WO2013084756A1 - Power source device, vehicle equipped with same and electricity storage device - Google Patents
Power source device, vehicle equipped with same and electricity storage device Download PDFInfo
- Publication number
- WO2013084756A1 WO2013084756A1 PCT/JP2012/080658 JP2012080658W WO2013084756A1 WO 2013084756 A1 WO2013084756 A1 WO 2013084756A1 JP 2012080658 W JP2012080658 W JP 2012080658W WO 2013084756 A1 WO2013084756 A1 WO 2013084756A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- supply device
- battery
- cooling plate
- separator
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/64—Heating or cooling; Temperature control characterised by the shape of the cells
- H01M10/647—Prismatic or flat cells, e.g. pouch cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/249—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/617—Types of temperature control for achieving uniformity or desired distribution of temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6556—Solid parts with flow channel passages or pipes for heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6569—Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/209—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/233—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
- H01M50/24—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/289—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a power supply device in which a plurality of prismatic battery cells are stacked, a vehicle including the power supply device, and a power storage device, and more particularly, a motor that is mounted on an electric vehicle such as a hybrid vehicle, a fuel cell vehicle, an electric vehicle, and an electric motorcycle.
- a power supply device that supplies power to a large-current power supply used in power storage devices for home use, factories, etc.
- the power supply device can increase the output voltage by connecting a large number of rectangular battery cells in series, and can increase the charge / discharge current by connecting them in parallel. Therefore, a high-current, high-output power supply device used for the power supply of a motor that runs an automobile or the like has a plurality of battery cells connected in series to increase the output voltage.
- a power supply device used for this type of application has a metal end plate fastened with a bind bar as a battery stack in which a plurality of rectangular battery cells are stacked.
- the prismatic battery cell used as a power supply device needs to be cooled because it may generate heat due to charge and discharge and deteriorate. For this reason, conventionally, a cooling air passage is provided between adjacent prismatic battery cells of the battery stack, and air cooling is performed to cool the prismatic battery cells from the side by heat exchange with the cooling air. The method was adopted. Further, in recent years, a refrigerant cooling system that performs cooling more efficiently by placing a battery stack on the upper surface of a cooling plate in which a refrigerant is circulated and thermally connecting the bottom surface of the rectangular battery cell and the cooling plate. Has also been developed (see, for example, Patent Document 1). An example of a battery stack using such a refrigerant cooling system is shown in FIG. Note that the thermal coupling or the thermal coupling state referred to here indicates a state where the two members are in contact with each other so that heat transfer occurs.
- each separator 920 includes a plurality of separators 920.
- the separator 920 is interposed between the rectangular battery cells 910 to insulate them.
- Each square battery cell 910 is sandwiched between separators 920 on both sides. Therefore, each separator 920 is formed in a size and shape that can cover the rectangular battery cell 910.
- metal end plates are arranged on both end faces of the assembled battery 911.
- the assembled battery 910 is fastened by fixing the end plates at both ends with a bind bar.
- the separator 920 is in a state where the upper electrode portion and the bottom portion of the rectangular battery cell 910 are opened.
- the assembled battery 911 has a heat conductive sheet 940 disposed at the bottom of the stacked rectangular battery cells 910 and a cooling plate 912 disposed at the bottom of the heat conductive sheet 940.
- each square battery cell 910 can release heat to the cooling plate 912 side via the heat conductive sheet 940.
- the plurality of prismatic battery cells 910 can stabilize the temperature.
- the prismatic battery cells located on the end faces of the battery stack are particularly easily cooled compared to other prismatic battery cells located in the middle portion.
- a temperature distribution occurs in the stacking direction of the rectangular battery cells. This is because, in the battery laminate 811 shown in the side view of FIG. 14, the rectangular battery cell 810A located on the end face is adjacent to the metal end plate 830 via the end separator 821, as shown in the sectional view of FIG.
- the metal end plate 830 is thermally coupled to the cooling plate 812, which is considered to cause heat dissipation from the end face side of the prismatic battery cell 810A.
- the heat conductive sheet 840 interposed between the bottom surface of the battery stack 811 and the cooling plate 812 is pressed in order to eliminate the gap between the bottom surface of the rectangular battery cell 810 and the cooling plate 812 to enhance thermal coupling.
- the elastic member which is easy to deform is used. For this reason, when the pressing force to the cooling plate 812 of the battery laminated body 811 is small, as shown in the expanded sectional view of FIG. 16, the deformation amount of the heat conductive sheet 840 is also small. However, when the pressing force increases, the heat conductive sheet 840 is compressed and the amount of deformation increases as shown in the enlarged cross-sectional view of FIG. 17, and as a result, the heat conductive sheet 840 extends in the stacking direction of the rectangular battery cells 810.
- the end plate 830 and the cooling plate 812 disposed on the end surface of the battery stack 811 are thermally connected to each other by the stretched heat conductive sheet 840, and this is combined with the fact that the end plate 830 is made of metal.
- the heat of the prismatic battery cell 810 ⁇ / b> A is taken from the side surface from the end face with which the end plate 830 is in contact. There was a problem of going too far. As shown in the graph of the temperature distribution in the stacking direction shown superimposed on the battery stack of FIG.
- the temperature of the prismatic battery cells 810 ⁇ / b> A on both end faces of the battery stack 811 drops more than the other prismatic battery cells 810, A temperature difference is generated depending on the position of the prismatic battery cell 810, and this non-uniform temperature affects the life and performance of the assembled battery.
- a main object of the present invention is to provide a power supply device that maintains a substantially uniform temperature of stacked rectangular battery cells, a vehicle including the power supply device, and a power storage device.
- a battery stack formed by stacking a plurality of rectangular battery cells and the battery stack are fastened in the stacking direction. Insulates the end plate made of metal disposed on both end faces, the separator having insulating properties disposed between the square battery cells, and the square battery cell located at both ends of the battery stack and the end plate. Insulating end separators arranged for cooling, cooling plates for cooling by being thermally coupled to one surface of the battery stack, and flexibility arranged between the battery stack and the cooling plates It is a power supply device provided with the heat conductive sheet which has, The spacer part which inhibits the thermal coupling with the said cooling plate and the said end plate through the said heat conductive sheet can be provided.
- the power supply device can prevent the prismatic battery cells adjacent to the end plate from being cooled via the end plate by suppressing the thermal contact between the end plate and the heat conductive sheet. That is, heat dissipation from the end plate to the cooling plate can be prevented, and heat can be radiated only by the cooling plate via the heat conductive sheet on which the battery stack is placed, so that the battery stack can be at a substantially uniform temperature. it can.
- the spacer portion is integrally formed at the bottom portion of the end separator, the spacer portion is provided toward the bottom portion of the end plate, and the cooling plate via the heat conductive sheet is provided.
- the spacer portion can be disposed on the end plate, and the end plate can be placed on the spacer portion.
- the end plate can suppress the thermal contact between the cooling plate and the end plate via the heat conductive sheet by the spacer portion formed integrally with the end separator. Heat can be reduced.
- the said spacer part thicker than the thickness of the said end separator between the said square battery cell and the said end plate.
- the heat transfer amount decreases in proportion to the distance by increasing the thickness of the spacer portion while suppressing the extension of the battery stack in the stacking direction, so that the heat of the adjacent rectangular battery cells passes through the end plate. And it can suppress transmitting to a cooling plate via a heat conductive sheet.
- the power supply device which concerns on a 4th side surface
- multiple protrusion pieces can be provided in the direction of the said cooling plate.
- a space can be formed for each protruding piece, and since the thermal conductivity of air is small, the thermal conductivity can be reduced by the space formation, and the heat generation of the adjacent rectangular battery cells passes through the end plate to generate heat. Propagation to the cooling plate via the conductive sheet can be further suppressed.
- the thermal conductivity of the said end separator can be made into resin lower than the said separator.
- the heat conductivity to an end plate can be reduced by reducing the heat conductivity from the adjacent square battery cell.
- the heat conduction to the cooling plate can be further reduced by having the spacer portion.
- coolant can be circulated through the inside of the said cooling plate.
- the power supply device which concerns on a 7th side surface, it can be set as the sheet
- a heat conductive sheet can compress-deform by being pressed between a square battery cell and a cooling plate, can raise an adhesion degree, and can be in a heat-bonded state efficiently.
- vehicle according to the eighth aspect can be provided with the power supply device described above.
- the power storage device according to the ninth aspect can include the power supply device described above.
- FIG. 1 is a perspective view showing a structure of an end separator according to Example 1.
- FIG. 6 is a perspective view showing a structure of an end separator according to Embodiment 2.
- FIG. 6 is a perspective view showing a structure of an end separator according to Embodiment 3.
- FIG. FIG. 3 is a schematic enlarged cross-sectional view in the stacking direction on one side end plate side of the battery stack according to Example 1; It is a block diagram which shows an example of the vehicle carrying a power supply device. It is a block diagram which shows the other example of the vehicle carrying a power supply device. It is a block diagram which shows the example applied to the power supply device for electrical storage. It is a schematic side view to the lamination direction of the battery laminated body which removed the bind bar in an experiment example. It is a schematic sectional drawing to the lamination direction by the one side end plate side of the battery laminated body in an experiment example.
- FIG. 4 is a schematic enlarged cross-sectional view in the stacking direction on one end plate side of the battery stack in Experimental Example 1.
- FIG. 6 is a schematic enlarged cross-sectional view in the stacking direction on one end plate side of the battery stack in Experimental Example 2.
- FIG. It is a schematic sectional drawing which shows the conventional assembled battery.
- each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
- the contents described in some examples and embodiments may be used in other examples and embodiments.
- FIG. 1 is a schematic exploded perspective view of the power supply device according to the embodiment
- FIG. 2 is a perspective view of one battery stack shown in FIG. 1
- FIG. 3 is a cooling of the battery stack shown in FIG.
- FIG. 4 is an exploded perspective view of the battery stack shown in FIG. 2 as viewed from below
- FIG. 5 is an exploded perspective view of the battery stack shown in FIG. 2, and
- FIG. The schematic sectional drawing which looked at the battery laminated body shown in FIG. (Power supply device 100)
- the external appearance of the power supply device 100 is a box shape having a rectangular upper surface.
- the battery stack 10 is formed by the outer upper case 1 having a U-shaped cross section and the outer bottom case 3 having a U-shaped cross section.
- both end edges of the outer case 1 are covered with the end cover 2.
- flanges 4A and 4B projecting vertically are provided on both side surfaces in the longitudinal direction of the outer case 1 and the outer case 3 so as to be easily fixed when mounted on the vehicle.
- the flange 4A and the flange 4B are provided with screw holes to facilitate screwing using the screw holes. (Battery laminate 10)
- the battery stack 10 has a substantially rectangular parallelepiped shape.
- the top cover 7 is disposed at the top and the cooling plate 21 is disposed at the bottom.
- the battery laminated body 10 arrange
- the bind bar 6 is a member for fixing the battery stack 10 by fixing the end plates 5 on both end faces.
- the bind bar 6 has a substantially rectangular shape with an area substantially the same as the side surface of the battery stack 10.
- the bind bar 6 has a bent portion 6A in which both end surfaces of the battery stack 10 are bent substantially vertically.
- the bent portion 6A shown in FIG. 5 is fixed by screwing a set screw 19 into the female screw holes 5A of the end plates 5 at both ends. Thereby, the battery laminated body 10 has fastened the end plate 5 with the bind bar 6.
- the bind bar 6 is fixed using a connector 8 for locking the top cover 7 at the top of the battery stack 10 and further fixing the cooling plate 21 at the bottom of the battery stack 10.
- the specific bind bar 6 has a locking portion 6B whose upper end portion is bent substantially vertically, and is locked to the side end portion of the top cover 7.
- the bind bar 6 has connecting pieces 6C that protrude at three locations on the lower end. As shown in FIG. 4, the connecting piece 6 ⁇ / b> C is connected to a bent portion 8 ⁇ / b> C in which the connecting tool 8 is bent substantially vertically. In the connection method, the engagement hook 6D protruding from the connection piece 6C is connected to the connection hole 8D opened in the bent portion 8C.
- the battery stack 10 locks the top cover 7 by the locking portion 6B of the bind bar 6 and fixes the cooling plate 21 by the connecting piece 6C of the bind bar 6 and the bent portion 8C of the connecting tool 8. Therefore, it is fastened while achieving integration in the vertical direction. (Cooling plate 21)
- the battery stack 10 has a plurality of prismatic battery cells 11 stacked as shown in FIG. Since the square battery cell 11 generates heat by charging and discharging, it needs to be cooled. Therefore, a cooling plate 21 is disposed at the bottom of the heated battery stack 10. The cooling plate 21 is arranged to cool the heat generated by the rectangular battery cells 11 of the battery stack 10. As shown in FIG. 3, the cooling plate 21 includes a refrigerant path 23. The refrigerant path 23 is provided at two places as an entrance and exit, and is connected to a pipe meandering inside the cooling plate 21. In the cooling plate 21, the refrigerant is circulated from the cooling mechanism 20 to the refrigerant path 23 of the cooling plate 21.
- the refrigerant path 23 is supplied with a refrigerant such as carbon dioxide in a liquid state, vaporizes the refrigerant inside, and cools the cooling plate 21 with heat of vaporization. As a result, the plurality of rectangular battery cells 11 in the battery stack 10 are cooled by the cooling plate 21.
- a refrigerant such as carbon dioxide in a liquid state
- the cooling mechanism 20 includes a compressor 26 that pressurizes the gaseous refrigerant vaporized in the refrigerant path 23, a cooling heat exchanger 27 that cools and liquefies the refrigerant compressed by the compressor 26, and the cooling heat exchanger 27. And an expansion valve 28 for supplying the refrigerant liquefied to the refrigerant path 23.
- the liquid refrigerant supplied through the expansion valve 28 is vaporized in the refrigerant path 23 in the cooling plate 21, cools the cooling plate 21 with heat of vaporization, and is discharged to the cooling mechanism 20. Therefore, the refrigerant circulates through the refrigerant path 23 of the cooling plate 21 and the cooling mechanism 20 to cool the cooling plate 21.
- the cooling mechanism 20 cools the cooling plate 21 to a low temperature with the heat of vaporization of the refrigerant, but the cooling plate can also be cooled regardless of the heat of vaporization.
- the cooling plate supplies a refrigerant such as brine cooled to a low temperature to the refrigerant path, and cools the cooling plate by releasing heat to the refrigerant.
- the cooling mechanism 20 controls the cooling capacity of the cooling plate 21 with a temperature sensor (not shown) that detects the temperature of the rectangular battery cells 11 in the battery stack 10. That is, when the temperature of the prismatic battery cell becomes higher than the preset cooling start temperature, the coolant is supplied to the cooling plate 21 for cooling, and when the prismatic battery cell becomes lower than the cooling stop temperature, The supply of the refrigerant is stopped, and the rectangular battery cell is controlled to a preset temperature range. (Thermal conductive sheet 22)
- the cooling plate 21 and the prismatic battery cell 11 are not in direct contact with each other, but as shown in a perspective view seen from below shown in FIG. 4, the heat conductive sheet 22 is interposed between the cooling plate 21 and the prismatic battery cell 11. It has.
- the bottom surface of the prismatic battery cell 11 is in an exposed state.
- the battery stack 10 is mounted in a state in which a deformable heat conductive sheet 22 is attached to the bottom of the exposed rectangular battery cell 11 and pressed by the cooling plate 21 from below to compress the heat conductive sheet 22. .
- the heat conductive sheet 22 is deformed to eliminate a gap between the prismatic battery cell 11 and the cooling plate 21, eliminate the heat insulation effect by the air layer, and efficiently transfer the heat of the prismatic battery cell 11 to the cooling plate 21. It can dissipate heat.
- the heat conductive sheet 22 is made of a material that is insulative and excellent in heat conduction, and more preferably has a certain degree of elasticity. Examples of such a material include acrylic, urethane, epoxy, and silicone resins. By doing in this way, the cooling performance by the cooling plate 21 can be improved, electrically insulating between the battery laminated body 10 and the cooling plate 21.
- FIG. In particular, when the outer can of the rectangular battery cell 11 is made of metal and the cooling plate 21 is made of metal, it is necessary to insulate the battery so as not to be electrically connected to the bottom surface of the rectangular battery cell 11. Moreover, in order to maintain insulation reliably, an additional insulating film can also be interposed. For example, a rectangular battery cell can improve insulation by covering an outer can with an insulating shrink tube (heat shrink film) or the like. (Square battery cell 11)
- the stacked rectangular battery cell 11 shown in FIG. 5 has a thin and substantially box shape made of a rectangular battery, and a pair of positive and negative electrode terminals 14 protrude upward at both ends of the upper surface, and between the electrode terminals 14. Is provided with a safety valve 15.
- the safety valve 15 is configured to open when the internal pressure of the rectangular battery cell 11 rises to a predetermined value or more, and to release the internal gas. By opening the safety valve 15, the increase in the internal pressure of the rectangular battery cell 11 can be stopped.
- the unit cell constituting the rectangular battery cell is a rechargeable secondary battery such as a lithium ion secondary battery, a nickel-hydrogen battery, or a nickel-cadmium battery.
- a lithium ion secondary battery is used for a thin battery, there is an advantage that the charging capacity with respect to the capacity of the entire battery stack can be increased.
- the rectangular battery cell 11 is made of a metal outer can.
- an insulating separator 12 is interposed to prevent the outer cans of the adjacent rectangular battery cells 11 from coming into contact with each other and shorting out.
- both surfaces of the rectangular battery cell 11 are sandwiched between two separators 12.
- This separator 12 is provided with a peripheral wall in which the rectangular battery cells 11 can be arranged on both side surfaces.
- the peripheral wall covers both end surfaces and both side surfaces of the rectangular battery cell 11 with two separators 12, and includes a pair of electrode terminals 14 and a safety valve 15 disposed on the upper surface of the rectangular battery cell. It is formed so as to cover the removed part.
- the bottom surface of the separator 12 is provided with an opening through which the bottom of the rectangular battery cell 11 can be exposed and the heat conductive sheet 22 can be disposed. Further, the separator 12 is provided with a protruding piece 12 a for insulating between the rectangular battery cell 11 and the cooling plate 21.
- the outer can of the square battery cell can be made of an insulating material such as plastic. In this case, the prismatic battery cell does not need to be laminated by insulating the outer can, and therefore the separator can be made of metal.
- a separator can also connect a square battery cell by the fitting structure on both surfaces. By interposing the separator connected to the prismatic battery cell with the fitting structure, it is possible to prevent the displacement of the adjacent prismatic battery cells. (End separator 13)
- the battery stack 10 has a plurality of prismatic battery cells 11 and separators 12 stacked.
- an insulating end separator 13 is disposed.
- the end separator 13 is interposed between the end face prismatic battery cell 11 ⁇ / b> A and the end plate 5.
- the end separator 13 is formed of an insulating resin in order to insulate the end plate 5 formed of a metal and the rectangular battery cell 11A in order to increase the strength.
- the material has a relatively low conductivity.
- the battery stack 10 includes a plurality of prismatic battery cells 11, a plurality of separators 12, prismatic battery cells 11 ⁇ / b> A disposed at both ends thereof, and end separators 13 to form a battery block 9.
- the end separator 13 is formed in the same structure as the separator 12 in the shape of the prismatic battery cell 11 ⁇ / b> A disposed on the end face of the battery block 9. Further, the end separator 13 is provided with a protruding piece 13a for insulating between the rectangular battery cell 11A on the end face and the cooling plate 21.
- the shape of the end separator 13 on the end plate 5 side is provided with a spacer portion 13A having an area substantially equal to the bottom surface of the end plate 5, and further provided with guide portions 13b for holding both upper end surfaces of the end plate 5. ing.
- the heat conductive sheet 840 is stretched, the bottom of the end separator 830 comes into contact with the cooling plate 812, and heat may be transmitted.
- a spacer portion 13 ⁇ / b> A that is bent substantially perpendicularly to the end plate 5 side at the bottom of the end separator 13 is provided.
- This end plate 5 suppresses heat transfer from the end plate 5 to the cooling plate 21 by interposing a resin spacer portion 13 ⁇ / b> A having a thermal conductivity smaller than that of the heat conductive sheet 22 between the end plate 5 and the cooling plate 21. can do.
- the rectangular battery cell 11 ⁇ / b> A at the end of the adjacent battery stack 10 can prevent an extreme temperature drop via the end plate 5.
- the battery stack 10 is sandwiched between end plates 5 at both ends of the battery block 9. Furthermore, the square battery cell 11 has a bottom exposed from the opened portion of each separator 12. The exposed bottom portion of the rectangular battery cell 11 is thermally coupled to the cooling plate 21 via the heat conductive sheet 22.
- the heat conductive sheet 22 is slightly stretched in the stacking direction of the prismatic battery cells 11 by the pressing of the prismatic battery cells 11 and the cooling plate 21. For this reason, in order to prevent the end plate 5 and the heat conductive sheet 22 from being thermally coupled by such an extended portion, a spacer 13A is provided on the end plate 5 side at the bottom of the end separator 13. According to this configuration, the end plate 5 can be prevented from being cooled by the cooling plate 21.
- the end separator 13 in this embodiment by providing the spacer 13 ⁇ / b> A instead of the above-described aspect, it is possible to prevent an extreme temperature drop of the rectangular battery cells 11 ⁇ / b> A at both ends of the battery block 9.
- the power supply device having the above-described configuration can achieve uniform temperature distribution of the battery stack without increasing the dimension of the power supply device in the stacking direction. For this reason, the temperature of all the rectangular battery cells in the battery stack 10 can be controlled to the same level by the cooling plate 21 via the heat conductive sheet 22.
- the structure of the end separator 13 as Example 1 is shown in the perspective view of FIG.
- the end separator 13 is provided with a spacer portion 13 ⁇ / b> A protruding toward the bottom surface of the end plate 5 by integral molding.
- the end separator 13 includes a guide portion 13b that holds both ends of the upper portion of the end plate 5, and the end plate 5 is held by the guide portion 13b and the spacer portion 13A.
- the spacer portion 13 ⁇ / b> A has substantially the same area as the bottom surface of the end plate 5, and has a thickness substantially equal to the thickness of the end separator 13 between the rectangular battery cell 11 ⁇ / b> A on the end surface and the end plate 5.
- a positioning hole 13c that can screw the end plate 5 and the cooling plate 21 is formed in the spacer portion 13A.
- the material of the end separator 13 provided with the spacer portion 13A is preferably made of a resin having high insulation properties and high heat insulation properties in order to avoid conduction between the end face prismatic battery cells 11A and the cooling plate 21. . Since the end plate 5 can be suppressed from being cooled by the cooling plate 21 by providing the spacer portion 13 ⁇ / b> A, the prismatic battery cell 11 ⁇ / b> A at the end of the battery stack 10 is cooled via the end plate 5. Can be prevented.
- the distance between the end plate 5 and the cooling plate 21 changes according to the thickness of the spacer portion 13A.
- the spacer portion 13A is formed of a resin having a relatively low thermal conductivity.
- heat transfer from the spacer portion 13A to the cooling plate 21 is not completely eliminated.
- the thickness of the spacer portion 13A is substantially equal to the thickness of the end separator 13, but the present invention is not limited to such a configuration.
- the heat transfer between the end plate 5 and the cooling plate 21 can be further inhibited by forming the spacer portion thicker than the end separator.
- the end separator 13 is integrally formed with a spacer portion 13B having a partition wall thicker than the above-described spacer portion 13A.
- the thickness of the spacer portion 13B can be two to three times that of the spacer portion 13A.
- the end plate 5 is brought into contact with almost the entire surface of the spacer portion, but the present invention is not limited to this configuration.
- heat transfer through the spacer portion can be suppressed by bringing a part of the spacer portion into contact with the heat conductive sheet 22 or the cooling plate 21.
- FIG. 1 The end separator 13 has a spacer portion 13C in which a plurality of protruding legs 13d are formed below the spacer portion 13A.
- the protruding leg 13d of the spacer portion 13C can reduce the contact area with the heat conductive sheet 22 or the cooling plate 21.
- a space is formed between the protruding legs 13d of the spacer portion 13C.
- a material having a lower thermal conductivity than the separator 12 disposed between the rectangular battery cells 11 can be used as the material of the end separator 13 of Examples 1 to 3.
- a material having a lower thermal conductivity than the separator 12 disposed between the rectangular battery cells 11 can be used.
- a material such as polypropylene, which has a low thermal conductivity and a high insulating property can be used. According to this configuration, the amount of heat transferred from the rectangular battery cell 11 adjacent to the end plate 5 to the end plate 5 can be reduced by the end separator 13.
- the power supply device described above can be used as an in-vehicle battery system.
- a vehicle equipped with a power supply device an electric vehicle such as a hybrid car or a plug-in hybrid car that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and is used as a power source for these vehicles . (Power supply for hybrid vehicles)
- FIG. 11 shows an example in which a power supply device is mounted on a hybrid car that travels with both an engine and a motor.
- a vehicle HV equipped with the power supply device shown in this figure includes an engine 96 and a running motor 93 that run the vehicle HV, a battery system 100B that supplies power to the motor 93, and a generator that charges the battery of the battery system 100B. 94.
- the battery system 100B is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
- the vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the battery system 100B.
- the motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving.
- the motor 93 is driven by power supplied from the battery system 100B.
- the generator 94 is driven by the engine 96 or is driven by regenerative braking when braking the vehicle, and charges the battery of the battery system 100B
- FIG. 12 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor.
- a vehicle EV equipped with the power supply device shown in this figure includes a traveling motor 93 for traveling the vehicle EV, a battery system 100C for supplying electric power to the motor 93, and a generator 94 for charging a battery of the battery system 100C.
- the motor 93 is driven by power supplied from the battery system 100C.
- the generator 94 is driven by energy when regeneratively braking the vehicle EV, and charges the battery of the battery system 100C. (Power storage device for power storage)
- this power supply device can be used not only as a power source for a moving body but also as a stationary power storage device.
- a power source for home and factory use a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals.
- FIG. The power supply device 100A shown in this figure forms a battery unit 82 by connecting a plurality of battery stacks 81 in a unit shape.
- Each battery stack 81 has a plurality of prismatic battery cells connected in series and / or in parallel.
- Each battery stack 81 is controlled by a power controller 84.
- the power supply device 100A drives the load LD after charging the battery unit 82 with the charging power supply CP. For this reason, the power supply device 100A includes a charge mode and a discharge mode.
- the load LD and the charging power source CP are connected to the power supply device 100A via the discharging switch DS and the charging switch CS, respectively.
- ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply apparatus 100A.
- the power controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging from the charging power supply CP to the power supply device 100A.
- the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge.
- the mode is switched to permit discharge from the power supply device 100A to the load LD. If necessary, the charge switch CS can be turned on and the discharge switch DS can be turned on to simultaneously supply power to the load LD and charge the power supply device 100A.
- the load LD driven by the power supply device 100A is connected to the power supply device 100A via the discharge switch DS.
- the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the power supply device 100A.
- the discharge switch DS a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply apparatus 100A.
- the power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 13, the host device HT is connected according to an existing communication protocol such as UART or RS-232C. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
- Each battery stack 81 includes a signal terminal and a power supply terminal.
- the signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO.
- the pack input / output terminal DI is a terminal for inputting / outputting signals from other pack batteries and the power supply controller 84
- the pack connection terminal DO is for inputting / outputting signals to / from other pack batteries which are child packs.
- the pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside.
- the power supply terminal is a terminal for connecting the battery stacks 81 in series and in parallel.
- the power supply device 100A includes an equalization mode for equalizing the battery units 82.
- the battery units 82 are connected to the output line OL via the parallel connection switch 85 and connected in parallel to each other.
- an equalizing circuit 86 controlled by the power supply controller 84 is provided.
- the equalization circuit 86 suppresses variations in the remaining battery capacity among the plurality of battery units 82.
- the power supply device the vehicle including the power supply device, and the power storage device are suitably used as a power supply device for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle, or the like that can switch between the EV traveling mode and the HEV traveling mode. it can.
- a backup power supply device that can be mounted on a rack of a computer server, a backup power supply device for a wireless base station such as a mobile phone, a power storage device for home use and a factory, a power supply for a street light, etc. Also, it can be used as appropriate for applications such as a backup power source such as a traffic light.
- Cooling plate 920 ... Separator 940 ... Thermal conductive sheet HV, EV ... Vehicle LD ... Load CP ... Power supply for charging; DS ... Discharge switch; CS ... Charge switch OL ... Output line; HT ... Host device DI ... Pack input / output terminal; DA ... Pack abnormal output terminal; DO ... Pack connection terminal
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Aviation & Aerospace Engineering (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
[Problem] To maintain substantially uniform temperature for stacked rectangular cells which constitute a stacked-cell body.
[Solution] A power source device is provided with a stacked-cell body (10) constituted by a plurality of stacked rectangular cells (11), metallic endplates (5) arranged at both end faces of the stacked-cell body (10) to hold said stacked-cell body (10) in the stacking direction, insulating separators (12) arranged between each of the rectangular cells (11), insulating end separators (13) arranged to insulate the rectangular cells (11) positioned at both ends of the stacked-cell body (10) from said endplates (5), a cooling plate (21) thermally coupled to one surface of said stacked-cell body (10) to cool down the stacked-cell body, and a flexible thermal conducting sheet (22) arranged between said stacked-cell body (10) and said cooling plate (21). The power source device can include spacers (13A, 13B, 13C) which prevent the thermal coupling between said cooling plate (21) and said endplate (5) through said thermal conducting sheet (22).
Description
本発明は、複数の角形電池セルを積層した電源装置及びこれを備える車両並びに蓄電装置に関し、特にハイブリッド車、燃料電池自動車、電気自動車、電動オートバイ等の電動車両に搭載されて車両を走行させるモータの電源装置、あるいは家庭用、工場用の蓄電用途等に使用される大電流用の電源に電力を供給する電源装置を構成する角形電池セルを締結し、集積される角形電池セル間における温度格差の改善に関する。
The present invention relates to a power supply device in which a plurality of prismatic battery cells are stacked, a vehicle including the power supply device, and a power storage device, and more particularly, a motor that is mounted on an electric vehicle such as a hybrid vehicle, a fuel cell vehicle, an electric vehicle, and an electric motorcycle. Of prismatic battery cells constituting a power supply device that supplies power to a large-current power supply used in power storage devices for home use, factories, etc. Related to improvements.
電源装置は、多数の角形電池セルを直列に接続して出力電圧を高く、また並列に接続して充放電電流を大きくできる。したがって、自動車を走行させるモータの電源等に使用される大電流、大出力用の電源装置は、複数の電池セルを直列に接続して出力電圧を高くしている。この種の用途に使用される電源装置は、複数の角形電池セルを積層した電池積層体として、金属製のエンドプレートをバインドバーで締結している。
The power supply device can increase the output voltage by connecting a large number of rectangular battery cells in series, and can increase the charge / discharge current by connecting them in parallel. Therefore, a high-current, high-output power supply device used for the power supply of a motor that runs an automobile or the like has a plurality of battery cells connected in series to increase the output voltage. A power supply device used for this type of application has a metal end plate fastened with a bind bar as a battery stack in which a plurality of rectangular battery cells are stacked.
電源装置として利用される角形電池セルは、充放電により発熱を起こし劣化する可能性があるため、冷却する必要がある。このため、従来は電池積層体の、隣接する角形電池セル同士の間に冷却空気の通路を設け、ここに冷却空気を流すことで冷却空気との熱交換によって角形電池セルを側面から冷却する空冷方式が採用されていた。また近年は、内部に冷媒を循環させた冷却プレートの上面に電池積層体を載置して、角形電池セルの底面と冷却プレートとを熱結合させることで、より効率よく冷却を行う冷媒冷却方式も開発されている(例えば特許文献1参照)。このような冷媒冷却方式を用いた電池積層体の例を図18に示す。尚、ここで言う熱結合、あるいは熱結合状態とは、二つの部材の間で伝熱が生じるように接触した状態を示すものとする。
The prismatic battery cell used as a power supply device needs to be cooled because it may generate heat due to charge and discharge and deteriorate. For this reason, conventionally, a cooling air passage is provided between adjacent prismatic battery cells of the battery stack, and air cooling is performed to cool the prismatic battery cells from the side by heat exchange with the cooling air. The method was adopted. Further, in recent years, a refrigerant cooling system that performs cooling more efficiently by placing a battery stack on the upper surface of a cooling plate in which a refrigerant is circulated and thermally connecting the bottom surface of the rectangular battery cell and the cooling plate. Has also been developed (see, for example, Patent Document 1). An example of a battery stack using such a refrigerant cooling system is shown in FIG. Note that the thermal coupling or the thermal coupling state referred to here indicates a state where the two members are in contact with each other so that heat transfer occurs.
図18に示す組電池911は、複数のセパレータ920を備えている。セパレータ920は、角形電池セル910同士の間に介在されてこれらを絶縁する。各角形電池セル910は、両面をセパレータ920で挟み込まれる。よって各セパレータ920は、角形電池セル910を被覆できる大きさ及び形状に形成される。さらに組電池911の両端面には、金属製のエンドプレートが配置される。両端のエンドプレート同士をバインドバーにて固定することで、組電池910は締結される。
18 includes a plurality of separators 920. The assembled battery 911 illustrated in FIG. The separator 920 is interposed between the rectangular battery cells 910 to insulate them. Each square battery cell 910 is sandwiched between separators 920 on both sides. Therefore, each separator 920 is formed in a size and shape that can cover the rectangular battery cell 910. Further, metal end plates are arranged on both end faces of the assembled battery 911. The assembled battery 910 is fastened by fixing the end plates at both ends with a bind bar.
一方でセパレータ920は、角形電池セル910の上部の電極部及び底部を開口された状態としている。さらに組電池911は、積層された角形電池セル910の底部に熱伝導シート940を配置し、熱伝導シート940の底部に冷却プレート912を配置している。これにより、各角形電池セル910は、熱伝導シート940を介して、冷却プレート912側へ熱を放出することができる。この結果、複数の角形電池セル910は、温度を安定化させることができる
On the other hand, the separator 920 is in a state where the upper electrode portion and the bottom portion of the rectangular battery cell 910 are opened. Further, the assembled battery 911 has a heat conductive sheet 940 disposed at the bottom of the stacked rectangular battery cells 910 and a cooling plate 912 disposed at the bottom of the heat conductive sheet 940. Thereby, each square battery cell 910 can release heat to the cooling plate 912 side via the heat conductive sheet 940. As a result, the plurality of prismatic battery cells 910 can stabilize the temperature.
しかしながら、本発明者らが試験を行ったところ、この冷却方法では、電池積層体の端面に位置する角形電池セルが、中間部分に位置する他の角形電池セルに比べて、特に冷却され易くなって、角形電池セルの積層方向に温度分布を生じることが判明した。これは、図14の側面図に示す電池積層体811においては、図15の断面図に示すように、端面に位置する角形電池セル810Aがエンドセパレータ821を介して金属製のエンドプレート830と隣接されており、金属製のエンドプレート830が冷却プレート812と熱結合されることで、角形電池セル810Aの端面側から放熱が進むためと考えられる。
However, when the present inventors conducted a test, in this cooling method, the prismatic battery cells located on the end faces of the battery stack are particularly easily cooled compared to other prismatic battery cells located in the middle portion. Thus, it has been found that a temperature distribution occurs in the stacking direction of the rectangular battery cells. This is because, in the battery laminate 811 shown in the side view of FIG. 14, the rectangular battery cell 810A located on the end face is adjacent to the metal end plate 830 via the end separator 821, as shown in the sectional view of FIG. The metal end plate 830 is thermally coupled to the cooling plate 812, which is considered to cause heat dissipation from the end face side of the prismatic battery cell 810A.
特に電池積層体811の底面と冷却プレート812との間に介在される熱伝導シート840は、角形電池セル810底面と冷却プレート812との間の隙間を無くして熱結合を高めるため、押圧することで変形し易い弾性部材を用いている。このため、電池積層体811の冷却プレート812への押圧力が小さい場合は、図16の拡大断面図に示すように熱伝導シート840の変形量も小さい。しかしながら、押圧力が大きくなると、図17の拡大断面図に示すように熱伝導シート840が圧縮されて変形量も大きくなり、この結果、熱伝導シート840が角形電池セル810の積層方向へ延伸してしまう。このため、延伸された熱伝導シート840によって、電池積層体811の端面に配置されたエンドプレート830と冷却プレート812とは熱的に接続され、エンドプレート830が金属製であることとも相俟って、図15の断面図において矢印で示すようにエンドプレート830が接する端面から角形電池セル810Aの熱を、側面から奪う状態となり、この角形電池セル810Aの冷却が他の角形電池セル810よりも進みすぎてしまうという問題があった。図14の電池積層体に重ねて示す、積層方向における温度分布のグラフに示すように、電池積層体811の両端面の角形電池セル810Aの温度が、他の角形電池セル810よりも大きく落ち込み、角形電池セル810の位置によって温度差が生じることとなり、このような温度の不均一が原因となって組電池の寿命や性能に影響を与える。
In particular, the heat conductive sheet 840 interposed between the bottom surface of the battery stack 811 and the cooling plate 812 is pressed in order to eliminate the gap between the bottom surface of the rectangular battery cell 810 and the cooling plate 812 to enhance thermal coupling. The elastic member which is easy to deform is used. For this reason, when the pressing force to the cooling plate 812 of the battery laminated body 811 is small, as shown in the expanded sectional view of FIG. 16, the deformation amount of the heat conductive sheet 840 is also small. However, when the pressing force increases, the heat conductive sheet 840 is compressed and the amount of deformation increases as shown in the enlarged cross-sectional view of FIG. 17, and as a result, the heat conductive sheet 840 extends in the stacking direction of the rectangular battery cells 810. End up. For this reason, the end plate 830 and the cooling plate 812 disposed on the end surface of the battery stack 811 are thermally connected to each other by the stretched heat conductive sheet 840, and this is combined with the fact that the end plate 830 is made of metal. As shown by the arrows in the cross-sectional view of FIG. 15, the heat of the prismatic battery cell 810 </ b> A is taken from the side surface from the end face with which the end plate 830 is in contact. There was a problem of going too far. As shown in the graph of the temperature distribution in the stacking direction shown superimposed on the battery stack of FIG. 14, the temperature of the prismatic battery cells 810 </ b> A on both end faces of the battery stack 811 drops more than the other prismatic battery cells 810, A temperature difference is generated depending on the position of the prismatic battery cell 810, and this non-uniform temperature affects the life and performance of the assembled battery.
本発明は、従来のこのような問題点を解決するためになされたものである。本発明の主な目的は、積層される角形電池セルの略均一な温度を保った電源装置及びこれを備える車両並びに蓄電装置を提供することにある。
The present invention has been made to solve such conventional problems. A main object of the present invention is to provide a power supply device that maintains a substantially uniform temperature of stacked rectangular battery cells, a vehicle including the power supply device, and a power storage device.
上記の目的を達成するために、本発明の第1の側面に係る電源装置によれば、複数の角形電池セルを積層してなる電池積層体と、前記電池積層体を積層方向において締結するため両端面に配置された金属製のエンドプレートと、各角形電池セル同士の間に配置された絶縁性を有するセパレータと、前記電池積層体両端に位置する前記角形電池セルと前記エンドプレートを絶縁するために配置された絶縁性のエンドセパレータと、前記電池積層体の一面と熱結合させて冷却するための冷却プレートと、前記電池積層体と前記冷却プレートとの間に配置された可撓性を有する熱伝導シートとを備える電源装置であって、前記熱伝導シートを介した前記冷却プレートと前記エンドプレートとの熱結合を阻害するスペーサ部を備えることができる。
これにより、電源装置は、エンドプレートと熱伝導シートとの熱的な接触を抑制することで、エンドプレートに隣接する角形電池セルがエンドプレートを介して冷却されることを防止することができる。すなわち、エンドプレートから冷却プレートへの放熱を防ぎ、電池積層体が載置されている熱伝導シートを介した冷却プレートでのみ放熱させることができ、電池積層体を略均一な温度とすることができる。 In order to achieve the above object, according to the power supply device of the first aspect of the present invention, a battery stack formed by stacking a plurality of rectangular battery cells and the battery stack are fastened in the stacking direction. Insulates the end plate made of metal disposed on both end faces, the separator having insulating properties disposed between the square battery cells, and the square battery cell located at both ends of the battery stack and the end plate. Insulating end separators arranged for cooling, cooling plates for cooling by being thermally coupled to one surface of the battery stack, and flexibility arranged between the battery stack and the cooling plates It is a power supply device provided with the heat conductive sheet which has, The spacer part which inhibits the thermal coupling with the said cooling plate and the said end plate through the said heat conductive sheet can be provided.
Thereby, the power supply device can prevent the prismatic battery cells adjacent to the end plate from being cooled via the end plate by suppressing the thermal contact between the end plate and the heat conductive sheet. That is, heat dissipation from the end plate to the cooling plate can be prevented, and heat can be radiated only by the cooling plate via the heat conductive sheet on which the battery stack is placed, so that the battery stack can be at a substantially uniform temperature. it can.
これにより、電源装置は、エンドプレートと熱伝導シートとの熱的な接触を抑制することで、エンドプレートに隣接する角形電池セルがエンドプレートを介して冷却されることを防止することができる。すなわち、エンドプレートから冷却プレートへの放熱を防ぎ、電池積層体が載置されている熱伝導シートを介した冷却プレートでのみ放熱させることができ、電池積層体を略均一な温度とすることができる。 In order to achieve the above object, according to the power supply device of the first aspect of the present invention, a battery stack formed by stacking a plurality of rectangular battery cells and the battery stack are fastened in the stacking direction. Insulates the end plate made of metal disposed on both end faces, the separator having insulating properties disposed between the square battery cells, and the square battery cell located at both ends of the battery stack and the end plate. Insulating end separators arranged for cooling, cooling plates for cooling by being thermally coupled to one surface of the battery stack, and flexibility arranged between the battery stack and the cooling plates It is a power supply device provided with the heat conductive sheet which has, The spacer part which inhibits the thermal coupling with the said cooling plate and the said end plate through the said heat conductive sheet can be provided.
Thereby, the power supply device can prevent the prismatic battery cells adjacent to the end plate from being cooled via the end plate by suppressing the thermal contact between the end plate and the heat conductive sheet. That is, heat dissipation from the end plate to the cooling plate can be prevented, and heat can be radiated only by the cooling plate via the heat conductive sheet on which the battery stack is placed, so that the battery stack can be at a substantially uniform temperature. it can.
また第2の側面に係る電源装置によれば、前記エンドセパレータの底部に前記スペーサ部を一体形成し、該スペーサ部を前記エンドプレートの底部方向へ設け、前記熱伝導シートを介した前記冷却プレート上に該スペーサ部を配置し、該スペーサ部上に該エンドプレートを載置することができる。
これにより、エンドプレートは、エンドセパレータに一体形成されたスペーサ部により、熱伝導シートを介した冷却プレートとエンドプレートとの熱的接触を抑制することができるため、エンドプレートから冷却プレートへの伝熱を減少させることができる。 Further, according to the power supply device according to the second aspect, the spacer portion is integrally formed at the bottom portion of the end separator, the spacer portion is provided toward the bottom portion of the end plate, and the cooling plate via the heat conductive sheet is provided. The spacer portion can be disposed on the end plate, and the end plate can be placed on the spacer portion.
As a result, the end plate can suppress the thermal contact between the cooling plate and the end plate via the heat conductive sheet by the spacer portion formed integrally with the end separator. Heat can be reduced.
これにより、エンドプレートは、エンドセパレータに一体形成されたスペーサ部により、熱伝導シートを介した冷却プレートとエンドプレートとの熱的接触を抑制することができるため、エンドプレートから冷却プレートへの伝熱を減少させることができる。 Further, according to the power supply device according to the second aspect, the spacer portion is integrally formed at the bottom portion of the end separator, the spacer portion is provided toward the bottom portion of the end plate, and the cooling plate via the heat conductive sheet is provided. The spacer portion can be disposed on the end plate, and the end plate can be placed on the spacer portion.
As a result, the end plate can suppress the thermal contact between the cooling plate and the end plate via the heat conductive sheet by the spacer portion formed integrally with the end separator. Heat can be reduced.
さらに第3の側面に係る電源装置によれば、前記角形電池セルと前記エンドプレートとの間の前記エンドセパレータの厚みより厚い前記スペーサ部を備えることができる。
これにより、電池積層体が積層方向への延伸を押さえつつ、スペーサ部の厚みを厚くすることにより、伝熱量が距離に比例して少なくなるため、隣接する角形電池セルの熱がエンドプレートを経由し、熱伝導シートを介して冷却プレートへ伝わることを抑制できる。 Furthermore, according to the power supply device which concerns on a 3rd side surface, the said spacer part thicker than the thickness of the said end separator between the said square battery cell and the said end plate can be provided.
As a result, the heat transfer amount decreases in proportion to the distance by increasing the thickness of the spacer portion while suppressing the extension of the battery stack in the stacking direction, so that the heat of the adjacent rectangular battery cells passes through the end plate. And it can suppress transmitting to a cooling plate via a heat conductive sheet.
これにより、電池積層体が積層方向への延伸を押さえつつ、スペーサ部の厚みを厚くすることにより、伝熱量が距離に比例して少なくなるため、隣接する角形電池セルの熱がエンドプレートを経由し、熱伝導シートを介して冷却プレートへ伝わることを抑制できる。 Furthermore, according to the power supply device which concerns on a 3rd side surface, the said spacer part thicker than the thickness of the said end separator between the said square battery cell and the said end plate can be provided.
As a result, the heat transfer amount decreases in proportion to the distance by increasing the thickness of the spacer portion while suppressing the extension of the battery stack in the stacking direction, so that the heat of the adjacent rectangular battery cells passes through the end plate. And it can suppress transmitting to a cooling plate via a heat conductive sheet.
さらにまた第4の側面に係る電源装置によれば、前記スペーサ部において、空間を形成させるため、前記冷却プレートの方向へ突出片を複数設けることができる。
これにより、突出片毎に空間形成が可能で、空気の熱伝導率が小さいため、空間形成により熱伝導率を減少させることができ、隣接する角形電池セルの発熱がエンドプレートを経由し、熱伝導シートを介し冷却プレートへ伝わることをさらに抑制できる。 Furthermore, according to the power supply device which concerns on a 4th side surface, in order to form a space in the said spacer part, multiple protrusion pieces can be provided in the direction of the said cooling plate.
As a result, a space can be formed for each protruding piece, and since the thermal conductivity of air is small, the thermal conductivity can be reduced by the space formation, and the heat generation of the adjacent rectangular battery cells passes through the end plate to generate heat. Propagation to the cooling plate via the conductive sheet can be further suppressed.
これにより、突出片毎に空間形成が可能で、空気の熱伝導率が小さいため、空間形成により熱伝導率を減少させることができ、隣接する角形電池セルの発熱がエンドプレートを経由し、熱伝導シートを介し冷却プレートへ伝わることをさらに抑制できる。 Furthermore, according to the power supply device which concerns on a 4th side surface, in order to form a space in the said spacer part, multiple protrusion pieces can be provided in the direction of the said cooling plate.
As a result, a space can be formed for each protruding piece, and since the thermal conductivity of air is small, the thermal conductivity can be reduced by the space formation, and the heat generation of the adjacent rectangular battery cells passes through the end plate to generate heat. Propagation to the cooling plate via the conductive sheet can be further suppressed.
さらにまた第5の側面に係る電源装置によれば、前記エンドセパレータの熱伝導率が前記セパレータより低い樹脂製とすることができる。
これにより、隣接する角形電池セルからの熱伝導率を低下させることにより、エンドプレートへの熱伝導を減少させることができる。また、スペーサ部を有することでさらに冷却プレートへの熱伝導を減少させることができる。 Furthermore, according to the power supply device which concerns on a 5th side surface, the thermal conductivity of the said end separator can be made into resin lower than the said separator.
Thereby, the heat conductivity to an end plate can be reduced by reducing the heat conductivity from the adjacent square battery cell. In addition, the heat conduction to the cooling plate can be further reduced by having the spacer portion.
これにより、隣接する角形電池セルからの熱伝導率を低下させることにより、エンドプレートへの熱伝導を減少させることができる。また、スペーサ部を有することでさらに冷却プレートへの熱伝導を減少させることができる。 Furthermore, according to the power supply device which concerns on a 5th side surface, the thermal conductivity of the said end separator can be made into resin lower than the said separator.
Thereby, the heat conductivity to an end plate can be reduced by reducing the heat conductivity from the adjacent square battery cell. In addition, the heat conduction to the cooling plate can be further reduced by having the spacer portion.
さらにまた第6の側面に係る電源装置によれば、前記冷却プレートの内部に冷媒を循環させることができる。
これにより、電池積層体の一部を冷却プレートに熱結合させることにより、電池積層体を構成する角形電池セルを効率よく冷却することができる。 Furthermore, according to the power supply device which concerns on a 6th side surface, a refrigerant | coolant can be circulated through the inside of the said cooling plate.
Thereby, the square battery cell which comprises a battery laminated body can be efficiently cooled by thermally couple | bonding a part of battery laminated body with a cooling plate.
これにより、電池積層体の一部を冷却プレートに熱結合させることにより、電池積層体を構成する角形電池セルを効率よく冷却することができる。 Furthermore, according to the power supply device which concerns on a 6th side surface, a refrigerant | coolant can be circulated through the inside of the said cooling plate.
Thereby, the square battery cell which comprises a battery laminated body can be efficiently cooled by thermally couple | bonding a part of battery laminated body with a cooling plate.
さらにまた第7の側面に係る電源装置によれば、前記熱伝導シートが圧縮されて変形可能なシートとすることができる。
これにより、熱伝導シートは、角形電池セルと冷却プレートの間で押圧されることにより圧縮変形し、密着度合を高めることができ、効率的に熱結合状態とすることができる。 Furthermore, according to the power supply device which concerns on a 7th side surface, it can be set as the sheet | seat which can compress and deform | transform the said heat conductive sheet.
Thereby, a heat conductive sheet can compress-deform by being pressed between a square battery cell and a cooling plate, can raise an adhesion degree, and can be in a heat-bonded state efficiently.
これにより、熱伝導シートは、角形電池セルと冷却プレートの間で押圧されることにより圧縮変形し、密着度合を高めることができ、効率的に熱結合状態とすることができる。 Furthermore, according to the power supply device which concerns on a 7th side surface, it can be set as the sheet | seat which can compress and deform | transform the said heat conductive sheet.
Thereby, a heat conductive sheet can compress-deform by being pressed between a square battery cell and a cooling plate, can raise an adhesion degree, and can be in a heat-bonded state efficiently.
さらにまた第8の側面に係る車両は、上記の電源装置を備えることができる。
Furthermore, the vehicle according to the eighth aspect can be provided with the power supply device described above.
さらにまた第9の側面に係る蓄電装置は、上記の電源装置を備えることができる。
Furthermore, the power storage device according to the ninth aspect can include the power supply device described above.
以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための電源装置及びこれを備える車両並びに蓄電装置を例示するものであって、本発明は電源装置及びこれを備える車両並びに蓄電装置を以下のものに特定しない。さらに、本明細書においては、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は、特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。
(実施例) Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a power supply device for embodying the technical idea of the present invention, a vehicle including the power supply device, and a power storage device, and the present invention includes a power supply device, a vehicle including the power supply device, The power storage device is not specified as follows. Further, in the present specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the embodiments are indicated in the “claims” and “means for solving problems” sections. It is appended to the members shown. However, the members shown in the claims are not limited to the members in the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.
(Example)
(実施例) Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a power supply device for embodying the technical idea of the present invention, a vehicle including the power supply device, and a power storage device, and the present invention includes a power supply device, a vehicle including the power supply device, The power storage device is not specified as follows. Further, in the present specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the embodiments are indicated in the “claims” and “means for solving problems” sections. It is appended to the members shown. However, the members shown in the claims are not limited to the members in the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.
(Example)
以下、実施の形態としての車載用又は蓄電用に適用可能な電源装置の電池積層体を、図1~図6に基づいて説明する。これらの図において、図1は実施の形態に係る電源装置の概略分解斜視図、図2は図1に示す一基の電池積層体の斜視図、図3は図2に示す電池積層体の冷却プレートへの冷媒の流れを示すブロック図、図4は図2に示す電池積層体を下方から見た分解斜視図、図5は図2に示す電池積層体の分解斜視図、図6は図2に示す電池積層体を側面から見た概略断面図を、それぞれ示している。
(電源装置100) Hereinafter, a battery stack of a power supply apparatus applicable to in-vehicle use or power storage as an embodiment will be described with reference to FIGS. In these drawings, FIG. 1 is a schematic exploded perspective view of the power supply device according to the embodiment, FIG. 2 is a perspective view of one battery stack shown in FIG. 1, and FIG. 3 is a cooling of the battery stack shown in FIG. FIG. 4 is an exploded perspective view of the battery stack shown in FIG. 2 as viewed from below, FIG. 5 is an exploded perspective view of the battery stack shown in FIG. 2, and FIG. The schematic sectional drawing which looked at the battery laminated body shown in FIG.
(Power supply device 100)
(電源装置100) Hereinafter, a battery stack of a power supply apparatus applicable to in-vehicle use or power storage as an embodiment will be described with reference to FIGS. In these drawings, FIG. 1 is a schematic exploded perspective view of the power supply device according to the embodiment, FIG. 2 is a perspective view of one battery stack shown in FIG. 1, and FIG. 3 is a cooling of the battery stack shown in FIG. FIG. 4 is an exploded perspective view of the battery stack shown in FIG. 2 as viewed from below, FIG. 5 is an exploded perspective view of the battery stack shown in FIG. 2, and FIG. The schematic sectional drawing which looked at the battery laminated body shown in FIG.
(Power supply device 100)
電源装置100の外観は、図1の概略分解斜視図に示すように、上面を長方形状とする箱形である。この実施の形態の電源装置100は、外装底面ケース3に電池積層体10を四基設置し、断面コ字状の外装上ケース1と断面コ字状の外装底面ケース3で電池積層体10を被覆すると共に、外装上ケース1の両端縁を端面カバー2で各々被覆する様態としている。また車載時に固定しやすいよう、外装上ケース1及び外装底面ケース3の長手方向の両側面には垂直に突出したフランジ4A及びフランジ4Bが設けられている。フランジ4A及びフランジ4Bには、ねじ穴を開口しており、ねじ穴を利用したねじ止めを容易にしている。
(電池積層体10) As shown in the schematic exploded perspective view of FIG. 1, the external appearance of thepower supply device 100 is a box shape having a rectangular upper surface. In the power supply device 100 of this embodiment, four battery stacks 10 are installed on the outer bottom case 3, and the battery stack 10 is formed by the outer upper case 1 having a U-shaped cross section and the outer bottom case 3 having a U-shaped cross section. In addition to covering, both end edges of the outer case 1 are covered with the end cover 2. Further, flanges 4A and 4B projecting vertically are provided on both side surfaces in the longitudinal direction of the outer case 1 and the outer case 3 so as to be easily fixed when mounted on the vehicle. The flange 4A and the flange 4B are provided with screw holes to facilitate screwing using the screw holes.
(Battery laminate 10)
(電池積層体10) As shown in the schematic exploded perspective view of FIG. 1, the external appearance of the
(Battery laminate 10)
電池積層体10の外観は、図2に示すように略直方体の形状をなしており、上部にトップカバー7を配置し、底部には冷却プレート21を配置している。また、電池積層体10は、両端面にエンドプレート5を配置し、両側面にバインドバー6を配置している。
(バインドバー6) As shown in FIG. 2, thebattery stack 10 has a substantially rectangular parallelepiped shape. The top cover 7 is disposed at the top and the cooling plate 21 is disposed at the bottom. Moreover, the battery laminated body 10 arrange | positions the end plate 5 on both end surfaces, and has arrange | positioned the bind bar 6 on both side surfaces.
(Bind bar 6)
(バインドバー6) As shown in FIG. 2, the
(Bind bar 6)
バインドバー6は、両端面のエンドプレート5同士を固定して、電池積層体10を締結するための部材である。このバインドバー6は、電池積層体10の側面と略同等の面積の略長方形をなしている。またバインドバー6は、電池積層体10の両端面側を略垂直に折曲させた折曲部6Aを有している。図5に示す折曲部6Aは、両端のエンドプレート5の雌ネジ孔5Aに止ネジ19を螺合して固定される。これにより、電池積層体10は、エンドプレート5をバインドバー6により締結をしている。
The bind bar 6 is a member for fixing the battery stack 10 by fixing the end plates 5 on both end faces. The bind bar 6 has a substantially rectangular shape with an area substantially the same as the side surface of the battery stack 10. The bind bar 6 has a bent portion 6A in which both end surfaces of the battery stack 10 are bent substantially vertically. The bent portion 6A shown in FIG. 5 is fixed by screwing a set screw 19 into the female screw holes 5A of the end plates 5 at both ends. Thereby, the battery laminated body 10 has fastened the end plate 5 with the bind bar 6.
またバインドバー6は、電池積層体10の上部のトップカバー7を係止し、さらに電池積層体10の底部の冷却プレート21を固定するための連結具8を利用し固定される。具体的なバインドバー6は、上端部を略垂直に折曲させた係止部6Bを有し、トップカバー7の側端部に係止させている。さらにバインドバー6は、下端部の三箇所に突出した連結片6Cを有している。連結片6Cは、図4に示されるように連結具8を略垂直に折曲した折曲部8Cと連結される。連結方法は、連結片6Cから突出させた係止フック6Dと、折曲部8Cに開口させた連結穴8Dとを結合させることにより連結している。これにより、電池積層体10は、バインドバー6の係止部6Bによりトップカバー7を係止し、バインドバー6の連結片6Cと連結具8の折曲部8Cにより冷却プレート21を固定することにより、上下方向への一体化を図りつつ締結している。
(冷却プレート21) In addition, thebind bar 6 is fixed using a connector 8 for locking the top cover 7 at the top of the battery stack 10 and further fixing the cooling plate 21 at the bottom of the battery stack 10. The specific bind bar 6 has a locking portion 6B whose upper end portion is bent substantially vertically, and is locked to the side end portion of the top cover 7. Furthermore, the bind bar 6 has connecting pieces 6C that protrude at three locations on the lower end. As shown in FIG. 4, the connecting piece 6 </ b> C is connected to a bent portion 8 </ b> C in which the connecting tool 8 is bent substantially vertically. In the connection method, the engagement hook 6D protruding from the connection piece 6C is connected to the connection hole 8D opened in the bent portion 8C. Thereby, the battery stack 10 locks the top cover 7 by the locking portion 6B of the bind bar 6 and fixes the cooling plate 21 by the connecting piece 6C of the bind bar 6 and the bent portion 8C of the connecting tool 8. Therefore, it is fastened while achieving integration in the vertical direction.
(Cooling plate 21)
(冷却プレート21) In addition, the
(Cooling plate 21)
電池積層体10は、図5に示すように複数の角形電池セル11を積層している。角形電池セル11は、充放電により発熱を起こすため冷却する必要性がある。このため加熱した電池積層体10の底部には、冷却プレート21を配置している。この冷却プレート21は、電池積層体10の角形電池セル11の発熱を冷却するために配置されている。冷却プレート21には、図3に示すように冷媒路23を備えている。冷媒路23は、出入り口として2箇所に設けられ、冷却プレート21の内部を蛇行する配管と接続されている。冷却プレート21には、冷却機構20から冷却プレート21の冷媒路23へ冷媒を循環させる。冷媒路23は、炭酸ガスなどの冷媒が液状で供給され、内部で冷媒を気化させて気化熱で冷却プレート21を冷却する。これにより、電池積層体10内の複数の角形電池セル11を冷却プレート21により冷却する。
The battery stack 10 has a plurality of prismatic battery cells 11 stacked as shown in FIG. Since the square battery cell 11 generates heat by charging and discharging, it needs to be cooled. Therefore, a cooling plate 21 is disposed at the bottom of the heated battery stack 10. The cooling plate 21 is arranged to cool the heat generated by the rectangular battery cells 11 of the battery stack 10. As shown in FIG. 3, the cooling plate 21 includes a refrigerant path 23. The refrigerant path 23 is provided at two places as an entrance and exit, and is connected to a pipe meandering inside the cooling plate 21. In the cooling plate 21, the refrigerant is circulated from the cooling mechanism 20 to the refrigerant path 23 of the cooling plate 21. The refrigerant path 23 is supplied with a refrigerant such as carbon dioxide in a liquid state, vaporizes the refrigerant inside, and cools the cooling plate 21 with heat of vaporization. As a result, the plurality of rectangular battery cells 11 in the battery stack 10 are cooled by the cooling plate 21.
冷却機構20は、冷媒路23で気化された気体状の冷媒を加圧するコンプレッサ26と、このコンプレッサ26で圧縮された冷媒を冷却して液化させる冷却熱交換器27と、この冷却熱交換器27で液化された冷媒を冷媒路23に供給する膨張弁28とを備えている。膨張弁28を介して供給される液状の冷媒は、冷却プレート21内の冷媒路23で気化され、気化熱で冷却プレート21を冷却して冷却機構20に排出される。したがって、冷媒は、冷却プレート21の冷媒路23と冷却機構20とに循環して、冷却プレート21を冷却する。この冷却機構20は、冷媒の気化熱で冷却プレート21を低温に冷却するが、冷却プレートは、気化熱によらず冷却することもできる。この冷却プレートは、冷媒路に、低温に冷却されたブラインなどの冷媒を供給して、冷媒への放熱により冷却プレートを冷却する。
The cooling mechanism 20 includes a compressor 26 that pressurizes the gaseous refrigerant vaporized in the refrigerant path 23, a cooling heat exchanger 27 that cools and liquefies the refrigerant compressed by the compressor 26, and the cooling heat exchanger 27. And an expansion valve 28 for supplying the refrigerant liquefied to the refrigerant path 23. The liquid refrigerant supplied through the expansion valve 28 is vaporized in the refrigerant path 23 in the cooling plate 21, cools the cooling plate 21 with heat of vaporization, and is discharged to the cooling mechanism 20. Therefore, the refrigerant circulates through the refrigerant path 23 of the cooling plate 21 and the cooling mechanism 20 to cool the cooling plate 21. The cooling mechanism 20 cools the cooling plate 21 to a low temperature with the heat of vaporization of the refrigerant, but the cooling plate can also be cooled regardless of the heat of vaporization. The cooling plate supplies a refrigerant such as brine cooled to a low temperature to the refrigerant path, and cools the cooling plate by releasing heat to the refrigerant.
また冷却機構20は、電池積層体10内の角形電池セル11の温度を検出する温度センサ(図示せず)で冷却プレート21の冷却能力をコントロールする。すなわち、角形電池セルの温度があらかじめ設定している冷却開始温度よりも高くなると、冷却プレート21に冷媒を供給して冷却し、角形電池セルが冷却停止温度よりも低くなると、冷却プレート21への冷媒の供給を停止して、角形電池セルをあらかじめ設定している温度範囲にコントロールする。
(熱伝導シート22) Thecooling mechanism 20 controls the cooling capacity of the cooling plate 21 with a temperature sensor (not shown) that detects the temperature of the rectangular battery cells 11 in the battery stack 10. That is, when the temperature of the prismatic battery cell becomes higher than the preset cooling start temperature, the coolant is supplied to the cooling plate 21 for cooling, and when the prismatic battery cell becomes lower than the cooling stop temperature, The supply of the refrigerant is stopped, and the rectangular battery cell is controlled to a preset temperature range.
(Thermal conductive sheet 22)
(熱伝導シート22) The
(Thermal conductive sheet 22)
冷却プレート21と角形電池セル11は、直接接触しているのではなく、図4に示す下方から見た斜視図に示すように、冷却プレート21と角形電池セル11との間に熱伝導シート22を備えている。角形電池セル11の底面は、露出した状態にある。電池積層体10は、この露出した角形電池セル11の底部に変形可能な熱伝導シート22を装着し、その下方から冷却プレート21により押圧させ、熱伝導シート22を圧縮する状態で装着している。この結果、熱伝導シート22を変形させて角形電池セル11と冷却プレート21との間で隙間をなくし、空気層による断熱効果を排除し、角形電池セル11の熱を効率的に冷却プレート21へ放熱することができる。
The cooling plate 21 and the prismatic battery cell 11 are not in direct contact with each other, but as shown in a perspective view seen from below shown in FIG. 4, the heat conductive sheet 22 is interposed between the cooling plate 21 and the prismatic battery cell 11. It has. The bottom surface of the prismatic battery cell 11 is in an exposed state. The battery stack 10 is mounted in a state in which a deformable heat conductive sheet 22 is attached to the bottom of the exposed rectangular battery cell 11 and pressed by the cooling plate 21 from below to compress the heat conductive sheet 22. . As a result, the heat conductive sheet 22 is deformed to eliminate a gap between the prismatic battery cell 11 and the cooling plate 21, eliminate the heat insulation effect by the air layer, and efficiently transfer the heat of the prismatic battery cell 11 to the cooling plate 21. It can dissipate heat.
さらに熱伝導シート22は、絶縁性でかつ熱伝導に優れた材質とし、さらに好ましくはある程度の弾性を有するものが好ましい。このような材質としてはアクリル系、ウレタン系、エポキシ系、シリコーン系の樹脂等が挙げられる。このようにすることで電池積層体10と冷却プレート21との間を電気的に絶縁しつつ、冷却プレート21による冷却性能を高めることができる。特に、角形電池セル11の外装缶を金属製とし、さらに冷却プレート21を金属製とする場合は、角形電池セル11の底面で電気的に導通しないよう、絶縁を図る必要がある。また、絶縁性を確実に維持するため、追加の絶縁フィルムを介在させることもできる。例えば、角形電池セルは、絶縁性のシュリンクチューブ(熱収縮フィルム)等で外装缶を被覆し絶縁を向上させることもできる。
(角形電池セル11) Furthermore, the heatconductive sheet 22 is made of a material that is insulative and excellent in heat conduction, and more preferably has a certain degree of elasticity. Examples of such a material include acrylic, urethane, epoxy, and silicone resins. By doing in this way, the cooling performance by the cooling plate 21 can be improved, electrically insulating between the battery laminated body 10 and the cooling plate 21. FIG. In particular, when the outer can of the rectangular battery cell 11 is made of metal and the cooling plate 21 is made of metal, it is necessary to insulate the battery so as not to be electrically connected to the bottom surface of the rectangular battery cell 11. Moreover, in order to maintain insulation reliably, an additional insulating film can also be interposed. For example, a rectangular battery cell can improve insulation by covering an outer can with an insulating shrink tube (heat shrink film) or the like.
(Square battery cell 11)
(角形電池セル11) Furthermore, the heat
(Square battery cell 11)
ここで図5に示す積層される角形電池セル11は、角形電池からなる薄型の略箱形状とし、上面の両端部に正負一対の電極端子14を上方向に突出させると共に、電極端子14間には安全弁15を設けている。安全弁15は、角形電池セル11の内圧が所定値以上に上昇した際に開弁して、内部のガスを放出できるように構成される。安全弁15の開弁により、角形電池セル11の内圧上昇を停止することができる。
Here, the stacked rectangular battery cell 11 shown in FIG. 5 has a thin and substantially box shape made of a rectangular battery, and a pair of positive and negative electrode terminals 14 protrude upward at both ends of the upper surface, and between the electrode terminals 14. Is provided with a safety valve 15. The safety valve 15 is configured to open when the internal pressure of the rectangular battery cell 11 rises to a predetermined value or more, and to release the internal gas. By opening the safety valve 15, the increase in the internal pressure of the rectangular battery cell 11 can be stopped.
角形電池セルを構成する素電池は、リチウムイオン二次電池、ニッケル-水素電池、ニッケル-カドミウム電池等の充電可能な二次電池である。特に薄型電池にリチウムイオン二次電池を使用すると、電池積層体全体の容量に対する充電容量を大きくできる特長がある。
(セパレータ12) The unit cell constituting the rectangular battery cell is a rechargeable secondary battery such as a lithium ion secondary battery, a nickel-hydrogen battery, or a nickel-cadmium battery. In particular, when a lithium ion secondary battery is used for a thin battery, there is an advantage that the charging capacity with respect to the capacity of the entire battery stack can be increased.
(Separator 12)
(セパレータ12) The unit cell constituting the rectangular battery cell is a rechargeable secondary battery such as a lithium ion secondary battery, a nickel-hydrogen battery, or a nickel-cadmium battery. In particular, when a lithium ion secondary battery is used for a thin battery, there is an advantage that the charging capacity with respect to the capacity of the entire battery stack can be increased.
(Separator 12)
ここで角形電池セル11は、金属製の外装缶で製作している。この角形電池セル11は、隣接する角形電池セル11の外装缶同士が接触してショートするのを防止するために絶縁性のセパレータ12を介在させている。ここでは、二枚のセパレータ12で角形電池セル11の両面を挟持している。このセパレータ12は、両側面に角形電池セル11を配置できる周壁を備えている。この周壁は、図5に示すように、二枚のセパレータ12により角形電池セル11の両端面及び両側面を覆い、また角形電池セルの上面に配置されている一対の電極端子14と安全弁15を除く部分を覆うように形成している。またセパレータ12の底面では、角形電池セル11の底部が露出でき熱伝導シート22を配置可能な開口部を設けている。さらにセパレータ12は、角形電池セル11と冷却プレート21との間を絶縁するための突出片12aを設けている。なお角形電池セルの外装缶は、プラスチックなどの絶縁材で製作することもできる。この場合は、角形電池セルは外装缶を絶縁して積層する必要がないので、セパレータを金属製とすることもできる。
Here, the rectangular battery cell 11 is made of a metal outer can. In this rectangular battery cell 11, an insulating separator 12 is interposed to prevent the outer cans of the adjacent rectangular battery cells 11 from coming into contact with each other and shorting out. Here, both surfaces of the rectangular battery cell 11 are sandwiched between two separators 12. This separator 12 is provided with a peripheral wall in which the rectangular battery cells 11 can be arranged on both side surfaces. As shown in FIG. 5, the peripheral wall covers both end surfaces and both side surfaces of the rectangular battery cell 11 with two separators 12, and includes a pair of electrode terminals 14 and a safety valve 15 disposed on the upper surface of the rectangular battery cell. It is formed so as to cover the removed part. Further, the bottom surface of the separator 12 is provided with an opening through which the bottom of the rectangular battery cell 11 can be exposed and the heat conductive sheet 22 can be disposed. Further, the separator 12 is provided with a protruding piece 12 a for insulating between the rectangular battery cell 11 and the cooling plate 21. The outer can of the square battery cell can be made of an insulating material such as plastic. In this case, the prismatic battery cell does not need to be laminated by insulating the outer can, and therefore the separator can be made of metal.
なおセパレータは、両面に角形電池セルを嵌着構造で連結することもできる。角形電池セルに嵌着構造で連結されるセパレータを介在させることで、隣接する角形電池セルの位置ずれを阻止できる。
(エンドセパレータ13) In addition, a separator can also connect a square battery cell by the fitting structure on both surfaces. By interposing the separator connected to the prismatic battery cell with the fitting structure, it is possible to prevent the displacement of the adjacent prismatic battery cells.
(End separator 13)
(エンドセパレータ13) In addition, a separator can also connect a square battery cell by the fitting structure on both surfaces. By interposing the separator connected to the prismatic battery cell with the fitting structure, it is possible to prevent the displacement of the adjacent prismatic battery cells.
(End separator 13)
さらに電池積層体10は、図6の側面断面図に示すように角形電池セル11とセパレータ12とを複数積層している。一方、端面に配置される角形電池セル11Aについては、金属製のエンドプレート5と絶縁するため、絶縁性のエンドセパレータ13を配置している。すなわち、端面の角形電池セル11Aとエンドプレート5との間には、エンドセパレータ13が介在される。このエンドセパレータ13は、強度を高めるために金属で形成されているエンドプレート5と角形電池セル11Aとを絶縁するために、絶縁性の樹脂で形成されており、この絶縁性の樹脂は、熱伝導率も比較的小さい材料となっている。
Furthermore, as shown in the side sectional view of FIG. 6, the battery stack 10 has a plurality of prismatic battery cells 11 and separators 12 stacked. On the other hand, in order to insulate the rectangular battery cell 11A disposed on the end face from the metal end plate 5, an insulating end separator 13 is disposed. In other words, the end separator 13 is interposed between the end face prismatic battery cell 11 </ b> A and the end plate 5. The end separator 13 is formed of an insulating resin in order to insulate the end plate 5 formed of a metal and the rectangular battery cell 11A in order to increase the strength. The material has a relatively low conductivity.
電池積層体10は、複数の角形電池セル11と複数のセパレータ12とその両端に配置された角形電池セル11Aとエンドセパレータ13で電池ブロック9を構成している。ここでエンドセパレータ13は、電池ブロック9の端面に配置される角形電池セル11A側の形状をセパレータ12と同様な構造に形成される。さらにエンドセパレータ13には、端面の角形電池セル11Aと冷却プレート21との間を絶縁するための突出片13aを設けている。一方、エンドセパレータ13のエンドプレート5側の形状は、エンドプレート5の底面と略同等の面積を持ったスペーサ部13Aを設け、さらにエンドプレート5の上部の両端面を保持するガイド部13bを設けている。
The battery stack 10 includes a plurality of prismatic battery cells 11, a plurality of separators 12, prismatic battery cells 11 </ b> A disposed at both ends thereof, and end separators 13 to form a battery block 9. Here, the end separator 13 is formed in the same structure as the separator 12 in the shape of the prismatic battery cell 11 </ b> A disposed on the end face of the battery block 9. Further, the end separator 13 is provided with a protruding piece 13a for insulating between the rectangular battery cell 11A on the end face and the cooling plate 21. On the other hand, the shape of the end separator 13 on the end plate 5 side is provided with a spacer portion 13A having an area substantially equal to the bottom surface of the end plate 5, and further provided with guide portions 13b for holding both upper end surfaces of the end plate 5. ing.
図17に示すような従来のエンドセパレータ830は、熱伝導シート840が延伸して、エンドセパレータ830の底部が冷却プレート812に接触し、熱が伝わってしまう可能性があった。これに対して、本発明の実施例では、図6に示すようにエンドセパレータ13の底部でエンドプレート5側に略垂直に折曲したスペーサ部13Aを設けている。このスペーサ部13Aを介在させることによりエンドプレート5が冷却プレート21又は熱伝導シート22に熱を伝えることを回避できる。これにより、エンドプレート5の底面と熱伝導シート22とが直接接触することを避けることができる。このエンドプレート5は、冷却プレート21との間に、熱伝導シート22よりも熱伝導率が小さい樹脂製のスペーサ部13Aを介在させることで、エンドプレート5から冷却プレート21への伝熱を抑制することができる。この結果、隣接する電池積層体10端部の角形電池セル11Aは、エンドプレート5を介しての極端な温度低下を防ぐことができる。
In the conventional end separator 830 as shown in FIG. 17, the heat conductive sheet 840 is stretched, the bottom of the end separator 830 comes into contact with the cooling plate 812, and heat may be transmitted. In contrast, in the embodiment of the present invention, as shown in FIG. 6, a spacer portion 13 </ b> A that is bent substantially perpendicularly to the end plate 5 side at the bottom of the end separator 13 is provided. By interposing this spacer portion 13A, it is possible to avoid the end plate 5 from transferring heat to the cooling plate 21 or the heat conductive sheet 22. Thereby, it can avoid that the bottom face of the end plate 5 and the heat conductive sheet 22 contact directly. This end plate 5 suppresses heat transfer from the end plate 5 to the cooling plate 21 by interposing a resin spacer portion 13 </ b> A having a thermal conductivity smaller than that of the heat conductive sheet 22 between the end plate 5 and the cooling plate 21. can do. As a result, the rectangular battery cell 11 </ b> A at the end of the adjacent battery stack 10 can prevent an extreme temperature drop via the end plate 5.
電池積層体10は、図6に示すように電池ブロック9の両端をエンドプレート5により狭持されている。さらに、角形電池セル11は、各セパレータ12の開口された部分から底部が露出している。この露出した角形電池セル11の底部は、熱伝導シート22を介して冷却プレート21と熱結合させている。一方、角形電池セル11と冷却プレート21との押圧により熱伝導シート22は、角形電池セル11の積層方向へ若干延伸される。このため、このような延伸部分によってエンドプレート5と熱伝導シート22とが熱結合されることを防ぐために、エンドセパレータ13の底部には、エンドプレート5側にスペーサ13Aを備えている。この構成によると、エンドプレート5が、冷却プレート21によって冷却されることを抑制できる。そのため、例えば、電池積層体10の両端に位置する角形電池セル11Aとエンドプレート5を断熱するために、エンドプレート5に断熱構造を設ける必要はない。さらに、角形電池セル11Aからエンドプレート5への熱伝導を抑制するために、電池積層体10の積層方向におけるエンドセパレータ5の厚みを厚くする必要もない。この実施例におけるエンドセパレータ13では、上記のような態様に代えてスペーサ13Aを設けることにより、電池ブロック9の両端の角形電池セル11Aの極端な温度低下を防ぐことができる。すなわち、上記構成の電源装置は、電源装置の積層方向の寸法を増大させることなく、電池積層体の温度分布の均一化を図ることができるようになっている。このため、電池積層体10内の全ての角形電池セルは、熱伝導シート22を介して冷却プレート21にて温度を同等レベルにコントロールすることができる。
As shown in FIG. 6, the battery stack 10 is sandwiched between end plates 5 at both ends of the battery block 9. Furthermore, the square battery cell 11 has a bottom exposed from the opened portion of each separator 12. The exposed bottom portion of the rectangular battery cell 11 is thermally coupled to the cooling plate 21 via the heat conductive sheet 22. On the other hand, the heat conductive sheet 22 is slightly stretched in the stacking direction of the prismatic battery cells 11 by the pressing of the prismatic battery cells 11 and the cooling plate 21. For this reason, in order to prevent the end plate 5 and the heat conductive sheet 22 from being thermally coupled by such an extended portion, a spacer 13A is provided on the end plate 5 side at the bottom of the end separator 13. According to this configuration, the end plate 5 can be prevented from being cooled by the cooling plate 21. Therefore, for example, in order to insulate the square battery cells 11A located at both ends of the battery stack 10 and the end plate 5, it is not necessary to provide the end plate 5 with a heat insulating structure. Furthermore, it is not necessary to increase the thickness of the end separator 5 in the stacking direction of the battery stack 10 in order to suppress heat conduction from the prismatic battery cell 11A to the end plate 5. In the end separator 13 in this embodiment, by providing the spacer 13 </ b> A instead of the above-described aspect, it is possible to prevent an extreme temperature drop of the rectangular battery cells 11 </ b> A at both ends of the battery block 9. That is, the power supply device having the above-described configuration can achieve uniform temperature distribution of the battery stack without increasing the dimension of the power supply device in the stacking direction. For this reason, the temperature of all the rectangular battery cells in the battery stack 10 can be controlled to the same level by the cooling plate 21 via the heat conductive sheet 22.
実施例1としてのエンドセパレータ13の構造を図7の斜視図にて示している。このエンドセパレータ13は、エンドプレート5の底面側に突出したスペーサ部13Aを一体成形にて設けている。さらに、エンドセパレータ13は、エンドプレート5の上部の両端部を保持するガイド部13bを備え、このガイド部13bとスペーサ部13Aによりエンドプレート5を保持している。スペーサ部13Aは、エンドプレート5の底面と略同等の面積で、端面の角形電池セル11Aとエンドプレート5の間のエンドセパレータ13の厚みと略同等の厚みを備えている。さらに、スペーサ部13Aには、エンドプレート5と冷却プレート21をネジ止めできる位置決め孔13cを形成している。さらにまた、スペーサ部13Aを備えたエンドセパレータ13の材質は、上述の通り、端面の角形電池セル11A及び冷却プレート21との導電を避けるために、絶縁性が高く断熱性が高い樹脂製が好ましい。これによりスペーサ部13Aを備えることにより、エンドプレート5が、冷却プレート21によって冷却されることを抑制できるため、電池積層体10端部の角形電池セル11Aがエンドプレート5を介して、冷却されることを防止できる。
The structure of the end separator 13 as Example 1 is shown in the perspective view of FIG. The end separator 13 is provided with a spacer portion 13 </ b> A protruding toward the bottom surface of the end plate 5 by integral molding. Furthermore, the end separator 13 includes a guide portion 13b that holds both ends of the upper portion of the end plate 5, and the end plate 5 is held by the guide portion 13b and the spacer portion 13A. The spacer portion 13 </ b> A has substantially the same area as the bottom surface of the end plate 5, and has a thickness substantially equal to the thickness of the end separator 13 between the rectangular battery cell 11 </ b> A on the end surface and the end plate 5. Furthermore, a positioning hole 13c that can screw the end plate 5 and the cooling plate 21 is formed in the spacer portion 13A. Furthermore, as described above, the material of the end separator 13 provided with the spacer portion 13A is preferably made of a resin having high insulation properties and high heat insulation properties in order to avoid conduction between the end face prismatic battery cells 11A and the cooling plate 21. . Since the end plate 5 can be suppressed from being cooled by the cooling plate 21 by providing the spacer portion 13 </ b> A, the prismatic battery cell 11 </ b> A at the end of the battery stack 10 is cooled via the end plate 5. Can be prevented.
エンドプレート5と冷却プレート21の距離は、スペーサ部13Aの厚みに応じて変化するようになっている。スペーサ部13Aは、上述の通り、比較的熱伝導率の低い樹脂で形成されているが、スペーサ部13Aから冷却プレート21への伝熱を皆無にできるわけではない。このスペーサ部13Aの厚みを厚くすることで、よりエンドプレート5の冷却を抑制することができる。従って、上記の実施例1では、スペーサ部13Aの厚みを、エンドセパレータ13の厚みとほぼ同等としているが、本発明はこのような構成に限定されるものでない。例えば、スペーサ部の厚みを、エンドセパレータの厚みよりも厚く形成することで、エンドプレート5と冷却プレート21との伝熱を一層阻害することもできる。このような例を実施例2として、図8の斜視図に示す。このエンドセパレータ13は、前述のスペーサ部13Aよりも厚い隔壁としたスペーサ部13Bを一体成型している。スペーサ部13Bの厚みは、例えば、スペーサ部13Aの2倍から3倍の厚みを持たせることもできる。
The distance between the end plate 5 and the cooling plate 21 changes according to the thickness of the spacer portion 13A. As described above, the spacer portion 13A is formed of a resin having a relatively low thermal conductivity. However, heat transfer from the spacer portion 13A to the cooling plate 21 is not completely eliminated. By increasing the thickness of the spacer portion 13A, the cooling of the end plate 5 can be further suppressed. Therefore, in Example 1 described above, the thickness of the spacer portion 13A is substantially equal to the thickness of the end separator 13, but the present invention is not limited to such a configuration. For example, the heat transfer between the end plate 5 and the cooling plate 21 can be further inhibited by forming the spacer portion thicker than the end separator. Such an example is shown as a second embodiment in the perspective view of FIG. The end separator 13 is integrally formed with a spacer portion 13B having a partition wall thicker than the above-described spacer portion 13A. For example, the thickness of the spacer portion 13B can be two to three times that of the spacer portion 13A.
さらに、以上の実施例1、2では、スペーサ部のほぼ全面でエンドプレート5と接触させているが、本発明はこの構成に限定されるものでない。例えば、スペーサ部の一部を熱伝導シート22又は冷却プレート21と接触させるようにして、スペーサ部を介した伝熱を抑制することもできる。このような例を、実施例3として図9に示す。このエンドセパレータ13は、前述のスペーサ部13Aの下部に突出脚13dを複数形成したようなスペーサ部13Cを形成している。このスペーサ部13Cの突出脚13dは、熱伝導シート22又は冷却プレート21との接触面積を小さくすることができる。さらに、スペーサ部13Cの突出脚13d同士の間には、空間が形成される。これにより、この空間の空気の熱伝導率が他の固形材料より極小であるため、エンドプレート5と、熱伝導シート22又は冷却プレート21との伝熱をさらに減少させることができる。
Furthermore, in Examples 1 and 2 above, the end plate 5 is brought into contact with almost the entire surface of the spacer portion, but the present invention is not limited to this configuration. For example, heat transfer through the spacer portion can be suppressed by bringing a part of the spacer portion into contact with the heat conductive sheet 22 or the cooling plate 21. Such an example is shown in FIG. The end separator 13 has a spacer portion 13C in which a plurality of protruding legs 13d are formed below the spacer portion 13A. The protruding leg 13d of the spacer portion 13C can reduce the contact area with the heat conductive sheet 22 or the cooling plate 21. Furthermore, a space is formed between the protruding legs 13d of the spacer portion 13C. Thereby, since the thermal conductivity of the air in this space is extremely smaller than other solid materials, the heat transfer between the end plate 5 and the heat conductive sheet 22 or the cooling plate 21 can be further reduced.
ここで、実施例1から3のエンドセパレータ13の材料は、角形電池セル11間に配置されるセパレータ12よりも熱伝導率の低い材料を用いることができる。例えば材料をポリプロピレン等の樹脂で熱伝導率が低く絶縁性が高い材料を用いることができる。この構成によると、エンドセパレータ13により、エンドプレート5に隣接する角形電池セル11からエンドプレート5への伝熱量を減少させることができる。
Here, as the material of the end separator 13 of Examples 1 to 3, a material having a lower thermal conductivity than the separator 12 disposed between the rectangular battery cells 11 can be used. For example, a material such as polypropylene, which has a low thermal conductivity and a high insulating property, can be used. According to this configuration, the amount of heat transferred from the rectangular battery cell 11 adjacent to the end plate 5 to the end plate 5 can be reduced by the end separator 13.
以上の電源装置は、車載用のバッテリシステムとして利用できる。電源装置を搭載する車両としては、エンジンとモータの両方で走行するハイブリッドカーやプラグインハイブリッドカー、あるいはモータのみで走行する電気自動車などの電動車両が利用でき、これらの車両の電源として使用される。
(ハイブリッド車用電源装置) The power supply device described above can be used as an in-vehicle battery system. As a vehicle equipped with a power supply device, an electric vehicle such as a hybrid car or a plug-in hybrid car that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and is used as a power source for these vehicles .
(Power supply for hybrid vehicles)
(ハイブリッド車用電源装置) The power supply device described above can be used as an in-vehicle battery system. As a vehicle equipped with a power supply device, an electric vehicle such as a hybrid car or a plug-in hybrid car that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and is used as a power source for these vehicles .
(Power supply for hybrid vehicles)
図11に、エンジンとモータの両方で走行するハイブリッドカーに電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両HVは、車両HVを走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給するバッテリシステム100Bと、バッテリシステム100Bの電池を充電する発電機94とを備えている。バッテリシステム100Bは、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、バッテリシステム100Bの電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、たとえば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、バッテリシステム100Bから電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、バッテリシステム100Bの電池を充電する。
(電気自動車用電源装置) FIG. 11 shows an example in which a power supply device is mounted on a hybrid car that travels with both an engine and a motor. A vehicle HV equipped with the power supply device shown in this figure includes anengine 96 and a running motor 93 that run the vehicle HV, a battery system 100B that supplies power to the motor 93, and a generator that charges the battery of the battery system 100B. 94. The battery system 100B is connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the battery system 100B. The motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving. The motor 93 is driven by power supplied from the battery system 100B. The generator 94 is driven by the engine 96 or is driven by regenerative braking when braking the vehicle, and charges the battery of the battery system 100B.
(Power supply for electric vehicles)
(電気自動車用電源装置) FIG. 11 shows an example in which a power supply device is mounted on a hybrid car that travels with both an engine and a motor. A vehicle HV equipped with the power supply device shown in this figure includes an
(Power supply for electric vehicles)
また図12に、モータのみで走行する電気自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両EVは、車両EVを走行させる走行用のモータ93と、このモータ93に電力を供給するバッテリシステム100Cと、このバッテリシステム100Cの電池を充電する発電機94とを備えている。モータ93は、バッテリシステム100Cから電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、バッテリシステム100Cの電池を充電する。
(蓄電用電源装置) FIG. 12 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor. A vehicle EV equipped with the power supply device shown in this figure includes a travelingmotor 93 for traveling the vehicle EV, a battery system 100C for supplying electric power to the motor 93, and a generator 94 for charging a battery of the battery system 100C. And. The motor 93 is driven by power supplied from the battery system 100C. The generator 94 is driven by energy when regeneratively braking the vehicle EV, and charges the battery of the battery system 100C.
(Power storage device for power storage)
(蓄電用電源装置) FIG. 12 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor. A vehicle EV equipped with the power supply device shown in this figure includes a traveling
(Power storage device for power storage)
さらに、この電源装置は、移動体用の動力源としてのみならず、載置型の蓄電装置としても利用できる。例えば家庭用、工場用の電源として、太陽光や深夜電力等で充電し、必要時に放電する電源システム、あるいは日中の太陽光を充電して夜間に放電する街路灯用の電源や、停電時に駆動する信号機用のバックアップ電源等にも利用できる。このような例を図13に示す。この図に示す電源装置100Aは、複数の電池積層体81をユニット状に接続して電池ユニット82を構成している。各電池積層体81は、複数の角形電池セルが直列及び/又は並列に接続されている。各電池積層体81は、電源コントローラ84により制御される。この電源装置100Aは、電池ユニット82を充電用電源CPで充電した後、負荷LDを駆動する。このため電源装置100Aは、充電モードと放電モードを備える。負荷LDと充電用電源CPはそれぞれ、放電スイッチDS及び充電スイッチCSを介して電源装置100Aと接続されている。放電スイッチDS及び充電スイッチCSのON/OFFは、電源装置100Aの電源コントローラ84によって切り替えられる。充電モードにおいては、電源コントローラ84は充電スイッチCSをONに、放電スイッチDSをOFFに切り替えて、充電用電源CPから電源装置100Aへの充電を許可する。また充電が完了し満充電になると、あるいは所定値以上の容量が充電された状態で負荷LDからの要求に応じて、電源コントローラ84は充電スイッチCSをOFFに、放電スイッチDSをONにして放電モードに切り替え、電源装置100Aから負荷LDへの放電を許可する。また、必要に応じて、充電スイッチCSをONに、放電スイッチDSをONにして、負荷LDの電力供給と、電源装置100Aへの充電を同時に行うこともできる。
Furthermore, this power supply device can be used not only as a power source for a moving body but also as a stationary power storage device. For example, as a power source for home and factory use, a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals. Such an example is shown in FIG. The power supply device 100A shown in this figure forms a battery unit 82 by connecting a plurality of battery stacks 81 in a unit shape. Each battery stack 81 has a plurality of prismatic battery cells connected in series and / or in parallel. Each battery stack 81 is controlled by a power controller 84. The power supply device 100A drives the load LD after charging the battery unit 82 with the charging power supply CP. For this reason, the power supply device 100A includes a charge mode and a discharge mode. The load LD and the charging power source CP are connected to the power supply device 100A via the discharging switch DS and the charging switch CS, respectively. ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply apparatus 100A. In the charging mode, the power controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging from the charging power supply CP to the power supply device 100A. Further, when the charging is completed and the battery is fully charged, or in response to a request from the load LD in a state where a capacity of a predetermined value or more is charged, the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge. The mode is switched to permit discharge from the power supply device 100A to the load LD. If necessary, the charge switch CS can be turned on and the discharge switch DS can be turned on to simultaneously supply power to the load LD and charge the power supply device 100A.
電源装置100Aで駆動される負荷LDは、放電スイッチDSを介して電源装置100Aと接続されている。電源装置100Aの放電モードにおいては、電源コントローラ84が放電スイッチDSをONに切り替えて、負荷LDに接続し、電源装置100Aからの電力で負荷LDを駆動する。放電スイッチDSはFET等のスイッチング素子が利用できる。放電スイッチDSのON/OFFは、電源装置100Aの電源コントローラ84によって制御される。また電源コントローラ84は、外部機器と通信するための通信インターフェースを備えている。図13の例では、UARTやRS-232C等の既存の通信プロトコルに従い、ホスト機器HTと接続されている。また必要に応じて、電源システムに対してユーザが操作を行うためのユーザインターフェースを設けることもできる。
The load LD driven by the power supply device 100A is connected to the power supply device 100A via the discharge switch DS. In the discharge mode of the power supply device 100A, the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the power supply device 100A. As the discharge switch DS, a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply apparatus 100A. The power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 13, the host device HT is connected according to an existing communication protocol such as UART or RS-232C. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
各電池積層体81は、信号端子と電源端子を備える。信号端子は、パック入出力端子DIと、パック異常出力端子DAと、パック接続端子DOとを含む。パック入出力端子DIは、他のパック電池や電源コントローラ84からの信号を入出力するための端子であり、パック接続端子DOは子パックである他のパック電池に対して信号を入出力するための端子である。またパック異常出力端子DAは、パック電池の異常を外部に出力するための端子である。さらに電源端子は、電池積層体81同士を直列、並列に接続するための端子である。
Each battery stack 81 includes a signal terminal and a power supply terminal. The signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO. The pack input / output terminal DI is a terminal for inputting / outputting signals from other pack batteries and the power supply controller 84, and the pack connection terminal DO is for inputting / outputting signals to / from other pack batteries which are child packs. Terminal. The pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside. Furthermore, the power supply terminal is a terminal for connecting the battery stacks 81 in series and in parallel.
さらにこの電源装置100Aは、電池ユニット82の均等化のための均等化モードを備える。電池ユニット82は並列接続スイッチ85を介して出力ラインOLに接続されて互いに並列に接続されている。このため電源コントローラ84に制御される均等化回路86を備えている。均等化回路86によって、複数の電池ユニット82間の電池残存容量のばらつきを抑制される。
Furthermore, the power supply device 100A includes an equalization mode for equalizing the battery units 82. The battery units 82 are connected to the output line OL via the parallel connection switch 85 and connected in parallel to each other. For this purpose, an equalizing circuit 86 controlled by the power supply controller 84 is provided. The equalization circuit 86 suppresses variations in the remaining battery capacity among the plurality of battery units 82.
本発明に係る電源装置及びこれを備える車両並びに蓄電装置は、EV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車等の電源装置として好適に利用できる。またコンピュータサーバのラックに搭載可能なバックアップ電源装置、携帯電話等の無線基地局用のバックアップ電源装置、家庭内用、工場用の蓄電用電源、街路灯の電源等、太陽電池と組み合わせた蓄電装置、信号機等のバックアップ電源用等の用途にも適宜利用できる。
The power supply device according to the present invention, the vehicle including the power supply device, and the power storage device are suitably used as a power supply device for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle, or the like that can switch between the EV traveling mode and the HEV traveling mode. it can. Also, a backup power supply device that can be mounted on a rack of a computer server, a backup power supply device for a wireless base station such as a mobile phone, a power storage device for home use and a factory, a power supply for a street light, etc. Also, it can be used as appropriate for applications such as a backup power source such as a traffic light.
100、100A…電源装置
100B、100C…バッテリシステム
1…外装上ケース
2…端面カバー
3…外装底面ケース
4A、4B…フランジ
5…エンドプレート 5A…雌ネジ孔
6…バインドバー 6A…折曲部
6B…係止部
6C…連結片
6D…係止フック
7…トップカバー
8…連結具 8C…折曲部
8D…連結穴
9…電池ブロック
10…電池積層体
11、11A…角形電池セル
12…セパレータ 12a…突出片
13…エンドセパレータ
13A、13B、13C…スペーサ部
13a…突出片 13b…ガイド部 13c…位置決め孔 13d…突出脚
14…電極端子
15…安全弁
19…止ネジ
20…冷却機構
21…冷却プレート
22…熱伝導シート
23…冷媒路
26…コンプレッサ
27…冷却熱交換器
28…膨張弁
81…電池積層体
82…電池ユニット
84…電源コントローラ
85…並列接続スイッチ
86…均等化回路
93…モータ
94…発電機
95…インバータ
96…エンジン
810、810A…角形電池セル
811…電池積層体
812…冷却プレート
821…エンドセパレータ
830…エンドプレート
840…熱伝導シート
910…角形電池セル
911…組電池
912…冷却プレート
920…セパレータ
940…熱伝導シート
HV、EV…車両
LD…負荷;CP…充電用電源;DS…放電スイッチ;CS…充電スイッチ
OL…出力ライン;HT…ホスト機器
DI…パック入出力端子;DA…パック異常出力端子;DO…パック接続端子 DESCRIPTION OF SYMBOLS 100, 100A ... Power supply device 100B, 100C ... Battery system 1 ... Exterior upper case 2 ... End surface cover 3 ... Exterior bottom case 4A, 4B ... Flange 5 ... End plate 5A ... Female screw hole 6 ... Bind bar 6A ... Bending part 6B ... Locking part 6C ... Connecting piece 6D ... Locking hook 7 ... Top cover 8 ... Connecting tool 8C ... Bending part 8D ... Connecting hole 9 ... Battery block 10 ... Battery stack 11, 11A ... Square battery cell 12 ... Separator 12a ... Projection piece 13 ... End separator 13A, 13B, 13C ... Spacer part 13a ... Projection piece 13b ... Guide part 13c ... Positioning hole 13d ... Projection leg 14 ... Electrode terminal 15 ... Safety valve 19 ... Set screw 20 ... Cooling mechanism 21 ... Cooling plate 22 ... Heat conduction sheet 23 ... Refrigerant path 26 ... Compressor 27 ... Cooling heat Exchanger 28 ... Expansion valve 81 ... Battery stack 82 ... Battery unit 84 ... Power supply controller 85 ... Parallel connection switch 86 ... Equalization circuit 93 ... Motor 94 ... Generator 95 ... Inverter 96 ... Engine 810, 810A ... Rectangular battery cell 811 ... Battery stack 812 ... Cooling plate 821 ... End separator 830 ... End plate 840 ... Thermal conductive sheet 910 ... Square battery cell 911 ... Battery pack 912 ... Cooling plate 920 ... Separator 940 ... Thermal conductive sheet HV, EV ... Vehicle LD ... Load CP ... Power supply for charging; DS ... Discharge switch; CS ... Charge switch OL ... Output line; HT ... Host device DI ... Pack input / output terminal; DA ... Pack abnormal output terminal; DO ... Pack connection terminal
100B、100C…バッテリシステム
1…外装上ケース
2…端面カバー
3…外装底面ケース
4A、4B…フランジ
5…エンドプレート 5A…雌ネジ孔
6…バインドバー 6A…折曲部
6B…係止部
6C…連結片
6D…係止フック
7…トップカバー
8…連結具 8C…折曲部
8D…連結穴
9…電池ブロック
10…電池積層体
11、11A…角形電池セル
12…セパレータ 12a…突出片
13…エンドセパレータ
13A、13B、13C…スペーサ部
13a…突出片 13b…ガイド部 13c…位置決め孔 13d…突出脚
14…電極端子
15…安全弁
19…止ネジ
20…冷却機構
21…冷却プレート
22…熱伝導シート
23…冷媒路
26…コンプレッサ
27…冷却熱交換器
28…膨張弁
81…電池積層体
82…電池ユニット
84…電源コントローラ
85…並列接続スイッチ
86…均等化回路
93…モータ
94…発電機
95…インバータ
96…エンジン
810、810A…角形電池セル
811…電池積層体
812…冷却プレート
821…エンドセパレータ
830…エンドプレート
840…熱伝導シート
910…角形電池セル
911…組電池
912…冷却プレート
920…セパレータ
940…熱伝導シート
HV、EV…車両
LD…負荷;CP…充電用電源;DS…放電スイッチ;CS…充電スイッチ
OL…出力ライン;HT…ホスト機器
DI…パック入出力端子;DA…パック異常出力端子;DO…パック接続端子 DESCRIPTION OF
Claims (9)
- 複数の角形電池セルを積層してなる電池積層体と、
前記電池積層体を積層方向において締結するため両端面に配置された金属製のエンドプレートと、
各角形電池セル同士の間に配置された絶縁性を有するセパレータと、
前記電池積層体両端に位置する前記角形電池セルと前記エンドプレートを絶縁するために配置された絶縁性のエンドセパレータと、
前記電池積層体の一面と熱結合させて冷却するための冷却プレートと、
前記電池積層体と前記冷却プレートとの間に配置された熱伝導シートと
を備える電源装置であって、
前記熱伝導シートを介した前記冷却プレートと前記エンドプレートとの熱結合を阻害するスペーサ部を備えることを特徴とする電源装置。 A battery laminate formed by laminating a plurality of rectangular battery cells;
Metal end plates disposed on both end faces for fastening the battery stack in the stacking direction;
A separator having insulating properties disposed between the respective square battery cells;
Insulating end separators arranged to insulate the prismatic battery cells located at both ends of the battery stack and the end plate;
A cooling plate for thermally bonding and cooling with one surface of the battery stack;
A power supply device comprising a heat conductive sheet disposed between the battery stack and the cooling plate,
A power supply apparatus comprising a spacer portion that inhibits thermal coupling between the cooling plate and the end plate via the heat conductive sheet. - 請求項1に記載の電源装置であって、
前記エンドセパレータの底部に前記スペーサ部を一体形成し、
該スペーサ部を前記エンドプレートの底部方向へ設け、
前記熱伝導シートを介した前記冷却プレート上に該スペーサ部を配置し、
該スペーサ部上に該エンドプレートを載置してなることを特徴とする電源装置。 The power supply device according to claim 1,
The spacer portion is integrally formed at the bottom of the end separator,
The spacer portion is provided toward the bottom of the end plate,
The spacer portion is disposed on the cooling plate via the heat conductive sheet,
A power supply device comprising the end plate placed on the spacer portion. - 請求項1又は2に記載の電源装置であって、
前記角形電池セルと前記エンドプレートとの間の前記エンドセパレータの厚みより厚い前記スペーサ部を備えてなることを特徴とする電源装置。 The power supply device according to claim 1 or 2,
A power supply apparatus comprising the spacer portion thicker than a thickness of the end separator between the rectangular battery cell and the end plate. - 請求項1から3のいずれか一に記載の電源装置であって、
前記スペーサ部において、空間を形成させるため、前記冷却プレートの方向へ突出片を複数設けてなることを特徴とする電源装置。 The power supply device according to any one of claims 1 to 3,
In the spacer portion, in order to form a space, a plurality of protruding pieces are provided in the direction of the cooling plate. - 請求項1から4のいずれか一に記載の電源装置であって、
前記エンドセパレータの熱伝導率が前記セパレータより低い樹脂製とすることを特徴とする電源装置。 The power supply device according to any one of claims 1 to 4,
A power supply device, wherein the end separator is made of a resin having a lower thermal conductivity than the separator. - 請求項1から5のいずれか一に記載の電源装置であって、
前記冷却プレートの内部に冷媒を通す冷媒路を設けてなることを特徴とする電源装置。 The power supply device according to any one of claims 1 to 5,
A power supply apparatus comprising a coolant passage through which a coolant passes inside the cooling plate. - 請求項1から6のいずれか一に記載の電源装置であって、
前記熱伝導シートが圧縮されて変形するシートであることを特徴とする電源装置。 The power supply device according to any one of claims 1 to 6,
A power supply device, wherein the heat conductive sheet is a sheet that is compressed and deformed. - 請求項1から7のいずれか一に記載の電源装置を備える車両。 A vehicle comprising the power supply device according to any one of claims 1 to 7.
- 請求項1から7のいずれか一に記載の電源装置を備える蓄電装置。 A power storage device comprising the power supply device according to any one of claims 1 to 7.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011270750 | 2011-12-10 | ||
JP2011-270750 | 2011-12-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013084756A1 true WO2013084756A1 (en) | 2013-06-13 |
Family
ID=48574129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/080658 WO2013084756A1 (en) | 2011-12-10 | 2012-11-27 | Power source device, vehicle equipped with same and electricity storage device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013084756A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015106443A (en) * | 2013-11-28 | 2015-06-08 | 株式会社豊田自動織機 | Battery module |
CN104752639A (en) * | 2013-12-31 | 2015-07-01 | 比亚迪股份有限公司 | Power battery module |
CN104752666A (en) * | 2013-12-31 | 2015-07-01 | 比亚迪股份有限公司 | Power battery module |
WO2016031628A1 (en) * | 2014-08-27 | 2016-03-03 | 株式会社 豊田自動織機 | Battery pack |
CN106410083A (en) * | 2016-11-01 | 2017-02-15 | 法乐第(北京)网络科技有限公司 | Battery module and electric vehicle |
JP2018529186A (en) * | 2015-09-25 | 2018-10-04 | エルジー・ケム・リミテッド | Battery module, battery pack including the battery module, and automobile including the battery pack |
WO2020013120A1 (en) * | 2018-07-09 | 2020-01-16 | 三洋電機株式会社 | Battery system, electric vehicle equipped with battery system, and electricity storage device |
CN111477779A (en) * | 2019-01-23 | 2020-07-31 | 丰田自动车株式会社 | Battery device |
CN111937178A (en) * | 2018-03-30 | 2020-11-13 | 三洋电机株式会社 | Power supply device and vehicle having the same |
CN114207912A (en) * | 2019-08-07 | 2022-03-18 | 三洋电机株式会社 | Power supply device, and electrically powered vehicle and power storage device using same |
CN114342167A (en) * | 2019-10-08 | 2022-04-12 | 株式会社Lg新能源 | Battery pack and vehicle including the same |
US11509005B2 (en) | 2018-03-09 | 2022-11-22 | Kabushiki Kaisha Toshiba | Battery pack including separator between secondary batteries |
DE102022124278A1 (en) | 2022-09-21 | 2024-03-21 | Man Truck & Bus Se | Energy storage device with active temperature control and method for active temperature control of the energy storage device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004047361A (en) * | 2002-07-15 | 2004-02-12 | Sanyo Electric Co Ltd | Power supply device |
JP2011034775A (en) * | 2009-07-31 | 2011-02-17 | Sanyo Electric Co Ltd | Assembled battery cooling structure and battery system |
JP2011096536A (en) * | 2009-10-30 | 2011-05-12 | Sanyo Electric Co Ltd | Power supply device and vehicle with the same |
-
2012
- 2012-11-27 WO PCT/JP2012/080658 patent/WO2013084756A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004047361A (en) * | 2002-07-15 | 2004-02-12 | Sanyo Electric Co Ltd | Power supply device |
JP2011034775A (en) * | 2009-07-31 | 2011-02-17 | Sanyo Electric Co Ltd | Assembled battery cooling structure and battery system |
JP2011096536A (en) * | 2009-10-30 | 2011-05-12 | Sanyo Electric Co Ltd | Power supply device and vehicle with the same |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015106443A (en) * | 2013-11-28 | 2015-06-08 | 株式会社豊田自動織機 | Battery module |
CN104752639A (en) * | 2013-12-31 | 2015-07-01 | 比亚迪股份有限公司 | Power battery module |
CN104752666A (en) * | 2013-12-31 | 2015-07-01 | 比亚迪股份有限公司 | Power battery module |
WO2015101269A1 (en) * | 2013-12-31 | 2015-07-09 | Byd Company Limited | Power battery moudle |
US10243182B2 (en) | 2013-12-31 | 2019-03-26 | Byd Company Limited | Power battery module with detachable separators |
WO2016031628A1 (en) * | 2014-08-27 | 2016-03-03 | 株式会社 豊田自動織機 | Battery pack |
JP2016048621A (en) * | 2014-08-27 | 2016-04-07 | 株式会社豊田自動織機 | Battery pack |
JP2018529186A (en) * | 2015-09-25 | 2018-10-04 | エルジー・ケム・リミテッド | Battery module, battery pack including the battery module, and automobile including the battery pack |
CN106410083A (en) * | 2016-11-01 | 2017-02-15 | 法乐第(北京)网络科技有限公司 | Battery module and electric vehicle |
US11509005B2 (en) | 2018-03-09 | 2022-11-22 | Kabushiki Kaisha Toshiba | Battery pack including separator between secondary batteries |
CN111937178A (en) * | 2018-03-30 | 2020-11-13 | 三洋电机株式会社 | Power supply device and vehicle having the same |
CN111937178B (en) * | 2018-03-30 | 2023-10-17 | 三洋电机株式会社 | Power supply device and vehicle having the same |
JP7348180B2 (en) | 2018-07-09 | 2023-09-20 | 三洋電機株式会社 | Battery system and electric vehicle and power storage device equipped with the battery system |
CN112385071A (en) * | 2018-07-09 | 2021-02-19 | 三洋电机株式会社 | Battery system, electric vehicle having battery system, and power storage device |
JPWO2020013120A1 (en) * | 2018-07-09 | 2021-08-05 | 三洋電機株式会社 | Electric vehicle and power storage device with battery system and battery system |
CN112385071B (en) * | 2018-07-09 | 2024-09-20 | 三洋电机株式会社 | Battery system, electric vehicle having battery system, and power storage device |
US12095063B2 (en) | 2018-07-09 | 2024-09-17 | Sanyo Electric Co., Ltd. | Battery system, electric vehicle equipped with battery system, and electricity storage device |
WO2020013120A1 (en) * | 2018-07-09 | 2020-01-16 | 三洋電機株式会社 | Battery system, electric vehicle equipped with battery system, and electricity storage device |
CN111477779A (en) * | 2019-01-23 | 2020-07-31 | 丰田自动车株式会社 | Battery device |
CN111477779B (en) * | 2019-01-23 | 2022-12-27 | 丰田自动车株式会社 | Battery device |
CN114207912A (en) * | 2019-08-07 | 2022-03-18 | 三洋电机株式会社 | Power supply device, and electrically powered vehicle and power storage device using same |
EP4012820A4 (en) * | 2019-08-07 | 2022-10-19 | SANYO Electric Co., Ltd. | Power supply device, electric vehicle using same, and power storage device |
JP2022545267A (en) * | 2019-10-08 | 2022-10-26 | エルジー エナジー ソリューション リミテッド | Battery packs and automobiles containing them |
CN114342167B (en) * | 2019-10-08 | 2024-03-08 | 株式会社Lg新能源 | Battery pack and vehicle comprising same |
JP7472270B2 (en) | 2019-10-08 | 2024-04-22 | エルジー エナジー ソリューション リミテッド | Battery pack and automobile including same |
CN114342167A (en) * | 2019-10-08 | 2022-04-12 | 株式会社Lg新能源 | Battery pack and vehicle including the same |
DE102022124278A1 (en) | 2022-09-21 | 2024-03-21 | Man Truck & Bus Se | Energy storage device with active temperature control and method for active temperature control of the energy storage device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5734704B2 (en) | Power supply device and vehicle equipped with power supply device | |
WO2013084756A1 (en) | Power source device, vehicle equipped with same and electricity storage device | |
JP7348180B2 (en) | Battery system and electric vehicle and power storage device equipped with the battery system | |
JP6073583B2 (en) | Power supply device, vehicle including this power supply device, and power storage device | |
JP5595871B2 (en) | Power supply | |
JP5985255B2 (en) | Power supply device, vehicle including this power supply device, and power storage device | |
WO2013161654A1 (en) | Power-supply device, vehicle provided with power-supply device, and electricity-storage device | |
JP6138688B2 (en) | Power supply device, vehicle including the same, and power storage device | |
JP5868676B2 (en) | Power supply device, vehicle including the same, and power storage device | |
JP2013125617A (en) | Power supply device and vehicle having the same, and power storage device | |
WO2019155713A1 (en) | Power supply device, and electric vehicle and power storage device provided with said power supply device | |
WO2012165493A1 (en) | Power source device for supplying power and vehicle provided with power source device | |
WO2013146561A1 (en) | Power supply device, and vehicle and power storage device equipped with same | |
JP6017539B2 (en) | Power supply device, vehicle including the same, and power storage device | |
WO2012133707A1 (en) | Power source device and vehicle provided with power source device | |
JP2013012441A (en) | Electric power source device and vehicle including the same | |
JP7208170B2 (en) | Power supply device, vehicle equipped with power supply device, and power storage device | |
JP2012248339A (en) | Power unit for electric power and vehicle with power unit | |
JP2012160347A (en) | Power supply and vehicle with power supply | |
WO2014034057A1 (en) | Battery system, electric vehicle equipped with battery system and electricity storage device | |
WO2012133710A1 (en) | Power supply and vehicle comprising same | |
JP2012243689A (en) | Power supply device, vehicle including the same, and bus bar | |
JP2012033419A (en) | Power supply device, vehicle using the same, battery cell, and method of manufacturing the battery cell | |
WO2013031614A1 (en) | Power supply device, vehicle provided with same, and power storage device | |
WO2014024450A1 (en) | Power source device, electric vehicle provided with same, and electricity storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12855441 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12855441 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |