WO2014024431A1 - Battery system, vehicle provided with battery system, and electricity storage device - Google Patents
Battery system, vehicle provided with battery system, and electricity storage device Download PDFInfo
- Publication number
- WO2014024431A1 WO2014024431A1 PCT/JP2013/004656 JP2013004656W WO2014024431A1 WO 2014024431 A1 WO2014024431 A1 WO 2014024431A1 JP 2013004656 W JP2013004656 W JP 2013004656W WO 2014024431 A1 WO2014024431 A1 WO 2014024431A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- battery system
- end plate
- bind bar
- plate
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0481—Compression means other than compression means for stacks of electrodes and separators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/16—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/61—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
- B60L50/62—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/64—Constructional details of batteries specially adapted for electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/66—Arrangements of batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/21—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
- B60L7/14—Dynamic electric regenerative braking for vehicles propelled by ac motors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/209—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/249—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/10—Emission reduction
- B60L2270/14—Emission reduction of noise
- B60L2270/145—Structure borne vibrations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to a battery system in which a plurality of rectangular batteries are stacked to form a battery stack, and both ends of the battery stack are pressed and fixed with end plates, a vehicle including the battery system, and a power storage device.
- This battery system requires the end plate to fix the square battery in a pressed state with a considerable pressure. If the pressing force of the end plate is weak, the prismatic battery cannot be fixed securely, and the prismatic battery moves due to vibration or the like, causing various harmful effects. Further, in order to prevent the rectangular battery from expanding due to charging / discharging, it is necessary to fix the rectangular battery in a pressurized state with a considerable pressing force.
- end plates are arranged on both end faces of the battery stack in which the square batteries are stacked, and the pair of end plates are pressurized with a press machine.
- the bind bar is connected to the pair of end plates. The end plates connected by the bind bar are held at a constant interval to fix each rectangular battery in a pressurized state with a predetermined pressure.
- the cross-sectional shape of the bind bar can be fixed to the end plate with an L shape, and the vibration resistance of the battery stack can be improved.
- the L-shaped binding bar improves the bending strength of the bind bar, and the L-shaped bind bar is arranged at the corner of the prismatic battery to prevent the vertical and horizontal misalignment of the prismatic battery. It is.
- this bind bar can be firmly connected to the end plate as a structure in which the end face plate is connected to both end edges, the end face plate is disposed on the outer side surface of the end plate, and the end plate is locked by the end face plate. .
- a structure in which the bind bar is connected to the end plate is shown in the perspective view of FIG.
- the bind bar 204 is connected to the end plate 203 with the horizontal portion 204X and the vertical portion 204Y disposed on the top and side surfaces of the end plate 203 and the end surface plate 204T disposed on the outside of the end plate 203.
- the bind bar 204 that connects the end face plate 204T at right angles to the edges of the horizontal portion 204X and the vertical portion 204Y is manufactured by pressing a metal plate. Further, the end face plate 204T can be manufactured by welding to the edge of the horizontal portion 204X or the vertical portion 204Y.
- the bind bar 204 holds the pair of end plates 203 at a predetermined interval by locking the end plate 204T in a state of being in close contact with the outer surface of the end plate 203.
- the bind bar shown in FIG. 1 presses a pair of end plates disposed on both end surfaces of the battery stack with a press machine in order to lock and connect the end plate to the outside of the pair of end plates.
- the end face plate is disposed outside the end plate and connected to the end plate.
- the bind bar locks the end plate to the outer surface of the end plate, so the press presses the battery stack so that the outer dimension of the pair of end plates is smaller than the inner dimension of the end plate at both ends of the bind bar.
- the battery stack is compressed to make the outer dimension of the end plate smaller than the inner dimension of the end plate at both ends of the bind bar, so that the end plate can be smoothly arranged on the outer surface of the end plate.
- the pair of pressed end plates can be smoothly inserted inside the end face plates at both ends of the bind bar.
- the press state of the end plate is released in this state, the end face plate does not come into close contact with the outer surface of the end plate, and the inner corner of the end face plate, the vertical portion, and the horizontal portion is the corner portion of the end plate.
- a very large force acts on the contact portion.
- the reaction when the end plate presses and presses the battery stack acts locally only on the inner corner of the bind bar. For this reason, an extremely large force acts on an extremely small area at the inner corner of the bind bar.
- the powerful force acting on the inner corner of the bind bar can cause deformation or damage to the corner where the bind bar contacts the end plate, and the distortion caused by the deformation is not constant in all battery systems.
- the state of deformation distortion causes the distance between the pair of end plates to fluctuate. For this reason, in a state where the press state is released and the end plate is fixed at a constant interval by the bind bar, the end plate cannot be held at a constant interval, and the compressed state of the battery stack becomes non-uniform. In this state, the pressing force of the stacked rectangular batteries is not constant, and the compression state of the battery stack further varies due to swelling of the charged and discharged rectangular batteries.
- the battery system described above is not limited to the state in which the press state is released, and when the square battery expands with time due to charge / discharge, the end plate is pressed with a strong force due to the reaction by the battery stack. Even in this state, if the bind bar and the end plate are locally in contact with each other at the corners, a strong force concentrates on the corners of the bind bar and the end plate.
- FIG. 1 when a force acts on the end plate 203 in the direction indicated by the arrow due to the reaction of the battery stack 202 to be pressed, the end face plate 204T is pushed in the direction indicated by the arrow.
- Bind bars that have cracks due to breakage at the corners become larger and the end plates cannot be placed in place by separating the end plate from the horizontal or vertical part. If the end plate cannot be placed in a fixed position and the prismatic battery cannot be fixed in a pressurized state with a considerable pressure, the battery stack cannot be fixed in a pressurized state with a certain pressure, and the prismatic battery moves relative to the vibration. Thus, various harmful effects are generated in the rectangular battery. For example, distortion is applied to the connection part between the metal plate bus bar connecting the square batteries in series or in parallel to the electrode terminals of the square battery, and the connecting part between the electrode terminals of the square battery and the battery case. In addition, it gives obstacles.
- An important object of the present invention is to arrange a pair of end plates in a fixed position with a bind bar while maintaining a very simple structure, and to stably and stably press the end plate with a bind bar over a long period of time.
- a battery system that can be fixed to a vehicle, a vehicle including the battery system, and a power storage device.
- the battery system of the present invention includes a battery stack 2 formed by stacking a plurality of prismatic batteries 1, a pair of end plates 3, 3 'disposed at both ends in the stacking direction of the battery stack 2, and both ends. Are connected to the corners of the pair of end plates 3 and 3 ′, and a bind bar 4 is formed by fixing a plurality of prismatic batteries 1 in a pressurizing state in the stacking direction.
- the bind bar 4 has a horizontal section 4X and a vertical section 4Y connected to each other at a right angle so that the cross-sectional shape is an L-shape.
- the end face plate 4T which covers is connected.
- the horizontal portion 4X and the vertical portion 4Y of the bind bar 4 are located on the outer peripheral surface of the end plates 3 and 3 ′, and the end surface plate 4T presses the outer surface of the end plates 3 and 3 ′,
- the battery stack 2 is pressed in the stacking direction by the plates 3 and 3 ′, the inner corner 4S of the horizontal portion 4X, the vertical portion 4Y and the end face plate 4T of the bind bar 4, and the outer corner of the end plates 3 and 3 ′.
- a separation gap 17 is provided between the part 3S and the bind bar 4 and the end plates 3 and 3 ′ in a non-contact state.
- the above battery system has a very simple structure, and a pair of end plates are placed in a fixed position with a bind bar, and the end plate is securely and stably fixed in place with a bind bar over a long period of time.
- the end plate of the bind bar is placed in surface contact with the outer surface of the end plate. Therefore, after connecting the bind bar, the end plate is released from the press state, or repeatedly charged and discharged over time.
- the battery system of the present invention can be provided with the separation gap 17 that chamfers the outer corner 3S of the end plate 3 ′ and makes the corner between the bind bar 4 and the end plate 3 ′ non-contact.
- the corners of the bind bar and the end plate can be brought into a non-contact state very easily, and a large force can be prevented from acting locally.
- through holes 18 are provided in the corners of the horizontal part 4X, the vertical part 4Y and the end face plate 4T of the bind bar 4, and the corners of the bind bar 4 and the end plate 3 are brought into a non-contact state.
- a separation gap 17 can be provided.
- the corners of the binding bar and the end plate can be made in a non-contact state, and a large force can be prevented from acting locally, and the metal plate is bent and welded. Bind bars can be mass-produced easily, easily and inexpensively.
- the outer corner portion 3S of the end plate 3 ′ is chamfered, and the through hole 18 is provided in the corner portion of the horizontal portion 4X, the vertical portion 4Y, and the end surface plate 4T of the bind bar 4 to bind.
- a separation gap 17 can be provided in which the corner between the bar 4 and the end plate 3 ′ is in a non-contact state.
- the corners of the bind bar and end plate can be kept in a non-contact state to prevent a large force from acting locally, and the metal plate is bent and welded. Bind bars can be mass-produced easily, easily and inexpensively.
- the area in which the bind bar 4 and the end plates 3 and 3 ′ are not in contact with each other in the separation gap 17 can be 1 mm 2 or more.
- the above battery system increases the non-contact area, so that the binding bar and the end plate are reliably prevented from contacting only at the corners, and the distance between the pair of end plates is constant with the binding bar. Can be retained.
- the outer shape of the end plates 3 and 3 ′ is a quadrangle, and four bind bars 4 can be connected to the corners of the quadrangle.
- the end plate can be reliably fixed at a constant interval with four bind bars.
- the rectangular battery 1 can be a non-aqueous electrolyte battery having a battery case 10 as a metal case.
- the battery stack can be fixed in a pressurized state with an end plate, and each rectangular battery can be held in a pressurized state at a constant pressure.
- capacitance which can be charged / discharged with respect to a volume can be enlarged.
- An electric vehicle includes any one of the battery systems 100 described above, a motor 93 for traveling that is supplied with power from the battery system 100, a vehicle main body 90 including the battery system 100 and the motor 93, and a motor. And a wheel 97 that is driven by the vehicle 93 and causes the vehicle main body 90 to travel.
- the above-described electric vehicle can effectively prevent the vibration caused by traveling and the negative effects caused by the square battery that is repeatedly charged and discharged and expands with time, while the battery system including the plurality of square batteries is mounted on the vehicle. This is because the pair of end plates can be arranged at fixed positions by the bind bar, and the end plates can be reliably and stably fixed to the pressurized state by the bind bar.
- the power storage device of the present invention includes any one of the battery systems 100 described above and a power controller 84 that controls charging / discharging of the battery system 100.
- the power supply controller 84 can charge the prismatic battery 1 with external power and can control the prismatic battery 1 to be charged. While the above power storage device uses a battery system that stores a large amount of power with a plurality of rectangular batteries, it can prevent adverse effects caused by the rectangular batteries that are repeatedly charged and discharged and expand over time.
- FIG. 3 is a vertical longitudinal sectional view of the battery system shown in FIG. 2.
- FIG. 3 is an exploded perspective view of the battery system shown in FIG. 2.
- It is a disassembled perspective view which shows the laminated structure of a square battery and a spacer.
- It is a principal part expansion perspective view of the bind bar of the battery system shown in FIG. It is an expanded view of the bind bar shown in FIG. It is a disassembled perspective view of the battery system concerning other embodiment of this invention.
- FIG. 3 is a vertical longitudinal sectional view of the battery system shown in FIG. 2.
- FIG. 3 is an exploded perspective view of the battery system shown in FIG. 2.
- It is a disassembled perspective view which shows the laminated structure of a square battery and a spacer.
- It is a disassembled perspective view of the battery laminated body formed by laminating
- FIG. 10 is an enlarged perspective view of an end plate and a bind bar of the battery system shown in FIG. 9. It is an expanded sectional view which shows the connection structure of the end plate and bind bar shown in FIG. It is a bottom perspective view which shows another example which provides a through-hole in a bind bar. It is a block diagram which shows the example which mounts a battery system in the hybrid car which drive
- a battery system 100 shown in FIGS. 2 to 5 includes a battery stack 2 in which a plurality of rectangular batteries 1 are stacked, and a pair of end plates 3 disposed at both ends in the stacking direction of the battery stack 2. , Both ends are connected to the corners of the pair of end plates 3, and a bind bar 4 is provided that fixes the plurality of prismatic batteries 1 in a stacked state in the stacking direction.
- the rectangular battery 1 is a rectangular battery having a width wider than the thickness, in other words, a rectangular battery thinner than the width, and is stacked in the thickness direction to form a battery stack 2.
- the prismatic battery 1 is a non-aqueous electrolyte battery having a battery case 10 as a metal case.
- the rectangular battery 1 which is a non-aqueous electrolyte battery is a lithium ion secondary battery.
- the square battery may be a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery.
- the rectangular battery 1 shown in the figure is a battery in which both wide surfaces are quadrangular and are laminated so that both surfaces face each other to form a battery stack 2.
- the prismatic battery 1 has an electrode body (not shown) housed in a metal battery case 10 having a rectangular outer shape and is filled with an electrolytic solution.
- the battery case 10 made of a metal case can be made of aluminum or an aluminum alloy.
- the battery case 10 includes an outer can 10A in which a metal plate is pressed into a cylindrical shape that closes the bottom, and a sealing plate 10B that airtightly closes an opening of the outer can 10A.
- the sealing plate 10B is a flat metal plate, and its outer shape is the shape of the opening of the outer can 10A.
- the sealing plate 10B is laser-welded and fixed to the outer peripheral edge of the outer can 10A to airtightly close the opening of the outer can 10A.
- the sealing plate 10 ⁇ / b> B fixed to the outer can 10 ⁇ / b> A has positive and negative electrode terminals 13 fixed to both ends thereof, and a gas discharge port 12 is provided between the positive and negative electrode terminals 13.
- a discharge valve 11 that opens at a predetermined internal pressure is provided inside the gas discharge port 12.
- the battery stack 2 shown in FIG. 5 is formed by stacking a plurality of rectangular batteries 1 in such a manner that the surfaces on which the discharge valves 11 are provided are positioned substantially on the same surface, and the discharge valves 11 of the respective square batteries 1 are arranged on the first surface. 2A.
- a plurality of rectangular batteries 1 are stacked in a posture in which the sealing plate 10 ⁇ / b> B provided with the discharge valve 11 is an upper surface.
- the discharge valve 11 is opened when the internal pressure of the rectangular battery 1 becomes higher than the set pressure, thereby preventing the internal pressure from increasing.
- the discharge valve 11 has a built-in valve body (not shown) that closes the gas discharge port 12.
- the valve body is a thin film that is destroyed at a set pressure, or a valve that is pressed against the valve seat by an elastic body so as to open at the set pressure.
- a plurality of rectangular batteries 1 stacked on each other are connected in series and / or in parallel with each other by connecting positive and negative electrode terminals 13.
- positive and negative electrode terminals 13 of adjacent rectangular batteries 1 are connected in series and / or in parallel with each other through a bus bar 14.
- a battery system in which adjacent rectangular batteries are connected in series with each other can increase the output voltage by increasing the output voltage, and can connect adjacent rectangular batteries in parallel to increase the charge / discharge current.
- the battery stack 2 has a spacer 7 sandwiched between the stacked rectangular batteries 1.
- the spacer 7 insulates the adjacent rectangular batteries 1.
- the spacer 7 shown in the figure is an insulating plate formed of plastic in a plate shape.
- a spacer formed of a plastic having a low thermal conductivity has an effect of effectively preventing thermal runaway of adjacent rectangular batteries.
- the spacer 7 can be stacked so that the adjacent rectangular batteries 1 are not displaced as a shape in which the rectangular batteries 1 are fitted and arranged at a fixed position.
- the rectangular battery 1 that is insulated and stacked by the spacer 7 can have an outer can made of metal such as aluminum.
- the battery stack it is not always necessary for the battery stack to interpose a spacer between the rectangular batteries.
- spacers can be formed by insulating rectangular batteries that are adjacent to each other by, for example, forming a rectangular battery outer can with an insulating material, or covering the outer periphery of the rectangular battery outer can with an insulating sheet or insulating paint. It is because it can be made unnecessary.
- the battery stack without interposing a spacer between the square batteries is a method of directly cooling using a refrigerant or the like without adopting an air-cooling method in which cooling air is forced between the square batteries to cool the square batteries. Can be used to cool the prismatic battery.
- the spacer 7 shown in FIGS. 3 and 5 is provided with a cooling gap 16 that allows a cooling gas such as air to pass through a portion sandwiched between the prismatic battery 1 in order to effectively cool the prismatic battery 1.
- the spacer 7 in FIGS. 3 and 5 is provided with grooves 15 extending to both side edges on the surface facing the prismatic battery 1, and a cooling gap 16 is provided between the spacer 7 and the prismatic battery 1.
- a plurality of grooves 15 are provided in parallel with each other at a predetermined interval.
- grooves 15 are provided on both surfaces, and a cooling gap 16 is provided between the prismatic battery 1 and the spacer 7 adjacent to each other.
- This structure has an advantage that the square battery 1 on both sides can be effectively cooled by the cooling gaps 16 formed on both sides of the spacer 7.
- the spacer can be provided with a groove only on one side, and a cooling gap can be provided between the prismatic battery and the spacer.
- the cooling gap 16 in the figure is provided in the horizontal direction so as to open to the left and right of the battery stack 2.
- the air forcibly blown into the cooling gap 16 directly and efficiently cools the outer can 10 ⁇ / b> A of the rectangular battery 1.
- This structure has a feature that the prismatic battery 1 can be efficiently cooled while effectively preventing thermal runaway of the prismatic battery 1.
- the spacer 7 described above can cool the prismatic battery 1 by providing a cooling gap 16 between the spacer 7 and forcibly blowing a cooling gas such as cooling air into the cooling gap 16.
- the spacer does not necessarily need to be provided with a cooling gap between the prismatic battery.
- the spacer 37 is exposed to the surface of the battery stack 32, and the exposed portion 37 ⁇ / b> A is the cooling plate 20. It can also be set as the structure connected to a thermal coupling state. In this battery system, the cooling plate 20 can be cooled, the spacer 37 can be cooled by the cooling plate 20, and the prismatic battery 1 can be cooled by the spacer 37.
- the cooling plate 20 can be cooled by providing heat radiation fins (not shown) on the surface, or can be forcibly cooled by circulating a cooling refrigerant or coolant inside. Furthermore, although not shown, the surface of the prismatic battery can be insulated without providing a spacer between the prismatic batteries.
- the end plate 3 is connected to the bind bar 4 to pressurize the battery stack 2 from both end surfaces and press the square battery 1 in the stacking direction.
- the end plate 3 is fixed to the bind bar 4 to fix each rectangular battery 1 of the battery stack 2 in a pressurized state with a predetermined tightening pressure.
- the outer shape of the end plate 3 is substantially equal to or slightly larger than the outer shape of the prismatic battery 1, and a rectangular shape that is not deformed by connecting the bind bars 4 to the four corners and fixing the battery stack 2 in a pressurized state. It is a plate shape.
- This end plate 3 has bind bars 4 connected to the four corners, and is in close contact with the surface of the prismatic battery 1 in a surface contact state, and fixes the prismatic battery 1 in a pressurized state with uniform pressure.
- end plates 3 are arranged at both ends of the battery stack 2, and the end plates 3 at both ends are pressed by a press (not shown), and the prismatic battery 1 is held in a state of pressing in the stacking direction.
- the bind bar 4 is fixed to the end plate 3, and the battery stack 2 is held and fixed at a predetermined tightening pressure. After the end plate 3 is connected to the bind bar 4, the pressurization state of the press machine is released.
- the bind bar 4 is a metal plate that connects the horizontal portion 4X and the vertical portion 4Y at a right angle and has an L-shaped cross section. Further, the bind bar 4 in FIG. 4 has end face plates 4T connected to both ends. The end face plate 4T is connected to the end edges of the vertical portion 4Y and the horizontal portion 4X. The end surface plate 4T is connected to the vertical portion 4Y and the horizontal portion 4X at a right angle so as to contact the outer surface of the end plate 3 in a surface contact state.
- the bind bar 4 having this shape can be manufactured by pressing a metal plate. However, the bind bar 4A shown in FIGS. 7 and 8 is provided with a protrusion 4Z outside the horizontal portion 4X. An end face plate 4T is formed.
- the protrusion 4Z shown in the drawing is composed of an end face plate 4T connected to the outer edge of the horizontal part 4X, and a laminated part 4R connected to one side of the end face plate 4T on the vertical part 4Y side.
- the bind bar 4A is formed by bending the end surface plate 4T of the projecting portion 4Z at a right angle with respect to the horizontal portion 4X, and further bending the stacked portion 4R at a right angle with respect to the end surface plate 4T. 4R is fixed by welding to the vertical portion 4Y. Thereby, the bind bar 4A forms an end face plate 4T in a vertical posture at the end edge.
- the laminated portion 4R to be welded is welded along the boundary with the vertical portion 4Y, or overlapped with the vertical portion 4Y and connected by a method such as spot welding.
- the bind bar 4A shown in the figure is provided with a protruding portion 4Z on the horizontal portion 4X, bending the protruding portion 4Z, and fixing the laminated portion 4R to the vertical portion 4Y to form an end face plate 4T in a vertical posture.
- the bind bar may be provided with a protruding portion in the vertical portion, and the protruding portion is bent to provide an end face plate, and the laminated portion is welded and fixed to the horizontal portion.
- the bind bar is provided with protrusions on both the horizontal part and the vertical part, and the protrusions are bent, and the bent protrusions are stacked and welded to provide an end face plate. You can also.
- the bind bar 4 is connected to the end plate 3 in a state where the end plate 4T is disposed on the outer surface of the end plate 3 and is locked to the end plate 3.
- the bind bar 4 connects the end face plate 4T to the end plate 3 in a locked state, and fixes the battery stack 2 in a pressurized state with the end plate 3. Further, the bind bar 4 in FIG. 4 is fixed by fixing a set screw 24 to the outer peripheral surface of the end plate 3.
- the illustrated end plate 3 is provided with a female screw hole 3b at a position where a set screw 24 is screwed.
- the bind bar 4 shown in the figure opens the through holes 4b through which the set screws 24 are inserted at both ends of the vertical portion 4Y, and the through holes 4a through which the fixing screws 23 to be described later are inserted at both ends of the horizontal portion 4X. Is open.
- both ends of the bind bar 4 are fixed to the pair of end plates 3, the battery stack 2 is sandwiched between the pair of end plates 3, and each rectangular battery 1 is stacked in a stacking direction with a predetermined tightening pressure.
- the clamping pressure of the prismatic battery 1 is a pressing force per unit area that acts on both surfaces of the prismatic battery 1.
- the clamping pressure is calculated by [the pressing force with which the end plate 3 presses the battery stack 2 in the stacking direction] / [the area of the flat portion of the rectangular battery 1].
- This clamping pressure is preferably set to 10 MPa or more and 1 MPa or less. If the tightening pressure is too weak, the expansion of the prismatic battery 1 cannot be effectively suppressed.
- the battery case 10 of the prismatic battery 1 is damaged.
- the deformation amount of the battery case 10 in the stacking direction of the prismatic battery 1 is extremely small and substantially does not change.
- the square battery 1 cannot be reliably held in a pressurized state, and if the tightening pressure is too strong, the battery case 10 of the square battery 1 is damaged.
- the tightening pressure is set to an optimum value within the above-mentioned range in consideration of the type and size of the rectangular battery 1 and the material, shape, thickness, size, and physical properties of the electrode body of the battery case 10.
- the bind bar 4 and the end plate 3 are provided with separation gaps 17 that are not in contact with each other, that is, in a non-contact state.
- the separation gap 17 is provided between the inner corners of the horizontal portion 4X, the vertical portion 4Y and the end face plate 4T of the bind bar 4 and the outer corner of the end plate 3.
- the separation gap 17 is provided so that the corners of the bind bar 4 and the end plate 3 are not in contact with each other so that the reaction when the battery stack 2 is compressed does not concentrate on the corners. It is.
- the separation gap 17 can effectively prevent a strong stress from acting on the corner by increasing the area to be in a non-contact state.
- the area that is in a non-contact state in the separation gap 17 is, for example, 1 mm 2 or more and smaller than 25 mm 2 , preferably 2 mm 2 or more, 10 mm 2 or less, more preferably 3 mm 2 or more, 10 mm 2 or less.
- the outer corner of the end plate 3 ' is chamfered, and the corner between the bind bar 4B and the end plate 3' is in a non-contact state.
- the outer corner 3S of the end plate 3 ' is chamfered to provide a separation gap 17, and the corner between the bind bar 4 and the end plate 3' is formed. Is in a non-contact state.
- the end plate 3 ' has the outer corner 3S chamfered in a flat shape to provide a separation gap 17, but the end plate chamfers the outer corner in a curved surface projecting from the center portion and has a separation gap.
- This end plate is chamfered into a shape in which a part of the curved surface does not contact the inner corner of the bind bar to provide a separation gap.
- the bind bar 4 ⁇ / b> A in which the protruding portion 4 ⁇ / b> Z is provided in the horizontal portion 4 ⁇ / b> X and the vertical portion 4 ⁇ / b> Y, and the protruding portion 4 ⁇ / b> Z is bent at a right angle to provide the end face plate 4 ⁇ / b> A.
- the bind bar in which the separation gap 17 is provided by post-processing is provided with end face plates 4T at both ends of a bind bar 4C having a L-shaped cross section by press-molding a metal plate into a predetermined shape.
- the through-hole 18 can be provided with the drill in the corner part of the horizontal part 4X, the vertical part 4Y, and the end surface plate 4T, and the isolation
- the through-hole 18 can be provided by opening the through-hole 18 with a drill so as to penetrate from the inner surface side of the inner corner portion 4S to the outer side.
- the separation gap 17 can be easily provided in the bind bar 4C that presses the metal plate and connects the horizontal portion 4X, the vertical portion 4Y, and the end face plate 4T in an integrated structure.
- the battery system of the present invention chamfers the outer corner 3S of the end plate 3 'and provides through holes 18 at the corners of the horizontal portion 4X, the vertical portion 4Y, and the end surface plate 4T of the bind bar 4 to bind the bind bar. It is also possible to provide the separation gap 17 with the corners of 4 and the end plate 3 ′ in a non-contact state.
- the surface plate 8 is disposed on the upper surface of the battery stack 2, and the end surface on the sealing plate 10B side of the rectangular batteries 1 stacked on each other by the surface plate 8. (Upper surface in the figure) is covered.
- the surface plate 8 is formed in an outer shape along the upper surface of the battery stack 2.
- the surface plate 8 is formed of an insulating plastic such as nylon resin or epoxy resin.
- the surface plate 8 is provided with an opening window 29 for exposing the electrode terminal 13 of the rectangular battery 1 and connecting it to the bus bar 3.
- the illustrated surface plate 8 is provided with a plurality of opening windows 29 along both side portions of the battery stack 2.
- the opening window 29 is sized and shaped along the outer shape of the bus bar 14 so that it can be connected to the electrode terminal 13 while guiding the bus bar 14 to a fixed position.
- the bus bar 14 disposed in the opening window 29 of the surface plate 8 is fixed to the electrode terminal 13 of the prismatic battery 1 and connects the plurality of prismatic batteries 1 to a predetermined connection state.
- the base plate 9 fixes the end plate 3.
- through holes 3 a extending in the vertical direction in the figure and extending in a direction parallel to the rectangular battery 1 are provided on both sides.
- a fixing screw 23 is inserted into the through hole 3 a, and the fixing screw 23 fixes the tip end portion to the base plate 9 and fixes the end plate 3 to the base plate 9.
- the fixing screw 23 is screwed into a female screw hole 9a provided in the base plate 9, and is fixed to the base plate 9, or is screwed into a nut provided on the bottom surface of the base plate to be fixed to the base plate.
- a battery system 100 that is mounted on a vehicle and supplies electric power to a motor 93 that runs the vehicle can use the base plate 9 as a chassis 92 of the vehicle.
- the battery system 100 is placed on a vehicle chassis 92, a fixing screw 23 is inserted into a through hole 3 a provided in the end plate 3, and the fixing screw 23 is inserted into a female screw hole (not shown) provided in the chassis 92. It is screwed and fixed to the chassis 92 of the vehicle.
- the battery system 100 described above uses the base plate 9 as the vehicle chassis 92, but the base plate is not necessarily specified as the vehicle chassis.
- the base plate 9 can be made of a metal plate, and the battery system 100 can be fixed on the base plate 9.
- the battery system 100 can be mounted on a vehicle with the base plate 9 fixed on a vehicle chassis 92.
- a battery stack 2 is formed by stacking a predetermined number of prismatic batteries 1 in the thickness direction of the prismatic battery 1 with a spacer 6 interposed therebetween. At this time, the plurality of prismatic batteries 1 stacked on each other are stacked such that the positive and negative electrode terminals 13 at both ends of the sealing plate 10B are alternately reversed.
- the end plates 3 are arranged at both ends of the battery stack 2, and the pair of end plates 3 are pressed from both sides with a press machine (not shown), and the end plates 3 are used to hold the battery stack 2 in a predetermined manner. Pressurize with pressure to compress the square battery 1 and hold it in a pressurized state.
- the surface plate 8 is disposed at a fixed position on the upper surface of the battery stack 2 in a state where the battery stack 2 is pressed by the end plate 3.
- the bind bar 4 is connected and fixed to the pair of end plates 3 in a state where the battery stack 2 is pressed by the end plates 3.
- the horizontal portion 4 ⁇ / b> X and the vertical portion 4 ⁇ / b> Y are disposed on the outer peripheral surface of the end plate 3, and the end surface plate 4 ⁇ / b> T is disposed on the outer surface of the end plate 3.
- the press state of the end plate 3 by the press machine is released, and the end surface plate 4T is brought into close contact with the outer surface of the end plate 3 in a surface contact state.
- a set screw 24 penetrating the vertical portion 4Y is fixed to the outer peripheral surface of the end plate 3 by screwing.
- the battery stack 2 is held at a predetermined clamping pressure via a pair of end plates 3 held at a predetermined interval by the bind bar 4.
- the opposing electrode terminals 13 of the adjacent rectangular batteries 1 are connected by a bus bar 14.
- the bus bar 14 is disposed in the opening window 29 of the surface plate 8 and connects the electrode terminals 13 exposed from the opening window 29 to each other.
- the bus bar 14 connects the square batteries 1 in series or in series and parallel.
- the bus bar 14 is screwed to the electrode terminal 13 or welded to the electrode terminal 13.
- the battery stack 2 is disposed and fixed on the upper surface of the base plate 9.
- the battery stack 2 is fixed to the base plate 9 via a fixing screw 23 that passes through the horizontal portion 4X of the bind bar 4 and the through hole 3a of the end plate 3.
- the above battery system is optimal for a power supply device that supplies electric power to a motor that drives an electric vehicle.
- the present invention does not specify the use of the battery system as a power supply device mounted on an electric vehicle, and can be used, for example, as a power supply device that stores natural energy such as solar power generation or wind power generation, and stores midnight power.
- power supply devices such as power supply devices, it is optimal for all applications that store large amounts of power.
- an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and used as a power source for these electric vehicles. Is done.
- FIG. 13 shows an example in which a battery system is mounted on a hybrid vehicle that runs with both an engine and a motor.
- a vehicle HV equipped with the battery system shown in this figure has an engine 96 and a running motor 93 that run the vehicle HV, a battery system 100 that supplies power to the motor 93, and power generation that charges a square battery of the battery system 100.
- the battery system 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
- the vehicle HV travels by both the motor 93 and the engine 96 while charging and discharging the square battery of the battery system 100.
- the motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving.
- the motor 93 is driven by power supplied from the battery system 100.
- the generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked, and charges the prismatic battery of the battery system 100.
- FIG. 14 shows an example in which a battery system is mounted on an electric vehicle that runs only with a motor.
- a vehicle EV equipped with the battery system shown in this figure includes a traveling motor 93 that travels the vehicle EV, a battery system 100 that supplies electric power to the motor 93, and a generator that charges a rectangular battery of the battery system 100.
- 94 a vehicle main body 90 on which the motor 93, the battery system 100, and the generator 94 are mounted, and a wheel 97 that is driven by the motor 93 and causes the vehicle main body 90 to travel.
- the battery system 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
- the motor 93 is driven by power supplied from the battery system 100.
- the generator 94 is driven by energy when regeneratively braking the vehicle EV, and charges the square battery of the battery system 100.
- this battery system can be used not only as a power source for a mobile body but also as a stationary power storage facility.
- a power source for home and factory use a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals.
- FIG. The battery system 100 shown in this figure forms a battery unit 82 by connecting a plurality of battery blocks 81 in a unit form. Each battery block 81 has a plurality of prismatic batteries 1 connected in series and / or in parallel.
- Each battery block 81 is controlled by a power supply controller 84.
- the battery system 100 drives the load LD after charging the battery unit 82 with the charging power source CP. For this reason, the battery system 100 includes a charge mode and a discharge mode.
- the load LD and the charging power source CP are connected to the battery system 100 via the discharging switch DS and the charging switch CS, respectively.
- ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the battery system 100.
- the power controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging of the battery system 100 from the charging power source CP.
- the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge.
- the mode is switched and discharging from the battery system 100 to the load LD is permitted.
- the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the battery system 100 simultaneously.
- the load LD driven by the battery system 100 is connected to the battery system 100 via the discharge switch DS.
- the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the battery system 100.
- the discharge switch DS a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the battery system 100.
- the power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 15, the host device HT is connected in accordance with an existing communication protocol such as UART or RS-232c. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
- Each battery block 81 includes a signal terminal and a power supply terminal.
- the signal terminals include an input / output terminal DI, an abnormal output terminal DA, and a connection terminal DO.
- the input / output terminal DI is a terminal for inputting / outputting a signal from the other battery block 81 or the power supply controller 84
- the connection terminal DO is a terminal for inputting / outputting a signal to / from the other battery block 81.
- the abnormality output terminal DA is a terminal for outputting abnormality of the battery block 81 to the outside.
- the power supply terminal is a terminal for connecting the battery blocks 81 in series and in parallel.
- the battery units 82 are connected to the output line OL via the parallel connection switch 85 and are connected in parallel to each other.
- the battery system of the present invention is optimally used for a power supply device that supplies power to a motor of a vehicle that requires a large amount of power, or a power storage device that stores natural energy or midnight power.
- SYMBOLS 100 Battery system 1 ... Square battery 2 ... Battery laminated body 2A ... 1st surface 3 ... End plate 3 '... End plate 3S ... Outer corner 3a ... Through-hole 3b ...
- Female screw hole 4 ... Bind bar 4A ... Bind bar 4B Bind bar 4C Bind bar 4X Horizontal portion 4Y Vertical portion 4Z Projection portion 4T End face plate 4R Laminated portion 4S Inner corner 4a Through hole 4b Through hole 7 Spacer 8 Surface plate 9 Base plate 9a ... Female screw hole 10 ... Battery case 10A ... Exterior can 10B ... Sealing plate 11 ... Discharge valve 12 ... Gas exhaust port 13 ... Electrode terminal 14 ... Bus bar 15 ...
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Aviation & Aerospace Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Mounting, Suspending (AREA)
- Secondary Cells (AREA)
Abstract
The present invention reliably and stably affixes a pair of end plates at a set position and in a compressed state by means of a binding bar. In this battery system, the pair of end plates (3) are disposed at both ends of a battery stack (2) resulting from stacking a plurality of rectangular batteries (1), and both ends of the binding bar (4) are joined to the corners of the pair of end plates (3). The binding bar (4) results from joining a horizontal section (4X) and a vertical section (4Y) to result in a cross-sectional shape that is an L-shape, and end surface plates (4T) are joined to the ends thereof. In the battery system, the horizontal section (4X) and vertical section (4Y) of the binding bar (4) are positioned at the outer peripheral surface of the end plates (3), the end surface plates (4T) press the outer surfaces of the end plates (3), the battery stack (2) is compressed in the direction of stacking by the pair of end plates (3), and a separation gap (17) at which the binding bar (4) and the end plates (3) are in a non-contacting state is provided between the inner corner (4S) of the horizontal section (4X), vertical section (4Y), and end surface plates (4T) of the binding bar (4) and the outer corner (3S) of the end plates (3).
Description
本発明は、複数の角形電池を積層して電池積層体とし、この電池積層体の両端をエンドプレートで押圧して固定しているバッテリシステム及びバッテリシステムを備える車両並びに蓄電装置に関する。
The present invention relates to a battery system in which a plurality of rectangular batteries are stacked to form a battery stack, and both ends of the battery stack are pressed and fixed with end plates, a vehicle including the battery system, and a power storage device.
多数の角形電池を積層して電池積層体とし、この電池積層体の両端面に一対のエンドプレートを配置し、エンドプレートをバインドバーで連結して、積層している角形電池を押圧状態に固定するバッテリシステムは開発されている。(特許文献1参照)
A large number of prismatic batteries are stacked to form a battery stack, a pair of end plates are arranged on both end faces of the battery stack, and the end plates are connected by a bind bar to fix the stacked prismatic batteries in a pressed state. Battery systems have been developed. (See Patent Document 1)
このバッテリシステムは、エンドプレートでもって、相当の圧力で角形電池を押圧状態に固定する必要がある。エンドプレートの押圧力が弱いと角形電池を確実に固定できず、振動などで角形電池が動いて種々の弊害の原因となる。また、充放電して角形電池が膨れるのを防止するためにも、相当な押圧力で角形電池を加圧状態に固定する必要がある。この構造のバッテリシステムは、各角形電池を押圧状態で固定するために、角形電池を積層する電池積層体の両端面にエンドプレートを配置し、一対のエンドプレートをプレス機で加圧し、この状態で一対のエンドプレートにバインドバーを連結している。バインドバーで連結されたエンドプレートは、一定の間隔に保持されて、各角形電池を所定の圧力で加圧状態に固定する。
This battery system requires the end plate to fix the square battery in a pressed state with a considerable pressure. If the pressing force of the end plate is weak, the prismatic battery cannot be fixed securely, and the prismatic battery moves due to vibration or the like, causing various harmful effects. Further, in order to prevent the rectangular battery from expanding due to charging / discharging, it is necessary to fix the rectangular battery in a pressurized state with a considerable pressing force. In the battery system of this structure, in order to fix each square battery in a pressed state, end plates are arranged on both end faces of the battery stack in which the square batteries are stacked, and the pair of end plates are pressurized with a press machine. The bind bar is connected to the pair of end plates. The end plates connected by the bind bar are held at a constant interval to fix each rectangular battery in a pressurized state with a predetermined pressure.
以上のバッテリシステムは、バインドバーの横断面形状をL字状としてエンドプレートに確実に固定でき、また電池積層体の耐振動強度も向上できる。L字状とすることでバインドバーの曲げ強度が向上し、さらに、L字状のバインドバーは角形電池の隅部に配置されて、角形電池の垂直方向と水平方向の位置ずれを阻止できるからである。さらに、このバインドバーは、両端縁に端面プレートを連結する形状として、端面プレートをエンドプレートの外側面に配置して、端面プレートでエンドプレートを係止する構造として、エンドプレートにより強固に連結できる。このバインドバーがエンドプレートに連結される構造を図1の斜視図に示している。このバインドバー204は、水平部204Xと垂直部204Yとをエンドプレート203の上面と側面に配置し、端面プレート204Tをエンドプレート203の外側に配置して、エンドプレート203に連結される。水平部204X及び垂直部204Yの端縁に端面プレート204Tを直角に連結しているバインドバー204は、金属板をプレス加工して製作される。また、端面プレート204Tを水平部204Xや垂直部204Yの端縁に溶接して製作することもできる。このバインドバー204は、端面プレート204Tをエンドプレート203の外側面に密着する状態に係止して、一対のエンドプレート203を所定の間隔に保持する。
In the above battery system, the cross-sectional shape of the bind bar can be fixed to the end plate with an L shape, and the vibration resistance of the battery stack can be improved. The L-shaped binding bar improves the bending strength of the bind bar, and the L-shaped bind bar is arranged at the corner of the prismatic battery to prevent the vertical and horizontal misalignment of the prismatic battery. It is. Furthermore, this bind bar can be firmly connected to the end plate as a structure in which the end face plate is connected to both end edges, the end face plate is disposed on the outer side surface of the end plate, and the end plate is locked by the end face plate. . A structure in which the bind bar is connected to the end plate is shown in the perspective view of FIG. The bind bar 204 is connected to the end plate 203 with the horizontal portion 204X and the vertical portion 204Y disposed on the top and side surfaces of the end plate 203 and the end surface plate 204T disposed on the outside of the end plate 203. The bind bar 204 that connects the end face plate 204T at right angles to the edges of the horizontal portion 204X and the vertical portion 204Y is manufactured by pressing a metal plate. Further, the end face plate 204T can be manufactured by welding to the edge of the horizontal portion 204X or the vertical portion 204Y. The bind bar 204 holds the pair of end plates 203 at a predetermined interval by locking the end plate 204T in a state of being in close contact with the outer surface of the end plate 203.
図1のバインドバーは、端面プレートを一対のエンドプレートの外側に係止して連結するために、電池積層体の両端面に配置している一対のエンドプレートをプレス機でプレスし、プレス状態に保持して、端面プレートがエンドプレートの外側に配置してエンドプレートに連結される。バインドバーは、端面プレートをエンドプレートの外側面に係止するので、プレス機は一対のエンドプレートの外側寸法を、バインドバー両端の端面プレートの内側寸法よりも小さくするように電池積層体を圧縮する。電池積層体が圧縮されて、バインドバー両端の端面プレートの内側寸法よりもエンドプレートの外側寸法を小さくして、端面プレートはエンドプレートの外側面にスムーズに配置できる。すなわち、バインドバー両端の端面プレートの内側に、プレスされた一対のエンドプレートをスムーズに挿入できる。この状態でエンドプレートのプレス状態が解除されると、端面プレートはエンドプレートの外側面に面接触状態に密着せず、端面プレートと垂直部と水平部との内側隅部がエンドプレートの隅部に局部的に接触して、接触部に極めて大きな力が作用する。この状態で、エンドプレートが電池積層体を加圧して押圧するときの反作用は、バインドバーの内側隅部にのみ局部的に作用する。このため、バインドバーの内側隅部は、極めて狭い面積に、極めて大きい力が作用する。バインドバーの内側隅部に働く強大な力は、バインドバーとエンドプレートとが接触する隅部を変形し、あるいは損傷する原因となり、また、変形による歪みは全てのバッテリシステムにおいて一定とはならないので、変形歪みの状態が一対のエンドプレートの間隔を変動させる原因となる。このため、プレス状態を解除してバインドバーでエンドプレートを一定の間隔に固定する状態で、エンドプレートを一定の間隔に保持できず、電池積層体の圧縮状態が不均一となる。この状態になると、積層している角形電池の押圧力は一定とならず、また、充放電される角形電池の膨れなどで、さらに、電池積層体の圧縮状態が変動する。
The bind bar shown in FIG. 1 presses a pair of end plates disposed on both end surfaces of the battery stack with a press machine in order to lock and connect the end plate to the outside of the pair of end plates. The end face plate is disposed outside the end plate and connected to the end plate. The bind bar locks the end plate to the outer surface of the end plate, so the press presses the battery stack so that the outer dimension of the pair of end plates is smaller than the inner dimension of the end plate at both ends of the bind bar. To do. The battery stack is compressed to make the outer dimension of the end plate smaller than the inner dimension of the end plate at both ends of the bind bar, so that the end plate can be smoothly arranged on the outer surface of the end plate. That is, the pair of pressed end plates can be smoothly inserted inside the end face plates at both ends of the bind bar. When the press state of the end plate is released in this state, the end face plate does not come into close contact with the outer surface of the end plate, and the inner corner of the end face plate, the vertical portion, and the horizontal portion is the corner portion of the end plate. A very large force acts on the contact portion. In this state, the reaction when the end plate presses and presses the battery stack acts locally only on the inner corner of the bind bar. For this reason, an extremely large force acts on an extremely small area at the inner corner of the bind bar. The powerful force acting on the inner corner of the bind bar can cause deformation or damage to the corner where the bind bar contacts the end plate, and the distortion caused by the deformation is not constant in all battery systems. The state of deformation distortion causes the distance between the pair of end plates to fluctuate. For this reason, in a state where the press state is released and the end plate is fixed at a constant interval by the bind bar, the end plate cannot be held at a constant interval, and the compressed state of the battery stack becomes non-uniform. In this state, the pressing force of the stacked rectangular batteries is not constant, and the compression state of the battery stack further varies due to swelling of the charged and discharged rectangular batteries.
さらに、以上のバッテリシステムは、プレス状態を解除した状態に限らず、充放電によって経時的に角形電池が膨張すると、電池積層体による反作用でエンドプレートが強い力で押圧される。この状態においても、バインドバーとエンドプレートが隅部で局部的に接触していると、ここに強大な力が集中して、バインドバーやエンドプレートの隅部を損傷させる。図1において、加圧される電池積層体202の反作用で、エンドプレート203に矢印で示す方向に力が作用すると、端面プレート204Tは矢印で示す方向に押される。この状態で、バインドバー204とエンドプレート203との隅部が接触していると、図においてA点で示す隅部の応力が最も強くなる。この図において、水平部204Xと端面プレート204Tとを直角に連結している折曲部は、A点からB点に離れるにしたがって変形しやすくなり、垂直部204Yと端面プレート204Tとを直角に連結している折曲部は、A点からC点に離れるにしたがって変形しやすくなる。ところが、端面プレート204Tの隅部は、バインドバー204の水平部204Xと垂直部204Yの両方に連結されて変形し難く、エンドプレート203が矢印で示す方向に押されると、変形し難いA点に圧力が集中して応力が最大となり、バインドバー204の隅部を破損させる原因となる。
Furthermore, the battery system described above is not limited to the state in which the press state is released, and when the square battery expands with time due to charge / discharge, the end plate is pressed with a strong force due to the reaction by the battery stack. Even in this state, if the bind bar and the end plate are locally in contact with each other at the corners, a strong force concentrates on the corners of the bind bar and the end plate. In FIG. 1, when a force acts on the end plate 203 in the direction indicated by the arrow due to the reaction of the battery stack 202 to be pressed, the end face plate 204T is pushed in the direction indicated by the arrow. In this state, when the corners of the bind bar 204 and the end plate 203 are in contact with each other, the stress at the corner indicated by point A in the drawing is the strongest. In this figure, the bent portion that connects the horizontal portion 204X and the end face plate 204T at a right angle becomes easier to deform as it moves away from the point A to the point B, and connects the vertical portion 204Y and the end face plate 204T at a right angle. The bent portion is easily deformed as it moves away from the point A to the point C. However, the corner portion of the end face plate 204T is connected to both the horizontal portion 204X and the vertical portion 204Y of the bind bar 204 and hardly deforms. When the end plate 203 is pushed in the direction indicated by the arrow, it is difficult to deform. The pressure is concentrated and the stress is maximized, causing damage to the corners of the bind bar 204.
隅部が破損して亀裂が発生したバインドバーは、亀裂が次第に大きくなって、端面プレートを水平部や垂直部から離して、エンドプレートを定位置に配置できなくなる。エンドプレートが定位置に配置できず、角形電池を相当な圧力で加圧状態に固定できなくなると、電池積層体を一定の圧力で加圧状態に固定できず、振動などで角形電池が相対運動して、角形電池に種々の弊害を発生させる。たとえば、角形電池を直列や並列に接続している金属板のバスバーと角形電池の電極端子との接続部に歪みを与え、また角形電池の電極端子と電池ケースとの連結部などに歪み力を加えて障害を与える。
Bind bars that have cracks due to breakage at the corners become larger and the end plates cannot be placed in place by separating the end plate from the horizontal or vertical part. If the end plate cannot be placed in a fixed position and the prismatic battery cannot be fixed in a pressurized state with a considerable pressure, the battery stack cannot be fixed in a pressurized state with a certain pressure, and the prismatic battery moves relative to the vibration. Thus, various harmful effects are generated in the rectangular battery. For example, distortion is applied to the connection part between the metal plate bus bar connecting the square batteries in series or in parallel to the electrode terminals of the square battery, and the connecting part between the electrode terminals of the square battery and the battery case. In addition, it gives obstacles.
本発明は、以上の欠点を解決することを目的に開発されたものである。本発明の重要な目的は、極めて簡単な構造としながら、バインドバーで一対のエンドプレートを定位置に配置し、長期間にわたって、エンドプレートをバインドバーで確実に安定して定位置に加圧状態に固定できるバッテリシステム及びバッテリシステムを備える車両並びに蓄電装置を提供することにある。
The present invention was developed for the purpose of solving the above drawbacks. An important object of the present invention is to arrange a pair of end plates in a fixed position with a bind bar while maintaining a very simple structure, and to stably and stably press the end plate with a bind bar over a long period of time. A battery system that can be fixed to a vehicle, a vehicle including the battery system, and a power storage device.
本発明のバッテリシステムは、複数の角形電池1を積層してなる電池積層体2と、電池積層体2の積層方向の両端部に配置してなる一対のエンドプレート3、3’と、両端部を一対のエンドプレート3、3’の隅部に連結して、複数の角形電池1を積層方向に加圧状態で固定してなるバインドバー4とを備えている。バインドバー4は、水平部4Xと垂直部4Yとを直角に連結して横断面形状をL字状としており、水平部4Xと垂直部4Yとの端縁にエンドプレート3、3’の外側面をカバーする端面プレート4Tを連結している。バッテリシステムは、バインドバー4の水平部4Xと垂直部4Yがエンドプレート3、3’の外周面に位置し、端面プレート4Tがエンドプレート3、3’の外側面を押圧して、一対のエンドプレート3、3’で電池積層体2を積層方向に加圧すると共に、バインドバー4の水平部4Xと垂直部4Yと端面プレート4Tとの内側隅部4Sと、エンドプレート3、3’の外側隅部3Sとの間に、バインドバー4とエンドプレート3、3’とを非接触状態とする分離隙間17を設けている。
The battery system of the present invention includes a battery stack 2 formed by stacking a plurality of prismatic batteries 1, a pair of end plates 3, 3 'disposed at both ends in the stacking direction of the battery stack 2, and both ends. Are connected to the corners of the pair of end plates 3 and 3 ′, and a bind bar 4 is formed by fixing a plurality of prismatic batteries 1 in a pressurizing state in the stacking direction. The bind bar 4 has a horizontal section 4X and a vertical section 4Y connected to each other at a right angle so that the cross-sectional shape is an L-shape. The end face plate 4T which covers is connected. In the battery system, the horizontal portion 4X and the vertical portion 4Y of the bind bar 4 are located on the outer peripheral surface of the end plates 3 and 3 ′, and the end surface plate 4T presses the outer surface of the end plates 3 and 3 ′, The battery stack 2 is pressed in the stacking direction by the plates 3 and 3 ′, the inner corner 4S of the horizontal portion 4X, the vertical portion 4Y and the end face plate 4T of the bind bar 4, and the outer corner of the end plates 3 and 3 ′. A separation gap 17 is provided between the part 3S and the bind bar 4 and the end plates 3 and 3 ′ in a non-contact state.
以上のバッテリシステムは、極めて簡単な構造としながら、バインドバーで一対のエンドプレートを定位置に配置し、長期間にわたって、エンドプレートをバインドバーで確実に安定して定位置に加圧状態に固定できる特徴がある。それは、以上のバッテリシステムが、バインドバーの水平部と垂直部と端面プレートとの内側隅部と、エンドプレートの外側隅部との間に、バインドバーとエンドプレートとを非接触状態とする分離隙間を設けているからである。このバッテリシステムは、バインドバーの端面プレートをエンドプレートの外側面に面接触状態に配置するので、バインドバーを連結した後に、エンドプレートのプレス状態を解除し、あるいは、繰り返し充放電されて経時的に角形電池が膨張してエンドプレートが強い力で押圧されても、バインドバーとエンドプレートとの隅部にのみ局部的に強い力が作用しない。このバッテリシステムは、組み立て工程において、バインドバーが連結されたエンドプレートのプレス状態を解除しても、バインドバーとエンドプレートの隅部に強制的に強い力が作用することがなく、端面プレートとエンドプレートとが広い面積で接触する。このバインドバーは、一対のエンドプレートを常に一定の間隔として、電池積層体を一定の圧縮状態に保持する。また、経時的に角形電池が膨張しても、一対のエンドプレートは一定の間隔に保持されて、各角形電池の膨張による弊害も防止する。
The above battery system has a very simple structure, and a pair of end plates are placed in a fixed position with a bind bar, and the end plate is securely and stably fixed in place with a bind bar over a long period of time. There are features that can be done. This is because the above battery system separates the bind bar and the end plate between the horizontal and vertical portions of the bind bar and the inner corners of the end plate and the outer corners of the end plate in a non-contact state. This is because a gap is provided. In this battery system, the end plate of the bind bar is placed in surface contact with the outer surface of the end plate. Therefore, after connecting the bind bar, the end plate is released from the press state, or repeatedly charged and discharged over time. Even if the square battery expands and the end plate is pressed with a strong force, a strong force does not act locally only on the corners of the bind bar and the end plate. In this assembly system, even if the end state of the end plate to which the bind bar is connected is released in the assembly process, a strong force is not forcibly applied to the corners of the bind bar and the end plate. Contact with the end plate over a wide area. The bind bar keeps the battery stack in a constant compressed state with the pair of end plates always having a constant interval. In addition, even if the prismatic battery expands with time, the pair of end plates are held at a constant interval to prevent adverse effects due to the expansion of each prismatic battery.
本発明のバッテリシステムは、エンドプレート3’の外側隅部3Sを面取りして、バインドバー4とエンドプレート3’との隅部を非接触状態とする分離隙間17を設けることができる。
以上のバッテリシステムは、極めて簡単にバインドバーとエンドプレートとの隅部を非接触状態として、局部的に大きな力が作用するのを防止できる。 The battery system of the present invention can be provided with theseparation gap 17 that chamfers the outer corner 3S of the end plate 3 ′ and makes the corner between the bind bar 4 and the end plate 3 ′ non-contact.
In the battery system described above, the corners of the bind bar and the end plate can be brought into a non-contact state very easily, and a large force can be prevented from acting locally.
以上のバッテリシステムは、極めて簡単にバインドバーとエンドプレートとの隅部を非接触状態として、局部的に大きな力が作用するのを防止できる。 The battery system of the present invention can be provided with the
In the battery system described above, the corners of the bind bar and the end plate can be brought into a non-contact state very easily, and a large force can be prevented from acting locally.
本発明のバッテリシステムは、バインドバー4の水平部4Xと垂直部4Yと端面プレート4Tとの隅部に貫通孔18を設けて、バインドバー4とエンドプレート3との隅部を非接触状態とする分離隙間17を設けることができる。
以上のバッテリシステムは、極めて簡単にバインドバーとエンドプレートとの隅部を非接触状態として、局部的に大きな力が作用するのを防止できると共に、金属板を折曲加工し、また溶接して簡単かつ容易に、しかも安価にバインドバーを多量生産できる。 In the battery system of the present invention, throughholes 18 are provided in the corners of the horizontal part 4X, the vertical part 4Y and the end face plate 4T of the bind bar 4, and the corners of the bind bar 4 and the end plate 3 are brought into a non-contact state. A separation gap 17 can be provided.
In the above battery system, the corners of the binding bar and the end plate can be made in a non-contact state, and a large force can be prevented from acting locally, and the metal plate is bent and welded. Bind bars can be mass-produced easily, easily and inexpensively.
以上のバッテリシステムは、極めて簡単にバインドバーとエンドプレートとの隅部を非接触状態として、局部的に大きな力が作用するのを防止できると共に、金属板を折曲加工し、また溶接して簡単かつ容易に、しかも安価にバインドバーを多量生産できる。 In the battery system of the present invention, through
In the above battery system, the corners of the binding bar and the end plate can be made in a non-contact state, and a large force can be prevented from acting locally, and the metal plate is bent and welded. Bind bars can be mass-produced easily, easily and inexpensively.
本発明のバッテリシステムは、エンドプレート3’の外側隅部3Sが面取りされると共に、バインドバー4の水平部4Xと垂直部4Yと端面プレート4Tとの隅部に貫通孔18を設けて、バインドバー4とエンドプレート3’との隅部を非接触状態とする分離隙間17を設けることができる。
以上のバッテリシステムは、極めて簡単にバインドバーとエンドプレートとの隅部を非接触状態として、局部的に大きな力が作用するのを防止でき、また、金属板を折曲加工し、また溶接して簡単かつ容易に、しかも安価にバインドバーを多量生産できる。 In the battery system of the present invention, theouter corner portion 3S of the end plate 3 ′ is chamfered, and the through hole 18 is provided in the corner portion of the horizontal portion 4X, the vertical portion 4Y, and the end surface plate 4T of the bind bar 4 to bind. A separation gap 17 can be provided in which the corner between the bar 4 and the end plate 3 ′ is in a non-contact state.
In the above battery system, the corners of the bind bar and end plate can be kept in a non-contact state to prevent a large force from acting locally, and the metal plate is bent and welded. Bind bars can be mass-produced easily, easily and inexpensively.
以上のバッテリシステムは、極めて簡単にバインドバーとエンドプレートとの隅部を非接触状態として、局部的に大きな力が作用するのを防止でき、また、金属板を折曲加工し、また溶接して簡単かつ容易に、しかも安価にバインドバーを多量生産できる。 In the battery system of the present invention, the
In the above battery system, the corners of the bind bar and end plate can be kept in a non-contact state to prevent a large force from acting locally, and the metal plate is bent and welded. Bind bars can be mass-produced easily, easily and inexpensively.
本発明のバッテリシステムは、分離隙間17でバインドバー4とエンドプレート3、3’とが非接触状態となる面積を1mm2以上とすることができる。
以上のバッテリシステムは、非接触状態の面積を大きくするので、バインドバーとエンドプレートとが隅部でのみ接触するのを確実に防止して、バインドバーでもって、一対のエンドプレートの間隔を一定に保持できる。 In the battery system of the present invention, the area in which thebind bar 4 and the end plates 3 and 3 ′ are not in contact with each other in the separation gap 17 can be 1 mm 2 or more.
The above battery system increases the non-contact area, so that the binding bar and the end plate are reliably prevented from contacting only at the corners, and the distance between the pair of end plates is constant with the binding bar. Can be retained.
以上のバッテリシステムは、非接触状態の面積を大きくするので、バインドバーとエンドプレートとが隅部でのみ接触するのを確実に防止して、バインドバーでもって、一対のエンドプレートの間隔を一定に保持できる。 In the battery system of the present invention, the area in which the
The above battery system increases the non-contact area, so that the binding bar and the end plate are reliably prevented from contacting only at the corners, and the distance between the pair of end plates is constant with the binding bar. Can be retained.
本発明のバッテリシステムは、エンドプレート3、3’の外形が四角形で、四角形の隅部に4本のバインドバー4を連結することができる。
以上のバッテリシステムは、4本のバインドバーでもって、エンドプレートを確実に一定の間隔に固定できる。 In the battery system of the present invention, the outer shape of the end plates 3 and 3 ′ is a quadrangle, and four bind bars 4 can be connected to the corners of the quadrangle.
In the battery system described above, the end plate can be reliably fixed at a constant interval with four bind bars.
以上のバッテリシステムは、4本のバインドバーでもって、エンドプレートを確実に一定の間隔に固定できる。 In the battery system of the present invention, the outer shape of the
In the battery system described above, the end plate can be reliably fixed at a constant interval with four bind bars.
本発明のバッテリシステムは、角形電池1を、電池ケース10を金属ケースとする非水系電解液電池とすることができる。
以上のバッテリシステムは、角形電池を金属ケースの非水系電解液電池とするので、エンドプレートで電池積層体を加圧状態に固定して、各角形電池を一定の圧力で加圧状態に保持でき、また、容積に対する充放電できる容量を大きくできる。 In the battery system of the present invention, therectangular battery 1 can be a non-aqueous electrolyte battery having a battery case 10 as a metal case.
In the above battery system, since the rectangular battery is a non-aqueous electrolyte battery with a metal case, the battery stack can be fixed in a pressurized state with an end plate, and each rectangular battery can be held in a pressurized state at a constant pressure. Moreover, the capacity | capacitance which can be charged / discharged with respect to a volume can be enlarged.
以上のバッテリシステムは、角形電池を金属ケースの非水系電解液電池とするので、エンドプレートで電池積層体を加圧状態に固定して、各角形電池を一定の圧力で加圧状態に保持でき、また、容積に対する充放電できる容量を大きくできる。 In the battery system of the present invention, the
In the above battery system, since the rectangular battery is a non-aqueous electrolyte battery with a metal case, the battery stack can be fixed in a pressurized state with an end plate, and each rectangular battery can be held in a pressurized state at a constant pressure. Moreover, the capacity | capacitance which can be charged / discharged with respect to a volume can be enlarged.
本発明の電動車両は、上記のいずれかのバッテリシステム100と、このバッテリシステム100から電力供給される走行用のモータ93と、バッテリシステム100及びモータ93を搭載してなる車両本体90と、モータ93で駆動されて車両本体90を走行させる車輪97とを備えている。
以上の電動車両は、複数の角形電池を備えるバッテリシステムを車両に搭載しながら、走行時に受ける振動や、繰り返し充放電されて経時的に膨張する角形電池による弊害を有効に防止できる。それは、バインドバーで一対のエンドプレートを定位置に配置して、エンドプレートをバインドバーで確実に安定して加圧状態に固定できるからである。 An electric vehicle according to the present invention includes any one of thebattery systems 100 described above, a motor 93 for traveling that is supplied with power from the battery system 100, a vehicle main body 90 including the battery system 100 and the motor 93, and a motor. And a wheel 97 that is driven by the vehicle 93 and causes the vehicle main body 90 to travel.
The above-described electric vehicle can effectively prevent the vibration caused by traveling and the negative effects caused by the square battery that is repeatedly charged and discharged and expands with time, while the battery system including the plurality of square batteries is mounted on the vehicle. This is because the pair of end plates can be arranged at fixed positions by the bind bar, and the end plates can be reliably and stably fixed to the pressurized state by the bind bar.
以上の電動車両は、複数の角形電池を備えるバッテリシステムを車両に搭載しながら、走行時に受ける振動や、繰り返し充放電されて経時的に膨張する角形電池による弊害を有効に防止できる。それは、バインドバーで一対のエンドプレートを定位置に配置して、エンドプレートをバインドバーで確実に安定して加圧状態に固定できるからである。 An electric vehicle according to the present invention includes any one of the
The above-described electric vehicle can effectively prevent the vibration caused by traveling and the negative effects caused by the square battery that is repeatedly charged and discharged and expands with time, while the battery system including the plurality of square batteries is mounted on the vehicle. This is because the pair of end plates can be arranged at fixed positions by the bind bar, and the end plates can be reliably and stably fixed to the pressurized state by the bind bar.
本発明の蓄電装置は、上記のいずれかのバッテリシステム100を備えると共に、バッテリシステム100への充放電を制御する電源コントローラ84を備えている。この電源コントローラ84は、外部からの電力により角形電池1への充電を可能とすると共に、角形電池1に対し充電を行うよう制御することができる。
以上の蓄電装置は、複数の角形電池を備えて大電力を蓄電するバッテリシステムを使用しながら、繰り返し充放電されて経時的に膨張する角形電池による弊害を防止できる。 The power storage device of the present invention includes any one of thebattery systems 100 described above and a power controller 84 that controls charging / discharging of the battery system 100. The power supply controller 84 can charge the prismatic battery 1 with external power and can control the prismatic battery 1 to be charged.
While the above power storage device uses a battery system that stores a large amount of power with a plurality of rectangular batteries, it can prevent adverse effects caused by the rectangular batteries that are repeatedly charged and discharged and expand over time.
以上の蓄電装置は、複数の角形電池を備えて大電力を蓄電するバッテリシステムを使用しながら、繰り返し充放電されて経時的に膨張する角形電池による弊害を防止できる。 The power storage device of the present invention includes any one of the
While the above power storage device uses a battery system that stores a large amount of power with a plurality of rectangular batteries, it can prevent adverse effects caused by the rectangular batteries that are repeatedly charged and discharged and expand over time.
以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するためのバッテリシステム及びバッテリシステムを備える車両並びに蓄電装置を例示するものであって、本発明はバッテリシステム及びバッテリシステムを備える車両並びに蓄電装置を以下のものに特定しない。さらに、この明細書は、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a battery system and a vehicle including the battery system and a power storage device for embodying the technical idea of the present invention, and the present invention includes the battery system and the battery system. The vehicle and the power storage device are not specified as follows. Furthermore, this specification does not limit the members shown in the claims to the members of the embodiments.
図2ないし図5に示すバッテリシステム100は、複数の角形電池1を積層している電池積層体2と、この電池積層体2の積層方向の両端部に配置している一対のエンドプレート3と、両端部を一対のエンドプレート3の隅部に連結して、複数の角形電池1を積層方向に加圧状態で固定しているバインドバー4とを備えている。
A battery system 100 shown in FIGS. 2 to 5 includes a battery stack 2 in which a plurality of rectangular batteries 1 are stacked, and a pair of end plates 3 disposed at both ends in the stacking direction of the battery stack 2. , Both ends are connected to the corners of the pair of end plates 3, and a bind bar 4 is provided that fixes the plurality of prismatic batteries 1 in a stacked state in the stacking direction.
角形電池1は、図5に示すように、厚さに比べて幅が広い、言い換えると幅よりも薄い角形の電池で、厚さ方向に積層されて電池積層体2としている。角形電池1は、電池ケース10を金属ケースとする非水系電解液電池である。非水系電解液電池である角形電池1は、リチウムイオン二次電池である。ただし、角形電池は、ニッケル水素電池やニッケルカドミウム電池等の二次電池とすることもできる。図の角形電池1は、幅の広い両表面を四角形とする電池で、両表面を対向するように積層して電池積層体2としている。
As shown in FIG. 5, the rectangular battery 1 is a rectangular battery having a width wider than the thickness, in other words, a rectangular battery thinner than the width, and is stacked in the thickness direction to form a battery stack 2. The prismatic battery 1 is a non-aqueous electrolyte battery having a battery case 10 as a metal case. The rectangular battery 1 which is a non-aqueous electrolyte battery is a lithium ion secondary battery. However, the square battery may be a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery. The rectangular battery 1 shown in the figure is a battery in which both wide surfaces are quadrangular and are laminated so that both surfaces face each other to form a battery stack 2.
角形電池1は、外形を角形とする金属製の電池ケース10に、電極体(図示せず)を収納して電解液を充填している。金属ケースからなる電池ケース10は、アルミニウムやアルミニウム合金で製造することができる。電池ケース10は、底を閉塞する筒状に金属板をプレス加工している外装缶10Aと、この外装缶10Aの開口部を気密に閉塞している封口板10Bとを備えている。封口板10Bは平面状の金属板で、その外形を外装缶10Aの開口部の形状としている。この封口板10Bはレーザー溶接して外装缶10Aの外周縁に固定されて外装缶10Aの開口部を気密に閉塞している。外装缶10Aに固定される封口板10Bは、その両端部に正負の電極端子13を固定しており、さらに正負の電極端子13の中間にはガス排出口12を設けている。ガス排出口12の内側には、所定の内圧で開弁する排出弁11を設けている。図5に示す電池積層体2は、複数の角形電池1を、排出弁11を設けた面が略同一面に位置する姿勢で積層して、各角形電池1の排出弁11を第1の表面2Aに配置している。図の電池積層体2は、排出弁11を設けている封口板10Bを上面とする姿勢で、複数の角形電池1を積層している。
The prismatic battery 1 has an electrode body (not shown) housed in a metal battery case 10 having a rectangular outer shape and is filled with an electrolytic solution. The battery case 10 made of a metal case can be made of aluminum or an aluminum alloy. The battery case 10 includes an outer can 10A in which a metal plate is pressed into a cylindrical shape that closes the bottom, and a sealing plate 10B that airtightly closes an opening of the outer can 10A. The sealing plate 10B is a flat metal plate, and its outer shape is the shape of the opening of the outer can 10A. The sealing plate 10B is laser-welded and fixed to the outer peripheral edge of the outer can 10A to airtightly close the opening of the outer can 10A. The sealing plate 10 </ b> B fixed to the outer can 10 </ b> A has positive and negative electrode terminals 13 fixed to both ends thereof, and a gas discharge port 12 is provided between the positive and negative electrode terminals 13. A discharge valve 11 that opens at a predetermined internal pressure is provided inside the gas discharge port 12. The battery stack 2 shown in FIG. 5 is formed by stacking a plurality of rectangular batteries 1 in such a manner that the surfaces on which the discharge valves 11 are provided are positioned substantially on the same surface, and the discharge valves 11 of the respective square batteries 1 are arranged on the first surface. 2A. In the illustrated battery stack 2, a plurality of rectangular batteries 1 are stacked in a posture in which the sealing plate 10 </ b> B provided with the discharge valve 11 is an upper surface.
排出弁11は、角形電池1の内圧が設定圧力よりも高くなると開弁して、内圧の上昇を防止する。この排出弁11は、ガス排出口12を閉塞する弁体(図示せず)を内蔵している。弁体は、設定圧力で破壊される薄膜、あるいは設定圧力で開弁するように弾性体で弁座に押圧されている弁である。排出弁11が開弁されると、ガス排出口12を介して角形電池1の内部が外部に開放され、内部のガスを放出して内圧の上昇が防止される。
The discharge valve 11 is opened when the internal pressure of the rectangular battery 1 becomes higher than the set pressure, thereby preventing the internal pressure from increasing. The discharge valve 11 has a built-in valve body (not shown) that closes the gas discharge port 12. The valve body is a thin film that is destroyed at a set pressure, or a valve that is pressed against the valve seat by an elastic body so as to open at the set pressure. When the discharge valve 11 is opened, the inside of the prismatic battery 1 is opened to the outside through the gas discharge port 12, and the internal gas is released to prevent the internal pressure from increasing.
互いに積層される複数の角形電池1は、正負の電極端子13を接続して互いに直列及び/又は並列に接続される。バッテリシステムは、隣接する角形電池1の正負の電極端子13を、バスバー14を介して互いに直列及び/又は並列に接続する。隣接する角形電池を互いに直列に接続するバッテリシステムは、出力電圧を高くして出力を大きくでき、隣接する角形電池を並列に接続して、充放電の電流を大きくできる。
A plurality of rectangular batteries 1 stacked on each other are connected in series and / or in parallel with each other by connecting positive and negative electrode terminals 13. In the battery system, positive and negative electrode terminals 13 of adjacent rectangular batteries 1 are connected in series and / or in parallel with each other through a bus bar 14. A battery system in which adjacent rectangular batteries are connected in series with each other can increase the output voltage by increasing the output voltage, and can connect adjacent rectangular batteries in parallel to increase the charge / discharge current.
図3と図4に示す電池積層体2は、14個の角形電池1を、スペーサ7を介して互いに積層しており、これらの角形電池1を直列に接続している。図の電池積層体2は、互いに隣接する角形電池1同士を逆向きに並べており、その両側において隣接する電極端子13同士をバスバー14で連結して、隣り合う2個の角形電池1を直列に接続して、すべての角形電池1を直列に接続している。ただ、本発明は、電池積層体を構成する角形電池の個数とその接続状態を特定しない。
In the battery stack 2 shown in FIG. 3 and FIG. 4, 14 prismatic batteries 1 are stacked on each other via a spacer 7, and these prismatic batteries 1 are connected in series. In the illustrated battery stack 2, adjacent rectangular batteries 1 are arranged in opposite directions, and adjacent electrode terminals 13 on both sides thereof are connected by a bus bar 14 to connect two adjacent rectangular batteries 1 in series. All the prismatic batteries 1 are connected in series. However, the present invention does not specify the number of prismatic batteries constituting the battery stack and the connection state thereof.
電池積層体2は、図3と図5に示すように、積層している角形電池1の間にスペーサ7を挟着している。スペーサ7は、隣接する角形電池1を絶縁する。図に示すスペーサ7は、プラスチックを板状に成形した絶縁プレートである。とくに、熱伝導率の小さい材質のプラスチックで成形されるスペーサは、隣接する角形電池の熱暴走を効果的に防止できる効果もある。このスペーサ7は、角形電池1を嵌着して定位置に配置する形状として、隣接する角形電池1を位置ずれしないように積層できる。
As shown in FIGS. 3 and 5, the battery stack 2 has a spacer 7 sandwiched between the stacked rectangular batteries 1. The spacer 7 insulates the adjacent rectangular batteries 1. The spacer 7 shown in the figure is an insulating plate formed of plastic in a plate shape. In particular, a spacer formed of a plastic having a low thermal conductivity has an effect of effectively preventing thermal runaway of adjacent rectangular batteries. The spacer 7 can be stacked so that the adjacent rectangular batteries 1 are not displaced as a shape in which the rectangular batteries 1 are fitted and arranged at a fixed position.
以上のように、スペーサ7で絶縁して積層される角形電池1は、外装缶をアルミニウムなどの金属製にできる。ただ、電池積層体は、必ずしも角形電池の間にスペーサを介在させる必要はない。例えば、角形電池の外装缶を絶縁材で成形し、あるいは角形電池の外装缶の外周を絶縁シートや絶縁塗料等で被覆する等の方法で、互いに隣接する角形電池同士を絶縁することによって、スペーサを不要とできるからである。さらに、角形電池の間にスペーサを介在させない電池積層体は、角形電池の間に冷却風を強制送風して角形電池を冷却する空冷式を採用することなく、冷媒等を用いて直接冷却する方式を採用して角形電池を冷却できる。
As described above, the rectangular battery 1 that is insulated and stacked by the spacer 7 can have an outer can made of metal such as aluminum. However, it is not always necessary for the battery stack to interpose a spacer between the rectangular batteries. For example, spacers can be formed by insulating rectangular batteries that are adjacent to each other by, for example, forming a rectangular battery outer can with an insulating material, or covering the outer periphery of the rectangular battery outer can with an insulating sheet or insulating paint. It is because it can be made unnecessary. Furthermore, the battery stack without interposing a spacer between the square batteries is a method of directly cooling using a refrigerant or the like without adopting an air-cooling method in which cooling air is forced between the square batteries to cool the square batteries. Can be used to cool the prismatic battery.
さらに、図3と図5に示すスペーサ7は、角形電池1を効果的に冷却するために、角形電池1との間に挟着される部分に、空気などの冷却気体を通過させる冷却隙間16を設けている。図3と図5のスペーサ7は、角形電池1との対向面に、両側縁まで延びる溝15を設けて、角形電池1との間に冷却隙間16を設けている。図のスペーサ7は、複数の溝15を、互いに平行に所定の間隔で設けている。図のスペーサ7は、両面に溝15を設けており、互いに隣接する角形電池1とスペーサ7との間に冷却隙間16を設けている。この構造は、スペーサ7の両側に形成される冷却隙間16で、両側の角形電池1を効果的に冷却できる特長がある。ただ、スペーサは、片面にのみ溝を設けて、角形電池とスペーサとの間に冷却隙間を設けることもできる。図の冷却隙間16は、電池積層体2の左右に開口するように水平方向に設けている。冷却隙間16に強制送風される空気は、角形電池1の外装缶10Aを直接に効率よく冷却する。この構造は、角形電池1の熱暴走を有効に阻止しながら、角形電池1を効率よく冷却できる特徴がある。
Further, the spacer 7 shown in FIGS. 3 and 5 is provided with a cooling gap 16 that allows a cooling gas such as air to pass through a portion sandwiched between the prismatic battery 1 in order to effectively cool the prismatic battery 1. Is provided. The spacer 7 in FIGS. 3 and 5 is provided with grooves 15 extending to both side edges on the surface facing the prismatic battery 1, and a cooling gap 16 is provided between the spacer 7 and the prismatic battery 1. In the illustrated spacer 7, a plurality of grooves 15 are provided in parallel with each other at a predetermined interval. In the illustrated spacer 7, grooves 15 are provided on both surfaces, and a cooling gap 16 is provided between the prismatic battery 1 and the spacer 7 adjacent to each other. This structure has an advantage that the square battery 1 on both sides can be effectively cooled by the cooling gaps 16 formed on both sides of the spacer 7. However, the spacer can be provided with a groove only on one side, and a cooling gap can be provided between the prismatic battery and the spacer. The cooling gap 16 in the figure is provided in the horizontal direction so as to open to the left and right of the battery stack 2. The air forcibly blown into the cooling gap 16 directly and efficiently cools the outer can 10 </ b> A of the rectangular battery 1. This structure has a feature that the prismatic battery 1 can be efficiently cooled while effectively preventing thermal runaway of the prismatic battery 1.
以上のスペーサ7は、角形電池1との間に冷却隙間16を設けて、この冷却隙間16に冷却用の空気などの冷却気体を強制的に送風して、角形電池1を冷却できる。ただ、スペーサは、必ずしも角形電池との間に冷却隙間を設ける必要はなく、図6に示すように、スペーサ37を電池積層体32の表面に露出する長さとして、露出部37Aを冷却プレート20に熱結合状態に連結する構造とすることもできる。このバッテリシステムは、冷却プレート20を冷却し、冷却プレート20でスペーサ37を冷却して、スペーサ37で角形電池1を冷却することができる。冷却プレート20は、表面に放熱フィン(図示せず)を設けて冷却し、あるいは、内部に冷却用の冷媒や冷却液を循環させて強制的に冷却できる。さらに、図示しないが、角形電池に間にスペーサを配置することなく、角形電池の表面を絶縁して絶縁することもできる。
The spacer 7 described above can cool the prismatic battery 1 by providing a cooling gap 16 between the spacer 7 and forcibly blowing a cooling gas such as cooling air into the cooling gap 16. However, the spacer does not necessarily need to be provided with a cooling gap between the prismatic battery. As shown in FIG. 6, the spacer 37 is exposed to the surface of the battery stack 32, and the exposed portion 37 </ b> A is the cooling plate 20. It can also be set as the structure connected to a thermal coupling state. In this battery system, the cooling plate 20 can be cooled, the spacer 37 can be cooled by the cooling plate 20, and the prismatic battery 1 can be cooled by the spacer 37. The cooling plate 20 can be cooled by providing heat radiation fins (not shown) on the surface, or can be forcibly cooled by circulating a cooling refrigerant or coolant inside. Furthermore, although not shown, the surface of the prismatic battery can be insulated without providing a spacer between the prismatic batteries.
エンドプレート3は、バインドバー4に連結されて、電池積層体2を両端面から加圧して、角形電池1を積層方向に加圧する。エンドプレート3は、バインドバー4に固定されて、電池積層体2の各角形電池1を所定の締め付け圧で加圧状態に固定する。エンドプレート3の外形は、角形電池1の外形にほぼ等しく、あるいはこれよりもわずかに大きく、四隅部にバインドバー4を連結して、電池積層体2を加圧状態に固定して変形しない四角形の板状である。このエンドプレート3は、四隅部にバインドバー4を連結して、角形電池1の表面に面接触状態に密着し、角形電池1を均一な圧力で加圧状態に固定する。バッテリシステムは、電池積層体2の両端部にエンドプレート3を配置し、両端のエンドプレート3をプレス機(図示せず)で加圧して、角形電池1を積層方向に加圧する状態に保持し、この状態でエンドプレート3にバインドバー4を固定して、電池積層体2を所定の締め付け圧に保持して固定する。エンドプレート3がバインドバー4に連結された後、プレス機の加圧状態は解除される。
The end plate 3 is connected to the bind bar 4 to pressurize the battery stack 2 from both end surfaces and press the square battery 1 in the stacking direction. The end plate 3 is fixed to the bind bar 4 to fix each rectangular battery 1 of the battery stack 2 in a pressurized state with a predetermined tightening pressure. The outer shape of the end plate 3 is substantially equal to or slightly larger than the outer shape of the prismatic battery 1, and a rectangular shape that is not deformed by connecting the bind bars 4 to the four corners and fixing the battery stack 2 in a pressurized state. It is a plate shape. This end plate 3 has bind bars 4 connected to the four corners, and is in close contact with the surface of the prismatic battery 1 in a surface contact state, and fixes the prismatic battery 1 in a pressurized state with uniform pressure. In the battery system, end plates 3 are arranged at both ends of the battery stack 2, and the end plates 3 at both ends are pressed by a press (not shown), and the prismatic battery 1 is held in a state of pressing in the stacking direction. In this state, the bind bar 4 is fixed to the end plate 3, and the battery stack 2 is held and fixed at a predetermined tightening pressure. After the end plate 3 is connected to the bind bar 4, the pressurization state of the press machine is released.
バインドバー4は、水平部4Xと垂直部4Yとを直角に連結している、横断面形状をL字状とする金属板である。さらに、図4のバインドバー4は両端に端面プレート4Tを連結している。端面プレート4Tは、垂直部4Yと水平部4Xの端縁に連結される。この端面プレート4Tは、エンドプレート3の外側面に面接触状態で接触するように、垂直部4Yと水平部4Xに対して直角に連結される。この形状のバインドバー4は、金属板をプレス加工して製作できるが、図7と図8に示すバインドバー4Aは、水平部4Xの外側に、突出部4Zを設けて、この突出部4Zで端面プレート4Tを形成している。図に示す突出部4Zは、水平部4Xの外側端縁に連結してなる端面プレート4Tと、この端面プレート4Tの垂直部4Y側の1辺に連結している積層部4Rとからなる。このバインドバー4Aは、突出部4Zの端面プレート4Tを水平部4Xに対して直角に折曲加工し、さらに、積層部4Rを端面プレート4Tに対して直角に折曲加工して、この積層部4Rを垂直部4Yに溶接して固定している。これにより、バインドバー4Aは、端縁に垂直姿勢の端面プレート4Tを形成している。溶接される積層部4Rは、垂直部4Yとの境界に沿って溶接され、あるいは、垂直部4Yに重ね合わせてスポット溶接などの方法で連結される。図のバインドバー4Aは、水平部4Xに突出部4Zを設けて、この突出部4Zを折曲加工すると共に、積層部4Rを垂直部4Yに固定して垂直姿勢の端面プレート4Tを形成するが、バインドバーは、垂直部に突出部を設けて、この突出部を折曲加工して端面プレートを設けて、積層部を水平部に溶接して固定することもできる。さらに、バインドバーは、水平部と垂直部の両方に突出部を設けて、これらの突出部を折曲加工すると共に、折曲された突出部を互いに積層して溶接して端面プレートを設けることもできる。
The bind bar 4 is a metal plate that connects the horizontal portion 4X and the vertical portion 4Y at a right angle and has an L-shaped cross section. Further, the bind bar 4 in FIG. 4 has end face plates 4T connected to both ends. The end face plate 4T is connected to the end edges of the vertical portion 4Y and the horizontal portion 4X. The end surface plate 4T is connected to the vertical portion 4Y and the horizontal portion 4X at a right angle so as to contact the outer surface of the end plate 3 in a surface contact state. The bind bar 4 having this shape can be manufactured by pressing a metal plate. However, the bind bar 4A shown in FIGS. 7 and 8 is provided with a protrusion 4Z outside the horizontal portion 4X. An end face plate 4T is formed. The protrusion 4Z shown in the drawing is composed of an end face plate 4T connected to the outer edge of the horizontal part 4X, and a laminated part 4R connected to one side of the end face plate 4T on the vertical part 4Y side. The bind bar 4A is formed by bending the end surface plate 4T of the projecting portion 4Z at a right angle with respect to the horizontal portion 4X, and further bending the stacked portion 4R at a right angle with respect to the end surface plate 4T. 4R is fixed by welding to the vertical portion 4Y. Thereby, the bind bar 4A forms an end face plate 4T in a vertical posture at the end edge. The laminated portion 4R to be welded is welded along the boundary with the vertical portion 4Y, or overlapped with the vertical portion 4Y and connected by a method such as spot welding. The bind bar 4A shown in the figure is provided with a protruding portion 4Z on the horizontal portion 4X, bending the protruding portion 4Z, and fixing the laminated portion 4R to the vertical portion 4Y to form an end face plate 4T in a vertical posture. The bind bar may be provided with a protruding portion in the vertical portion, and the protruding portion is bent to provide an end face plate, and the laminated portion is welded and fixed to the horizontal portion. Furthermore, the bind bar is provided with protrusions on both the horizontal part and the vertical part, and the protrusions are bent, and the bent protrusions are stacked and welded to provide an end face plate. You can also.
バインドバー4は、端面プレート4Tをエンドプレート3の外側面に配置し、これをエンドプレート3に係止する状態で、エンドプレート3に連結される。バインドバー4は、端面プレート4Tをエンドプレート3に係止状態に連結して、エンドプレート3でもって電池積層体2を加圧状態に固定する。さらに、図4のバインドバー4は、エンドプレート3の外周面に止ネジ24をネジ止めして固定している。図のエンドプレート3は、止ネジ24をねじ込む位置に雌ねじ孔3bを設けている。また、図のバインドバー4は、止ネジ24を挿通する貫通孔4bを垂直部4Yの両端部に開口すると共に、後述する固定ネジ23を挿通するための貫通孔4aを水平部4Xの両端部に開口している。
The bind bar 4 is connected to the end plate 3 in a state where the end plate 4T is disposed on the outer surface of the end plate 3 and is locked to the end plate 3. The bind bar 4 connects the end face plate 4T to the end plate 3 in a locked state, and fixes the battery stack 2 in a pressurized state with the end plate 3. Further, the bind bar 4 in FIG. 4 is fixed by fixing a set screw 24 to the outer peripheral surface of the end plate 3. The illustrated end plate 3 is provided with a female screw hole 3b at a position where a set screw 24 is screwed. Further, the bind bar 4 shown in the figure opens the through holes 4b through which the set screws 24 are inserted at both ends of the vertical portion 4Y, and the through holes 4a through which the fixing screws 23 to be described later are inserted at both ends of the horizontal portion 4X. Is open.
以上のバッテリシステム100は、バインドバー4の両端を一対のエンドプレート3に固定して、一対のエンドプレート3で電池積層体2を挟んで、各角形電池1を所定の締め付け圧で積層方向に加圧して固定する。角形電池1の締め付け圧は、角形電池1の両面に作用する単位面積当たりの押圧力である。締め付け圧は、[エンドプレート3が電池積層体2を積層方向に加圧する押圧力]/[角形電池1の扁平部の面積]で演算される。この締め付け圧は、好ましくは、10kPa以上で1MPa以下に設定される。締め付け圧が弱すぎると、角形電池1の膨張を効果的に抑制できず、反対に強すぎると角形電池1の電池ケース10を損傷する弊害が発生する。とくに、電池ケース10を金属ケースとする角形電池1は、角形電池1の積層方向への電池ケース10の変形量が極めて小さく、実質的にはほとんど変化しないため、締め付け圧が弱すぎると、複数の角形電池1を確実に加圧状態に保持できず、また、締め付け圧が強すぎると角形電池1の電池ケース10が損傷する弊害が発生する。このため、締め付け圧を所定の範囲としながら、各角形電池1を積層方向に加圧して固定することは極めて大切である。したがって、締め付け圧は、角形電池1の種類や大きさ、さらに電池ケース10の材質、形状、肉厚、大きさ、電極体の物性などを考慮して前述の範囲で最適値に設定される。
In the battery system 100 described above, both ends of the bind bar 4 are fixed to the pair of end plates 3, the battery stack 2 is sandwiched between the pair of end plates 3, and each rectangular battery 1 is stacked in a stacking direction with a predetermined tightening pressure. Press to fix. The clamping pressure of the prismatic battery 1 is a pressing force per unit area that acts on both surfaces of the prismatic battery 1. The clamping pressure is calculated by [the pressing force with which the end plate 3 presses the battery stack 2 in the stacking direction] / [the area of the flat portion of the rectangular battery 1]. This clamping pressure is preferably set to 10 MPa or more and 1 MPa or less. If the tightening pressure is too weak, the expansion of the prismatic battery 1 cannot be effectively suppressed. On the other hand, if it is too strong, the battery case 10 of the prismatic battery 1 is damaged. In particular, in the prismatic battery 1 using the battery case 10 as a metal case, the deformation amount of the battery case 10 in the stacking direction of the prismatic battery 1 is extremely small and substantially does not change. The square battery 1 cannot be reliably held in a pressurized state, and if the tightening pressure is too strong, the battery case 10 of the square battery 1 is damaged. For this reason, it is extremely important to press and fix the respective square batteries 1 in the stacking direction while keeping the tightening pressure within a predetermined range. Accordingly, the tightening pressure is set to an optimum value within the above-mentioned range in consideration of the type and size of the rectangular battery 1 and the material, shape, thickness, size, and physical properties of the electrode body of the battery case 10.
バインドバー4とエンドプレート3は、隅部に互いに接触しない、すなわち非接触状態となる分離隙間17を設けている。分離隙間17は、バインドバー4の水平部4Xと垂直部4Yと端面プレート4Tとの内側隅部と、エンドプレート3の外側隅部との間に設けられる。分離隙間17を設けて、バインドバー4とエンドプレート3の隅部を非接触状態とするのは、電池積層体2を圧縮するときの反作用が、隅部に集中して作用しないようにするためである。分離隙間17は、非接触状態とする面積を大きくして、隅部に強い応力が作用するのを効果的に阻止できる。ただ、分離隙間17による非接触状態の面積が大き過ぎると、端面プレート4Tがエンドプレート3に接触する面積が小さくなる。したがって、分離隙間17で非接触状態となる面積は、例えば1mm2以上であって、25mm2よりも小さく、好ましくは2mm2以上であって、10mm2以下、さらに好ましく3mm2以上であって、10mm2以下とする。
The bind bar 4 and the end plate 3 are provided with separation gaps 17 that are not in contact with each other, that is, in a non-contact state. The separation gap 17 is provided between the inner corners of the horizontal portion 4X, the vertical portion 4Y and the end face plate 4T of the bind bar 4 and the outer corner of the end plate 3. The separation gap 17 is provided so that the corners of the bind bar 4 and the end plate 3 are not in contact with each other so that the reaction when the battery stack 2 is compressed does not concentrate on the corners. It is. The separation gap 17 can effectively prevent a strong stress from acting on the corner by increasing the area to be in a non-contact state. However, if the area of the non-contact state by the separation gap 17 is too large, the area where the end face plate 4T contacts the end plate 3 becomes small. Therefore, the area that is in a non-contact state in the separation gap 17 is, for example, 1 mm 2 or more and smaller than 25 mm 2 , preferably 2 mm 2 or more, 10 mm 2 or less, more preferably 3 mm 2 or more, 10 mm 2 or less.
さらに、図9~図11に示すバッテリシステムは、エンドプレート3’の外側隅部を面取りして、バインドバー4Bとエンドプレート3’との隅部を非接触状態としている。このバッテリシステムは、図10の拡大斜視図のハッチングで示すように、エンドプレート3’の外側隅部3Sを面取りして分離隙間17を設けて、バインドバー4とエンドプレート3’との隅部を非接触状態としている。このエンドプレート3’は、外側隅部3Sを平面状に面取りして分離隙間17を設けているが、エンドプレートは、外側隅部を中央部が突出する湾曲面状に面取りして、分離隙間を設けることもできる。このエンドプレートは、湾曲面の一部がバインドバーの内側隅部に接触しない形状に面取りされて分離隙間を設ける。
Furthermore, in the battery system shown in FIGS. 9 to 11, the outer corner of the end plate 3 'is chamfered, and the corner between the bind bar 4B and the end plate 3' is in a non-contact state. In this battery system, as shown by hatching in the enlarged perspective view of FIG. 10, the outer corner 3S of the end plate 3 'is chamfered to provide a separation gap 17, and the corner between the bind bar 4 and the end plate 3' is formed. Is in a non-contact state. The end plate 3 'has the outer corner 3S chamfered in a flat shape to provide a separation gap 17, but the end plate chamfers the outer corner in a curved surface projecting from the center portion and has a separation gap. Can also be provided. This end plate is chamfered into a shape in which a part of the curved surface does not contact the inner corner of the bind bar to provide a separation gap.
水平部4Xや垂直部4Yに突出部4Zを設けて、突出部4Zを直角に折曲して端面プレート4Tを設けるバインドバー4Aは、図8の展開図に示すように、隅部となる領域19を切除するように裁断した後、折曲加工し、また溶接して、バインドバー4Aの隅部に貫通孔18を設けて分離隙間17を設けることができる。また、分離隙間17を後加工で設けるバインドバーは、図12に示すように、金属板を所定の形状にプレス成形して断面形状をL字状とするバインドバー4Cの両端に端面プレート4Tを設けた後、水平部4Xと垂直部4Yと端面プレート4Tとの隅部にドリルで貫通孔18を設けて、分離隙間17を設けることができる。貫通孔18は、内側隅部4Sの内面側から外側に貫通するように、ドリルで貫通孔18を開けて設けることができる。この方法は、金属板をプレス加工して、水平部4Xと垂直部4Yと端面プレート4Tとを一体構造に連結しているバインドバー4Cに簡単に分離隙間17を設けることができる。
As shown in the developed view of FIG. 8, the bind bar 4 </ b> A in which the protruding portion 4 </ b> Z is provided in the horizontal portion 4 </ b> X and the vertical portion 4 </ b> Y, and the protruding portion 4 </ b> Z is bent at a right angle to provide the end face plate 4 </ b> A. After cutting so as to cut 19, bending and welding are performed, and through holes 18 can be provided at the corners of the binding bar 4 </ b> A to provide separation gaps 17. In addition, as shown in FIG. 12, the bind bar in which the separation gap 17 is provided by post-processing is provided with end face plates 4T at both ends of a bind bar 4C having a L-shaped cross section by press-molding a metal plate into a predetermined shape. After providing, the through-hole 18 can be provided with the drill in the corner part of the horizontal part 4X, the vertical part 4Y, and the end surface plate 4T, and the isolation | separation clearance gap 17 can be provided. The through-hole 18 can be provided by opening the through-hole 18 with a drill so as to penetrate from the inner surface side of the inner corner portion 4S to the outer side. In this method, the separation gap 17 can be easily provided in the bind bar 4C that presses the metal plate and connects the horizontal portion 4X, the vertical portion 4Y, and the end face plate 4T in an integrated structure.
本発明のバッテリシステムは、エンドプレート3’の外側隅部3Sを面取りすると共に、バインドバー4の水平部4Xと垂直部4Yと端面プレート4Tとの隅部に貫通孔18を設けて、バインドバー4とエンドプレート3’との隅部を非接触状態として分離隙間17を設けることもできる。
The battery system of the present invention chamfers the outer corner 3S of the end plate 3 'and provides through holes 18 at the corners of the horizontal portion 4X, the vertical portion 4Y, and the end surface plate 4T of the bind bar 4 to bind the bind bar. It is also possible to provide the separation gap 17 with the corners of 4 and the end plate 3 ′ in a non-contact state.
さらに、図2と図4に示すバッテリシステム100は、電池積層体2の上面に表面プレート8を配置しており、この表面プレート8で、互いに積層される角形電池1の封口板10B側の端面(図において上面)をカバーしている。この表面プレート8は、電池積層体2の上面に沿う外形に成形している。この表面プレート8は、ナイロン樹脂、エポキシ樹脂などの絶縁性のプラスチックで成形している。さらに、表面プレート8は、図2と図4に示すように、角形電池1の電極端子13を表出させてバスバー3に接続するための開口窓29を開口して設けている。図の表面プレート8は、電池積層体2の両側部に沿って、複数の開口窓29を設けている。開口窓29は、バスバー14を定位置に案内しながら電極端子13に接続できるように、バスバー14の外形に沿う大きさと形状している。表面プレート8の開口窓29に配置されるバスバー14は、角形電池1の電極端子13に固定されて、複数の角形電池1を所定の接続状態に接続する。ただ、電池パックは、必ずしも電池積層体の上面に表面プレートを配置する必要はない。
Further, in the battery system 100 shown in FIGS. 2 and 4, the surface plate 8 is disposed on the upper surface of the battery stack 2, and the end surface on the sealing plate 10B side of the rectangular batteries 1 stacked on each other by the surface plate 8. (Upper surface in the figure) is covered. The surface plate 8 is formed in an outer shape along the upper surface of the battery stack 2. The surface plate 8 is formed of an insulating plastic such as nylon resin or epoxy resin. Further, as shown in FIGS. 2 and 4, the surface plate 8 is provided with an opening window 29 for exposing the electrode terminal 13 of the rectangular battery 1 and connecting it to the bus bar 3. The illustrated surface plate 8 is provided with a plurality of opening windows 29 along both side portions of the battery stack 2. The opening window 29 is sized and shaped along the outer shape of the bus bar 14 so that it can be connected to the electrode terminal 13 while guiding the bus bar 14 to a fixed position. The bus bar 14 disposed in the opening window 29 of the surface plate 8 is fixed to the electrode terminal 13 of the prismatic battery 1 and connects the plurality of prismatic batteries 1 to a predetermined connection state. However, it is not always necessary for the battery pack to dispose a surface plate on the upper surface of the battery stack.
図3の断面図に示すバッテリシステム100は、電池積層体2を載置しているベースプレート9を備える。このベースプレート9は、エンドプレート3を固定している。エンドプレート3は、ベースプレート9に固定するために、角形電池1と平行な方向に延びる、図において上下方向に延びる貫通孔3aを両側に設けている。この貫通孔3aには固定ネジ23が挿入され、固定ネジ23は先端部をベースプレート9に固定して、エンドプレート3をベースプレート9に固定する。固定ネジ23は、ベースプレート9に設けた雌ねじ孔9aにねじ込まれて、ベースプレート9に固定され、あるいはベースプレートの底面に設けたナットにねじ込まれて、ベースプレートに固定される。
3 is provided with a base plate 9 on which the battery stack 2 is placed. The base plate 9 fixes the end plate 3. In order to fix the end plate 3 to the base plate 9, through holes 3 a extending in the vertical direction in the figure and extending in a direction parallel to the rectangular battery 1 are provided on both sides. A fixing screw 23 is inserted into the through hole 3 a, and the fixing screw 23 fixes the tip end portion to the base plate 9 and fixes the end plate 3 to the base plate 9. The fixing screw 23 is screwed into a female screw hole 9a provided in the base plate 9, and is fixed to the base plate 9, or is screwed into a nut provided on the bottom surface of the base plate to be fixed to the base plate.
図10に示すように、車両に搭載されて、車両を走行させるモータ93に電力を供給するバッテリシステム100は、ベースプレート9を車両のシャーシ92とすることができる。このバッテリシステム100は、車両のシャーシ92の上に載せられ、エンドプレート3に設けた貫通孔3aに固定ネジ23を挿通し、固定ネジ23をシャーシ92に設けた雌ねじ孔(図示せず)にねじ込んで、車両のシャーシ92に固定される。以上のバッテリシステム100は、ベースプレート9を車両のシャーシ92とするが、ベースプレートは必ずしも車両のシャーシには特定しない。たとえば、図11に示すように、金属板でベースプレート9を製作して、このベースプレート9の上にバッテリシステム100を固定することができる。このバッテリシステム100は、ベースプレート9を車両のシャーシ92の上に固定して、車両に搭載できる。
As shown in FIG. 10, a battery system 100 that is mounted on a vehicle and supplies electric power to a motor 93 that runs the vehicle can use the base plate 9 as a chassis 92 of the vehicle. The battery system 100 is placed on a vehicle chassis 92, a fixing screw 23 is inserted into a through hole 3 a provided in the end plate 3, and the fixing screw 23 is inserted into a female screw hole (not shown) provided in the chassis 92. It is screwed and fixed to the chassis 92 of the vehicle. The battery system 100 described above uses the base plate 9 as the vehicle chassis 92, but the base plate is not necessarily specified as the vehicle chassis. For example, as shown in FIG. 11, the base plate 9 can be made of a metal plate, and the battery system 100 can be fixed on the base plate 9. The battery system 100 can be mounted on a vehicle with the base plate 9 fixed on a vehicle chassis 92.
以上のバッテリシステムは、以下の工程で組み立てられる。
(1)所定の個数の角形電池1を、間にスペーサ6を介在させる状態で、角形電池1の厚さ方向に積層して電池積層体2とする。このとき、互いに積層される複数の角形電池1は、封口板10Bの両端部にある正負の電極端子13が交互に逆向きとなるように積層する。
(2)電池積層体2の両端にエンドプレート3を配置し、一対のエンドプレート3を両側からプレス機(図示せず)で押圧して、エンドプレート3でもって、電池積層体2を所定の圧力で加圧し、角形電池1を圧縮して加圧状態に保持する。
(3)電池積層体2をエンドプレート3で加圧する状態で、電池積層体2の上面の定位置に表面プレート8を配置する。
(4)さらに、電池積層体2をエンドプレート3で加圧する状態で、一対のエンドプレート3にバインドバー4を連結して固定する。このとき、バインドバー4は、水平部4Xと垂直部4Yがエンドプレート3の外周面に配置されると共に、端面プレート4Tがエンドプレート3の外側面に配置される。
さらに、この状態で、プレス機によるエンドプレート3のプレス状態を解除して、端面プレート4Tをエンドプレート3の外側面に面接触状態に密着させる。その後、垂直部4Yを貫通する止ネジ24をエンドプレート3の外周面にネジ止めして固定する。
この状態で、電池積層体2は、バインドバー4で所定の間隔に保持される一対のエンドプレート3を介して所定の締め付け圧に保持される。
(5)電池積層体2の両側において、互いに隣接する角形電池1の対向する電極端子13同士をバスバー14で連結する。バスバー14は、表面プレート8の開口窓29に配置されて、この開口窓29から表出する電極端子13同士を接続する。バスバー14は、角形電池1を直列に接続し、あるいは直列と並列に接続する。バスバー14は、電極端子13にネジ止めされて、あるいは溶接されて電極端子13に接続される。
(6)電池積層体2をベースプレート9の上面に配置して固定する。電池積層体2は、バインドバー4の水平部4Xとエンドプレート3の貫通孔3aとを貫通する固定ネジ23を介してベースプレート9に固定される。 The above battery system is assembled in the following steps.
(1) Abattery stack 2 is formed by stacking a predetermined number of prismatic batteries 1 in the thickness direction of the prismatic battery 1 with a spacer 6 interposed therebetween. At this time, the plurality of prismatic batteries 1 stacked on each other are stacked such that the positive and negative electrode terminals 13 at both ends of the sealing plate 10B are alternately reversed.
(2) Theend plates 3 are arranged at both ends of the battery stack 2, and the pair of end plates 3 are pressed from both sides with a press machine (not shown), and the end plates 3 are used to hold the battery stack 2 in a predetermined manner. Pressurize with pressure to compress the square battery 1 and hold it in a pressurized state.
(3) Thesurface plate 8 is disposed at a fixed position on the upper surface of the battery stack 2 in a state where the battery stack 2 is pressed by the end plate 3.
(4) Further, thebind bar 4 is connected and fixed to the pair of end plates 3 in a state where the battery stack 2 is pressed by the end plates 3. At this time, in the bind bar 4, the horizontal portion 4 </ b> X and the vertical portion 4 </ b> Y are disposed on the outer peripheral surface of the end plate 3, and the end surface plate 4 </ b> T is disposed on the outer surface of the end plate 3.
Further, in this state, the press state of theend plate 3 by the press machine is released, and the end surface plate 4T is brought into close contact with the outer surface of the end plate 3 in a surface contact state. Thereafter, a set screw 24 penetrating the vertical portion 4Y is fixed to the outer peripheral surface of the end plate 3 by screwing.
In this state, thebattery stack 2 is held at a predetermined clamping pressure via a pair of end plates 3 held at a predetermined interval by the bind bar 4.
(5) On both sides of thebattery stack 2, the opposing electrode terminals 13 of the adjacent rectangular batteries 1 are connected by a bus bar 14. The bus bar 14 is disposed in the opening window 29 of the surface plate 8 and connects the electrode terminals 13 exposed from the opening window 29 to each other. The bus bar 14 connects the square batteries 1 in series or in series and parallel. The bus bar 14 is screwed to the electrode terminal 13 or welded to the electrode terminal 13.
(6) Thebattery stack 2 is disposed and fixed on the upper surface of the base plate 9. The battery stack 2 is fixed to the base plate 9 via a fixing screw 23 that passes through the horizontal portion 4X of the bind bar 4 and the through hole 3a of the end plate 3.
(1)所定の個数の角形電池1を、間にスペーサ6を介在させる状態で、角形電池1の厚さ方向に積層して電池積層体2とする。このとき、互いに積層される複数の角形電池1は、封口板10Bの両端部にある正負の電極端子13が交互に逆向きとなるように積層する。
(2)電池積層体2の両端にエンドプレート3を配置し、一対のエンドプレート3を両側からプレス機(図示せず)で押圧して、エンドプレート3でもって、電池積層体2を所定の圧力で加圧し、角形電池1を圧縮して加圧状態に保持する。
(3)電池積層体2をエンドプレート3で加圧する状態で、電池積層体2の上面の定位置に表面プレート8を配置する。
(4)さらに、電池積層体2をエンドプレート3で加圧する状態で、一対のエンドプレート3にバインドバー4を連結して固定する。このとき、バインドバー4は、水平部4Xと垂直部4Yがエンドプレート3の外周面に配置されると共に、端面プレート4Tがエンドプレート3の外側面に配置される。
さらに、この状態で、プレス機によるエンドプレート3のプレス状態を解除して、端面プレート4Tをエンドプレート3の外側面に面接触状態に密着させる。その後、垂直部4Yを貫通する止ネジ24をエンドプレート3の外周面にネジ止めして固定する。
この状態で、電池積層体2は、バインドバー4で所定の間隔に保持される一対のエンドプレート3を介して所定の締め付け圧に保持される。
(5)電池積層体2の両側において、互いに隣接する角形電池1の対向する電極端子13同士をバスバー14で連結する。バスバー14は、表面プレート8の開口窓29に配置されて、この開口窓29から表出する電極端子13同士を接続する。バスバー14は、角形電池1を直列に接続し、あるいは直列と並列に接続する。バスバー14は、電極端子13にネジ止めされて、あるいは溶接されて電極端子13に接続される。
(6)電池積層体2をベースプレート9の上面に配置して固定する。電池積層体2は、バインドバー4の水平部4Xとエンドプレート3の貫通孔3aとを貫通する固定ネジ23を介してベースプレート9に固定される。 The above battery system is assembled in the following steps.
(1) A
(2) The
(3) The
(4) Further, the
Further, in this state, the press state of the
In this state, the
(5) On both sides of the
(6) The
以上のバッテリシステムは、電動車両を走行させるモータに電力を供給する電源装置に最適である。ただ、本発明はバッテリシステムの用途を電動車両に搭載する電源装置には特定せず、たとえば、太陽光発電、風力発電などの自然エネルギーを蓄電する電源装置として使用でき、また深夜電力を蓄電する電源装置等の電源装置のように、大電力を蓄電する全ての用途に最適である。
The above battery system is optimal for a power supply device that supplies electric power to a motor that drives an electric vehicle. However, the present invention does not specify the use of the battery system as a power supply device mounted on an electric vehicle, and can be used, for example, as a power supply device that stores natural energy such as solar power generation or wind power generation, and stores midnight power. Like power supply devices such as power supply devices, it is optimal for all applications that store large amounts of power.
バッテリシステムを搭載する電動車両としては、エンジンとモータの両方で走行するハイブリッド自動車やプラグインハイブリッド自動車、あるいはモータのみで走行する電気自動車等の電動車両が利用でき、これらの電動車両の電源として使用される。
As an electric vehicle equipped with a battery system, an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and used as a power source for these electric vehicles. Is done.
(ハイブリッド自動車用バッテリシステム)
図13は、エンジンとモータの両方で走行するハイブリッド自動車にバッテリシステムを搭載する例を示す。この図に示すバッテリシステムを搭載した車両HVは、車両HVを走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給するバッテリシステム100と、バッテリシステム100の角形電池を充電する発電機94と、エンジン96、モータ93、バッテリシステム100、及び発電機94を搭載してなる車両本体90と、エンジン96又はモータ93で駆動されて車両本体90を走行させる車輪97とを備えている。バッテリシステム100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、バッテリシステム100の角形電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、バッテリシステム100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、バッテリシステム100の角形電池を充電する。 (Battery system for hybrid vehicles)
FIG. 13 shows an example in which a battery system is mounted on a hybrid vehicle that runs with both an engine and a motor. A vehicle HV equipped with the battery system shown in this figure has anengine 96 and a running motor 93 that run the vehicle HV, a battery system 100 that supplies power to the motor 93, and power generation that charges a square battery of the battery system 100. A vehicle body 90 on which the machine 94, the engine 96, the motor 93, the battery system 100, and the generator 94 are mounted, and wheels 97 that are driven by the engine 96 or the motor 93 to drive the vehicle body 90. . The battery system 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The vehicle HV travels by both the motor 93 and the engine 96 while charging and discharging the square battery of the battery system 100. The motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving. The motor 93 is driven by power supplied from the battery system 100. The generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked, and charges the prismatic battery of the battery system 100.
図13は、エンジンとモータの両方で走行するハイブリッド自動車にバッテリシステムを搭載する例を示す。この図に示すバッテリシステムを搭載した車両HVは、車両HVを走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給するバッテリシステム100と、バッテリシステム100の角形電池を充電する発電機94と、エンジン96、モータ93、バッテリシステム100、及び発電機94を搭載してなる車両本体90と、エンジン96又はモータ93で駆動されて車両本体90を走行させる車輪97とを備えている。バッテリシステム100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、バッテリシステム100の角形電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、バッテリシステム100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、バッテリシステム100の角形電池を充電する。 (Battery system for hybrid vehicles)
FIG. 13 shows an example in which a battery system is mounted on a hybrid vehicle that runs with both an engine and a motor. A vehicle HV equipped with the battery system shown in this figure has an
(電気自動車用バッテリシステム)
また、図14は、モータのみで走行する電気自動車にバッテリシステムを搭載する例を示す。この図に示すバッテリシステムを搭載した車両EVは、車両EVを走行させる走行用のモータ93と、このモータ93に電力を供給するバッテリシステム100と、このバッテリシステム100の角形電池を充電する発電機94と、モータ93、バッテリシステム100、及び発電機94を搭載してなる車両本体90と、モータ93で駆動されて車両本体90を走行させる車輪97とを備えている。バッテリシステム100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。モータ93は、バッテリシステム100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、バッテリシステム100の角形電池を充電する。 (Battery system for electric vehicles)
FIG. 14 shows an example in which a battery system is mounted on an electric vehicle that runs only with a motor. A vehicle EV equipped with the battery system shown in this figure includes a travelingmotor 93 that travels the vehicle EV, a battery system 100 that supplies electric power to the motor 93, and a generator that charges a rectangular battery of the battery system 100. 94, a vehicle main body 90 on which the motor 93, the battery system 100, and the generator 94 are mounted, and a wheel 97 that is driven by the motor 93 and causes the vehicle main body 90 to travel. The battery system 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The motor 93 is driven by power supplied from the battery system 100. The generator 94 is driven by energy when regeneratively braking the vehicle EV, and charges the square battery of the battery system 100.
また、図14は、モータのみで走行する電気自動車にバッテリシステムを搭載する例を示す。この図に示すバッテリシステムを搭載した車両EVは、車両EVを走行させる走行用のモータ93と、このモータ93に電力を供給するバッテリシステム100と、このバッテリシステム100の角形電池を充電する発電機94と、モータ93、バッテリシステム100、及び発電機94を搭載してなる車両本体90と、モータ93で駆動されて車両本体90を走行させる車輪97とを備えている。バッテリシステム100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。モータ93は、バッテリシステム100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、バッテリシステム100の角形電池を充電する。 (Battery system for electric vehicles)
FIG. 14 shows an example in which a battery system is mounted on an electric vehicle that runs only with a motor. A vehicle EV equipped with the battery system shown in this figure includes a traveling
(蓄電装置用バッテリシステム)
さらに、このバッテリシステムは、移動体用の動力源としてのみならず、定置型の蓄電用設備としても利用できる。例えば家庭用、工場用の電源として、太陽光や深夜電力等で充電し、必要時に放電する電源システム、あるいは日中の太陽光を充電して夜間に放電する街路灯用の電源や、停電時に駆動する信号機用のバックアップ電源等にも利用できる。このような例を図15に示す。この図に示すバッテリシステム100は、複数の電池ブロック81をユニット状に接続して電池ユニット82を構成している。各電池ブロック81は、複数の角形電池1が直列及び/又は並列に接続されている。各電池ブロック81は、電源コントローラ84により制御される。このバッテリシステム100は、電池ユニット82を充電用電源CPで充電した後、負荷LDを駆動する。このためバッテリシステム100は、充電モードと放電モードを備える。負荷LDと充電用電源CPはそれぞれ、放電スイッチDS及び充電スイッチCSを介してバッテリシステム100と接続されている。放電スイッチDS及び充電スイッチCSのON/OFFは、バッテリシステム100の電源コントローラ84によって切り替えられる。充電モードにおいては、電源コントローラ84は充電スイッチCSをONに、放電スイッチDSをOFFに切り替えて、充電用電源CPからバッテリシステム100への充電を許可する。また充電が完了し満充電になると、あるいは所定値以上の容量が充電された状態で負荷LDからの要求に応じて、電源コントローラ84は充電スイッチCSをOFFに、放電スイッチDSをONにして放電モードに切り替え、バッテリシステム100から負荷LDへの放電を許可する。また、必要に応じて、充電スイッチCSをONに、放電スイッチDSをONにして、負荷LDの電力供給と、バッテリシステム100への充電を同時に行うこともできる。 (Battery system for power storage device)
Furthermore, this battery system can be used not only as a power source for a mobile body but also as a stationary power storage facility. For example, as a power source for home and factory use, a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals. Such an example is shown in FIG. Thebattery system 100 shown in this figure forms a battery unit 82 by connecting a plurality of battery blocks 81 in a unit form. Each battery block 81 has a plurality of prismatic batteries 1 connected in series and / or in parallel. Each battery block 81 is controlled by a power supply controller 84. The battery system 100 drives the load LD after charging the battery unit 82 with the charging power source CP. For this reason, the battery system 100 includes a charge mode and a discharge mode. The load LD and the charging power source CP are connected to the battery system 100 via the discharging switch DS and the charging switch CS, respectively. ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the battery system 100. In the charging mode, the power controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging of the battery system 100 from the charging power source CP. Further, when the charging is completed and the battery is fully charged, or in response to a request from the load LD in a state where a capacity of a predetermined value or more is charged, the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge. The mode is switched and discharging from the battery system 100 to the load LD is permitted. Further, if necessary, the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the battery system 100 simultaneously.
さらに、このバッテリシステムは、移動体用の動力源としてのみならず、定置型の蓄電用設備としても利用できる。例えば家庭用、工場用の電源として、太陽光や深夜電力等で充電し、必要時に放電する電源システム、あるいは日中の太陽光を充電して夜間に放電する街路灯用の電源や、停電時に駆動する信号機用のバックアップ電源等にも利用できる。このような例を図15に示す。この図に示すバッテリシステム100は、複数の電池ブロック81をユニット状に接続して電池ユニット82を構成している。各電池ブロック81は、複数の角形電池1が直列及び/又は並列に接続されている。各電池ブロック81は、電源コントローラ84により制御される。このバッテリシステム100は、電池ユニット82を充電用電源CPで充電した後、負荷LDを駆動する。このためバッテリシステム100は、充電モードと放電モードを備える。負荷LDと充電用電源CPはそれぞれ、放電スイッチDS及び充電スイッチCSを介してバッテリシステム100と接続されている。放電スイッチDS及び充電スイッチCSのON/OFFは、バッテリシステム100の電源コントローラ84によって切り替えられる。充電モードにおいては、電源コントローラ84は充電スイッチCSをONに、放電スイッチDSをOFFに切り替えて、充電用電源CPからバッテリシステム100への充電を許可する。また充電が完了し満充電になると、あるいは所定値以上の容量が充電された状態で負荷LDからの要求に応じて、電源コントローラ84は充電スイッチCSをOFFに、放電スイッチDSをONにして放電モードに切り替え、バッテリシステム100から負荷LDへの放電を許可する。また、必要に応じて、充電スイッチCSをONに、放電スイッチDSをONにして、負荷LDの電力供給と、バッテリシステム100への充電を同時に行うこともできる。 (Battery system for power storage device)
Furthermore, this battery system can be used not only as a power source for a mobile body but also as a stationary power storage facility. For example, as a power source for home and factory use, a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals. Such an example is shown in FIG. The
バッテリシステム100で駆動される負荷LDは、放電スイッチDSを介してバッテリシステム100と接続されている。バッテリシステム100の放電モードにおいては、電源コントローラ84が放電スイッチDSをONに切り替えて、負荷LDに接続し、バッテリシステム100からの電力で負荷LDを駆動する。放電スイッチDSはFET等のスイッチング素子が利用できる。放電スイッチDSのON/OFFは、バッテリシステム100の電源コントローラ84によって制御される。また電源コントローラ84は、外部機器と通信するための通信インターフェースを備えている。図15の例では、UARTやRS-232c等の既存の通信プロトコルに従い、ホスト機器HTと接続されている。また必要に応じて、電源システムに対してユーザが操作を行うためのユーザインターフェースを設けることもできる。
The load LD driven by the battery system 100 is connected to the battery system 100 via the discharge switch DS. In the discharge mode of the battery system 100, the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the battery system 100. As the discharge switch DS, a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the battery system 100. The power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 15, the host device HT is connected in accordance with an existing communication protocol such as UART or RS-232c. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
各電池ブロック81は、信号端子と電源端子を備える。信号端子は、入出力端子DIと、異常出力端子DAと、接続端子DOとを含む。入出力端子DIは、他の電池ブロック81や電源コントローラ84からの信号を入出力するための端子であり、接続端子DOは他の電池ブロック81に対して信号を入出力するための端子である。また異常出力端子DAは、電池ブロック81の異常を外部に出力するための端子である。さらに電源端子は、電池ブロック81同士を直列、並列に接続するための端子である。また電池ユニット82は並列接続スイッチ85を介して出力ラインOLに接続されて互いに並列に接続されている。
Each battery block 81 includes a signal terminal and a power supply terminal. The signal terminals include an input / output terminal DI, an abnormal output terminal DA, and a connection terminal DO. The input / output terminal DI is a terminal for inputting / outputting a signal from the other battery block 81 or the power supply controller 84, and the connection terminal DO is a terminal for inputting / outputting a signal to / from the other battery block 81. . The abnormality output terminal DA is a terminal for outputting abnormality of the battery block 81 to the outside. Furthermore, the power supply terminal is a terminal for connecting the battery blocks 81 in series and in parallel. The battery units 82 are connected to the output line OL via the parallel connection switch 85 and are connected in parallel to each other.
本発明のバッテリシステムは、大電力が要求される車両のモータに電力を供給する電源装置や、自然エネルギーや深夜電力を蓄電する蓄電装置に最適に使用される。
The battery system of the present invention is optimally used for a power supply device that supplies power to a motor of a vehicle that requires a large amount of power, or a power storage device that stores natural energy or midnight power.
100…バッテリシステム
1…角形電池
2…電池積層体 2A…第1の表面
3…エンドプレート 3’…エンドプレート
3S…外側隅部
3a…貫通孔
3b…雌ねじ孔
4…バインドバー 4A…バインドバー
4B…バインドバー
4C…バインドバー
4X…水平部
4Y…垂直部
4Z…突出部
4T…端面プレート
4R…積層部
4S…内側隅部
4a…貫通孔
4b…貫通孔
7…スペーサ
8…表面プレート
9…ベースプレート 9a…雌ねじ孔
10…電池ケース 10A…外装缶
10B…封口板
11…排出弁
12…ガス排出口
13…電極端子
14…バスバー
15…冷却溝
16…冷却隙間
17…分離隙間
18…貫通孔
19…領域
20…冷却プレート
23…固定ネジ
24…止ネジ
29…開口窓
32…電池積層体
37…スペーサ 37A…露出部
81…電池ブロック
82…電池ユニット
84…電源コントローラ
85…並列接続スイッチ
90…車両本体
92…シャーシ
93…モータ
94…発電機
95…DC/ACインバータ
96…エンジン
97…車輪
202…電池積層体
203…エンドプレート
204…バインドバー 204X…水平部
204Y…垂直部
204T…端面プレート
EV…車両
HV…車両
LD…負荷
CP…充電用電源
DS…放電スイッチ
CS…充電スイッチ
OL…出力ライン
HT…ホスト機器
DI…入出力端子
DA…異常出力端子
DO…接続端子 DESCRIPTION OFSYMBOLS 100 ... Battery system 1 ... Square battery 2 ... Battery laminated body 2A ... 1st surface 3 ... End plate 3 '... End plate 3S ... Outer corner 3a ... Through-hole 3b ... Female screw hole 4 ... Bind bar 4A ... Bind bar 4B Bind bar 4C Bind bar 4X Horizontal portion 4Y Vertical portion 4Z Projection portion 4T End face plate 4R Laminated portion 4S Inner corner 4a Through hole 4b Through hole 7 Spacer 8 Surface plate 9 Base plate 9a ... Female screw hole 10 ... Battery case 10A ... Exterior can 10B ... Sealing plate 11 ... Discharge valve 12 ... Gas exhaust port 13 ... Electrode terminal 14 ... Bus bar 15 ... Cold Groove 16 ... Cooling gap 17 ... Separation gap 18 ... Through hole 19 ... Area 20 ... Cooling plate 23 ... Fixing screw 24 ... Set screw 29 ... Opening window 32 ... Battery stack 37 ... Spacer 37A ... Exposed part 81 ... Battery block 82 ... Battery unit 84 ... Power controller 85 ... Parallel connection switch 90 ... Vehicle main body 92 ... Chassis 93 ... Motor 94 ... Generator 95 ... DC / AC inverter 96 ... Engine 97 ... Wheel 202 ... Battery stack 203 ... End plate 204 ... Bind bar 204X ... Horizontal portion 204Y ... Vertical portion 204T ... End plate EV ... Vehicle HV ... Vehicle LD ... Load CP ... Power supply for charging DS ... Discharge switch CS ... Charge switch OL ... Output line HT ... Host equipment DI ... Input / output terminal DA ... Abnormal Output terminal DO ... Connection terminal
1…角形電池
2…電池積層体 2A…第1の表面
3…エンドプレート 3’…エンドプレート
3S…外側隅部
3a…貫通孔
3b…雌ねじ孔
4…バインドバー 4A…バインドバー
4B…バインドバー
4C…バインドバー
4X…水平部
4Y…垂直部
4Z…突出部
4T…端面プレート
4R…積層部
4S…内側隅部
4a…貫通孔
4b…貫通孔
7…スペーサ
8…表面プレート
9…ベースプレート 9a…雌ねじ孔
10…電池ケース 10A…外装缶
10B…封口板
11…排出弁
12…ガス排出口
13…電極端子
14…バスバー
15…冷却溝
16…冷却隙間
17…分離隙間
18…貫通孔
19…領域
20…冷却プレート
23…固定ネジ
24…止ネジ
29…開口窓
32…電池積層体
37…スペーサ 37A…露出部
81…電池ブロック
82…電池ユニット
84…電源コントローラ
85…並列接続スイッチ
90…車両本体
92…シャーシ
93…モータ
94…発電機
95…DC/ACインバータ
96…エンジン
97…車輪
202…電池積層体
203…エンドプレート
204…バインドバー 204X…水平部
204Y…垂直部
204T…端面プレート
EV…車両
HV…車両
LD…負荷
CP…充電用電源
DS…放電スイッチ
CS…充電スイッチ
OL…出力ライン
HT…ホスト機器
DI…入出力端子
DA…異常出力端子
DO…接続端子 DESCRIPTION OF
Claims (9)
- 複数の角形電池を積層してなる電池積層体と、
電池積層体の積層方向の両端部に配置してなる一対のエンドプレートと、
両端部を一対のエンドプレートの隅部に連結して、複数の角形電池を積層方向に加圧状態で固定してなるバインドバーとを備えるバッテリシステムであって、
前記バインドバーは、水平部と垂直部とを直角に連結して横断面形状をL字状としており、水平部と垂直部とは端縁に前記エンドプレートの外側面をカバーする端面プレートを連結しており、
前記バインドバーの水平部と垂直部が前記エンドプレートの外周面に位置し、前記端面プレートが前記エンドプレートの外側面を押圧して、一対のエンドプレートで電池積層体を積層方向に加圧すると共に、
前記バインドバーの水平部と垂直部と端面プレートとの内側隅部と、前記エンドプレートの外側隅部との間に、バインドバーとエンドプレートとを非接触状態とする分離隙間を設けてなることを特徴とするバッテリシステム。 A battery laminate formed by laminating a plurality of prismatic batteries;
A pair of end plates arranged at both ends in the stacking direction of the battery stack;
A battery system comprising a bind bar formed by connecting both end portions to corners of a pair of end plates and fixing a plurality of prismatic batteries in a pressurized state in a stacking direction,
The binding bar has a horizontal section and a vertical section connected at right angles to form an L-shaped cross section, and the horizontal section and the vertical section connect an end face plate that covers the outer surface of the end plate to the edge. And
The horizontal and vertical portions of the bind bar are positioned on the outer peripheral surface of the end plate, the end plate presses the outer surface of the end plate, and the battery stack is pressed in the stacking direction with a pair of end plates. ,
A separation gap is provided between the horizontal and vertical portions of the bind bar and the inner corners of the end plate and the outer corner of the end plate so that the bind bar and the end plate are not in contact with each other. A battery system characterized by - 前記エンドプレートの外側隅部が面取りされて、バインドバーとエンドプレートとの隅部を非接触状態とする分離隙間を設けてなる請求項1に記載されるバッテリシステム。 The battery system according to claim 1, wherein an outer corner portion of the end plate is chamfered to provide a separation gap in which the corner portion between the bind bar and the end plate is in a non-contact state.
- 前記バインドバーの水平部と垂直部と端面プレートとの隅部に貫通孔を設けて、バインドバーとエンドプレートとの隅部を非接触状態とする分離隙間を設けてなる請求項1に記載されるバッテリシステム。 The through-hole is provided in the corner part of the horizontal part of the said bind bar, a perpendicular | vertical part, and an end surface plate, and the separation clearance which makes the corner part of a bind bar and an end plate a non-contact state is provided. Battery system.
- 前記エンドプレートの外側隅部が面取りされると共に、バインドバーの水平部と垂直部と端面プレートとの隅部に貫通孔を設けて、バインドバーとエンドプレートとの隅部を非接触状態とする分離隙間を設けてなる請求項1に記載されるバッテリシステム。 The outer corner portion of the end plate is chamfered, and through holes are provided in the corner portions of the horizontal portion, the vertical portion, and the end plate of the bind bar so that the corner portions of the bind bar and the end plate are not in contact with each other. The battery system according to claim 1, wherein a separation gap is provided.
- 前記分離隙間でバインドバーとエンドプレートとが非接触状態となる面積が1mm2以上である請求項1から4のいずれかに記載されるバッテリシステム。 5. The battery system according to claim 1, wherein an area in which the bind bar and the end plate are not in contact with each other in the separation gap is 1 mm 2 or more.
- 前記エンドプレートの外形が四角形で、四角形の隅部に4本のバインドバーを連結してなる請求項1から5のいずれかに記載されるバッテリシステム。 The battery system according to any one of claims 1 to 5, wherein the outer shape of the end plate is a quadrangle, and four bind bars are connected to corners of the quadrangle.
- 前記角形電池が、電池ケースを金属ケースとする非水系電解液電池である請求項1から6のいずれかに記載されるバッテリシステム。 The battery system according to any one of claims 1 to 6, wherein the rectangular battery is a non-aqueous electrolyte battery using a battery case as a metal case.
- 請求項1から7のいずれかに記載のバッテリシステムを備えてなる電動車両であって、
前記バッテリシステムと、該バッテリシステムから電力供給される走行用のモータと、前記バッテリシステム及び前記モータを搭載してなる車両本体と、前記モータで駆動されて前記車両本体を走行させる車輪とを備えることを特徴とするバッテリシステムを備える電動車両。 An electric vehicle comprising the battery system according to any one of claims 1 to 7,
The battery system, a travel motor powered by the battery system, a vehicle body on which the battery system and the motor are mounted, and wheels that are driven by the motor and cause the vehicle body to travel. An electric vehicle provided with the battery system characterized by the above. - 請求項1から7のいずれかに記載のバッテリシステムを備えてなる蓄電装置であって、
前記バッテリシステムへの充放電を制御する電源コントローラを備えており、
前記電源コントローラでもって、外部からの電力により前記角形電池への充電を可能とすると共に、前記角形電池に対し充電を行うよう制御することを特徴とする蓄電装置。 A power storage device comprising the battery system according to any one of claims 1 to 7,
A power controller for controlling charging and discharging of the battery system;
A power storage device, wherein the power supply controller controls the prismatic battery to be charged while external battery power is allowed to be charged.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014529280A JP6184959B2 (en) | 2012-08-09 | 2013-08-01 | Battery system, vehicle including battery system, and power storage device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-176715 | 2012-08-09 | ||
JP2012176715 | 2012-08-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014024431A1 true WO2014024431A1 (en) | 2014-02-13 |
Family
ID=50067686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/004656 WO2014024431A1 (en) | 2012-08-09 | 2013-08-01 | Battery system, vehicle provided with battery system, and electricity storage device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6184959B2 (en) |
WO (1) | WO2014024431A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016020245A1 (en) * | 2014-08-06 | 2016-02-11 | Robert Bosch Gmbh | Frame device for accommodating storage cells of an energy storage module |
EP3217450A1 (en) * | 2016-03-07 | 2017-09-13 | Kabushiki Kaisha Toshiba | Battery module |
EP3300136A4 (en) * | 2015-11-30 | 2018-03-28 | LG Chem, Ltd. | Clamping member and battery module using same |
WO2019064722A1 (en) * | 2017-09-29 | 2019-04-04 | 三洋電機株式会社 | Power supply device |
EP3373360B1 (en) * | 2017-03-07 | 2020-06-03 | Kabushiki Kaisha Toshiba | Battery module |
CN111742423A (en) * | 2018-02-26 | 2020-10-02 | 日本汽车能源株式会社 | Battery module |
WO2020202671A1 (en) * | 2019-03-29 | 2020-10-08 | 三洋電機株式会社 | Power supply device, electric vehicle and power storage device using same, fastening member for power supply device, method of manufacturing power supply device, and method of manufacturing fastening member for power supply device |
JP2021017665A (en) * | 2019-07-19 | 2021-02-15 | 津田駒工業株式会社 | Weft insertion device for air jet loom |
EP3734688A4 (en) * | 2017-12-25 | 2021-04-14 | SANYO Electric Co., Ltd. | Power supply device, vehicle equipped with power supply device, and power storage device |
CN112673517A (en) * | 2018-09-14 | 2021-04-16 | 三洋电机株式会社 | Battery system, vehicle with battery system, and power storage device |
WO2021241419A1 (en) * | 2020-05-29 | 2021-12-02 | パナソニックIpマネジメント株式会社 | Electric power storage module |
JP2022055798A (en) * | 2020-09-29 | 2022-04-08 | プライムプラネットエナジー&ソリューションズ株式会社 | Power storage module and manufacturing method thereof |
EP4080657A1 (en) * | 2021-04-21 | 2022-10-26 | Prime Planet Energy & Solutions, Inc. | Power storage module and method of manufacturing same |
JP7528973B2 (en) | 2022-03-30 | 2024-08-06 | トヨタ自動車株式会社 | Battery case |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010272518A (en) * | 2009-04-24 | 2010-12-02 | Nissan Motor Co Ltd | Battery pack |
JP2011060623A (en) * | 2009-09-11 | 2011-03-24 | Sanyo Electric Co Ltd | Battery pack |
JP2011222490A (en) * | 2010-03-24 | 2011-11-04 | Denso Corp | Battery pack |
-
2013
- 2013-08-01 JP JP2014529280A patent/JP6184959B2/en active Active
- 2013-08-01 WO PCT/JP2013/004656 patent/WO2014024431A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010272518A (en) * | 2009-04-24 | 2010-12-02 | Nissan Motor Co Ltd | Battery pack |
JP2011060623A (en) * | 2009-09-11 | 2011-03-24 | Sanyo Electric Co Ltd | Battery pack |
JP2011222490A (en) * | 2010-03-24 | 2011-11-04 | Denso Corp | Battery pack |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016020245A1 (en) * | 2014-08-06 | 2016-02-11 | Robert Bosch Gmbh | Frame device for accommodating storage cells of an energy storage module |
US9893334B2 (en) | 2014-08-06 | 2018-02-13 | Robert Bosch Gmbh | Frame device for accommodating storage cells of an energy storage module |
EP3300136A4 (en) * | 2015-11-30 | 2018-03-28 | LG Chem, Ltd. | Clamping member and battery module using same |
US11088388B2 (en) | 2015-11-30 | 2021-08-10 | Lg Chem, Ltd. | Clamping member and battery module using the same |
EP3217450A1 (en) * | 2016-03-07 | 2017-09-13 | Kabushiki Kaisha Toshiba | Battery module |
JP2017162810A (en) * | 2016-03-07 | 2017-09-14 | 株式会社東芝 | Battery module |
EP3373360B1 (en) * | 2017-03-07 | 2020-06-03 | Kabushiki Kaisha Toshiba | Battery module |
US10741816B2 (en) | 2017-03-07 | 2020-08-11 | Kabushiki Kaisha Toshiba | Battery module |
WO2019064722A1 (en) * | 2017-09-29 | 2019-04-04 | 三洋電機株式会社 | Power supply device |
JP7173977B2 (en) | 2017-09-29 | 2022-11-17 | 三洋電機株式会社 | power supply |
JPWO2019064722A1 (en) * | 2017-09-29 | 2020-11-05 | 三洋電機株式会社 | Power supply |
EP3734688A4 (en) * | 2017-12-25 | 2021-04-14 | SANYO Electric Co., Ltd. | Power supply device, vehicle equipped with power supply device, and power storage device |
CN111742423B (en) * | 2018-02-26 | 2023-01-03 | 日本汽车能源株式会社 | Battery module |
CN111742423A (en) * | 2018-02-26 | 2020-10-02 | 日本汽车能源株式会社 | Battery module |
CN112673517B (en) * | 2018-09-14 | 2022-11-04 | 三洋电机株式会社 | Battery system, vehicle with battery system, and power storage device |
CN112673517A (en) * | 2018-09-14 | 2021-04-16 | 三洋电机株式会社 | Battery system, vehicle with battery system, and power storage device |
CN113646956A (en) * | 2019-03-29 | 2021-11-12 | 三洋电机株式会社 | Power supply device, electrically powered vehicle using same, power storage device, fastening member for power supply device, method for manufacturing power supply device, and method for manufacturing fastening member for power supply device |
WO2020202671A1 (en) * | 2019-03-29 | 2020-10-08 | 三洋電機株式会社 | Power supply device, electric vehicle and power storage device using same, fastening member for power supply device, method of manufacturing power supply device, and method of manufacturing fastening member for power supply device |
CN113646956B (en) * | 2019-03-29 | 2023-11-28 | 三洋电机株式会社 | Power supply device, electric vehicle using same, power storage device, power supply device fastening member, power supply device manufacturing method, and power supply device fastening member manufacturing method |
JP7481325B2 (en) | 2019-03-29 | 2024-05-10 | 三洋電機株式会社 | Power supply device, electric vehicle using same, and power storage device, fastening member for power supply device, method for manufacturing power supply device, and method for manufacturing fastening member for power supply device |
JP2021017665A (en) * | 2019-07-19 | 2021-02-15 | 津田駒工業株式会社 | Weft insertion device for air jet loom |
WO2021241419A1 (en) * | 2020-05-29 | 2021-12-02 | パナソニックIpマネジメント株式会社 | Electric power storage module |
JP2022055798A (en) * | 2020-09-29 | 2022-04-08 | プライムプラネットエナジー&ソリューションズ株式会社 | Power storage module and manufacturing method thereof |
JP7286599B2 (en) | 2020-09-29 | 2023-06-05 | プライムプラネットエナジー&ソリューションズ株式会社 | Storage module and manufacturing method thereof |
EP4080657A1 (en) * | 2021-04-21 | 2022-10-26 | Prime Planet Energy & Solutions, Inc. | Power storage module and method of manufacturing same |
JP7528973B2 (en) | 2022-03-30 | 2024-08-06 | トヨタ自動車株式会社 | Battery case |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014024431A1 (en) | 2016-07-25 |
JP6184959B2 (en) | 2017-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6184959B2 (en) | Battery system, vehicle including battery system, and power storage device | |
JP7284710B2 (en) | Power supply device, vehicle equipped with power supply device, and power storage device | |
WO2014034107A1 (en) | Power source device, electric vehicle provided with power source device, and power storage device | |
CN110832665B (en) | Power supply device, vehicle provided with same, and power storage device | |
JP6073583B2 (en) | Power supply device, vehicle including this power supply device, and power storage device | |
CN111630706B (en) | Power supply device, and vehicle and power storage device provided with power supply device | |
JP7260486B2 (en) | Power supply device, vehicle equipped with power supply device, and power storage device | |
WO2014034057A1 (en) | Battery system, electric vehicle equipped with battery system and electricity storage device | |
WO2014010438A1 (en) | Battery system, and vehicle and power storage device equipped with battery system | |
JP2012160347A (en) | Power supply and vehicle with power supply | |
WO2014024432A1 (en) | Vehicle battery system and electric vehicle provided with battery system | |
WO2012165493A1 (en) | Power source device for supplying power and vehicle provided with power source device | |
JP6271178B2 (en) | Battery device, electric vehicle and power storage device including the battery device | |
WO2019187315A1 (en) | Power supply device and electric vehicle provided with power supply device | |
WO2013084756A1 (en) | Power source device, vehicle equipped with same and electricity storage device | |
JP6177776B2 (en) | Battery system, vehicle including battery system, and power storage device | |
CN112514146B (en) | Power supply device, vehicle having the same, and buffer body | |
WO2012147801A1 (en) | Power supply device and vehicle equipped with power supply device | |
WO2012173069A1 (en) | Power unit for electric power and vehicle equipped with power unit | |
JP7286668B2 (en) | Battery system, vehicle equipped with battery system, and power storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13828403 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014529280 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13828403 Country of ref document: EP Kind code of ref document: A1 |