WO2014097900A1 - タンタルスパッタリングターゲット及びその製造方法 - Google Patents
タンタルスパッタリングターゲット及びその製造方法 Download PDFInfo
- Publication number
- WO2014097900A1 WO2014097900A1 PCT/JP2013/082773 JP2013082773W WO2014097900A1 WO 2014097900 A1 WO2014097900 A1 WO 2014097900A1 JP 2013082773 W JP2013082773 W JP 2013082773W WO 2014097900 A1 WO2014097900 A1 WO 2014097900A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- grain size
- crystal grain
- less
- sputtering target
- rolling
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/0615—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
- C01B21/0617—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with vanadium, niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53209—Conductive materials based on metals, e.g. alloys, metal silicides
- H01L23/53228—Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
- H01L23/53238—Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/332—Coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a tantalum sputtering target and a manufacturing method thereof.
- the present invention relates to a tantalum sputtering target used for forming a Ta film or a TaN film as a diffusion barrier layer for copper wiring in an LSI and a method for manufacturing the same.
- a Ta film or a TaN film is formed by sputtering a tantalum target.
- various impurities, gas components, crystal plane orientation, crystal grain size, etc. contained in the target are related to the effect on sputtering performance, film formation speed, film thickness uniformity, particle generation, etc. Is known to affect.
- Patent Document 1 describes that the uniformity of the film is improved by forming a crystal structure in which the (222) orientation is preferential from the position of 30% of the target thickness toward the center plane of the target.
- Patent Document 2 describes that by making the crystal orientation of the tantalum target random (not aligning with a specific crystal orientation), the film formation rate is increased and the uniformity of the film is improved.
- Patent Document 3 discloses that the film orientation is improved by selectively increasing the plane orientation of (110), (200), (211) having a high atomic density on the sputtering surface, and variation in plane orientation is also observed. The improvement of uniformity is described by suppressing.
- Patent Document 4 describes that the uniformity of the film thickness is improved by making the variation of the intensity ratio of the (110) plane obtained by X-ray diffraction within 20% depending on the location of the sputter surface portion. ing.
- Patent Document 5 uses swaging, extrusion, rotary forging, and non-lubricated upset forging in combination with clock rolling, and has a very strong crystallographic texture such as (111) or (100). It is stated that a metal target can be made.
- a tantalum ingot is subjected to forging, annealing, and rolling, and after final composition processing, it is further annealed at a temperature of 1173 K or lower, and an unrecrystallized structure is 20% or less, 90% or less.
- a method for producing a tantalum sputtering target is described.
- Patent Document 7 discloses a technique for stabilizing the sputtering characteristics by setting the relative intensity of the peak of the sputtering surface of the target to (110)> (211)> (200) by processing such as forging and cold rolling and heat treatment. Is disclosed.
- Patent Document 8 describes that a tantalum ingot is forged, subjected to heat treatment twice or more in this forging process, further subjected to cold rolling, and subjected to recrystallization heat treatment.
- the discharge voltage of the tantalum target is lowered, plasma is easily generated, and film formation is performed. There is no idea of suppressing the fluctuation of the voltage inside.
- JP 2004-107758 A International Publication No. 2005/045090 Japanese Patent Laid-Open No. 11-80942 Japanese Patent Laid-Open No. 2002-36336 Special table 2008-532765 gazette Japanese Patent No. 4754617 International Publication No. 2011-061897 Japanese Patent No. 4714123
- the discharge voltage of the tantalum sputtering target is lowered, plasma is easily generated, and film formation is performed. It is an object to suppress the fluctuation of the internal voltage.
- the present invention provides the following inventions.
- a tantalum sputtering target characterized in that, on the sputtering surface of the tantalum sputtering target, the average crystal grain size is 50 ⁇ m or more and 150 ⁇ m or less, and the variation in crystal grain size is 30 ⁇ m or less.
- the (200) plane orientation ratio exceeds 70%
- the (222) plane orientation ratio is 30% or less
- the average crystal grain size is 50 ⁇ m or more and 150 ⁇ m or less.
- a variation in crystal grain size is 30 ⁇ m or less.
- the orientation ratio of (200) plane is 80% or more and the orientation ratio of (222) plane
- the tantalum sputtering target 4) is one of the above 1) to 3), characterized in that the average crystal grain size is 50 ⁇ m or more and 150 ⁇ m or less and the variation in crystal grain size is 30 ⁇ m or less.
- the present invention also provides: 6) Forging and recrystallization annealing of the cast tantalum ingot, followed by rolling and heat treatment, the average crystal grain size is not less than 50 ⁇ m and not more than 150 ⁇ m, and the variation in crystal grain size is not more than 30 ⁇ m on the sputtering surface of the target A method for producing a tantalum sputtering target characterized by forming a crystalline structure 7) Forging and recrystallization annealing of a melt-cast tantalum ingot, followed by rolling and heat treatment, the orientation ratio of the (200) plane on the sputtering surface of the target Is more than 70%, the (222) plane orientation ratio is 30% or less, the average crystal grain size is 50 ⁇ m or more and 150 ⁇ m or less, and the crystal grain size variation is 30 ⁇ m or less.
- Tantalum sputtering according to any one of 6) to 8) above wherein cold rolling is performed at a rolling speed of 10 m / min or more and a rolling rate of over 80% using a rolling roll having a rolling roll diameter of 500 mm or less.
- Target manufacturing method 10) The method for producing a tantalum sputtering target according to any one of 6) to 9) above, wherein heat treatment is performed at a temperature of 900 ° C. to 1400 ° C. 11) The method for producing a tantalum sputtering target according to any one of 6) to 10) above, wherein the surface finish is performed by cutting and polishing after rolling and heat treatment.
- the tantalum sputtering target of the present invention controls the crystal grain size or both the crystal grain size and crystal orientation on the sputtering surface of the target, thereby reducing the discharge voltage of the tantalum sputtering target and making it easier to generate plasma. It has an excellent effect that the fluctuation of the voltage in the film can be suppressed. In particular, it has an excellent effect in forming a diffusion barrier layer made of Ta film or TaN film that can effectively prevent contamination around the wiring due to active Cu diffusion.
- the tantalum sputtering target of the present invention is characterized in that the average crystal grain size on the sputtering surface is 50 ⁇ m or more and 150 ⁇ m or less, and the variation in crystal grain size is 30 ⁇ m or less.
- the average grain size affects the tantalum sputtering target discharge voltage. That is, by adjusting the average crystal grain size within the above range, the discharge voltage can be lowered and the plasma can be stabilized and the fluctuation of voltage during film formation can be suppressed. Occurrence can be suppressed.
- the discharge voltage can be 620 V or less and the discharge voltage variation can be 20 V or less, so that the discharge abnormality occurrence rate can be reduced.
- the average crystal grain size is outside the range of 50 ⁇ m or more and 150 ⁇ m or less, the effect of stabilizing the plasma and suppressing voltage fluctuation during film formation tends to decrease.
- the (222) plane has a shorter interatomic distance than the (200) plane, and the (222) plane has the (200) plane. Atoms are more densely packed than the surface. For this reason, it is considered that during sputtering, the (222) plane releases more tantalum atoms than the (200) plane, and the sputtering rate (film formation rate) is increased.
- BCC body-centered cubic lattice structure
- the tantalum sputtering target has an average crystal grain size of 50 ⁇ m or more and 150 ⁇ m or less on the sputtering surface of the tantalum sputtering target, and a variation in crystal grain size of 30 ⁇ m or less.
- the orientation ratio exceeds 70%, and the orientation ratio of the (222) plane is 30% or less.
- the orientation rate of the (200) plane is 80% or more, and the orientation rate of the (222) plane is 20% or less.
- the sputtering rate (deposition rate) is reduced under normal conditions by increasing the orientation ratio of the (200) plane and decreasing the orientation ratio of the (222) plane on the sputtering surface.
- the tantalum sputtering target discharge voltage can be lowered, so that plasma is easily generated and the plasma can be stabilized.
- the voltage and current are adjusted so that the discharge can be maintained at a set input power.
- the current may decrease due to some influence, and the voltage may increase in an attempt to maintain the power at a constant value.
- a discharge abnormality is called a discharge abnormality.
- the present invention controls the crystal grain size or crystal grain size and crystal orientation on the sputtering surface of the target, and if necessary, increases the orientation ratio of the (200) plane and increases the orientation ratio of the (222) plane.
- the discharge voltage of the tantalum sputtering target can be lowered and the plasma can be stabilized, so that it is possible to suppress the occurrence of discharge abnormality during sputtering as described above.
- the discharge voltage can be set to 620 V or less and the discharge voltage variation to 20 V or less, the discharge abnormality occurrence rate can be reduced.
- the orientation rate is a standardized measurement intensity of each diffraction peak obtained by X-ray diffraction (110), (200), (211), (310), (222), (321), This means the intensity ratio of a specific plane orientation when the sum of the plane orientation intensities is 100.
- JCPDS Joint Committee for Powder Diffraction Standard
- the orientation ratio (%) of the (200) plane is [[(measured intensity of (200) / JCPDS intensity of (200)] / ⁇ (measured intensity of each face / JCPDS intensity of each face)] ⁇ 10 0.
- the tantalum sputtering target of the present invention can be used for forming a diffusion barrier layer such as a Ta film or a TaN film in a copper wiring. Even when nitrogen is introduced into the atmosphere during sputtering to form a TaN film, the sputtering target of the present invention is The discharge voltage of the tantalum sputtering target is controlled by controlling the crystal grain size or crystal grain size and crystal orientation on the target sputtering surface, and further increasing the (200) plane orientation ratio and decreasing the (222) plane orientation ratio. Since it has an excellent effect of lowering, facilitating the generation of plasma and improving the stability of the plasma, the formation of copper wiring provided with a diffusion barrier layer such as the Ta film or TaN film, Product yield can be improved in the manufacture of semiconductor devices with copper wiring.
- the tantalum sputtering target of the present invention is manufactured by the following process. For example, first, high purity tantalum of 4N (99.99%) or more is usually used as a tantalum raw material. This is melted by electron beam melting or the like and cast to produce an ingot or billet. Next, this ingot or billet is forged and recrystallized. Specifically, for example, ingot or billet-clamp forging-1 annealing at a temperature of 100 to 1400 ° C-cold forging (primary forging) -annealing at a recrystallization temperature of 1400 ° C to cold forging (secondary Forging) —Annealing is performed at a recrystallization temperature of 1400 ° C.
- the rolling roll preferably has a small roll diameter and is preferably 500 mm or less.
- the rolling speed is preferably as fast as possible, and preferably 10 m / min or more.
- the rolling rate is preferably high and more than 80%.
- the rolling rate is set to 60% or more and the final thickness of the target is set to one rolling. Must be the same as The rolling rate is desirably more than 80% in total.
- the orientation rate of the tantalum sputtering target of the present invention can be controlled by adjusting the heat treatment conditions performed after the cold rolling together with the cold rolling conditions.
- the heat treatment temperature should be higher, preferably 900 to 1400 ° C.
- the surface of the target is finished into a final product by finishing such as machining and polishing.
- a tantalum sputtering target is manufactured by the above manufacturing process.
- it is particularly important to control the crystal grain size or crystal grain size and crystal orientation on the sputtering surface of the target.
- the (200) plane orientation ratio is increased and the (222) plane orientation ratio is decreased.
- it is possible to change the amount and distribution of strain introduced during rolling by controlling parameters such as the diameter of the rolling roll, the rolling speed, the rolling rate, and the (200) plane orientation rate and ( 222) The orientation ratio of the plane can be controlled.
- a rolling roll having a diameter of 500 mm or less when manufacturing a target, a rolling roll having a diameter of 500 mm or less is used, the rolling speed is 10 m / min or more, the rolling rate of one pass is 8 to 12%, and the number of passes is 15 to 25 times. It is effective. However, as long as the manufacturing process can achieve the crystal orientation of the present invention, it is not necessarily limited to this manufacturing process. In a series of processing, it is effective to set conditions for destroying the cast structure by forging and rolling and sufficiently performing recrystallization. There are no particular restrictions on the material of the cold-rolled roll (ceramic roll, metal roll), but it is more effective to use a roll having high rigidity. Furthermore, after forging a melt-cast tantalum ingot or billet and applying a process such as rolling, it is desirable to recrystallize and to make the structure fine and uniform.
- a tantalum raw material having a purity of 99.995% was melted by electron beam and cast into an ingot having a diameter of 195 mm ⁇ .
- this ingot was clamped and forged at room temperature to a diameter of 150 mm ⁇ , and this was recrystallized and annealed at a temperature of 1100 to 1400 ° C.
- Example 1 In Example 1, the obtained target material was cold-rolled using a rolling roll having a rolling roll diameter of 400 mm at a rolling speed of 10 m / min, a rolling rate of 10%, 20 passes, and a total rolling rate of 88%. The thickness was 14 mm and the diameter was 520 mm ⁇ . This was heat-treated at a temperature of 1400 ° C. Thereafter, the surface was cut and polished to obtain a target.
- the (200) plane orientation rate is 82.6%
- the (222) plane orientation rate is 13.4%
- the average crystal grain size is 127.1 ⁇ m
- the crystal grain size is A tantalum sputtering target having a variation of 28.0 ⁇ m could be obtained.
- the crystal grain size was measured by using an analytical SIS FIVE (Soft imaging System) on a crystal structure photograph taken with a field of view of 1500 ⁇ m ⁇ 1200 ⁇ m with an electron microscope.
- the following examples and comparative examples were measured in the same manner. When sputtering was performed using this sputtering target, the discharge voltage was 615.3 V, the discharge voltage variation was 14.5 V, and the discharge abnormality occurrence rate was good at 5.3%. The results are shown in Table 1.
- the discharge abnormality occurrence rate is calculated by dividing the number of times that the voltage has reached 1000 V, which is the upper limit value of the power supply, by the total number of discharges.
- the tantalum film was formed under the following conditions (the same applies to the following examples and comparative examples). ⁇ Film formation conditions> Power supply: DC method Power: 15kW Ultimate vacuum: 5 ⁇ 10 ⁇ 8 Torr Atmospheric gas composition: Ar Sputtering gas pressure: 5 ⁇ 10 ⁇ 3 Torr Sputtering time: 15 seconds
- Example 2 In Example 2, the obtained target material was cold-rolled at a rolling speed of 15 m / min, a rolling rate of 9%, 25 passes, and a total rolling rate of 90%, using a rolling roll having a rolling roll diameter of 400 mm. The thickness was 14 mm and the diameter was 520 mm ⁇ , and this was heat-treated at a temperature of 800 ° C. Thereafter, the surface was cut and polished to obtain a target. Through the above steps, the (200) plane orientation ratio is 77.6%, the (222) plane orientation ratio is 7.0%, and the average crystal grain size is 66.3 ⁇ m. A tantalum sputtering target having a variation of 19.0 ⁇ m could be obtained. When sputtering was performed using this sputtering target, the discharge voltage was 611.4 V, the discharge voltage variation was 12.6 V, and the discharge abnormality occurrence rate was favorable at 3.1%. The results are shown in Table 1.
- Example 3 In Example 3, the obtained target material was cold-rolled at a rolling speed of 20 m / min, a rolling rate of 8%, 23 passes, and a total rolling rate of 85% using a rolling roll having a rolling roll diameter of 400 mm. The thickness was 14 mm and the diameter was 520 mm ⁇ , and this was heat-treated at a temperature of 1000 ° C. Thereafter, the surface was cut and polished to obtain a target. Through the above steps, the (200) plane orientation rate is 74.1%, the (222) plane orientation rate is 11.9%, and the average crystal grain size is 80.4 ⁇ m. A tantalum sputtering target having a variation of 25.6 ⁇ m could be obtained. When sputtering was performed using this sputtering target, the discharge voltage was 612.3 V, the discharge voltage variation was 9.8 V, and the discharge abnormality occurrence rate was good at 6.4%. The results are shown in Table 1.
- Example 4 In Example 4, the obtained target material was cold-rolled at a rolling speed of 15 m / min, a rolling rate of 12%, 18 passes, and a total rolling rate of 90% using a rolling roll having a rolling roll diameter of 500 mm. The thickness was 14 mm and the diameter was 520 mm ⁇ , and this was heat-treated at a temperature of 900 ° C. Thereafter, the surface was cut and polished to obtain a target. Through the above steps, the (200) plane orientation rate is 71.7%, the (222) plane orientation rate is 14.9%, the average crystal grain size is 51.9 ⁇ m, and the crystal grain size A tantalum sputtering target having a variation of 16.4 ⁇ m could be obtained. When sputtering was performed using this sputtering target, the discharge voltage was 611.8 V, the discharge voltage variation was 17.7 V, and the discharge abnormality occurrence rate was favorable at 4.5%. The results are shown in Table 1.
- Example 5 In Example 5, the obtained target material was cold-rolled at a rolling speed of 20 m / min, a rolling rate of 12%, 15 passes, and a total rolling rate of 85%, using a rolling roll having a rolling roll diameter of 500 mm. The thickness was 14 mm and the diameter was 520 mm ⁇ , and this was heat-treated at a temperature of 1200 ° C. Thereafter, the surface was cut and polished to obtain a target. Through the above steps, the (200) plane orientation ratio is 70.3%, the (222) plane orientation ratio is 16.1%, and the average crystal grain size is 98.1 ⁇ m. A tantalum sputtering target having a variation of 24.8 ⁇ m could be obtained. When sputtering was performed using this sputtering target, the discharge voltage was 612.6 V, the discharge voltage variation was 7.6 V, and the discharge abnormality occurrence rate was good at 9.6%. The results are shown in Table 1.
- Comparative Example 1 In Comparative Example 1, the obtained target material was cold-rolled at a rolling speed of 15 m / min, a rolling rate of 15%, 10 passes, and a total rolling rate of 80% using a rolling roll having a rolling roll diameter of 650 mm. The thickness was 14 mm and the diameter was 520 mm ⁇ , and this was heat-treated at a temperature of 800 ° C. Thereafter, the surface was cut and polished to obtain a target. Through the above steps, the (200) plane orientation rate is 43.6%, the (222) plane orientation rate is 39.1%, and the average crystal grain size is 74.4 ⁇ m. A tantalum sputtering target with a variation of 48.2 ⁇ m could be obtained. When sputtering was performed using this sputtering target, the discharge voltage was 622.5 V, the discharge voltage variation was 17.0 V, and the discharge abnormality occurrence rate was poor at 16.6%. The results are shown in Table 1.
- Comparative Example 2 In Comparative Example 2, the obtained target material was cold-rolled at a rolling speed of 10 m / min, a rolling rate of 13%, 11 passes, and a total rolling rate of 78% using a rolling roll having a rolling roll diameter of 500 mm. The thickness was 14 mm and the diameter was 520 mm ⁇ , and this was heat-treated at a temperature of 800 ° C. Thereafter, the surface was cut and polished to obtain a target. Through the above steps, the (200) plane orientation rate is 64.8%, the (222) plane orientation rate is 15.1%, and the average crystal grain size is 64.2 ⁇ m. A tantalum sputtering target having a variation of 49.6 ⁇ m could be obtained. When sputtering was performed using this sputtering target, the discharge voltage was 627.0 V, the discharge voltage variation was 18.0 V, and the discharge abnormality occurrence rate was poor at 20.5%. The results are shown in Table 1.
- Comparative Example 3 In Comparative Example 3, the obtained target material was cold-rolled using a rolling roll having a rolling roll diameter of 500 mm at a rolling speed of 20 m / min, a rolling rate of 7%, 23 passes, and a total rolling rate of 90%. The thickness was 14 mm and the diameter was 520 mm ⁇ , and this was heat-treated at a temperature of 800 ° C. Thereafter, the surface was cut and polished to obtain a target. Through the above steps, the (200) plane orientation ratio is 71.2%, the (222) plane orientation ratio is 18.3%, the average crystal grain size is 39.8 ⁇ m, and the crystal grain size is A tantalum sputtering target with a variation of 10.9 ⁇ m could be obtained. When sputtering was carried out using this sputtering target, the discharge voltage was 610.4 V, the discharge voltage variation was 24.2 V, and the discharge abnormality occurrence rate was 26.2%. The results are shown in Table 1.
- Comparative Example 4 (Comparative Example 4)
- the obtained target material was cold-rolled using a rolling roll having a rolling roll diameter of 500 mm at a rolling speed of 20 m / min, a rolling rate of 20%, 9 passes, and a total rolling rate of 86%.
- the thickness was 14 mm and the diameter was 520 mm ⁇ , and this was heat-treated at a temperature of 1000 ° C. Thereafter, the surface was cut and polished to obtain a target.
- the crystal structure has a (200) plane orientation ratio of 71.6%, a (222) plane orientation ratio of 12.1%, an average crystal grain size of 142.0 ⁇ m, and a crystal grain size of A tantalum sputtering target having a variation of 46.8 ⁇ m could be obtained.
- the discharge voltage was 603.4 V
- the discharge voltage variation was 28.4 V
- the discharge abnormality occurrence rate was as bad as 18.3%. The results are shown in Table 1.
- those within the range of the conditions of the present invention have the effect of lowering the discharge voltage of the tantalum sputtering target to easily generate plasma and improving the stability of the plasma. . That is, compared with the comparative example, the discharge voltage can be lowered, the variation in the discharge voltage can be suppressed, and the discharge abnormality occurrence rate can be further reduced.
- the present invention provides a tantalum sputtering target, and by controlling the crystal grain size or crystal grain size and crystal orientation on the sputtering surface of the target, the discharge voltage of the tantalum sputtering target is lowered and plasma is easily generated. In addition, it has the effect of improving the stability of the plasma.
- the tantalum sputtering target of the present invention is particularly useful for forming a diffusion barrier layer made of a Ta film or a TaN film that can effectively prevent contamination around the wiring due to active Cu diffusion.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
また、特許文献2は、タンタルターゲットの結晶配向をランダムにする(特定の結晶方位にそろえない)ことにより、成膜速度が大きく、膜の均一性を向上させることが記載されている。
また、特許文献3には、原子密度の高い(110)、(200)、(211)の面方位をスパッタ面に選択的に多くすることにより成膜速度が向上し、かつ面方位のばらつきを抑えることでユニフォーミティの向上が記載されている。
また、特許文献5には、スエージング、押し出し、回転鍛造、無潤滑の据え込み鍛造をクロック圧延と組み合わせて用い、非常に強い(111)、(100)などの結晶学集合組織を持つ円形の金属ターゲットを作製できると述べられている。
しかしながら、上記特許文献のいずれにも、ターゲットのスパッタ面における結晶粒径又は結晶粒径と結晶配向を制御することによって、タンタルターゲットの放電電圧を低くし、プラズマを発生し易くすると共に、成膜中の電圧のふらつきを抑制するという発想はない。
特に、活発なCuの拡散による配線周囲の汚染を効果的に防止することができるTa膜又はTaN膜などからなる拡散バリア層の形成に有用なタンタルスパッタリングターゲットを提供することを課題とする。
1)タンタルスパッタリングターゲットのスパッタ面において、平均結晶粒径が50μm以上150μm以下であり、かつ結晶粒径のばらつきが30μm以下であることを特徴とするタンタルスパッタリングターゲット。
2)タンタルスパッタリングターゲットのスパッタ面において、(200)面の配向率が70%を超え、かつ(222)面の配向率が30%以下であり、さらに平均結晶粒径が50μm以上150μm以下であり、かつ結晶粒径のばらつきが30μm以下であることを特徴とするタンタルスパッタリングターゲット
3)タンタルスパッタリングターゲットのスパッタ面において、(200)面の配向率が80%以上、かつ(222)面の配向率が20%以下であり、さらに平均結晶粒径が50μm以上150μm以下であり、かつ結晶粒径のばらつきが30μm以下であることを特徴とするタンタルスパッタリングターゲット
4)上記1)~3)のいずれかに記載のスパッタリングターゲットを用いて形成した拡散バリア層用薄膜
5)上記4)記載の拡散バリア層用薄膜が用いられた半導体デバイス
6)溶解鋳造したタンタルインゴットを鍛造及び再結晶焼鈍した後、圧延及び熱処理し、ターゲットのスパッタ面において、平均結晶粒径が50μm以上150μm以下であり、かつ結晶粒径のばらつきが30μm以下である結晶組織を形成することを特徴とするタンタルスパッタリングターゲットの製造方法
7)溶解鋳造したタンタルインゴットを鍛造及び再結晶焼鈍した後、圧延及び熱処理し、ターゲットのスパッタ面において、(200)面の配向率が70%を超え、かつ、(222)面の配向率が30%以下であり、平均結晶粒径が50μm以上150μm以下であり、かつ結晶粒径のばらつきが30μm以下である結晶組織を形成することを特徴とするタンタルスパッタリングターゲットの製造方法
8)溶解鋳造したタンタルインゴットを鍛造及び再結晶焼鈍した後、圧延及び熱処理し、ターゲットのスパッタ面において、(200)面の配向率が80%以上、かつ、(222)面の配向率が20%以下であり、平均結晶粒径が50μm以上150μm以下であり、かつ結晶粒径のばらつきが30μm以下である結晶組織を形成することを特徴とする上記5)記載のタンタルスパッタリングターゲットの製造方法。
9)圧延ロール径500mm以下の圧延ロールを用いて、圧延速度10m/分以上、圧延率80%超で冷間圧延することを特徴とする上記6)~8)のいずれかに記載のタンタルスパッタリングターゲットの製造方法。
10)温度900℃~1400℃で熱処理することを特徴とする上記6)~9)のいずれかに記載のタンタルスパッタリングターゲットの製造方法。
11)圧延及び熱処理後、切削、研磨により表面仕上げを行うことを特徴とする上記6)~10)のいずれかに記載のタンタルスパッタリングターゲットの製造方法、を提供する。
タンタルの結晶構造は体心立方格子構造(略称、BCC)であるため、(222)面の方が(200)面よりも隣接する原子間距離が短く、(222)面の方が(200)面よりも原子が密に詰まっている状態にある。このため、スパッタリングの際、(222)面の方が(200)面よりもタンタル原子をより多く放出して、スパッタレート(成膜速度)が早くなると考えられる。
本発明は、タンタルスパッタリングターゲットにおいて、ターゲットのスパッタ面における結晶粒径又は結晶粒径と結晶配向を制御し、必要に応じて(200)面の配向率を高くし(222)面の配向率を低くすることにより、タンタルスパッタリングターゲットの放電電圧を低くし、プラズマを安定させることができるので、上記のようなスパッタリング時の放電異常の発生を抑制することを可能となる。特に、放電電圧を620V以下且つ、放電電圧バラつきを20V以下とすることで、放電異常発生率を低減することが可能となる。
例えば、(200)面の配向率(%)は、[[(200)の測定強度/(200)のJCPDS強度]/Σ(各面の測定強度/各面のJCPDS強度)]×10
0となる。
ターゲットのスパッタ面における結晶粒径又は結晶粒径と結晶配向を制御し、さらに(200)面の配向率を高くし(222)面の配向率を低くすることによって、タンタルスパッタリングターゲットの放電電圧を低くし、プラズマを発生し易くすると共に、プラズマの安定性を向上させることができるという優れた効果を有するので、当該Ta膜又はTaN膜などの拡散バリア層を備えた銅配線形成、さらに、その銅配線を備えた半導体デバイス製造において、製品歩留まりを向上することができる。
結晶粒径及び結晶配向の制御に大きくかかわるのは、主として圧延工程である。圧延工程においては、圧延ロールの径、圧延速度、圧延率等のパラメータを制御することにより、圧延時に導入される歪みの量や分布を変えることが可能となり、(200)面の配向率及び(222)面の配向率の制御が可能となる。
結晶粒径又は配向率の調整を効果的に行うには、ある程度の繰り返しの条件設定が必要であるが、一旦結晶粒径及び(200)面の配向率及び(222)面の配向率の調整ができると、その製造条件を設定することにより、恒常的特性の(一定レベルの特性を持つ)ターゲットの製造が可能となる。
さらに、溶解鋳造したタンタルインゴット又はビレットに鍛造し、圧延等の加工を加えた後は、再結晶焼鈍し、組織を微細かつ均一化するのが望ましい。
純度99.995%のタンタル原料を電子ビーム溶解し、これを鋳造して直径195mmφのインゴットとした。次に、このインゴットを室温で締め鍛造して直径150mmφとし、これを1100~1400℃の温度で再結晶焼鈍した。再度、これを室温で鍛造して厚さ100mm、直径150mmφとし(一次鍛造)、これを再結晶温度~1400℃の温度で再結晶焼鈍した。さらに、これを室温で鍛造して厚さ70~100mm、直径150~185mmφとし(二次鍛造)、これを再結晶温度~1400℃の温度で再結晶焼鈍して、ターゲット素材を得た。
実施例1では、得られたターゲット素材を、圧延ロール径400mmの圧延ロールを用いて、圧延速度10m/min、10%の圧延率で20パス、トータルの圧延率88%で冷間圧延して厚さ14mm、直径520mmφとした。これを1400℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。
以上の工程により、(200)面の配向率が82.6%、(222)面の配向率が13.4%の結晶組織を有し、平均結晶粒径は127.1μm、結晶粒径のバラツキが28.0μmのタンタルスパッタリングターゲットを得ることができた。
このスパッタリングターゲットを使用して、スパッタリングを実施したところ、放電電圧は615.3V、放電電圧バラツキは14.5Vであり、放電異常発生率は5.3%と良好であった。この結果を、表1に示す。
<成膜条件>
電源:直流方式
電力:15kW
到達真空度:5×10-8Torr
雰囲気ガス組成:Ar
スパッタガス圧:5×10-3Torr
スパッタ時間:15秒
実施例2では、得られたターゲット素材を、圧延ロール径400mmの圧延ロールを用いて、圧延速度15m/min、9%の圧延率で25パス、トータルの圧延率90%で冷間圧延して厚さ14mm、直径520mmφとし、これを800℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。
以上の工程により、(200)面の配向率が77.6%、(222)面の配向率が7.0%の結晶組織を有し、平均結晶粒径は66.3μm、結晶粒径のバラツキが19.0μmのタンタルスパッタリングターゲットを得ることができた。
このスパッタリングターゲットを使用して、スパッタリングを実施したところ、放電電圧は611.4V、放電電圧バラツキは12.6Vであり、放電異常発生率は3.1%と良好であった。この結果を、表1に示す。
実施例3では、得られたターゲット素材を、圧延ロール径400mmの圧延ロールを用いて、圧延速度20m/min、8%の圧延率で23パス、トータルの圧延率85%で冷間圧延して厚さ14mm、直径520mmφとし、これを1000℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。以上の工程により、(200)面の配向率が74.1%、(222)面の配向率が11.9%の結晶組織を有し、平均結晶粒径は80.4μm、結晶粒径のバラツキが25.6μmのタンタルスパッタリングターゲットを得ることができた。
このスパッタリングターゲットを使用して、スパッタリングを実施したところ、放電電圧は612.3V、放電電圧バラツキは9.8Vであり、放電異常発生率は6.4%と良好であった。この結果を、表1に示す。
実施例4では、得られたターゲット素材を、圧延ロール径500mmの圧延ロールを用いて、圧延速度15m/min、12%の圧延率で18パス、トータルの圧延率90%で冷間圧延して厚さ14mm、直径520mmφとし、これを900℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。以上の工程により、(200)面の配向率が71.7%、(222)面の配向率が14.9%の結晶組織を有し、平均結晶粒径は51.9μm、結晶粒径のバラツキが16.4μmのタンタルスパッタリングターゲットを得ることができた。
このスパッタリングターゲットを使用して、スパッタリングを実施したところ、放電電圧は611.8V、放電電圧バラツキは17.7Vであり、放電異常発生率は4.5%と良好であった。この結果を、表1に示す。
実施例5では、得られたターゲット素材を、圧延ロール径500mmの圧延ロールを用いて、圧延速度20m/min、12%の圧延率で15パス、トータルの圧延率85%で冷間圧延して厚さ14mm、直径520mmφとし、これを1200℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。以上の工程により、(200)面の配向率が70.3%、(222)面の配向率が16.1%の結晶組織を有し、平均結晶粒径は98.1μm、結晶粒径のバラツキが24.8μmのタンタルスパッタリングターゲットを得ることができた。
このスパッタリングターゲットを使用して、スパッタリングを実施したところ、放電電圧は612.6V、放電電圧バラツキは7.6Vであり、放電異常発生率は9.6%と良好であった。この結果を、表1に示す。
比較例1では、得られたターゲット素材を、圧延ロール径650mmの圧延ロールを用いて、圧延速度15m/min、15%の圧延率で10パス、トータルの圧延率80%で冷間圧延して厚さ14mm、直径520mmφとし、これを800℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。以上の工程により、(200)面の配向率が43.6%、(222)面の配向率が39.1%の結晶組織を有し、平均結晶粒径は74.4μm、結晶粒径のバラツキが48.2μmのタンタルスパッタリングターゲットを得ることができた。
このスパッタリングターゲットを使用して、スパッタリングを実施したところ、放電電圧は622.5V、放電電圧バラツキは17.0Vであり、放電異常発生率は16.6%と悪かった。この結果を、表1に示す。
比較例2では、得られたターゲット素材を、圧延ロール径500mmの圧延ロールを用いて、圧延速度10m/min、13%の圧延率で11パス、トータルの圧延率78%で冷間圧延して厚さ14mm、直径520mmφとし、これを800℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。以上の工程により、(200)面の配向率が64.8%、(222)面の配向率が15.1%の結晶組織を有し、平均結晶粒径は64.2μm、結晶粒径のバラツキが49.6μmのタンタルスパッタリングターゲットを得ることができた。
このスパッタリングターゲットを使用して、スパッタリングを実施したところ、放電電圧は627.0V、放電電圧バラツキは18.0Vであり、放電異常発生率は20.5%と悪かった。この結果を、表1に示す。
比較例3では、得られたターゲット素材を、圧延ロール径500mmの圧延ロールを用いて、圧延速度20m/min、7%の圧延率で23パス、トータルの圧延率90%で冷間圧延して厚さ14mm、直径520mmφとし、これを800℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。以上の工程により、(200)面の配向率が71.2%、(222)面の配向率が18.3%の結晶組織を有し、平均結晶粒径は39.8μm、結晶粒径のバラツキが10.9μmのタンタルスパッタリングターゲットを得ることができた。
このスパッタリングターゲットを使用して、スパッタリングを実施したところ、放電電圧は610.4V、放電電圧バラツキは24.2Vであり、放電異常発生率は26.2%と悪かった。この結果を、表1に示す。
比較例4では、得られたターゲット素材を、圧延ロール径500mmの圧延ロールを用いて、圧延速度20m/min、20%の圧延率で9パス、トータルの圧延率86%で冷間圧延して厚さ14mm、直径520mmφとし、これを1000℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。以上の工程により、(200)面の配向率が71.6%、(222)面の配向率が12.1%の結晶組織を有し、平均結晶粒径は142.0μm、結晶粒径のバラツキが46.8μmのタンタルスパッタリングターゲットを得ることができた。
このスパッタリングターゲットを使用して、スパッタリングを実施したところ、放電電圧は603.4V、放電電圧バラツキは28.4Vであり、放電異常発生率は18.3%と悪かった。この結果を、表1に示す。
Claims (11)
- タンタルスパッタリングターゲットのスパッタ面において、平均結晶粒径が50μm以上150μm以下であり、かつ結晶粒径のばらつきが30μm以下であることを特徴とするタンタルスパッタリングターゲット。
- タンタルスパッタリングターゲットのスパッタ面において、(200)面の配向率が70%を超え、かつ(222)面の配向率が30%以下であり、さらに平均結晶粒径が50μm以上150μm以下であり、かつ結晶粒径のばらつきが30μm以下であることを特徴とするタンタルスパッタリングターゲット。
- タンタルスパッタリングターゲットのスパッタ面において、(200)面の配向率が80%以上、かつ(222)面の配向率が20%以下であり、さらに平均結晶粒径が50μm以上150μm以下であり、かつ結晶粒径のばらつきが30μm以下であることを特徴とするタンタルスパッタリングターゲット。
- 請求項1~3のいずれかに記載のスパッタリングターゲットを用いて形成した拡散バリア層用薄膜。
- 請求項4記載の拡散バリア層用薄膜が用いられた半導体デバイス。
- 溶解鋳造したタンタルインゴットを鍛造及び再結晶焼鈍した後、圧延及び熱処理し、ターゲットのスパッタ面において、平均結晶粒径が50μm以上150μm以下であり、かつ結晶粒径のばらつきが30μm以下である結晶組織を形成することを特徴とするタンタルスパッタリングターゲットの製造方法。
- 溶解鋳造したタンタルインゴットを鍛造及び再結晶焼鈍した後、圧延及び熱処理し、ターゲットのスパッタ面において、(200)面の配向率が70%を超え、かつ(222)面の配向率が30%以下であり、さらに平均結晶粒径が50μm以上150μm以下であり、かつ結晶粒径のばらつきが30μm以下である結晶組織を形成することを特徴とするタンタルスパッタリングターゲットの製造方法。
- 溶解鋳造したタンタルインゴットを鍛造及び再結晶焼鈍した後、圧延及び熱処理し、ターゲットのスパッタ面において、(200)面の配向率が80%以上、かつ(222)面の配向率が20%以下であり、さらに平均結晶粒径が50μm以上150μm以下であり、かつ結晶粒径のばらつきが30μm以下である結晶組織を形成することを特徴とするタンタルスパッタリングターゲットの製造方法。
- 圧延ロール径500mm以下の圧延ロールを用いて、圧延速度10m/分以上、圧延率80%超で冷間圧延することを特徴とする請求項6~8のいずれかに記載のタンタルスパッタリングターゲットの製造方法。
- 温度900℃~1400℃で熱処理することを特徴とする請求項6~9のいずれかに記載のタンタルスパッタリングターゲットの製造方法。
- 圧延及び熱処理後、切削、研磨により表面仕上げを行うことを特徴とする請求項6~10のいずれかに記載のタンタルスパッタリングターゲットの製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157008891A KR101927574B1 (ko) | 2012-12-19 | 2013-12-06 | 탄탈 스퍼터링 타깃 및 그 제조 방법 |
JP2014534288A JP5829757B2 (ja) | 2012-12-19 | 2013-12-06 | タンタルスパッタリングターゲット及びその製造方法 |
KR1020177007785A KR20170036121A (ko) | 2012-12-19 | 2013-12-06 | 탄탈 스퍼터링 타깃 및 그 제조 방법 |
CN201380056788.1A CN104755651B (zh) | 2012-12-19 | 2013-12-06 | 钽溅射靶及其制造方法 |
EP13866455.2A EP2878700B1 (en) | 2012-12-19 | 2013-12-06 | Method for producing tantalum sputtering target |
US14/434,159 US10407766B2 (en) | 2012-12-19 | 2013-12-06 | Tantalum sputtering target and method for producing same |
SG11201501370PA SG11201501370PA (en) | 2012-12-19 | 2013-12-06 | Tantalum sputtering target and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-276884 | 2012-12-19 | ||
JP2012276884 | 2012-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014097900A1 true WO2014097900A1 (ja) | 2014-06-26 |
Family
ID=50978235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/082773 WO2014097900A1 (ja) | 2012-12-19 | 2013-12-06 | タンタルスパッタリングターゲット及びその製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10407766B2 (ja) |
EP (1) | EP2878700B1 (ja) |
JP (1) | JP5829757B2 (ja) |
KR (2) | KR101927574B1 (ja) |
CN (1) | CN104755651B (ja) |
SG (1) | SG11201501370PA (ja) |
TW (1) | TWI579385B (ja) |
WO (1) | WO2014097900A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105431565B (zh) | 2012-12-19 | 2018-06-05 | 吉坤日矿日石金属株式会社 | 钽溅射靶及其制造方法 |
KR20170092706A (ko) | 2013-03-04 | 2017-08-11 | 제이엑스금속주식회사 | 탄탈 스퍼터링 타깃 및 그 제조 방법 |
WO2015050041A1 (ja) | 2013-10-01 | 2015-04-09 | Jx日鉱日石金属株式会社 | タンタルスパッタリングターゲット |
JP6293929B2 (ja) | 2015-05-22 | 2018-03-14 | Jx金属株式会社 | タンタルスパッタリングターゲット及びその製造方法 |
SG11201708112TA (en) | 2015-05-22 | 2017-11-29 | Jx Nippon Mining & Metals Corp | Tantalum sputtering target, and production method therefor |
CN113046705B (zh) * | 2021-03-16 | 2022-08-16 | 宁波江丰电子材料股份有限公司 | 一种铜靶材及其制备方法和用途 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1180942A (ja) | 1997-09-10 | 1999-03-26 | Japan Energy Corp | Taスパッタターゲットとその製造方法及び組立体 |
JP2002363736A (ja) | 2001-06-06 | 2002-12-18 | Toshiba Corp | スパッタターゲット、バリア膜および電子部品 |
JP2004107758A (ja) | 2002-09-20 | 2004-04-08 | Nikko Materials Co Ltd | タンタルスパッタリングターゲット及びその製造方法 |
WO2005045090A1 (ja) | 2003-11-06 | 2005-05-19 | Nikko Materials Co., Ltd. | タンタルスパッタリングターゲット |
JP2007530789A (ja) * | 2004-03-26 | 2007-11-01 | プラックセアー エス.ティ.テクノロジー、 インコーポレイテッド | テクスチャ化結晶粒粉末冶金タンタルスパッタリングターゲット |
JP2008532765A (ja) | 2005-02-10 | 2008-08-21 | キャボット コーポレイション | スパッタリングターゲットおよびその製造方法 |
WO2011061897A1 (ja) | 2009-11-17 | 2011-05-26 | 株式会社 東芝 | タンタルスパッタリングターゲットおよびタンタルスパッタリングターゲットの製造方法ならびに半導体素子の製造方法 |
JP4714123B2 (ja) | 2006-10-30 | 2011-06-29 | 株式会社東芝 | スパッタリングターゲット用高純度Ta材の製造方法 |
JP4754617B2 (ja) | 2003-04-01 | 2011-08-24 | Jx日鉱日石金属株式会社 | タンタルスパッタリングターゲットの製造方法 |
WO2012020631A1 (ja) * | 2010-08-09 | 2012-02-16 | Jx日鉱日石金属株式会社 | タンタルスパッタリングターゲット |
JP2012528489A (ja) * | 2009-05-29 | 2012-11-12 | アリゾナ・ボード・オブ・リージェンツ,フォー・アンド・オン・ビハーフ・オブ・アリゾナ・ステート・ユニバーシティ | フレキシブル半導体デバイスを高温で提供する方法およびそのフレキシブル半導体デバイス |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6348139B1 (en) | 1998-06-17 | 2002-02-19 | Honeywell International Inc. | Tantalum-comprising articles |
JP4263900B2 (ja) * | 2002-11-13 | 2009-05-13 | 日鉱金属株式会社 | Taスパッタリングターゲット及びその製造方法 |
US6794753B2 (en) * | 2002-12-27 | 2004-09-21 | Lexmark International, Inc. | Diffusion barrier and method therefor |
JP4672967B2 (ja) * | 2003-01-10 | 2011-04-20 | Jx日鉱日石金属株式会社 | ターゲットの製造方法 |
KR100559395B1 (ko) | 2003-11-10 | 2006-03-10 | 현대자동차주식회사 | 마이크로 보링 베어링 |
EP1876258A4 (en) | 2005-04-28 | 2008-08-13 | Nippon Mining Co | sputtering Target |
US8425696B2 (en) | 2005-10-04 | 2013-04-23 | Jx Nippon Mining & Metals Corporation | Sputtering target |
KR101100288B1 (ko) * | 2005-12-02 | 2011-12-28 | 가부시키가이샤 알박 | Cu막의 형성방법 |
CN101960042B (zh) * | 2008-02-29 | 2013-05-08 | 新日铁高新材料股份有限公司 | 金属系溅射靶材 |
KR101495398B1 (ko) * | 2008-12-02 | 2015-02-25 | 아리조나 보드 오브 리젠츠 온 비하프 오브 아리조나 스테이트 유니버시티 | 유연성 기판 조립체의 제조 방법 및 그것으로부터의 유연성 기판 조립체 |
WO2010134417A1 (ja) | 2009-05-22 | 2010-11-25 | Jx日鉱日石金属株式会社 | タンタルスパッタリングターゲット |
JP5290393B2 (ja) | 2009-08-11 | 2013-09-18 | Jx日鉱日石金属株式会社 | タンタルスパッタリングターゲット |
EP2465968A4 (en) | 2009-08-11 | 2014-04-30 | Jx Nippon Mining & Metals Corp | TANTALUM sputtering target |
CN102171380B (zh) | 2009-08-12 | 2014-12-31 | 株式会社爱发科 | 溅射靶的制造方法 |
KR101051945B1 (ko) | 2009-12-02 | 2011-07-27 | 황도희 | 즉석 양념갈비 소스의 제조방법 |
KR20130037215A (ko) | 2010-08-09 | 2013-04-15 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | 탄탈 스퍼터링 타깃 |
US20140242401A1 (en) | 2011-11-30 | 2014-08-28 | Jx Nippon Mining & Metals Corporation | Tantalum Sputtering Target and Method for Manufacturing Same |
US9890452B2 (en) | 2012-03-21 | 2018-02-13 | Jx Nippon Mining & Metals Corporation | Tantalum sputtering target, method for manufacturing same, and barrier film for semiconductor wiring formed by using target |
CN105431565B (zh) | 2012-12-19 | 2018-06-05 | 吉坤日矿日石金属株式会社 | 钽溅射靶及其制造方法 |
KR20170092706A (ko) | 2013-03-04 | 2017-08-11 | 제이엑스금속주식회사 | 탄탈 스퍼터링 타깃 및 그 제조 방법 |
WO2015050041A1 (ja) | 2013-10-01 | 2015-04-09 | Jx日鉱日石金属株式会社 | タンタルスパッタリングターゲット |
US20160208377A1 (en) | 2014-03-27 | 2016-07-21 | Jx Nippon Mining & Metals Corporation | Tantalum sputtering target and method for producing same |
-
2013
- 2013-12-06 SG SG11201501370PA patent/SG11201501370PA/en unknown
- 2013-12-06 EP EP13866455.2A patent/EP2878700B1/en active Active
- 2013-12-06 KR KR1020157008891A patent/KR101927574B1/ko active IP Right Grant
- 2013-12-06 JP JP2014534288A patent/JP5829757B2/ja active Active
- 2013-12-06 KR KR1020177007785A patent/KR20170036121A/ko not_active Application Discontinuation
- 2013-12-06 WO PCT/JP2013/082773 patent/WO2014097900A1/ja active Application Filing
- 2013-12-06 US US14/434,159 patent/US10407766B2/en active Active
- 2013-12-06 CN CN201380056788.1A patent/CN104755651B/zh active Active
- 2013-12-11 TW TW102145543A patent/TWI579385B/zh active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1180942A (ja) | 1997-09-10 | 1999-03-26 | Japan Energy Corp | Taスパッタターゲットとその製造方法及び組立体 |
JP2002363736A (ja) | 2001-06-06 | 2002-12-18 | Toshiba Corp | スパッタターゲット、バリア膜および電子部品 |
JP2004107758A (ja) | 2002-09-20 | 2004-04-08 | Nikko Materials Co Ltd | タンタルスパッタリングターゲット及びその製造方法 |
JP4754617B2 (ja) | 2003-04-01 | 2011-08-24 | Jx日鉱日石金属株式会社 | タンタルスパッタリングターゲットの製造方法 |
WO2005045090A1 (ja) | 2003-11-06 | 2005-05-19 | Nikko Materials Co., Ltd. | タンタルスパッタリングターゲット |
JP2007530789A (ja) * | 2004-03-26 | 2007-11-01 | プラックセアー エス.ティ.テクノロジー、 インコーポレイテッド | テクスチャ化結晶粒粉末冶金タンタルスパッタリングターゲット |
JP2008532765A (ja) | 2005-02-10 | 2008-08-21 | キャボット コーポレイション | スパッタリングターゲットおよびその製造方法 |
JP4714123B2 (ja) | 2006-10-30 | 2011-06-29 | 株式会社東芝 | スパッタリングターゲット用高純度Ta材の製造方法 |
JP2012528489A (ja) * | 2009-05-29 | 2012-11-12 | アリゾナ・ボード・オブ・リージェンツ,フォー・アンド・オン・ビハーフ・オブ・アリゾナ・ステート・ユニバーシティ | フレキシブル半導体デバイスを高温で提供する方法およびそのフレキシブル半導体デバイス |
WO2011061897A1 (ja) | 2009-11-17 | 2011-05-26 | 株式会社 東芝 | タンタルスパッタリングターゲットおよびタンタルスパッタリングターゲットの製造方法ならびに半導体素子の製造方法 |
WO2012020631A1 (ja) * | 2010-08-09 | 2012-02-16 | Jx日鉱日石金属株式会社 | タンタルスパッタリングターゲット |
Also Published As
Publication number | Publication date |
---|---|
TW201439334A (zh) | 2014-10-16 |
JPWO2014097900A1 (ja) | 2017-01-12 |
US20150329959A1 (en) | 2015-11-19 |
TWI579385B (zh) | 2017-04-21 |
KR20170036121A (ko) | 2017-03-31 |
KR20150053795A (ko) | 2015-05-18 |
EP2878700A1 (en) | 2015-06-03 |
CN104755651A (zh) | 2015-07-01 |
EP2878700A4 (en) | 2015-12-23 |
CN104755651B (zh) | 2017-05-24 |
US10407766B2 (en) | 2019-09-10 |
KR101927574B1 (ko) | 2018-12-10 |
JP5829757B2 (ja) | 2015-12-09 |
SG11201501370PA (en) | 2015-04-29 |
EP2878700B1 (en) | 2021-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6133357B2 (ja) | タンタルスパッタリングターゲット及びその製造方法 | |
JP5847309B2 (ja) | タンタルスパッタリングターゲット及びその製造方法 | |
JP5905600B2 (ja) | タンタルスパッタリングターゲット及びその製造方法 | |
JP5829757B2 (ja) | タンタルスパッタリングターゲット及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014534288 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13866455 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013866455 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20157008891 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14434159 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |