Nothing Special   »   [go: up one dir, main page]

WO2014163078A1 - 空冷エンジン、エンジン作業機 - Google Patents

空冷エンジン、エンジン作業機 Download PDF

Info

Publication number
WO2014163078A1
WO2014163078A1 PCT/JP2014/059639 JP2014059639W WO2014163078A1 WO 2014163078 A1 WO2014163078 A1 WO 2014163078A1 JP 2014059639 W JP2014059639 W JP 2014059639W WO 2014163078 A1 WO2014163078 A1 WO 2014163078A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
muffler
guide plate
cylinder
cooling
Prior art date
Application number
PCT/JP2014/059639
Other languages
English (en)
French (fr)
Inventor
健文 川口
直人 一橋
Original Assignee
日立工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立工機株式会社 filed Critical 日立工機株式会社
Publication of WO2014163078A1 publication Critical patent/WO2014163078A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/06Guiding or ducting air to, or from, ducted fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P1/00Air cooling
    • F01P1/06Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/02Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for hand-held tools

Definitions

  • the present invention relates to a structure of a small air-cooled engine and an engine working machine using the same.
  • FIG. 8 is a perspective view showing a configuration of a brush cutter 300 as an example of this.
  • a brush cutter 300 an engine is built in the brush cutter body 310 at the right end in the figure, and the rotational motion is transmitted to the cutting blade 320 at the left end in the figure, and the cutting blade 320 is rotated to cut plants and the like.
  • the operator can operate the brush cutter 300 and perform cutting work such as hedges by gripping the handle 330. *
  • the engine used here is required to be small and light, it is often air-cooled.
  • a cooling fan is fixed to the drive shaft of the engine, and the cooling fan continuously rotates during operation of the engine to generate cooling air, thereby forcibly cooling the engine (cylinder) and the like. It is said. Further, the exhaust gas from the cylinder is exhausted to the outside through an exhaust port and a muffler. In order to remove harmful substances, a catalyst is provided inside the muffler. *
  • the cylinder and the muffler that are heated are covered with a cover made of a resin material or the like, and the cylinder is accommodated in the cylinder chamber and the muffler is accommodated in the muffler chamber.
  • the cylinder is cooled by cooling air generated by a cooling fan.
  • the temperature of the muffler is lower than the temperature of the cylinder that is the heat generation source.
  • a partition plate for heat insulation between the cylinder and the muffler is also provided between the cylinder chamber and the muffler chamber.
  • cooling air generated by a cooling fan and cooling the cylinder in the cylinder cover can be used for cooling the muffler.
  • ventilation holes cooling air holes
  • the partition plate partition wall
  • the cooling air also cools the muffler.
  • the efficiency of cooling the muffler can be enhanced by a simple structure in which the ventilation holes are provided in the partition plate. Therefore, this configuration is particularly effective for engine working machines that are required to be small and light.
  • a cylinder In a general engine, a cylinder is provided on a crankcase, and a cooling fan is fixed to a drive shaft existing on the crankcase side. For this reason, in order to cool the cylinder, the cooling air flows from the lower side where the crankcase is located toward the upper side where the cylinder is located.
  • a muffler with an expansion chamber and a catalyst inside is large in the vertical direction and is attached to the side of the cylinder, and the catalyst is generally provided below the exhaust port (connection portion between the muffler and the cylinder). There are many. For this reason, when cooling such a large muffler in the vertical direction, it is particularly important to cool the lower side.
  • the present invention has been made in view of such problems, and an object thereof is to provide an invention that solves the above problems.
  • An air-cooled engine of the present invention includes a cylinder, a drive shaft to which a cooling fan is attached and provided below the cylinder, and a muffler attached to an exhaust port of the cylinder, and the cylinder covers a cylinder cover.
  • the muffler is housed in a muffler chamber formed by being covered with a muffler cover, and the cooling air generated by the cooling fan flows through the cylinder chamber.
  • a part of the air-cooled engine is configured to flow into the muffler chamber, and includes an air guide plate that restricts a vertical flow of the cooling air and generates a horizontal flow in the muffler chamber.
  • the surface constituting the air guide plate is formed with an angle with respect to the axial direction of the cylinder.
  • the air guide plate is installed between an upper surface and a bottom surface of the muffler in the vertical direction.
  • the air guide plate is provided on a side closer to the cooling fan than the exhaust port in the horizontal direction.
  • the air guide plate is configured to extend in the horizontal direction in the muffler chamber.
  • a partition plate is provided between the cylinder chamber and the muffler chamber, the cooling air flows through a ventilation port provided in the partition plate, and the air guide plate includes the muffler It is provided adjacent to the vent hole in the chamber.
  • the air-cooled engine of the present invention is characterized in that a plurality of sets of the air vent and the air guide plate are provided apart in the vertical direction.
  • the air guide plate and the ventilation port are provided in a horizontal direction closer to the cooling fan than the exhaust port.
  • the ventilation plate and the ventilation port face the ventilation port.
  • a guide portion is provided for deflecting the flow of the cooling air toward the side farther from the cooling fan in the horizontal direction.
  • the guide portion is configured by an inner surface of the muffler cover.
  • the air guide plate is installed in the muffler.
  • the air guide plate is installed on the muffler cover.
  • the air guide plate is formed of a metal plate member.
  • the surface constituting the air guide plate is formed with an angle with respect to the axial direction of the drive shaft.
  • the engine working machine of the present invention includes the air-cooled engine.
  • both the cylinder and the muffler can be cooled with high efficiency by the cooling air generated by the cooling fan.
  • FIG. 1 is a perspective assembly view showing an overall configuration of an air-cooled engine according to an embodiment of the present invention. It is a fragmentary sectional view perpendicular
  • the air-cooled engine includes a two-cycle engine body including a cylinder, a crankcase, and the like, and a muffler connected to the exhaust port. All of these are covered with a cover, and a high temperature cylinder is provided in the cylinder chamber and a muffler is provided in the muffler chamber.
  • a partition plate is provided between the cylinder chamber and the muffler chamber for heat insulation.
  • a cooling fan is fixed to the drive shaft of the engine body (crankcase), and the cooling air generated by the rotation of the cooling fan cools the cylinder in the cylinder chamber, and at the same time, the ventilation port provided in the partition plate. It is also introduced into the street muffler chamber, and the muffler is cooled (air cooled). At this time, the air-cooled engine is configured to increase the efficiency of cooling the muffler.
  • This engine is used, for example, in a portable working machine carried by an operator, such as a brush cutter, a blower, a chain saw, or a power cutter, or in an engine working machine such as a generator. Mounted on. Therefore, actually, a speed reducer or the like for driving the engine work machine main body is also connected to the drive shaft, and the engine is fixed to the engine work machine main body (for example, the brush cutter main body 310 in FIG. 8). Is also provided in the engine. However, since the connection structure between these engine work machine main bodies is not directly related to the present invention, and these are the same as those conventionally known, the description thereof will be omitted below. The structure and functions mainly related to the cooling of the cylinder and the muffler will be described. *
  • FIG. 1 is a perspective assembly view showing the configuration of the engine (air-cooled engine) 1, and is a view of the engine 1 as viewed obliquely from the rear.
  • an engine body in which a cylinder 12 is provided on a crankcase 11 is covered with a cylinder cover 13.
  • a fuel tank 14 in which fuel is stored is installed below the crankcase 11.
  • a carburetor 15 is connected to an intake port (not shown) provided on the right side (left side in FIG. 1) of the cylinder 12.
  • An air cleaner 16 is connected to the right side of the vaporizer 15 (left side in FIG. 1).
  • the carburetor 15 is supplied with fuel from the fuel tank 14 and air via the air cleaner 16 to form an air-fuel mixture, which is taken into the cylinder 12 from the intake port. *
  • exhaust from the cylinder 12 is performed from a cylinder exhaust port (exhaust port) 17 on the left side (right side in FIG. 1), and a muffler 20 is connected to the cylinder exhaust port 17.
  • the exhaust gas passes through the expansion chamber in the muffler 20 and the catalyst portion on which the catalyst is supported for noise reduction and removal of harmful substances, and then is discharged from the muffler exhaust gas outlet 21 to the outside.
  • the muffler 20 is covered with a muffler cover 22, and a muffler cover exhaust gas outlet 23, which is an opening, is provided at a location corresponding to the muffler exhaust gas outlet 21 in the muffler cover 22.
  • the cylinder 12 is accommodated in the cylinder chamber in the cylinder cover 13, and the muffler 20 is accommodated in the muffler chamber in the muffler cover 22.
  • the cylinder chamber and the muffler chamber in which the cylinder 12 having the highest temperature to become a heat source is accommodated are partitioned by the partition plate 30. Therefore, the muffler 20 is fixed to the cylinder exhaust port 17 (cylinder 12) through the partition plate 30 by the mounting bolt 31.
  • the partition plate 30 is provided with an exhaust opening 32 corresponding to the cylinder exhaust port 17. The partition plate 30 makes it difficult for heat from the cylinder 12 to be transmitted to the muffler 20.
  • a first ventilation port (ventilation port) 33 and a second ventilation port (ventilation port) 34 are also provided for ventilation between the cylinder chamber and the muffler chamber.
  • the first vent hole 33 and the second vent hole 34 are not actually openings, but are notches around the partition plate 30, but after the assembly, Are covered with the muffler cover 22, these actually function as openings.
  • a first air guide plate (wind guide plate) 35 and a second air guide plate (wind guide plate) 36 that are flat in the horizontal direction are provided on the muffler chamber side above the first air vent 33 and the second air vent 34. Each is provided.
  • a drive shaft extending in the front-rear direction is provided in the crankcase 11, and an output is taken out when the drive shaft rotates.
  • a cooling fan is fixed to the front end side of the drive shaft, and cooling air is generated as the drive shaft rotates.
  • the cooling air 10A passing through the first ventilation port 33 and the cooling air 10B passing through the second ventilation port 34 flow through the muffler chamber as shown in FIG. *
  • FIG. 2 is a partial cross-sectional view of the rear side of the engine 1 as viewed from the cross section perpendicular to the drive shaft where the cooling fan is provided.
  • the axis of the cylinder 12 is in the vertical direction
  • the axis of the drive shaft 19 is in the front-rear direction perpendicular thereto.
  • the cooling fan 18 is configured by a plurality of propellers being radially provided in a substantially disk-like structure with the drive shaft 19 as the center, and the drive shaft 19 rotates counterclockwise in FIG.
  • the cooling air 10, 10A, 10B and the like shown in FIG. 2 are generated. Actually, the flow of the cooling air is continuous in any direction, and such division is impossible.
  • the cooling air 10, 10A, and 10B are defined as shown as representative flows. .
  • the cooling air 10 or the like flows in the cylinder chamber 41 in the cylinder cover 13 from the lower side (cooling fan 18 side) to the upper side (cylinder 12 side) in FIG. 2, and the cylinder 12 having a plurality of fins on the surface is provided. Cooled by the cooling air 10.
  • the right cylinder chamber 41 and the left muffler chamber 42 are partitioned by a partition plate 30, and the partition plate 30 is provided with a first ventilation port 33 and a second ventilation port 34.
  • the cooling air 10A, 10B also flows to the muffler chamber 42 side. As shown in FIG. 1, the muffler 20 is located behind (on the other side of the paper) the first air vent 33, the second air vent 34, the first air guide plate 35, and the second air guide plate 36 in FIG. 2. Is provided.
  • the first air guide plate 35 and the second air guide plate 36 restrict the flow of the cooling air 10A and 10B from the vertical direction (the axial direction of the cylinder 12) to the left and right direction (particularly the left direction). For this reason, as shown in FIG. 2, the cooling air 10 ⁇ / b> A and 10 ⁇ / b> B easily flows on the muffler chamber 42 side. Therefore, in FIG. 2, the first air guide plate 35 and the second air guide plate 36 are within the air guide plate installation range 37 that is the range between the muffler upper surface 24 and the muffler bottom surface 25 in the muffler 20 in the vertical direction. It is preferable to provide it.
  • a range where the catalyst portion 26 in which the catalyst is installed in the muffler 20 is indicated by a dotted line in FIG. 2, and this catalyst portion 26 is a portion where the cooling efficiency should be enhanced most in the muffler 20.
  • the first air guide plate 35 and the second air guide plate 36 are provided above the first air vent 33 and the second air vent 34, respectively.
  • FIG. 3 is a view showing the structure of the engine 1 in the vicinity of the cross section in the AA direction in FIG. 2, and shows the flow of the cooling air 10B in the horizontal direction in the muffler chamber 42 at the location including the second ventilation port 34.
  • the cooling air 10 ⁇ / b> B generated by the cooling fan 18 flows through the second ventilation port 34 to the left (downward in FIG. 3) and is introduced into the muffler chamber 42.
  • this flow was in the vertical direction (perpendicular to the cross section shown in FIG. 3). Changes direction to the left. For this reason, the cooling air 10 ⁇ / b> B is actively taken into the muffler chamber 42.
  • the cooling air 10 ⁇ / b> B taken into the muffler chamber 42 here is introduced into the muffler chamber 42 after staying on the high-temperature cylinder 12 side for a short time. For this reason, the temperature of this cooling wind 10B is low, and high cooling efficiency is obtained.
  • the cooling air 10B cools the muffler first side surface 27 and then hits the guide portion 28 that is the inner surface on the front side of the side surface of the muffler cover 22 and changes its direction backward (to the left in FIG. 3). It is discharged together with the exhaust gas 45 from the muffler cover exhaust gas outlet 23 at the rear end of the muffler cover 22 via the left muffler second side surface 29. For this reason, the cooling air 10B is discharged outside after cooling around the muffler 20 in FIG. As shown in FIG. 2, the catalyst portion 26 exists at this position in the vertical direction of the muffler 20. With the above configuration, the catalyst unit 26 can be efficiently cooled by the cooling air 10B. *
  • the first ventilation port 33 is formed above the cross-sectional location shown in FIG. 3, and the inside of the muffler chamber 42 is passed through the first ventilation port 33.
  • the cooling air 10A flows substantially parallel to the cooling air 10B.
  • the cooling air 10A is discharged around the muffler cover exhaust gas outlet 23 in the horizontal direction after cooling around the muffler 20 in the same manner as the cooling air 10B shown in FIG. Thereby, the upper part of the muffler 20 can also be cooled.
  • the cooling air 10 ⁇ / b> A introduced into the muffler chamber 42 is taken into the muffler chamber 42 through the first ventilation port 33 after passing through the cylinder 12 side as shown in FIG. 2. For this reason, although the temperature of the cooling air 10A is higher than that of the cooling air 10B, the upper portion of the muffler 20 including the upper surface side can be cooled by the cooling air 10A.
  • the ventilation openings (the first ventilation opening 33 and the second ventilation opening 34) and the ventilation plates (the first ventilation plate 35 and the second ventilation plate) provided in the partition plate 30. 36)
  • the muffler 20 can be more efficiently cooled by the cooling air generated by the cooling fan 18.
  • the ventilation port and the air guide plate are provided in front of the exhaust port 17 (the side where the cooling fan 18 is provided) as shown in FIG. Obviously, it is preferable. Further, as described above, in order to efficiently cool the muffler 20, it is preferable that the air vent and the air guide plate are provided in the air guide plate installation range 37. However, in order to apply a cooling air having a low temperature like the cooling air 10B to a specific region in the muffler 20 (in the above example, the lower portion where the catalyst unit 26 is provided in the muffler 20), These are preferably provided at specific locations where the muffler chamber 42 can be introduced.
  • the second ventilation port 34 and the second air guide plate 36 are provided below the cylinder 12.
  • the first ventilation port 33 and the first air guide plate 35 are provided at a certain height of the cylinder 12.
  • the first air guide plate 35 and the second air guide plate 36 are flat plates extending in the horizontal direction.
  • the flow in the vertical direction of the cooling air is limited and the flow in the horizontal direction is limited. As long as can be generated, these shapes are arbitrary.
  • the baffle plate extends in the horizontal direction.
  • an angle inclined with respect to the vertical direction (the axial direction of the cylinder 12) (FIG. 1 to FIG.
  • the first air guide plate 35 and the second air guide plate 36 having 90 ° in the example 3 were used.
  • the angle of the surfaces constituting the air guide plate can be set as appropriate. For example, if the air guide plate is inclined in the front-rear direction, for example, the front side of the sheet in the cross section of FIG. 2, the cooling air can be directed toward the muffler 20 on the rear side (the other side of the sheet in FIG. 2).
  • an air guide plate having a surface direction different from these is further added.
  • the added third wind guide plate 38 (not shown in FIGS. 1 and 2) is indicated by a dotted line.
  • the third air guide plate 38 is an air guide plate extending in a direction perpendicular to the paper surface in FIG.
  • the third air guide plate 38 has a flow in the front-rear direction. What is necessary is just to have an angle with respect to the front-back direction (axial direction of the drive shaft 19) so that it may restrict
  • the guide portion 28 that changes the flow of the cooling air 10 ⁇ / b> B from the left to the rear is formed on the inner surface of the muffler cover 22.
  • the guide portion that generates the same flow can be formed of a structure separate from the muffler cover 22.
  • the partition plate is used to shield the muffler from the cylinder.
  • the area, number, and arrangement of the ventilation openings are appropriately set within a range in which the heat shielding effect is effective.
  • the air guide plate need not be formed of the same material as that of the partition plate, and the air guide plate may be formed of a material different from this and joined to the partition plate. For example, if the air guide plate is made of a metal plate-like member, bending and joining to the partition plate are easy.
  • the air guide plate is formed on the partition plate 30 together with the air vent.
  • an air guide plate can be formed in addition to the partition plate on the muffler chamber side.
  • FIG. 4 is a partial cross-sectional view corresponding to FIG. 2 showing the configuration of the first modified example in which the air guide plate is installed on the muffler.
  • no partition plate is used, and a fourth wind guide plate (wind guide plate) 51 is provided on the muffler first side surface 27 which is the side surface of the muffler 50 on the cooling fan 18 side.
  • FIG. 5 is a perspective view of the muffler 50 alone used here.
  • the fourth wind guide plate (wind guide plate) 51 is the same as the muffler 20 shown in FIG. 1 except that it is provided on the muffler first side surface 27.
  • the 4th wind guide plate 51 can be comprised with a metal plate-shaped member similarly to the above.
  • this configuration can be used particularly preferably in order to further suppress the temperature rise of the muffler 50 when the contribution of radiation from the cylinder 12 to the temperature rise of the muffler 50 is smaller than the above configuration.
  • the temperature rise of the muffler 50 can be suppressed with a simple configuration in which the fourth air guide plate 51 is provided on the muffler 50 itself.
  • FIG. 6 is a partial cross-sectional view corresponding to FIGS. 2 and 4 showing the configuration of the second modified example in which the air guide plate is installed on the muffler cover. Also in FIG. 6, the partition plate is not used, and the muffler 20 used is the same as the configuration of FIG. Instead, a fifth air guide plate 61 is formed on the inner surface of the muffler cover 60 used here on the cooling fan 18 side. It is clear that the vicinity of the catalyst portion 26 can be cooled particularly efficiently by installing the fifth air guide plate 61 above the catalyst portion 24 (the same location as the second air guide plate 35 in FIG. 2). It is.
  • FIG. 7 is a perspective view of the single muffler cover 60 used here, as viewed from the inner surface side.
  • the points other than the provision of the fifth wind guide plate (wind guide plate) 61 are the same as those of the muffler cover 22 shown in FIG. At this time, the cooling air 10 ⁇ / b> D can cool the lower portion of the muffler 20 with high efficiency by the fifth air guide plate 61 with particularly high efficiency.
  • This configuration can also be used particularly preferably in order to further suppress the temperature rise of the muffler 20 when the contribution of radiation from the cylinder 12 to the temperature rise of the muffler 20 is small compared to the configuration of FIG.
  • the temperature rise of the muffler 20 can be suppressed only by replacing the muffler cover 22 with the muffler cover 60 provided with the fifth air guide plate 61.
  • the air guide plate has a very simple shape, it can be installed in various components in the muffler chamber, but a plurality of air guide plates can be installed in different components. It is clear that they can be used simultaneously. Further, a partition plate in which a ventilation port is formed without forming a wind guide plate can be used, and at the same time, the wind guide plate can be provided on the muffler or the muffler cover. It is also clear that a wind guide plate having the same angle setting as that of the third wind guide plate 38 can be added to the configuration of FIGS.
  • the engine is characterized by the structure of the engine body, the muffler, and the cover that covers them. For this reason, this engine can be mounted on the engine work machine main body while the configuration on the engine work machine main body side is kept as before. For this reason, the engine having the above-described configuration is effective in all engine working machines in which a small air-cooled engine is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

冷却ファンによって生成された冷却風によってシリンダとマフラとを共に高効率で冷却する。発熱源となるために最も高温となるシリンダ12が収容されるシリンダ室とマフラ室とは、仕切り板30で仕切られる。この仕切り板30の前方側においては、シリンダ室とマフラ室間の通気のために、第1通風口(通風口)33、第2通風口(通風口)34も設けられている。第1通風口33、第2通風口34の上部におけるマフラ室側には、水平方向において平板状の第1導風板(導風板)35、第2導風板(導風板)36がそれぞれ設けられている。第1導風板35、第2導風板36により、冷却風10A、10Bの流れは、上下方向から左右方向(特に左方向)に制限される。

Description

空冷エンジン、エンジン作業機
本発明は、小型の空冷エンジンの構造、これを用いたエンジン作業機に関する。
刈払機、送風機、チェーンソー、パワーカッタ等、作業者が携帯して使用する携帯用作業機や、発電機には、動力源として小型のエンジンが用いられる。図8は、この一例である刈払機300の構成を示す斜視図である。この刈払機300においては、図中右端の刈払機本体310中にエンジンが内蔵され、その回転運動が図中左端の切断刃320に伝達され、回転する切断刃320によって草木等の切断が行われる。作業者は、ハンドル330を把持することによって、この刈払機300を操作して生垣等の切断作業を行うことができる。 
ここで使用されるエンジンは、小型、軽量であることが要求されるため、空冷式とされる場合が多い。この場合には、エンジンの駆動軸に冷却ファンが固定され、エンジンの運転中には絶えず冷却ファンが回転して冷却風が生成され、これによって強制的にエンジン(シリンダ)等が冷却される構成とされる。また、シリンダからの排気ガスは、排気口、マフラを介して外部に排気される。有害物質を除去するために、マフラの内部には触媒が設けられる。 
また、作業者の安全等のために、高温となるシリンダ、マフラは、樹脂材料等で構成されたカバーで覆われ、シリンダはシリンダ室、マフラはマフラ室の中に収容される。シリンダ室内において、シリンダは、冷却ファンで生成された冷却風によって冷却される。ここで、運転時においては、マフラの温度は発熱源となるシリンダの温度よりは低くなるものの、マフラ中の触媒を充分に機能させるためには、マフラが高温となることを抑制することは重要である。このため、シリンダ室とマフラ室との間には、シリンダとマフラの間の遮熱のための仕切り板も設けられる。
一方で、マフラの冷却のために、冷却ファンで生成されシリンダカバー中でシリンダを冷却した冷却風を利用することもできる。このため、特許文献1に記載の構造では、上記の仕切り板(区画壁)に通風口(冷却風孔)を設け、この冷却風がマフラも冷却している。この構成においては、仕切り板に通風口を設けただけの単純な構造によってマフラの冷却効率を高めることができる。このため、この構成は、小型・軽量であることが要求されるエンジン作業機には特に有効である。
特開2003-129840号公報
一般的なエンジンにおいては、クランクケースの上にシリンダが設けられ、クランクケースの側に存在する駆動軸に冷却ファンが固定される。このため、シリンダを冷却するためには、冷却風はクランクケースがある下側から、シリンダがある上側に向かって流れる構成とされる。一方で、内部に膨張室や触媒を具備するマフラは上下方向に大きく、シリンダの側方に取り付けられ、触媒は一般には排気口(マフラとシリンダとの接続部分)よりも下側に設けられる場合が多い。このため、こうした上下方向に大きなマフラを冷却するに際しては、特にその下側を冷却することが重要となる。 
しかしながら、前記の通り、シリンダ側において冷却風は下側から上側に向かって流れているため、この冷却風によってマフラを効率的に冷却することは困難であった。 
すなわち、冷却ファンによって生成された冷却風によってシリンダとマフラとを共に高効率で冷却することは困難であった。 
本発明は、かかる問題点に鑑みてなされたものであり、上記の問題点を解決する発明を提供することを目的とする。
本発明は、上記課題を解決すべく、以下に掲げる構成とした。本発明の空冷エンジンは、シリンダと、冷却ファンが取り付けられ前記シリンダの下方に設けられた駆動軸と、前記シリンダにおける排気口に取り付けられたマフラと、を具備し、前記シリンダはシリンダカバーに覆われて形成されたシリンダ室に、前記マフラはマフラカバーに覆われて形成されたマフラ室に、それぞれ収容され、前記冷却ファンによって生成された冷却風が前記シリンダ室を流れると共に、前記冷却風の一部は前記マフラ室に流れる構成とされた空冷エンジンであって、前記マフラ室において、前記冷却風の上下方向の流れを制限し水平方向の流れを生成する導風板を具備することを特徴とする。 本発明の空冷エンジンにおいて、前記導風板を構成する面は、前記シリンダの軸線方向に対して角度を有して形成されたことを特徴とする。本発明の空冷エンジンにおいて、前記導風板は、上下方向において前記マフラの上面と底面の間に設置されたことを特徴とする。本発明の空冷エンジンにおいて、前記導風板は、水平方向において前記排気口よりも前記冷却ファンに近い側に設けられたことを特徴とする。本発明の空冷エンジンにおいて、前記導風板は、前記マフラ室において水平方向に延在する形態とされたことを特徴とする。本発明の空冷エンジンにおいて、前記シリンダ室と前記マフラ室の間には仕切り板が設けられ、前記冷却風は前記仕切り板に設けられた通風口を介して流れ、前記導風板は、前記マフラ室において前記通風口に隣接して設けられたことを特徴とする。本発明の空冷エンジンにおいて、前記通風口及び前記導風板は上下方向に離間して複数組設けられたことを特徴とする。本発明の空冷エンジンにおいて、前記導風板及び前記通風口は、水平方向において前記排気口よりも前記冷却ファンに近い側に設けられ、前記マフラ室において、前記通風口と対向し、前記マフラ室内の前記冷却風の流れを水平方向において前記冷却ファンから遠い側に偏向する案内部が設けられたことを特徴とする。本発明の空冷エンジンにおいて、前記案内部は、前記マフラカバーの内面で構成されたことを特徴とする。本発明の空冷エンジンにおいて、前記マフラに前記導風板が設置されたことを特徴とする。本発明の空冷エンジンにおいて、前記マフラカバーに前記導風板が設置されたことを特徴とする。本発明の空冷エンジンにおいて、前記導風板は金属製の板状部材で形成されたことを特徴とする。本発明の空冷エンジンにおいて、前記導風板を構成する面は、前記駆動軸の軸線方向に対して角度を有して形成されたことを特徴とする。本発明のエンジン作業機は、前記空冷エンジンを具備することを特徴とする。
本発明は以上のように構成されているので、冷却ファンによって生成された冷却風によってシリンダとマフラとを共に高効率で冷却することができる。
本発明の実施の形態となる空冷エンジンの全体の構成を示す斜視組立図である。 本発明の実施の形態となる空冷エンジンの駆動軸と垂直な部分断面図である。 本発明の実施の形態となる空冷エンジンのA-A方向の断面近傍の構造を示す図である。 本発明の実施の形態となる空冷エンジンの第1の変形例の構造を示す図である。 本発明の実施の形態となる空冷エンジンの第1の変形例において用いられるマフラの斜視図である。 本発明の実施の形態となる空冷エンジンの第2の変形例の構造を示す図である。 本発明の実施の形態となる空冷エンジンの第2の変形例において用いられるマフラカバーの斜視図である。 小型の空冷エンジンが用いられるエンジン作業機の構成の一例を示す斜視図である。
本発明の実施の形態となる空冷エンジン(エンジン)の構成について説明する。ここで、この空冷エンジンとは、シリンダ、クランクケース等からなる2サイクルのエンジン本体と、その排気口に接続されたマフラを具備する。これらの全体はカバーで覆われ、高温となるシリンダはシリンダ室に、マフラはマフラ室に設けられる。シリンダ室とマフラ室の間には遮熱のために仕切り板が設けられる。エンジン本体(クランクケース)における駆動軸には冷却ファンが固定され、この冷却ファンが回転することによって生成された冷却風は、シリンダ室においてシリンダを冷却すると同時に、仕切り板に設けられた通風口を通りマフラ室にも導入され、マフラを冷却(空冷)する。この際、この空冷エンジンにおいては、マフラの冷却効率が高くなる構成とされる。
このエンジンは、例えば、刈払機、送風機、チェーンソー、パワーカッタ等、作業者が携帯して使用する携帯用作業機や、発電機等のエンジン作業機で使用され、上記の構造はエンジン作業機本体に搭載される。このため、実際には、エンジン作業機本体を駆動するための減速機等も駆動軸に接続され、かつこのエンジンをエンジン作業機本体(例えば図8の刈払機本体310)に固定するための構造もエンジンに設けられる。しかしながら、これらのエンジン作業機本体との間の接続構造については本願発明とは直接の関係がなく、かつこれらについては従来から知られるものと同様であるため、以下ではこれらについての説明は省略し、主にシリンダ、マフラの冷却に関わる構造、機能について説明する。 
図1は、このエンジン(空冷エンジン)1の構成を示す斜視組立図であり、このエンジン1を斜め後方から見た図となっている。このエンジン1においては、クランクケース11の上にシリンダ12が設けられたエンジン本体が、シリンダカバー13で覆われている。クランクケース11の下側には、内部に燃料が溜められた燃料タンク14が設置される。シリンダ12の右側(図1における左側)に設けられた吸気口(図示せず)には、気化器15が接続される。気化器15の右側(図1における左側)には、エアクリーナ16が接続される。気化器15には、燃料タンク14から燃料が、エアクリーナ16を介して空気が、それぞれ供給され、これらによって混合気が形成され、吸気口からシリンダ12に吸気される。 
一方、シリンダ12からの排気は、左側(図1における右側)のシリンダ排気口(排気口)17から行われ、シリンダ排気口17には、マフラ20が接続される。排気ガスは、消音、有害物質除去のためにマフラ20内の膨張室、触媒が担持された触媒部を経てから、マフラ排気ガス出口21から外部に放出される。マフラ20は、マフラカバー22で覆われており、マフラカバー22におけるマフラ排気ガス出口21に対応した箇所には、開口部であるマフラカバー排気ガス出口23が設けられている。
この構成によって、シリンダ12は、シリンダカバー13内のシリンダ室に、マフラ20は、マフラカバー22内のマフラ室の中にそれぞれ収容される。ここで、発熱源となるために最も高温となるシリンダ12が収容されるシリンダ室とマフラ室とは、仕切り板30で仕切られる。このため、マフラ20は、この仕切り板30を介してシリンダ排気口17(シリンダ12)に、取付ボルト31によって固定される。仕切り板30には、シリンダ排気口17に対応した排気開口32が設けられている。この仕切り板30によって、シリンダ12からの熱はマフラ20に伝わりにくくなっている。ただし、この仕切り板30の前方側においては、シリンダ室とマフラ室間の通気のために、第1通風口(通風口)33、第2通風口(通風口)34も設けられている。なお、図示されるように、第1通風口33、第2通風口34は実際には開口ではなく、仕切り板30における周囲の切り欠き部となっているが、組立後には仕切り板30の周囲はマフラカバー22で覆われるため、実際にはこれらは開口として機能する。第1通風口33、第2通風口34の上部におけるマフラ室側には、水平方向において平板状の第1導風板(導風板)35、第2導風板(導風板)36がそれぞれ設けられている。 
このエンジン1においては、前後方向に延伸する駆動軸がクランクケース11内に設けられており、この駆動軸が回転することによって、出力が取り出される。この駆動軸の前端側には冷却ファンが固定され、駆動軸の回転に伴って冷却風が生成される。このうち、第1通風口33を通る冷却風10A、第2通風口34を通る冷却風10Bは、それぞれ図1に示されるようにマフラ室を流れる。 
図2は、このエンジン1における冷却ファンが設けられた箇所の駆動軸と垂直な断面から後方側を見た部分断面図である。シリンダ12の軸線は上下方向となるのに対して、駆動軸19の軸線はこれと垂直な前後方向となる。ここで、冷却ファン18は、駆動軸19を中心とした略円板状の構造に複数のプロペラが放射状に設けられて構成されており、図2において駆動軸19が反時計回りに回転することによって、図2中に示される冷却風10、10A、10B等が生成される。実際には冷却風の流れはどの方向においても連続的でありこうした区分は不可能であるが、ここでは、代表的な流れとして冷却風10、10A、10Bを図示されるように定義している。冷却風10等は、シリンダカバー13内のシリンダ室41中を図2中で下側(冷却ファン18側)から上側(シリンダ12側)に流れ、表面に複数のフィンが設けられたシリンダ12が冷却風10によって冷却される。右側のシリンダ室41と左側のマフラ室42は仕切り板30によって仕切られているが、仕切り板30には、第1通風口33、第2通風口34が設けられているため、これらを介して冷却風10A、10Bはマフラ室42側にも流れる。図1に示されるように、マフラ20は、図2において、第1通風口33、第2通風口34、第1導風板35、第2導風板36よりも後方(紙面向こう側)に設けられている。
この際、第1導風板35、第2導風板36により、冷却風10A、10Bの流れは、上下方向(シリンダ12の軸線方向)から左右方向(特に左方向)に制限される。このため、図2に示されるように、マフラ室42側において冷却風10A、10Bが流れやすくなる。このため、図2において、第1導風板35、第2導風板36は、上下方向において、マフラ20におけるマフラ上面24とマフラ底面25の間の範囲である導風板設置範囲37内に設けることが好ましい。また、マフラ20内において触媒が設置された触媒部26が存在する範囲が図2中点線で示されており、この触媒部26が、マフラ20中で最も冷却効率を高めるべき箇所である。このため、各通風口の周囲において、通風口側から見て触媒部26から遠い側に導風板を設置することが好ましい。このため、第1導風板35、第2導風板36は、それぞれ第1通風口33、第2通風口34の上側に設けられている。 
また、図3は、このエンジン1の図2におけるA-A方向の断面近傍の構造を示す図であり、第2通風口34を含む箇所におけるマフラ室42における水平方向の冷却風10Bの流れを示す。冷却ファン18によって生成された冷却風10Bは、第2通風口34を通り左方(図3における下方)に流れてマフラ室42に導入される。この際、シリンダ室41(冷却ファン18)側では、前記の通り、この流れは上下方向(図3で示された断面と垂直方向)であったが、第2導風板36によって、この流れは左方向に向きを変える。このため、冷却風10Bが積極的にマフラ室42に取り込まれる。図2の構成から明らかなように、ここでマフラ室42に取り込まれる冷却風10Bは、高温となるシリンダ12側には短時間だけ滞在したのちにマフラ室42内に導入される。このため、この冷却風10Bの温度は低く、高い冷却効率が得られる。 
その後、この冷却風10Bは、マフラ第1側面27を冷却してからマフラカバー22の側面の前側の内面である案内部28に当たり、後方(図3における左方)に向きを変え、マフラ20の左側のマフラ第2側面29を経由して、マフラカバー22の後端部にあるマフラカバー排気ガス出口23から排気ガス45と共に放出される。このため、冷却風10Bは、図3におけるマフラ20の周囲を回って冷却した後に、外部に放出される。図2に示されるように、マフラ20の上下方向におけるこの箇所には、触媒部26が存在する。上記の構成により、冷却風10Bによって触媒部26を効率的に冷却することができる。 
また、図2に示されるように、第1通風口33は、図3で示された断面の箇所よりも上側に形成されており、この第1通風口33を介して、マフラ室42内を前記の冷却風10Bとほぼ平行に冷却風10Aが流れる。この冷却風10Aは、水平方向においては図3に示された冷却風10Bと同様にマフラ20の周囲を回って冷却した後に、マフラカバー排気ガス出口23から放出される。これによって、マフラ20の上部も冷却することができる。この場合にマフラ室42に導入される冷却風10Aは、図2に示されるように、シリンダ12側を経由してから第1通風口33を介してマフラ室42に取り込まれる。このため、前記の冷却風10Bと比べて冷却風10Aの温度は高くなるものの、冷却風10Aによって上面側を含むマフラ20の上部を冷却することができる。
このように、上記のエンジン1においては、仕切り板30に設けられた通風口(第1通風口33、第2通風口34)、導風板(第1導風板35、第2導風板36)によって、冷却ファン18によって生成された冷却風でマフラ20をより効率的に冷却することができる。 
この際、上記のような冷却風の流れを生ずるためには、通風口、導風板は、図1に示されるように排気口17よりも前側(冷却ファン18が設けられた側)に設けることが好ましいことは明らかである。また、前記の通り、マフラ20の冷却を効率的に行うためには、通風口、導風板は、導風板設置範囲37内に設けることが好ましい。ただし、前記の冷却風10Bのように温度が低い冷却風をマフラ20における特定の領域(上記の例においてはマフラ20において触媒部26が設けられた下部)に当てるためには、こうした冷却風がマフラ室42に導入できる特定の箇所に、これらを設けることが好ましい。このため、上記の例ではシリンダ12よりも下方に第2通風口34、第2導風板36を設けている。この場合には、マフラにおける他の箇所(上記の例においては例えばマフラ20の上部)を冷却するために、これらと離れた箇所に別の通風口、導風板を設けることが好ましい。このため、上記の例ではシリンダ12のある高さに第1通風口33、第1導風板35を設けている。このように、仕切り板において、上下方向における異なる箇所に通風口、導風板を複数組設けることが好ましい。 
また、上記の例では、第1導風板35、第2導風板36の形状は水平方向に広がる平板状であるとしたが、冷却風の上下方向の流れを制限し、水平方向の流れを生成できる限りにおいて、これらの形状は任意である。ただし、マフラ室において、導風板が水平方向に延在する形態とすることが、特に好ましい。 
また、上記の例では、元々は上下方向であった冷却風の流れに対して左右方向の流れを生成するために、上下方向(シリンダ12の軸線方向)に対して傾斜した角度(図1~3の例では90°)をもつ第1導風板35、第2導風板36が用いられた。しかしながら、上記の効果が得られる限りにおいて、導風板を構成する面の角度は適宜設定することが可能である。例えば、導風板を前後方向、例えば図2の断面において紙面手前側に傾斜させれば、その後方(図2における紙面向こう側)にあるマフラ20側に冷却風を向けることもできる。また、前後方向だけでなく、左右方向(図2における左右方向)に傾斜させても、冷却風において水平方向に流れる成分を生成できる限りにおいて、上記の効果を奏することは明らかである。例えば、この面は水平方向から45°以下の傾斜角をもっていれば、こうした効果を奏することは明らかである。 
また、図3における水平方向の冷却風の流れを最適化するために、第1導風板35、第2導風板36に加えて、面の方向がこれらと異なる導風板を更に追加することもできる。図3においては、追加された第3導風板38(図1、2において図示省略)が点線で示されている。第3導風板38は、図3においては紙面と垂直方向に延伸する導風板である。マフラ20において冷却する必要性の低い部分に近接して第3導風板38を設けることで、冷却風がマフラ20におけるこの部分と第3導風板38の間を流れにくくした状態で、マフラ20における冷却する必要性の高い部分を冷却するように、冷却風をマフラ20に沿って流すことができる。
第1導風板35、第2導風板36が、上下方向(シリンダ12の軸線方向)に対して傾斜した角度をもつのに対して、第3導風板38は、前後方向の流れを制限するように、前後方向(駆動軸19の軸線方向)に対して角度を有していればよい。この角度は図3における第3導風板38においては90°となっているが、前後方向における冷却風の流れを制限するように、この角度も適宜設定することができる。 
また、上記の例では、冷却風10Bの流れを左方から後方に変える案内部28は、マフラカバー22の内面で形成された。しかしながら、導風板と同様に、同様の流れを生成する案内部を、マフラカバー22とは別体の構造物で形成することも可能である。 
また、前記の通り、仕切り板はシリンダからのマフラの遮熱のために用いられる。通風口の面積や数、配置は、この遮熱の効果が有効である範囲において、適宜設定される。導風板は仕切り板と同じ材質で形成される必要はなく、これと異なる材質で導風板を形成し、これを仕切り板に接合してもよい。例えば、導風板を金属製の板状部材で構成すれば、曲げ加工や仕切り板への接合も容易である。
上記の構成においては、導風板を通風口と共に仕切り板30に形成していた。しかしながら、マフラ室側において仕切り板以外に導風板を形成することもできる。
図4は、導風板をマフラに設置した第1の変形例の構成を示す、図2に対応した部分断面図である。図4においては、仕切り板は使用されておらず、マフラ50の冷却ファン18側の側面であるマフラ第1側面27に第4導風板(導風板)51が設けられる。第4導風板51を触媒部26よりも上側(図2における第2導風板36と同様の箇所)に設置することによって、特に触媒部26近傍を高効率で冷却することができることは明らかである。図5は、ここで用いられるマフラ50単体の斜視図である。第4導風板(導風板)51がマフラ第1側面27に設けられた以外の点については、図1に示されたマフラ20と同様である。
この構成においては、仕切り板が用いられないためにシリンダ12とマフラ50との間の遮熱はされないものの、冷却風がシリンダ室41とマフラ室42の間で遮られることはない。この際、冷却風10Cは、第4導風板51によって特に高効率でマフラ50の下部を高効率で冷却することができる。第4導風板51を、前記と同様に金属製の板状部材で構成することができる。
このため、この構成は、前記の構成と比べて、マフラ50の温度上昇に対するシリンダ12からの輻射の寄与が小さい場合において、マフラ50の温度上昇をより抑制するために、特に好ましく用いることができる。この場合には、マフラ50自身に第4導風板51を設けただけの単純な構成で、マフラ50の温度上昇を抑制することができる。 
図6は、導風板をマフラカバーに設置した第2の変形例の構成を示す、図2、4に対応した部分断面図である。図6においても、仕切り板は使用されておらず、使用されるマフラ20は図2の構成と同様である。その代わりに、ここで用いられるマフラカバー60の冷却ファン18側の内側面において、第5導風板61が形成されている。第5導風板61を触媒部24よりも上側(図2における第2導風板35と同様の箇所)に設置することによって、特に触媒部26近傍を高効率で冷却することができることは明らかである。図7は、ここで用いられるマフラカバー60単体を内面側から見た斜視図である。第5導風板(導風板)61が設けられた以外の点については、図1に示されたマフラカバー22と同様である。この際、冷却風10Dは、第5導風板61によって特に高効率でマフラ20の下部を高効率で冷却することができる。 
この構成も、図2等の構成と比べて、マフラ20の温度上昇に対するシリンダ12からの輻射の寄与が小さい場合において、マフラ20の温度上昇をより抑制するために、特に好ましく用いることができる。この場合には、マフラカバー22を第5導風板61が設けられたマフラカバー60に代えるだけで、マフラ20の温度上昇を抑制することができる。 
なお、図4、6の構成において、仕切り板を用いた場合でも同様の効果を奏することは明らかである。また、上記の通り、導風板は極めて単純な形状をしているため、これをマフラ室の中の様々な構成要素に設置することができるが、複数の導風板を異なる構成要素に設置して同時に用いることができることは明らかである。また、導風板が形成されずに通風口が形成された仕切り板を用いると同時に、導風板をマフラやマフラカバーに設けることもできる。また、前記の第3導風板38と同様の角度設定をもつ導風板を図4、6の構成に追加することができることも明らかである。
上記のエンジンにおいては、エンジン本体、マフラとこれらを覆うカバー内の構造に特徴がある。このため、エンジン作業機本体側の構成は従来通りとしたままでこのエンジンをエンジン作業機本体に搭載することができる。このため、小型の空冷エンジンが用いられる全てのエンジン作業機において、上記の構成のエンジンは有効である。
1 エンジン
10、10A、10B、10C、10D 冷却風
11 クランクケース
12 シリンダ13 シリンダカバー
14 燃料タンク
15 気化器
16 エアクリーナ
17 排気口
18 冷却ファン
19 駆動軸
20、50 マフラ
21 マフラ排気ガス出口
22、60 マフラカバー
23 マフラカバー排気ガス出口
24 マフラ上面
25 マフラ底面
26 触媒部
27 マフラ第1側面
28 案内部
29 マフラ第2側面
30 仕切り板
31 取付ボルト
32 排気開口
33 第1通風口(通風口)
34 第2通風口(通風口)
35 第1導風板(導風板)
36 第2導風板(導風板)
37 導風板設置範囲
38 第3導風板(導風板)
41 シリンダ室
42 マフラ室
45 排気ガス
51 第4導風板(導風板)
61 第5導風板(導風板)
300 刈払機(エンジン作業機)
310 刈払機本体
320 切断刃
330 ハンドル

Claims (14)

  1. シリンダと、冷却ファンが取り付けられ前記シリンダの下方に設けられた駆動軸と、前記シリンダにおける排気口に取り付けられたマフラと、を具備し、前記シリンダはシリンダカバーに覆われて形成されたシリンダ室に、前記マフラはマフラカバーに覆われて形成されたマフラ室に、それぞれ収容され、前記冷却ファンによって生成された冷却風が前記シリンダ室を流れると共に、前記冷却風の一部は前記マフラ室に流れる構成とされた空冷エンジンであって、前記マフラ室において、前記冷却風の上下方向の流れを制限し水平方向の流れを生成する導風板を具備することを特徴とする空冷エンジン。
  2. 前記導風板を構成する面は、前記シリンダの軸線方向に対して角度を有して形成されたことを特徴とする請求項1に記載の空冷エンジン。
  3. 前記導風板は、上下方向において前記マフラの上面と底面の間に設置されたことを特徴とする請求項1又は2に記載の空冷エンジン。
  4. 前記導風板は、水平方向において前記排気口よりも前記冷却ファンに近い側に設けられたことを特徴とする請求項1から請求項3までのいずれか1項に記載の空冷エンジン。
  5. 前記導風板は、前記マフラ室において水平方向に延在する形態とされたことを特徴とする請求項1から請求項4までのいずれか1項に記載の空冷エンジン。
  6. 前記シリンダ室と前記マフラ室の間には仕切り板が設けられ、前記冷却風は前記仕切り板に設けられた通風口を介して流れ、前記導風板は、前記マフラ室において前記通風口に隣接して設けられたことを特徴とする請求項1から請求項5までのいずれか1項に記載の空冷エンジン。
  7. 前記通風口及び前記導風板は上下方向に離間して複数組設けられたことを特徴とする請求項6に記載の空冷エンジン。
  8. 前記導風板及び前記通風口は、水平方向において前記排気口よりも前記冷却ファンに近い側に設けられ、前記マフラ室において、前記通風口と対向し、前記マフラ室内の前記冷却風の流れを水平方向において前記冷却ファンから遠い側に偏向する案内部が設けられたことを特徴とする請求項6又は7に記載の空冷エンジン。
  9. 前記案内部は、前記マフラカバーの内面で構成されたことを特徴とする請求項8に記載の空冷エンジン。
  10. 前記マフラに前記導風板が設置されたことを特徴とする請求項1から請求項9までのいずれか1項に記載の空冷エンジン。
  11. 前記マフラカバーに前記導風板が設置されたことを特徴とする請求項1から請求項10までのいずれか1項に記載の空冷エンジン。
  12. 前記導風板は金属製の板状部材で形成されたことを特徴とする請求項1から請求項11までのいずれか1項に記載の空冷エンジン。
  13. 前記導風板を構成する面は、前記駆動軸の軸線方向に対して角度を有して形成されたことを特徴とする請求項1から請求項12までのいずれか1項に記載の空冷エンジン。
  14. 請求項1から請求項13までのいずれか1項に記載の空冷エンジンを具備することを特徴とするエンジン作業機。
PCT/JP2014/059639 2013-04-03 2014-04-01 空冷エンジン、エンジン作業機 WO2014163078A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013077465 2013-04-03
JP2013-077465 2013-04-03

Publications (1)

Publication Number Publication Date
WO2014163078A1 true WO2014163078A1 (ja) 2014-10-09

Family

ID=51658373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059639 WO2014163078A1 (ja) 2013-04-03 2014-04-01 空冷エンジン、エンジン作業機

Country Status (1)

Country Link
WO (1) WO2014163078A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3489481A1 (de) * 2017-11-23 2019-05-29 Andreas Stihl AG & Co. KG Handgeführtes arbeitsgerät

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197418A (ja) * 1982-05-12 1983-11-17 Fuji Heavy Ind Ltd 防音型エンジン駆動ゼネレータ
JPS6078928U (ja) * 1983-11-04 1985-06-01 富士重工業株式会社 強制空冷エンジンの冷却装置
JPH0195526U (ja) * 1987-12-15 1989-06-23
JPH0561424U (ja) * 1992-01-28 1993-08-13 ヤンマーディーゼル株式会社 エンジン付き発電機の冷却構造
JPH108991A (ja) * 1996-06-28 1998-01-13 Yanmar Diesel Engine Co Ltd 防音型エンジン作業機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197418A (ja) * 1982-05-12 1983-11-17 Fuji Heavy Ind Ltd 防音型エンジン駆動ゼネレータ
JPS6078928U (ja) * 1983-11-04 1985-06-01 富士重工業株式会社 強制空冷エンジンの冷却装置
JPH0195526U (ja) * 1987-12-15 1989-06-23
JPH0561424U (ja) * 1992-01-28 1993-08-13 ヤンマーディーゼル株式会社 エンジン付き発電機の冷却構造
JPH108991A (ja) * 1996-06-28 1998-01-13 Yanmar Diesel Engine Co Ltd 防音型エンジン作業機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3489481A1 (de) * 2017-11-23 2019-05-29 Andreas Stihl AG & Co. KG Handgeführtes arbeitsgerät
CN109865888A (zh) * 2017-11-23 2019-06-11 安德烈亚斯·斯蒂尔两合公司 手持式工作器械
US10662855B2 (en) 2017-11-23 2020-05-26 Andreas Stihl Ag & Co. Kg Handheld work apparatus

Similar Documents

Publication Publication Date Title
JP6232984B2 (ja) 空冷エンジンおよびエンジン作業機
JP2008255831A (ja) 遮音型エンジン発電機
JP6628651B2 (ja) エンジン駆動作業機
JP2013068140A (ja) エンジン及びエンジン作業機
US10260456B2 (en) Engine-driven working machine
JP2008255829A (ja) 遮音型エンジン発電機
JP6687433B2 (ja) エンジン駆動作業機
JP6115218B2 (ja) 空冷エンジン、エンジン作業機
JP2013217363A (ja) エンジン作業機
JP6260738B2 (ja) エンジン及びエンジン作業機
JP6603700B2 (ja) エンジン及びエンジン作業機
WO2014163078A1 (ja) 空冷エンジン、エンジン作業機
JP5525869B2 (ja) 作業機械の排熱構造
WO2017130660A1 (ja) エンジン及びエンジン作業機
JP2017133490A (ja) エンジン及びエンジン作業機
JP6687432B2 (ja) エンジン駆動作業機
JP4399329B2 (ja) エンジン
JP5862010B2 (ja) エンジン用マフラ及びそれを備えたエンジン作業機
JP6572678B2 (ja) エンジン及びエンジン作業機
JP6696621B2 (ja) エンジン作業機
WO2016031717A1 (ja) エンジン作業機
JP2013068141A (ja) エンジン及びエンジン作業機
JP2016223353A (ja) チェンソー
JP2015194107A (ja) エンジン作業機
JP6187102B2 (ja) 船外機の換気構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14780351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14780351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP