Nothing Special   »   [go: up one dir, main page]

WO2014156116A1 - 非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法および非水電解質二次電池 - Google Patents

非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法および非水電解質二次電池 Download PDF

Info

Publication number
WO2014156116A1
WO2014156116A1 PCT/JP2014/001693 JP2014001693W WO2014156116A1 WO 2014156116 A1 WO2014156116 A1 WO 2014156116A1 JP 2014001693 W JP2014001693 W JP 2014001693W WO 2014156116 A1 WO2014156116 A1 WO 2014156116A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
electrolyte secondary
active material
electrode active
Prior art date
Application number
PCT/JP2014/001693
Other languages
English (en)
French (fr)
Inventor
晃宏 河北
毅 小笠原
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US14/780,255 priority Critical patent/US20160056469A1/en
Priority to JP2015508058A priority patent/JP6158307B2/ja
Priority to CN201480013788.8A priority patent/CN105190956A/zh
Publication of WO2014156116A1 publication Critical patent/WO2014156116A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a nonaqueous electrolyte secondary battery, a method for producing a positive electrode for a nonaqueous electrolyte secondary battery, and a nonaqueous electrolyte secondary battery using the positive electrode for the nonaqueous electrolyte secondary battery.
  • An object of the present invention is to provide a positive electrode for a nonaqueous electrolyte secondary battery in which deterioration of cycle characteristics is suppressed even when the potential of the positive electrode is set to a high potential, a method for producing a positive electrode for a nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte thereof It is providing the nonaqueous electrolyte secondary battery using the positive electrode for secondary batteries.
  • the present invention provides a positive electrode plate in which a positive electrode mixture layer including a positive electrode active material for desorbing and inserting Li, a binder, and a conductive agent is formed on a positive electrode current collector, W, Al, Mg, Ti, Zr and a solution containing at least one element selected from rare earth elements are brought into contact with at least a part of the positive electrode active material, at least a part of the binder, and the conductive agent contained in the positive electrode mixture layer.
  • a compound containing at least one element selected from W, Al, Mg, Ti, Zr and a rare earth element is adhered to at least a part of any surface.
  • a positive electrode for a non-aqueous electrolyte secondary battery in which deterioration of cycle characteristics is suppressed even when the potential of the positive electrode is set to a high potential, a method for producing a positive electrode for a non-aqueous electrolyte secondary battery, and the non-aqueous electrolyte secondary battery
  • a nonaqueous electrolyte secondary battery using a positive electrode for a battery is provided.
  • a positive electrode mixture layer including a positive electrode active material for desorbing and inserting Li, a binder, and a conductive agent is formed on a positive electrode current collector.
  • Zr and a compound containing at least one element selected from rare earth elements are attached.
  • W Al, Mg, Ti, Zr and rare earth elements, W and rare earth elements are preferable from the viewpoint of suppressing the decomposition reaction of the electrolytic solution.
  • the binder is, for example, a polymer having a particle shape or a network structure, maintains a good contact state between the particle shape positive electrode active material and the powder or the particle shape conductive agent, and collects the positive electrode current. Used to enhance the binding property of the positive electrode active material and the like to the surface of the body.
  • the binder include a fluorine-based polymer and a rubber-based polymer. Specifically, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), or modified products thereof as the fluorine-based polymer, ethylene-propylene-isoprene copolymer, ethylene-propylene-polymer as the rubber-based polymer, etc. Examples thereof include butadiene copolymers.
  • the binder may be used in combination with a thickener such as carboxymethyl cellulose (CMC) or polyethylene oxide (PEO).
  • the positive electrode for a non-aqueous electrolyte secondary battery includes, for example, a positive electrode in which a positive electrode mixture layer including a positive electrode active material for desorbing and inserting Li, a binder, and a conductive agent is formed on a positive electrode current collector.
  • the plate is contacted with the solution by immersing the plate in a solution containing at least one element selected from W, Al, Mg, Ti, Zr and a rare earth element, or by spraying the solution onto the positive electrode plate.
  • At least part of the positive electrode active material contained in the mixture layer, at least part of the binder, and at least part of the conductive agent are selected from W, Al, Mg, Ti, Zr and rare earth elements. It can be obtained by a method of attaching a compound containing at least one element. Thereby, the said compound can be contained in the inside and surface of a positive electrode plate.
  • a positive electrode mixture slurry on a positive electrode current collector, dry and then roll the positive electrode plate after rolling and contact the solution. This is because a rare earth element compound or the like can also be present on a new surface generated by cracks generated from the surface of the active material secondary particles generated during rolling.
  • Examples of the carbon material include graphites such as natural graphite, non-graphitizable carbon, and artificial graphite, and cokes.
  • Examples of the alloy compound include those containing at least one metal capable of forming an alloy with lithium.
  • Examples of the metal capable of forming an alloy with lithium include silicon and tin, and silicon oxide or tin oxide in which these are combined with oxygen can also be used. Moreover, you may use what mixed the said carbon material and the compound of silicon or tin.
  • silicon oxide (SiO x (0 ⁇ x ⁇ 2, particularly preferably 0 ⁇ x ⁇ 1)] may be used in addition to the silicon and the silicon alloy.
  • a solvent in which a part of these H is substituted with F is preferably used. Further, these can be used alone or in combination of two or more, and in particular, a solvent in which a cyclic carbonate and a chain carbonate are combined, and a solvent in which a compound containing a small amount of nitrile or an ether is combined with these are preferable. .
  • solutes can be used as the solute of the non-aqueous electrolyte.
  • Li [B (C 2 O 4 ) F 2 ], Li [P (C 2 O 4 ) F 4 ], Li [P (C 2 O 4 ) 2 F 2 ] and the like can be given.
  • LiBOB it is most preferable to use LiBOB in order to form a stable film on the surface of the negative electrode even in a high temperature environment.
  • Examples of the method for forming the filler layer include a method in which a filler-containing slurry is directly applied to a positive electrode, a negative electrode, or a separator, a method in which a sheet formed with a filler is attached to a positive electrode, a negative electrode, or a separator. It is done.
  • lithium cobalt cobalt manganate as the positive electrode active material
  • carbon black as the conductive agent
  • polyvinylidene fluoride (PVdF) as the binder
  • N-methyl-2- Pyrrolidone was added so that the mass ratio of the positive electrode active material, the conductive agent and the binder was 95: 2.5: 2.5, and then kneaded to prepare a positive electrode slurry.
  • this positive electrode slurry was applied to both surfaces of a positive electrode current collector made of aluminum foil, dried, and then rolled with a rolling roller, so that the positive electrode packing density was 3.2 g / cc.
  • a positive electrode in which a positive electrode mixture layer was formed on both surfaces of the positive electrode current collector was obtained by attaching a positive electrode current collecting tab.
  • the above positive electrode plate was immersed in a 0.03 mol / L sodium tungstate aqueous solution and dried at 110 ° C. in the air to produce a positive electrode plate containing a tungsten compound inside and on the surface.
  • the surface and inside of the obtained positive electrode plate contained 0.20% by mass of tungsten compound in terms of tungsten element. Further, as a result of observing the surface and cross section of the positive electrode plate with a scanning electron microscope (SEM), a 0.5 ⁇ m thick layer made of a tungsten compound (mostly sodium tungstate) was formed on a part of the surface of the electrode plate. It was confirmed that Further, the tungsten compound was attached not only to a part of the surface of the positive electrode active material but also to a part of the surface of the conductive agent and part of the surface of the binder. Moreover, the positive electrode active material secondary particles were cracked (crack) at a ratio of about 1/6, and it was confirmed that the tungsten compound was adhered to the new surface (crack surface) generated by the crack.
  • SEM scanning electron microscope
  • Lithium hexafluorophosphate LiPF 6 is 1 with respect to a mixed solvent in which ethylene carbonate (EC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC) are mixed at a volume ratio of 3: 6: 1. Dissolved to a concentration of 2 mol / liter. Further, vinylene carbonate (VC) was added in an amount of 2.0% by mass with respect to the total amount of the non-aqueous electrolyte, and dissolved to prepare a non-aqueous electrolyte.
  • EC ethylene carbonate
  • MEC methyl ethyl carbonate
  • DEC diethyl carbonate
  • the positive electrode and the negative electrode thus obtained are wound so as to face each other with a separator therebetween, and a wound body is produced.
  • the wound body is made into an aluminum laminate together with a nonaqueous electrolyte.
  • a nonaqueous electrolyte secondary battery A1 having a thickness of 3.6 mm, a width of 3.5 cm, and a length of 6.2 cm was produced.
  • Example 2 A nonaqueous electrolyte secondary battery A2 was produced in the same manner as in Experimental Example 1 except that a 0.03 mol / liter erbium acetate aqueous solution was used instead of the sodium tungstate aqueous solution as the solution for immersing the positive electrode. .
  • the surface and inside of the obtained positive electrode plate contained 0.20% by mass of erbium compound in terms of erbium element. Moreover, as a result of observing the surface and cross section of the positive electrode plate with a scanning electron microscope (SEM), a 0.5 ⁇ m thick layer made of an erbium compound (mostly erbium hydroxide) was formed on a part of the electrode plate surface. It was confirmed that Moreover, the erbium compound adhered not only to a part of the surface of the positive electrode active material but also to a part of the surface of the conductive agent and a part of the surface of the binder. In addition, the positive electrode active material secondary particles were cracked at a ratio of about 1/6, and it was confirmed that the erbium compound was attached to the new surface (crack surface) generated by the crack.
  • SEM scanning electron microscope
  • Example 3 A nonaqueous electrolyte secondary battery A3 was produced in the same manner as in Experimental Example 1 except that the positive electrode was not immersed in the sodium tungstate solution.
  • Example 4 A solution (0.51 mol / L) of sodium tungstate dissolved in pure water while mixing the nickel cobalt lithium manganate powder used in Experimental Example 1 with a kneader (TK Hibismix, manufactured by Primics Co., Ltd.) Sprayed. Subsequently, it dried at 120 degreeC in air
  • TK Hibismix manufactured by Primics Co., Ltd.
  • a nonaqueous electrolyte secondary battery A4 was produced in the same manner as in Experimental Example 1 except that the positive electrode active material used was a tungsten compound (mostly sodium tungstate) attached to the surface of the positive electrode active material.
  • the positive electrode active material used was a tungsten compound (mostly sodium tungstate) attached to the surface of the positive electrode active material.
  • a layer made of a tungsten compound was not formed on the surface of the electrode plate.
  • cracks occurred in the active material secondary particles at a ratio of about 1/6, but no tungsten compound adhered to the new surface due to the cracks.
  • Example 5 A positive electrode active material was obtained in the same manner as in Experimental Example 4 except that a solution (0.12 mol / L) of erbium acetate tetrahydrate dissolved in pure water was used instead of sodium tungstate.
  • a nonaqueous electrolyte secondary battery A5 was produced in the same manner as in Experimental Example 1 except that the positive electrode active material used was an erbium compound (mostly erbium hydroxide) attached to the surface of the positive electrode active material.
  • the positive electrode active material used was an erbium compound (mostly erbium hydroxide) attached to the surface of the positive electrode active material.
  • the layer made of the erbium compound was not formed on the surface of the electrode plate.
  • cracks occurred in the active material secondary particles at a ratio of about 1/6, but no tungsten compound adhered to the new surface due to the cracks.
  • Capacity maintenance rate after 250 cycles [%] (Discharge capacity after 250 cycles ⁇ initial discharge capacity) ⁇ 100
  • nickel cobalt lithium manganate is used as the positive electrode active material, and the tungsten compound or erbium compound is attached not only to a part of the positive electrode active material but also to a part of the conductive agent and the binder.
  • the batteries A1 and A2 thus made have a higher positive electrode potential than the battery A3 in which no tungsten compound or erbium compound is attached and the batteries A4 and A5 in which the tungsten compound or erbium compound is attached only to the positive electrode active material.
  • the transition metal contained in the positive electrode active material has catalytic properties, and in the positive electrode and on the surface of the positive electrode, the catalytic effect is generated up to the surface of the conductive agent and binder present on the surface of the positive electrode active material, It is considered that a decomposition reaction of the electrolytic solution has occurred. Therefore, as in Experimental Examples 1 and 2, cycle characteristics when the potential of the positive electrode is made high by attaching a tungsten compound or a rare earth compound in the same manner as the positive electrode active material including the conductive agent and the binder. Improved. In addition, it is considered that the decomposition reaction of the electrolytic solution on the surface could be further suppressed by the presence of the tungsten compound or the rare earth compound on the new surface generated by the secondary particle cracking due to the positive electrode rolling.
  • Example 6 In Experimental Example 1, non-aqueous electrolyte was used in the same manner as in Experimental Example 1 except that lithium cobalt cobalt manganate as the positive electrode active material was replaced by lithium cobaltate and the positive electrode packing density was 3.6 g / cc. Electrolyte secondary battery A6 was produced. As a result of ICP analysis using an ICP emission analyzer, the surface and inside of the obtained positive electrode plate contained 0.20% by mass of tungsten compound in terms of tungsten element.
  • a 0.5 ⁇ m thick layer made of a tungsten compound (mostly sodium tungstate) was formed on a part of the surface of the electrode plate. It was confirmed that Further, the tungsten compound was attached not only to a part of the surface of the positive electrode active material but also to a part of the surface of the conductive agent and part of the surface of the binder. Moreover, the positive electrode active material secondary particles were cracked (crack) at a ratio of about 1/10, and it was confirmed that the tungsten compound was adhered to the new surface (crack surface) generated by the crack.
  • SEM scanning electron microscope
  • Example 7 A nonaqueous electrolyte secondary battery A7 was produced in the same manner as in Experimental Example 6 except that the positive electrode was not immersed in the sodium tungstate solution.
  • Capacity maintenance rate after 150 cycles [%] (Discharge capacity after 150 cycles ⁇ initial discharge capacity) ⁇ 100
  • the battery A6 using lithium cobaltate as the positive electrode active material and having the tungsten compound attached not only to a part of the positive electrode active material but also to a part of the conductive agent and the binder is as follows. Further, the cycle characteristics when the potential of the positive electrode was set to a high potential were also improved as compared with the battery A7 to which no tungsten compound was adhered.
  • Example 8 [Preparation of positive electrode active material (nickel cobalt lithium aluminum oxide)]
  • the nickel cobalt aluminum composite hydroxide represented by Ni 0.82 Co 0.15 Al 0.03 (OH) 2 obtained by coprecipitation was converted into an oxide at 600 ° C.
  • LiOH and the obtained nickel-cobalt-aluminum composite oxide were mixed in an Ishikawa type mortar so that the molar ratio of Li to the entire transition metal was 1.05: 1, and this mixture was mixed with oxygen.
  • lithium nickel cobaltaluminate particles thus obtained were put into 1.5 L of pure water and stirred (washed with water), and then vacuum dried to obtain a lithium nickel cobaltaluminate powder.
  • lithium nickel cobalt manganate Li 1.05 Ni 0.82 Co 0.15 Al 0.03 O 2
  • lithium nickel cobalt aluminate Li 1.05 Ni 0.82 Co 0.15 Al 0.03 O 2
  • a nonaqueous electrolyte secondary battery A8 was produced in the same manner as in Experimental Example 1 except that the density was 3.6 g / cc.
  • the surface and inside of the obtained positive electrode plate before battery preparation contained 0.20% by mass of tungsten compound in terms of tungsten element.
  • a 0.5 ⁇ m thick layer made of a tungsten compound (mostly sodium tungstate) was formed on a part of the surface of the electrode plate. It was confirmed that Further, the tungsten compound was attached not only to a part of the surface of the positive electrode active material but also to a part of the surface of the conductive agent and part of the surface of the binder. Moreover, the positive electrode active material secondary particles were cracked (crack) at a ratio of about 1/4, and it was confirmed that the tungsten compound was adhered to the new surface (crack surface) generated by the cracking.
  • SEM scanning electron microscope
  • Example 9 A nonaqueous electrolyte secondary battery A9 was produced in the same manner as in Experimental Example 8 except that the liquid used for immersing the positive electrode was replaced with a sodium tungstate aqueous solution and a 0.03 mol / liter erbium acetate aqueous solution was used. .
  • the surface and inside of the obtained positive electrode plate before battery preparation contained 0.20% by mass of erbium compound in terms of erbium element.
  • a 0.5 ⁇ m thick layer made of an erbium compound (mostly erbium hydroxide) was formed on a part of the electrode plate surface. It was confirmed that Moreover, the erbium compound adhered not only to a part of the surface of the positive electrode active material but also to a part of the surface of the conductive agent and a part of the surface of the binder. In addition, it was confirmed that the secondary particles of the positive electrode active material had cracks (cracks) at a ratio of about 1/4, and the erbium compound was adhered to the new surface (crack surface) generated by the cracks.
  • SEM scanning electron microscope
  • Example 10 A nonaqueous electrolyte secondary battery A10 was produced in the same manner as in Experimental Example 8 except that the positive electrode was not immersed in the sodium tungstate solution.
  • Capacity maintenance rate after 100 cycles [%] (Discharge capacity after 100 cycles ⁇ initial discharge capacity) ⁇ 100
  • the nickel cobalt aluminum aluminate not subjected to the water washing treatment has a residual alkali amount measured by the Walder method about 50 times that of the nickel cobalt aluminum aluminate subjected to the water washing treatment, and the battery is kept at 80 ° C. for 48 hours.
  • the amount of gas generated when stored is more than three times. Therefore, from the viewpoint of obtaining excellent high-temperature storage characteristics, the obtained lithium nickel cobalt aluminate is washed with water in an appropriate amount of water to remove the alkaline component adhering to the surface of the lithium nickel cobalt aluminate. It is preferable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 正極の電位を高電位にした場合でも、サイクル特性の低下が抑制される非水電解質二次電池用正極を提供する。Liを脱離挿入する正極活物質と結着剤と導電剤とを含む正極合剤層が正極集電体上に形成された正極板を有する非水電解質二次電池用正極であって、正極合剤層に含まれる正極活物質の少なくとも一部、結着剤の少なくとも一部、および導電剤の少なくとも一部のいずれの表面にも、W、Al、Mg、Ti、Zrおよび希土類元素から選ばれる少なくとも1つの元素を含む化合物が付着している非水電解質二次電池用正極を提供する。

Description

非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法および非水電解質二次電池
 本発明は、非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法およびその非水電解質二次電池用正極を用いた非水電解質二次電池に関する。
 近年、携帯電話、ノートパソコン、スマートフォン等の移動情報端末の小型化、軽量化が急速に進展しており、その駆動電源としての電池にはさらなる高容量化が要求されている。充放電に伴い、リチウムイオンが正、負極間を移動することにより充放電を行うリチウムイオン電池は、高いエネルギー密度を有し、高容量であるので、上記のような移動情報端末の駆動電源として広く利用されている。
 ここで、上記移動情報端末は、動画再生機能、ゲーム機能といった機能の充実に伴って、さらに消費電力が高まる傾向にあり、その駆動電源であるリチウムイオン電池には長時間再生や出力改善等を目的として、さらなる高容量化や高性能化が強く望まれるところである。上記リチウムイオン電池等の非水電解質二次電池を高容量化する方策としては、活物質の容量を高くする方策や、単位体積当りの活物質の充填量を増やすといった方策の他、電池の充電電圧を高くするという方策がある。ただし、電池の充電電圧を高くした場合には、正極活物質と非水電解液との反応が生じやすくなる。
 例えば、特許文献1,2には、正極活物質の表面を化合物で被覆することにより、電池の充電電圧を高くした場合等において、正極活物質と非水電解液との反応を抑制できることが示されている。
 しかしながら特許文献1,2のような上記技術を用いても正極の電位を高電位にした場合には、サイクル特性の低下が抑制できないことがある。
国際公開第2005/008812号 特開2012-252807号公報
 本発明の目的は、正極の電位を高電位にした場合でも、サイクル特性の低下が抑制される非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法およびその非水電解質二次電池用正極を用いた非水電解質二次電池を提供することにある。
 本発明は、Liを脱離挿入する正極活物質と結着剤と導電剤とを含む正極合剤層が正極集電体上に形成された正極板を備える非水電解質二次電池用正極であって、前記正極合剤層に含まれる前記正極活物質の少なくとも一部、前記結着剤の少なくとも一部、および前記導電剤の少なくとも一部のいずれの表面にも、W、Al、Mg、Ti、Zrおよび希土類元素から選ばれる少なくとも1つの元素を含む化合物が付着している非水電解質二次電池用正極である。
 また、本発明は、Liを脱離挿入する正極活物質と結着剤と導電剤とを含む正極合剤層を正極集電体上に形成した正極板を、W、Al、Mg、Ti、Zrおよび希土類元素から選ばれる少なくとも1つの元素を含む溶液に接触させて、前記正極合剤層に含まれる前記正極活物質の少なくとも一部、前記結着剤の少なくとも一部、および前記導電剤の少なくとも一部のいずれの表面にも、前記W、Al、Mg、Ti、Zrおよび希土類元素から選ばれる少なくとも1つの元素を含む化合物を付着させる非水電解質二次電池用正極の製造方法である。
 さらに、本発明は、正極と、負極と、非水電解質とを備える非水電解質二次電池であって、前記正極は、Liを脱離挿入する正極活物質と結着剤と導電剤とを含む正極合剤層が正極集電体上に形成された正極板を備え、前記正極合剤層に含まれる前記正極活物質の少なくとも一部、前記結着剤の少なくとも一部、および前記導電剤の少なくとも一部のいずれの表面にも、W、Al、Mg、Ti、Zrおよび希土類元素から選ばれる少なくとも1つの元素を含む化合物が付着している非水電解質二次電池である。
 本発明では、正極の電位を高電位にした場合でも、サイクル特性の低下が抑制される非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法およびその非水電解質二次電池用正極を用いた非水電解質二次電池が提供される。
 本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。
<非水電解質二次電池>
 本発明の実施形態に係る非水電解質二次電池は、正極と、負極と、非水電解質とを備える。本実施形態に係る非水電解質二次電池は、例えば、正極および負極がセパレータを介して巻回もしくは積層された電極体と、液状の非水電解質である非水電解液とが電池外装缶に収容された構成を有するが、これに限定されるものではない。以下に、非水電解質二次電池の各構成部材について詳述する。
[正極]
 本発明の実施の形態に係る非水電解質二次電池用正極は、Liを脱離挿入する正極活物質と結着剤と導電剤とを含む正極合剤層が正極集電体上に形成された正極板を備え、正極合剤層に含まれる正極活物質の少なくとも一部、結着剤の少なくとも一部、および導電剤の少なくとも一部のいずれの表面にも、W、Al、Mg、Ti、Zrおよび希土類元素から選ばれる少なくとも1つの元素を含む化合物が付着しているものである。
 正極活物質の少なくとも一部、結着剤の少なくとも一部、および導電剤の少なくとも一部のいずれの表面にも、W、Al、Mg、Ti、Zrおよび希土類元素から選ばれる少なくとも1つの元素を含む化合物が付着していることにより、正極活物質の表面のみならず、正極活物質の表面に付着した結着剤の表面や導電剤の表面での非水電解質の分解反応も抑制されるため、正極の電位を高電位にした場合でも、サイクル特性の低下が抑制され、優れたサイクル特性を得ることができると考えられる。
 本実施形態に係る非水電解質二次電池用正極において、正極板の表面にも前記W、Al、Mg、Ti、Zrおよび希土類元素から選ばれる少なくとも1つの元素を含む化合物が付着していてもよい。これにより、正極の電位を高電位にした場合でも、サイクル特性の低下がより抑制される。
 W、Al、Mg、Ti、Zrおよび希土類元素から選ばれる少なくとも1つの元素を含む化合物としては、これらの元素の水酸化物、オキシ水酸化物、酸化物、リチウム化合物、リン酸化合物、フッ化物、炭酸化合物等が挙げられ、より電解液の分解反応を抑制する等の観点から、水酸化物、リン酸化合物、フッ化物が好ましい。
 W、Al、Mg、Ti、Zrおよび希土類元素の中では、より電解液の分解反応を抑制する等の観点から、Wおよび希土類元素が好ましい。
 希土類元素としては、イットリウム、スカンジウム、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ディスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、スカンジウム等が挙げられ、これらの中でも、付着物が微小に分散するのでより効果的に電解液の分解反応を抑制する等の観点から、ランタン、ネオジム、サマリウム、エルビウムが好ましい。希土類元素として複数の元素を用いてもよい。
 正極活物質としては、例えば、リチウム含有遷移金属複合酸化物を用いることができ、特にNi-Co-Mnのリチウム複合酸化物、Ni-Co-Alのリチウム複合酸化物が高容量で入出力性が高い等の観点から好ましい。その他の例としては、コバルト酸リチウムや、Ni-Mn-Alのリチウム複合酸化物、鉄、マンガン等を含むオリビン型の遷移金属酸化物(LiMPOで表され、MはFe、Mn、Co、Niから選択される)等が挙げられる。また、これらを単独で用いてもよいし、混合して用いてもよい。また、上記リチウム含有遷移金属複合酸化物には、Al、Mg、Ti、Zr、W、Bi等の物質が固溶されていてもよい。なお、同種の正極活物質のみを用いる場合や、異種の正極活物質を用いる場合において、正極活物質としては、同一の粒径のものを用いてもよく、また、異なる粒径のものを用いてもよい。
 また、上記Ni-Co-Mnのリチウム複合酸化物としては、NiとCoとMnとのモル比が、1:1:1の他に、5:3:2、6:2:2、7:1:2、7:2:1、8:1:1等の、公知の組成のものを用いることができるが、特に、正極容量を増大させうるように、NiやCoの割合がMnより多いものを用いることが好ましく、NiとCoとMnのモルの総和に対するNiとMnのモル率の差は、0.05%以上であることが好ましい。
 導電剤は、例えば、導電性を有する粉体または粒子等であり、正極合剤層の電子伝導性を高めるために用いられる。導電剤としては、導電性を有する炭素材料、金属粉末、有機材料等が挙げられる。具体的には、炭素材料としてアセチレンブラック、ケッチェンブラック、および黒鉛等、金属粉末としてアルミニウム等、金属酸化物としてチタン酸カリウム、酸化チタン等、および有機材料としてフェニレン誘導体等が挙げられる。これら導電剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 結着剤は、例えば、粒子形状あるいは網目構造を有する高分子であり、粒子形状の正極活物質と粉体または粒子形状の導電剤との間の良好な接触状態を維持し、かつ正極集電体の表面に対する正極活物質等の結着性を高めるために用いられる。結着剤としては、フッ素系高分子、ゴム系高分子等が挙げられる。具体的には、フッ素系高分子としてポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、またはこれらの変性体等、ゴム系高分子としてエチレン-プロピレン-イソプレン共重合体、エチレン-プロピレン-ブタジエン共重合体等が挙げられる。結着剤は、カルボキシメチルセルロー
ス(CMC)、ポリエチレンオキシド(PEO)等の増粘剤と併用されてもよい。
 正極集電体としては、例えば、正極の電位範囲で安定な金属の箔、または正極の電位範囲で安定な金属を表層に配置したフィルム等が挙げられる。正極の電位範囲で安定な金属としては、アルミニウムを用いることが好適である。
 本実施形態に係る非水電解質二次電池用正極は、例えば、Liを脱離挿入する正極活物質と結着剤と導電剤とを含む正極合剤層を正極集電体上に形成した正極板を、W、Al、Mg、Ti、Zrおよび希土類元素から選ばれる少なくとも1つの元素を含む溶液に浸漬したり、前記溶液を正極板に噴霧すること等により、前記溶液と接触させて、正極合剤層に含まれる正極活物質の少なくとも一部、結着剤の少なくとも一部、および導電剤の少なくとも一部のいずれの表面にも、W、Al、Mg、Ti、Zrおよび希土類元素から選ばれる少なくとも1つの元素を含む化合物を付着させる方法によって、得ることができる。これにより、正極板の内部および表面に上記化合物を含有させることができる。
 正極集電体上に正極合剤スラリーを形成させ乾燥させた後圧延した、圧延後の正極板と、前記溶液とを接触させることが好ましい。圧延時に生じる活物質二次粒子表面から生じる割れ(クラック)によって生じた新生面にも希土類元素の化合物等を存在させることができるためである。
[負極]
 負極としては、従来から用いられてきた負極を用いることができ、例えば、負極活物質と、結着剤とを水あるいは適当な溶媒で混合し、負極集電体に塗布し、乾燥し、圧延することにより得られる。負極活物質としては、例えば、リチウムを吸蔵放出可能な炭素材料、あるいはリチウムと合金を形成可能な金属またはその金属を含む合金化合物等が挙げられる。
 炭素材料としては、例えば、天然黒鉛や難黒鉛化性炭素、人造黒鉛等のグラファイト類、コークス類等が挙げられる。合金化合物としては、リチウムと合金形成可能な金属を少なくとも1種類含むもの等が挙げられる。リチウムと合金形成可能な金属としては、ケイ素やスズ等が挙げられ、これらが酸素と結合した、酸化ケイ素や酸化スズ等を用いることもできる。また、上記炭素材料とケイ素やスズの化合物とを混合したものを用いてもよい。
 負極活物質としては、上記の他、エネルギー密度は低下することがあるものの、チタン酸リチウム等の金属リチウムに対する充放電の電位が、炭素材料等より高いものも用いることができる。
 負極活物質としては、上記ケイ素や、上記ケイ素合金の他に、ケイ素酸化物[SiO(0<x<2、特に0<x<1が好ましい)]を用いてもよい。上記ケイ素には、SiO(0<x<2)(SiO=(Si)1-1/2x+(SiO1/2x)で表されるケイ素酸化物中のケイ素も含まれる。
 結着剤としては、正極の場合と同様にフッ素系高分子、ゴム系高分子等が挙げられるが、ゴム系高分子であるスチレン-ブタジエン共重合体(SBR)、またはこの変性体等を用いることが好ましい。結着剤は、カルボキシメチルセルロース(CMC)等の増粘剤と併用されてもよい。
 負極集電体には、例えば、負極の電位範囲でリチウムと合金をほとんど作らない金属の箔、または負極の電位範囲でリチウムと合金をほとんど作らない金属を表層に配置したフィルム等が用いられる。負極の電位範囲でリチウムと合金をほとんど作らない金属としては、低コストで加工がしやすく電子伝導性の良い銅を用いることが好ましい。
[非水電解質]
 非水電解質の溶媒としては、従来から用いられてきた溶媒を使用することができる。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネートや、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネートや、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン等のエステルを含む化合物や、プロパンスルトン等のスルホン基を含む化合物や、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、1,3-ジオキサン、1,4-ジオキサン、2-メチルテトラヒドロフラン等のエーテルを含む化合物や、ブチロニトリル、バレロニトリル、n-ヘプタンニトリル、スクシノニトリル、グルタルニトリル、アジポニトリル、ピメロニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル等のニトリルを含む化合物や、ジメチルホルムアミド等のアミドを含む化合物等を用いることができる。特に、これらのHの一部がFにより置換されている溶媒が好ましく用いられる。また、これらを単独または複数組み合わせて使用することができ、特に環状カーボネートと鎖状カーボネートとを組み合わせた溶媒や、さらにこれらに少量のニトリルを含む化合物やエーテルを含む化合物が組み合わされた溶媒が好ましい。
 一方、非水電解質の溶質としては、従来から用いられてきた溶質を用いることができ、例えば、LiPF、LiBF、LiN(SOF)、LiN(SOCF、LiN(SO、LiPF6-x(C2n-1(ただし、1<x<6、n=1または2)等の他に、オキサラト錯体をアニオンとするリチウム塩、LiPFO等の塩等が挙げられる。
 オキサラト錯体をアニオンとするリチウム塩としては、LiBOB(リチウム-ビスオキサレートボレート)の他、中心原子にC 2-が配位したアニオンを有するリチウム塩、例えば、Li[M(C](式中、Mは、遷移金属、周期律表のIIIb族、IVb族、Vb族から選択される元素、Rはハロゲン、アルキル基、ハロゲン置換アルキル基から選択される基、xは正の整数、yは0または正の整数である。)で表わされるものを用いることができる。具体的には、Li[B(C)F]、Li[P(C)F]、Li[P(C]等が挙げられる。これらのうち、高温環境下においても負極の表面に安定な被膜を形成するために、LiBOBを用いることが最も好ましい。
 なお、上記溶質は、単独で用いてもよいし、2種以上を混合して用いてもよい。また、溶質の濃度は特に限定されないが、電解液1リットル当り0.8~1.7モル程度であることが好ましい。
[セパレータ]
 セパレータとしては、従来から用いられてきたセパレータを用いることができる。セパレータとしては、具体的には、ポリエチレンを含んでなるセパレータの他に、ポリエチレン層の表面にポリプロピレンを含んでなる層が形成されたものや、ポリエチレンのセパレータの表面にアラミド系樹脂等の樹脂等が塗布されたもの等が挙げられる。また、セパレータの表面にチタンやアルミニウムの酸化物等の無機フィラーが付着しているものを用いてもよい。
 正極とセパレータとの界面、および、負極とセパレータとの界面の少なくとも1つには、従来から用いられてきた無機物のフィラーを含んでなる層(フィラー層)を形成してもよい。フィラーとしては、従来から用いられてきたチタン、アルミニウム、ケイ素、マグネシウム等を単独もしくは複数用いた酸化物やリン酸化合物、またその表面が水酸化物等で処理されているもの等が挙げられる。
 上記フィラー層の形成方法としては、正極、負極、またはセパレータに、フィラー含有スラリーを直接塗布して形成する方法や、フィラーで形成したシートを、正極、負極、またはセパレータに貼り付ける方法等が挙げられる。
実験例
 以下、本発明を実施するための形態について実験例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実験例に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。
(実験例1)
[正極の作製]
 LiCOと、Ni0.50Co0.20Mn0.30(OH)で表される共沈水酸化物とを、Liと遷移金属全体とのモル比が1.08:1になるように石川式らいかい乳鉢にて混合した。次に、この混合物を空気雰囲気中にて950℃で20時間熱処理後に粉砕することにより、平均二次粒子径が約15μmのLi1.08Ni0.50Co0.20Mn0.30で表されるニッケルコバルトマンガン酸リチウムを得た。
 このようにして得られた正極活物質としてのニッケルコバルトマンガン酸リチウムに、導電剤としてのカーボンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)と、分散媒としてのN-メチル-2-ピロリドンとを、正極活物質と導電剤と結着剤との質量比が95:2.5:2.5の割合になるように加えた後に混練して、正極スラリーを調製した。次に、この正極スラリーを、アルミニウム箔からなる正極集電体の両面に塗布、乾燥した後、圧延ローラにより圧延し、正極の充填密度を3.2g/ccとした。さらに、正極集電タブを取り付けることにより、正極集電体の両面に正極合剤層が形成された正極を得た。
 上記の正極板を、0.03モル/Lのタングステン酸ナトリウム水溶液に浸漬して、大気中、110℃で乾燥し、内部および表面にタングステン化合物を含有する正極板を作製した。
 得られた正極板の表面および内部にはICP発光分析装置を用いたICP分析の結果、タングステン化合物がタングステン元素換算で0.20質量%含まれていた。また、走査型電子顕微鏡(SEM)にて正極板の表面及び断面を観察した結果、タングステン化合物(ほとんどがタングステン酸ナトリウム)からなる厚み0.5μmの層が、極板表面の一部に形成されていることが確認された。また、タングステン化合物は、正極活物質の表面の一部のみならず、導電剤の表面の一部や、結着剤の表面の一部にも付着していた。また、約1/6個の割合で正極活物質二次粒子に割れ(クラック)が生じており、割れにより生じた新生面(クラック表面)に、タングステン化合物が付着していることが確認された。
[負極の作製]
 増粘剤であるCMC(カルボキシメチルセルロースナトリウム)を水に溶かした水溶液中に、負極活物質として人造黒鉛と、結着剤としてのSBR(スチレン-ブタジエンゴム)とを、負極活物質と結着剤と増粘剤の質量比が98:1:1の比率になるようにして加えた後に混練して、負極スラリーを作製した。この負極スラリーを銅箔からなる負極集電体の両面にできるだけ均一に塗布し、乾燥させ、圧延ローラにより圧延し、負極集電タブを取り付けることにより、負極を作製した。
[非水電解質の調製]
 エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)とジエチルカーボネート(DEC)とを、3:6:1の体積比で混合した混合溶媒に対して、六フッ化リン酸リチウム(LiPF)を1.2モル/リットルの濃度になるように溶解した。さらにビニレンカーボネート(VC)を非水電解液全量に対して2.0質量%添加し、溶解させて、非水電解質を調製した。
[電池の作製]
 このようにして得た正極および負極を、セパレータを介して対向するように巻取って巻取り体を作製し、アルゴン雰囲気下のグローボックス中にて、巻取り体を非水電解質とともにアルミニウムラミネートに封入することにより、厚み3.6mm、幅3.5cm、長さ6.2cmの非水電解質二次電池A1を作製した。
(実験例2)
 正極を浸漬する際の液をタングステン酸ナトリウム水溶液に代えて0.03モル/リットルの酢酸エルビウム水溶液を用いたこと以外は、上記実験例1と同様にして非水電解質二次電池A2を作製した。
 ICP発光分析装置を用いたICP分析の結果、得られた正極板の表面および内部には、エルビウム化合物がエルビウム元素換算で0.20質量%含まれていた。また、走査型電子顕微鏡(SEM)にて正極板の表面及び断面を観察した結果、エルビウム化合物(ほとんどが水酸化エルビウム)からなる厚み0.5μmの層が、極板表面の一部に形成されていることが確認された。また、エルビウム化合物は、正極活物質の表面の一部のみならず、導電剤の表面の一部や、結着剤の表面の一部にも付着していた。また、約1/6個の割合で正極活物質二次粒子に割れ(クラック)が生じており、割れにより生じた新生面(クラック表面)に、エルビウム化合物が付着していることが確認された。
(実験例3)
 正極をタングステン酸ナトリウム溶液に浸漬しなかったこと以外は上記実験例1と同様にして非水電解質二次電池A3を作製した。
(実験例4)
 実験例1で用いたニッケルコバルトマンガン酸リチウム粉末を、混練機(TKハイビスミックス、プライミクス株式会社製)にて混合しながら、タングステン酸ナトリウムを純水に溶解した溶液(0.51モル/L)を噴霧した。次いで、大気中、120℃で乾燥し、上記ニッケルコバルトマンガン酸リチウムの表面の一部にタングステン酸ナトリウムが付着した正極活物質を得た。
 得られた正極活物質について、走査型電子顕微鏡(SEM)にて観察したところ、ニッケルコバルトマンガン酸リチウム粒子の表面の一部に、平均粒子径0.5nm以下のタングステン酸ナトリウムが付着していることが認められた。また、ICP分析により調べたところ、ニッケルコバルトマンガン酸リチウム粒子に対するタングステン酸ナトリウムの付着量は、タングステン元素換算で1.7質量%であった。
 正極活物質として、この正極活物質表面にタングステン化合物(ほとんどがタングステン酸ナトリウム)が付着したものを用いたこと以外は、上記実験例1と同様にして非水電解質二次電池A4を作製した。なお、電池作製前の正極の表面及び断面をSEM観察したところ、タングステン化合物でできた層は極板表面に形成されていなかった。また、約1/6個の割合で活物質二次粒子に割れ(クラック)が生じていたが、割れによる新生面にはタングステン化合物は付着していなかった。
(実験例5)
 タングステン酸ナトリウムに代えて酢酸エルビウム4水和物を純水に溶解した溶液(0.12モル/L)を用いたこと以外は実験例4と同様にして正極活物質を得た。
 得られた正極活物質について、走査型電子顕微鏡(SEM)にて観察したところ、ニッケルコバルトマンガン酸リチウム粒子の表面の一部に、平均粒子径10nmのエルビウム化合物が付着していることが認められた。また、エルビウム化合物の付着量をICPにより測定したところ、エルビウム元素換算で、ニッケルコバルトマンガン酸リチウムに対して0.20質量%であった。加えて、熱処理後のエルビウム化合物は、ほとんどが水酸化エルビウムであった。
 正極活物質として、この正極活物質表面にエルビウム化合物(ほとんどが水酸化エルビウム)が付着したものを用いたこと以外は、上記実験例1と同様にして非水電解質二次電池A5を作製した。なお、電池作製前の正極の表面及び断面をSEM観察したところ、エルビウム化合物でできた層は極板表面に形成されていなかった。また、約1/6個の割合で活物質二次粒子に割れ(クラック)が生じていたが、割れによる新生面にはタングステン化合物は付着していなかった。
[実験1]
 上記の電池A1~A5について下記条件にて充放電し、正極の電位を高電位にした場合のサイクル特性を評価した。
[1サイクル目の充放電条件]
・1サイクル目の充電条件
 640mAの電流で電池電圧が4.35Vとなるまで定電流充電を行い、さらに、4.35Vの定電圧で電流値が32mAとなるまで定電圧充電を行った。
・1サイクル目の放電条件
 800mAの定電流で電池電圧が3.00Vとなるまで定電流放電を行った。このときの放電容量を測定し、初期放電容量とした。
・休止
 上記充電と放電との間の休止間隔は10分間とした。
 上記の条件で充放電サイクル試験を250回行って、250サイクル後の放電容量を測定した。250サイクル後の容量維持率を以下の式により算出した。その結果を下記表1に示す。
 250サイクル後の容量維持率[%]
  =(250サイクル後の放電容量÷初期放電容量)×100
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果から明らかなように、ニッケルコバルトマンガン酸リチウムを正極活物質として用い、正極活物質の一部だけではなく導電剤と結着剤の一部にもタングステン化合物またはエルビウム化合物を付着させた電池A1,A2は、タングステン化合物またはエルビウム化合物を付着させなかった電池A3、および正極活物質のみにタングステン化合物またはエルビウム化合物を付着させた電池A4,A5に比べて、正極の電位を高電位にした場合のサイクル特性が大幅に向上した。
 正極活物質に含まれる遷移金属は触媒性を有しており、正極中および正極表面において、正極活物質の表面に存在する導電剤や結着剤の表面にまでその触媒効果が生じており、電解液の分解反応が生じていると考えられる。したがって、実験例1,2のように、導電剤、結着剤も含めて正極活物質と同様に、タングステン化合物または希土類化合物を付着させることにより、正極の電位を高電位にした場合のサイクル特性が向上した。また、正極の圧延により二次粒子が割れて生じた新生面にタングステン化合物や希土類化合物が存在することで、面における電解液の分解反応をより一層抑制することができたと考えられる。
 なお、実験例4,5においては、正極の圧延時に生じる活物質二次粒子の割れによって生じた新生面にタングステン化合物や希土類化合物は存在していないので、圧延時に生じる活物質二次粒子の割れによって生じた新生面において、電解液の分解反応が生じていると考えられる。
(実験例6)
 実験例1において、正極活物質のニッケルコバルトマンガン酸リチウムをコバルト酸リチウムに代えたことと、正極の充填密度を3.6g/ccとしたこと以外は、上記実験例1と同様にして非水電解質二次電池A6を作製した。ICP発光分析装置を用いたICP分析の結果、得られた正極板の表面および内部には、タングステン化合物がタングステン元素換算で0.20質量%含まれていた。また、走査型電子顕微鏡(SEM)にて正極板の表面及び断面を観察した結果、タングステン化合物(ほとんどがタングステン酸ナトリウム)からなる厚み0.5μmの層が、極板表面の一部に形成されていることが確認された。また、タングステン化合物は、正極活物質の表面の一部のみならず、導電剤の表面の一部や、結着剤の表面の一部にも付着していた。また、約1/10個の割合で正極活物質二次粒子に割れ(クラック)が生じており、割れにより生じた新生面(クラック表面)に、タングステン化合物が付着していることが確認された。
(実験例7)
 正極をタングステン酸ナトリウム溶液に浸漬しなかったこと以外は上記実験例6と同様にして非水電解質二次電池A7を作製した。
[実験2]
 上記の電池A6,A7について下記条件にて充放電し、正極の電位を高電位にした場合のサイクル特性を評価した。
[1サイクル目の充放電条件]
・1サイクル目の充電条件
 750mAの電流で電池電圧が4.40Vとなるまで定電流充電を行い、さらに、4.40の定電圧で電流値が38mAとなるまで定電圧充電を行った。
・1サイクル目の放電条件
 750mAの定電流で電池電圧が2.75となるまで定電流放電を行った。このときの放電容量を測定し、初期放電容量とした。
・休止
 上記充電と放電との間の休止間隔は10分間とした。
 上記の条件で充放電サイクル試験を150回行って、150サイクル後の放電容量を測定した。150サイクル後の容量維持率を以下の式により算出した。その結果を下記表2に示す。
 150サイクル後の容量維持率[%]
  =(150サイクル後の放電容量÷初期放電容量)×100
Figure JPOXMLDOC01-appb-T000002
 上記表2の結果から明らかなように、コバルト酸リチウムを正極活物質として用い、正極活物質の一部だけではなく導電剤と結着剤の一部にもタングステン化合物を付着させた電池A6は、タングステン化合物を付着させなかった電池A7に比べて正極の電位を高電位にした場合のサイクル特性も向上した。
(実験例8)
 [正極活物質(ニッケルコバルトアルミニウム酸リチウム)の作製]
 共沈により得られたNi0.82Co0.15Al0.03(OH)で表されるニッケルコバルトアルミニウム複合水酸化物を600℃で酸化物にした。次に、LiOHと得られたニッケルコバルトアルミニウム複合酸化物とを、Liと遷移金属全体とのモル比が1.05:1になるように石川式らいかい乳鉢にて混合し、この混合物を酸素雰囲気中にて800℃で20時間熱処理後に粉砕することにより、平均二次粒径が約15μmのLi1.05Ni0.82Co0.15Al0.03で表されるニッケルコバルトアルミニウム酸リチウムの粒子を得た。
このようにして得たニッケルコバルトアルミニウム酸リチウムの粒子1000gを、純水1.5Lに投入して攪拌した(水洗)後、真空乾燥してニッケルコバルトアルミニウム酸リチウム粉末を得た。
 ニッケルコバルトマンガン酸リチウムに代えて、上記のように作製したニッケルコバルトアルミニウム酸リチウム(Li1.05Ni0.82Co0.15Al0.03)を正極活物質として用い、正極の充填密度を3.6g/ccとしたこと以外は、上記実験例1と同様にして非水電解質二次電池A8を作製した。なお、ICP発光分析装置を用いたICP分析の結果、得られた電池作製前の正極板の表面および内部には、タングステン化合物がタングステン元素換算で0.20質量%含まれていた。また、走査型電子顕微鏡(SEM)にて正極板の表面及び断面を観察した結果、タングステン化合物(ほとんどがタングステン酸ナトリウム)からなる厚み0.5μmの層が、極板表面の一部に形成されていることが確認された。また、タングステン化合物は、正極活物質の表面の一部のみならず、導電剤の表面の一部や、結着剤の表面の一部にも付着していた。また、約1/4個の割合で正極活物質二次粒子に割れ(クラック)が生じており、割れにより生じた新生面(クラック表面)に、タングステン化合物が付着していることが確認された。
(実験例9)
 正極を浸漬する際の液をタングステン酸ナトリウム水溶液に代えて0.03モル/リットルの酢酸エルビウム水溶液を用いたこと以外は、上記実験例8と同様にして非水電解質二次電池A9を作製した。ICP発光分析装置を用いたICP分析の結果、得られた電池作製前の正極板の表面および内部には、エルビウム化合物がエルビウム元素換算で0.20質量%含まれていた。また、走査型電子顕微鏡(SEM)にて正極板の表面及び断面を観察した結果、エルビウム化合物(ほとんどが水酸化エルビウム)からなる厚み0.5μmの層が、極板表面の一部に形成されていることが確認された。また、エルビウム化合物は、正極活物質の表面の一部のみならず、導電剤の表面の一部や、結着剤の表面の一部にも付着していた。また、約1/4個の割合で正極活物質二次粒子に割れ(クラック)が生じており、割れにより生じた新生面(クラック表面)に、エルビウム化合物が付着していることが確認された。
(実験例10)
 正極をタングステン酸ナトリウム溶液に浸漬しなかったこと以外は上記実験例8と同様にして非水電解質二次電池A10を作製した。
[実験3]
 上記の電池A8~A10について下記条件にて充放電し、正極の電位を高電位にした場合のサイクル特性を評価した。
[1サイクル目の充放電条件]
・1サイクル目の充電条件
 475mAの電流で電池電圧が4.40Vとなるまで定電流充電を行い、さらに、4.40の定電圧で電流値が38mAとなるまで定電圧充電を行った。
・1サイクル目の放電条件
 950mAの定電流で電池電圧が2.50となるまで定電流放電を行った。このときの放電容量を測定し、初期放電容量とした。
・休止
 上記充電と放電との間の休止間隔は10分間とした。
 上記の条件で充放電サイクル試験を100回行って、100サイクル後の放電容量を測定した。100サイクル後の容量維持率を以下の式により算出した。その結果を下記表3に示す。
 100サイクル後の容量維持率[%]
  =(100サイクル後の放電容量÷初期放電容量)×100
Figure JPOXMLDOC01-appb-T000003
 上記表3の結果から明らかなように、ニッケルコバルトアルミニウム酸リチウムを正極活物質として用いた場合でも、正極活物質の一部だけではなく導電剤と結着剤の一部にもタングステン化合物やエルビウム化合物を付着させた電池A8、A9は、タングステン化合物やエルビウム化合物を付着させなかった電池A10に比べて正極の電位を高電位にした場合のサイクル特性が向上した。
 なお、水洗処理を行わないニッケルコバルトアルミニウム酸リチウムは、水洗処理を行ったニッケルコバルトアルミニウム酸リチウムに比べてヴァルダー法により測定した残存アルカリ量が約50倍となり、また、電池を80℃で48時間保存した場合のガス発生量は3倍以上になる。よって優れた高温保存特性を得るという観点からは、得られたニッケルコバルトアルミニウム酸リチウムは、適量の水の中で水洗処理し、ニッケルコバルトアルミニウム酸リチウムの表面に付着しているアルカリ成分を除去することが好ましい。
 

Claims (6)

  1.  Liを脱離挿入する正極活物質と結着剤と導電剤とを含む正極合剤層が正極集電体上に形成された正極板を備える非水電解質二次電池用正極であって、
     前記正極合剤層に含まれる前記正極活物質の少なくとも一部、前記結着剤の少なくとも一部、および前記導電剤の少なくとも一部のいずれの表面にも、W、Al、Mg、Ti、Zrおよび希土類元素から選ばれる少なくとも1つの元素を含む化合物が付着している、非水電解質二次電池用正極。
  2.  請求項1に記載の非水電解質二次電池用正極であって、
    前記正極活物質の二次粒子のクラック表面に、W、Al、Mg、Ti、Zrおよび希土類元素から選ばれる少なくとも1つの元素を含む化合物が付着している、非水電解質二次電池用正極。
  3.  請求項1または請求項2に記載の非水電解質二次電池用正極であって、
     前記元素が、Wおよび希土類元素から選ばれる少なくとも1つの元素である、非水電解質二次電池用正極。
  4.  請求項1から請求項3の何れかに記載の非水電解質二次電池用正極であって、
     前記正極板の表面にも前記少なくとも1つの元素を含む化合物が付着している、非水電解質二次電池用正極。
  5.  Liを脱離挿入する正極活物質と結着剤と導電剤とを含む正極合剤層を正極集電体上に形成した正極板を、W、Al、Mg、Ti、Zrおよび希土類元素から選ばれる少なくとも1つの元素を含む溶液に接触させて、前記正極合剤層に含まれる前記正極活物質の少なくとも一部、前記結着剤の少なくとも一部、および前記導電剤の少なくとも一部のいずれの表面にも、前記W、Al、Mg、Ti、Zrおよび希土類元素から選ばれる少なくとも1つの元素を含む化合物を付着させる、非水電解質二次電池用正極の製造方法。
  6.  正極と、負極と、非水電解質とを備える非水電解質二次電池であって、
     前記正極は、Liを脱離挿入する正極活物質と結着剤と導電剤とを含む正極合剤層が正極集電体上に形成された正極板を備え、
     前記正極合剤層に含まれる前記正極活物質の少なくとも一部、前記結着剤の少なくとも一部、および前記導電剤の少なくとも一部のいずれの表面にも、W、Al、Mg、Ti、Zrおよび希土類元素から選ばれる少なくとも1つの元素を含む化合物が付着している、非水電解質二次電池。
PCT/JP2014/001693 2013-03-28 2014-03-25 非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法および非水電解質二次電池 WO2014156116A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/780,255 US20160056469A1 (en) 2013-03-28 2014-03-25 Positive electrode for nonaqueous electrolyte secondary battery, method for manufacturing positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2015508058A JP6158307B2 (ja) 2013-03-28 2014-03-25 非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法および非水電解質二次電池
CN201480013788.8A CN105190956A (zh) 2013-03-28 2014-03-25 非水电解质二次电池用正极、非水电解质二次电池用正极的制造方法以及非水电解质二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013067829 2013-03-28
JP2013-067829 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014156116A1 true WO2014156116A1 (ja) 2014-10-02

Family

ID=51623129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001693 WO2014156116A1 (ja) 2013-03-28 2014-03-25 非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法および非水電解質二次電池

Country Status (4)

Country Link
US (1) US20160056469A1 (ja)
JP (1) JP6158307B2 (ja)
CN (1) CN105190956A (ja)
WO (1) WO2014156116A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180175449A1 (en) * 2015-05-11 2018-06-21 Nec Corporation Lithium-ion secondary battery
WO2023190422A1 (ja) 2022-03-31 2023-10-05 株式会社Gsユアサ 非水電解質蓄電素子用の正極及びこれを備える非水電解質蓄電素子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096909A1 (ja) * 2016-11-28 2018-05-31 株式会社村田製作所 負極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
CN118352517A (zh) * 2023-01-09 2024-07-16 万华化学集团电池科技有限公司 一种高耐压三元多晶正极材料及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102332A (ja) * 1994-09-30 1996-04-16 Hitachi Ltd 二次電池
JPH08213008A (ja) * 1994-12-01 1996-08-20 Canon Inc リチウム二次電池及びその負極の作製方法
JPH08236114A (ja) * 1995-02-27 1996-09-13 Sanyo Electric Co Ltd リチウム二次電池
JPH08250120A (ja) * 1995-03-08 1996-09-27 Sanyo Electric Co Ltd リチウム二次電池
JPH10214640A (ja) * 1997-01-30 1998-08-11 Asahi Chem Ind Co Ltd 電 池
JP2003500318A (ja) * 1999-05-15 2003-01-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 金属酸化物で被覆されたリチウム混合酸化物粒子
JP2003173770A (ja) * 2001-12-04 2003-06-20 Japan Storage Battery Co Ltd 非水電解質電池および非水電解質電池の製造法
JP2003221234A (ja) * 2001-11-22 2003-08-05 Nippon Chem Ind Co Ltd リチウムコバルト系複合酸化物、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
WO2005008812A1 (ja) * 2003-07-17 2005-01-27 Yuasa Corporation 正極活物質及びその製造方法、並びに、これを用いたリチウム二次電池用正極及びリチウム二次電池
WO2010125729A1 (ja) * 2009-04-27 2010-11-04 パナソニック株式会社 非水電解質二次電池用正極板およびその製法並びに非水電解質二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5260821B2 (ja) * 2005-07-11 2013-08-14 パナソニック株式会社 リチウムイオン二次電池
TWI346406B (en) * 2006-02-16 2011-08-01 Lg Chemical Ltd Lithium secondary battery with enhanced heat-resistance
WO2007108425A1 (ja) * 2006-03-17 2007-09-27 Sanyo Electric Co., Ltd. 非水電解質電池及びその製造方法
GB2457952A (en) * 2008-02-29 2009-09-02 Nanotecture Ltd Mesoporous particulate material
JP5619412B2 (ja) * 2009-09-04 2014-11-05 三洋電機株式会社 非水電解質二次電池および非水電解質二次電池の製造方法
JP5742192B2 (ja) * 2009-12-07 2015-07-01 住友化学株式会社 リチウム複合金属酸化物の製造方法
JP5758701B2 (ja) * 2010-09-01 2015-08-05 三洋電機株式会社 非水電解液二次電池用正極、それを用いた電池、及び非水電解液二次電池用正極の製造方法
JP5931750B2 (ja) * 2011-01-28 2016-06-08 三洋電機株式会社 非水電解液二次電池用正極活物質、その製造方法、当該正極活物質を用いた非水電解液二次電池用正極、及び、当該正極を用いた非水電解液二次電池
CN102569722B (zh) * 2012-02-20 2016-09-07 宁德新能源科技有限公司 一种锂离子二次电池及其正极

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102332A (ja) * 1994-09-30 1996-04-16 Hitachi Ltd 二次電池
JPH08213008A (ja) * 1994-12-01 1996-08-20 Canon Inc リチウム二次電池及びその負極の作製方法
JPH08236114A (ja) * 1995-02-27 1996-09-13 Sanyo Electric Co Ltd リチウム二次電池
JPH08250120A (ja) * 1995-03-08 1996-09-27 Sanyo Electric Co Ltd リチウム二次電池
JPH10214640A (ja) * 1997-01-30 1998-08-11 Asahi Chem Ind Co Ltd 電 池
JP2003500318A (ja) * 1999-05-15 2003-01-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 金属酸化物で被覆されたリチウム混合酸化物粒子
JP2003221234A (ja) * 2001-11-22 2003-08-05 Nippon Chem Ind Co Ltd リチウムコバルト系複合酸化物、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2003173770A (ja) * 2001-12-04 2003-06-20 Japan Storage Battery Co Ltd 非水電解質電池および非水電解質電池の製造法
WO2005008812A1 (ja) * 2003-07-17 2005-01-27 Yuasa Corporation 正極活物質及びその製造方法、並びに、これを用いたリチウム二次電池用正極及びリチウム二次電池
WO2010125729A1 (ja) * 2009-04-27 2010-11-04 パナソニック株式会社 非水電解質二次電池用正極板およびその製法並びに非水電解質二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180175449A1 (en) * 2015-05-11 2018-06-21 Nec Corporation Lithium-ion secondary battery
US10833364B2 (en) * 2015-05-11 2020-11-10 Nec Corporation Lithium-ion secondary battery
WO2023190422A1 (ja) 2022-03-31 2023-10-05 株式会社Gsユアサ 非水電解質蓄電素子用の正極及びこれを備える非水電解質蓄電素子

Also Published As

Publication number Publication date
CN105190956A (zh) 2015-12-23
JPWO2014156116A1 (ja) 2017-02-16
US20160056469A1 (en) 2016-02-25
JP6158307B2 (ja) 2017-07-05

Similar Documents

Publication Publication Date Title
JP6103034B2 (ja) 非水電解質二次電池用正極、及びその正極を用いた非水電解質二次電池
JP6656717B2 (ja) 非水電解液添加剤、これを含む非水電解液、及びこれを備えたリチウム二次電池
JP6509989B2 (ja) 偏平形非水電解質二次電池及びそれを用いた組電池
WO2012099265A1 (ja) 非水電解質二次電池用正極活物質、その正極活物質を用いた非水電解質二次電池用正極及びその正極を用いた非水電解質二次電池
WO2015125444A1 (ja) 非水電解質二次電池用正極活物質
JP2011034943A (ja) 非水電解液二次電池
JP2011077016A (ja) 非水電解質二次電池および非水電解質二次電池の製造方法
JP2011071046A (ja) 非水電解質二次電池
WO2017056364A1 (ja) 非水電解質二次電池用正極活物質
JP6304746B2 (ja) リチウムイオン二次電池
JP2015232923A (ja) 非水電解質二次電池
JPWO2016047031A1 (ja) 非水電解質二次電池
JP2011071100A (ja) 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
JP6158307B2 (ja) 非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法および非水電解質二次電池
JP2014049287A (ja) 非水電解質二次電池及び非水電解質二次電池スタック
JP6522661B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
JPWO2013018692A1 (ja) 非水電解質二次電池用正極活物質、その製造方法、当該正極活物質を用いた非水電解質二次電池用正極、及び、当該正極を用いた非水電解質二次電池
JP2012054067A (ja) 非水電解質二次電池
JP2016033887A (ja) 非水電解質二次電池
JP5911951B2 (ja) 非水電解液二次電池用正極活物質及び当該正極活物質を用いた非水電解液二次電池
JP2013137939A (ja) 非水電解質二次電池
JP6117553B2 (ja) 非水電解質二次電池用正極、当該正極の製造方法、及び当該正極を用いた非水電解液二次電池
JP2014072072A (ja) 非水電解質二次電池用正極活物質、その製造方法及び当該正極活物質を用いた非水電解質二次電池用正極
WO2022203048A1 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2014029782A (ja) 非水電解質二次電池用正極活物質、その正極活物質を用いた非水電解質二次電池用正極、及びその正極を用いた非水電解質二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480013788.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14776087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508058

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14780255

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14776087

Country of ref document: EP

Kind code of ref document: A1