of Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

 アルミ樹脂接合性に優れたアルミ鋳造合金部材を簡便な方法で容易に製造することができる樹脂接合用アルミ鋳造合金部材の製造方法を提供することにあり、また、この方法で得られた樹脂接合用アルミ鋳造合金部材を提供することにある。 ダイカスト鋳込みによりSi:0.9~18質量%及びMg:1.0~10.0質量%の範囲で含有するアルミ鋳造合金基材を調製し、次いで硫酸及び/又は硝酸の水溶液からなる酸性エッチング液を用い、アルミ鋳造合金基材を処理温度30~80℃及び処理時間5~15分の条件でエッチング処理してアルミ鋳造合金基材表面のMg2Si晶出物を溶解し、アルミ鋳造合金基材の表面に樹脂接合性に優れた微細な凹凸形状を付与する樹脂接合用アルミ鋳造合金部材の製造方法であり、また、この方法で得られた樹脂接合用アルミ鋳造合金部材である。

Description

樹脂接合用アルミ鋳造合金部材の製造方法及びこの方法で得られた樹脂接合用アルミ鋳造合金部材
 この発明は、アルミ鋳造合金からなる樹脂接合用のアルミ鋳造合金部材の製造方法及びこの方法で得られた樹脂接合用のアルミ鋳造合金部材に係り、特に限定するものではないが、自動車用部品、家電機器用部品、産業機器用部品等を始めとする多くの用途に好適な樹脂接合用アルミ鋳造合金部材の製造方法及びこの方法で得られた樹脂接合用のアルミ鋳造合金部材に関する。
 アルミニウム合金は、軽量で加工性に富むほか機械的性質にも優れ、しかも、優れた熱伝導性、導電性、耐食性等の特性を有することから、建築材料、家電機器用材料、車両・船舶用材料等の極めて多くの用途に供されており、特にアルミ鋳造合金部材については、アルミ押出合金部材とは異なり、単に熱伝導性や導電性等に優れているだけでなく、複雑な形状を有する部品であっても容易に作製することができることから、複雑な形状を有して熱伝導性や導電性等が求められる多くの用途に多用されており、そして、特に近年においては、かかる用途においても、その一部を熱的に及び/又は電気的に絶縁したい等のニーズから、部分的に断熱性や絶縁性に富む樹脂を接合することが求められている。
 そして、このような用途に用いられ、部分的に樹脂を接合すること(部分的な樹脂化)が求められる場合において、これまではビス止めや接着剤等の手段が採用されていたが、これらの手段による部分的な樹脂化には、製造工程での工程数が増加するほか、重量増加の原因にもなり、これらビス止めや接着剤等の手段を必要としないアルミ-樹脂接合技術の開発が求められていた。
 そこで、本発明者らは、先に塩酸系エッチング処理によりアルミ合金部材の表面に微細な凹凸形状を付与し、この凹凸形状を利用して樹脂成形時にアルミ合金部材の表面に樹脂成形体を接合し、これによって過酷な環境下でも優れた密着性及び気密性を保持すると共に、優れた耐久性や耐熱性をも発揮するアルミ・樹脂射出一体成形品の製造方法を提供した(特許文献1)。しかしながら、アルミ鋳造合金は、通常その良好な鋳造性を確保するためにそのダイカスト鋳込み時に添加金属としてシリコン(Si)が添加され、Al-Si系アルミニウム合金として得られる。そして、このアルミ鋳造合金中に比較的多量に含まれるSiがフッ酸以外の薬品にほとんど溶解しないことから、アルミ鋳造合金に上記のアルミ-樹脂接合技術をそのまま適用すると、アルミ鋳造合金のエッチング処理の際にその表面にSiが溶け残って堆積し、この溶け残って堆積したSiが、アルミ鋳造合金の表面上に樹脂成形体を接合した際に、これらアルミ鋳造合金と樹脂成形体との間の界面における密着性及び/又は気密性(以下、「アルミ樹脂接合性」という。)を損ね、このアルミ樹脂接合性に多大な悪影響を及ぼすという問題があった。
 本発明者らは、更にこのような問題を解決すべく検討し、Si:5.0質量%以上18質量%以下、Fe:1.3質量%以下、Cu:5.0質量%以下、Mg:1.5質量%以下、Ni:1.5質量%以下、及び残部がAl及び不可避的不純物である成分組成のアルミ鋳造合金基材を鋳造するに際し、鋳造時の共晶Si凝固温度が755~780℃である領域における冷却速度を0.1~100℃/秒とし、得られたアルミ鋳造合金基材について、必要によりその形状及びサイズを整えた後に、その表面を酸性エッチング液でエッチング処理し、このエッチング処理によって表面に凹状部を形成すると共にこの凹状部の内面に共晶Si結晶からなる所定の大きさの凸部を形成し、これによってアルミ樹脂接合性に優れたアルミ鋳造合金部材を製造する方法を提案した(特許文献2)。しかしながら、この方法においても、エッチング溶解量が最適値より僅かでも多くなると表層にSiが堆積してアルミ樹脂接合性に悪影響を及ぼすという問題があるほか、エッチング溶解量の最適値が合金組成や表面組織に強く影響を受けるため、求められる合金組成や表面組織に応じてその都度エッチング処理の最適条件を設定する必要がある等の生産上の課題もある。
WO2009/151、099A1号公報 特開2010-174、372号公報
 そこで、本発明者らは、ダイカスト鋳込みにより調製されたアルミニウム合金からなるアルミ鋳造合金基材の表面に簡便な方法で凹凸形状を付与し、優れたアルミ樹脂接合性を有するアルミ鋳造合金部材を容易に製造することができる方法について鋭意検討した結果、意外なことには、Si原子及びMg原子をそれぞれ所定の範囲内で含むアルミ鋳造合金基材を調製し、このアルミ鋳造合金基材の表面に晶出したMg2Si晶出物を特定の酸性エッチング液で所定の条件下にエッチング処理することにより、アルミ樹脂接合性に優れたアルミ鋳造合金部材を容易に製造できることを見い出し、本発明を完成した。
 従って、本発明の目的は、アルミ樹脂接合性に優れたアルミ鋳造合金部材を簡便な方法で容易に製造することができる樹脂接合用アルミ鋳造合金部材の製造方法を提供することにあり、また、この方法で得られた樹脂接合用アルミ鋳造合金部材を提供することにある。
 すなわち、本発明は、ダイカスト鋳込みによりSi:0.9~18質量%及びMg:1.0~10.0質量%の範囲で含有するアルミ鋳造合金からなるアルミ鋳造合金基材を調製し、次いで硫酸及び/又は硝酸の水溶液からなる酸性エッチング液を用い、上記アルミ鋳造合金基材を処理温度30~80℃及び処理時間5~15分の条件でエッチング処理してこのアルミ鋳造合金基材表面のMg2Si晶出物を溶解し、前記アルミ鋳造合金基材の表面に樹脂接合性に優れた微細な凹凸形状を付与することを特徴とする樹脂接合用アルミ鋳造合金部材の製造方法である。
 本発明において、ダイカスト鋳込みにより調製されるアルミ鋳造合金基材は、そのアルミ鋳造合金がマトリクス金属のアルミニウム(Al)以外に、少なくともSi原子を0.9質量%以上18質量%以下、好ましくは3質量%以上15質量%以下の範囲で、また、Mg原子を1.0質量%以上10.0質量%以下、好ましくは1.5質量%以上9質量%以下の範囲で含むことが必要であり、Si原子含有量が0.9質量%より低いとダイカスト鋳込み時の湯流れが悪くなり、反対に18質量%より高くなると調製されたアルミ鋳造合金の靭性が低下して好ましくなく、また、Mg原子含有量が1.0質量%より低いと十分なMg2Siが得られないという問題があり、反対に10.0質量%より高くなると鋳造性が著しく低下するという問題が生じる。
 また、このアルミ鋳造合金基材を構成するアルミ鋳造合金については、通常、鋳造時の金型への焼き付け防止に必要な元素としてFe及びMnが存在するが、Feについては、特定の酸性エッチング浴では溶解しないAl-Fe-Si系金属間化合物を形成してMg2Siを形成するのに必要なSiを消費させる等、アルミ樹脂接合性に悪影響を与えるので、0.01質量%以上0.8質量%以下、好ましくは0.1質量%以上0.7質量%以下の範囲で添加するのがよく、また、Mnについては、特定の酸性エッチング浴では溶解しないAl-Mn系やAl-Mn-Si系の金属間化合物を形成し、前者はエッチング時に凹部が形成されない場所を増やし、また、後者はMg2Siを形成するのに必要なSiを消費させる等のアルミ樹脂接合性に悪影響を与えることから、0.01質量%以上0.9質量%以下、好ましくは0.1質量%以上0.8質量%以下の範囲で添加するのがよい。
 更に、このアルミ鋳造合金については、アルミ鋳造合金基材の材料強度を向上させるために必要な元素のCuを添加してもよく、Cuを添加する場合には、特定の酸性エッチング浴では溶解しないAl-Cu系やAl-Cu-Mg系の金属間化合物を形成し、前者はエッチング時に凹部が形成されない場所を増やし、また、後者はMg2Siを形成するのに必要なMgを消費させる等、アルミ樹脂接合性に悪影響を与えるので、通常0.01質量%以上1.0質量%以下、好ましくは0.02質量%以上0.8質量%以下の範囲で添加するのがよい。なお、このアルミ鋳造合金には、不可避不純物としてNiが混入するが、このNiは特定の酸性エッチング浴では溶解しないAl-Ni系やAl-Fe-Ni系の金属間化合物を形成し、エッチング時に凹部が形成されない場所を増やし、アルミ樹脂接合性に悪影響を与えるので、好ましくは0.1質量%以下に抑えるのが望ましい。
 ここで、本発明のアルミ鋳造合金基材については、後のエッチング処理によって得られるアルミ鋳造合金部材の表面に所望のアルミ樹脂接合性を付与するために、好ましくは表面におけるMg2Si晶出物の面積比率〔すなわち、エネルギー分散型X線分析装置(堀場製作所製EMAX-7000)の反射電子像観察(図1)とマッピング分析によりSi元素及びAl元素の分析を行い、その後、Si元素とAl元素を重ね合わせ、図2のように画像処理して求められるMg2Si晶出物の測定視野0.1mm角における面積比率〕が5%以上60%以下、好ましくは15%以上50%以下であるのがよい。このMg2Si晶出物の面積比率が5%より低いとエッチングによる凹凸形状の形成に不利に働くため、樹脂接合性に悪影響を与えるという問題があり、反対に、60%より高くなると形成される凹凸形状のサイズが大きくなり過ぎて樹脂接合性に悪影響を与えるという問題が生じる虞がある。
 そこで、このアルミ鋳造合金基材の表面におけるMg2Si晶出物の面積率が上記の5%に達していない場合には、次のエッチング処理に先駆けて、アルミ鋳造合金基材に時効処理を施し、好ましくは溶体化処理を施した後に時効処理を施し、アルミ鋳造合金基材表面のMg2Si晶出物面積率を上記の範囲内に調整するのがよい。
 この目的で行われるアルミ鋳造合金基材の時効処理については、処理温度が180℃以上400℃以下、好ましくは200℃以上380℃以下であって、処理時間が0.5時間以上20時間以下、好ましくは1時間以上15時間以下の処理条件であるのがよく、また、この時効処理の前に溶体化処理を施す場合には、この溶体化処理の処理条件として、処理温度が480℃以上600℃以下、好ましくは500℃以上580℃以下であって、処理時間が0.5時間以上20時間以下、好ましくは1時間以上15時間以下であるのがよい。上記時効処理の処理条件において、処理温度が180℃より低いとMg2Siが十分に析出しないという問題があり、反対に、400℃より高くなるとMg2Siの析出サイズが粗大になりすぎて分散性が低下する虞があり、また、処理時間が0.5時間より少ないとMg2Siが十分に析出しないという問題があり、反対に、15時間より長くなるとMg2Si析出サイズが粗大になりすぎて分散性が低下する虞がある。
 このようにして調製されたアルミ鋳造合金基材については、次に、硫酸及び/又は硝酸の水溶液からなる酸性エッチング液を用いてエッチング処理を行い、このアルミ鋳造合金基材の表面に存在するMg2Si晶出物を溶解し、アルミ鋳造合金基材の表面に所望の凹凸形状を形成せしめる。
 ここで、酸性エッチング液として用いる硫酸及び/又は硝酸の水溶液については、硫酸水溶液の場合にはその酸濃度が1重量%以上60重量%以下、好ましくは5重量%以上50重量%以下であるのがよく、また、硝酸水溶液の場合にはその酸濃度が5重量%以上60重量%以下、好ましくは10重量%以上50重量%以下であるのがよく、更に、硫酸・硝酸混合水溶液の場合には酸濃度が5重量%以上50重量%以下である硫酸水溶液中に酸濃度が5重量%以上30重量%以下である硝酸水溶液を添加するのがよい。酸性エッチング液の酸濃度が上記範囲より低いと反応が十分に進まず溶解量が不十分になるという問題が生じる虞があり、反対に、上記範囲より高くなると反応速度が速くなり過ぎて溶解量の制御が困難になる。なお、上記の酸性エッチング液については、溶解量を制御する等の目的のため、必要によりクロム酸、リン酸、酢酸、シュウ酸、アスコルビン酸、安息香酸、酪酸、クエン酸、ぎ酸、乳酸、イソブチル酸、リンゴ酸、プロピオン酸、酒石酸等の硫酸及び硝酸以外の酸を添加してもよい。
 また、上記の酸性エッチング液を用いたエッチング処理の処理条件については、処理温度が通常20℃以上90℃以下、好ましくは30℃以上80℃以下であって、処理時間が通常1分以上20分以下、好ましくは5分以上15分以下であるのがよい。このエッチング処理の処理条件における処理温度が20℃より低いと反応が十分に進まず溶解量が不十分になる虞があり、反対に、90℃より高くなると反応速度が速くなり過ぎて溶解量の制御が困難になる。同様に、エッチング処理の処理時間が1分より短いと反応が十分に進まず溶解量が不十分になる虞があり、反対に、20分より長くなると生産効率が低下して量産性が悪くなる。
 本発明において、以上のようにして得られたアルミ鋳造合金基材の表面にコンタミ等が残渣している場合には、脱脂や表面調整、表面付着物・汚染物等の除去を目的に、このアルミ鋳造合金基材のエッチング処理に先駆けて、酸水溶液に浸漬した後にアルカリ水溶液に浸漬する前処理を行うのがよい。この目的で使用される酸水溶液としては、例えば、市販の酸性脱脂剤で調製したもの、硫酸、硝酸、フッ酸、リン酸等の鉱酸や酢酸、クエン酸等の有機酸や、これらの酸を混合して得られた混合酸等の酸試薬を用いて調製したもの等の酸の1~50重量%水溶液が用いるのがよく、また、アルカリ水溶液としては、例えば、市販のアルカリ性脱脂剤により調製したもの、苛性ソーダ等のアルカリ試薬により調製したもの、又はこれらのものを混合して調製したもの等のアルカリの1~50重量%水溶液が用いるのがよく、更に、浸漬時間については、酸水溶液及びアルカリ水溶液のいずれの場合も0.5~10分間程度であるのがよい。
 本発明により得られたアルミ鋳造合金部材は、上記のエッチング処理によって溶解されたMg2Si晶出物の跡が凹状部となってこのアルミ鋳造合金部材の表面に凹凸形状を形成し、この凹凸形状により樹脂成形体との間に優れたアルミ樹脂接合性を発現する。そして、本発明のアルミ鋳造合金部材において、アルミ鋳造合金部材の表面に観察される凹状部の面積比率〔すなわち、操作型電子顕微鏡(日立製FE-SEM、S-4500形)を用いてSEM像(図3)を観察し、その結果を図4のように画像処理して求められる測定視野0.1mm角における凹状部の面積比率〕が20%以上90%以下、好ましくは35%以上80%以下であるのがよい。アルミ鋳造合金部材の表面における凹状部の面積率が20%より低いと凹部に入り込む樹脂量が不十分になり、樹脂接合性に悪影響を及ぼすという問題が生じる虞があり、反対に、90%より高くなると凹部に入り込んだ樹脂を支えるためのアルミ部が極端に少なくなり、結果として樹脂接合性に悪影響を及ぼすという問題が生じる虞が生じる。
 本発明の方法により得られたアルミ鋳造合金部材は、その表面に形成された微細な凹凸形状により、例えばこのアルミ鋳造合金部材を射出成形用金型内にセットし、この金型内に溶融した所定の熱可塑性樹脂を射出して固化させる、いわゆるアルミ鋳造合金部材を用いた熱可塑性樹脂の射出一体成形により、アルミ鋳造合金部材の必要な部分に樹脂成形体を接合してアルミ-樹脂複合体を製造した際に、優れたアルミ樹脂接合性を発揮する。
 ここで、本発明のアルミ鋳造合金部材を用いたアルミ-樹脂複合体を製造する際に使用される熱可塑性樹脂としては、各種の熱可塑性樹脂を単独で用いることができるが、本発明のアルミ鋳造合金部材を用いて製造されるアルミ-樹脂複合体に求められる物性、用途、使用環境等を考慮すると、熱可塑性樹脂としては、好ましくは、例えばポリプロピレン樹脂、ポリエチレン樹脂、アクリロニトリル・ブタジエン・スチレン共重合体(ABS)、ポリカーボネート樹脂(PC)、ポリアミド樹脂(PA)、ポリフェニレンスルフィド(PPS)等のポリアリーレンサルファイド樹脂、ポリアセタール樹脂、液晶性樹脂、ポリエチレンテレフタレート(PET)やポリブチレンテレフタレート(PBT)等のポリエステル系樹脂、ポリオキシメチレン樹脂、ポリイミド樹脂、シンジオタクティックポリスチレン樹脂等やこれらの熱可塑性樹脂の2種以上の混合物が挙げられ、また、アルミ形状体と樹脂成形体との間の密着性、機械的強度、耐熱性、寸法安定性(耐変形、反り等)、電気的性質等の性能をより改善するために、より好ましくは、これらの熱可塑性樹脂に繊維状、粉粒状、板状等の充填剤や、各種のエラストマー成分を添加するのがよい。
 また、熱可塑性樹脂に添加される充填剤としては、ガラス繊維、カーボン繊維、金属繊維、アスベスト繊維、硼素繊維等の無機質繊維充填剤や、ポリアミド、フッ素樹脂、アクリル樹脂等の高融点有機質繊維充填剤や、石英粉末、ガラスビーズ、ガラス粉、炭酸カルシウムを始めとする無機粉体類等の粉状充填剤や、ガラスフレーク、タルクやマイカ等の珪酸塩類等の板状充填剤等が例示され、熱可塑性樹脂100重量部に対して250重量部以下、好ましくは20重量部以上220重量部以下、より好ましくは30重量部以上100重量部以下の範囲で添加される。この充填剤の添加量が250重量部を超えると、流動性が低下しアルミ形状体の凹部へ進入し難くなり良好な密着強度を得られなかったり、機械的特性の低下を招くという問題が生じる。
 また、熱可塑性樹脂に添加されるエラストマー成分としては、ウレタン系、コアシェル型、オレフィン系、ポリエステル系、アミド系、スチレン系等のエラストマーが例示され、射出成形時の熱可塑性樹脂の溶融温度等を考慮して選択され、また、熱可塑性樹脂100重量部に対して30重量部以下、好ましくは3~25重量部の範囲で使用される。このエラストマー成分の添加量が30重量部を超えると、更なる密着強度向上効果が見られず機械的特性の低下等の問題が生じる。このエラストマー成分の配合効果は、熱可塑性樹脂としてポリエステル系樹脂を用いた場合に特に顕著に現れる。
 更に、本発明のアルミ-樹脂複合体を製造するための熱可塑性樹脂には、一般に熱可塑性樹脂に添加される公知の添加剤、すなわち難燃剤、染料や顔料等の着色剤、酸化防止剤や紫外線吸収剤等の安定剤、可塑剤、潤滑剤、滑剤、離型剤、結晶化促進剤、結晶核剤等を、要求される性能に応じて適宜添加することができる。
 本発明において、アルミ鋳造合金部材を射出成形用金型内にセットして行う熱可塑性樹脂の射出成形については、用いられる熱可塑性樹脂に求められる成形条件を採用し得るものであるが、射出成形時に溶融した熱可塑性樹脂がアルミ鋳造合金部材の凹状部内に確実に進入して固化することが重要であり、金型温度やシリンダー温度を熱可塑性樹脂の種類や物性、更には成形サイクルの許す範囲で比較的高めに設定するのが好ましく、特に金型温度については、下限温度を90℃以上、好ましくは130℃以上にする必要があるが、上限は、使用する熱可塑性樹脂の種類に応じて、100℃から当該熱可塑性樹脂の融点又は軟化点(エラストマー成分が添加される場合にはどちらか高い方の融点又は軟化点)より20℃程度低い温度までの範囲であるのがよい。また、下限金型温度は、熱可塑性樹脂の融点から140℃以上低くならないように設定するのが好ましい。
 なお、本発明のアルミ鋳造合金部材を用いて行われるアルミ-樹脂複合体の製造方法については、上記の熱可塑性樹脂の射出一体成形法に限らず、熱圧着法を採用してもよい。すなわち、先ず、使用する熱可塑性樹脂の溶融温度に応じてアルミ鋳造合金部材を90~300℃程度の温度に加熱し、その表面に熱可塑性樹脂性の樹脂成形体を加圧下に押し当て、この樹脂成形体の表面の一部を溶融させてアルミ鋳造合金部材表面の凹状部内に侵入させ、更に加圧下に冷却することにより所望のアルミ-樹脂複合体を製造する。
 本発明方法によれば、ダイカスト鋳込みにより調製されたアルミ鋳造合金基材の表面に簡便な方法で凹凸形状を形成し、アルミ樹脂接合性に優れたアルミ鋳造合金部材を容易に製造することができる。しかも、添加金属としてSi原子に加えてMg原子が添加されるので、製造されるアルミ鋳造合金部材の材料強度がより一層向上し、より広い用途のアルミ-樹脂複合体を製造するための材料として利用することができる。
図1は、実施例1で得られたアルミ鋳造合金基材の表面をエネルギー分散型X線分析装置で測定した反射電子画像写真である。
図2は、実施例1で得られたアルミ鋳造合金基材の表面をエネルギー分散型X線分析装置で測定してMg2Si晶出物の面積率を求めた際に測定された領域のMg元素とSi元素を重ね合わせた画像を示す写真である。
図3は、実施例1で得られたアルミ鋳造合金部材の表面を走査型電子顕微鏡で観察して凹状部の面積比率を求めた際に観察された領域の画像を示すSEM写真である。
図4は、図3のSEM写真から凹状部の面積比率を算出するため、二値化した写真である。
図5は、実施例2で得られたアルミ鋳造合金部材の表面を走査型電子顕微鏡で観察して凹状部の面積比率を求めた際に観察された領域の画像を示すSEM写真である。
図6は、実施例3で得られたアルミ鋳造合金部材の表面を走査型電子顕微鏡で観察して凹状部の面積比率を求めた際に観察された領域の画像を示すSEM写真である。
図7は、実施例4で得られたアルミ鋳造合金部材の表面を走査型電子顕微鏡で観察して凹状部の面積比率を求めた際に観察された領域の画像を示すSEM写真である。
図8は、実施例5で得られたアルミ鋳造合金部材の表面を走査型電子顕微鏡で観察して凹状部の面積比率を求めた際に観察された領域の画像を示すSEM写真である。
図9は、実施例6で得られたアルミ鋳造合金部材の表面を走査型電子顕微鏡で観察して凹状部の面積比率を求めた際に観察された領域の画像を示すSEM写真である。
図10は、比較例1で得られたアルミ鋳造合金部材の表面を走査型電子顕微鏡で観察して凹状部の面積比率を求めた際に観察された領域の画像を示すSEM写真である。
図11は、比較例2で得られたアルミ鋳造合金部材の表面を走査型電子顕微鏡で観察して凹状部の面積比率を求めた際に観察された領域の画像を示すSEM写真である。
図12は、各実施例及び各比較例で得られたアルミ鋳造合金部材を用いて作製されたせん断破壊荷重測定試験用のアルミ樹脂試験片(アルミ-樹脂複合体)を示す説明図である。
図13は、せん断破壊荷重測定試験機の試験片固定用冶具にアルミ樹脂試験片を固定し、せん断破壊荷重を測定する際の様子を説明するための説明図である。
 以下、本発明の実施例及び比較例に基づいて、本発明の実施の形態を具体的に説明する。
〔実施例1〕
 1.アルミ鋳造合金基材の調製
 Si:3.3質量%、Fe:0.4質量%、Cu:0.02質量%、Mn:0.4質量%、Mg:6.0質量%、Ni:0.02質量%を含むアルミ合金溶湯を、180mm×150mm×3mmのサイズにダイカスト鋳込みを行った。なお、この際の設定条件は、金型温度;170℃、溶湯温度;720℃、射出速度;1.7m/s、製品充填時間;10ms、製品内平均流速;11m/sである。なお、鋳造時の冷却速度は40℃/秒である。得られたアルミ鋳造合金基材から40mm×40mm×3mmの大きさのアルミ基材試験片を切り出した。
 2.アルミ鋳造合金基材の表面観察
 得られたアルミ基材試験片の表面について、エネルギー分散型X線分析装置(堀場製作所製EMAX-7000)を用いたマッピング分析によりシリコン元素及びアルミニウム元素の分析を行い、その後、分析結果の画像処理を行ってMg2Si晶出物の面積率を算出した。測定されたアルミ基材試験片のある領域におけるMg2Si晶出物の面積率は32%であった。
 結果を表1に示す。なお、測定場所を変えてもほとんど変わりがなかった。測定された反射電子像及び分析結果の画像をそれぞれ図1、図2に示す。
 3.アルミ鋳造合金部材の調製
 続いて、得られたアルミ基材試験片について、30wt%-硝酸水溶液に常温で1分間浸漬した後にイオン交換水で十分に水洗し、次いで5wt%-水酸化ナトリウム溶液に50℃で1分間浸漬した後に水洗し、更に、30wt%-硝酸水溶液に常温で1分間浸漬した後に水洗する前処理を施した。
 このようにして前処理が施されたアルミ基材試験片について、10wt%-硫酸溶液中に40℃で10分間浸漬した後に水洗するエッチング処理を施し、次いで水洗した後に80℃の熱風で5分間乾燥させ、表面に凹状部を有するアルミ部材試験片(実施例1のアルミ鋳造合金部材)を作製した。
 4.アルミ鋳造合金部材の表面観察
 得られたアルミ部材試験片の表面を、走査型電子顕微鏡(日立製FE-SEM、S-4500形)を用いて観察し、その後、画像処理を行ってアルミ部材試験片の凹状部の面積率を算出した。観察されたアルミ部材試験片の表面は図3のSEM写真に示す通りであった。また、測定されたアルミ部材試験片のある領域の凹状部の面積率は60%であった。
 結果を表1に示す。なお、観察場所を変えても凹状部の面積率にほとんど変わりがなかった。SEM写真の画像処理結果を図4に示す。
 5.アルミ鋳造合金部材の表面のSi付着量
 作製したアルミ部材試験片の表面について、JIS Z 0237に準拠し、2kgのローラーを用いて2kgの荷重下に行った粘着テープ・粘着シート試験法を適用し、アルミ部材試験片の表面に存在するSiをテープに付着させ、このテープに付着したSiの量をICP発光分光分析法にて定量した。結果はSi付着量が0μg/cm2であった。
 結果を表1に示す。
 6.せん断破壊荷重測定試験
 以上のようにして得られた実施例1のアルミ部材試験片を射出成形機(NISSEI社製ST10R2V)の金型内にセットし、熱可塑性樹脂として充填剤含有ポリフェニレンスルフィド樹脂(ポリプラスチックス社製PPS グレード名1140A6)を用い、射出時間(保圧時間を含む)5秒、射出速度60mm/秒、保圧力90MPa、成形温度310℃、及び金型温度180℃の成形条件で射出成形し、図12に示すように、40mm×40mm×3mmの大きさのアルミ部材試験片1の表面に、大きさ40mm×10mm×5mmの樹脂成形体2を10mm×5mmの接合面積で接合させ、上記アルミ部材試験片1の表面の一部に樹脂成形体2が一体的に固着したせん断強度測定試験用のアルミ樹脂試験片(アルミ-樹脂複合体)を作製した。
 次に、せん断強度測定試験機(島津製作所製:100kNオートグラフ)を用い、図13に示すように、その試験片固定用治具3に上記のせん断破壊加重測定試験用のアルミ樹脂試験片を図示外のボルトで固定し、接合部から0.1mm離れた位置で樹脂成形体2上に押しジグ4を当て、この押しジグ4により樹脂成形体2にせん断荷重を加え、アルミ部材試験片1と樹脂成形体2との間の接合部の剥離状態を調べた。この時の剥離形態について、樹脂成形体2の樹脂がアルミ部材試験片1側に接合面積の70%以上の割合で残る「凝集破壊」である場合を最良好(◎)とし、また、樹脂がアルミ部材試験片1側に一部でも残る「凝集破壊」である場合を良好(○)とし、更に、樹脂がアルミ部材試験片1側に残らずに剥離が接合界面で発生した場合を不良(×)として評価した。結果は最良好(◎)であった。
 結果を表1に示す。
〔実施例2〕
 Si:9.5質量%、Fe:0.01質量%、Cu:0.08質量%、Mn:0.10質量%、Mg:1.95質量%、Ni:0.01質量%を含むアルミ合金溶湯のダイカスト鋳込みを行い、鋳造時の冷却速度を90℃/秒とした以外は、実施例1と同様にして実施例2のアルミ基材試験片(アルミ鋳造合金基材)を作製し、実施例1と同様にしてその表面におけるMg2Si晶出物の面積率を求めた。
 結果は、Mg2Si晶出物の面積率が21%であり、測定場所を変えてもほとんど変わりがなかった。結果を表1に示す。
 次に、実施例2のアルミ基材試験片について、実施例1と同様にして前処理を施した後、10wt%硫酸溶液中に40℃で10分間浸漬した後に水洗するエッチング処理を施した後に水洗し、80℃の熱風で5分間乾燥させ、実施例2のアルミ部材試験片(アルミ鋳造合金部材)を作製し、実施例1と同様にして、その表面における凹状部の面積率とSi付着量とを求めた。
 観察されたアルミ部材試験片の表面は図5のSEM写真に示す通りであり、算出された凹状部の面積率は42%であって、観察場所を変えてもほとんど変わりがなく、また、Si付着量が0μg/cm2であった。
 続いて、上記実施例1と同様にして、せん断強度測定試験用のアルミ樹脂試験片(アルミ-樹脂複合体)を作製し、上記アルミ樹脂試験片のせん断強度を測定し、評価した。
 結果を、実施例1の結果と共に、表1に示す。
〔実施例3〕
 Si:0.99質量%、Fe:0.01質量%、Cu:0.01質量%、Mn:1.10質量%、Mg:3.60質量%、Ni:0.01質量%を含むアルミ合金溶湯のダイカスト鋳込みを行い、鋳造時の冷却速度を90℃/秒とした以外は、実施例1と同様にして実施例3のアルミ基材試験片(アルミ鋳造合金基材)を作製し、実施例1と同様にしてその表面におけるMg2Si晶出物の面積率を求めた。
 結果は、Mg2Si晶出物の面積率が20%であり、測定場所を変えてもほとんど変わりがなかった。結果を表1に示す。
 次に、実施例3のアルミ基材試験片について、実施例1と同様にして前処理を施した後、10wt%硫酸溶液中に40℃で10分間浸漬した後に水洗するエッチング処理を施した後に水洗し、80℃の熱風で5分間乾燥させ、実施例3のアルミ部材試験片(アルミ鋳造合金部材)を作製し、実施例1と同様にして、その表面における凹状部の面積率とSi付着量とを求めた。
 観察されたアルミ部材試験片の表面は図6のSEM写真に示す通りであり、算出された凹状部の面積率は43%であって、観察場所を変えてもほとんど変わりがなく、また、Si付着量が0μg/cm2であった。
 続いて、上記実施例1と同様にして、せん断強度測定試験用のアルミ樹脂試験片(アルミ-樹脂複合体)を作製し、上記アルミ樹脂試験片のせん断強度を測定し、評価した。
 結果を、実施例1の結果と共に、表1に示す。
〔実施例4〕
 Si:13.01質量%、Fe:0.01質量%、Cu:0.01質量%、Mn:1.10質量%、Mg:1.99質量%、Ni:0.01質量%を含むアルミ合金溶湯のダイカスト鋳込みを行い、鋳造時の冷却速度を90℃/秒とした以外は、実施例1と同様にして実施例4のアルミ基材試験片(アルミ鋳造合金基材)を作製し、実施例1と同様にしてその表面におけるMg2Si晶出物の面積率を求めた。
 結果は、Mg2Si晶出物の面積率が22%であり、測定場所を変えてもほとんど変わりがなかった。結果を表1に示す。
 次に、実施例4のアルミ基材試験片について、実施例1と同様にして前処理を施した後、10wt%硫酸溶液中に40℃で10分間浸漬した後に水洗するエッチング処理を施した後に水洗し、80℃の熱風で5分間乾燥させ、実施例4のアルミ部材試験片(アルミ鋳造合金部材)を作製し、実施例1と同様にして、その表面における凹状部の面積率とSi付着量とを求めた。
 観察されたアルミ部材試験片の表面は図7のSEM写真に示す通りであり、算出された凹状部の面積率は51%であって、観察場所を変えてもほとんど変わりがなく、また、Si付着量が0μg/cm2であった。
 続いて、上記実施例1と同様にして、せん断強度測定試験用のアルミ樹脂試験片(アルミ-樹脂複合体)を作製し、上記アルミ樹脂試験片のせん断強度を測定し、評価した。
 結果を、実施例1の結果と共に、表1に示す。
〔実施例5〕
 Si:3.01質量%、Fe:0.01質量%、Cu:0.01質量%、Mn:1.10質量%、Mg:5.99質量%、Ni:0.01質量%を含むアルミ合金溶湯のダイカスト鋳込みを行い、鋳造時の冷却速度を90℃/秒とした以外は、実施例1と同様にしてアルミ鋳造合金材を作製し、このアルミ鋳造合金材について処理温度540℃及び処理時間3時間の条件で溶体化処理を行い、その後すみやかに水中で焼き入れを行った後に処理温度200℃及び3時間の条件で時効処理を実施し、得られた時効処理後のアルミ鋳造合金材から実施例1と同じ大きさの実施例5のアルミ基材試験片(アルミ鋳造合金基材)を切り出して作製し、実施例1と同様にしてその表面におけるMg2Si晶出物の面積率を求めた。
 結果は、Mg2Si晶出物の面積率が30%であり、測定場所を変えてもほとんど変わりがなかった。結果を表1に示す。
 次に、実施例5のアルミ基材試験片について、実施例1と同様にして前処理を施した後、10wt%硫酸溶液中に80℃で5分間浸漬した後に水洗するエッチング処理を施した後に水洗し、80℃の熱風で5分間乾燥させ、実施例5のアルミ部材試験片(アルミ鋳造合金部材)を作製し、実施例1と同様にして、その表面における凹状部の面積率とSi付着量とを求めた。
 観察されたアルミ部材試験片の表面は図8のSEM写真に示す通りであり、算出された凹状部の面積率は55%であって、観察場所を変えてもほとんど変わりがなく、また、Si付着量が0μg/cm2であった。
 続いて、上記実施例1と同様にして、せん断強度測定試験用のアルミ樹脂試験片(アルミ-樹脂複合体)を作製し、上記アルミ樹脂試験片のせん断強度を測定し、評価した。
 結果を、実施例1の結果と共に、表1に示す。
〔実施例6〕
 Si:3.01質量%、Fe:0.01質量%、Cu:0.01質量%、Mn:1.10質量%、Mg:5.99質量%、Ni:0.01質量%を含むアルミ合金溶湯のダイカスト鋳込みを行い、鋳造時の冷却速度を90℃/秒とした以外は、実施例1と同様にしてアルミ鋳造合金材を作製し、このアルミ鋳造合金材について処理温度540℃及び処理時間3時間の条件で溶体化処理を行い、その後すみやかに水中で焼き入れを行った後に処理温度300℃及び3時間の条件で時効処理を実施し、得られた時効処理後のアルミ鋳造合金材から実施例1と同じ大きさの実施例6のアルミ基材試験片(アルミ鋳造合金基材)を切り出して作製し、実施例1と同様にしてその表面におけるMg2Si晶出物の面積率を求めた。
 結果は、Mg2Si晶出物の面積率が34%であり、測定場所を変えてもほとんど変わりがなかった。結果を表1に示す。
 次に、実施例6のアルミ基材試験片について、実施例1と同様にして前処理を施した後、10wt%硫酸溶液中に40℃で10分間浸漬した後に水洗するエッチング処理を施した後に水洗し、80℃の熱風で5分間乾燥させ、実施例6のアルミ部材試験片(アルミ鋳造合金部材)を作製し、実施例1と同様にして、その表面における凹状部の面積率とSi付着量とを求めた。
 観察されたアルミ部材試験片の表面は図9のSEM写真に示す通りであり、算出された凹状部の面積率は70%であって、観察場所を変えてもほとんど変わりがなく、また、Si付着量が0μg/cm2であった。
 続いて、上記実施例1と同様にして、せん断強度測定試験用のアルミ樹脂試験片(アルミ-樹脂複合体)を作製し、上記アルミ樹脂試験片のせん断強度を測定し、評価した。
 結果を、実施例1の結果と共に、表1に示す。
〔比較例1〕
 Si:11.03質量%、Fe:0.8質量%、Cu:3.07質量%、Mn:0.22質量%、Mg:0.27質量%、Ni:0.09質量%を含むアルミ合金溶湯のダイカスト鋳込みを行い、鋳造時の冷却速度を90℃/秒とした以外は、実施例1と同様にして比較例1のアルミ基材試験片(アルミ鋳造合金基材)を作製し、実施例1と同様にしてその表面におけるMg2Si晶出物の面積率を求めた。
 結果は、Mg2Si晶出物の面積率が2%であり、測定場所を変えてもほとんど変わりがなかった。結果を表1に示す。
 次に、比較例1のアルミ基材試験片について、実施例1と同様にして前処理を施した後、10wt%硫酸溶液中に40℃で10分間浸漬した後に水洗するエッチング処理を施した後に水洗し、80℃の熱風で5分間乾燥させ、比較例1のアルミ部材試験片(アルミ鋳造合金部材)を作製し、実施例1と同様にして、その表面における凹状部の面積率とSi付着量とを求めた。
 観察されたアルミ部材試験片の表面は図10のSEM写真に示す通りであり、算出された凹状部の面積率は5%であって、観察場所を変えてもほとんど変わりがなく、また、Si付着量が0μg/cm2であった。
 続いて、上記実施例1と同様にして、せん断強度測定試験用のアルミ樹脂試験片(アルミ-樹脂複合体)を作製し、上記アルミ樹脂試験片のせん断強度を測定し、評価した。
 結果を、実施例1の結果と共に、表1に示す。
〔比較例2〕
 Si:3.3質量%、Fe:0.4質量%、Cu:0.02質量%、Mn:0.4質量%、Mg:6.0質量%、Ni:0.02質量%を含むアルミ合金溶湯のダイカスト鋳込みを行った以外は、実施例1と同様にして比較例2のアルミ基材試験片(アルミ鋳造合金基材)を作製し、実施例1と同様にしてその表面におけるMg2Si晶出物の面積率を求めた。
 結果は、Mg2Si晶出物の面積率が32%であり、測定場所を変えてもほとんど変わりがなかった。結果を表1に示す。
 次に、比較例2のアルミ基材試験片について、実施例1と同様にして前処理を施した後、10wt%硫酸溶液中に40℃で60分間浸漬した後に水洗するエッチング処理を施した後に水洗し、80℃の熱風で5分間乾燥させ、比較例2のアルミ部材試験片(アルミ鋳造合金部材)を作製し、実施例1と同様にして、その表面における凹状部の面積率とSi付着量とを求めた。
 観察されたアルミ部材試験片の表面は図11のSEM写真に示す通りであり、算出された凹状部の面積率は70%であって、観察場所を変えてもほとんど変わりがなく、また、Si付着量が100μg/cm2であった。
 続いて、上記実施例1と同様にして、せん断強度測定試験用のアルミ樹脂試験片(アルミ-樹脂複合体)を作製し、上記アルミ樹脂試験片のせん断強度を測定し、評価した。
 結果を、実施例1の結果と共に、表1に示す。
Figure JPOXMLDOC01-appb-T000001

Claims (4)

  1.  ダイカスト鋳込みによりSi:0.9~18質量%及びMg:1.0~10.0質量%の範囲で含有するアルミ鋳造合金からなるアルミ鋳造合金基材を調製し、次いで硫酸及び/又は硝酸の水溶液からなる酸性エッチング液を用い、上記アルミ鋳造合金基材を処理温度30~80℃及び処理時間5~15分の条件でエッチング処理してこのアルミ鋳造合金基材表面のMg2Si晶出物を溶解し、前記アルミ鋳造合金基材の表面に樹脂接合性に優れた微細な凹凸形状を付与することを特徴とする樹脂接合用アルミ鋳造合金部材の製造方法。
  2.  エッチング処理に先駆けて、アルミ鋳造合金基材に対して時効処理を施す請求項1に記載の樹脂接合用アルミ鋳造合金部材の製造方法。
  3.  エッチング処理前に、酸水溶液に浸漬した後にアルカリ水溶液に浸漬する前処理を施す請求項1又は2に記載の樹脂接合用アルミ鋳造合金部材の製造方法。
  4.  請求項1~3に記載のいずれかの方法によって得られ、表面に樹脂接合性に優れた微細な凹凸形状を有することを特徴とする樹脂接合用アルミ鋳造合金部材。
PCT/JP2013/061209 2013-04-15 2013-04-15 樹脂接合用アルミ鋳造合金部材の製造方法及びこの方法で得られた樹脂接合用アルミ鋳造合金部材 WO2014170945A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061209 WO2014170945A1 (ja) 2013-04-15 2013-04-15 樹脂接合用アルミ鋳造合金部材の製造方法及びこの方法で得られた樹脂接合用アルミ鋳造合金部材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061209 WO2014170945A1 (ja) 2013-04-15 2013-04-15 樹脂接合用アルミ鋳造合金部材の製造方法及びこの方法で得られた樹脂接合用アルミ鋳造合金部材

Publications (1)

Publication Number Publication Date
WO2014170945A1 true WO2014170945A1 (ja) 2014-10-23

Family

ID=51730919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061209 WO2014170945A1 (ja) 2013-04-15 2013-04-15 樹脂接合用アルミ鋳造合金部材の製造方法及びこの方法で得られた樹脂接合用アルミ鋳造合金部材

Country Status (1)

Country Link
WO (1) WO2014170945A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016215491A (ja) * 2015-05-20 2016-12-22 株式会社Uacj アルミニウム材/熱可塑性樹脂の複合材
EP3231767A1 (de) * 2016-04-14 2017-10-18 LKR Leichtmetallkompetenzzentrum Ranshofen GmbH Verfahren zur herstellung eines objektes für optische anwendungen aus einer aluminiumbasislegierung und entsprechend hergestelltes objekt

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200397A (ja) * 1992-12-28 1994-07-19 Sky Alum Co Ltd 遠赤外線放射体
JPH07145488A (ja) * 1993-11-22 1995-06-06 Mitsubishi Alum Co Ltd リン酸塩処理性に優れたAl材及びその製造方法
WO2008072776A1 (ja) * 2006-12-13 2008-06-19 Sumitomo Light Metal Industries, Ltd. 高強度アルミニウム合金材およびその製造方法
JP2010189750A (ja) * 2009-02-20 2010-09-02 Kobe Steel Ltd 耐軟化性に優れた高強度アルミニウム合金線棒材およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200397A (ja) * 1992-12-28 1994-07-19 Sky Alum Co Ltd 遠赤外線放射体
JPH07145488A (ja) * 1993-11-22 1995-06-06 Mitsubishi Alum Co Ltd リン酸塩処理性に優れたAl材及びその製造方法
WO2008072776A1 (ja) * 2006-12-13 2008-06-19 Sumitomo Light Metal Industries, Ltd. 高強度アルミニウム合金材およびその製造方法
JP2010189750A (ja) * 2009-02-20 2010-09-02 Kobe Steel Ltd 耐軟化性に優れた高強度アルミニウム合金線棒材およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016215491A (ja) * 2015-05-20 2016-12-22 株式会社Uacj アルミニウム材/熱可塑性樹脂の複合材
EP3231767A1 (de) * 2016-04-14 2017-10-18 LKR Leichtmetallkompetenzzentrum Ranshofen GmbH Verfahren zur herstellung eines objektes für optische anwendungen aus einer aluminiumbasislegierung und entsprechend hergestelltes objekt

Similar Documents

Publication Publication Date Title
JP5381687B2 (ja) 樹脂接合性に優れたアルミニウム合金部材及びその製造方法
JP5581680B2 (ja) 耐候性に優れたアルミ・樹脂複合品及びその製造方法
KR101512888B1 (ko) 알루미늄 합금 부재와 수지 부재의 레이저 접합 방법
JP5960847B2 (ja) アルミニウム合金樹脂複合材及びそれを調製する方法
JP5167261B2 (ja) 金属と樹脂の複合体とその製造方法
WO2009151099A1 (ja) アルミ・樹脂射出一体成形品及びその製造方法
WO2007040245A1 (ja) 金属と樹脂の複合体及びその製造方法
KR20140129211A (ko) 알루미늄 합금, 알루미늄 합금 수지 복합물 및 그 제조 방법
JP2013159834A (ja) 樹脂接合用アルミ鋳造合金部材の製造方法及びこの方法で得られた樹脂接合用アルミ鋳造合金部材
JP2009298144A (ja) 複数金属形状物の接合複合体とその製造方法
JP7480450B2 (ja) 金属表面上にプラスチックオーバーモールドする方法、及びプラスチック-金属ハイブリッド部品
JPWO2008069252A1 (ja) 高耐食性複合体の製造方法
JP5673814B2 (ja) アルミ・樹脂射出一体成形品製造用のアルミ形状体及びこれを用いたアルミ・樹脂射出一体成形品並びにそれらの製造方法
KR101469899B1 (ko) 금속-수지 복합체의 제조 방법
JP7040988B2 (ja) アルミニウム合金と樹脂の複合体及びその製造方法
JP2011124142A (ja) アルミ・樹脂・銅複合品及びその製造方法並びに密閉型電池向け蓋部材
JP4452256B2 (ja) 金属と樹脂の複合体及びその製造方法
WO2014170946A1 (ja) 樹脂接合用Al-Mg-Si系アルミ合金部材の製造方法及びこの方法で得られた樹脂接合用Al-Mg-Si系アルミ合金部材
WO2014170945A1 (ja) 樹脂接合用アルミ鋳造合金部材の製造方法及びこの方法で得られた樹脂接合用アルミ鋳造合金部材
JP6436796B2 (ja) アルミニウム‐樹脂複合体の製造方法
JP5994290B2 (ja) 樹脂接合用Al−Mg−Si系アルミ合金部材の製造方法及びこの方法で得られた樹脂接合用Al−Mg−Si系アルミ合金部材
JP2013136804A (ja) 樹脂接合用Al−Fe系アルミ合金部材の製造方法及びこの方法で得られた樹脂接合用Al−Fe系アルミ合金部材
JP4662877B2 (ja) 複合材料およびその製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13882274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP