Nothing Special   »   [go: up one dir, main page]

WO2014073706A1 - 無線通信装置、無線通信システム及び無線通信方法 - Google Patents

無線通信装置、無線通信システム及び無線通信方法 Download PDF

Info

Publication number
WO2014073706A1
WO2014073706A1 PCT/JP2013/080597 JP2013080597W WO2014073706A1 WO 2014073706 A1 WO2014073706 A1 WO 2014073706A1 JP 2013080597 W JP2013080597 W JP 2013080597W WO 2014073706 A1 WO2014073706 A1 WO 2014073706A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless
channel
base station
lan base
value
Prior art date
Application number
PCT/JP2013/080597
Other languages
English (en)
French (fr)
Inventor
ヒランタシティラ アベーセーカラ
浩一 石原
井上 保彦
淺井 裕介
泰司 鷹取
市川 武男
匡人 溝口
松井 宗大
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2014545792A priority Critical patent/JP6126621B2/ja
Priority to US14/441,055 priority patent/US10602367B2/en
Priority to EP13853482.1A priority patent/EP2905983B1/en
Priority to CN201380058471.1A priority patent/CN104756532B/zh
Publication of WO2014073706A1 publication Critical patent/WO2014073706A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a network control type wireless communication apparatus, a wireless communication system, and a wireless communication method.
  • the present application is related to Japanese Patent Application No. 2012-248430 filed on November 12, 2012, Japanese Patent Application No. 2013-151812 filed on July 22, 2013, and August 26, 2013. Priority is claimed to Japanese Patent Application No. 2013-175038 filed in Japan, the contents of which are incorporated herein by reference.
  • wireless LANs Local Area Network
  • the wireless LANs according to the IEEE 802.11 standard include the wireless LANs according to the IEEE 802.11b and IEEE 802.11g standards which use the 2.4 GHz band, and the wireless LANs according to the IEEE 802.11a standard which uses the 5 GHz band.
  • 13 channels are prepared at intervals of 5 MHz between 2400 MHz and 2483.5 MHz.
  • the maximum transmission rate of the wireless LAN is 11 Mbps (bits per second) in the case of the IEEE802.11b standard, and 54 Mbps in the case of the IEEE802.11a standard or the IEEE802.11g standard.
  • the transmission rate here is the transmission rate on the physical layer.
  • the transmission efficiency at the MAC (Medium Access Control) layer is about 50 to 70%
  • the upper limit value of the actual throughput is about 5 Mbps in the IEEE 802.11b standard, and 30 Mbps in the IEEE 802.11a standard or the IEEE 802.11g standard It is an extent.
  • the transmission rate is further reduced as the number of communication stations attempting to transmit information increases.
  • the channel bandwidth which has been fixed at 20 MHz, is expanded to 40 MHz at the maximum, and in addition, MIMO (Multiple input multiple output) technology Implementation was decided. If all functions specified in the IEEE 802.11n standard are applied for transmission and reception, it is possible to realize a communication speed of up to 600 Mbps in the physical layer.
  • MIMO Multiple input multiple output
  • IEEE 802.11ac for which standardization specifications are currently being considered, multi-user MIMO (SDMA: Space Division Multiple Access) with channel bandwidth extended to 80 MHz or up to 160 MHz.
  • SDMA Space Division Multiple Access
  • MU-MIMO MU-MIMO
  • a communication speed of up to about 6.8 Gbps can be realized in the physical layer (for example, see Non-Patent Document 2).
  • an IEEE 802.11 wireless LAN compatible base station In order to operate the wireless LAN of the IEEE 802.11 standard in the unlicensed frequency band of the 2.4 GHz band or the 5 GHz band, it is referred to as an IEEE 802.11 wireless LAN compatible base station (hereinafter referred to as an access point).
  • BSS Basic Service Set
  • the transmission output value of the own wireless LAN base station is determined to reduce interference. There is a need to.
  • the setting values of parameters used in the own cell and other parameters that can be supported by the own wireless LAN base station are described in a Beacon frame periodically transmitted, a probe response frame to a Probe Request frame received from a wireless terminal, etc.
  • the cell is operated by transmitting a frame on the frequency channel for which the operation has been determined and notifying the subordinate radio terminal and other communication stations in the vicinity.
  • the setting values of parameters used in the own cell include, for example, parameter values related to access right acquisition and parameter values such as QoS (Quality of Services). Also, other parameters that can be supported by the own wireless LAN base station include the bandwidth used for frame transmission, the basic data rate (BSS: Basic Rate Set) used for control frame transmission, and the data rate related to the data rate that can transmit and receive data. Set etc. are included.
  • BSS Basic Rate Set
  • transmission power values and other parameters in the wireless LAN base station for example, (1) a method of using default parameter values set by the manufacturer of the wireless LAN base station as they are, 2) A method of using a value manually set by a user who operates a wireless LAN base station, and (3) autonomously selecting parameter values based on wireless environment information detected by the wireless LAN base station when the wireless LAN base station is activated. And (4) a method of using and setting parameter values determined by a centralized control server such as an access point controller.
  • the bandwidth per channel when the bandwidth per channel is increased to 40 MHz, 80 MHz, and 160 MHz, the number of channels that can be used simultaneously at the same location in the 5 GHz band is reduced to 9 channels, 4 channels, and 2 channels. That is, as the bandwidth per channel increases, the number of available channels will decrease.
  • AP Access Point
  • BSS Basic Service Set
  • OBSS Overlapping BSS
  • CSMA / CA Carrier Sense Multiple Access with Collision Avoidance
  • the communication station from which the transmission request has been made first monitors the state of the wireless medium for a predetermined sensing period (DIFS: Distributed Inter-Frame Space), and transmission signals from other communication stations must exist during this time. For example, random backoff.
  • the communication station continues to monitor the wireless medium during the random backoff period, but during this time it also gains access to the channel if there is no transmission by another communication station.
  • a communication station that has acquired the right to use a channel can transmit data to other communication stations in the same BSS, and can receive data from those communication stations. Because such control is performed, the throughput obtained is reduced if there are many competing communication cells or communication stations. Therefore, it is important to monitor the surrounding environment and select an appropriate channel.
  • the channel selection method at the access point is not defined in the IEEE 802.11 standard, each vendor uses its own channel selection method, but the most common channel selection method is the channel with the least interference power Is a way to select
  • the access point detects the state of all the channels for a certain period (performs scanning), selects the channel with the least interference power, and transmits / receives data to / from the subordinate communication station on the selected channel.
  • the interference power is the level of a signal received from a neighboring BSS or another system.
  • the IEEE 802.11 standard defines the procedure for changing channels in the case where the radio conditions around the BSS change, but basically, except for forced transition by radar detection etc., reselection of the channel once selected not going. That is, in the current wireless LAN, channel optimization has not been performed according to changes in the wireless situation.
  • the inexpensive wireless LAN base station uses the default parameters set by the manufacturer as it is. There are many things to do. However, in an environment where a plurality of wireless LAN base stations of the same manufacturer are installed nearby, all wireless LAN base stations use the same frequency channel and transmission power value, so interference between wireless LAN base stations occurs. And there is a problem that communication quality is deteriorated.
  • the user operating the wireless LAN sets appropriate parameters.
  • various parameters in an environment where there is no external interference source, in an environment where a wireless LAN is used around urban areas, apartment buildings, etc., or in a medium or large network, by a user or administrator Proper parameter setting is difficult.
  • the wireless LAN base station capable of autonomous distributed operation in which each wireless LAN base station autonomously selects a parameter value based on the wireless environment information detected in the own station when the wireless LAN base station is activated is appropriate according to the order in which the wireless LAN base stations are activated. Parameter values are different.
  • each wireless LAN base station can be optimized locally because it selects and sets the optimal parameter value in its own station, but the entire system can not be optimized and the surrounding wireless environment has changed. In the case it will be difficult to cope.
  • wireless LAN controller a dedicated device that controls the wireless LAN base station by determining the parameter value of each wireless LAN base station by the wireless LAN controller and reflecting it on the wireless LAN base station.
  • wireless LAN controller In these wireless LAN controller products, all wireless LAN base stations to be controlled must be products of the same manufacturer as the wireless LAN controller. Further, in many cases, products of different model numbers can not be mixed even by the same manufacturer, and there are some limitations such as that all the wireless LAN base stations to be controlled have to be installed in the same building or in the same premises.
  • the wireless LAN controller is an expensive device and is suitable for large-scale network operation as described above, but is not suitable for controlling a wireless LAN base station in a general home or the like.
  • the wireless LAN base stations to be controlled must be products of the same manufacturer. I had to.
  • products of different model numbers can not be mixed even by the same manufacturer, and there is a restriction that wireless LAN base stations to be controlled must be connected to a network in the same building or in the same premises. There is.
  • existing wireless LAN systems operate in an autonomous distributed manner. Further, as described above, since the reselection of the channel selected once is not basically performed, the channel to be used is selected based on the surrounding wireless environment at the time of activation of each access point. Even if environmental changes occur (eg, change in the number of access points during activation, change in wireless terminals under each access point, change in the amount of data sent by wireless devices in each cell, etc.) Since the optimization is not performed, there is a problem that there is a difference between the throughputs of the respective cells, and the throughput is degraded in the entire system.
  • environmental changes eg, change in the number of access points during activation, change in wireless terminals under each access point, change in the amount of data sent by wireless devices in each cell, etc.
  • the present invention has been made in view of such circumstances, and performs setting of a wireless LAN base station so that the frequency utilization efficiency of the entire wireless communication system including wireless LAN base stations of different model numbers of different manufacturers is improved.
  • Wireless communication device, wireless communication system, and wireless communication method Another object of the present invention is to provide a wireless communication apparatus, a wireless communication system, and a wireless communication method capable of avoiding a decrease in local throughput in an environment where base stations are concentrated.
  • the present invention is a wireless communication apparatus that performs settings necessary for operating a wireless LAN base station that configures a wireless communication network, wherein the setting information set in the wireless LAN base station, and the wireless LAN base station Information collection unit for collecting wireless environment information in the above, and a parameter calculation unit for obtaining a parameter to be set for the wireless LAN base station of the collection source based on the collected setting information and the wireless environment information; And a parameter setting unit configured to transmit the parameter to the wireless LAN base station as a collection source via a network and to set the parameter.
  • the wireless communication apparatus has a database storing attribute information related to the attribute of the wireless LAN base station, and the parameter calculation unit includes the setting information, the wireless environment information, and the attribute information. Based on the above, the parameters are determined.
  • the information collection unit collects the setting information and the wireless environment information from each of the wireless LAN base stations of different manufacturers, different model numbers, and different versions.
  • the information collection unit includes, in each of the wireless LAN base stations, the number of base stations in the periphery operating on frequency channels, the level of received signals to be received, and the time occupancy rate of channels.
  • the parameter calculation unit determines the parameters so that the wireless environment is improved in each of the wireless LAN base stations based on the wireless environment information.
  • the information collection unit receives, from each of the wireless LAN base stations, the number of peripheral base stations operated on the frequency channel, the maximum available bandwidth, and the peripheral other base stations.
  • the level of the received signal is collected as the wireless environment information, and the parameter calculation unit determines the parameter so that the wireless environment is improved in each of the wireless LAN base stations based on the wireless environment information.
  • the information collecting unit determines, in each of the wireless terminals under control of the wireless LAN base station, the number of peripheral other base stations operated on a frequency channel, the level of received signals to be received, and channels.
  • the time occupancy rate of is collected as the wireless environment information.
  • the information collection unit receives, in each of the wireless terminals under the wireless LAN base station, the number of peripheral other base stations operated on a frequency channel, available bandwidth, reception A signal level is collected as the wireless environment information.
  • the information collecting unit is, as the wireless environment information, an instantaneous value of information collected over a fixed period by the wireless LAN base station, or a fixed period of time by the wireless LAN base station. Collect statistics, instantaneous values, average values, minimum values, or maximum values of information collected over time.
  • the information collection unit and the parameter setting unit perform information collection and parameter setting using an external interface protocol.
  • the parameter setting unit performs periodic execution, manual execution by an operator on the network side, manual execution at the request of a user who receives service, or when a predetermined event occurs.
  • the parameter setting is implemented by any of the following.
  • the database is updated in response to the release of a new type of wireless LAN base station or the function change of an existing wireless LAN base station.
  • the wireless LAN base station performs wireless communication using at least one of a plurality of channels, and the information collection unit is detected by the wireless LAN base station.
  • Information representing a surrounding wireless environment is collected as the wireless environment information, and the parameter calculating unit calculates an index value for determining a channel to be used by the wireless LAN base station based on the wireless environment information;
  • a channel to be used by the wireless LAN base station is determined as the parameter based on the index value.
  • a U value is calculated, and one of the channel in which the U value is maximum or the channel in which the U value is greater than or equal to a preset threshold is determined as a temporary channel to be allocated to the wireless LAN base station.
  • the throughput that can be obtained when sharing with a station (expected throughput) / U that is represented by the throughput that can be obtained when each channel that only the wireless LAN base station can use is used (when there is no other interference base station) A value is calculated, and a channel and a bandwidth in which the U value is equal to or more than a preset threshold value ⁇ are determined as a provisional channel and a provisional bandwidth to be allocated to the wireless LAN base station.
  • the channel and bandwidth for which the U value is maximized are allocated to the wireless LAN base station.
  • the tentative channel and the tentative bandwidth are determined.
  • the U value is calculated, and one channel among the channel in which the U value is maximum or the channel in which the U value is equal to or more than a preset threshold is determined as a provisional channel to be allocated to the wireless LAN base station.
  • the parameter calculating unit calculates the temporary channel in each of the wireless LAN base stations, and the U value in each of the wireless LAN base stations and all the wireless LAN base stations. Calculate the sum U total of the U values in the above, select one wireless LAN base station from among the wireless LAN base stations having a U value equal to or less than a preset threshold U.sub.TH , and calculate a channel satisfying a predetermined condition. The operation of setting the channel as a new temporary channel of the selected wireless LAN base station is repeatedly performed a preset Max_r times.
  • the channel satisfying the predetermined condition is U total (r) ⁇ ⁇ ⁇ U total (r-1) under the conditions of), U values of the selected said wireless LAN base station, a channel which is a U ⁇ ⁇ (0 ⁇ ⁇ , ⁇ ⁇ 1).
  • the parameter calculating unit calculates the temporary channel in each of the wireless LAN base stations, and the U value in each of the wireless LAN base stations and all the wireless LAN base stations. Calculate the total product U product of the U values in the above, select one wireless LAN base station from among the wireless LAN base stations having a U value equal to or less than a preset threshold U TH , and calculate a channel satisfying a predetermined condition And repeatedly performing the operation of setting the channel as a new temporary channel of the selected wireless LAN base station a preset Max_r times.
  • the channel satisfying the predetermined condition is U product (r) ⁇ ⁇ ⁇ U product (r ⁇ 1) under the conditions of), U values of the selected said wireless LAN base station, a channel which is a U ⁇ ⁇ (0 ⁇ ⁇ , ⁇ ⁇ 1).
  • the parameter calculation unit sets U values of all the wireless LAN base stations to 1 or a predetermined number of repeated calculations to a preset Max_r times.
  • the temporary channel of each wireless LAN base station at that time is determined as a channel to be set in each wireless LAN base station.
  • the parameter calculating unit calculates a total U value which is the sum of the U values of all the wireless LAN base stations to which a channel is allocated, so that the total U value does not deteriorate.
  • the optimization of the channel assigned to the wireless LAN base station having the U value satisfying the predetermined condition is performed.
  • the parameter calculation unit calculates a multiplication value of the U values of all the wireless LAN base stations to which a channel is allocated, and the predetermined value is set so that the multiplication value of the U values does not deteriorate.
  • Channel optimization is performed to assign to a wireless LAN base station having a U value satisfying the following condition.
  • the parameter calculation unit calculates the U value using a time occupancy rate of the wireless LAN base station or the wireless terminal or a parameter value equivalent to the time occupancy rate.
  • the wireless LAN base station performs wireless communication using a channel of at least one wireless communication scheme among a plurality of wireless communication schemes, and the information collection unit Information representing a surrounding wireless environment detected by a LAN base station is collected as the wireless environment information, and the parameter calculating unit determines a wireless communication scheme to be used by the wireless LAN base station based on the wireless environment information.
  • An index value to calculate the wireless communication method to be used by the wireless LAN base station is determined as the parameter based on the index value.
  • the present invention is a wireless communication system including a management engine that performs settings necessary for operating a wireless LAN base station configuring a wireless communication network, wherein the management engine is set to the wireless LAN base station.
  • An information collection unit for collecting setting information and wireless environment information in the wireless LAN base station, and a parameter to be set for a wireless LAN base station as a collection source based on the collected setting information and the wireless environment information
  • the wireless LAN base station comprises: a parameter calculation unit for obtaining the parameter; and a parameter setting unit for transmitting the determined parameter to the wireless LAN base station as a collection source via the network to set the parameter;
  • the management of the setting information and the wireless environment information is performed.
  • An information transmission unit that transmits to the engine, when receiving the parameter from the parameter setting unit, and a setting unit that performs self-setting on the basis of said parameters.
  • the management engine has a database storing attribute information related to the attributes of the wireless LAN base station, and the parameter calculation unit includes the setting information, the wireless environment information, and And determining the parameter based on the attribute information.
  • the information collection unit collects the setting information and the wireless environment information from each of the wireless LAN base stations of different manufacturers, different model numbers, and different versions.
  • the information collecting unit determines, in each of the wireless terminals under the wireless LAN base station, the number of peripheral other base stations operated on a frequency channel, the level of received signals to be received, and channels.
  • the time occupancy rate of is collected as the wireless environment information.
  • the wireless communication system comprises a plurality of wireless LAN base stations performing wireless communication using at least one of a plurality of channels, and the wireless LAN base station detects a surrounding wireless environment.
  • a peripheral radio environment notification unit for generating information representing the peripheral radio environment as the radio environment information and notifying the management engine of the generated radio environment information, wherein the parameter calculation unit includes the radio environment information
  • the index value for determining the channel to be used by the wireless LAN base station is calculated based on the above, and the channel to be used by the wireless LAN base station is determined as the parameter based on the index value.
  • a U value is calculated, and a channel with the largest U value is determined as a provisional channel to be allocated to the wireless LAN base station.
  • U time length that the wireless LAN base station can occupy the channel per unit time for each usable channel.
  • the wireless communication system comprises a plurality of wireless LAN base stations that perform wireless communication using a channel of at least one wireless communication scheme among a plurality of wireless communication schemes
  • the wireless LAN base station comprises A peripheral wireless environment notification unit configured to detect a peripheral wireless environment, generate information representing the peripheral wireless environment as the wireless environment information, and notify the management engine of the generated wireless environment information; Calculating an index value for determining a wireless communication system to be used by the wireless LAN base station based on the wireless environment information, and based on the index value, a wireless communication system to be used by the wireless LAN base station Is determined as the parameter.
  • the present invention is a wireless communication method performed by a wireless communication system that performs setting of parameters necessary for operating a wireless LAN base station configuring a wireless communication network, and setting information set in the wireless LAN base station and A parameter for obtaining a parameter to be set for a wireless LAN base station as a collection source based on an information collection step of collecting wireless environment information in the wireless LAN base station, and the collected setting information and the wireless environment information It has a calculation step, and a parameter setting step of transmitting the determined parameter to the collection source wireless LAN base station via a network to set the parameter.
  • the parameter is determined based on the setting information, the wireless environment information, and attribute information on attributes of the wireless LAN base station stored in a database.
  • the setting information and the wireless environment information are collected from each of the wireless LAN base stations of different manufacturers, different model numbers and different versions.
  • a time occupancy rate is collected as the wireless environment information.
  • the wireless LAN base station performs wireless communication using at least one of a plurality of channels, and the wireless LAN base station detects in the information collection step.
  • Information representing a peripheral wireless environment is collected as the wireless environment information, and in the parameter calculation step, an index value for determining a channel to be used by the wireless LAN base station is calculated based on the wireless environment information, A channel to be used by the wireless LAN base station is determined as the parameter based on the index value.
  • U 1-U represented by the medium usage rate of the corresponding channel by the other wireless device for all the usable channels as the index value.
  • a value is calculated, and a channel with the largest U value is determined as a provisional channel to be allocated to the wireless LAN base station.
  • the channel that is to be determined is determined as a temporary channel to be assigned to the wireless LAN base station.
  • U time length that the wireless LAN base station can occupy the channel per unit time for each available channel as the index value.
  • the wireless LAN base station performs wireless communication using a channel of at least one wireless communication scheme among a plurality of wireless communication schemes, and in the information collection step, the wireless communication Information representing a peripheral wireless environment detected by a LAN base station is collected as the wireless environment information, and in the parameter calculation step, a wireless communication system to be used by the wireless LAN base station is determined based on the wireless environment information. An index value to calculate the wireless communication method to be used by the wireless LAN base station is determined as the parameter based on the index value.
  • the wireless LAN base station it is possible to set the wireless LAN base station so that the wireless environment such as the frequency utilization efficiency of the entire wireless communication system including wireless LAN base stations of different model numbers from different manufacturers can be improved.
  • FIG. 6 is a diagram showing the flow of environmental information and control instructions between the management engine 8 and the access points 11, 12, 13, 15, 16, 17, 18.
  • FIG. 6 is a diagram showing the table structure of the performance database 89 shown in FIG.
  • FIG. 9 is a sequence diagram which shows operation
  • FIG. 7 It is a figure which shows the flow of the environmental information and control instruction
  • the management engine 8 shown in FIG. 7, the service gateways 91, 92, 93, 94, 95, 96, the access points 11, 12, 13, 14, 15, 16 and the wireless terminals 21, 22, 23, 24, 25 , 26 is a diagram showing the flow of environmental information and control instructions exchanged between. It is a sequence diagram which shows operation
  • FIG. 19 is a flow chart showing a modification of the processing operation shown in FIG. 18; It is a figure which shows the detail of a computer simulation environment. It is a figure which shows the system throughput (comparison of a normalization system throughput) of central 36 cells by computer simulation.
  • FIG. 21 is a diagram showing the minimum throughput (comparison of the normalized minimum throughput) of the central 36 cells in computer simulation.
  • FIG. 1 illustrates a computer simulation environment. It is a figure which shows the sum total through-put of a system with respect to alpha value by calculation simulation, and FI value. It is a figure which shows the sum total throughput and FI value of the system with respect to (beta) value by calculation simulation.
  • FIG. 5 illustrates a process of determining a tentatively assigned channel and a tentative assigned bandwidth of a selected controllable wireless base station.
  • FIG. 7 illustrates a process for improving the U value of a controllable wireless base station by iterative calculations.
  • FIG. 5 illustrates a process of creating an assignable primary channel list. It is a figure which shows the example of an assignable primary channel. It is a figure which shows the example of an assignable primary channel. It is a figure which shows the selection method of the wireless base station which performs repetition calculation.
  • FIG. 1 is a view showing the overall configuration of a wireless communication system according to the same embodiment.
  • symbol 1 is a four-family apartment house.
  • symbol 2 is a detached house, respectively.
  • symbol 3 is a building which can use wireless communications, such as an office environment, a common building, a cafe, and a public hotspot.
  • the reference numerals 11, 12, 13, 15, 16, 17, 18 are access to be installed in each household of the apartment complex 1, the detached house 2, the office environment, the common building, the cafe, the public hotspot etc. It is a point.
  • Reference numerals 21, 22, 23, 25, and 26 denote wireless terminals that perform wireless communication with the access points 11, 12, 13, 15, and 16 using a wireless LAN protocol according to the IEEE 802.11 standard.
  • FIG. 4 Although illustration of the radio
  • FIG. Reference numeral 41 denotes another device connected by wire to the network.
  • the reference numerals 51, 52, 53, 55, 56 are networks composed of hubs or routers.
  • Reference numerals 61 and 62 denote external networks.
  • Reference 7 is the Internet.
  • Reference numeral 8 is a management engine (ME: Management Engine) that holds wireless environment information collected from each controlled access point, and calculates and sets appropriate parameters for each controlled access point based on an appropriate index. It is.
  • ME Management Engine
  • one household in the apartment complex 1 has an environment in which the wireless terminal 200 (control impossible terminal) is wirelessly connected to the access point 100 (control impossible AP) which can not be controlled from the outside.
  • the other device 401 and the access point 100 are connected to the network 500 and connected to the Internet 7 via the unmanaged network 600.
  • the access point 100 which can not be controlled from the outside is installed in the building 3 as well.
  • FIG. 2 is a block diagram showing the configuration of the management engine 8 shown in FIG.
  • reference numeral 81 denotes a WAN (Wide Area Network) side connection unit used for communication with an external network.
  • Reference numeral 82 denotes a communication unit that transmits / receives data to / from an external network via the WAN connection unit 81.
  • Reference numeral 83 is an information collecting unit that collects wireless environment information from each access point.
  • Reference numeral 84 is an information storage unit that stores wireless environment information collected from each access point.
  • Reference numeral 85 denotes an information processing unit that performs statistical processing of wireless environment information stored in the information storage unit 84 and collected from each access point.
  • Reference numeral 86 denotes a parameter calculation unit which calculates setting parameter values such as channels to be used by each access point and transmission power values.
  • Reference numeral 87 denotes a control unit that generally controls the operation of the management engine 8.
  • Reference numeral 88 denotes a setting information storage unit in which setting information to be referred to when the parameter calculation unit 86 calculates a setting parameter value is stored in advance. In the setting information storage unit 88, parameter values to be set corresponding to the information collected by the information collection unit 83 are stored in advance.
  • Reference numeral 89 is a performance database in which information on the performance of the access point to be managed by the management engine 8 is stored.
  • FIG. 3 is a block diagram showing the configuration of the access point 11 shown in FIG.
  • reference numeral 111 denotes a LAN side connection unit for communicating with an external network.
  • Reference numeral 112 denotes a communication unit that communicates with an external network via the LAN connection unit 111.
  • Reference numeral 113 is an antenna.
  • Reference numeral 114 denotes a wireless communication unit that transmits and receives data wirelessly via the antenna 113.
  • Reference numeral 115 denotes an access right acquisition unit that acquires an access right prior to wireless data communication.
  • Reference numeral 116 denotes a parameter setting unit that sets various parameters transmitted from the management engine 8.
  • Reference numeral 117 denotes an environment information holding unit that holds wireless environment information.
  • Reference numeral 118 is a control unit that controls the operation of the access point 11 in a centralized manner.
  • the wireless communication unit 114 performs wireless communication with the wireless terminal 21 using the parameter value set by the parameter setting unit 116.
  • the wireless communication unit 114 performs wireless communication using, for example, access control by CSMA / CA. Further, the wireless communication unit 114 scans each of the channels available for wireless communication for a predetermined period, and outputs the scan result to the environment information holding unit 117.
  • FIG. 4 is a diagram showing the flow of environmental information and control instructions between the management engine 8 and the access points 11, 12, 13, 15, 16, 17, 18.
  • the management engine 8 receives environmental information from each of the access points 11, 12, 13, 15, 16, 17, 18, and parameter values to be used by each access point in the management engine 8.
  • the calculated and calculated parameter values are transmitted as control instructions to the access points 11, 12, 13, 15, 16, 17, and 18, respectively.
  • Each of the access points 11, 12, 13, 15, 16, 17, 18 performs its own setting in response to this control instruction.
  • the environment information includes four types of information: (1) current setting information of the access point, (2) information on the function of the access point, (3) subordinate wireless terminal information, and (4) peripheral wireless environment information.
  • the details of the four types of information are as follows.
  • Access point current setting information ⁇ Access point identification ID (SSID, MAC address, etc.) ⁇ Operation wireless mode (2.4 GHz, 5 GHz) ⁇ Used channel ⁇ Bandwidth ⁇ Used transmission power value ⁇ Buffer information
  • Subordinate radio terminal information ⁇ Number of subordinate radio terminals ⁇ Subordinate radio terminal identification ID (eg MAC address) ⁇ Strength of signal level by subordinate wireless terminal (RSSI value) ⁇ Used data rate by subordinate radio terminal, MCS (Modulation and Coding Scheme) etc. ⁇ Retransmission number of frame by subordinate radio terminal, frame discard rate etc. ⁇ Time occupancy rate of channel by subordinate radio terminal ⁇ Throughput by subordinate radio terminal ⁇ Frame error Rate (FER), delay time, buffer information, performance by subordinate wireless terminal, usable data rate, bandwidth
  • Peripheral wireless environment information ⁇ Number of peripheral other access points ⁇ Identification ID by each peripheral other access point (SSID, MAC address, etc.) ⁇ Strength (RSSI value) of signal level for each peripheral other access point ⁇ Each peripheral other access point use channel, bandwidth ⁇ Each peripheral other access point channel by time ratio
  • the management engine 8 collects one or more pieces of information from among the pieces of information constituting the four types of information described above.
  • the current setting information of the access point includes, for example, an SSID or MAC address for identifying the access point, an operating wireless mode, a frequency channel currently used, and a transmission power value used to transmit and receive the current frame.
  • the subordinate wireless terminal information includes the number of wireless terminals already associated with the access point, the MAC address for identifying each wireless terminal, the signal level (RSSI value) of the received signal received from each wireless terminal, and communication for each wireless terminal.
  • RSSI value signal level
  • the data rate, the number of times of frame retransmission to each wireless terminal and the frame discarding rate, the time occupancy rate of the channel by each subordinate wireless terminal, and the like are included.
  • the peripheral wireless environment information includes the number of other access points present in the periphery detected by the own access point, the SSID or MAC address identifying those access points, and the strength of the received signal level such as beacons received from each peripheral other access point , Frequency channels and bandwidths used by the respective access points, time occupancy rates of channels by the respective access points, and the like.
  • the information on the function of the access point includes, for example, information on parameters that can be set in the access point, such as an operable wireless mode, a settable transmission power value, and a settable frequency channel.
  • the information collected by the management engine 8 such as signal level, channel time occupancy rate, number of nearby other access points, number of retransmissions and frame discarding rate may be instantaneous values of information collected at the access point, or access It may be a statistic, an instantaneous value, an average value, a minimum value, or a maximum value of information collected over a fixed period at a point.
  • control instruction information are as follows. ⁇ Operation wireless mode (2.4 GHz, 5 GHz) -Channel to be used, bandwidth-Transmission power to be used-CCA to be used-Data rate to be used, MCS -Tilt angle to be used-Antenna to be used-Antenna to be used-Information on use of MU-MIMO-RTS (Request To Send) threshold value-BSSBasicRateSet value-KeepAlive value-Beacon interval-Sleep mode-Parameter for CSMA / CA (CWmin, CWmax, AIFSN (Arbitration Inter-Frame Spacing Number), TXOP (Transmission Opportunity) -Parameter aggregation related to QoS
  • the information of the control instruction to the access point includes one or more of the above-mentioned information.
  • FIG. 5 is a diagram showing a table structure of the performance database 89 shown in FIG.
  • the performance database 89 is, as shown in FIG. 5, the manufacturer name and model number of the wireless device used for the access point, 2.4 GHz availability, 5 GHz availability, DFS (Dynamic Frequency Selection) band availability, maximum usable bandwidth, Information such as the number of antennas, availability of antenna selection communication, transmission power control, number of transmission power control steps, tilt angle control, etc. is stored.
  • the radio equipment used as various access points with different manufacturers, model numbers and capabilities are simultaneously treated, and parameter sets to be used for all access points to be controlled are calculated. And notify the calculated parameter set to each access point. Therefore, if a wireless device to be used as a new access point is released or if there is a function change due to a firmware improvement of an existing access point, the performance database 89 is updated.
  • the setting information stored in the setting information storage unit 88 shown in FIG. 2 is updated.
  • FIG. 6 is a sequence diagram showing an operation of the wireless communication system shown in FIG.
  • the access point 16 which newly starts operation forms a cell (BSS) using the default parameter value of the manufacturer first, and performs carrier sense using CSMA / CA (step S1), and the subordinate wireless terminal 26 And communicate (step S2).
  • BSS cell
  • the access point 16 periodically scans all available frequency channels or currently operating frequency channels for a certain period of time, and retains the obtained peripheral radio environment information.
  • the amount of peripheral wireless environment information to be acquired depends on the function incorporated in the access point.
  • the access point 16 can communicate in both 2.4 GHz and 5 GHz frequency bands, information on each channel available in each frequency band, the number of other access points on each channel, Collect the received signal level from the access point.
  • the access point 16 collects only the information in that frequency band.
  • the access point 16 to be controlled notifies the management engine 8 that the operation has been started, and starts communication between the management engine 8 and the access point 16 (step S3).
  • the information collection unit 83 of the management engine 8 requests current setting information from the access point 16 that has newly started operation (step S4).
  • the access point 16 requested for notification of the setting information from the management engine 8 notifies the management engine 8 of the corresponding information (step S5).
  • the management engine 8 recognizes identification information such as the maker of the access point that has started operation, the model number, the MAC address, and the parameter setting currently in operation.
  • the information collection unit 83 of the management engine 8 that has acquired these pieces of information stores information related to the access point 16 in the information storage unit 84. Then, the management engine 8 periodically requests the information collection interval by notifying the access point 16 of the information collection interval and the collected information as necessary (step S6). In response to this, the access point 16 observes in its own wireless LAN base station and periodically transfers to the management engine 8 information on the surrounding wireless environment held in the environment information holding unit 117 and information on the subordinate wireless terminals. (Step S7).
  • the parameter calculation unit 86 of the management engine 8 refers to the setting information storage unit 88 and the information stored in the performance database 89, based on the information of each access point connected to the network in advance.
  • the parameter value to be used by the access point 16 is calculated and determined according to the prepared index (step S8).
  • the information to be collected is wireless environment information such as the number of base stations in the periphery operating on a frequency channel, the level of received signals to be received, and the time occupancy rate of channels
  • the parameter calculation unit 86 Based on the above, parameters are calculated such that frequency utilization efficiency (others, user throughput, radio environment such as QoS, etc.) improves at each access point.
  • the parameter calculation unit 86 notifies each access point of the determined parameter value (step S9).
  • the parameter setting unit 116 of the access point 16 having received this performs setting based on the parameter value.
  • the access point 16 communicates with the subordinate wireless terminal 26 based on the parameter value designated by the management engine 8 (step S10).
  • information collection at the access point 16 information transfer from the access point 16 to the management engine 8, calculation of the optimum parameter value for the access point 16 by the management engine 8, and notification of the optimum parameter value for the access point by the management engine 8
  • the timing of occurrence of is not limited to the above description.
  • these events may be (1) periodic, (2) manual by the network operator, (3) manual at the request of the user receiving the service, or (4) predetermined events, eg It is possible to apply automatic execution when an event such as degradation of throughput, excess of buffer size threshold, or degradation of service quality occurs.
  • the aforementioned events may occur independently of one another, or all or part of the events may occur in conjunction.
  • sequence shown in FIG. 6 is an example showing the operation of communication, and it is not necessary to operate in the order shown in FIG. 6 and the order may be changed.
  • FIG. 7 is a view showing the overall configuration of a wireless communication system according to the same embodiment.
  • reference numeral 1 is a four-family apartment.
  • symbol 2 is a detached house, respectively.
  • Reference numerals 11, 12, 13, 14, 15, and 16 denote access points installed in each household of the housing complex 1 and in a single-family home, respectively.
  • Reference numerals 21, 22, 23, 24, 25, 26 are wireless terminals that perform wireless communication with the access points 11, 12, 13, 14, 15, 16 using a wireless LAN protocol of the IEEE 802.11 standard.
  • Reference numeral 41 denotes another device connected by wire to the network.
  • Reference numerals 51, 52, 53, 54, 55, 56 are networks composed of hubs or routers.
  • Reference numeral 61 is an external network.
  • Reference 7 is the Internet.
  • Reference numeral 8 is a management engine (ME: Management Engine) that holds wireless environment information collected from each controlled access point, and calculates and sets appropriate parameters for each controlled access point based on an appropriate index. It is.
  • symbol 9 is a bundle delivery server which manages the bundle used for communication between access point 11, 12, 13, 14, 15, 16 each.
  • a bundle is HTTP (Hypertext Transfer Protocol), HTTPS (HTTP Secure), Telnet, SSH (Secure Shell), RJ-45, SNMP (Simple Network Management Protocol), or access point by Java (registered trademark, the same as the following) program. And software using another external interface protocol supported by the subordinate wireless terminal.
  • Reference numerals 91, 92, 93, 94, 95, 96 denote service gateways (shown as SGW (Service Gateway) in the drawings). 7 differs from the system shown in FIG. 1 in that service gateways 91, 92, 93, 94, 95, 96 and bundle distribution server 9 are provided, access point 100, wireless terminal 200, and other devices. 401, instead of the network 500, an access point 14, a wireless terminal 24, another device 41, and a network 54 are provided, and the building 3, the external network 62, and the non-managed network 600 are omitted.
  • SGW Service Gateway
  • a bundle distribution server 9 for managing bundles used for communication between service gateways 91, 92, 93, 94, 95, 96 and access points 11, 12, 13, 14, 15, 16 and Holds the wireless environment information of each access point 11, 12, 13, 14, 15, 16 collected through the service gateways 91, 92, 93, 94, 95, 96, and each control target based on the appropriate index
  • a management engine 8 for calculating and setting appropriate parameters for the access points 11, 12, 13, 14, 15, 16.
  • the wireless terminals 21, 22, 23, 24, 25, 26 of each household communicate with the access points 11, 12, 13, 14, 15, 16 using the wireless LAN protocol of the IEEE 802.11 standard.
  • FIG. 8 is a block diagram showing a configuration of service gateway 91 shown in FIG.
  • the service gateway 91 is connected by the WAN side connection unit 911 and the LAN side connection unit 912 between the communication network outside the home and the communication network inside the home, and a protocol of data flowing from one communication network to the other communication network Have the ability to convert
  • OSAP Open Services Gateway initiative
  • OSGiFW OSGi framework
  • Java VM Java Virtual Machine, Java is a registered trademark, the same applies hereinafter
  • OS Operating System
  • OS Operating System
  • OSGiFW 915 operates on the Java VM.
  • a plurality of bundles can be operated on this OSGiFW 915, and the operation provides services implemented in the bundle.
  • OSGi Alliance URL: http://www.osgi.org/Specifications/HomePage.
  • FIG. 9 is a diagram showing the flow of environmental information and control instructions between the management engine 8, the service gateways 91, 92, 93, 94, 95, 96, and the access points 11, 12, 13, 14, 15, 16. is there.
  • the management engine 8 receives environment information from each of the access points 11, 12, 13, 14, 15, 16 through the service gateways 91, 92, 93, 94, 95, 96 respectively. .
  • the parameter values to be used by each of the access points 11, 12, 13, 14, 15, 16 are calculated in the management engine 8, and the calculated parameter values are used as control instructions in the service gateways 91, 92, 93, 94, Transmit to the access points 11, 12, 13, 14, 15, 16 through 95, 96, respectively.
  • Each of the access points 11, 12, 13, 14, 15, 16 performs its own setting in response to this control instruction.
  • FIG. 10 is a sequence diagram showing an operation of the wireless communication system shown in FIG.
  • the service gateway 96 recognizes the existence of the new access point 16 using OSAP (OSGi platform), and installs the manufacturer, model number, etc. of the access point 16 Device identification information is acquired (step S11). Acquisition of device identification information is performed using a protocol such as Universal Plug and Play (UPnP) or Network Basic Input Output System (NetBIOS). Then, the service gateway 96 transfers this acquired information to the bundle distribution server 9, and requests distribution of a bundle that can communicate with the newly installed access point 16 (step S12).
  • OSAP OSGi platform
  • UPI Universal Plug and Play
  • NetBIOS Network Basic Input Output System
  • the bundle distribution server 9 selects an appropriate bundle corresponding to information such as the manufacturer, model number, and firmware version of the access point 16 sent from the service gateway 96 among the bundles managed in the server itself. It distributes to 96 (step S13).
  • the service gateway 96 having received the bundle from the bundle distribution server 9 collects information in the access point 16 and sets various parameters of the access point 16 using the bundle.
  • the access point 16 forms a cell (BSS) using the default parameter value of the manufacturer, carries out carrier sense using CSMA / CA (step S14), and communicates with the subordinate wireless terminal 26. (Step S15).
  • the access point 16 periodically scans all available frequency channels or currently operating frequency channels for a fixed period, and holds peripheral wireless environment information to be acquired.
  • the amount of peripheral wireless environment information to be acquired depends on the function incorporated in the access point. For example, when the access point 16 can communicate in both 2.4 GHz and 5 GHz frequency bands, information on each channel available in each frequency band, the number of other access points on each channel, Collect the received signal level from the access point. On the other hand, when only the 2.4 GHz band or the 5 GHz band is available, the access point 16 collects only the information in that frequency band.
  • the service gateway 96 accesses the environment information holding interface of the access point 16 via the bundle, and requests the current setting information from the access point 16 which has started to operate (step S16). In response to this, the access point 16 notifies the service gateway 96 of current setting information (step S17).
  • the service gateway 96 notifies the management engine 8 of a registration request for the access point 16 to be controlled and the current setting information notified from the access point 16 (step S18).
  • the wireless terminal information subordinate to the access point 16, the wireless environment information, and the information on the function of the access point stored in the environment information holding unit 117 of the access point 16 may be notified together.
  • the management engine 8 that has acquired these pieces of information stores information related to the access point 16 in the information storage unit 84 in its own device. Then, the management engine 8 notifies the service gateway 96 of the information collection interval of the access point 16 and information to be collected, as necessary (step S19).
  • the service gateway 96 periodically requests the environment information holding unit 117 of the subordinate access point 16 according to the information collection interval notified from the management engine 8 or the information collection interval defined in the bundle.
  • the setting information and environmental information are requested (step S20).
  • the service gateway 96 receives the collected information transmitted by the access point 16 (step S21), and transfers the collected information to the management engine 8 (step S22).
  • the service gateway 96 does not change the access point 16 if the buffer size exceeds the threshold. Based on pre-defined guidelines, such as when the number of other access points in the vicinity exceeds a threshold, collect information on the access point 16 as needed, or transfer information on the access point 16 to the management engine 8 Do.
  • the parameter calculation unit 86 of the management engine 8 refers to the setting information storage unit 88 and the information stored in the performance database 89 to periodically or according to a previously defined guideline. Based on the information of the access point sent from each service gateway connected to the management target network, the parameter value to be used by each access point is calculated and determined according to the previously defined index (step S23). ). For example, when the information to be collected is wireless environment information such as the number of base stations in the periphery operating on a frequency channel, the level of received signals to be received, and the time occupancy rate of channels, the parameter calculation unit 86 Based on the above, parameters are calculated to improve frequency utilization efficiency at each access point.
  • the parameter calculation unit 86 notifies the service gateway 96 of the determined parameter value (step S24), and reflects the parameter value on each access point (step S25).
  • the parameter setting unit 116 of the access point 16 having received this performs setting based on the parameter value.
  • the access point 16 communicates with the subordinate wireless terminal 26 based on the parameter value designated by the management engine 8 (step S26).
  • the parameter calculation and parameter setting are performed on all the access points targeted by the management engine 8.
  • the overall configuration of the wireless communication system in the third embodiment is the same as the configuration shown in FIG.
  • the management engine 8 collects wireless environment information detected not only at the access point but also at the wireless terminal under the access point, it calculates appropriate parameter values for each access point and the subordinate wireless terminals. And set.
  • FIG. 11 shows the management engine 8 shown in FIG. 7, the service gateways 91, 92, 93, 94, 95, 96, the access points 11, 12, 13, 14, 15, 16 and the radio shown in FIG. Information exchanged with the terminals 21, 22, 23, 24, 25, 26 will be described.
  • 11 shows the management engine 8 shown in FIG. 7, the service gateways 91, 92, 93, 94, 95, 96, the access points 11, 12, 13, 14, 15, 16 and the wireless terminals 21, 22, 23.
  • 24, 25 and 26 are diagrams showing the flow of environmental information and control instructions exchanged with each other. As illustrated in FIG.
  • the management engine 8 transmits the wireless terminals 21 and 22 via the service gateways 91, 92, 93, 94, 95, 96 and the access points 11, 12, 13, 14, 15, 16. , 23, 24, 25 and 26 respectively receive environmental information.
  • the parameter values calculated by the access points 11, 12, 13, 14, 15, 16 and the wireless terminals 21, 22, 23, 24, 25, 26 in the management engine 8 are calculated and calculated.
  • the access points 11, 12, 13, 14, 15, 16 and the respective wireless terminals 21, 22, 23, 24, 25, 26 Send to each.
  • Each of the access points 11, 12, 13, 14, 15, 16 and each of the wireless terminals 21, 22, 23, 24, 25, 26 performs its own setting upon receiving this control instruction.
  • control instruction information are as follows.
  • ⁇ Transmission power value to be used ⁇ CCA value to be used ⁇ Data rate to be used, MCS ⁇ Tilt angle to be used ⁇ Antenna to be used ⁇ Antenna to be used ⁇ Information on use of MU-MIMO ⁇ RTS threshold value ⁇ BSSBasicRateSet value ⁇ Sleep mode ⁇ Parameters on CSMA / CA (CWmin, CWmax, AIFSN, TXOP) -Parameter aggregation related to QoS
  • FIG. 12 is a sequence diagram showing the operation of the wireless communication system according to the third embodiment.
  • the service gateway 96 recognizes the existence of the new access point 16 using OSAP (OSGi platform), and installs the manufacturer, model number, etc. of the access point 16 Device identification information is acquired (step S31). Acquisition of device identification information is performed using a protocol such as Universal Plug and Play (UPnP) or Network Basic Input Output System (NetBIOS). Then, the service gateway 96 transfers this acquired information to the bundle distribution server 9, and requests distribution of a bundle that can communicate with the newly installed access point 16 (step S32).
  • OSAP OSGi platform
  • UPI Universal Plug and Play
  • NetBIOS Network Basic Input Output System
  • the bundle distribution server 9 selects an appropriate bundle corresponding to information such as the manufacturer, model number, and firmware version of the access point 16 sent from the service gateway 96 among the bundles managed in the server itself. It delivers to 96 (step S33).
  • the service gateway 96 having received the bundle from the bundle distribution server 9 collects information in the access point 16 using the bundle, requests the access point 16 to collect information on the wireless terminals 26 subordinate thereto, and the access point 16 and various parameters of the wireless terminal 26 under control.
  • the access point 16 forms a cell (BSS) using default parameter values of the manufacturer, performs carrier sensing using CSMA / CA (step S34), and communicates with the subordinate wireless terminal (step S34). S35).
  • the access point 16 periodically scans all available frequency channels or currently operating frequency channels for a fixed period, and holds peripheral wireless environment information to be acquired.
  • the amount of peripheral wireless environment information to be acquired depends on the function incorporated in the access point. For example, when the access point 16 can communicate in both 2.4 GHz and 5 GHz frequency bands, information on each channel available in each frequency band, eg, the number of other access points on each channel, Collect received signal levels from each access point. On the other hand, when only the 2.4 GHz band or the 5 GHz band is available, the access point 16 collects only the information in that frequency band.
  • the service gateway 96 accesses the environment information holding interface of the access point 16 via the bundle, and requests the current setting information from the access point 16 which has started to operate (step S36). Further, the service gateway 96 requests the access point 16 to collect environmental information in the subordinate wireless terminal 26 (step S37). The access point 16 requests collection of environment information by transmitting a frame such as an Action frame to the subordinate wireless terminal 26, for example. In response to this, the wireless terminal 26 notifies the access point 16 of the setting information and the environment information (step S38). The access point 16 notifies the service gateway 96 of the setting information and environment information notified from the wireless terminal 26 and the current setting information of the access point 16 itself (step S39). Then, the access point 16 communicates with the wireless terminal 26 (step S40).
  • the service gateway 96 notifies the management engine 8 of a registration request for the access point 16 to be controlled, the current setting information notified from the access point 16, the setting information notified from the wireless terminal 26, and the environment information. (Step S41).
  • the management engine 8 that has acquired these pieces of information stores information on the access point 16 and the subordinate wireless terminals 26 in the information storage unit 84 in the own device. Then, the management engine 8 notifies the service gateway 96 of the information collection interval of the access point 16 and information to be collected, as necessary (step S42).
  • the service gateway 96 periodically requests the environment information holding unit 117 of the subordinate access point 16 according to the information collection interval notified from the management engine 8 or the information collection interval defined in the bundle.
  • the setting information and environmental information are requested (step S43).
  • the access point 16 requests setting information and environment information from the wireless terminal 26 under control (step S44).
  • the subordinate wireless terminal 26 notifies the access point 16 of the setting information and the environment information (step S45).
  • the access point 16 transfers the collected information to the service gateway 96 (step S46). Then, the access point 16 communicates with the subordinate wireless terminal 26 (step S47). Subsequently, the service gateway 96 further transfers the collected information transferred from the access point 16 to the management engine 8 (step S48).
  • the service gateway 96 does not change the access point 16 if the buffer size exceeds the threshold. Based on pre-defined guidelines, such as when the number of other access points in the vicinity exceeds a threshold, collect information on the access point 16 as needed, or transfer information on the access point 16 to the management engine 8 Do.
  • the parameter calculation unit 86 of the management engine 8 refers to the setting information storage unit 88 and the information stored in the performance database 89 to periodically or according to a previously defined guideline. Based on the information of the access point and subordinate wireless terminals sent from each service gateway connected to the management target network, the parameter value to be used by each access point and subordinate wireless terminals according to the index defined in advance It calculates and determines (step S49). For example, when the information to be collected is wireless environment information such as the number of base stations in the periphery operating on a frequency channel, the level of received signals to be received, and the time occupancy rate of channels, the parameter calculation unit 86 Based on the above, parameters are calculated to improve frequency utilization efficiency at each access point. Then, the parameter calculation unit 86 notifies the service gateway 96 of the determined parameter value (step S50), and reflects the parameter value on each access point (step S51).
  • the access point 16 notifies the subordinate wireless terminals 26 of the determined parameters (step S52), and causes the wireless terminals 26 to reflect the determined parameters.
  • the parameter setting unit 116 of the access point 16 performs setting based on the parameter value.
  • the wireless terminal 26 performs setting based on this parameter value.
  • the access point 16 communicates with the subordinate wireless terminal 26 based on the parameter value designated by the management engine 8 (step S53).
  • setting information and environment information notified from an access point and a subordinate wireless terminal are stored not in the management engine 8 but in different places in the network.
  • the management engine 8 periodically calculates and sets appropriate parameter values in each wireless LAN base station and subordinate wireless terminals based on the information stored in the network.
  • FIG. 13 is a diagram showing an entire configuration of a wireless communication system according to a fourth embodiment.
  • the same parts as those of the system shown in FIG. 7 are designated by the same reference numerals, and the description thereof will be omitted.
  • the difference between the system shown in FIG. 13 and the system shown in FIG. 7 is that the system includes a management engine 80 that does not have the information storage unit 84 (see FIG. 2) inside, and is notified from an access point or a subordinate wireless terminal
  • An information storage unit 841 corresponding to the information storage unit 84 for storing setting information and environment information is provided at another place on the network to which the management engine 80 is connected.
  • the processing load of the management engine 80 can be reduced by providing a plurality of divided information storage units 841.
  • the wireless communication system shown in FIG. 13 differs from the wireless communication system shown in FIG. 7 only in the location where the information storage unit 841 is provided, and the processing operation is the same as that of the wireless communication system shown in FIG. As it is similar, detailed description is omitted here.
  • OSAP OS Gi Service Aggregation Platform
  • ME management engine
  • IME interference management engine
  • a management engine existing on the network side can communicate with wireless LAN base stations of different model numbers of different manufacturers via software called a bundle.
  • a network control type wireless communication system can be realized in which appropriate parameters can be set from the network side to any wireless LAN base station connected to the network regardless of manufacturer or type. be able to.
  • FIG. 14 is a block diagram showing the configuration of the wireless communication system in the embodiment.
  • the wireless base stations 1001 and 1002 are, for example, access points of a wireless LAN, and perform wireless communication using a wireless terminal apparatus (not shown) and a channel (frequency band) notified from the channel assignment server 1003.
  • the wireless base station 1001 includes a wireless communication unit 1011 and a control unit 1012.
  • the control unit 1012 includes an access right acquisition unit 1013 that acquires an access right, a channel setting unit 1014 that sets a channel notified from the channel assignment server 1003, and a wireless environment information holding unit 1015 that holds wireless environment information.
  • the wireless communication unit 1011 performs wireless communication with the wireless terminal device using the channel set by the channel setting unit 1014.
  • the wireless communication unit 1011 performs wireless communication using, for example, access control by CSMA / CA. Further, the wireless communication unit 1011 scans a predetermined period for each of all available channels in wireless communication, and outputs the scan result to the wireless environment information holding unit 1015.
  • the wireless base station 1002 includes a wireless communication unit 1021 and a control unit 1022.
  • the control unit 1022 includes an access right acquisition unit 1023 that acquires an access right, a channel setting unit 1024 that sets a channel notified from the channel assignment server 1003, and a wireless environment information holding unit 1025 that holds wireless environment information.
  • the wireless communication unit 1021 performs wireless communication with the wireless terminal apparatus using the channel set by the channel setting unit 1024.
  • the wireless communication unit 1021 performs wireless communication using, for example, access control by CSMA / CA. Further, the wireless communication unit 1021 scans a predetermined period for each of all available channels in wireless communication, and outputs the scan result to the wireless environment information holding unit 1025.
  • the channel assignment server 1003 includes a communication unit 1031, a channel calculation unit 1032, an information collection unit 1033, and a control unit 1034.
  • a communication unit 1031 communicates with the wireless base stations 1001 and 1002.
  • the channel calculation unit 1032 calculates a channel to be used by each of the radio base stations 1001 and 1002 based on the information held in the information collection unit 1033.
  • the information collection unit 1033 collects radio environment information of the radio base stations 1001 and 1002 that are channel allocation control targets present in the system.
  • the control unit 1034 is a control unit that centrally controls the operation of the channel assignment server.
  • the wireless communication unit 1011 scans each of all available channels in wireless communication for a predetermined period at predetermined time intervals, and then performs its own wireless communication.
  • the wireless environment information around the base station is output to the wireless environment information holding unit 1015.
  • the wireless environment information includes the number of other wireless base stations existing in each available channel, identification information of each wireless base station, and received signal strength of a signal such as a beacon received from each wireless base station. (RSSI value: Received Signal Strength Indicator), channel utilization per unit time, etc. are included.
  • the wireless environment information includes the number of wireless terminals in the own cell, the RSSI value of the signal received from each wireless terminal, and the like.
  • the total medium usage rate is a ratio of wireless devices other than the own wireless base station (other wireless base stations or wireless terminal devices other than the own cell) using the corresponding wireless channel in unit time.
  • the U value is a value indicating the percentage of time that can be occupied in the radio base station to which a channel is assigned. In the radio base station to which a channel is allocated, it can be predicted that the acquisition throughput will be maximum if the channel with the highest occupancy time U is selected, so that the channel calculation unit 1032 maximizes the U value as a temporary channel of the corresponding radio base station. Calculate the channel.
  • the channel calculation unit 1032 calculates the total value U total of U values of all the radio base stations after determining the provisional channels of all the radio base stations to be controlled in the system. Then, the aim is to improve the throughput of the radio base station where the medium occupation time is minimum. After temporary channels of all wireless base stations are determined, select a wireless base station whose U value is less than or equal to a predetermined threshold, and there are no other channels where the U value of the wireless base station is larger than the current value Confirm.
  • the U value is calculated again on all available channels, and one channel for which the U value is larger than the current value is calculated, and all control target radios in the system are calculated. Calculate the base station's total U value and check if the total U value is not less than the current total U value. If the total U value of the system does not deteriorate more than the current total U value even if the wireless base station uses the newly selected channel, the newly selected channel is used as the new temporary channel of the wireless base station. Do. Then, again, a channel is selected such that the U value of the radio base station having the smallest U value is improved.
  • the total throughput of the system can be improved or the total throughput of the system can be improved by performing the operation of selecting a channel such that the U value of the radio base station having the smallest U value is improved a plurality of times (recursion number Max_r).
  • Throughput fairness among cells can be improved. The above operation is repeated a predetermined number of Max_r times, and finally the new temporary channel is reflected to each wireless base station.
  • 15 and 16 are flowcharts showing an operation of the channel calculation unit 1032 shown in FIG. 14 performing channel selection processing.
  • 0 is substituted for the number of recursion (r) (step S101).
  • select a wireless base station to which a channel (hereinafter referred to as CH in the drawings) is to be set from a control target channel unset wireless base station list (hereinafter sometimes abbreviated as “channel unset list”) Step S102).
  • a method of selecting a wireless base station a method of selecting at random, a method of selecting in a manual setting order (in the order of priority described in the XML (Extensible Markup Language) file) A method of selecting in ascending order of the number of radio base stations can be applied.
  • a channel to be set in the selected radio base station is tentatively determined according to the channel assignment algorithm (step S103).
  • the selected channel is set as the temporary determination channel of the wireless base station (step S104), and the selected wireless base station is deleted from the channel non-setting list (step S105). Then, it is determined whether the radio base station still remains in the channel non-setting list (step S106), and if the radio base station remains in the channel non-setting list, the process returns to step S102 to repeat the processing.
  • the occupancy rate ratio U AP-x of each control target radio base station, and the sum and product (U total , U product ) of U AP -x Calculate and store U AP-x , U total , U product and a provisionally determined channel set of the control target radio base station (step S 107).
  • U total or U product is substituted for U max (step S108).
  • the number of recursion (r) is increased by one (r ++;) (step S109).
  • which one of U total and U product should be substituted for U max may be determined, for example, according to the operation guidelines of the network. Specifically, U product may be adopted for a system aiming to improve lower throughput, and U total may be adopted for a system aiming to improve the total throughput of the entire system.
  • step S110 it is determined whether or not the condition recursion (r) ⁇ upper limit (Max_r) (step S110), if they meet the condition, U AP-x is equal to or less than a predetermined threshold value U TH and One radio base station is selected (step S111).
  • U TH is a value of 0 or more and 1 or less.
  • step S112 a channel to be newly set to the selected radio base station is selected (step S112). Then, it is determined whether there is a corresponding channel (step S113).
  • step S114 if there is no corresponding channel, in step S114, among the wireless base stations for which UAP -x is less than or equal to U TH , one wireless base station not selected in step S111 and in step S114 is selected. It chooses at random and returns to step S112.
  • step S115 if there is a corresponding channel, the U AP-x and U value of each control target radio base station are calculated (step S115). Then, it is determined whether U ⁇ U max is satisfied (step S116). As a result of the determination, if U ⁇ U max is satisfied, the selected channel is set as a new temporary decision channel of the selected wireless base station (step S117), and the process returns to step S107. On the other hand, if U ⁇ U max is not satisfied, the selected channel is ignored (step S118), and the process returns to step S112.
  • step S110 if the number of recursion (r) ⁇ upper limit value (Max_r) is not satisfied, the process is ended with the provisionally determined channel set of all the control target radio base stations as the determined channel (step S119).
  • FIG. 16 is a flowchart showing details of the processing operation of step S103 and step S112 shown in FIG. 15.
  • step S121 it is determined whether to consider a non-control target radio base station.
  • the non-control target radio base station existing in the vicinity detected by the selected radio base station hereinafter referred to as "detectable peripheral control non-control target radio base station”
  • step S122 the non-control target radio base station existing in the vicinity detected by the selected radio base station
  • ⁇ ' is the total medium occupancy time ratio for each channel by the detectable non-controllable radio base station in the selected controlled radio base station.
  • the total value ( ⁇ + ⁇ ′) of medium usage rates for each channel is calculated (step S124).
  • is the medium occupancy time rate for each channel by the control target radio base station for which the provisional channel has already been determined among the detectable other control target radio base stations in the selected control target radio base station.
  • a channel with the largest possible occupancy rate U AP -x (CH-y) is selected (step S125).
  • the control target radio base station in the periphery for which the channel has already been determined selects the channel to be least used.
  • FIG. 17 the same processing operations as the processing operations shown in FIG. 15 are denoted by the same reference numerals, and the description thereof will be briefly described.
  • a wireless base station to which a channel is to be set is selected from the control target channel unconfigured wireless base station list (step S102).
  • a method of selecting a radio base station a method of randomly selecting, a method of selecting in a preset order, a method of selecting in order of a large number of neighboring radio base stations, a method of selecting in ascending order of possible channel occupancy time, etc. There is.
  • a channel to be set to the selected radio base station is tentatively determined by any of these methods (step S103).
  • the selected channel is set as the temporary determination channel of the wireless base station (step S104), and the selected wireless base station is deleted from the channel non-setting list (step S105). Then, it is determined whether the radio base station still remains in the channel non-setting list (step S106), and if the radio base station remains in the channel non-setting list, the process returns to step S102 to repeat the processing.
  • the occupancy rate ratio U AP-x of each control target radio base station, and the sum and product (U total , U product ) of U AP -x Calculate step S107a.
  • U AP-x , U total , U product and a provisional channel set of the control target radio base station are stored (step S 107 b).
  • Utotal or U product is substituted for U max (step S108).
  • the number of recursion (r) is increased by one (r ++;) (step S109).
  • step S110a it is determined whether the end condition of the process is satisfied. If the end condition is not satisfied, one wireless base station for which U AP-x is less than or equal to a predetermined threshold value U TH is determined. It selects (step S111). At this time, with regard to the termination condition in step S110a, (1) U values of all the radio base stations become 1, (2) the number of times of recursion (r) reaches the upper limit value (Max_r), (3) preset The end condition is regarded as satisfied when at least one of the convergence conditions is satisfied.
  • step S112 Another channel to be newly set so as to increase the U value of the selected radio base station is selected (step S112). Then, it is determined whether there is another channel in which the U value is larger than the corresponding channel, that is, the current temporary channel (step S113). As a result of the determination, if there is no corresponding channel, the temporary channel of the selected wireless base station is not changed (step S114a), and the process returns to step S109.
  • step S110 if the end condition is satisfied, the processing is ended with the provisional channel set of all the control target radio base stations as the determined channel (step S119).
  • step S112 shown in FIG. 17 Details of the processing operation of step S112 shown in FIG. 17 will be described. Since the processing operation of step S112 shown in FIG. 17 is the same as the processing operation shown in FIG. 16, the processing operation will be described with reference to FIG.
  • ⁇ + ⁇ ′ the total value ( ⁇ + ⁇ ′) of medium usage rates for each channel is calculated (step S124).
  • is the medium occupancy of each channel by the control target radio base station for which the provisional channel has already been determined among the detectable other control target radio base stations in the selected control target radio base station. It is a rate of time.
  • ⁇ ′ is the total medium occupancy time ratio for each channel by the non-detection target area control non-target radio base station in the selected control target radio base station.
  • a channel with the largest possible occupancy rate U AP -x (CH-y) is selected (step S125).
  • the control target radio base station in the periphery for which the channel has already been determined selects the channel to be least used.
  • the wireless communication unit 1011 scans each of all available channels in wireless communication for a predetermined period at predetermined time intervals, and then performs its own wireless communication.
  • the wireless environment information around the base station is output to the wireless environment information holding unit 1015.
  • the wireless environment information includes the number of other wireless base stations existing in each available channel, identification information of each wireless base station, and received signal strength of a signal such as a beacon received from each wireless base station. (RSSI value: Received Signal Strength Indicator)), channel utilization per unit time, etc. are included.
  • the wireless environment information includes the number of wireless terminals in the own cell, the RSSI value of the signal received from each wireless terminal, and the like.
  • the channel calculation unit 1032 calculates the radio channel to be used by each radio base station as follows based on the radio environment information of each radio base station collected by the information collection unit 1033. First, in the radio base station to which a channel is to be allocated, the time occupancy rate to be used is calculated by equation (2).
  • the time occupancy rate is a ratio of time in which the corresponding application or wireless terminal device occupies the corresponding wireless channel when the entire time is 1.
  • the total time occupancy rate is a ratio of time when the wireless base station and the subordinate wireless terminal devices are scheduled to use when the entire time is 1.
  • STA means a wireless terminal.
  • the channel with the smallest total time occupancy rate ⁇ is selected as shown in the following equation.
  • This channel is assumed to be a temporary decision channel scheduled to be used in the corresponding radio base station.
  • the satisfaction U value obtained when the use of the temporary decision channel is determined in the wireless base station is calculated by the following equation.
  • the satisfaction U value 1 is a sufficient condition.
  • the possible range of the U value is [0, 1], but a higher one is preferable.
  • the U value is calculated again in all the radio base stations. Then, channel reselection is attempted so that the U value of the radio base station having the smallest U value becomes high.
  • the first condition is that the U value of the channel reconfiguration target radio base station does not decrease.
  • the second condition is that (1) the total satisfaction (total value of U values) in all the wireless base stations does not decrease even if the channel is re-set to the wireless base station, (2) all The integrated value of the U value in the wireless base station of is not to decrease.
  • the above (1) and (2) may be filled one or both.
  • channel change is attempted again so that the U value of the radio base station having the smallest U value is improved.
  • the total throughput of the system can be improved by performing the operation of selecting a channel such that the U value of the radio base station having the smallest U value is improved a plurality of times (the number of times of recursion Max_r).
  • throughput fairness among cells can be improved. The above operation is repeated a predetermined number of Max_r times, and finally the new temporary channel is reflected to each wireless base station.
  • FIG. 18 and FIG. 19 are flowcharts showing an operation in which the channel calculation unit 1032 performs channel selection processing in the sixth embodiment.
  • FIG. 18 and FIG. 19 the same processing operations as the processing operations shown in FIG. 15, FIG. 16, and FIG.
  • a wireless base station to which a channel is to be set is selected from the control target channel unconfigured wireless base station list (step S102).
  • a method of selecting a radio base station a method of selecting at random, a method of selecting in a manual setting order (order of priority described in XML file), and an order of radio base stations with large bottlenecks (the number of neighboring radio base stations is The method of selecting in descending order) can be applied.
  • a channel to be set in the selected radio base station is tentatively determined according to the channel assignment algorithm (step S103).
  • the selected channel is set as the temporary determination channel of the wireless base station (step S104), and the selected wireless base station is deleted from the channel non-setting list (step S105). Then, it is determined whether the radio base station still remains in the channel non-setting list (step S106), and if the radio base station remains in the channel non-setting list, the process returns to step S102 to repeat the processing.
  • step S110 it is determined whether or not the condition recursion (r) ⁇ upper limit (Max_r) (step S110), if they meet the condition, one in which U is equal to or lower than a predetermined threshold value U TH
  • the wireless base station of is selected (step S111a).
  • a channel to be newly set to the selected radio base station is selected (step S112).
  • step S113 it is determined whether there is a corresponding channel (step S113). As a result of this determination, if there is no corresponding channel, in step S114b, among the wireless base stations for which U is less than or equal to U TH , one wireless base station not selected in step S111a and step S114b is selected at random. Then, the process returns to step S112.
  • step S 115 b U of each control target radio base station and U total and U product are calculated, and U total or U product is substituted for U ′. Then, it is determined whether U′UU max is satisfied (step S116 a). As a result of this determination, if U ′ ⁇ U max is satisfied, the selected channel is set as a new temporary decision channel of the selected wireless base station (step S117), and the process returns to step S107c. On the other hand, if U ′ ⁇ U max is not satisfied, the selected channel is ignored (step S118), and the process returns to step S112.
  • step S110 if the number of recursion (r) ⁇ upper limit value (Max_r) is not satisfied, the process is ended with the provisionally determined channel set of all the control target radio base stations as the determined channel (step S119).
  • FIG. 19 is a flowchart showing details of the processing operation of step S112 shown in FIG. 18
  • step S121 it is determined whether to consider a non-control target radio base station.
  • the information of the non-control target radio base station existing in the vicinity detected by the selected radio base station is also considered (step S122).
  • the total value ( ⁇ + ⁇ ′) of medium usage rates for each channel is calculated (step S124). However, among the control target radio base stations, the information of the channel unconfigured radio base station is ignored.
  • the channel with the largest possible occupancy rate in the selected radio base station is selected (step S125).
  • the control target radio base station in the vicinity for which the channel has already been determined selects the channel to be least used.
  • FIG. 20 the same processing operations as the processing operations shown in FIGS. 17 and 18 are denoted by the same reference numerals, and the description thereof will be briefly described.
  • a wireless base station to which a channel is to be set is selected from the control target channel unconfigured wireless base station list (step S102).
  • a method of selecting a radio base station a method of randomly selecting, a method of selecting in a preset order, a method of selecting in order of a large number of neighboring radio base stations, a method of selecting in ascending order of possible channel occupancy time, etc. There is.
  • a channel to be set to the selected radio base station is tentatively determined by any of these methods (step S103).
  • the selected channel is set as the temporary determination channel of the wireless base station (step S104), and the selected wireless base station is deleted from the channel non-setting list (step S105). Then, it is determined whether the radio base station still remains in the channel non-setting list (step S106), and if the radio base station remains in the channel non-setting list, the process returns to step S102 to repeat the processing.
  • step S107 d the satisfaction U of each control target radio base station and the sum and product (U total , U product ) of U are calculated. Further, U, U total , U product and temporary channel sets of the control target radio base station are stored (step S 107 e). Subsequently, U total or U product is substituted for U max (step S108). Then, the number of recursion (r) is increased by one (r ++;) (step S109).
  • step S110a it is determined whether the process termination condition is satisfied (step S110a), and if the termination condition is not satisfied, one radio base station for which U is equal to or less than a predetermined threshold value U TH is selected (step S110a).
  • step S111a Regarding the termination condition in step S110a, (1) U values of all radio base stations become 1, (2) the number of times of recursion (r) reaches the upper limit value (Max_r), (3) convergence conditions set in advance Fulfill: When at least one of the following is satisfied, it is considered that the end condition is satisfied.
  • step S112 Another channel to be newly set so as to increase the U value of the selected radio base station is selected (step S112). Then, it is determined whether there is another channel in which the U value is larger than the corresponding channel, that is, the current temporary channel (step S113). As a result of the determination, if there is no corresponding channel, the temporary channel of the selected wireless base station is not changed (step S114a), and the process returns to step S109.
  • step S 115 b U total or U product is set.
  • U′UU max U total or U product is set.
  • step S110 if the end condition is satisfied, the processing is ended with the provisional channel set of all the control target radio base stations as the determined channel (step S119).
  • step S112 shown in FIG. 20 Details of the processing operation of step S112 shown in FIG. 20 will be described. Since the processing operation of step S112 shown in FIG. 20 is the same as the processing operation shown in FIG. 19, the processing operation will be described with reference to FIG.
  • ⁇ + ⁇ ′ the total value ( ⁇ + ⁇ ′) of medium usage rates for each channel is calculated (step S124).
  • is the medium occupancy of each channel by the control target radio base station for which the provisional channel has already been determined among the detectable other control target radio base stations in the selected control target radio base station. It is a rate of time.
  • ⁇ ′ is the total medium occupancy time ratio for each channel by the non-detection target area control non-target radio base station in the selected control target radio base station.
  • a channel with the largest possible occupancy rate U AP -x (CH-y) is selected (step S125).
  • the control target radio base station in the periphery for which the channel has already been determined selects the channel to be least used.
  • the channel used by each wireless base station 1001 for wireless communication is dynamically determined according to the surrounding wireless conditions. It is possible to suppress the variation (between cells) of throughput control target radio base stations. As a result, the wireless communication system can always suppress the reduction in throughput in the entire wireless communication system even in the case where an area where the wireless base stations 1001 are concentrated occurs and also in an environment where the wireless environment changes with time.
  • the network side selects a channel and assign a channel so that there is no large difference in the throughput that each cell can obtain, and that the throughput of the entire system is not degraded.
  • the above-mentioned channel allocation is performed periodically as necessary, and channels are allocated so that channels used for wireless communication are not biased even if the wireless environment or traffic environment changes, so that wireless base stations are concentrated. Even in the environment, it is possible to avoid the decrease in local throughput.
  • a wireless base station having a U value equal to or less than a predetermined threshold value has been described, but a wireless base station having a U value equal to or less than the predetermined threshold value is necessarily selected. It is not necessary to select a radio base station having a small U value other than this example.
  • the wireless base station having a small U value is, for example, one of the wireless base stations among the wireless base stations in which the U value is included in a predetermined ratio from the bottom. If the predetermined threshold value or the predetermined ratio is reduced, the number of radio base stations to be reassigned to temporary channels decreases, and channel allocation converges more quickly. On the other hand, if the predetermined threshold or the predetermined ratio is large, the number of radio base stations to be reassigned to temporary channels increases, so convergence of channel assignment is delayed, but the total throughput of the system is maximized (optimum ) Is possible.
  • a wireless LAN base station having a U value satisfying a predetermined condition means a wireless base station having a U value equal to or less than a predetermined threshold value, a wireless base station having a small U value, all It refers to a wireless base station or the like randomly selected one by one from the wireless base stations to be controlled.
  • FIG. 21 is a diagram showing a computer simulation environment. As shown in FIG. 21, 100 wireless base stations are arranged at equal intervals so as to be square, and one wireless terminal apparatus is placed at the same position as each wireless base station.
  • channels are allocated to each wireless base station using the fifth embodiment or the sixth embodiment of the present invention and channels used by each wireless base station based on the conventional minimum RSSI method are autonomously decentralized System throughput, throughput value of cell with minimum throughput, and FI value indicating fairness in the case of using the selected RSSI method and the case of using the random channel selection method in which channels are selected at random from available channels
  • Non Patent Literature 3 was calculated.
  • 100 radio base stations 36 radio base stations located at the center were evaluated. Also, the number of available channels is three.
  • a wireless base station transmits data frames based on CSMA / CA defined in the IEEE 802.11 standard.
  • the radio base station transmits UDP (User Datagram Protocol) downlink traffic in a saturated state with a packet length of 1500 Bytes to the radio terminal, and the number of packets successfully received in 10 seconds by the radio terminal is used.
  • the throughput of each cell was calculated.
  • the total throughput, the minimum throughput and the FI value of the system in the calculation simulation are shown in FIG. 22, FIG. 23, and FIG. From the results shown in FIGS. 22 to 24, it can be seen that the system throughput is improved in the fifth and sixth embodiments of the present invention as compared to the conventional RSSI method. It can also be confirmed that the minimum throughput and the FI value are also improved.
  • the system throughput is improved or the minimum throughput in the system is achieved.
  • OSGi Open Services Gateway Initiative
  • OSAP Service Aggregation Platform
  • the channel with the lowest medium utilization rate is allocated among the plurality of available channels.
  • the channel utilization rate or satisfaction of the radio base station (or cell) is predicted using the evaluation index, and channel optimization is sequentially performed to improve the obtainable throughput or the above-mentioned satisfaction. did. This makes it possible to easily update information by adding or deleting a wireless base station or a wireless terminal device and to cope with environmental changes.
  • the wireless communication unit 1011 scans each of all available channels in wireless communication for a predetermined period at predetermined time intervals, and then performs its own wireless communication.
  • the wireless environment information around the base station is output to the wireless environment information holding unit 1015.
  • the wireless environment information includes the number of other wireless base stations existing in each available channel, identification information of each wireless base station, and received signal strength of a signal such as a beacon received from each wireless base station ( RSSI value: Received Signal Strength Indicator) and the like are included.
  • the wireless environment information includes the number of wireless terminals in the own cell, the RSSI value of the signal received from each wireless terminal, and the like.
  • the wireless environment information also includes information on medium utilization of all available channels.
  • the channel calculation unit 1032 calculates radio channels to be used by each radio base station as follows. First, the U value shown in equation (3) is calculated on all available channels in the radio base station to which a channel is assigned.
  • the length of time that can be occupied per unit time in the numerator of equation (3) is another wireless device, device or device that performs wireless communication using a channel that can not be controlled by the channel assignment server 1003 of this system.
  • the radio base station that can be controlled by the channel assignment server 1003 of the present system and its belonging radio terminal apparatus share the remaining time obtained by subtracting the total time length (for example, ⁇ ) that can not be used due to disturbance etc. It becomes the length of time that can be occupied.
  • the numerator of equation (3) is calculated as follows: it can. (3)
  • the numerator of the equation (1- ⁇ ) / (K + 1)
  • K is the number of other wireless base stations in the periphery that can be detected by the wireless base station and controlled by the channel assignment server 1003.
  • total time length required for frame transmission and reception of wireless base station per unit time is necessary for transmission and reception of control frames by the wireless base station and data communication with the belonging wireless terminal device Total time.
  • the numerator and denominator of the equation (3) may be statistics using past data, or may be instantaneous values.
  • “the time required for data communication with the belonging wireless terminal device” means the time required for data transmission from the wireless base station to the wireless terminal device and the time required for data transmission from the wireless terminal device to the wireless base station Is the sum of Among them, the time required for data transmission (downlink traffic) addressed to the wireless terminal device from the wireless base station is determined by the number of data packets for each destination wireless terminal device accommodated in the wireless base station, the packet length, and the destination wireless terminal Based on the statistical information of the data transfer rate used for data transmission according to device, it can be calculated as follows as the estimated occupancy time of the channel by the radio base station.
  • N (number) the average number of data packets addressed to the wireless terminal device input from the wired link to the wireless base station
  • B (bit) average data packet length addressed to the wireless terminal device input from the wired link to the wireless base station
  • M (bit) A-MPDU (Aggregation MAC Protocol Data Unit) average data amount addressed to a wireless terminal device (M (bit) transmission is possible with one channel access right acquisition)
  • D (bit / s) average data rate used to transmit data from the wireless link to the wireless terminal device
  • T occupy (N x B) / M x ⁇ (DIFS + BO ave ) + (M / D) +) ⁇ Occupancy scheduled time rate: T occupy / T unit
  • ⁇ (sec) is an average overhead time per data frame taking into account SIFS, ACK transmission time, required time when using RTS / CTS (Clear To Send), MAC header, preamble, etc.
  • T unit is a unit time length (sec).
  • DIFS is a carrier sense time until packet transmission
  • BO ave is an average random backoff value.
  • FIG. 25A, FIG. 25B, and FIG. 26 are explanatory diagrams showing the occupancy scheduled time rate.
  • data packets addressed to each wireless terminal device are input from the wired link to the wireless base station as shown in FIG. 25A.
  • the wireless base station transmits the data shown in FIG. 25A to each wireless terminal device on the wireless link as shown in FIG. 25B.
  • the time in which the wireless base station occupied the channel in communication with the wireless terminal device is as follows.
  • T data t1 + t2 + t3 + t4 + t5
  • the radio base station waits for a fixed latency and a random backoff time to gain data transmission rights.
  • Time occupancy required for data transmission to the wireless terminal device T data + T BO
  • the occupancy scheduled time rate is not simply based on the observation of the whole unit time but based on the expected value, it will be as follows (see FIG. 26).
  • N pieces
  • B bit
  • A-MPDU average data amount addressed to the wireless terminal apparatus M (bit) (M (bit) transmission is possible with one channel access right acquisition)
  • the wireless base station It is necessary to obtain (N ⁇ B) / M access rights.
  • MSDU is a MAC Service Data Unit.
  • Average data rate used for data transmission to wireless terminal from wireless link DataRate (bit / s), ⁇ is SIFS, ACK transmission time, required time when RTS / CTS is used, MAC header, preamble, etc. It is assumed that the average overhead time per data frame is considered.
  • T occupy (N x B) / M x ⁇ (DIFS + BO ave ) + (M / DataRate) + ⁇ Occupancy scheduled time rate: T occupy / T unit It becomes.
  • the wireless base station can not acquire the number of data packets input per unit time in the wireless LAN module of the belonging wireless terminal apparatus, so calculate the occupancy scheduled time rate in the same manner as above. I can not do it. However, the wireless base station calculates the current occupancy time ratio of the wireless terminal device in consideration of the data frame received from the wireless terminal device on the wireless link and various overheads at that time (such as DIFS + BOave + ACK transmission time). I can do it.
  • the U value indicates the estimated throughput value for the generated traffic volume in the radio base station to which a channel is assigned, and the U value is 0 or more and 1 or less. As the U value increases, the expected throughput of the radio base station increases.
  • the channel allocation server 1003 can predict that the acquisition throughput will be maximum if each radio base station selects a channel with the highest U value. Therefore, the channel calculation unit 1032 determines that the U value is maximum as a provisional channel of the corresponding radio base station. Calculate the channel
  • the channel calculation unit 1032 calculates the total value U total of U values of all the radio base stations after determining the provisional channels of all the radio base stations to be controlled in the system. And we aim at the throughput improvement of the wireless base station where U value is small. After the tentative channels of all the wireless base stations are determined, one of the wireless base stations whose U value is less than or equal to a preset UTH is selected, and the U value of the wireless base station becomes larger than the current value. Check if there is a channel.
  • the UTH value is a value of 0 or more and 1 or less.
  • the U value is calculated again on all available channels, and one channel for which the U value is larger than the current value is calculated, and all control target radios in the system are calculated. Calculate the base station's total U value and check if the total U value is not less than the current total U value. If the total U value of the system does not deteriorate more than the current total U value even if the wireless base station uses the newly selected channel, the newly selected channel is used as the new temporary channel of the wireless base station. Do. Subsequently, a channel is selected that improves the U value of the radio base station having a small U value again.
  • the total throughput of the system can be improved by performing the operation of selecting a channel such that the U value of the radio base station having a small U value is improved a plurality of times (the number of times of recursion Max_r).
  • Throughput fairness among cells can be improved.
  • the above operation is repeated a predetermined number of Max_r times, and finally the new temporary channel is reflected to each wireless base station.
  • the wireless communication unit 1011 scans each of all available channels in wireless communication for a predetermined period at predetermined time intervals, and then performs its own wireless communication.
  • the wireless environment information around the base station is output to the wireless environment information holding unit 1015.
  • the wireless environment information includes the number of other wireless base stations existing in each available channel, identification information of each wireless base station, and received signal strength of a signal such as a beacon received from each wireless base station. (RSSI value: Received Signal Strength Indicator) etc. are included.
  • the wireless environment information includes the number of wireless terminals in the own cell, the RSSI value of the signal received from each wireless terminal, and the like.
  • the wireless environment information also includes information on medium utilization of all available channels.
  • the channel calculation unit 1032 calculates the total value U total of U values of all the radio base stations after determining the provisional channels of all the radio base stations to be controlled in the system. And we aim at the throughput improvement of the wireless base station where U value is small. After the tentative channels of all the wireless base stations are determined, one of the wireless base stations whose U value is less than or equal to a preset UTH is selected, and the U value of the wireless base station becomes larger than the current value. Check if there is a channel.
  • the UTH value is a value of 0 or more and 1 or less.
  • U total (r ) in equation (4) is the sum of U values in the r-th iteration.
  • ⁇ and ⁇ are parameters of 0 or more and 1 or less, and by appropriately setting the ⁇ value and the ⁇ value, it is possible to improve the system throughput and improve the throughput of the wireless base station which is locally lowered. it can.
  • is a parameter mainly related to system throughput
  • is a parameter mainly related to throughput fairness and lower throughput (0 ⁇ ⁇ , ⁇ ⁇ 1).
  • is increased, channels are determined to improve system throughput. Also, if ⁇ is increased, the fairness of throughput and the lower throughput will be improved.
  • Condition 1 U total (r) ⁇ ⁇ ⁇ U total (r-1) ...
  • Condition 2 U ⁇ ⁇ (5) Note that ⁇ and ⁇ may be fixed values or may be changed dynamically according to the situation.
  • a wireless communication system and a channel selection method in a ninth embodiment of the present invention will be described.
  • the configuration of the apparatus in this embodiment is the same as the configuration shown in FIG. 14, and thus the detailed description is omitted here.
  • a channel assignment server in an environment where all or part of the control target radio base stations can communicate with a plurality of radio systems such as 2.4 GHz, 5 GHz, WiMax, and cellular.
  • 1003 calculates and sets both a wireless communication system and a channel to be used for each wireless base station.
  • the wireless base station 1001 and the wireless base station 1002 illustrated in FIG. 14 can communicate with each other using a first wireless communication system and a second wireless communication system having different wireless communication schemes and the like.
  • the wireless communication unit 1011 scans each of all channels of all wireless communication systems available for wireless communication for a predetermined period at predetermined time intervals. And outputs radio environment information around the own radio base station to the radio environment information holding unit 1015.
  • the wireless environment information includes the number of other wireless base stations existing in each available channel, identification information of each wireless base station, and received signal strength of a signal such as a beacon received from each wireless base station.
  • the wireless environment information includes the number of wireless terminals in the own cell, the RSSI value of the signal received from each wireless terminal, and the like. Besides, the wireless environment information also includes information on medium utilization of all available channels.
  • the channel calculation unit 1032 calculates the radio communication system and radio channel to be used by each radio base station as follows. Do. First, the value of U X shown in equation (6) is calculated on all available wireless communication systems available to wireless base stations to which channels are allocated and all available channels for each wireless communication system.
  • U X Expected throughput in other wireless communication systems / Average acquisition throughput in currently communicating wireless communication systems (6)
  • the numerator of equation (6) is the estimated throughput obtained when the wireless base station uses the first wireless communication system or the second wireless communication system.
  • the denominator in the equation (6) is the average acquisition throughput in the communication system / channel currently used for communication in the radio base station.
  • the numerator and denominator of the equation (6) may be statistics using past data, or may be instantaneous values.
  • the above U X value indicates, in the radio base station to which a channel of a radio communication system is allocated, an expected throughput value when the channel to be allocated to the radio base station is changed to a channel of another radio communication system with respect to the current throughput. If the U X value is less than 1, it means that the radio base station should not change the currently used radio communication scheme to another radio communication scheme. On the other hand, if the U X value is 1 or more, it means that it is better to change the radio communication system currently in use in the communication of the radio base station to another radio communication system.
  • the channel allocation server 1003 can predict that the acquisition throughput will be maximum if the channel with the highest U X value is selected in each wireless base station. Therefore, the channel calculation unit 1032 uses the U X value as a temporary channel of the corresponding wireless base station. Calculate the channel of the wireless communication system to be the largest.
  • the channel calculation unit 1032 calculates the total value U total of U values of all wireless base stations after determining the channels of the temporary wireless communication scheme of all wireless base stations to be controlled in the system. And we aim at the throughput improvement of the wireless base station where U value is small. After channel provisional wireless communication method of any of the radio base station is determined, select a single from the U X value preset U TH 'less than the radio base station, U X value of the radio base station Check if there is another radio channel that is larger than the current value.
  • U total (r ) in equation (7) is the sum of U values in the r-th iteration.
  • ⁇ and ⁇ are parameters of 0 or more and 1 or less, and by appropriately setting the ⁇ value and the ⁇ value, it is possible to improve the system throughput and to improve the throughput of the wireless base station which is locally lowered.
  • the ⁇ value is mainly a parameter related to system throughput
  • the ⁇ value is mainly a parameter related to throughput fairness and lower throughput (0 ⁇ ⁇ , ⁇ ⁇ 1).
  • channels are determined to improve system throughput.
  • increasing the ⁇ value improves the fairness of throughput and the lower throughput.
  • Condition 1 U total (r) ⁇ ⁇ ⁇ U total (r-1) (7)
  • Condition 2 U X ⁇ ⁇ (8)
  • the sum of estimated throughputs in all the wireless communication systems (here, the first and second wireless communication systems) is defined as U total . .
  • the sum of expected throughputs in all the wireless communication systems it is not necessary to consider the sum of expected throughputs in all the wireless communication systems, and the above-mentioned constraint may be added only in some of the wireless communication systems.
  • FIG. 27 is a diagram showing a computer simulation environment.
  • 25 wireless base stations ( ⁇ shown in FIG. 27) are randomly arranged in a 100 m ⁇ 100 m square area, and one wireless terminal device is placed at the same position as each wireless base station. Placed.
  • the FI value (nonpatent literature 3) which shows system throughput and fairness was computed about the case where the RSSI method which chooses in an autonomous distributed manner was used.
  • the carrier sense range of the radio base station and the belonging radio terminal apparatus is 40 m, and the number of usable channels is 3.
  • a wireless base station transmits data frames based on CSMA / CA defined in the IEEE 802.11 standard.
  • UDP downstream traffic with a packet length of 1500 Bytes saturated is transmitted from the wireless base station to the wireless terminal device, and the number of packets successfully received in 30 seconds in the wireless terminal device is used for each cell. The throughput was calculated.
  • FIG. 28 shows the total throughput and FI value of the system with respect to the ⁇ value by the calculation simulation. Further, FIG. 29 shows the total throughput and FI value of the system with respect to the ⁇ value by the calculation simulation.
  • the throughput and fairness FI in the entire system are improved, and parameters are introduced to each index, and the parameters are appropriately changed, whereby the required indexes (system throughput and lower throughput It is possible to meet the detailed requirements regarding).
  • the wireless communication unit 1011 scans each of all available channels in wireless communication for a predetermined period at predetermined time intervals, and then performs its own wireless communication.
  • the wireless environment information around the base station is output to the wireless environment information holding unit 1015.
  • This radio environment information includes information on the number of other radio base stations present in each available channel, identification information of each radio base station, and the capability (Capability) such as the maximum usable bandwidth of each radio base station.
  • Capability received signal strength
  • RSSI value Received Signal Strength Indicator
  • the wireless environment information includes information on the number of wireless terminals in its own cell, the RSSI value of the signal received from each wireless terminal, and information on the capability such as the maximum usable bandwidth of each wireless terminal.
  • the channel calculation unit 1032 calculates radio channels and bandwidths to be used by each radio base station as follows. .
  • the U value shown in equation (9) is calculated on all available channels at the radio base station to which a channel is assigned.
  • Exptd_Thput in equation (9) is the throughput (expected throughput) that can be acquired when the radio base station shares the channel with neighboring radio base stations.
  • Max_Thput is the maximum throughput that can be acquired when only the radio base station uses the channel (that is, when there is no other interference radio base station or radio terminal apparatus belonging to them).
  • Offed_Load is an amount of traffic generated at the wireless base station.
  • the function min (a, b) is a function that outputs the smaller of a and b.
  • the U value indicates the estimated throughput value for the generated traffic volume at the radio base station to which a channel is assigned. U value becomes 0 or more and 1 or less. As the U value increases, the expected throughput of the radio base station increases.
  • the number of wireless terminal devices using the maximum bandwidth b (unit: MHz) I assume.
  • non-HT non-high throughput
  • VHT very high throughput
  • the collected wireless environment information does not include the information on the number of wireless terminals or the maximum available bandwidth thereof (that is, the wireless terminal's capability), the same as the maximum capability of the access point a. It is assumed that there is one wireless terminal having the capability.
  • n (a) be the sum of the number of wireless terminals belonging to the access point a. In other words, It is.
  • ⁇ (a) be a transmission opportunity rate for transmitting a frame per belonging wireless terminal apparatus at the access point a.
  • ⁇ (a) 1 / n (a) It becomes.
  • L (s, a) be the amount of data (bit) (ie, A-MPDU length) that the access point a transmits to the belonging wireless terminal device s in one frame transmission, It can be expressed as.
  • numMPDU (s, a) is the number of MPDUs included in A-MPDU that the access point a transmits to the belonging wireless terminal apparatus s.
  • T DATA is a time ( ⁇ sec) required to transmit data of numMPDU (s, a) at a transmission rate (data rate) 1300 Mbit / s.
  • R (coef) is a data rate conversion coefficient.
  • Max_Thput (a) is the maximum obtainable throughput (Mbit / s) in an environment where only access point a exists. It can be expressed as. Max_Thput (a) is the maximum throughput that can be acquired at the time of full buffer in which a is always transmitting data to the belonging wireless terminal apparatus in an environment where only access point a exists.
  • ⁇ (a) be the accommodated traffic volume (Mbit / s) per belonging wireless terminal apparatus at the access point a.
  • ⁇ (a) can be defined by the following equation.
  • ⁇ (a) ⁇ n (a) is the total traffic volume generated at the access point a.
  • controllable access point a a tentatively assigned controllable wireless base station, and an uncontrollable wireless base station outside the system.
  • Is a set of radio base stations detectable at the controllable access point a and using the secondary 20 channel of the controllable access point a as a primary channel.
  • Is a set of radio base stations detectable at the controllable access point a and using the secondary 40 channel of the controllable access point a as a primary channel.
  • the probability that the controllable access point a can access the primary channel is It can be expressed as.
  • B (a) also includes a controllable access point a, a tentatively assignable controllable wireless base station, and a wireless base station outside the system.
  • T k is calculated as follows.
  • VHT IEEE 802.11ac standard compliant
  • VHT IEEE 802.11ac standard compliant
  • VHT IEEE 802.11ac standard compliant
  • the access points transmit the data to the respective belonging wireless terminals all at the same opportunity, but the present invention is not limited to this. If the transmission opportunity ratio of data can be grasped for each belonging wireless terminal apparatus, those values may be used.
  • the channel allocation server 1003 can predict that the acquisition throughput will be maximum if each radio base station selects a set of a channel and bandwidth having the highest U value.
  • optimization is aimed at by iterative calculation. Further, for example, in the case of the best effort type traffic, even if the U value does not necessarily become 1, there is no problem as long as the user of the belonging wireless terminal apparatus is satisfied. Therefore, the channel calculation unit 1032 calculates a channel and a bandwidth in which the U value is equal to or more than the preset ⁇ value (0 ⁇ ⁇ ⁇ 1) as a temporary channel of the corresponding radio base station.
  • access point a is The channel c and the bandwidth b which become the following are selected as temporary channel and temporary bandwidth. If there are a plurality of corresponding channel and bandwidth candidates, one channel and bandwidth set is randomly selected from them. Also, if If there is no channel c and bandwidth b The channel and bandwidth for which is the largest are selected as temporary channel and temporary bandwidth.
  • the channel calculation unit 1032 determines the tentative channels and tentative bandwidths of all the wireless base stations to be controlled by the system, the total value U total of U values of all the wireless base stations or all the wireless base stations Calculate an integrated value U product of U values of. And we aim at the throughput improvement of the wireless base station where U value is small.
  • the tentative channels and tentative bandwidths of all the wireless base stations have been determined, one of the wireless base stations whose U value is less than or equal to a preset UTH is selected, and the U value of the relevant wireless base station is Temporarily select channel c and bandwidth b as new temporary channel and new temporary bandwidth respectively. if If there is no channel c and bandwidth b Temporarily select the channel and bandwidth for which is the largest as the new tentative channel and new tentative bandwidth.
  • the UTH value is a value of 0 or more and 1 or less.
  • U values are calculated again for all available channels and bandwidths in the radio base station, and the total U value or U value of all control target radio base stations in the system is calculated.
  • the integrated value is calculated, and it is checked whether the total U value or the integrated U value is more than or equal to ⁇ times the value after the previous repeated calculation.
  • the selected new provisional channel is set as the provisional channel of the radio base station. Also, the bandwidth at that time is taken as a new temporary bandwidth. If this condition is not satisfied, a new temporary channel and a new temporary bandwidth are not adopted, and the temporary channel and the temporary bandwidth calculated at the r-th time are used as the temporary channel and the temporary bandwidth of the radio base station, respectively.
  • the channel and bandwidth are selected such that the U value of the radio base station having a small U value improves or the U value (U total or U product ) of the entire system improves.
  • ⁇ and ⁇ are parameters of 0 or more and 1 or less.
  • is a parameter mainly related to system throughput
  • is a parameter mainly related to throughput fairness and lower throughput (0 ⁇ ⁇ , ⁇ ⁇ 1).
  • is increased, channels are determined to improve system throughput. Also, if ⁇ is increased, the fairness of throughput and the lower throughput will be improved.
  • ⁇ and ⁇ may be fixed values or may be changed dynamically according to the situation.
  • the total throughput of the system can be calculated by performing the operation of selecting the channel and bandwidth such that the U value of the radio base station having a small U value improves a plurality of times (the number of times of recursion Max_r). It is possible to improve and to improve the fairness of throughput among cells.
  • the above operation is repeated a predetermined number of Max_r times, and finally the new temporary channel and the new temporary bandwidth are reflected to each wireless base station.
  • FIG. 30 is a flowchart showing an operation in which the channel calculation unit 1032 performs channel selection processing in the tenth embodiment.
  • step S201 0 is substituted for the number of iterations as initial setting (step S201).
  • step S202 the occupancy scheduled time rate in the control target (controllable) radio base station and the other non-control target (uncontrollable) radio base station detected in the radio base stations is calculated (step S202). That is, calculation of the occupancy scheduled time rate is performed for all detectable radio base stations regardless of whether inside or outside the system.
  • a radio base station for setting a channel and a bandwidth from a list of radio base stations for which the channel and bandwidth (hereinafter referred to as BW in the drawing are not set) (hereinafter referred to as controllable radio base station list) Is selected (step S203).
  • a method of selecting a radio base station a method of selecting at random, a method of selecting in a manual setting order (precedence order set beforehand by a network operator etc.), an order of radio base stations with large bottlenecks (peripheral radio base stations A method of selecting in descending order of the number can be applied.
  • the channel and bandwidth to be set to the selected radio base station are tentatively determined (step S204).
  • the processes in steps S203 and S204 are performed on all controllable radio base stations.
  • the temporary allocation channel provisional channel: temporary allocation CH
  • the temporary allocation bandwidth provisional bandwidth: temporary allocation BW
  • the temporary allocation of the controllable radio base station is repeatedly performed by calculation. Optimization of the channel and temporary allocation bandwidth is performed (step S205). After the repeated calculation, finally, the temporary allocation channel and the temporary allocation bandwidth of each controllable radio base station are respectively set as an allocation channel and an allocation bandwidth, and set in each radio base station (step S206).
  • FIG. 31 is a diagram illustrating a process of determining a tentatively assigned channel and a tentative assigned bandwidth of a selected controllable wireless base station.
  • tempList is prepared to store a pair of temporarily assignable channels and bandwidths.
  • a variable named tempU is prepared to store the current maximum U value of the selected radio base station (hereinafter, referred to as a selected radio base station). Then, tempList is set to be empty, and 0 is substituted for tempU (step S207).
  • the assignable bandwidth is a value determined by the capability (for example, the maximum available bandwidth) of the wireless base station or the belonging wireless terminal apparatus. For example, if the selected wireless base station is compliant with IEEE 802.11ac, the allocatable bandwidths are 20 MHz, 40 MHz, and 80 MHz. If the selected wireless base station is compliant with IEEE 802.11n, the allocatable bandwidths are 20 MHz and 40 MHz. Furthermore, if the selected radio base station supports only IEEE 802.11a, the allocatable bandwidth is 20 MHz.
  • the bandwidth allocated to the selected radio base station may be determined only from the capability of the radio base station, or may be determined in consideration of information on the capability of the belonging radio terminal device. For example, if the selected wireless base station is compliant with IEEE 802.11ac, the allocatable bandwidth is 20 MHz, 40 MHz, and 80 MHz, but if there is only a belonging wireless terminal apparatus compatible with 20 MHz and 40 MHz, the wireless base station The bandwidth to be allocated to may be limited to 20 MHz and 40 MHz.
  • Non-Patent Document 2 defines a unit channel that must be used regardless of the transmission bandwidth when performing communication in a cell configured with a certain access point and a terminal station, and this is a primary channel (Primary channel (Primary) Channel) is called.
  • Primary channel Primary Channel
  • a channel that is used for communication but is not the primary channel is a secondary channel (in the non-patent document 2, a secondary x MHz channel), x is any one of 20, 40, and 80.
  • step S210 it is checked whether the allocatable primary channel list created in step S209 is empty (step S210). If the allocatable primary channel list is empty (YES in step S210), it is not possible to launch a cell using the selected allocation bandwidth for the radio base station, so step S217 described later is performed. . On the other hand, if the allocatable primary channel list is not empty (NO in step S210), the process proceeds to step S211.
  • step S211 one channel is selected from the allocatable primary channel list.
  • the U value of the radio base station in the selected channel is calculated (step S212).
  • step S213 If this condition is satisfied (YES in step S213), the selected bandwidth and the selected channel pair are added to tempList, and the tempU value is updated with the U value calculated in step S212 (step S219). On the other hand, if the above condition is not satisfied (NO in step S213), it is checked whether the U value is larger than the current tempU value (step S214).
  • step S214 If this condition is satisfied (step S214 is YES), the current tempList is all emptied (step S218), the selected bandwidth and the selected channel pair are added to tempList, and the U value calculated in step S212 is the tempU value. Are updated (step S219). On the other hand, if the condition in step S214 is not satisfied (NO in step S214), it is checked whether the U value is equal to the current tempU value (step S215).
  • step S215 If this condition is satisfied (YES in step S215), the selected bandwidth and the selected channel pair are added to tempList, and the tempU value is updated with the U value calculated in step S212 (step S219). On the other hand, when the condition of step S215 is not satisfied, the selected channel is ignored, and the process proceeds to step S216.
  • step S216 it is checked whether there is an unselected channel in the assignable primary channel list (step S216), and if there is an unselected channel (YES in step S216), step S211 is performed again. . That is, the processes of steps S211 to S215 and S218 to S219 are performed for all assignable primary channels.
  • step S217 it is checked whether there is an unselected bandwidth among the bandwidths allocated to the radio base station (step S217). ). If there is an unselected bandwidth (YES in step S217), step S208 is performed. That is, the processes of steps 208 to S216 and S218 to S219 are performed for all assignable bandwidths.
  • one bandwidth and channel pair is randomly selected from tempList (step S220). The selected bandwidth and channel are the tentative allocation bandwidth of the radio base station and the tentative allocation channel.
  • FIG. 32 shows a process for improving the U value of a controllable wireless base station by iterative calculations.
  • the iterative calculation is considered to be converged when any one of the following conditions (1) to (3) is satisfied, the iterative calculation is terminated, and the final allocation channel and allocation bandwidth are determined. 1. When the U value of all controllable radio base stations reaches 1 (that is, (All a)) 2. When the number of repeated calculations reaches the upper limit value The value after repeated calculation of R-th (R Delta Delta R) When the following conditions are met
  • DeltaR is an integer of 1 or more
  • condition 3 is It is a condition to evaluate the convergence characteristic according to the improvement rate of.
  • step S222 If the repeat end condition is satisfied (YES in step S222), the repeat is ended. On the other hand, if the termination condition is not satisfied (NO in step S222), according to the evaluation condition used in the repetition Are set (step S223).
  • the value to be set is U total or U product at the r-th repetition. For example, if evaluation using U total is performed, I assume. On the other hand, if you use U product for evaluation, I assume.
  • one radio base station for repeated calculation is selected (step S224).
  • the current temporary allocation channel and temporary allocation bandwidth of the selected radio base station are set as tempCH and tempBW, respectively (step S225).
  • the temporary allocation bandwidth and temporary allocation channel calculation process described above with reference to FIG. 31 is performed again on the selected radio base station (step S226). If the obtained new temporary allocation channel and new temporary allocation bandwidth are equal to tempCH and tempBW, respectively (YES in step S227), there is no change in the temporary allocation channel and bandwidth of the selected radio base station. In this case, the process proceeds to step S230 described later.
  • step S227) determines whether the new temporary allocation channel is different from tempCH, the new temporary allocation bandwidth is different from tempBW, or both the new temporary allocation channel and the new temporary allocation bandwidth are different from tempCH and tempBW, respectively. If (NO at step S227), the process proceeds to step S228.
  • step S228 the U values of all controllable radio base stations are reevaluated, and the sum (U total ) and product (U product ) of U values of all controllable radio base stations are calculated. Then, U total or U product is substituted for U TEMP .
  • step S229) it is checked whether the following condition is satisfied.
  • is a number of 0 or more and 1 or less. If this condition is satisfied (YES in step S229), the temporary allocation channel and the temporary allocation bandwidth of the selected radio base station are updated with the new temporary allocation channel and the new temporary allocation bandwidth (step S232).
  • step S229 when the condition of step S229 is not satisfied, the values of the temporary allocation channel and the temporary allocation bandwidth are returned to TempCH and TempBW, respectively, without updating the temporary allocation channel and the temporary allocation bandwidth of the selected radio base station (step S230). ). Finally, regardless of whether the condition of step S229 is satisfied, the number of repeated calculations is increased by one (step S231), and step S221 is performed again.
  • FIG. 33 shows a process of creating an allocatable primary channel list.
  • an assignable primary channel list ⁇ empty ⁇ as an initial setting
  • an empty list is created (step S233).
  • the assignable channels are channels or channel lists not detected such as radar among channels available at the radio base station.
  • step S234 is NO, 40 MHz or 80 MHz BSS
  • the selected radio base station will start up a wideband cell such as 40 MHz or 80 MHz, As defined in the standard, it is necessary to select a channel so that the primary channel and the secondary 20 channels of other cells do not suffer. Therefore, first, one channel is selected from allocatable channels (step S235). Next, it is checked whether the secondary 20 channels of the selected channel can be assigned (step S236).
  • FIGS. 34A and 34B examples of assignable primary channels are shown in FIGS. 34A and 34B.
  • the wireless base station a and the wireless base station b are existing wireless base stations, and CH36 to CH48 are allocatable channels and the tentative allocation bandwidth is 40.
  • CH40, CH44 and CH48 are allocatable primary channels.
  • CH36 and CH48 are assignable primary channels.
  • step S236 it is checked in step S236 whether CH48 can be assigned to the radio base station.
  • step S236 it is checked whether CH40 can be assigned to the radio base station. If the assignment of CH 40 is possible (YES in step S 236), the process proceeds to step S 237. On the other hand, if the assignment of the CH 40 is not possible (NO in step S 236), it is determined that the selected channel is a channel not assigned to the wireless base station (step S 242), and the process proceeds to step S 240.
  • step S237 it is checked whether there is a neighboring radio base station using the secondary 20 channel of the selected channel as a primary channel (step S237). If there is a corresponding neighboring radio base station, the selected channel can not be assigned to the radio base station according to the definition of the standard, and therefore the process proceeds to step S 242. On the other hand, if there is no corresponding neighboring radio base station (NO in step S237), the process proceeds to step S238.
  • step S2308 it is checked whether the provisional allocation bandwidth of the selected radio base station is 40 MHz. If the provisional allocation bandwidth of the selected radio base station is 40 MHz (step S238 is YES, 40 MHz BSS), it is determined that the selected channel is a primary channel that can be allocated to the radio base station, and the selected channel can be allocated. After adding to the primary channel list (step S239), the process proceeds to step S240. On the other hand, if the temporary allocation bandwidth of the selected wireless base station is not 40 MHz (step S 238 is NO, 80 MHz BSS), the wireless base station will start up a cell of 80 MHz or more. Checks whether the channel can be assigned to the radio base station (step S241). For example, if the selected channel is CH44, it is checked in step S241 whether CH36 and CH40 can be assigned to the wireless base station.
  • step S242 is performed. On the other hand, if the secondary 40 channel can be assigned (YES in step S241), it is determined that the selected channel is a primary channel assignable to the radio base station, and the selected channel is assigned to the assignable primary channel list. It adds (step S239). Finally, in step S240, it is determined whether or not the processing in steps S236 to S239 and S241 to S242 has been performed for all assignable channels, and if there are unprocessed assignable channels, the process proceeds to step S235. Back, the above-described process is performed on the other assignable channels of the radio base station. Then, this process is ended when creation of the assignable primary channel list is completed for all assignable channels.
  • FIG. 35 is a diagram illustrating a method of selecting a radio base station which performs repetitive calculation.
  • step S244 U values of all controllable radio base stations are rearranged in ascending order (step S244).
  • one wireless base station is selected at random from among the wireless base stations of the lower Num (target) U values (step S247), and the process ends.
  • the U value of each wireless base station is calculated as follows after the R-th repetitive calculation.
  • AP Ratio for Iterations 0.0
  • the number of target radio base stations Num (target) is 1, and AP # 4 and AP # 5 have the smallest U value. Therefore, one radio base station is randomly selected from AP # 4 and AP # 5, and the R + 1-th repetitive calculation is performed.
  • AP Ratio for Iterations 0.5
  • the number of target radio base stations Num (target) is 5, AP # 4, AP # 5, AP # 6, AP # 7, AP # 2, AP # 10
  • One radio base station is randomly selected from the inside, and the R + 1-th iteration calculation is performed.
  • the management engine 8 in the first to third embodiments described above, the management engine 80 in the fourth embodiment, and the wireless base station in the fifth to tenth embodiments may be realized by a computer.
  • a program for realizing this function is recorded in a computer readable recording medium, and the computer system reads and executes the program recorded in the recording medium to execute the management engine 8 and the management engine 80. It may be realized, and each radio base station may assign a channel to be used.
  • the “computer system” referred to here includes hardware such as an operating system (OS) and peripheral devices.
  • the "computer system” also includes a WWW (World Wide Web) system provided with a homepage providing environment (or display environment).
  • “computer readable recording medium” means portable media such as flexible disk, magneto-optical disk, ROM (Read Only Memory), CD (Compact Disc) -ROM, and storage such as hard disk built in computer system It refers to the device.
  • “computer-readable recording medium” dynamically holds a program for a short time, like a communication line in the case of transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include one that holds a program for a certain period of time, such as volatile memory (RAM (Random Access Memory)) inside a computer system that becomes a server or a client in that case.
  • RAM Random Access Memory
  • the program may be transmitted from a computer system in which the program is stored in a storage device or the like to another computer system via a transmission medium or by transmission waves in the transmission medium.
  • the “transmission medium” for transmitting the program is a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing a part of the functions described above, and further, a program that can realize the functions described above in combination with a program already recorded in a computer system, a so-called difference file (difference file It may be a program, or may be realized using hardware such as PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array).
  • the present invention is applicable to applications where it is essential to avoid local throughput degradation in environments where wireless LAN base stations are densely populated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 異なるメーカの異なる型番の無線LAN基地局を含む無線通信システム全体の周波数利用効率向上になるように無線LAN基地局の設定を行うことができる無線通信装置を提供する。無線通信ネットワークを構成する無線LAN基地局が動作するために必要な設定を行う無線通信システムは、無線LAN基地局に設定されている設定情報と、前記無線LAN基地局における無線環境情報とを収集する情報収集部と、収集した設定情報と無線環境情報とに基づき、収集元の無線LAN基地局に対して設定すべきパラメータを求めるパラメータ算出部と、求めたパラメータをネットワークを介して収集元の無線LAN基地局に対して送信し、パラメータ設定を行うパラメータ設定部とを備える。

Description

無線通信装置、無線通信システム及び無線通信方法
 本発明は、ネットワーク制御型の無線通信装置、無線通信システム及び無線通信方法に関する。
 本願は、2012年11月12日に日本へ出願された日本特願2012-248430号、2013年7月22日に日本へ出願された日本特願2013-151812号、および、2013年8月26日に日本へ出願された日本特願2013-175038号に対して優先権を主張し、それらの内容をここに援用する。
 近年、ノートパソコンやスマートフォン等の持ち運び可能で高性能な無線端末の普及により企業や公共スペースだけではなく、一般家庭でもIEEE802.11標準規格の無線LAN(Local Area Network)が広く使われるようになっている。IEEE802.11標準規格の無線LANには、2.4GHz帯を用いるIEEE802.11bやIEEE802.11g規格の無線LANと、5GHz帯を用いるIEEE802.11a規格の無線LANがある。
 IEEE802.11bやIEEE802.11g規格の無線LANでは、2400MHzから2483.5MHz間に5MHz間隔で13チャネルが用意されている。ただし、同一場所で複数のチャネルを使用する際は、干渉を避けるためスペクトルが重ならないようにチャネルを使用すると最大で3チャネル、場合によっては4チャネルまで同時に使用できる。
 一方、IEEE802.11a規格では、日本の場合は、5170MHzから5330MHz間、及び、5490MHzから5710MHz間でそれぞれ互いに重ならない8チャネル及び11チャネルの合計19チャネルが規定されている。なお、IEEE802.11a規格では、チャネル当たりの帯域幅が20MHzに固定されている(非特許文献1)。
 無線LANの最大伝送速度は、IEEE802.11b規格の場合は11Mbps(bits per second)であり、また、IEEE802.11a規格やIEEE802.11g規格の場合は54Mbpsである。ただし、ここでの伝送速度は物理レイヤ上での伝送速度である。実際にはMAC(Medium Access Control)レイヤでの伝送効率が50~70%程度であるため、実際のスループットの上限値はIEEE802.11b規格では5Mbps程度、IEEE802.11a規格やIEEE802.11g規格では30Mbps程度である。また、伝送速度は、情報を送信しようとする通信局が増えれば更に低下する。
 一方で、有線LANでは、Ethernet(登録商標)の100Base-Tインタフェースをはじめ、各家庭にも光ファイバを用いたFTTH(Fiber to the home)の普及から、100Mbpsの高速回線の提供が普及しており、無線LANにおいても更なる伝送速度の高速化が求められている。
 そのため、2009年に標準化が完了したIEEE802.11n規格では、これまで20MHzと固定されていたチャネル帯域幅が最大で40MHzに拡大され、また、空間多重送信技術(MIMO:Multiple input multiple output)技術の導入が決定された。IEEE802.11n規格で規定されているすべての機能を適用し送受信を行うと物理レイヤでは最大で600Mbpsの通信速度を実現可能である。
 更に、現在、標準化仕様が検討されているIEEE802.11acでは、チャネル帯域幅を80MHzや最大で160MHzまで拡大することや、空間分割多元接続(SDMA:Space Division Multiple Access)を適用したマルチユーザMIMO(MU-MIMO)送信方法の導入等が検討されている。IEEE802.11ac規格で規定されているすべての機能を適用し送受信を行うと物理レイヤでは最大で約6.8Gbpsの通信速度を実現可能である(例えば、非特許文献2参照)。
 IEEE802.11規格の無線LANは、2.4GHz帯又は5GHz帯の免許不要な周波数帯で運用するため、IEEE802.11無線LAN対応基地局(以下、アクセスポイント(Access Point)と称し、図面においてはAPと図示する)は、無線LANセル(BSS:Basic Service Set)を形成する際に、自無線LAN基地局で対応可能な周波数チャネルのうち、どの周波数チャネルで運用するのか決定する必要がある。さらに、自無線LAN基地局の電波が届く範囲で同じ又は隣接する周波数チャネルを使用するその他の無線LANセルが存在する場合は、干渉低減のために、自無線LAN基地局の送信出力値を決定する必要がある。
 そして、自セルで使用するパラメータの設定値および自無線LAN基地局において対応可能なその他のパラメータを定期的に送信するBeaconフレームや無線端末から受信するProbe Requestフレームに対するProbe responseフレーム等に記載し、運用が決定された周波数チャネル上でフレームを送信し、配下の無線端末および周辺の他通信局に通知することで、セルの運用を行っている。
 自セルで使用するパラメータの設定値には、例えば、アクセス権取得に関するパラメータ値やQoS(Quality of Services)等のパラメータ値が含まれる。また、自無線LAN基地局において対応可能なその他のパラメータには、フレーム送信に用いる帯域幅、制御フレーム送信に使用する基本データレート(BSS:Basic Rate Set)やデータ送受信可能なデータレートに関するデータレートセットなどが含まれる。
 無線LAN基地局における、周波数チャネルや送信電力値およびその他のパラメータの選択および設定方法として、例えば、(1)無線LAN基地局の製造メーカで設定されたデフォルトのパラメータ値をそのまま使用する方法、(2)無線LAN基地局を運用するユーザが手動で設定した値を使用する方法、(3)各無線LAN基地局が起動時に自局において検知する無線環境情報に基づいて自律的にパラメータ値を選択し設定する方法、および、(4)アクセスポイントコントローラなどの集中制御サーバで決定されたパラメータ値を使用し設定する方法などを挙げられる。
 前述の通り、チャネル当たりの帯域幅を40MHz、80MHz、160MHzと広くする場合、5GHz帯において同一場所で同時に使えるチャネル数は、9チャネル、4チャネル、2チャネルと少なくなる。すなわち、チャネル当たりの帯域幅が増加するにつれて、使えるチャネル数が低減することになる。
 また、同一場所で同時に使えるチャネル数として、2.4GHz帯の無線LANでは3つ、5GHz帯の無線LANでは2つ、4つ、9つ、又は19のチャネルが用意されているので、実際に無線LANを導入する際にはアクセスポイント(AP:Access Point)が自セル(BSS:Basic Service Set)内で使用するチャネルを選択する必要がある。
 使用可能なチャネル数よりもBSS数が多い環境では、複数のBSSが同一チャネルを使うことになる(OBSS:Overlapping BSS)。無線LANでは、CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance:搬送波感知多重アクセス)を用いて、チャネルが空いているときにのみデータの送信を行う自律分散的なアクセス制御が使われている。
 具体的には、送信要求が発生した通信局は、まず所定のセンシング期間(DIFS:Distributed Inter-Frame Space)だけ無線媒体の状態を監視し、この間に他の通信局による送信信号が存在しなければ、ランダム・バックオフを行う。通信局は、引き続きランダム・バックオフ期間中も無線媒体を監視するが、この間にも他の通信局による送信信号が存在しない場合に、チャネルの利用権を得る。チャネルの利用権を得た通信局は同一BSS内の他の通信局にデータを送信したり、それらの通信局からデータを受信したりできる。このような制御を行うため、競合する通信セルや通信局が多いと得られるスループットが低下する。したがって、周辺環境をモニタリングし、適切なチャネルを選択することが重要になる。
 アクセスポイントにおけるチャネルの選択方法は、IEEE802.11標準規格で定まっていないため、各ベンダーが独自のチャネル選択方法を使用しているが、最も一般的なチャネル選択方法は、干渉電力の最も少ないチャネルを選択する方法である。アクセスポイントは、一定期間すべてのチャネルの状態を検知し(スキャニングを実施し)、最も干渉電力が少ないチャネルを選択して、選択したチャネル上で配下の通信局とデータの送受信を行う。なお、干渉電力とは、近隣BSSや他システムから受信する信号のレベルである。
 また、IEEE802.11規格では、BSS周辺の無線状況が変化した場合におけるチャネルの変更手順が規定されているが、基本的に、レーダ検出などによる強制移行以外は、一度選択したチャネルの再選択を行っていない。つまり、現状無線LANでは、無線状況の変化に応じたチャネルの最適化は行われていない。
守倉正博、久保田周治監修、「802.11高速無線LAN教科書」改訂三版、pp.6~9、インプレスR&D、2008年3月 IEEE 802.11ac Draft Standard, D3.0, June 2012. R. Jain et al., "A quantitative measure of fairness and discrimination for resource allocation in shared computer system", Digital Equipment Corporation Technical Report, DEC-TR-301, September 1984.
 前述した(1)~(4)の周波数チャネルや送信電力値およびその他のパラメータの選択および設定方法のうち、特に、安価な無線LAN基地局は、製造メーカで設定されたデフォルトのパラメータをそのまま使用することが多い。しかし、近くに同じメーカの無線LAN基地局が複数台設置された環境の場合は、全ての無線LAN基地局が同じ周波数チャネルや送信電力値を使うことになるので、無線LAN基地局間で干渉が発生してしまい通信品質が劣化する問題がある。
 一般家庭など比較的小規模なネットワークでは、無線LANを運用するユーザが適切なパラメータを設定することは考えられる。特に、外部干渉源がない環境では各種パラメータの設定は可能だが、都市部や集合住宅など周りで無線LANが使われている環境、または、中規模や大規模なネットワークでは、ユーザ又は管理者による適切なパラメータ設定が困難である。
 各無線LAN基地局が起動時に自局において検知する無線環境情報に基づいて自律的にパラメータ値を選択する自律分散動作可能な無線LAN基地局では、無線LAN基地局が起動される順番によって適切なパラメータ値が異なる。また、それぞれの無線LAN基地局は自局における最適なパラメータ値を選択して設定するため、局所的に最適化が可能だが、システム全体の最適化はできず、さらに、周辺無線環境が変わった場合は対応が困難となる。
 このため、例えば、大学やオフィス環境など数十台~数百台の無線LAN基地局で形成される大規模な無線LANシステムの場合は、「無線LANコントローラ」と呼ばれる専用の装置を配置し、無線LANコントローラによって各無線LAN基地局のパラメータ値を決定し、無線LAN基地局に反映させるなどして無線LAN基地局の制御を行う方法がある。
 しかし、これらの無線LANコントローラ製品では、制御対象とする無線LAN基地局は全て無線LANコントローラと同じメーカの製品でなければならない。また、同じメーカでも型番が異なる製品を混在させることはできない場合が多く、制御対象とする無線LAN基地局はすべて同じ建物内または同じ構内に設置しなければならないなどいくつかの制約がある。そして、無線LANコントローラは高価な装置であり、前述したように大規模なネットワーク運用に適しているが、一般家庭などにおける無線LAN基地局の制御に向いていない。
 このように、これまでの無線LANコントローラなどの無線LAN基地局を制御する専用制御機器、または、ソフトウェアを用いた無線LAN一括管理システムでは、制御対象の無線LAN基地局は同じメーカの製品でなければならなかった。また、同じメーカでも型番が異なる製品を混在させることはできない場合が多く、制御対象となる無線LAN基地局はすべて同じ建物内または同じ構内のネットワークに接続しなければならないなどの制約があるという問題がある。
 また、既存の無線LANシステムは、自律分散的に動作する。また、前述の通り、一度選択したチャネルの再選択は基本的に行っていないため、各々のアクセスポイントの起動時における周辺の無線環境に基づいて使用するチャネルを選択する。環境変化(例えば、起動中のアクセスポイント数の変化、各々のアクセスポイント配下の無線端末装置の変化、各々のセル内の無線装置により送出されるデータ量の変化など)が起きても使用チャネルの最適化を行なっていないため、各々のセルのスループット間で差が生じたり、システム全体でもスループットが劣化したりするという問題がある。
 本発明は、このような事情に鑑みてなされたもので、異なるメーカの異なる型番の無線LAN基地局を含む無線通信システム全体の周波数利用効率が向上するように無線LAN基地局の設定を行うことができる無線通信装置、無線通信システム及び無線通信方法を提供することを目的とする。
 また、本発明は、基地局が密集している環境において局地的なスループットの低下を回避することができる無線通信装置、無線通信システム及び無線通信方法を提供することを目的とする。
 本発明は、無線通信ネットワークを構成する無線LAN基地局が動作するために必要な設定を行う無線通信装置であって、前記無線LAN基地局に設定されている設定情報と、前記無線LAN基地局における無線環境情報とを収集する情報収集部と、収集した前記設定情報と前記無線環境情報とに基づき、収集元の無線LAN基地局に対して設定すべきパラメータを求めるパラメータ算出部と、求めた前記パラメータをネットワークを介して収集元の前記無線LAN基地局に対して送信し、パラメータ設定を行うパラメータ設定部とを備える無線通信装置である。
 好ましくは、本発明の無線通信装置は、前記無線LAN基地局の属性に関する属性情報を記憶するデータベースを有し、前記パラメータ算出部は、前記設定情報、前記無線環境情報、および、前記属性情報に基づいて前記パラメータを求める。
 好ましくは、本発明の無線通信装置において、前記情報収集部は、異なるメーカ、異なる型番、異なるバージョンの前記無線LAN基地局のそれぞれから前記設定情報と前記無線環境情報とを収集する。
 好ましくは、本発明の無線通信装置において、前記情報収集部は、前記無線LAN基地局のそれぞれにおいて、周波数チャネル上で運用する周辺の基地局数、受信する受信信号のレベル、チャネルの時間占有率を前記無線環境情報として収集し、前記パラメータ算出部は、前記無線環境情報に基づいて、各々の前記無線LAN基地局において無線環境が改善するように、前記パラメータを求める。
 好ましくは、本発明の無線通信装置において、前記情報収集部は、前記無線LAN基地局のそれぞれにおいて、周波数チャネル上で運用する周辺の基地局数、使用可能最大帯域幅、周辺他基地局より受信する受信信号のレベルを前記無線環境情報として収集し、前記パラメータ算出部は、前記無線環境情報に基づいて、各々の前記無線LAN基地局において無線環境が改善するように、前記パラメータを求める。
 好ましくは、本発明の無線通信装置において、前記情報収集部は、前記無線LAN基地局配下の無線端末のそれぞれにおいて、周波数チャネル上で運用する周辺他基地局数、受信する受信信号のレベル、チャネルの時間占有率を前記無線環境情報として収集する。
 好ましくは、本発明の無線通信装置において、前記情報収集部は、前記無線LAN基地局配下の無線端末のそれぞれにおいて、周波数チャネル上で運用する周辺他基地局数、使用可能帯域幅、受信する受信信号のレベルを前記無線環境情報として収集する。

 好ましくは、本発明の無線通信装置において、前記情報収集部は、前記無線環境情報として、前記無線LAN基地局で一定期間にわたって収集された情報の瞬時値、または、前記無線LAN基地局で一定期間にわたって収集された情報の統計値、瞬時値、平均値、最小値、もしくは、最大値を収集する。 

 好ましくは、本発明の無線通信装置において、前記情報収集部及び前記パラメータ設定部は、外部インタフェース用プロトコルを用いて情報収集及びパラメータの設定を行う。 

 好ましくは、本発明の無線通信装置において、前記パラメータ設定部は、定期的な実施、ネットワーク側のオペレータによる手動実施、サービスを受けるユーザの要求による手動実施、または予め決められた事象が発生した際の実施のいずれかによって前記パラメータ設定を実施する。 

 好ましくは、本発明の無線通信装置において、前記データベースは、新たな機種の無線LAN基地局の発売、または、既存の無線LAN基地局の機能変更に応じてアップデートされる。 
 好ましくは、本発明の無線通信装置において、前記無線LAN基地局は、複数のチャネルのうち少なくとも一つのチャネルを使用して無線通信を行い、前記情報収集部は、前記無線LAN基地局が検知した周辺無線環境を表す情報を前記無線環境情報として収集し、前記パラメータ算出部は、前記無線環境情報に基づいて、前記無線LAN基地局が使用すべきチャネルを決定するための指標値を計算し、前記指標値に基づき前記無線LAN基地局が使用すべきチャネルを前記パラメータとして求める。
 好ましくは、本発明の無線通信装置において、前記パラメータ算出部は、前記指標値として、使用可能な全てのチャネルに対して、U=1-他無線装置による該当チャネルの媒体使用率で表されるU値を計算し、前記U値が最大となるチャネルまたは前記U値が予め設定された閾値以上となるチャネルのうちの1チャネルを前記無線LAN基地局に割り当てる仮チャネルとして決定する。
 好ましくは、本発明の無線通信装置において、前記パラメータ算出部は、前記指標値として、使用可能な全てのチャネルに対して、U=満足度で表されるU値を計算し、前記U値が最大となるチャネルまたは前記U値が予め設定された閾値以上となるチャネルのうちの1チャネルを前記無線LAN基地局に割り当てる仮チャネルとして決定する。
 好ましくは、本発明の無線通信装置において、前記パラメータ算出部は、前記指標値として、使用可能な各チャネルに対して、U=単位時間当たりにおいて無線LAN基地局が当該チャネルを占有可能な時間長/単位時間当たりにおいて前記無線LAN基地局がフレーム送受信を行うのに必要な総時間長で表されるU値を計算し、前記U値が最大となるチャネルまたは前記U値が予め設定された閾値以上となるチャネルのうちの1チャネルを前記無線LAN基地局に割り当てる仮チャネルとして決定する。
 好ましくは、本発明の無線通信装置において、前記パラメータ算出部は、前記指標値として、使用可能な各チャネルおよび帯域幅に対して、U=前記無線LAN基地局が使用可能な各チャネルを周辺基地局と共用した場合に取得可能なスループット(見込みスループット)/前記無線LAN基地局のみが使用可能な各チャネルを使用した場合(他干渉基地局がない場合)に取得可能なスループットで表されるU値を計算し、前記U値が予め設定された閾値β以上となるチャネルおよび帯域幅を前記無線LAN基地局に割り当てる仮チャネルおよび仮帯域幅として決定する。
 好ましくは、本発明の無線通信装置において、前記U値が前記閾値β以上となるチャネルおよび帯域幅が存在しない場合は、前記U値が最大となるチャネルおよび帯域幅を前記無線LAN基地局に割り当てる前記仮チャネルおよび前記仮帯域幅として決定する。
 好ましくは、本発明の無線通信装置において、前記パラメータ算出部は、前記指標値として、使用可能な全てのチャネルに対して、U=無線LAN基地局が取得可能なスループット/要求トラヒック量で表されるU値を計算し、前記U値が最大となるチャネルまたは前記U値が予め設定された閾値以上となるチャネルのうちの1チャネルを前記無線LAN基地局に割り当てる仮チャネルとして決定する。
 好ましくは、本発明の無線通信装置において、前記パラメータ算出部は、前記各無線LAN基地局における前記仮チャネルを算出し、前記各無線LAN基地局における前記U値と、全ての前記無線LAN基地局における前記U値の総和Utotalを算出し、予め設定された閾値UTH以下のU値を有する無線LAN基地局の中から1つの無線LAN基地局を選択し、所定条件を満たすチャネルを算出し、前記チャネルを選択した前記無線LAN基地局の新しい仮チャネルとする動作を予め設定されたMax_r回繰り返し実施する。
 好ましくは、本発明の無線通信装置において、r回目の繰り返し計算におけるUtotalをUtotal (r)とすると、前記所定条件を満たすチャネルは、Utotal (r)≧α・Utotal (r-1)の条件下で、選択した前記無線LAN基地局のU値が、U≧βとなるチャネル(0≦α、β≦1)である。
 好ましくは、本発明の無線通信装置において、前記パラメータ算出部は、前記各無線LAN基地局における前記仮チャネルを算出し、前記各無線LAN基地局における前記U値と、全ての前記無線LAN基地局における前記U値の総積Uproductを算出し、予め設定された閾値UTH以下のU値を有する無線LAN基地局の中から1つの無線LAN基地局を選択し、所定条件を満たすチャネルを算出し、前記チャネルを選択した前記無線LAN基地局の新しい仮チャネルとする動作を予め設定されたMax_r回繰り返し実施する。
 好ましくは、本発明の無線通信装置において、r回目の繰り返し計算におけるUproductをUproduct (r)とすると、前記所定条件を満たすチャネルは、Uproduct (r)≧α・Uproduct (r-1)の条件下で、選択した前記無線LAN基地局のU値が、U≧βとなるチャネル(0≦α、β≦1)である。
 好ましくは、本発明の無線通信装置において、前記パラメータ算出部は、すべての前記無線LAN基地局のU値が1となった場合、又は、所定の繰り返し計算の回数が予め設定されたMax_r回になった場合、又は、予め設定された収束条件を満たした場合に、その時点での各無線LAN基地局の前記仮チャネルを各々の前記無線LAN基地局に設定するチャネルとして決定する。
 好ましくは、本発明の無線通信装置において、前記パラメータ算出部は、チャネルを割り当てる全ての無線LAN基地局の前記U値の合計である合計U値を計算し、前記合計U値が劣化しないように、所定の条件を満たすU値を持つ無線LAN基地局に割り当てるチャネルの最適化を行う。
 好ましくは、本発明の無線通信装置において、前記パラメータ算出部は、チャネルを割り当てる全ての無線LAN基地局の前記U値の乗算値を計算し、前記U値の乗算値が劣化しないように、所定の条件を満たすU値を持つ無線LAN基地局に割り当てるチャネルの最適化を行う。
 好ましくは、本発明の無線通信装置において、前記パラメータ算出部は、前記無線LAN基地局又は無線端末の時間占有率又は前記時間占有率と同等なパラメータ値を用いて、前記U値を計算する。
 好ましくは、本発明の無線通信装置において、前記無線LAN基地局は、複数の無線通信方式のうち少なくとも一つの無線通信方式のチャネルを使用して無線通信を行い、前記情報収集部は、前記無線LAN基地局が検知した周辺無線環境を表す情報を前記無線環境情報として収集し、前記パラメータ算出部は、前記無線環境情報に基づいて、前記無線LAN基地局が使用すべき無線通信方式を決定するための指標値を計算し、前記指標値に基づき前記無線LAN基地局が使用すべき無線通信方式を前記パラメータとして求める。
 好ましくは、本発明の無線通信装置において、前記パラメータ算出部は、前記指標値として、各々の前記無線LAN基地局において、U=他の無線通信方式に移行した場合の見込みスループット/現在使用中のシステムにおける平均スループットで表されるU値を計算し、前記U値が最大となる無線通信方式のチャネルを前記無線LAN基地局に割り当てる仮無線通信方式のチャネルとして決定し、繰り返し計算により、最終的に使用すべき無線通信方式のチャネルを決定する。
 本発明は、無線通信ネットワークを構成する無線LAN基地局が動作するために必要な設定を行うマネジメントエンジンを備える無線通信システムであって、前記マネジメントエンジンは、前記無線LAN基地局に設定されている設定情報と、前記無線LAN基地局における無線環境情報とを収集する情報収集部と、収集した前記設定情報と前記無線環境情報とに基づき、収集元の無線LAN基地局に対して設定すべきパラメータを求めるパラメータ算出部と、求めた前記パラメータをネットワークを介して収集元の前記無線LAN基地局に対して送信し、パラメータ設定を行うパラメータ設定部とを備え、前記無線LAN基地局は、前記情報収集部から情報収集の要求を受けると、前記設定情報と前記無線環境情報とを前記マネジメントエンジンへ送信する情報送信部と、前記パラメータ設定部から前記パラメータを受け取ると、前記パラメータに基づき自己の設定を行う設定部とを備える。
 好ましくは、本発明の無線通信システムにおいて、前記マネジメントエンジンは、前記無線LAN基地局の属性に関する属性情報を記憶するデータベースを有し、前記パラメータ算出部は、前記設定情報、前記無線環境情報、および、前記属性情報に基づいて前記パラメータを求める。
 好ましくは、本発明の無線通信システムにおいて、前記情報収集部は、異なるメーカ、異なる型番、異なるバージョンの前記無線LAN基地局のそれぞれから前記設定情報と前記無線環境情報とを収集する。
 好ましくは、本発明の無線通信システムにおいて、前記情報収集部は、前記無線LAN基地局配下の無線端末のそれぞれにおいて、周波数チャネル上で運用する周辺他基地局数、受信する受信信号のレベル、チャネルの時間占有率を前記無線環境情報として収集する。
 好ましくは、本発明の無線通信システムは、複数のチャネルのうち少なくとも一つのチャネルを使用して無線通信を行う複数の無線LAN基地局を具備し、前記無線LAN基地局は、周辺無線環境を検知して、前記周辺無線環境を表す情報を前記無線環境情報として生成し、生成した前記無線環境情報を前記マネジメントエンジンに通知する周辺無線環境通知部を備え、前記パラメータ算出部は、前記無線環境情報に基づいて、前記無線LAN基地局が使用すべきチャネルを決定するための指標値を計算し、前記指標値に基づき前記無線LAN基地局が使用すべきチャネルを前記パラメータとして求める。
 好ましくは、本発明の無線通信システムにおいて、前記パラメータ算出部は、前記指標値として、使用可能な全てのチャネルに対して、U=1-他無線装置による該当チャネルの媒体使用率で表されるU値を計算し、前記U値が最大となるチャネルを前記無線LAN基地局に割り当てる仮チャネルとして決定する。
 好ましくは、本発明の無線通信システムにおいて、前記パラメータ算出部は、前記指標値として、使用可能な全てのチャネルに対して、U=満足度で表されるU値を計算し、前記U値が最大となるチャネルを前記無線LAN基地局に割り当てる仮チャネルとして決定する。
 好ましくは、本発明の無線通信システムにおいて、前記パラメータ算出部は、前記指標値として、使用可能な各チャネルに対して、U=単位時間当たりにおいて無線LAN基地局が当該チャネルを占有可能な時間長/単位時間当たりにおいて前記無線LAN基地局がフレーム送受信を行うのに必要な総時間長で表されるU値を計算し、前記U値が最大となるチャネルを前記無線LAN基地局に割り当てる仮チャネルとして決定する。
 好ましくは、本発明の無線通信システムは、複数の無線通信方式のうち少なくとも一つの無線通信方式のチャネルを使用して無線通信を行う複数の無線LAN基地局を具備し、前記無線LAN基地局は、周辺無線環境を検知して、前記周辺無線環境を表す情報を前記無線環境情報として生成し、生成した前記無線環境情報を前記マネジメントエンジンに通知する周辺無線環境通知部を備え、前記パラメータ算出部は、前記無線環境情報に基づいて、前記無線LAN基地局が使用すべき無線通信方式を決定するための指標値を計算し、前記指標値に基づき前記無線LAN基地局が使用すべき無線通信方式を前記パラメータとして求める。
 本発明は、無線通信ネットワークを構成する無線LAN基地局が動作するために必要なパラメータ設定を行う無線通信システムが行う無線通信方法であって、前記無線LAN基地局に設定されている設定情報と、前記無線LAN基地局における無線環境情報とを収集する情報収集ステップと、収集した前記設定情報と前記無線環境情報とに基づき、収集元の無線LAN基地局に対して設定すべきパラメータを求めるパラメータ算出ステップと、求めた前記パラメータをネットワークを介して収集元の前記無線LAN基地局に対して送信し、パラメータ設定を行うパラメータ設定ステップとを有する。
 好ましくは、本発明の無線通信方法の前記パラメータ算出ステップにおいて、前記設定情報、前記無線環境情報、および、データベースに記憶された前記無線LAN基地局の属性に関する属性情報に基づいて前記パラメータを求める。
 好ましくは、本発明の無線通信方法の前記情報収集ステップにおいて、異なるメーカ、異なる型番、異なるバージョンの前記無線LAN基地局のそれぞれから前記設定情報と前記無線環境情報とを収集する。
 好ましくは、本発明の無線通信方法の前記情報収集ステップにおいて、前記無線LAN基地局配下の無線端末のそれぞれにおいて、周波数チャネル上で運用する周辺他基地局数、受信する受信信号のレベル、チャネルの時間占有率を前記無線環境情報として収集する。
 好ましくは、本発明の無線通信方法において、前記無線LAN基地局は、複数のチャネルのうち少なくとも一つのチャネルを使用して無線通信を行い、前記情報収集ステップにおいて、前記無線LAN基地局が検知した周辺無線環境を表す情報を前記無線環境情報として収集し、前記パラメータ算出ステップにおいて、前記無線環境情報に基づいて、前記無線LAN基地局が使用すべきチャネルを決定するための指標値を計算し、前記指標値に基づき前記無線LAN基地局が使用すべきチャネルを前記パラメータとして求める。
 好ましくは、本発明の無線通信方法の前記パラメータ算出ステップにおいて、前記指標値として、使用可能な全てのチャネルに対して、U=1-他無線装置による該当チャネルの媒体使用率で表されるU値を計算し、前記U値が最大となるチャネルを前記無線LAN基地局に割り当てる仮チャネルとして決定する。
 好ましくは、本発明の無線通信方法の前記パラメータ算出ステップにおいて、前記指標値として、使用可能な全てのチャネルに対して、U=満足度で表されるU値を計算し、前記U値が最大となるチャネルを前記無線LAN基地局に割り当てる仮チャネルとして決定する。
 好ましくは、本発明の無線通信方法の前記パラメータ算出ステップにおいて、前記指標値として、使用可能な各チャネルに対して、U=単位時間当たりにおいて無線LAN基地局が当該チャネルを占有可能な時間長/単位時間当たりにおいて前記無線LAN基地局がフレーム送受信を行うのに必要な総時間長で表されるU値を計算し、前記U値が最大となるチャネルを前記無線LAN基地局に割り当てる仮チャネルとして決定する。
 好ましくは、本発明の無線通信方法において、前記無線LAN基地局は、複数の無線通信方式のうち少なくとも一つの無線通信方式のチャネルを使用して無線通信を行い、前記情報収集ステップにおいて、前記無線LAN基地局が検知した周辺無線環境を表す情報を前記無線環境情報として収集し、前記パラメータ算出ステップにおいて、前記無線環境情報に基づいて、前記無線LAN基地局が使用すべき無線通信方式を決定するための指標値を計算し、前記指標値に基づき前記無線LAN基地局が使用すべき無線通信方式を前記パラメータとして求める。
 本発明によれば、異なるメーカの異なる型番の無線LAN基地局を含む無線通信システム全体の周波数利用効率などの無線環境が向上するように無線LAN基地局の設定を行うことができるという効果が得られる。
 また、本発明によれば、基地局が密集している環境において局地的なスループットの低下を回避することができるという効果が得られる。
本発明の第1実施形態による無線通信システム全体の構成を示す図である。 図1に示すマネジメントエンジン8の構成を示すブロック図である。 図1に示すアクセスポイント11の構成を示すブロック図である。 マネジメントエンジン8とアクセスポイント11、12、13、15、16、17、18間の環境情報及び制御指示の流れを示す図である。 図2に示す性能データベース89のテーブル構造を示す図である。 図1に示す無線通信システムの動作を示すシーケンス図である。 本発明の第2実施形態による無線通信システム全体の構成を示す図である。 図7に示すサービスゲートウェイ91の構成を示すブロック図である。 マネジメントエンジン8と、サービスゲートウェイ91、92、93、94、95、96と、アクセスポイント11、12、13、14、15、16間の環境情報及び制御指示の流れを示す図である。 図7に示す無線通信システムの動作を示すシーケンス図である。 図7に示すマネジメントエンジン8と、サービスゲートウェイ91、92、93、94、95、96と、アクセスポイント11、12、13、14、15、16と、無線端末21、22、23、24、25、26との間でやりとりされる環境情報及び制御指示の流れを示す図である。 第3実施形態による無線通信システムの動作を示すシーケンス図である。 第4実施形態による無線通信システムの全体の構成を示す図である。 本発明の第5実施形態における無線通信システムの構成を示すブロック図である。 第5実施形態における各々の無線基地局にチャネルを割り当てるチャネル割り当て処理の基本動作を示すフローチャートである。 第5実施形態における各々の無線基地局にチャネルを割り当てる際に、U値が最大となるチャネルを仮決定チャネルとして算出する動作を示すフローチャートである。 図15に示す処理動作の変形例を示すフローチャートである。 第6実施形態における各々の無線基地局にチャネルを割り当てるチャネル割り当て処理の基本動作を示すフローチャートである。 第6実施形態における各々の無線基地局にチャネルを割り当てる際に、U値が最大となるチャネルを仮決定チャネルとして算出する動作を示すフローチャートである。 図18に示す処理動作の変形例を示すフローチャートである。 計算機シミュレーション環境の詳細を示す図である。 計算機シミュレーションによる中央36台のセルのシステムスループット(正規化システムスループットの比較)を示す図である。 計算機シミュレーションにおいて、中央36台のセルのうち、最小スループット(正規化最小スループットの比較)を示す図である。 計算機シミュレーションによる中央36台のセルのスループット値を用いてFI(Fairness Index)を算出した結果(公平性指標FI値の比較)を示す図である。 占有予定時間率を示す説明図である。 占有予定時間率を示す説明図である。 占有予定時間率を示す説明図である。 計算機シミュレーション環境を示す図である。 計算シミュレーションによるα値に対するシステムの合計スループットとFI値を示す図である。 計算シミュレーションによるβ値に対するシステムの合計スループットとFI値を示す図である。 第10実施形態におけるチャネル算出部がチャネル選択処理を行う動作を示すフローチャートである。 選択された制御可能無線基地局の仮割当チャネルと仮割当帯域幅を決定するプロセスを示す図である。 繰り返し計算による制御可能無線基地局のU値の改善を行うプロセスを示す図である。 割当可能プライマリチャネルリストを作成するプロセスを示す図である。 割当可能プライマリチャネルの例を示す図である。 割当可能プライマリチャネルの例を示す図である。 繰り返し計算を行う無線基地局の選択方法を示す図である。
 以下、図面を参照して本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではなく、例えばこれら実施形態を適宜組み合わせるようにしてもよい。
<第1実施形態>
 以下、図面を参照して、本発明の第1実施形態における無線通信システムを説明する。図1は、同実施形態による無線通信システム全体の構成を示す図である。図1において、符号1は、4世帯の集合住宅である。符号2は、それぞれ戸建住宅である。符号3は、オフィス環境、共用ビル、カフェ、パブリックホットスポットなどの無線通信を利用可能な建物である。符号11、12、13、15、16、17、18は、集合住宅1の各世帯、戸建住宅2、オフィス環境、共用ビル、カフェ、パブリックホットスポットなどの建物3のそれぞれに設置されるアクセスポイントである。符号21、22、23、25、26は、アクセスポイント11、12、13、15、16それぞれとIEEE802.11標準規格の無線LANプロトコルを用いて無線通信を行う無線端末である。なお、図1においては、建物3内において使用する無線端末の図示を省略しているが、集合住宅1のように、アクセスポイント17、18の配下にも無線端末が接続されることになる。符号41は、ネットワークに有線で接続する他機器である。符号51、52、53、55、56は、ハブ又はルータから構成されるネットワークである。符号61、62は、外部ネットワークである。符号7は、インターネットである。符号8は、各制御対象アクセスポイントから収集する無線環境情報を保持し、適切な指標に基づいて各制御対象アクセスポイントに対して適切なパラメータの算出および設定を行うマネジメントエンジン(ME:Management Engine)である。
 なお、集合住宅1のうち1世帯は、外部から制御ができないアクセスポイント100(制御不可AP)に無線端末200(制御不可端末)が無線接続される環境を備えている。他機器401とアクセスポイント100は、ネットワーク500に接続され、管理外ネットワーク600を介してインターネット7に接続される。また、建物3にも外部から制御ができないアクセスポイント100が設置されている。
 次に、図2を参照して、図1に示すマネジメントエンジン8の構成を説明する。図2は、図1に示すマネジメントエンジン8の構成を示すブロック図である。図2において、符号81は、外部ネットワークとの通信に用いるWAN(Wide Area Network)側接続部である。符号82は、WAN側接続部81を介して外部ネットワークとデータの送受信を行う通信部である。符号83は、各アクセスポイントから無線環境情報を収集する情報収集部である。符号84は、各アクセスポイントから収集された無線環境情報を記憶する情報記憶部である。
 符号85は、情報記憶部84において記憶され各アクセスポイントより収集される無線環境情報の統計処理などを行う情報処理部である。符号86は、各アクセスポイントが使用すべきチャネルや送信電力値などの設定パラメータ値を算出するパラメータ算出部である。符号87は、マネジメントエンジン8の動作を統括して制御する制御部である。符号88は、パラメータ算出部86が設定パラメータ値を算出する際に参照する設定情報を予め記憶した設定情報記憶部である。設定情報記憶部88には、情報収集部83によって収集される情報に対応して設定すべきパラメータ値が予め記憶されている。符号89は、マネジメントエンジン8が管理すべきアクセスポイントの性能に関する情報が記憶される性能データベースである。
 次に、図3を参照して、図1に示すアクセスポイント11、12、13、15、16、17、18の構成を説明する。図1に示すアクセスポイント11、12、13、15、16、17、18は、それぞれ同じ構成を備えているため、ここでは、アクセスポイント11の構成を説明する。図3は、図1に示すアクセスポイント11の構成を示すブロック図である。図3において、符号111は、外部ネットワークとの通信を行うためのLAN側接続部である。符号112は、LAN側接続部111を介して外部ネットワークと通信を行う通信部である。符号113は、アンテナである。符号114は、アンテナ113を介して無線でデータの送受信を行う無線通信部である。符号115は、無線によるデータ通信に先だってアクセス権を獲得するアクセス権獲得部である。
 符号116は、マネジメントエンジン8より送信された各種パラメータを設定するパラメータ設定部である。符号117は、無線環境情報を保持する環境情報保持部である。符号118は、アクセスポイント11の動作を統括して制御する制御部である。無線通信部114は、パラメータ設定部116より設定されたパラメータ値を使用して無線端末21と無線通信を行う。無線通信部114は、例えば、CSMA/CAによるアクセス制御を用いて無線通信を行う。また、無線通信部114は、無線通信において利用可能なチャネルそれぞれに対して、予め定められた期間スキャンし、スキャン結果を環境情報保持部117に出力する。
 次に、図4を参照して、図1に示すマネジメントエンジン8とアクセスポイント11、12、13、15、16、17、18との間でやりとりされる情報について説明する。図4は、マネジメントエンジン8とアクセスポイント11、12、13、15、16、17、18間の環境情報及び制御指示の流れを示す図である。図4に示すように、マネジメントエンジン8は、アクセスポイント11、12、13、15、16、17、18それぞれから環境情報を受信し、マネジメントエンジン8内で各アクセスポイントが使用すべきパラメータ値を算出し、算出したパラメータ値を制御指示としてアクセスポイント11、12、13、15、16、17、18それぞれに送信する。アクセスポイント11、12、13、15、16、17、18それぞれは、この制御指示を受けて、自己の設定を行う。
 次に、マネジメントエンジン8が各アクセスポイントから収集する環境情報について説明する。環境情報としては、(1)アクセスポイントの現在設定情報、(2)アクセスポイントの機能に関する情報、(3)配下無線端末情報、(4)周辺無線環境情報の4種類の情報がある。この4種類の情報の詳細は、以下の通りである。
(1)アクセスポイントの現在設定情報
・アクセスポイント識別ID(SSID、MACアドレスなど)
・動作無線モード(2.4GHz、5GHz)
・使用チャネル
・帯域幅
・使用送信電力値
・バッファ情報
(2)アクセスポイントの機能に関する情報
・動作可能モード
・設定可能パラメータ
・設定可能送信電力値
・MIMO使用可否
・OFDMA(Orthogonal Frequency Division Multiple Access)使用可否
・チルト角制御可否
・アンテナ選択通信可否
・CCA(Clear Channel Assessment)閾値制御可否
(3)配下無線端末情報
・配下無線端末数
・配下無線端末別識別ID(MACアドレスなど)
・配下無線端末別信号レベルの強度(RSSI値)
・配下無線端末別使用データレート、MCS(Modulation and Coding Scheme)など
・配下無線端末別フレームの再送回数、フレーム破棄率など
・配下無線端末別チャネルの時間占有率
・配下無線端末別スループット、フレーム誤り率(FER)、遅延時間、バッファ情報
・配下無線端末別性能、使用可能データレート、帯域幅
(4)周辺無線環境情報
・周辺他アクセスポイント数
・各周辺他アクセスポイント別識別ID(SSID、MACアドレスなど)
・各周辺他アクセスポイント別信号レベルの強度(RSSI値)
・各周辺他アクセスポイント別使用チャネル、帯域幅
・各周辺他アクセスポイント別チャネルの時間占有率
 マネジメントエンジン8は、前述の4種類の各情報を構成する情報の中から、一つ又は複数の情報を収集する。
 アクセスポイントの現在設定情報には、例えば、アクセスポイントを識別するSSID又はMACアドレス、動作する無線モード、現在使用する周波数チャネル、現在フレームの送受信に用いる送信電力値などが含まれる。
 配下無線端末情報には、アクセスポイントとアソシエーション済みの無線端末数、各無線端末を識別するMACアドレス、各無線端末から受信する受信信号の信号レベル(RSSI値)、各無線端末との通信に用いるデータレート、各無線端末宛てのフレームの再送回数およびフレーム破棄率、各配下無線端末によるチャネルの時間占有率などが含まれる。
 周辺無線環境情報には、自アクセスポイントで検知した周辺に存在する他アクセスポイント数、それらのアクセスポイントを識別するSSID又はMACアドレス、各周辺他アクセスポイントから受信するビーコンなどの受信信号レベルの強度、それぞれのアクセスポイントが使用する周波数チャネルおよび帯域幅、それぞれのアクセスポイントによるチャネルの時間占有率などが含まれる。
 アクセスポイントの機能に関する情報には、例えば、動作可能無線モード、設定可能送信電力値、設定可能周波数チャネルなど、当該アクセスポイントで設定可能なパラメータに関する情報が含まれる。
 なお、マネジメントエンジン8が収集する、信号レベル、チャネルの時間占有率、周辺他アクセスポイント数、再送回数やフレーム破棄率などの情報は、アクセスポイントで収集した情報の瞬時値でもよく、または、アクセスポイントで一定期間にわたって収集された情報の統計値、瞬時値、平均値、最小値、最大値であってもよい。
 次に、マネジメントエンジン8が各アクセスポイントに対して指示する制御指示の情報について説明する。制御指示の情報の詳細は、以下の通りである。
・動作無線モード(2.4GHz、5GHz)
・使用すべきチャネル、帯域幅
・使用すべき送信電力値
・使用すべきCCA値
・使用すべきデータレート、MCS
・使用すべきチルト角
・使用すべきアンテナ
・OFDMA、MU-MIMO使用に関する情報
・RTS(Request To Send)スレッショルド値
・BSSBasicRateSet値
・KeepAlive値
・ビーコン間隔
・スリープモード
・CSMA/CAに関するパラメータ(CWmin、CWmax、AIFSN(Arbitration Inter-Frame Spacing Number)、TXOP(Transmission Opportunity))
・QoSに関するパラメータ
・アグリゲーション
 アクセスポイントに対する制御指示の情報には、前述の情報の中における一つ又は複数の情報が含まれる。
 次に、図5を参照して、図2に示す性能データベース89について説明する。図5は、図2に示す性能データベース89のテーブル構造を示す図である。性能データベース89は、図5に示すように、アクセスポイントに用いる無線装置のメーカ名、型番、2.4GHz使用可否、5GHz使用可否、DFS(Dynamic Frequency Selection)バンド使用可否、使用可能最大帯域幅、アンテナ本数、アンテナ選択通信可否、送信電力制御、送信電力制御ステップ数、チルト角制御可否等の情報が記憶される。本実施形態では、図5に示すように、メーカ、型番、能力が異なり様々なアクセスポイントとして用いられる無線装置を同時に扱い、制御対象となるすべてのアクセスポイントに対して使用すべきパラメータセットを算出し、算出されたパラメータセットをそれぞれのアクセスポイントに対して通知する。したがって、新しいアクセスポイントとして用いる無線装置が発売されたり、また、既存アクセスポイントのファームウェア改良による機能変更があったりすると性能データベース89をアップデートする。
 また、パラメータ算出の指標、アルゴリズム等の変更があった場合は、図2に示す設定情報記憶部88に記憶されている設定情報をアップデートする。
 次に、図6を参照して、図1に示す無線通信システムの動作を説明する。図6は、図1に示す無線通信システムの動作を示すシーケンス図である。ここでは、サービスを受けるユーザが新たにアクセスポイント16を戸建住宅2に設置し運用を始めるものとして説明する。新しく運用を開始するアクセスポイント16は、まず、製造メーカのデフォルトパラメータ値を用いてセル(BSS)を形成し、CSMA/CAを用いたキャリアセンスを実施し(ステップS1)、配下の無線端末26と通信を行う(ステップS2)。また、アクセスポイント16は、定期的に使用可能なすべての周波数チャネル又は現在運用中の周波数チャネルを一定期間に亘ってスキャンし、取得された周辺無線環境情報を保持する。取得する周辺無線環境情報の量は、アクセスポイント内蔵の機能に依存する。例えば、アクセスポイント16は、2.4GHzと5GHzの両周波数帯での通信が可能な場合は、それぞれの周波数帯において使用可能な各チャネル上の情報、各チャネル上の他アクセスポイント数、それぞれのアクセスポイントからの受信信号レベルを収集する。一方、2.4GHz帯又は5GHz帯のどちらかのみ使用可能な場合、アクセスポイント16は、その周波数帯における情報のみ収集する。
 次に、制御対象のアクセスポイント16は、運用を開始した旨をマネジメントエンジン8に通知し、マネジメントエンジン8とアクセスポイント16の間で通信を開始する(ステップS3)。マネジメントエンジン8の情報収集部83は、新しく運用を開始したアクセスポイント16に対して、現在の設定情報を要求する(ステップS4)。これを受けて、マネジメントエンジン8より設定情報の通知を要求されたアクセスポイント16はマネジメントエンジン8に対して該当する情報を通知する(ステップS5)。この通知情報によって、マネジメントエンジン8は、運用を開始したアクセスポイントのメーカ、型番、MACアドレスなどの識別情報と、現在運用中のパラメータ設定を把握する。
 これらの情報を取得したマネジメントエンジン8の情報収集部83は、アクセスポイント16に関する情報を、情報記憶部84に記憶する。そして、マネジメントエンジン8は、必要に応じて、定期的にアクセスポイント16に対して、情報収集間隔および収集情報を通知することにより情報収集を要求する(ステップS6)。これを受けて、アクセスポイント16は、自無線LAN基地局内で観測し、環境情報保持部117に保持している周辺無線環境に関する情報や配下の無線端末に関する情報を定期的にマネジメントエンジン8に転送する(ステップS7)。
 次に、マネジメントエンジン8のパラメータ算出部86は、設定情報記憶部88と、性能データベース89に記憶されている情報とを参照して、ネットワークに繋がっている各アクセスポイントの情報を基に、予め用意された指標に応じてアクセスポイント16が使用すべきパラメータ値を算出して決定する(ステップS8)。例えば、収集する情報が周波数チャネル上で運用する周辺の基地局数、受信する受信信号のレベル、チャネルの時間占有率等の無線環境情報である場合に、パラメータ算出部86は、この無線環境情報に基づいて、各々のアクセスポイントにおいて周波数利用効率(その他、ユーザスループット、QoSなどの無線環境)が改善するように、パラメータを算出する。そして、パラメータ算出部86は、決定したパラメータ値を各アクセスポイントに通知する(ステップS9)。これを受けたアクセスポイント16のパラメータ設定部116は、このパラメータ値に基づき設定を行う。そして、アクセスポイント16は、マネジメントエンジン8から指定されたパラメータ値を基に配下の無線端末26と通信を行う(ステップS10)。
 なお、このパラメータ算出とパラメータ設定は、マネジメントエンジン8が対象としている全てのアクセスポイント又は一部のアクセスポイントに対して行う。
 ここでは、アクセスポイント16での情報収集、アクセスポイント16からマネジメントエンジン8に対する情報転送、マネジメントエンジン8によるアクセスポイント16に対する最適パラメータ値の算出、そして、マネジメントエンジン8によるアクセスポイントに対する最適パラメータ値の通知の発生タイミングについては前述した説明に限定するものではない。
 例えば、これらのイベントは、(1)定期的な実施、(2)ネットワーク側のオペレータによる手動実施、(3)サービスを受けるユーザの要求による手動実施、または(4)予め決められた事象、例えばスループットの劣化、バッファサイズの閾値の超過、サービス品質の劣化などの事象が起きたときの自動実施などが適用できる。
 また、前述のイベントが互いに独立して発生してもよいし、すべて又は一部のイベントが連動して発生してもよいものとする。
 また、図6に示すシーケンスは、通信の動作を示す一例であり、必ずしも図6に示す順番に動作する必要はなく、順番が入れ替わってもよい。
<第2実施形態>
 次に、本発明の第2実施形態における無線通信システムを説明する。図7は、同実施形態による無線通信システム全体の構成を示す図である。図7において、符号1は、4世帯の集合住宅である。符号2は、それぞれ戸建住宅である。符号11、12、13、14、15、16は、集合住宅1の各世帯、戸建住宅のそれぞれに設置されるアクセスポイントである。符号21、22、23、24、25、26は、アクセスポイント11、12、13、14、15、16それぞれとIEEE802.11標準規格の無線LANプロトコルを用いて無線通信を行う無線端末である。符号41は、ネットワークに有線で接続する他機器である。符号51、52、53、54、55、56は、ハブ又はルータから構成されるネットワークである。符号61は、外部ネットワークである。符号7は、インターネットである。
 符号8は、各制御対象アクセスポイントから収集する無線環境情報を保持し、適切な指標に基づいて各制御対象アクセスポイントに対して適切なパラメータの算出および設定を行うマネジメントエンジン(ME:Management Engine)である。符号9は、アクセスポイント11、12、13、14、15、16それぞれとの間での通信に用いるバンドルを管理するバンドル配信サーバである。バンドルとはJava(登録商標、以下同様)プログラムによる、HTTP(Hypertext Transfer Protocol)、HTTPS(HTTP Secure)、Telnet、SSH(Secure Shell)、RJ-45、SNMP(Simple Network Management Protocol)、またはアクセスポイントや配下無線端末が対応するその他の外部インタフェース用プロトコルを用いたソフトウェアである。符号91、92、93、94、95、96は、サービスゲートウェイ(図面においてはSGW(Service Gateway)と図示する)である。図7において、図1に示すシステムと異なる点は、サービスゲートウェイ91、92、93、94、95、96と、バンドル配信サーバ9が設けられている点、アクセスポイント100、無線端末200、他機器401、ネットワーク500に代えてアクセスポイント14、無線端末24、他機器41、ネットワーク54が設けられている点、建物3、外部ネットワーク62および管理外ネットワーク600が省略されている点である。
 図7に示すシステムでは、サービスゲートウェイ91、92、93、94、95、96とアクセスポイント11、12、13、14、15、16との間で通信に用いるバンドルを管理するバンドル配信サーバ9と、サービスゲートウェイ91、92、93、94、95、96を介して収集する各アクセスポイント11、12、13、14、15、16の無線環境情報を保持し、適切な指標に基づいて各制御対象のアクセスポイント11、12、13、14、15、16に対して適切なパラメータの算出および設定を行うマネジメントエンジン8とを備えている。各世帯の無線端末21、22、23、24、25、26はIEEE802.11標準規格の無線LANプロトコルを用いてアクセスポイント11、12、13、14、15、16と通信する。
 次に、図8を参照して、図7に示すサービスゲートウェイ91、92、93、94、95、96の構成を説明する。図7に示すサービスゲートウェイ91、92、93、94、95、96は、それぞれ同じ構成を備えているため、ここでは、サービスゲートウェイ91の構成を説明する。図8は、図7に示すサービスゲートウェイ91の構成を示すブロック図である。サービスゲートウェイ91は、宅外の通信ネットワークと宅内の通信ネットワークとの間において、WAN側接続部911とLAN側接続部912によって接続されて、一方の通信ネットワークから他方の通信ネットワークに流れるデータのプロトコルを変換する機能を有している。
 ここで用いるサービスゲートウェイ91は、そのようなプロトコル変換機能に加えて、OSAP(OSGi (Open Services Gateway initiative) Service Aggregation Platform)という基盤技術が実装されている。
 OSAPとは、家庭・自動車・モバイルなどあらゆるタイプのネットワーク接続された機器に対するさまざまなアプリケーションやサービスの配布・管理、および、機器のもつ機能を組み合わせた多様なサービスの提供を可能とするサービス・プラットフォームであり、ネットワークを介してバンドルと呼ばれるソフトウェア部品をダウンロードすることでサービスを提供する技術である。そのサービスを実行するソフトウェアは、OSGi標準仕様に基づいたバンドルと呼ばれるソフトウェア・モジュール913、914として構成され、OSGiフレームワーク(OSGiFW)915上で動作する。システムアーキテクチャとしては、ホームゲートウェイのOS(Operating System)916上でJavaVM(JVM:Java Virtual Machine、Javaは登録商標、以下同様)917が1つのプロセスとして動作し、JavaVM上でOSGiFW915が動作する。このOSGiFW915上で複数のバンドルを動作させることができ、その動作によりバンドルに実装されているサービスが提供される。なお、このようなOSGiに関する技術は既存の一技術である。具体的な技術内容については、例えば、「OSGi Alliance」(URL:http://www.osgi.org/Specifications/HomePage)等に開示されている。
 次に、図9を参照して、図7に示すマネジメントエンジン8と、サービスゲートウェイ91、92、93、94、95、96と、アクセスポイント11、12、13、14、15、16との間でやりとりされる情報について説明する。図9は、マネジメントエンジン8と、サービスゲートウェイ91、92、93、94、95、96と、アクセスポイント11、12、13、14、15、16間の環境情報及び制御指示の流れを示す図である。図9に示すように、マネジメントエンジン8は、サービスゲートウェイ91、92、93、94、95、96それぞれを介して、アクセスポイント11、12、13、14、15、16それぞれから環境情報を受信する。そして、マネジメントエンジン8内で各アクセスポイント11、12、13、14、15、16が使用すべきパラメータ値を算出し、算出したパラメータ値を制御指示として、サービスゲートウェイ91、92、93、94、95、96を介して、アクセスポイント11、12、13、14、15、16それぞれに送信する。アクセスポイント11、12、13、14、15、16それぞれは、この制御指示を受けて、自己の設定を行う。
 次に、図10を参照して、図7に示す無線通信システムの動作を説明する。図10は、図7に示す無線通信システムの動作を示すシーケンス図である。ここでは、サービスを受けるユーザが新たにアクセスポイント16を戸建住宅2に設置し運用を始めるものとして説明する。アクセスポイント16をサービスゲートウェイ96配下に設置し運用を開始すると、サービスゲートウェイ96はOSAP(OSGiプラットフォーム)を用いて新規のアクセスポイント16の存在を把握し、アクセスポイント16の製造メーカ、型番などの設置機器識別情報を取得する(ステップS11)。機器識別情報の取得は、UPnP(Universal Plug and Play)やNetBIOS(Network Basic Input Output System)等のプロトコルを用いて行う。そして、サービスゲートウェイ96は、この取得情報をバンドル配信サーバ9に転送し、新規に設置されたアクセスポイント16と通信可能なバンドルの配信を要求する(ステップS12)。
 バンドル配信サーバ9は、自サーバ内で管理されているバンドルの中から、サービスゲートウェイ96から送られてきたアクセスポイント16の製造メーカ、型番、ファームウェアバージョンなどの情報に該当する適切なバンドルをサービスゲートウェイ96に配信する(ステップS13)。バンドル配信サーバ9よりバンドルを受け取ったサービスゲートウェイ96は、バンドルを用いてアクセスポイント16内の情報収集およびアクセスポイント16の各種パラメータ設定を行う。
 次に、アクセスポイント16は、製造メーカのデフォルトパラメータ値を用いてセル(BSS)を形成し、CSMA/CAを用いたキャリアセンスを実施し(ステップS14)、配下の無線端末26と通信を行う(ステップS15)。また、アクセスポイント16は、定期的に使用可能なすべての周波数チャネル又は現在運用中の周波数チャネルを一定期間に亘ってスキャンし、取得する周辺無線環境情報を保持する。取得する周辺無線環境情報の量は、アクセスポイント内蔵の機能に依存する。例えば、アクセスポイント16は、2.4GHzと5GHzの両周波数帯での通信が可能な場合は、それぞれの周波数帯において使用可能な各チャネル上の情報、各チャネル上の他アクセスポイント数、それぞれのアクセスポイントからの受信信号レベルを収集する。一方、2.4GHz帯又は5GHz帯のどちらかのみ使用可能な場合、アクセスポイント16は、その周波数帯における情報のみ収集する。
 サービスゲートウェイ96は、バンドルを介して、アクセスポイント16の環境情報保持インタフェースにアクセスし、運用し始めたアクセスポイント16に対して、現在の設定情報を要求する(ステップS16)。これを受けて、アクセスポイント16は、サービスゲートウェイ96に対して現在の設定情報を通知する(ステップS17)。
 次に、サービスゲートウェイ96は、制御対象のアクセスポイント16の登録依頼と、アクセスポイント16から通知された現在の設定情報をマネジメントエンジン8に通知する(ステップS18)。この際、アクセスポイント16の環境情報保持部117で保存されている、アクセスポイント16配下の無線端末情報、無線環境情報、アクセスポイントの機能についての情報を合わせて通知してもよい。
 これらの情報を取得したマネジメントエンジン8は、アクセスポイント16に関する情報を、自装置内の情報記憶部84に記憶する。そして、マネジメントエンジン8は、必要に応じて、サービスゲートウェイ96に対して、アクセスポイント16の情報収集間隔や収集すべき情報について通知する(ステップS19)。
 次に、サービスゲートウェイ96は、マネジメントエンジン8から通知された情報収集間隔又はバンドル内に定義されている情報収集間隔に応じて定期的に配下のアクセスポイント16の環境情報保持部117に対して、設定情報・環境情報を要求する(ステップS20)。これに対して、サービスゲートウェイ96は、アクセスポイント16が送信した収集情報を受け取り(ステップS21)、マネジメントエンジン8に収集情報を転送する(ステップS22)。
 サービスゲートウェイ96は、情報収集間隔又は情報転送間隔が定まっていない場合でも、例えば、アクセスポイント16のスループットが閾値以下になった場合、アクセスポイント16のバッファサイズが閾値を超えた場合、アクセスポイント16周辺の他アクセスポイント数が閾値を超えた場合など、予め定義された指針に基づいて、必要に応じてアクセスポイント16の情報を収集したり、マネジメントエンジン8にアクセスポイント16の情報を転送したりする。
 次に、マネジメントエンジン8のパラメータ算出部86は、設定情報記憶部88と、性能データベース89に記憶されている情報とを参照して、定期的に、又は、予め定義された指針に応じて、管理対象のネットワークに繋がっている各サービスゲートウェイから送られてくるアクセスポイントの情報を基に、予め定義された指標に応じて各アクセスポイントが使用すべきパラメータ値を算出して決定する(ステップS23)。例えば、収集する情報が周波数チャネル上で運用する周辺の基地局数、受信する受信信号のレベル、チャネルの時間占有率等の無線環境情報である場合に、パラメータ算出部86は、この無線環境情報に基づいて、各々のアクセスポイントにおいて周波数利用効率が改善するように、パラメータを算出する。そして、パラメータ算出部86は、決定したパラメータ値をサービスゲートウェイ96に通知し(ステップS24)、各アクセスポイントに反映させる(ステップS25)。これを受けたアクセスポイント16のパラメータ設定部116は、このパラメータ値に基づき設定を行う。そして、アクセスポイント16は、マネジメントエンジン8から指定されたパラメータ値を基に配下の無線端末26と通信を行う(ステップS26)。
 なお、このパラメータ算出とパラメータ設定は、マネジメントエンジン8が対象としている全てのアクセスポイントに対して行う。
<第3実施形態>
 次に、本発明の第3実施形態における無線通信システムを説明する。第3実施形態における無線通信システムの全体の構成は、図7に示す構成と同様である。第3実施形態では、マネジメントエンジン8がアクセスポイントだけではなく、アクセスポイント配下の無線端末において検知される無線環境情報を収集した上で、各アクセスポイントおよび配下の無線端末に対する適切なパラメータ値を計算し、設定する。
 次に、図11を参照して、図7に示すマネジメントエンジン8と、サービスゲートウェイ91、92、93、94、95、96と、アクセスポイント11、12、13、14、15、16と、無線端末21、22、23、24、25、26との間でやりとりされる情報について説明する。図11は、図7に示すマネジメントエンジン8と、サービスゲートウェイ91、92、93、94、95、96と、アクセスポイント11、12、13、14、15、16と、無線端末21、22、23、24、25、26との間でやりとりされる環境情報及び制御指示の流れを示す図である。図11に示すように、マネジメントエンジン8は、サービスゲートウェイ91、92、93、94、95、96と、アクセスポイント11、12、13、14、15、16とを介して、無線端末21、22、23、24、25、26それぞれから環境情報を受信する。そして、マネジメントエンジン8内で各アクセスポイント11、12、13、14、15、16及び各無線端末21、22、23、24、25、26が使用すべきパラメータ値を算出し、算出したパラメータ値を制御指示として、サービスゲートウェイ91、92、93、94、95、96を介して、アクセスポイント11、12、13、14、15、16及び各無線端末21、22、23、24、25、26それぞれに送信する。アクセスポイント11、12、13、14、15、16及び各無線端末21、22、23、24、25、26それぞれは、この制御指示を受けて、自己の設定を行う。
 次に、マネジメントエンジン8が各無線端末21、22、23、24、25、26に対して指示する制御指示の情報について説明する。制御指示の情報の詳細は、以下の通りである。
・使用すべき送信電力値
・使用すべきCCA値
・使用すべきデータレート、MCS
・使用すべきチルト角
・使用すべきアンテナ
・OFDMA、MU-MIMO使用に関する情報
・RTSスレッショルド値
・BSSBasicRateSet値
・スリープモード
・CSMA/CAに関するパラメータ(CWmin、CWmax、AIFSN、TXOP)
・QoSに関するパラメータ
・アグリゲーション
 次に、図12を参照して、第3実施形態による無線通信システムの動作を説明する。図12は、第3実施形態による無線通信システムの動作を示すシーケンス図である。ここでは、サービスを受けるユーザが新たにアクセスポイント16を戸建住宅2に設置し運用を始めるものとして説明する。アクセスポイント16をサービスゲートウェイ96配下に設置し運用を開始すると、サービスゲートウェイ96はOSAP(OSGiプラットフォーム)を用いて新規のアクセスポイント16の存在を把握し、アクセスポイント16の製造メーカ、型番などの設置機器識別情報を取得する(ステップS31)。機器識別情報の取得は、UPnP(Universal Plug and Play)やNetBIOS(Network Basic Input Output System)等のプロトコルを用いて行う。そして、サービスゲートウェイ96は、この取得情報をバンドル配信サーバ9に転送し、新規設置されたアクセスポイント16と通信可能なバンドルの配信を要求する(ステップS32)。
 バンドル配信サーバ9は、自サーバ内で管理されているバンドルの中から、サービスゲートウェイ96から送られてきたアクセスポイント16の製造メーカ、型番、ファームウェアバージョンなどの情報に該当する適切なバンドルをサービスゲートウェイ96に配信する(ステップS33)。バンドル配信サーバ9よりバンドルを受け取ったサービスゲートウェイ96は、バンドルを用いてアクセスポイント16内の情報を収集したり、アクセスポイント16に配下の無線端末26の情報収集を要求したり、また、アクセスポイント16および配下の無線端末26の各種パラメータ設定を行ったりする。
 次に、アクセスポイント16は、製造メーカのデフォルトパラメータ値を用いてセル(BSS)を形成し、CSMA/CAを用いたキャリアセンスを実施し(ステップS34)、配下無線端末と通信を行う(ステップS35)。また、アクセスポイント16は、定期的に使用可能なすべての周波数チャネル又は現在運用中の周波数チャネルを一定期間に亘ってスキャンし、取得する周辺無線環境情報を保持する。取得する周辺無線環境情報の量は、アクセスポイント内蔵の機能に依存する。例えば、アクセスポイント16は、2.4GHzと5GHzの両周波数帯での通信が可能な場合は、それぞれの周波数帯において使用可能な各チャネル上の情報、例えば、各チャネル上の他アクセスポイント数、それぞれのアクセスポイントからの受信信号レベルを収集する。一方、2.4GHz帯又は5GHz帯のどちらかのみ使用可能な場合、アクセスポイント16は、その周波数帯における情報のみ収集する。
 サービスゲートウェイ96は、バンドルを介して、アクセスポイント16の環境情報保持インタフェースにアクセスし、運用し始めたアクセスポイント16に対して、現在の設定情報を要求する(ステップS36)。また、サービスゲートウェイ96は、アクセスポイント16に対して配下の無線端末26における環境情報の収集を要求する(ステップS37)。アクセスポイント16は、配下の無線端末26に対して、例えば、Actionフレーム等のフレームを送信することにより環境情報の収集を要求する。これを受けて、無線端末26は、設定情報と環境情報をアクセスポイント16に対して通知する(ステップS38)。アクセスポイント16は、無線端末26から通知された設定情報、環境情報と、アクセスポイント16自身の現在の設定情報とをサービスゲートウェイ96に対して通知する(ステップS39)。そして、アクセスポイント16は、無線端末26と通信を行う(ステップS40)。
 次に、サービスゲートウェイ96は、制御対象のアクセスポイント16の登録依頼と、アクセスポイント16から通知された現在の設定情報、無線端末26から通知された設定情報、環境情報をマネジメントエンジン8に通知する(ステップS41)。
 これらの情報を取得したマネジメントエンジン8は、アクセスポイント16、配下の無線端末26に関する情報を、自装置内の情報記憶部84に記憶する。そして、マネジメントエンジン8は、必要に応じて、サービスゲートウェイ96に対して、アクセスポイント16の情報収集間隔や収集すべき情報について通知する(ステップS42)。
 次に、サービスゲートウェイ96は、マネジメントエンジン8から通知された情報収集間隔又はバンドル内に定義されている情報収集間隔に応じて定期的に配下のアクセスポイント16の環境情報保持部117に対して、設定情報・環境情報を要求する(ステップS43)。そして、アクセスポイント16は、配下の無線端末26に対して、設定情報・環境情報を要求する(ステップS44)。これに対して、配下の無線端末26は、設定情報と環境情報をアクセスポイント16に対して通知する(ステップS45)。
 次に、アクセスポイント16は、収集した情報をサービスゲートウェイ96に転送する(ステップS46)。そして、アクセスポイント16は、配下の無線端末26と通信を行う(ステップS47)。続いて、サービスゲートウェイ96は、アクセスポイント16から転送された収集情報をさらにマネジメントエンジン8へ転送する(ステップS48)。
 サービスゲートウェイ96は、情報収集間隔又は情報転送間隔が定まっていない場合でも、例えば、アクセスポイント16のスループットが閾値以下になった場合、アクセスポイント16のバッファサイズが閾値を超えた場合、アクセスポイント16周辺の他アクセスポイント数が閾値を超えた場合など、予め定義された指針に基づいて、必要に応じてアクセスポイント16の情報を収集したり、マネジメントエンジン8にアクセスポイント16の情報を転送したりする。
 次に、マネジメントエンジン8のパラメータ算出部86は、設定情報記憶部88と、性能データベース89に記憶されている情報とを参照して、定期的に、又は、予め定義された指針に応じて、管理対象のネットワークに繋がっている各サービスゲートウェイから送られてくるアクセスポイントや配下無線端末の情報を基に、予め定義された指標に応じて各アクセスポイントや配下無線端末が使用すべきパラメータ値を算出して決定する(ステップS49)。例えば、収集する情報が周波数チャネル上で運用する周辺の基地局数、受信する受信信号のレベル、チャネルの時間占有率等の無線環境情報である場合に、パラメータ算出部86は、この無線環境情報に基づいて、各々のアクセスポイントにおいて周波数利用効率が改善するように、パラメータを算出する。そして、パラメータ算出部86は、決定したパラメータ値をサービスゲートウェイ96に通知し(ステップS50)、各アクセスポイントに反映させる(ステップS51)。
 また、アクセスポイント16は、決定したパラメータを配下の無線端末26に通知し(ステップS52)、各無線端末に反映させる。これを受けて、アクセスポイント16のパラメータ設定部116は、このパラメータ値に基づき設定を行う。また、無線端末26は、このパラメータ値に基づき設定を行う。そして、アクセスポイント16は、マネジメントエンジン8から指定されたパラメータ値を基に配下の無線端末26と通信を行う(ステップS53)。
<第4実施形態>
 次に、本発明の第4実施形態における無線通信システムを説明する。第4実施形態では、アクセスポイントや配下無線端末から通知される設定情報や環境情報がマネジメントエンジン8内ではなく、ネットワーク内の異なる場所に記憶される。マネジメントエンジン8がこのようにネットワーク内で保存された情報を基に定期的に、各無線LAN基地局および配下無線端末において適切なパラメータ値を計算し、設定する。
 図13は、第4実施形態による無線通信システムの全体の構成を示す図である。図13において、図7に示すシステムと同一の部分には同一の符号を付し、その説明を省略する。図13に示すシステムが図7に示すシステムと異なる点は、内部に情報記憶部84(図2参照)を備えていないマネジメントエンジン80を備えており、アクセスポイントや配下の無線端末から通知される設定情報や環境情報を記憶する情報記憶部84に相当する情報記憶部841をマネジメントエンジン80が接続されるネットワーク上の別の場所に設けた点である。このように、分割された複数の情報記憶部841を設けることにより、マネジメントエンジン80の処理負荷を低減することができる。
 なお、図13に示す無線通信システムは、図7に示す無線通信システムと比較して、情報記憶部841が設けられる場所が異なるのみで、処理動作は図7に示す無線通信システムの処理動作と同様であるので、ここでは詳細な説明を省略する。
 また、前述した説明では、OSAP(OSGi Service Aggregation Platform)を用いて、メーカや種類などを問わずに、ネットワークに接続されているどのような無線LAN基地局に対してもネットワーク側から適切なパラメータの設定ができるものとしている。しかし、必ずしもOSAPを使う必要がなく、また、必ずしもサービスゲートウェイを介した無線LAN基地局の制御を行う必要がなく、ネットワーク上のマネジメントエンジン(ME)または、干渉マネジメントエンジン(IME)は無線LAN基地局からの情報収集および制御にどのような通信手段を用いても構わない。
 本システムでは、ネットワーク側に存在するマネジメントエンジンが、バンドルと呼ばれるソフトウェアを介して異なるメーカの異なる型番の無線LAN基地局と通信することが可能となる。これにより、マネジメントエンジンで決定される各無線LAN基地局の適切なパラメータ値をそれぞれの無線LAN基地局に設定することで、無線LAN基地局が密集する環境において局地的なスループットの低下を回避し、無線LANシステムの周波数利用効率を向上することができる。したがって、メーカや種類などを問わずに、ネットワークに接続されているどのような無線LAN基地局に対してもネットワーク側から適切なパラメータを設定することができるネットワーク制御型の無線通信システムを実現することができる。本システムを用いることで、システム全体の周波数利用効率の向上につながるよう、各無線LAN基地局の使用周波数チャネル、送信電力値、アクセスパラメータ値、QoSパラメータ値など数々のパラメータを最適化することが可能になる。
<第5実施形態>
 以下、図面を参照して、本発明の第5実施形態における無線通信システム、及びチャネル選択方法を説明する。図14は、同実施形態における無線通信システムの構成を示すブロック図である。無線基地局1001、1002は、例えば、無線LANのアクセスポイントであり、不図示の無線端末装置とチャネル割当サーバ1003より通知されたチャネル(周波数帯域)を用いて無線通信を行う。
 無線基地局1001は、無線通信部1011と、制御部1012とを備えている。制御部1012は、アクセス権を獲得するアクセス権獲得部1013と、チャネル割当サーバ1003より通知されたチャネルを設定するチャネル設定部1014と、無線環境情報を保持する無線環境情報保持部1015を備える。無線通信部1011は、チャネル設定部1014より設定されたチャネルを使用して無線端末装置と無線通信を行う。無線通信部1011は、例えば、CSMA/CAによるアクセス制御を用いて無線通信を行う。また、無線通信部1011は、無線通信において利用可能なすべてのチャネルそれぞれに対して、予め定められた期間スキャンし、スキャン結果を無線環境情報保持部1015に出力する。
 無線基地局1002は、無線通信部1021と、制御部1022とを備えている。制御部1022は、アクセス権を獲得するアクセス権獲得部1023と、チャネル割当サーバ1003より通知されたチャネルを設定するチャネル設定部1024と、無線環境情報を保持する無線環境情報保持部1025を備える。無線通信部1021は、チャネル設定部1024より設定されたチャネルを使用して無線端末装置と無線通信を行う。無線通信部1021は、例えば、CSMA/CAによるアクセス制御を用いて無線通信を行う。また、無線通信部1021は、無線通信において利用可能なすべてのチャネルそれぞれに対して、予め定められた期間スキャンし、スキャン結果を無線環境情報保持部1025に出力する。
 チャネル割当サーバ1003は、通信部1031と、チャネル算出部1032と、情報収集部1033と、制御部1034を備える。通信部1031は、無線基地局1001、1002と通信を行う。チャネル算出部1032は、情報収集部1033内に保持されている情報を基に各々の無線基地局1001、1002が使用すべきチャネルを算出する。情報収集部1033は、システム内に存在するチャネル割当制御対象の無線基地局1001、1002の無線環境情報を収集する。制御部1034は、チャネル割当サーバの動作を統括して制御する制御部である。
 次に、図14に示す無線通信システムの動作を説明する。まず、無線基地局1001の運用が開始されると、無線通信部1011は、予め定められた時間間隔毎に、無線通信において利用可能なすべてのチャネルそれぞれを予め定められた期間スキャンし、自無線基地局周辺の無線環境情報を無線環境情報保持部1015に出力する。この無線環境情報には、利用可能なそれぞれのチャネルにおいて存在する他の無線基地局数やそれぞれの無線基地局の識別情報、また、それぞれの無線基地局から受信するビーコンなどの信号の受信信号強度(RSSI値:Received Signal Strength Indicator)、単位時間当たりのチャネル使用率などが含まれる。さらに、無線環境情報には、自セル内の無線端末装置数やそれぞれの無線端末装置から受信する信号のRSSI値なども含まれる。
 次に、チャネル算出部1032は、情報収集部1033より収集される各々の無線基地局の無線環境情報を基にそれぞれの無線基地局が使用すべき無線チャネルを以下のように計算する。まず、チャネルを割り当てる無線基地局において利用可能な全てのチャネル上で(1)式に示すU値を算出する。
 U=1-該当チャネル上の合計媒体使用率 ・・・(1)
 ここで、合計媒体使用率とは、自無線基地局以外の無線装置(他の無線基地局や自セル以外の無線端末装置)が単位時間で該当無線チャネルを使用する割合である。
 上記U値は、チャネルを割り当てる無線基地局において、占有可能な時間割合を示す値である。チャネルを割り当てる無線基地局において、占有可能な時間Uが最も高いチャネルを選択すると取得スループットが最大となると予測できるので、チャネル算出部1032は、該当無線基地局の仮チャネルとしてU値が最大となるチャネルを算出する。
 チャネル算出部1032は、システムの制御対象の全無線基地局の仮チャネルを決定した後、全ての無線基地局のU値の合計値Utotalを計算する。そして、媒体占有時間が最小の無線基地局のスループット向上を目指す。全ての無線基地局の仮チャネルが決定した後、U値が所定のしきい値以下となる無線基地局を選択し、当該無線基地局のU値が現在値よりも大きくなる他チャネルがないかを確認する。
 具体的には、当該無線基地局において、利用可能な全てのチャネル上で再度U値を計算し、U値が現在値よりも大きくなるチャネルを1つ算出し、システム内の全ての制御対象無線基地局の合計U値を計算し、合計U値が現在の合計U値よりも小さくならないか否かを確認する。当該無線基地局が新たに選択されたチャネルを使用してもシステムの合計U値が現在の合計U値よりも劣化しない場合は、新たに選択されたチャネルを当該無線基地局の新仮チャネルとする。続いて、もう一度、最も小さいU値を持つ無線基地局のU値が向上するようなチャネルを選択する。
 このように、最も小さいU値を持つ無線基地局のU値が向上するようなチャネルを選択する動作を予め定められた複数回(再帰回数 Max_r)実施することで、システムの合計スループットの向上やセル間でのスループットの公平性を向上できる。予め決められたMax_r回数上記の動作を繰り返し、最終的に新仮チャネルを各々の無線基地局に反映させる。
 次に、図15、図16を参照して、図14に示すチャネル算出部1032がチャネル選択処理を行う動作を説明する。図15、図16は、図14に示すチャネル算出部1032がチャネル選択処理を行う動作を示すフローチャートである。
 まず、再帰回数(r)に0を代入する(ステップS101)。次に、制御対象チャネル未設定無線基地局リスト(以下、「チャネル未設定リスト」と略記する場合がある)よりチャネル(以下、図面においてはCHとして示す)を設定する無線基地局を選択する(ステップS102)。このとき、無線基地局の選択方法として、ランダムに選択する方法、手動設定順(XML(Extensible Markup Language)ファイルに記載のPriority順)に選択する方法、ボトルネックが大きな無線基地局の順(周辺無線基地局数が多い順)に選択する方法が適用できる。そして、チャネル割当アルゴリズムに応じて、選択された無線基地局に設定するチャネルを仮決定する(ステップS103)。
 次に、選択したチャネルを無線基地局の仮決定チャネルとし(ステップS104)、選択された無線基地局をチャネル未設定リストから削除する(ステップS105)。そして、チャネル未設定リストにまだ無線基地局が残っているかを判定し(ステップS106)、チャネル未設定リストに無線基地局が残っていれば、ステップS102に戻り、処理を繰り返す。
 一方、チャネル未設定リストに無線基地局が残っていなければ、各制御対象無線基地局の占有可能時間率UAP-xと、UAP-xの合計および積(Utotal,Uproduct)とを計算し、UAP-x,Utotal,Uproductおよび制御対象無線基地局の仮決定チャネルセットを記憶する(ステップS107)。続いて、UmaxにUtotal又はUproductを代入する(ステップS108)。そして、再帰回数(r)を1つ増やす(r++;)(ステップS109)。なお、Utotal又はUproductのいずれをUmaxに代入するかは、例えば、ネットワークの運用指針によって決定すればよい。具体的には、下位スループットの向上を目指すシステムの場合はUproductを採用し、システム全体の合計スループットの改善を目指すシステムの場合はUtotalを採用すればよい。
 次に、再帰回数(r)<上限値(Max_r)の条件を満たすか否かを判定し(ステップS110)、条件を満たしていれば、UAP-xが所定のしきい値UTH以下となる1台の無線基地局を選択する(ステップS111)。なお、UTHは0以上1以下の値である。続いて、選択した無線基地局に新しく設定するチャネルを選ぶ(ステップS112)。そして、該当チャネルがあるか否かを判定する(ステップS113)。この判定の結果、該当チャネルがなければ、ステップS114において、UAP-xがUTH以下となる無線基地局のうち、ステップS111および当該ステップS114でまだ選択していない1台の無線基地局をランダムに選択して、ステップS112に戻る。
 一方、該当チャネルがあれば、各制御対象無線基地局のUAP-xと、U値を計算する(ステップS115)。そして、U≧Umaxを満たすかを判定する(ステップS116)。この判定の結果、U≧Umaxを満たせば、選択したチャネルを選択した無線基地局の新仮決定チャネルとして(ステップS117)、ステップS107に戻る。一方、U≧Umaxを満たさなければ、選択チャネルを無視して(ステップS118)、ステップS112に戻る。
 次に、ステップS110において、再帰回数(r)<上限値(Max_r)を満たさなければ、全制御対象の無線基地局の仮決定チャネルセットを決定チャネルとして処理を終了する(ステップS119)。
 次に、図16を参照して、図15に示すステップS103、ステップS112の処理動作の詳細を説明する。図16は、図15に示すステップS103、ステップS112の処理動作の詳細を示すフローチャートである。
 まず、制御対象外無線基地局を考慮するか否かを判定する(ステップS121)。この判定の結果、制御対象外無線基地局を考慮する場合、選択された無線基地局が検知した周辺に存在する制御対象外無線基地局(以下、「検知可能周辺制御対象外無線基地局」という)の情報も考慮する(ステップS122)。一方、制御対象外無線基地局を考慮しない場合、制御対象外無線基地局の情報を無視する(ρ’=0とする)(ステップS123)。ここで、ρ’とは、選択された制御対象無線基地局において、検知可能周辺制御対象外無線基地局によるチャネル毎の合計媒体占有時間率である。
 次に、選択された無線基地局において、チャネル毎の、媒体使用率の合計値(ρ+ρ’)を計算する(ステップS124)。但し、制御対象無線基地局のうちチャネル未設定無線基地局の情報を無視する。ここで、ρは、選択された制御対象無線基地局において、検知可能他制御対象無線基地局のうち、既に仮チャネルが決定された制御対象無線基地局によるチャネル毎の媒体占有時間率である。
 次に、選択された無線基地局において占有可能率UAP-x (CH-y)値が最大となるチャネルを選択する(ステップS125)。占有可能率UAP-x (CH-y)値が最大となる複数のチャネルが存在する場合は、既にチャネルが決定された周辺の制御対象無線基地局が最も少なく使用するチャネルを選択する。
 次に、図17を参照して、図15に示す処理動作の変形例を説明する。図17において、図15に示す処理動作と同じ処理動作については、同じ符号を付け、その説明を簡単に行う。
 まず、再帰回数(r)に0を代入する(ステップS101)。次に、制御対象チャネル未設定無線基地局リストよりチャネルを設定する無線基地局を選択する(ステップS102)。このとき、無線基地局の選択方法として、ランダムに選択する方法、予め設定した順に選択する方法、周辺無線基地局数が多い順に選択する方法、チャネル占有可能な時間割合が小さい順に選択する方法などがある。本システムでは、これらいずれかの方法で、選択された無線基地局に設定するチャネルを仮決定する(ステップS103)。
 次に、選択したチャネルを無線基地局の仮決定チャネルとし(ステップS104)、選択された無線基地局をチャネル未設定リストから削除する(ステップS105)。そして、チャネル未設定リストにまだ無線基地局が残っているかを判定し(ステップS106)、チャネル未設定リストに無線基地局が残っていれば、ステップS102に戻り、処理を繰り返す。
 一方、チャネル未設定リストに無線基地局が残っていなければ、各制御対象無線基地局の占有可能時間率UAP-xと、UAP-xの合計および積(Utotal,Uproduct)とを計算する(ステップS107a)。また、UAP-x,Utotal,Uproductおよび制御対象無線基地局の仮チャネルセットを記憶する(ステップS107b)。続いて、UmaxUtotal又はUproductを代入する(ステップS108)。そして、再帰回数(r)を1つ増やす(r++;)(ステップS109)。
 次に、処理の終了条件を満たしたか否かを判定し(ステップS110a)、終了条件を満たしていなければ、UAP-xが所定のしきい値UTH以下となる1台の無線基地局を選択する(ステップS111)。このとき、ステップS110aにおける終了条件に関しては、(1)全無線基地局のU値が1となる、(2)再帰回数(r)が上限値(Max_r)に達する、(3)予め設定された収束条件を満たす、のうち少なくともいずれか1つを満たした時に、終了条件を満たしたものと見なす。また、(3)予め設定された収束条件に関しては、r回目の繰り返し計算後における下記(A)~(D)の評価値(どの評価値を用いるのか予め設定する)のr-n回目の評価値に対する改善率がY%以内の場合は、システムが十分収束した(収束条件を満たした)と判断し、r回目で繰り返し計算を終了し、その時点の仮チャネルを各制御対象無線基地局に対して設定する。
(A)最小U値
(B)Utotal
(C)Uproduct
(D)U値の下位X%
 設定項目としては、(A)~(D)のうち使用する評価値、n値、Y値、上記(D)の場合は、X値である。
 次に、選択した無線基地局のU値が大きくなるよう新しく設定する別チャネルを選ぶ(ステップS112)。そして、該当チャネル、つまり、現在の仮チャネルよりもU値が大きくなる別のチャネルがあるか否かを判定する(ステップS113)。この判定の結果、該当チャネルがなければ、選択した無線基地局の仮チャネルを変更せずに(ステップS114a)、ステップS109に戻る。
 一方、該当チャネルがあれば、各制御対象無線基地局のUAP-xと、U’値(=Utotal又はUproduct)を計算する(ステップS115a)。そして、U’≧Umaxを満たすかを判定する(ステップS116a)。この判定の結果、U’≧Umaxを満たせば、選択したチャネルを選択した無線基地局の仮チャネルとして(ステップS117)、ステップS107bに戻る。一方、U’≧Umaxを満たさなければ、選択した無線基地局の仮チャネルを変更せずに(ステップS118a)、ステップS109に戻る。
 次に、ステップS110において、終了条件を満たしていれば、全制御対象の無線基地局の仮チャネルセットを決定チャネルとして処理を終了する(ステップS119)。
 次に、図17に示すステップS112の処理動作の詳細を説明する。図17に示すステップS112の処理動作は図16に示す処理動作と同様であるので、図16を参照して処理動作を説明する。
 まず、制御対象外無線基地局、つまり、本チャネル割当システムで制御できない無線基地局を考慮するか否かを判定する(ステップS121)。これは、チャネル割当システムのオペレータによる入力パラメータであり、この判定の結果、制御対象外無線基地局を考慮する場合、選択された無線基地局が検知した周辺に存在する制御対象外無線基地局の情報も考慮する(ステップS122)。一方、制御対象外無線基地局を考慮しない場合、制御対象外無線基地局の情報を無視する(つまり、全ての制御対象外無線基地局の媒体使用率値ρ’=0とする)(ステップS123)。
 次に、選択された無線基地局において、チャネル毎の、媒体使用率の合計値(ρ+ρ’)を計算する(ステップS124)。ここで、前述したように、ρは、選択された制御対象無線基地局において、検知可能他制御対象無線基地局のうち、既に仮チャネルが決定された制御対象無線基地局によるチャネル毎の媒体占有時間率である。また、ρ’は、選択された制御対象無線基地局において、検知可能周辺制御対象外無線基地局によるチャネル毎の合計媒体占有時間率である。
 次に、選択された無線基地局において占有可能率UAP-x (CH-y)値が最大となるチャネルを選択する(ステップS125)。占有可能率UAP-x (CH-y)値が最大となる複数のチャネルが存在する場合は、既にチャネルが決定された周辺の制御対象無線基地局が最も少なく使用するチャネルを選択する。
<第6実施形態>
 次に、本発明の第6実施形態における無線通信システム、及びチャネル選択方法を説明する。第6実施形態における装置の構成は、図14に示す構成と同じであるため、詳細な説明を省略する。
 次に、第6実施形態における無線通信システムの動作を説明する。まず、無線基地局1001の運用が開始されると、無線通信部1011は、予め定められた時間間隔毎に、無線通信において利用可能なすべてのチャネルそれぞれを予め定められた期間スキャンし、自無線基地局周辺の無線環境情報を無線環境情報保持部1015に出力する。この無線環境情報には、利用可能なそれぞれのチャネルにおいて存在する他の無線基地局数やそれぞれの無線基地局の識別情報、また、それぞれの無線基地局から受信するビーコンなどの信号の受信信号強度(RSSI値:Received Signal Strength Indicator))、単位時間当たりのチャネル使用率などが含まれる。さらに、無線環境情報には、自セル内の無線端末装置数やそれぞれの無線端末装置から受信する信号のRSSI値なども含まれる。
 チャネル算出部1032は、情報収集部1033より収集される各々の無線基地局の無線環境情報を基にそれぞれの無線基地局が使用すべき無線チャネルを以下のように計算する。まず、チャネルを割り当てようとする無線基地局において、(2)式によって、使用予定の時間占有率を計算する。時間占有率とは、全体の時間を1とした時に該当アプリケーション又は無線端末装置が該当無線チャネルを占有する時間の割合である。
Figure JPOXMLDOC01-appb-M000001
 ここで、合計時間占有率とは、全体の時間を1とした時に無線基地局及びその配下の無線端末装置が使用予定の時間の割合である。また、STAは無線端末を意味する。
 そして、チャネルを割り当てようとする無線基地局において、使用可能な各チャネルにおいて次式を計算する。
Figure JPOXMLDOC01-appb-M000002
 そして、次式に示すとおり合計時間占有率αが最も小さいチャネルを選択する。このチャネルを該当する無線基地局において使用予定の仮決定チャネルとする。
Figure JPOXMLDOC01-appb-M000003
 次に、上記無線基地局において上記仮決定チャネルの使用が決定されると得られる満足度U値を次式によって計算する。なお、満足度U値=1は、十分満足できる状況である。U値の取り得る範囲は[0,1]であるが、高い方が好ましい。
Figure JPOXMLDOC01-appb-M000004
 全ての無線基地局において上記U値の計算が終わると、再度全ての無線基地局において上記U値を計算する。そして、最も小さいU値を持つ無線基地局のU値が高くなるようにチャネルの再選択を試みる。ここで、条件は2つある。第1の条件は、チャネル再設定対象無線基地局のU値が減少しないことである。第2の条件は、上記無線基地局に対してチャネルの再設定を行なっても、(1)全ての無線基地局における合計満足度(U値の合計値)は減少しないこと、(2)全ての無線基地局におけるU値の積算値は減少しないことである。
 上記(1)、(2)は1つ満たしてもよく、両方満たしても良い。このように最も小さいU値を持つ無線基地局の新しいチャネルが決定されたら、再度、最も小さいU値を持つ無線基地局のU値が向上するようチャネルの変更を試みる。
 このように、最も小さいU値を持つ無線基地局のU値が向上するようなチャネルを選択する動作を予め定められた複数回(再帰回数 Max_r)実施することで、システムの合計スループットを向上できるとともにセル間でのスループットの公平性を向上できる。予め決められたMax_r回数上記の動作を繰り返し、最終的に新仮チャネルを各々の無線基地局に反映させる。
 なお、上記に示すU値や他の算出式は一例であり、その他のチャネル使用率の算出方法を用いても良い。また、チャネル使用率ではなく、スループットの測定値又は予測値を元に最適なチャネルの割り当てを行なっても良い。
 次に、図18、図19を参照して、第6実施形態におけるチャネル算出部1032がチャネル選択処理を行う動作を説明する。図18、図19は、第6実施形態におけるチャネル算出部1032がチャネル選択処理を行う動作を示すフローチャートである。図18、図19において、図15、図16、図17に示す処理動作と同じ処理動作については、同じ符号を付け、その説明を簡単に行う。
 まず、再帰回数(r)に0を代入する(ステップS101)。次に、制御対象チャネル未設定無線基地局リストよりチャネルを設定する無線基地局を選択する(ステップS102)。このとき、無線基地局の選択方法として、ランダムに選択する方法、手動設定順(XMLファイルに記載のPriority順)に選択する方法、ボトルネックが大きな無線基地局の順(周辺無線基地局数が多い順)に選択する方法が適用できる。そして、チャネル割当アルゴリズムに応じて、選択された無線基地局に設定するチャネルを仮決定する(ステップS103)。
 次に、選択したチャネルを無線基地局の仮決定チャネルとし(ステップS104)、選択された無線基地局をチャネル未設定リストから削除する(ステップS105)。そして、チャネル未設定リストにまだ無線基地局が残っているかを判定し(ステップS106)、チャネル未設定リストに無線基地局が残っていれば、ステップS102に戻り、処理を繰り返す。
 一方、チャネル未設定リストに無線基地局が残っていなければ、各制御対象無線基地局の満足度Uと、Uの合計および積(Utotal,Uproduct)とを計算し、U,Utotal,Uproductおよび制御対象無線基地局の仮決定チャネルセットを記憶する(ステップS107c)。続いて、UmaxにUtotal又はUproductを代入する(ステップS108)。そして、再帰回数(r)を1つ増やす(r++;)(ステップS109)。
 次に、再帰回数(r)<上限値(Max_r)の条件を満たすか否かを判定し(ステップS110)、条件を満たしていれば、Uが所定のしきい値UTH以下となる1台の無線基地局を選択する(ステップS111a)。続いて、選択した無線基地局に新しく設定するチャネルを選ぶ(ステップS112)。そして、該当チャネルがあるか否かを判定する(ステップS113)。この判定の結果、該当チャネルがなければ、ステップS114bにおいて、UがUTH以下となる無線基地局のうち、ステップS111aおよび当該ステップS114bでまだ選択していない1台の無線基地局をランダムに選択して、ステップS112に戻る。
 一方、該当チャネルがあれば、各制御対象無線基地局のUと、Utotal,Uproductを計算するとともに、U’にUtotal又はUproductを代入する(ステップS115b)。そして、U’≧Umaxを満たすかを判定する(ステップS116a)。この判定の結果、U’≧Umaxを満たせば、選択したチャネルを選択した無線基地局の新仮決定チャネルとして(ステップS117)、ステップS107cに戻る。一方、U’≧Umaxを満たさなければ、選択チャネルを無視して(ステップS118)、ステップS112に戻る。
 次に、ステップS110において、再帰回数(r)<上限値(Max_r)を満たさなければ、全制御対象の無線基地局の仮決定チャネルセットを決定チャネルとして処理を終了する(ステップS119)。
 次に、図19を参照して、図18に示すステップS112の処理動作の詳細を説明する。図19は、図18に示すステップS112の処理動作の詳細を示すフローチャートである。
 まず、制御対象外無線基地局を考慮するか否かを判定する(ステップS121)。この判定の結果、制御対象外無線基地局を考慮する場合、選択された無線基地局が検知した周辺に存在する制御対象外無線基地局の情報も考慮する(ステップS122)。一方、制御対象外無線基地局を考慮しない場合、制御対象外無線基地局の情報を無視する(ρ’=0とする)(ステップS123)。
 次に、選択された無線基地局において、チャネル毎の、媒体使用率の合計値(ρ+ρ’)を計算する(ステップS124)。但し、制御対象無線基地局のうちチャネル未設定無線基地局の情報を無視する。
 次に、選択された無線基地局において占有可能率が最大となるチャネルを選択する(ステップS125)。占有可能率が最大となる複数のチャネルが存在する場合は、既にチャネルが決定された周辺の制御対象無線基地局が最も少なく使用するチャネルを選択する。
 次に、図20を参照して、図18に示す処理動作の変形例を説明する。図20において、図17、図18に示す処理動作と同じ処理動作については、同じ符号を付け、その説明を簡単に行う。
 まず、再帰回数(r)に0を代入する(ステップS101)。次に、制御対象チャネル未設定無線基地局リストよりチャネルを設定する無線基地局を選択する(ステップS102)。このとき、無線基地局の選択方法として、ランダムに選択する方法、予め設定した順に選択する方法、周辺無線基地局数が多い順に選択する方法、チャネル占有可能な時間割合が小さい順に選択する方法などがある。本システムでは、これらいずれかの方法で、選択された無線基地局に設定するチャネルを仮決定する(ステップS103)。
 次に、選択したチャネルを無線基地局の仮決定チャネルとし(ステップS104)、選択された無線基地局をチャネル未設定リストから削除する(ステップS105)。そして、チャネル未設定リストにまだ無線基地局が残っているかを判定し(ステップS106)、チャネル未設定リストに無線基地局が残っていれば、ステップS102に戻り、処理を繰り返す。
 一方、チャネル未設定リストに無線基地局が残っていなければ、各制御対象無線基地局の満足度Uと、Uの合計および積(Utotal,Uproduct)とを計算する(ステップS107d)。また、U,Utotal,Uproductおよび制御対象無線基地局の仮チャネルセットを記憶する(ステップS107e)。続いて、UmaxにUtotal又はUproductを代入する(ステップS108)。そして、再帰回数(r)を1つ増やす(r++;)(ステップS109)。
 次に、処理の終了条件を満たしたか否かを判定し(ステップS110a)、終了条件を満たしていなければ、Uが所定のしきい値UTH以下となる1台の無線基地局を選択する(ステップS111a)。ステップS110aにおける終了条件に関しては、(1)全無線基地局のU値が1となる、(2)再帰回数(r)が上限値(Max_r)に達する、(3)予め設定された収束条件を満たす、のうち少なくともいずれか1つを満たした時に、終了条件を満たしたものと見なす。また、(3)予め設定された収束条件に関しては、r回目の繰り返し計算後における下記(A)~(D)の評価値(どの評価値を用いるのか予め設定する)のr-n回目の評価値に対する改善率がY%以内の場合は、システムが十分収束した(収束条件を満たした)と判断し、r回目で繰り返し計算を終了し、その時点の仮チャネルを各制御対象無線基地局に対して設定する。
(A)最小U値
(B)Utotal
(C)Uproduct
(D)U値の下位X%
 設定項目としては、(A)~(D)のうち使用する評価値、n値、Y値、上記(D)の場合は、X値である。
 次に、選択した無線基地局のU値が大きくなるよう新しく設定する別チャネルを選ぶ(ステップS112)。そして、該当チャネル、つまり、現在の仮チャネルよりもU値が大きくなる別のチャネルがあるか否かを判定する(ステップS113)。この判定の結果、該当チャネルがなければ、選択した無線基地局の仮チャネルを変更せずに(ステップS114a)、ステップS109に戻る。
 一方、該当チャネルがあれば、各制御対象無線基地局のU、Utotal、Uproductを計算するとともに、U’=UtotalまたはUproductとする(ステップS115b)。そして、U’≧Umaxを満たすかを判定する(ステップS116a)。この判定の結果、U’≧Umaxを満たせば、選択したチャネルを選択した無線基地局の仮チャネルとして(ステップS117)、ステップS107eに戻る。一方、U’≧Umaxを満たさなければ、選択した無線基地局の仮チャネルを変更せずに(ステップS118a)、ステップS109に戻る。
 次に、ステップS110において、終了条件を満たしていれば、全制御対象の無線基地局の仮チャネルセットを決定チャネルとして処理を終了する(ステップS119)。
 次に、図20に示すステップS112の処理動作の詳細を説明する。図20に示すステップS112の処理動作は図19に示す処理動作と同様であるので、図19を参照して処理動作を説明する。
 まず、制御対象外無線基地局、つまり、本チャネル割当システムで制御できない無線基地局を考慮するか否かを判定する(ステップS121)。これは、チャネル割当システムのオペレータによる入力パラメータであり、この判定の結果、制御対象外無線基地局を考慮する場合、選択された無線基地局が検知した周辺に存在する制御対象外無線基地局の情報も考慮する(ステップS122)。一方、制御対象外無線基地局を考慮しない場合、制御対象外無線基地局の情報を無視する(つまり、全ての制御対象外無線基地局の媒体使用率値ρ’=0とする)(ステップS123)。
 次に、選択された無線基地局において、チャネル毎の、媒体使用率の合計値(ρ+ρ’)を計算する(ステップS124)。ここで、前述したように、ρは、選択された制御対象無線基地局において、検知可能他制御対象無線基地局のうち、既に仮チャネルが決定された制御対象無線基地局によるチャネル毎の媒体占有時間率である。また、ρ’は、選択された制御対象無線基地局において、検知可能周辺制御対象外無線基地局によるチャネル毎の合計媒体占有時間率である。
 次に、選択された無線基地局において占有可能率UAP-x (CH-y)値が最大となるチャネルを選択する(ステップS125)。占有可能率UAP-x (CH-y)値が最大となる複数のチャネルが存在する場合は、既にチャネルが決定された周辺の制御対象無線基地局が最も少なく使用するチャネルを選択する。
 前述の第5又は第6実施形態における無線基地局1001を複数具備する無線通信システムでは、各無線基地局1001が無線通信に使用するチャネルを周囲の無線状況に応じて動的に決定することにより、スループットの制御対象無線基地局毎の(セル間での)ばらつきを抑えることができる。その結果、無線通信システムは、無線基地局1001が密集するエリアが生じる場合においても、また、無線環境が時間とともに変動する環境においても常に無線通信システム全体におけるスループットの低下を抑制することができる。
 この構成によれば、各々のセルが取得可能なスループットに大きな差が生じないように、また、システム全体のスループットが劣化しないように、ネットワーク側がチャネルを選択してチャネルを割り当てることが可能である。また、必要に応じて定期的に前述のチャネル割当を実施し、無線環境やトラヒック環境が変化しても無線通信に使用するチャネルが偏らないようにチャネルを割り当てることで、無線基地局が密集する環境においても局地的なスループットの低下を回避することができる。
 なお、前述した説明においては、U値が所定のしきい値以下となる無線基地局を選択する例を説明したが、必ずしもU値が所定のしきい値以下となるとなる無線基地局を選択する必要はなく、この例以外のU値が小さい無線基地局を選択するようにしてもよい。U値が小さい無線基地局とは、例えば、U値が下位から所定の割合の中に含まれる無線基地局のうち、いずれかの無線基地局のことである。前記所定のしきい値又は所定の割合を小さくすれば、仮チャネルの再割り当て対象の無線基地局数が少なくなるので、チャネル割当がより早く収束する。一方、前記所定のしきい値又は所定の割合が大きいと、仮チャネルの再割り当て対象の無線基地局数が多くなるので、チャネル割当の収束は遅くなるが、システムの合計スループットの最大化(最適化)が可能となる。
 なお、請求項に記載の「所定の条件を満たすU値を持つ無線LAN基地局」とは、U値が所定のしきい値以下となる無線基地局、U値が小さい無線基地局、全ての制御対象の無線基地局の中からランダムに1台ずつ選択した無線基地局などのことである。
 次に、計算機シミュレーションによる本発明の第5実施形態および第6実施形態の効果について説明する。以下に、計算機シミュレーションの検証環境およびその検証結果について説明する。図21は、計算機シミュレーション環境を示す図である。図21に示すように、100台の無線基地局を正方形になるように等間隔に並べ、それぞれの無線基地局と同じ位置に無線端末装置を一台ずつ配置した。本発明の第5実施形態または第6実施形態を用いて各々の無線基地局にチャネルを割り当てた場合と、各々の無線基地局が従来の最小RSSI法に基づいて使用するチャネルを自律分散的に選択するRSSI法を用いた場合と、使用可能チャネルからランダムにチャネルを選択するランダムチャネル選択法を用いた場合について、システムスループット、最小スループットを持つセルのスループット値、また公平性を示すFI値(非特許文献3)を計算した。なお、100台の無線基地局のうち、中央に位置する36台の無線基地局を評価対象とした。また、使用可能チャネル数を3とした。
 計算機シミュレーションでは、無線基地局はIEEE802.11標準規格で規定されているCSMA/CAに基づいてデータフレームを送信する。CSMA/CAパラメータ値は以下のとおりである。SlotTime=9μs、SIFS(Short Inter-Frame Space)=16μs、CWmin=15、CWmax=1023、ShortRetryLimit=7、LongRetryLimit=4、DataRate=54Mbps、BasicRate=6Mbps。
 計算機シミュレーションの際は、無線基地局から無線端末装置宛てにパケット長が1500Bytesの飽和状態のUDP(User Datagram Protocol)下りトラヒックを送信し、無線端末装置において10秒間で正しく受信できたパケット数を用いてそれぞれのセルのスループットを算出した。図22、図23、図24に計算シミュレーションにおけるシステムの合計スループット、最小スループットおよびFI値を示す。図22~図24に示す結果より、本発明の第5実施形態および第6実施形態では、従来のRSSI法に比べてシステムスループットが向上することが分かる。また、最小スループットおよびFI値も向上することが確認できる。
 以上説明したように、OSGi(Open Services Gateway Initiative)サービス・アグリゲーション・プラットフォーム(OSAP:OSGi Service Aggregation Platform)などを用いたネットワーク連携型無線LANにおいて、システムスループットを向上させ又はシステム内の最小スループットを持つセルのスループットを向上させるために、使用可能な複数のチャネルのうち、媒体使用率が最小のチャネルを割り当てるようにした。特に、評価指標を用いて無線基地局(又はセル)のチャネル利用率又は満足度を予測し、取得可能なスループット又は上記満足度が向上するように逐次的にチャネルの最適化を実施するようにした。これにより、無線基地局や無線端末装置の追加や削除による情報の更新、環境変化への対応が容易に可能になる。
<第7実施形態>
 次に、本発明の第7実施形態における無線通信システム及びチャネル選択方法を説明する。同実施形態における装置の構成は図14に示す構成と同様であるのでここでは詳細な説明を省略する。
 次に、第7実施形態における無線通信システムの動作を説明する。まず、無線基地局1001の運用が開始されると、無線通信部1011は、予め定められた時間間隔毎に、無線通信において利用可能なすべてのチャネルそれぞれを予め定められた期間スキャンし、自無線基地局周辺の無線環境情報を無線環境情報保持部1015に出力する。この無線環境情報には、利用可能なそれぞれのチャネルにおいて存在する他無線基地局数やそれぞれの無線基地局の識別情報、また、それぞれの無線基地局から受信するビーコンなどの信号の受信信号強度(RSSI値:Received Signal Strength Indicator)などが含まれる。さらに、無線環境情報には、自セル内の無線端末装置数やそれぞれの無線端末装置から受信する信号のRSSI値なども含まれる。このほか、無線環境情報には、利用可能な全てのチャネルの媒体使用率の情報も含まれる。
 次に、チャネル算出部1032は、情報収集部1033より収集される各々の無線基地局の無線環境情報を基にそれぞれの無線基地局が使用すべき無線チャネルを以下のように計算する。まず、チャネルを割り当てる無線基地局において利用可能な全てのチャネル上で(3)式に示すU値を算出する。
 U=単位時間当たりにおける無線基地局によるチャネルの占有可能時間長/単位時間当たりにおいて無線基地局のフレーム送受信に必要な総時間長 ・・・(3)
 ここで、(3)式の分子にある、単位時間当たりの占有可能時間長は、本システムのチャネル割当サーバ1003で制御できないチャネルを使用して無線通信を行う他の無線装置、デバイス、又は、外乱などにより使用できない総時間長(例えば、τ)を単位時間から差し引いて得られる残りの時間を本システムのチャネル割当サーバ1003で制御できる無線基地局およびその帰属無線端末装置で共用した場合に、占有できる時間長になる。
 一例として、単位時間を1とし、チャネル割当サーバ1003で制御できる無線基地局が全て飽和状態(常に送信するフレームを保有した状態)である場合は、(3)式の分子を以下のように計算できる。
 (3)式の分子=(1-τ)/(K+1)
 ここで、Kは、当該無線基地局において検知できチャネル割当サーバ1003で制御できる周辺における他の無線基地局の数である。
 また、(3)式の分母にある、「単位時間当たりにおいて無線基地局のフレーム送受信に必要な総時間長」は、無線基地局による制御フレームの送受信や帰属無線端末装置とのデータ通信に必要な時間の総和である。
 なお、(3)式の分子および分母は、過去のデータを用いた統計でもよく、瞬時値でもよい。また、「帰属無線端末装置とのデータ通信に必要な時間」とは、無線基地局から無線端末装置宛てのデータ送信に必要な時間と無線端末装置から無線基地局宛てのデータ送信に必要な時間の合計である。このうち、無線基地局から無線端末装置宛てのデータ送信(下りトラヒック)に必要な時間は、当該無線基地局内で収容する宛先無線端末装置別のデータパケットの数、パケット長、および、宛先無線端末装置別のデータ送信に使用するデータ転送速度の統計的情報を基に当該無線基地局によるチャネルの占有予定時間として下記のように計算できる。
 単位時間内で、
 N(個)=有線リンクから無線基地局に入力される無線端末装置宛ての平均データパケット数、
 B(bit)=有線リンクから無線基地局に入力される当該無線端末装置宛ての平均データパケット長、
 M(bit)=無線端末装置宛のA-MPDU(Aggregation MAC Protocol Data Unit)平均データ量(一回のチャネルアクセス権獲得で、M(bit)送信できる。)、
 D(bit/s)=無線リンクから当該無線端末装置宛てのデータ送信に使用する平均データレート、
とすると、無線基地局は、単位時間内で(N×B)/M回アクセス権を獲得する必要がある。
 占有予定時間:Toccupy=(N×B)/M×{(DIFS+BOave)+(M/D)+φ}
 占有予定時間率:Toccupy/Tunit
 ここで、φ(sec)は、SIFS、ACK伝送時間、RTS/CTS(Clear To Send)を用いる場合の所要時間、MACヘッダやプリアンブル等を考慮した、1つのデータフレーム当たりの平均オーバヘッド時間であり、Tunitは単位時間の長さ(sec)である。DIFSは、パケット送信するまでのキャリアセンス時間であり、BOaveは平均ランダム・バックオフ値である。BOaveは、BOave=CWmin×SlotTime/2で計算できる。
 ここで、図25A、図25B、図26を参照して、占有予定時間率について説明する。図25A、図25B、図26は、占有予定時間率を示す説明図である。例えば、有線リンクから無線基地局に各無線端末装置宛てデータパケットが図25Aに示すように入力されると仮定する。そして、無線基地局が無線リンク上で図25Aに示すデータを各無線端末装置宛に、図25Bに示す通り、送信したとする。無線基地局が無線端末装置との通信においてチャネルを占有した時間は以下の通りになる。
 無線端末装置宛てのデータ送信の際にチャネルを占有する時間:Tdata=t1+t2+t3+t4+t5
 無線基地局が、データ送信権を獲得するには固定待ち時間およびランダム・バックオフ時間待機する。その総和TBOは、TBO=(DIFS+BO1)+(DIFS+BO2)+(DIFS+BO3)+(DIFS+BO4)+(DIFS+BO5)
 無線端末装置宛てのデータ送信において必要な時間占有率=Tdata+TBO
 占有予定時間率を単位時間全体の観測に基づくのではなく、期待値をベースとして簡易に求めると以下のようになる(図26参照)。
 単位時間内で、有線リンクから無線基地局に入力される無線端末装置宛ての平均データパケット数=N(個)、有線リンクから無線基地局に入力される無線端末装置宛ての平均データパケット長=B(bit)、無線端末装置宛のA-MPDU平均データ量=M(bit)(一回のチャネルアクセス権獲得で、M(bit)送信できる。)とすると、単位時間内で無線基地局は(N×B)/M回アクセス権を獲得する必要がある。なお、図26において、MSDUは、MAC Service Data Unitである。
 無線リンクから無線端末装置宛てのデータ送信に使用する平均データレート=DataRate(bit/s)とし、αは、SIFS、ACK伝送時間、RTS/CTSを用いる場合の所要時間、MACヘッダやプリアンブル等を考慮した、1つのデータフレーム当たりの平均オーバヘッド時間であるとする。
 したがって、
 占有予定時間:Toccupy=(N×B)/M×{(DIFS+BOave)+(M/DataRate)+α}
 占有予定時間率:Toccupy/Tunit
となる。
 なお、上りトラヒックの場合は、無線基地局側では、帰属無線端末装置の無線LANモジュールにおける単位時間あたりのデータパケット入力数は取得できないため、上記と同様の方法で占有予定時間率を計算することはできない。しかし、無線基地局が無線リンク上で当該無線端末装置より受信したデータフレームおよびその際の各種オーバヘッド(DIFS+BOave+ACK送信時間など)を考慮して、当該無線端末装置の現在占有時間率を計算することはできる。
 上記U値は、チャネルを割り当てる無線基地局において、発生トラヒック量に対する見込みスループット値を示しており、U値は0以上、1以下となる。U値が大きくなるにつれ、当該無線基地局の見込みスループットが増大する。
 チャネル割当サーバ1003は、各無線基地局において、U値が最も高いチャネルを選択すると取得スループットが最大となると予測できるので、チャネル算出部1032は、該当無線基地局の仮チャネルとしてU値が最大となるチャネルを算出する。
 チャネル算出部1032は、システムの制御対象の全無線基地局の仮チャネルを決定した後、全ての無線基地局のU値の合計値Utotalを計算する。そして、U値が小さい無線基地局のスループット向上を目指す。全ての無線基地局の仮チャネルが決定した後、U値が予め設定したUTH以下の無線基地局の中から一台を選択し、当該無線基地局のU値が現在値よりも大きくなる他チャネルがないかを確認する。
 なお、UTH値は0以上1以下の値である。
 具体的には、当該無線基地局において、利用可能な全てのチャネル上で再度U値を計算し、U値が現在値よりも大きくなるチャネルを1つ算出し、システム内の全ての制御対象無線基地局の合計U値を計算し、合計U値が現在の合計U値よりも小さくならないか否かを確認する。当該無線基地局が新たに選択されたチャネルを使用してもシステムの合計U値が現在の合計U値よりも劣化しない場合は、新たに選択されたチャネルを当該無線基地局の新仮チャネルとする。続いて、もう一度、小さいU値を持つ無線基地局のU値が向上するようなチャネルを選択する。
 このように、小さいU値を持つ無線基地局のU値が向上するようなチャネルを選択する動作を予め定められた複数回(再帰回数 Max_r)実施することで、システムの合計スループットを向上できるとともにセル間でのスループットの公平性を向上できる。予め決められたMax_r回数上記の動作を繰り返し、最終的に新仮チャネルを各々の無線基地局に反映させる。
<第8実施形態>
 次に、本発明の第8実施形態における無線通信システム、及びチャネル選択方法を説明する。同実施形態における装置の構成は図14に示す構成と同様であるのでここでは詳細な説明を省略する。
 次に、第8実施形態における無線通信システムの動作を説明する。まず、無線基地局1001の運用が開始されると、無線通信部1011は、予め定められた時間間隔毎に、無線通信において利用可能なすべてのチャネルそれぞれを予め定められた期間スキャンし、自無線基地局周辺の無線環境情報を無線環境情報保持部1015に出力する。この無線環境情報には、利用可能なそれぞれのチャネルにおいて存在する他の無線基地局数やそれぞれの無線基地局の識別情報、また、それぞれの無線基地局から受信するビーコンなどの信号の受信信号強度(RSSI値:Received Signal Strength Indicator)などが含まれる。さらに、無線環境情報には、自セル内の無線端末装置数やそれぞれの無線端末装置から受信する信号のRSSI値なども含まれる。このほか、無線環境情報には、利用可能な全てのチャネルの媒体使用率の情報も含まれる。
 なお、U値の計算、各基地局における初めの仮チャネルの算出、U値の総和Utotalの計算は、第7実施形態と同じであるので、ここでは詳細な説明を省略する。
 チャネル算出部1032は、システムの制御対象の全無線基地局の仮チャネルを決定した後、全ての無線基地局のU値の合計値Utotalを計算する。そして、U値が小さい無線基地局のスループット向上を目指す。全ての無線基地局の仮チャネルが決定した後、U値が予め設定したUTH以下の無線基地局の中から一台を選択し、当該無線基地局のU値が現在値よりも大きくなる他チャネルがないかを確認する。
 なお、UTH値は0以上1以下の値である。
 そして、(4)式に示す条件1の下で(5)式の条件を満足するチャネルを算出する。なお、条件2を満たすチャネルが1つもない場合は、当該無線基地局においてU値が最大となるチャネルを選択し、選択されたチャネルを仮チャネルとする。この動作を繰り返し、Max_r回実施する。
 (4)式のUtotal (r)は、r回目の繰り返し計算におけるU値の総和である。また、α、βは0以上1以下のパラメータであり、α値とβ値を適切に設定することで、システムスループットを向上できるとともに、局所的に低下する無線基地局のスループットを改善することができる。
 特に、αは主にシステムスループットに関するパラメータであり、βは主にスループットの公平性や下位スループットに関するパラメータである(0≦α、β≦1)。αを大きくすると、システムスループットが改善するようにチャネルが決定される。また、βを大きくすると、スループットの公平性や下位スループットが改善する。
 条件1:Utotal (r)≧α・Utotal (r-1) ・・・ (4)
 条件2:U≧β ・・・(5)
 なお、α、βは固定値でもよく、状況に応じて動的に変化させてもよい。
<第9実施形態>
 次に、本発明の第9実施形態における無線通信システム及びチャネル選択方法を説明する。同実施形態における装置の構成は図14に示す構成と同様であるのでここでは詳細な説明を省略する。第9実施形態では、制御対象無線基地局のうち、すべて又は一部の無線基地局が2.4GHz、5GHz、WiMax、セルラーなどの複数の無線システムでの通信が可能な環境において、チャネル割当サーバ1003が、各無線基地局に対して、使用すべき無線通信システムとチャネルの両方を算出し、設定する。
 次に、第9実施形態における無線通信システムの動作を説明する。図14に示す無線基地局1001および無線基地局1002は、無線通信方式等が異なる第1の無線通信システムと第2の無線通信システムを用いて通信可能とする。無線基地局1001の運用が開始されると、無線通信部1011は、予め定められた時間間隔毎に、無線通信において利用可能なすべての無線通信システムのすべてのチャネルそれぞれを予め定められた期間スキャンし、自無線基地局周辺の無線環境情報を無線環境情報保持部1015に出力する。この無線環境情報には、利用可能なそれぞれのチャネルにおいて存在する他の無線基地局数やそれぞれの無線基地局の識別情報、また、それぞれの無線基地局から受信するビーコンなどの信号の受信信号強度(RSSI値:Received Signal Strength Indicator)などが含まれる。さらに、無線環境情報には、自セル内の無線端末装置数やそれぞれの無線端末装置から受信する信号のRSSI値なども含まれる。このほか、無線環境情報には、利用可能な全てのチャネルの媒体使用率の情報も含まれる。
 次に、チャネル算出部1032は、情報収集部1033より収集される各々の無線基地局の無線環境情報を基にそれぞれの無線基地局が使用すべき無線通信システムおよび無線チャネルを以下のように計算する。まず、チャネルを割り当てる無線基地局において利用可能な全ての無線通信システムとそれぞれの無線通信システムにおける利用可能なすべてのチャネル上で(6)式に示すU値を算出する。
 U=他の無線通信システムにおける見込みスループット/現在通信中の無線通信システムにおける平均取得スループット ・・・(6)
 ここで、(6)式の分子は、無線基地局が第1の無線通信システムまたは第2の無線通信システムを使用した場合に得られる見込みスループットである。また、(6)式の分母は、無線基地局において、現在通信に使用している通信システム・チャネルにおける平均取得スループットである。なお、(6)式の分子および分母は、過去のデータを用いた統計でもよく、瞬時値でもよい。
 上記U値は、無線通信方式のチャネルを割り当てる無線基地局において、現在のスループットに対して、当該無線基地局に割り当てるチャネルを他の無線通信方式のチャネルに変えた場合の見込みスループット値を示しており、U値が1未満の場合は、当該無線基地局は現在使用中の無線通信方式を他の無線通信方式に変更させない方がよいことを意味する。一方、U値が1以上なら、当該無線基地局の通信で現在使用中の無線通信方式を他の無線通信方式に変更させた方がよいことを意味する。
 チャネル割当サーバ1003は、各無線基地局において、U値が最も高いチャネルを選択すると取得スループットが最大となると予測できるので、チャネル算出部1032は、該当無線基地局の仮チャネルとしてU値が最大となる無線通信方式のチャネルを算出する。
 チャネル算出部1032は、システムの制御対象の全無線基地局の仮無線通信方式のチャネルを決定した後、全ての無線基地局のU値の合計値Utotalを計算する。そして、U値が小さい無線基地局のスループット向上を目指す。全ての無線基地局の仮無線通信方式のチャネルが決定した後、U値が予め設定したUTH’未満の無線基地局の中から一台を選択し、当該無線基地局のU値が現在値よりも大きくなる他の無線方式のチャネルがないかを確認する。
 そして、(7)式に示す条件1の下で(8)式の条件を満足するチャネルを算出する。なお、条件2を満たすチャネルが1つもない場合は、無線基地局においてU値が最大となる無線通信方式のチャネルを選択し、仮無線通信方式のチャネルとする。この動作を繰り返し、Max_r回実施する。
 (7)式のUtotal (r)は、r回目の繰り返し計算におけるU値の総和である。また、α、βは0以上1以下のパラメータであり、α値とβ値を適切に設定することで、システムスループットを向上できるとともに局所的に低下する無線基地局のスループットを改善することができる。特に、α値は主にシステムスループットに関するパラメータであり、β値は主にスループットの公平性や下位スループットに関するパラメータである(0≦α、β≦1)。α値を大きくすると、システムスループットが改善するようにチャネルが決定される。また、β値を大きくすると、スループットの公平性や下位スループットが改善する。
 条件1:Utotal (r) ≧ α・Utotal (r-1) ・・・(7)
 条件2:U≧β ・・・(8)
 説明を簡単にするため、上記(7)式では全ての無線通信システム(ここでは、第1の無線通信システムと第2の無線通信システム)における、見込みスループットの総和をUtotalとして定義している。しかし、必ずしもすべての無線通信システムにおける見込みスループットの総和を考慮する必要はなく、一部の無線通信システムにおいてのみ上記の制約条件を加えてもよい。
 次に、計算機シミュレーションによる本実施形態の効果について説明する。図27は、計算機シミュレーション環境を示す図である。図27に示すように、100m×100mの正方形エリアに、25台の無線基地局(図27に示す●)をランダムに配置し、それぞれの無線基地局と同じ位置に無線端末装置を一台ずつ配置した。α値、β値を変化させ、それぞれの値において、本実施形態を用いて各々の無線基地局にチャネルを割り当てた場合と、各々の無線基地局が従来の最小RSSI法に基づいて使用するチャネルを自律分散的に選択するRSSI法を用いた場合について、システムスループットと公平性を示すFI値(非特許文献3)を計算した。なお、無線基地局及び帰属無線端末装置のキャリアセンス範囲を40mとし、使用可能チャネル数を3とした。
 計算機シミュレーションでは、無線基地局はIEEE802.11標準規格で規定されているCSMA/CAに基づいてデータフレームを送信する。CSMA/CAパラメータ値は以下のとおりである。SlotTime=9μs、SIFS=16μs、CWmin=15、CWmax=1023、ShortRetryLimit=7、LongRetryLimit=4、DataRate=54Mbps、BasicRate=6Mbps。計算機シミュレーションの際は、無線基地局から無線端末装置宛てにパケット長が1500Bytesの飽和状態のUDP下りトラヒックを送信し、無線端末装置において30秒間で正しく受信できたパケット数を用いてそれぞれのセルのスループットを算出した。
 図28に計算シミュレーションによるα値に対するシステムの合計スループットとFI値を示す。また、図29に計算シミュレーションによるβ値に対するシステムの合計スループットとFI値を示す。
 図28、図29に示す結果より、本実施形態では、システムスループットや下位スループットの改善(スループットの公平性)などの要求条件に応じて、α値やβ値を適切に設定することで適切なチャネル割り当てシステムを設計できることが分かる。
 このように、RSSI法と比べて、システム全体でのスループットや公平性FIが改善されるともに、各指標にパラメータを導入し、そのパラメータを適宜変更することにより、要求指標(システムスループットと下位スループット)に関するきめ細やかな要求に応えることが可能になる。
<第10実施形態>
 次に、本発明の第10実施形態における無線通信システム及びチャネル選択方法を説明する。同実施形態における装置の構成は図14に示す構成と同様であるのでここでは詳細な説明を省略する。
 次に、第10実施形態における無線通信システムの動作を説明する。まず、無線基地局1001の運用が開始されると、無線通信部1011は、予め定められた時間間隔毎に、無線通信において利用可能なすべてのチャネルそれぞれを予め定められた期間スキャンし、自無線基地局周辺の無線環境情報を無線環境情報保持部1015に出力する。この無線環境情報には、利用可能なそれぞれのチャネルにおいて存在する他無線基地局数やそれぞれの無線基地局の識別情報、それぞれの無線基地局の使用可能最大帯域幅などの能力(Capability)に関する情報、また、それぞれの無線基地局から受信するビーコンなどの信号の受信信号強度(RSSI値:Received Signal Strength Indicator)などが含まれる。さらに、無線環境情報には、自セル内の無線端末装置数やそれぞれの無線端末装置から受信する信号のRSSI値、それぞれの無線端末装置の使用可能最大帯域幅などの能力に関する情報なども含まれる。
 次に、チャネル算出部1032は、情報収集部1033より収集される各々の無線基地局の無線環境情報を基にそれぞれの無線基地局が使用すべき無線チャネルと帯域幅を以下のように計算する。まず、チャネルを割り当てる無線基地局において利用可能な全てのチャネル上で(9)式に示すU値を算出する。
 U=Exptd_Thput/min(Max_Thput, Offered_Load) ・・・(9)
 ここで、(9)式のExptd_Thputは、当該無線基地局が当該チャネルを周辺無線基地局と共用した場合に取得可能なスループット(見込みスループット)である。また、Max_Thputは、当該無線基地局のみが当該チャネルを使用した場合(つまり、他干渉無線基地局やそれらに帰属する無線端末装置がない場合)に取得可能な最大スループットである。また、Offered_Loadは、当該無線基地局における発生トラヒック量である。また、関数min(a,b)は、aとbのうち小さい方を出力する関数である。
 上記U値は、チャネルを割り当てる無線基地局において、発生トラヒック量に対する見込みスループット値を示している。U値は0以上1以下となる。U値が大きくなるにつれ、当該無線基地局の見込みスループットが増大する。
 以下に、Exptd_Thput,Max_Thput,Offered_Loadの計算方法について説明する。
 アクセスポイント(無線基地局)aに帰属する無線端末装置の中で最大帯域幅b(単位:MHz)を用いる無線端末装置の数を
Figure JPOXMLDOC01-appb-M000005
とする。
 例えば、80MHz対応の(つまり、IEEE 802.11ac対応の)アクセスポイントaの配下に最大20MHz対応のIEEE 802.11a(以下、non-HT(non-high throughput)と呼ぶ)端末が1台、最大40MHz対応のIEEE 802.11n(以下、HT(high throughput)と呼ぶ)端末が2台、最大80MHz対応のIEEE 802.11ac(以下、VHT(very high throughput)と呼ぶ)端末が3台存在する場合は、
Figure JPOXMLDOC01-appb-M000006
となる。
 もし、収集された無線環境情報の中に、無線端末装置の数やその使用可能最大帯域幅(つまり、無線端末装置の能力)に関する情報が含まれない場合は、アクセスポイントaの最大能力と同じ能力を有する無線端末装置が1台存在すると仮定する。
 ここで、n(a)を、アクセスポイントaに帰属する無線端末装置の数の合計とする。つまり、
Figure JPOXMLDOC01-appb-M000007
である。
 また、γ(a)を、アクセスポイントaにおいて、帰属無線端末装置一台当たりにフレームを送信する送信機会割合とする。全ての帰属無線端末装置宛てに同じ数のA(Aggregation)-MSDU/MSDUを収容する場合は、
 γ(a)=1/n(a)
となる。
 さらに、L(s,a)を、アクセスポイントaが帰属無線端末装置sに対して一回のフレーム伝送で送信するデータ量(bit)(つまり、A-MPDU長)とすると、
Figure JPOXMLDOC01-appb-M000008
と表すことができる。
 ここで、
Figure JPOXMLDOC01-appb-M000009
は、アクセスポイントaが帰属無線端末装置sに対して送信するA-MSDU長(A-MSDUが未使用の場合は、MSDU長)(byte)
である。また、numMPDU(s,a)は、アクセスポイントaが帰属無線端末装置sに対して送信するA-MPDU中に含まれるMPDU数である。
 アクセスポイントaが帯域幅bを用いて帰属無線端末装置sに対してフレームを伝送する際にチャネルを占有する総時間 (μsec)を
Figure JPOXMLDOC01-appb-M000010
とすると、
Figure JPOXMLDOC01-appb-M000011
と表すことができる。
 ここで、
Figure JPOXMLDOC01-appb-M000012
は、キャリアセンス,ランダム・バックオフ,プリアンブル,ACK/BA(Block ACK)時間,RTS時間,CTS時間などのオーバヘッド値(μsec)である。
 TDATAは、numMPDU(s,a)のデータを伝送速度(データレート)1300Mbit/sで送信するのに必要な時間(μsec)である。
Figure JPOXMLDOC01-appb-M000013
は、アクセスポイントaが帯域幅bを用いて帰属無線端末装置sに対してフレームを送信するデータレート(Mbit/s)である。また、R(coef)は、データレート変換係数である。
 ここで、
Figure JPOXMLDOC01-appb-M000014
とする。
 例えば、最大能力40MHzを有するHT対応無線端末装置宛てに40MHzの帯域(つまり、b=40MHz)でデータフレーム送信する際のデータレートが450Mbit/sであるとすると、当該無線端末装置宛てに20MHzの帯域幅(つまり、b=20MHz)でデータフレームを送信する際のデータレート変換係数は、R(coef)=52/108(つまり、b=40→20)となり、使用データレートは、
Figure JPOXMLDOC01-appb-M000015
となる。
 次に、Max_Thput(a)を、アクセスポイントaのみが存在する環境において取得可能な最大スループット(Mbit/s)とすると、
Figure JPOXMLDOC01-appb-M000016
と表すことができる。Max_Thput(a)は、アクセスポイントaのみが存在する環境において、aが帰属無線端末装置宛てに常にデータを送信するフルバッファ時において取得可能な最大スループットである。
 ここで、θ(a)を、アクセスポイントaにおける帰属無線端末装置当たりの収容トラヒック量(Mbit/s)とする。
 また、α(a)を、アクセスポイントaのチャネルアクセス確率の最大値とする。これは、チャネルを占有したい時間率でもあり、α(a)=1の時は、アクセスポイントaだけでチャネルが飽和することになる。α(a)は次式で定義できる。
Figure JPOXMLDOC01-appb-M000017
 なお、θ(a)×n(a)は、アクセスポイントaにおける発生総トラヒック量である。
 次に、チャネルを共用する場合における取得可能なスループットの計算方法を説明する。
Figure JPOXMLDOC01-appb-M000018
を、制御可能アクセスポイントaにおいて検知可能であり、かつ、制御可能アクセスポイントaのプライマリチャネルをプライマリチャネルとして用いる無線基地局の集合とする。
 集合
Figure JPOXMLDOC01-appb-M000019
には、制御可能アクセスポイントaや仮割当の制御可能無線基地局、制御不可のシステム外の無線基地局も含まれる。
 なお、
Figure JPOXMLDOC01-appb-M000020
を集合
Figure JPOXMLDOC01-appb-M000021
内のアクセスポイント数(≧1)とする。
 同じように、
Figure JPOXMLDOC01-appb-M000022
を、制御可能アクセスポイントaにおいて検知可能であり、かつ、制御可能アクセスポインaのセカンダリ20チャネルをプライマリチャネルとして用いる無線基地局の集合とする。
 また、
Figure JPOXMLDOC01-appb-M000023
を、制御可能アクセスポイントaにおいて検知可能であり、かつ、制御可能アクセスポイントaのセカンダリ40チャネルをプライマリチャネルとして用いる無線基地局の集合とする。
 ここで、
Figure JPOXMLDOC01-appb-M000024
である。
Figure JPOXMLDOC01-appb-M000025
を、制御可能アクセスポイントaに対してプライマリチャネルとしてチャネルcを割り当てた場合に、制御可能アクセスポイントaがプライマリチャネルにアクセス可能な確率とすると、
Figure JPOXMLDOC01-appb-M000026
と表すことができる。
 また、B(a)を、集合
Figure JPOXMLDOC01-appb-M000027
内で、
Figure JPOXMLDOC01-appb-M000028
となるアクセスポイントの部分集合とする。
 なお、B(a)には、制御可能アクセスポイントa,仮割当の制御可能無線基地局,システム外の無線基地局も含まれる。
 また、
Figure JPOXMLDOC01-appb-M000029
である。
 さらに、
Figure JPOXMLDOC01-appb-M000030
である。
 ここで、
Figure JPOXMLDOC01-appb-M000031
を、制御可能アクセスポイントaがプライマリチャネルにアクセスする確率とすると、
Figure JPOXMLDOC01-appb-M000032
を下記のように定義できる。
Figure JPOXMLDOC01-appb-M000033
 また、
Figure JPOXMLDOC01-appb-M000034
を、制御可能アクセスポイントaがセカンダリ20チャネルにアクセスする確率
Figure JPOXMLDOC01-appb-M000035
(制御可能アクセスポイントaが40MHz対応の時のみ必要)とする。
 また、
Figure JPOXMLDOC01-appb-M000036
を、制御可能アクセスポイントaがセカンダリ40チャネルにアクセスする確率
Figure JPOXMLDOC01-appb-M000037
(制御可能アクセスポイントaが80MHz対応の時のみ必要)とする。
Figure JPOXMLDOC01-appb-M000038

Figure JPOXMLDOC01-appb-M000039
を次のように定義する。
Figure JPOXMLDOC01-appb-M000040
ここで、
Figure JPOXMLDOC01-appb-M000041
は、セカンダリチャネルとして、当該セカンダリ20チャネルにアクセスする無線基地局の数(但し、プライマリチャネルを共有する集合
Figure JPOXMLDOC01-appb-M000042
内の他無線基地局を含まない)である。
 また、
Figure JPOXMLDOC01-appb-M000043
は、セカンダリチャネルとして、当該セカンダリ40チャネルにアクセスする他無線基地局の数(但し、プライマリチャネルを共用する集合
Figure JPOXMLDOC01-appb-M000044
内の他無線基地局を含まない)である。
 最終的に、
Figure JPOXMLDOC01-appb-M000045
を、制御可能アクセスポイントaに対してプライマリチャネルとしてチャネルcを割り当てた場合の見込みスループット(Mbit/s)とすると、
Figure JPOXMLDOC01-appb-M000046
を以下のように定義できる。
Figure JPOXMLDOC01-appb-M000047
 ここで、Tを以下のように計算する。
 帯域幅b=20(MHz)を用いた通信時間T~Tは以下のように計算される。
 端末sがnon-HT(IEEE 802.11a規格対応)の場合;
Figure JPOXMLDOC01-appb-M000048
 端末sがHT(IEEE 802.11n規格対応)の場合;
Figure JPOXMLDOC01-appb-M000049
 端末sがVHT(IEEE 802.11ac規格対応)の場合;
Figure JPOXMLDOC01-appb-M000050
 一方、帯域幅b=40(MHz)を用いた通信時間T~Tは以下のように計算される。
 端末sがHT(IEEE 802.11n規格対応)の場合;
Figure JPOXMLDOC01-appb-M000051
 端末sがVHT(IEEE 802.11ac規格対応)の場合;
Figure JPOXMLDOC01-appb-M000052
 他方、帯域幅b=80(MHz)を用いた通信時間Tは以下のように計算される。
 端末sがVHT(IEEE 802.11ac規格対応)の場合;
Figure JPOXMLDOC01-appb-M000053
 最後に、
Figure JPOXMLDOC01-appb-M000054
を、制御可能アクセスポイントaに対してプライマリチャネルとしてチャネルcを割り当てた場合における、アクセスポイントaの効用関数(満足度)とすると、
Figure JPOXMLDOC01-appb-M000055
を下記のように再定義可能である。
Figure JPOXMLDOC01-appb-M000056
 なお、本実施形態では、アクセスポイントがそれぞれの帰属無線端末装置宛てにデータを送信する機会が全て等しいと仮定しているが、この限りではない。帰属無線端末装置ごとにデータの送信機会割合が把握できるのであれば、それらの値を用いても良い。
 チャネル割当サーバ1003は、各無線基地局において、U値が最も高いチャネルと帯域幅の組を選択すると取得スループットが最大となると予測できる。
 本実施形態では、繰り返し計算による最適化を目指している。また、例えば、ベストエフォート型トラヒックの場合は、U値が必ずしも1にならなくても、帰属無線端末装置のユーザが満足するのであれば問題ない。そこで、チャネル算出部1032は、該当無線基地局の仮チャネルとしてU値が予め設定したβ値(0≦β≦1)以上となるチャネルおよび帯域幅を算出する。
 つまり、アクセスポイントaは、
Figure JPOXMLDOC01-appb-M000057
となるチャネルcおよび帯域幅bを仮チャネルおよび仮帯域幅として選択する。もし、該当するチャネルおよび帯域幅の候補が複数ある場合は、それらの中からランダムにチャネルおよび帯域幅の組を1つ選択する。また、もし、
Figure JPOXMLDOC01-appb-M000058
となるチャネルcおよび帯域幅bが存在しない場合は、
Figure JPOXMLDOC01-appb-M000059
が最大となるチャネルおよび帯域幅を仮チャネルおよび仮帯域幅として選択する。
 チャネル算出部1032は、システムが制御対象とする全ての無線基地局の仮チャネルおよび仮帯域幅を決定した後、全ての無線基地局のU値の合計値Utotal、または、全ての無線基地局のU値の積算値Uproductを計算する。そして、U値が小さい無線基地局のスループット向上を目指す。全ての無線基地局の仮チャネルおよび仮帯域幅が決定した後、U値が予め設定したUTH以下の無線基地局の中から一台を選択し、当該無線基地局のU値が
Figure JPOXMLDOC01-appb-M000060
となるチャネルcおよび帯域幅bをそれぞれ新しい仮チャネルおよび新しい仮帯域幅として一時的に選択する。もし
Figure JPOXMLDOC01-appb-M000061
となるチャネルcおよび帯域幅bが存在しない場合は、
Figure JPOXMLDOC01-appb-M000062
が最大となるチャネルおよび帯域幅を新しい仮チャネルおよび新しい仮帯域幅として一時的に選択する。
 なお、UTH値は0以上1以下の値である。
 具体的には、当該無線基地局において、利用可能な全てのチャネルと全ての帯域幅について再度U値を計算し、システム内の全ての制御対象無線基地局の合計U値、または、U値の積算値を計算し、合計U値、または、積算U値が1つ前の繰り返し計算後の値のα倍以上か否かを確認する。
 つまり、r+1回目の繰り返し計算における合計U値をUtotal (r+1)とすると、
 Utotal (r+1)≧α・Utotal (r)
の条件を満たす場合は、選択した新しい仮チャネルを当該無線基地局の仮チャネルとする。また、その時の帯域幅を新しい仮帯域幅とする。もし、この条件を満たさない場合は、新しい仮チャネルおよび新しい仮帯域幅を採用せず、r回目で算出した仮チャネルおよび仮帯域幅をそれぞれ当該無線基地局の仮チャネルおよび仮帯域幅とする。
 一方、積算値で判断する場合の条件式は以下のようになる。
 Uproduct (r+1)≧α・Uproduct (r)
 続いて、もう一度、小さいU値を持つ無線基地局のU値が向上するか、又は、システム全体のU値(Utotal又はUproduct)が改善するようなチャネルおよび帯域幅を選択する。
 なお、α、βは0以上1以下のパラメータである。α値とβ値を適切に設定することで、システムスループットを向上できるとともに、局所的に低下する無線基地局のスループットを改善することができる。
 特に、αは主にシステムスループットに関するパラメータであり、βは主にスループットの公平性や下位スループットに関するパラメータである(0≦α、β≦1)。αを大きくすると、システムスループットが改善するようにチャネルが決定される。また、βを大きくすると、スループットの公平性や下位スループットが改善する。
 なお、α、βは固定値でもよく、あるいは、状況に応じて動的に変化させてもよい。
 このように、小さいU値を持つ無線基地局のU値が向上するようなチャネルおよび帯域幅を選択する動作を予め定められた複数回(再帰回数 Max_r)実施することで、システムの合計スループットを向上できるとともにセル間でのスループットの公平性を向上できる。予め決められたMax_r回数上記の動作を繰り返し、最終的に新仮チャネルおよび新仮帯域幅を各々の無線基地局に反映させる。
 次に、図30~図35を参照して、第10実施形態におけるチャネル算出部1032がチャネル選択処理を行う動作を説明する。図30は、第10実施形態におけるチャネル算出部1032がチャネル選択処理を行う動作を示すフローチャートである。
 まず、初期設定として、繰り返し計算回数に0を代入する(ステップS201)。次に、制御対象(制御可能)無線基地局およびそれらの無線基地局において検知する周辺の他制御対象外(制御不可)無線基地局における占有予定時間率を計算する(ステップS202)。すなわち、システムの内部および外部を問わず、検知可能なすべての無線基地局について占有予定時間率の計算を行う。
 次に、チャネルや帯域幅(以下、図面においてはBWとして示す)が未設定の無線基地局のリスト(以下、制御可能無線基地局リストと呼ぶ)より、チャネルおよび帯域幅を設定する無線基地局を選択する(ステップS203)。このとき、無線基地局の選択方法として、ランダムに選択する方法、手動設定順(ネットワークオペレータ等が予め設定した優先順)に選択する方法、ボトルネックが大きな無線基地局の順(周辺無線基地局数が多い順)に選択する方法が適用できる。そして、チャネル割当アルゴリズムに応じて、選択された無線基地局に設定するチャネルおよび帯域幅を仮決定する(ステップS204)。このステップS203およびステップS204におけるプロセスを全ての制御可能無線基地局に対して実施する。
 全ての制御可能無線基地局の仮割当チャネル(仮チャネル:仮割当CH)と仮割当帯域幅(仮帯域幅:仮割当BW)が決定されると、繰り返し計算により制御可能無線基地局の仮割当チャネルや仮割当帯域幅の最適化が行われる(ステップS205)。繰り返し計算後、最後に、各制御可能無線基地局の仮割当チャネル、仮割当帯域幅を、それぞれ、割当チャネル、割当帯域幅とし、各無線基地局に設定する(ステップS206)。
 次に、図31を用いて、ステップS204の仮割当チャネル、仮割当帯域幅の決定方法について説明する。図31は、選択された制御可能無線基地局の仮割当チャネルと仮割当帯域幅を決定するプロセスを示す図である。
 まず、初期設定として次の処理を行う。すなわち、仮割当可能なチャネルと帯域幅の組を記憶するためにtempListを用意する。また、選択された無線基地局(以下、選択無線基地局と呼ぶ)の現在の最大U値を記憶するためtempUという変数を用意する。そして、tempListを空に設定し、tempUに0を代入する(ステップS207)。
 次に、選択無線基地局に割当可能な帯域幅の中から1つを選択する(ステップS208)。割当可能な帯域幅は、当該無線基地局又はその帰属無線端末装置の能力(例えば、使用可能最大帯域幅)によって定まる値である。例えば、選択無線基地局がIEEE802.11ac対応であれば、割当可能帯域幅は20MHz、40MHz、80MHzとなる。また、選択無線基地局がIEEE802.11n対応であれば、割当可能帯域幅は20MHz、40MHzとなる。さらに、選択無線基地局がIEEE802.11aのみに対応していれば、割当可能帯域幅は20MHzとなる。
 選択無線基地局に割り当てられる帯域幅は、上記の通り、当該無線基地局の能力だけから決定しても良く、帰属無線端末装置の能力に関する情報も考慮した上で決定しても良い。例えば、選択無線基地局がIEEE802.11ac対応であれば、割当可能帯域幅は20MHz、40MHz、80MHzとなるが、20MHzと40MHzに対応した帰属無線端末装置しか存在しないのであれば、当該無線基地局に対して割り当てる帯域幅を20MHz、40MHzに制限しても良い。
 次に、選択無線基地局に対して割当可能なプライマリチャネルリスト(以下、割当可能プライマリチャネルリストと呼ぶ)を作成する(ステップS209)。非特許文献2では、あるアクセスポイントと端末局で構成されるセル内で通信を行う際に、伝送帯域幅に係らず必ず用いなければならない単位チャネルが定義されており、これはプライマリチャネル(Primary Channel)と呼ばれている。一方、通信を行う際に用いられるが、プライマリチャネルではないチャネルはセカンダリチャネル(Secondary Channel)(非特許文献2ではセカンダリxMHzチャネル(Secondary xMHz Channel)、xは20、40、80のうちのいずれかの数)と呼ばれている。
 次に、ステップS209で作成した割当可能プライマリチャネルリストが空かどうかを確認する(ステップS210)。もし、割当可能プライマリチャネルリストが空であれば(ステップS210がYES)、当該無線基地局に対して選択した割当帯域幅を用いたセルを立ち上げることはできないので、後述するステップS217を実施する。一方、割当可能プライマリチャネルリストが空ではない場合(ステップS210がNO)、ステップS211に処理を進める。
 ステップS211では、割当可能プライマリチャネルリストから1つのチャネルを選択する。次に、選択したチャネルにおける当該無線基地局のU値を計算する(ステップS212)。次に、選択した帯域幅および選択したチャネルにおける当該無線基地局のU値が、予め設定されたβ以上、かつ、tempU値がβ以上かどうか確認する(ステップS213)。なお、0≦β≦1である。
 この条件を満たす場合(ステップS213がYES)、tempListに選択した帯域幅および選択したチャネルの組を追加し、ステップS212で計算したU値でtempU値を更新する(ステップS219)。一方、上記条件が満たされない場合(ステップS213がNO)、U値が現在のtempU値より大きいかどうかを確認する(ステップS214)。
 この条件を満たす場合(ステップS214がYES)、現在のtempListを全て空にし(ステップS218)、選択した帯域幅および選択したチャネルの組をtempListに追加し、ステップS212で計算したU値でtempU値を更新する(ステップS219)。一方、ステップS214の条件が満たされない場合(ステップS214がNO)、U値が現在のtempU値に等しいかどうか確認する(ステップS215)。
 この条件を満たす場合(ステップS215がYES)、tempListに選択した帯域幅および選択したチャネルの組を追加し、ステップS212で計算したU値でtempU値を更新する(ステップS219)。一方、ステップS215の条件を満たさない場合は、選択チャネルを無視し、ステップS216へ処理を進める。
 ステップS216では、割当可能なプライマリチャネルリストのうち、未選択のチャネルがあるかどうかを確認(ステップS216)し、未選択のチャネルが存在する場合(ステップS216がYES)、再度ステップS211を実施する。すなわち、ステップS211~S215およびS218~S219の処理をすべての割当可能プライマリチャネルについて実施する。一方、割当可能なプライマリチャネルリストには未選択チャネルがない場合(ステップS216がNO)、当該無線基地局に割り当てられる帯域幅のうち、未選択の帯域幅があるかどうかを確認する(ステップS217)。未選択の帯域幅が存在する場合(ステップS217がYES)、ステップS208を実施する。すなわち、ステップ208~S216およびS218~S219の処理をすべての割当可能帯域幅について実施する。一方、未選択の帯域幅がない場合(ステップS217がNO)、最後に、tempListより帯域幅およびチャネルの組を1つランダムに選択する(ステップS220)。この選択された帯域幅、チャネルは、当該無線基地局の仮割当帯域幅、仮割当チャネルである。
 次に、図32を用いて、仮割当チャネルおよび仮割当帯域幅を決定済みの制御可能無線基地局についてチャネルや帯域幅を繰り返し計算によって最適化する方法(図30のステップS205)について説明する。図32は、繰り返し計算による制御可能無線基地局のU値の改善を行うプロセスを示している。
 まず、全ての制御可能無線基地局の現在U値を計算する。そして、全ての制御可能無線基地局のU値の和(Utotal)と積(Uproduct)を計算する(ステップS221)。そして、繰り返し計算の終了条件を満たすかどうか確認する(ステップS222)。
 以下の(1)~(3)の何れかの条件を満たす時に繰り返し計算が収束したとみなして繰り返し計算を終了し、最終的な割当チャネルおよび割当帯域幅を決定する。
1.全ての制御可能無線基地局のU値が1に達した時(つまり、
Figure JPOXMLDOC01-appb-M000063
(全てのa))
2.繰り返し計算回数がその上限値に達した時
3.R回目(R≧DeltaR)の繰り返し計算後の値
Figure JPOXMLDOC01-appb-M000064
が以下の条件を満たす時
Figure JPOXMLDOC01-appb-M000065
 ここで、DeltaRは、1以上の整数であり、上記条件3は、
Figure JPOXMLDOC01-appb-M000066
の改善率に応じて、収束特性を評価する条件である。
 もし、繰り返しの終了条件を満たしているのであれば(ステップS222がYES)、繰り返しを終了させる。一方、終了条件が満たされていないのであれば(ステップS222がNO)、繰り返しの際に用いる評価条件に応じて
Figure JPOXMLDOC01-appb-M000067
を設定する(ステップS223)。設定される値は、r回目の繰り返しにおけるUtotal、または、Uproductである。例えば、Utotalを用いた評価を行うのであれば、
Figure JPOXMLDOC01-appb-M000068
とする。一方、Uproductを用いた評価を行うのであれば、
Figure JPOXMLDOC01-appb-M000069
とする。
 次に、繰り返し計算用の無線基地局を1台選択する(ステップS224)。選択無線基地局の現在の仮割当チャネル、仮割当帯域幅をそれぞれ、tempCH、tempBWとする(ステップS225)。選択無線基地局に対して、図31を参照して上述した仮割当帯域幅および仮割当チャネルの算出プロセスを再度実施する(ステップS226)。得られた新しい仮割当チャネルと新しい仮割当帯域幅が、それぞれ、tempCHとtempBWと等しいのであれば(ステップS227のYES)、選択無線基地局の仮割当チャネルおよび帯域幅の変更はない。この場合は、後述するステップS230へ処理を進める。一方、新しい仮割当チャネルがtempCHと異なっているか、新しい仮割当帯域幅がtempBWと異なっているか、または、新しい仮割当チャネルおよび新しい仮割当帯域幅の両方がそれぞれtempCHおよびtempBWと異なっているのであれば(ステップS227がNO)、処理をステップS228に進める。
 ステップS228では、全ての制御可能無線基地局のU値を再度評価し、全ての制御可能無線基地局のU値の和(Utotal)と積(Uproduct)を計算する。そして、UTEMPにUtotalまたはUproductを代入する。次に、次の条件が満たされているかどうか確認する(ステップS229)。なお、αは0以上1以下の数である。
Figure JPOXMLDOC01-appb-M000070
 この条件が満たされる場合(ステップS229がYES)、選択無線基地局の仮割当チャネルおよび仮割当帯域幅を新しい仮割当チャネルおよび新しい仮割当帯域幅で更新する(ステップS232)。一方、ステップS229の条件が満たされない場合は、選択無線基地局の仮割当チャネルおよび仮割当帯域幅を更新せず、仮割当チャネルおよび仮割当帯域幅の値をそれぞれTempCHおよびTempBWに戻す(ステップS230)。最後に、ステップS229の条件を満たすかどうかによらず、繰り返し計算回数を1つ増やし(ステップS231)、ステップS221を再度実施する。
 次に、図33を用いて割当可能プライマリチャネルリストの作成方法(図31のステップS209)について説明する。図33は、割当可能プライマリチャネルリストを作成するプロセスを示している。
 まず、初期設定として、割当可能プライマリチャネルリスト={空}とし、空のリストを作成する(ステップS233)。次に、選択無線基地局の仮割当帯域幅が20MHzかどうかを確認する(ステップS234)。もし選択無線基地局の仮割当帯域幅が20MHzであれば(ステップS234がYES。20MHzのBSS(basic service set))、プライマリチャネルとして割当可能な全てのチャネルを設定(ステップS243)して、本プロセスを終了する。ここで、割当可能なチャネルとは、当該無線基地局で使用可能なチャネルの中で、レーダなど検出されていないチャネルまたはチャネルリストである。
 もし選択無線基地局の仮割当帯域幅が20MHzではない場合(ステップS234がNO。40MHzまたは80MHzのBSS)、選択無線基地局は、40MHz,80MHzなどの広帯域なセルを立ち上げることになるので、標準規格の規定通りに、プライマリチャネルと他セルのセカンダリ20チャネルが被らないようにチャネルを選択する必要がある。そのため、まず、割当可能チャネルの中から1つのチャネルを選択する(ステップS235)。次に、選択したチャネルのセカンダリ20チャネルが割当可能かどうかを確認する(ステップS236)。
 ここで、割当可能プライマリチャネルの例を図34Aおよび図34Bに示す。これらの図において、無線基地局aおよび無線基地局bは既存の無線基地局であり、CH36~CH48が割当可能チャネル、仮割当帯域幅が40である場合を想定している。図34AにおいてはCH40,CH44,CH48が割当可能プライマリチャネルである。図34Bにおいては、CH36,CH48が割当可能プライマリチャネルである。
 例えば、選択したチャネルがCH44の場合、ステップS236では、CH48が当該無線基地局に対して割当可能かどうかを確認する。あるいは、選択したチャネルがCH36の場合、ステップS236では、CH40が当該無線基地局に対して割当可能かどうかを確認する。もしCH40の割り当てが可能な場合(ステップS236がYES)、ステップS237へ処理を進める。一方、CH40の割当が不可であれば(ステップS236がNO)、選択したチャネルは当該無線基地局に割り当てられないチャネルであると判断し(ステップS242)、ステップS240に処理を進める。
 ステップS237では、選択したチャネルのセカンダリ20チャネルをプライマリチャネルとして使っている周辺無線基地局が存在するかどうかを確認する(ステップS237)。もし該当する周辺無線基地局が存在する場合は、標準規格の規定により、選択したチャネルは当該無線基地局へ割り当てることはできないため、処理をステップS242へ進める。これに対して、もし該当する周辺無線基地局が存在しない場合(ステップS237がNO)、処理をステップS238へ進める。
 ステップS238では、選択無線基地局の仮割当帯域幅が40MHzかどうかを確認する。選択無線基地局の仮割当帯域幅が40MHzの場合(ステップS238がYES。40MHzのBSS)、選択チャネルは当該無線基地局へ割当可能なプライマリチャネルであると判断して、選択したチャネルを割当可能プライマリチャネルリストに追加(ステップS239)して、処理をステップS240へ進める。一方、選択無線基地局の仮割当帯域幅が40MHzではない場合(ステップS238がNO。80MHzのBSS)、当該無線基地局は80MHz以上のセルを立ち上げることになるので、選択チャネルのセカンダリ40チャネルは当該無線基地局に対して割当可能なチャネルかどうか確認する(ステップS241)。例えば、選択したチャネルがCH44の場合、ステップS241では、CH36およびCH40が当該無線基地局に対して割当可能かどうかを確認する。
 もしセカンダリ40チャネルが割当可能ではない場合(ステップS241がNO)、ステップS242を実施する。一方、もしセカンダリ40チャネルが割当可能な場合(ステップS241がYES)、選択チャネルは当該無線基地局に対して割当可能なプライマリチャネルであると判断して、選択したチャネルを割当可能プライマリチャネルリストに追加する(ステップS239)。最後に、ステップS240では、すべての割当可能チャネルについてステップS236~S239およびS241~S242の処理を行ったかどうかを判定し、未処理の割当可能チャネルが残っている場合には、処理をステップS235に戻して、当該無線基地局の割当可能な他のチャネルにおいても上述したプロセスを実施する。そして、全ての割当可能チャネルに対して、割当可能なプライマリチャネルリストの作成が終わると本プロセスを終了する。
 次に、図35を用いて繰り返し計算を行う無線基地局の選択法(図32のステップS224)について説明する。図35は、繰り返し計算を行う無線基地局の選択方法を示す図である。
 まず、全ての制御可能無線基地局のU値を昇順に並び替える(ステップS244)。次に、予め設定されたAP Ratio for Iterationsパラメータはゼロかどうかを確認する(ステップS245)。もし、このパラメータがゼロの場合(ステップS245がYES)、制御可能無線基地局のうちU値が最小の無線基地局を選択する。該当する無線基地局が複数存在する場合はその中からランダムに1台の無線基地局を選択(ステップS248)し、本プロセスを終了する。もし、AP Ratio for Iterations値がゼロより大きい場合(ステップS245がNO)、繰り返し計算対象の無線基地局数を以下のように計算する(ステップS246)。
 対象無線基地局数Num(target)=ceil(制御可能無線基地局数×AP Ratio for Iterations)
 ここで、ceilは繰り上げを行う関数であり、例えばceil(0.1)=1.0、ceil(1.0)=1、ceil(1.6)=2である。
 次に、制御可能無線基地局のうち、U値が下位Num(target)台の無線基地局の中から1台の無線基地局をランダムに選択(ステップS247)し、本プロセスを終了する。
 例えば、制御可能無線基地局の数を10(以下、制御可能無線基地局をAP#1~AP#10とする)とし、R回目の繰り返し計算後に各無線基地局のU値が以下のようになったと仮定する。
 AP#1:U=0.9、AP#2:U=0.6、AP#3:U=1.0、AP#4:U=0.1、AP#5:U=0.1、AP#6:U=0.3、AP#7:U=0.5、AP#8:U=1.0、AP#9:U=0.9、AP#10:U=0.6
 R+1回目の繰り返し計算のため、U値を昇順に並べ替えると以下のようになる。
 AP#4(U=0.1)、AP#5(U=0.1)、AP#6(U=0.3)、AP#7(U=0.5)、AP#2(U=0.6)、AP#10(U=0.6)、AP#1(U=0.9)、AP#9(U=0.9)、AP#3(U=1.0)、AP#8(U=1.0)
 AP Ratio for Iterations=0.0の場合、対象無線基地局数Num(target)=1であり、AP#4およびAP#5が最小のU値を持つ。そこで、AP#4およびAP#5からランダムに1台の無線基地局を選択して、R+1回目の繰り返し計算を実施する。
 AP Ratio for Iterations=0.5の場合、対象無線基地局数Num(target)=5であるので、AP#4,AP#5,AP#6,AP#7,AP#2,AP#10の中からランダムに1台の無線基地局を選択して、R+1回目の繰り返し計算を実施する。
 AP Ratio for Iterations=1.0の場合、対象無線基地局数Num(target)=10であるので、AP#1~AP#10の中からランダムに1台の無線基地局を選択して、R+1回目の繰り返し計算を実施する。
 前述した第1~第3実施形態におけるマネジメントエンジン8、第4実施形態におけるマネジメントエンジン80、および、第5~10実施形態における無線基地局をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによってマネジメントエンジン8およびマネジメントエンジン80を実現し、また、各々の無線基地局が使用すべきチャネルの割当を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OS(Operating System)や周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWW(World Wide Web)システムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、CD(Compact Disc)-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM(Random Access Memory))のように、一定時間プログラムを保持しているものも含んでもよい。また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよく、PLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されるものであってもよい。
 以上、図面を参照して本発明の実施形態を説明してきたが、上記実施形態は本発明の例示に過ぎず、本発明が上記実施形態に限定されるものではないことは明らかである。したがって、本発明の技術思想及び範囲を逸脱しない範囲で構成要素の追加、省略、置換、その他の変更を行ってもよい。
 本発明は、無線LAN基地局が密集している環境において局地的なスループットの低下を回避することが不可欠な用途に適用できる。
 11、12、13、14、15、16、17、18・・・アクセスポイント(AP、無線LAN基地局)、21、22、23、24、25、26・・・無線端末、41・・・他機器、51、52、53、54、55、56、61・・・ネットワーク、7・・・インターネット、8・・・マネジメントエンジン(ME)、9・・・バンドル配信サーバ、91、92、93、94、95、96・・・サービスゲートウェイ(SGW)、1001、1002・・・無線基地局、1011、1021・・・無線通信部、1012、1022・・・制御部、1013、1023・・・アクセス権獲得部、1014、1024・・・チャネル設定部、1015、1025・・・無線環境情報保持部、1003・・・チャネル割当サーバ、1031・・・通信部、1032・・・チャネル算出部、1033・・・情報収集部、1034・・・制御部
 

Claims (46)

  1.  無線通信ネットワークを構成する無線LAN基地局が動作するために必要な設定を行う無線通信装置であって、
     前記無線LAN基地局に設定されている設定情報と、前記無線LAN基地局における無線環境情報とを収集する情報収集部と、
     収集した前記設定情報と前記無線環境情報とに基づき、収集元の無線LAN基地局に対して設定すべきパラメータを求めるパラメータ算出部と、
     求めた前記パラメータをネットワークを介して収集元の前記無線LAN基地局に対して送信し、パラメータ設定を行うパラメータ設定部と
     を備える無線通信装置。
  2.  前記無線LAN基地局の属性に関する属性情報を記憶するデータベースを有し、
     前記パラメータ算出部は、前記設定情報、前記無線環境情報、および、前記属性情報に基づいて前記パラメータを求める請求項1に記載の無線通信装置。
  3.  前記情報収集部は、
     異なるメーカ、異なる型番、異なるバージョンの前記無線LAN基地局のそれぞれから前記設定情報と前記無線環境情報とを収集する請求項2に記載の無線通信装置。
  4.  前記情報収集部は、前記無線LAN基地局のそれぞれにおいて、周波数チャネル上で運用する周辺の基地局数、受信する受信信号のレベル、チャネルの時間占有率を前記無線環境情報として収集し、
     前記パラメータ算出部は、前記無線環境情報に基づいて、各々の前記無線LAN基地局において無線環境が改善するように、前記パラメータを求める請求項2または3に記載の無線通信装置。
  5.  前記情報収集部は、前記無線LAN基地局のそれぞれにおいて、周波数チャネル上で運用する周辺の基地局数、使用可能最大帯域幅、周辺他基地局より受信する受信信号のレベルを前記無線環境情報として収集し、
     前記パラメータ算出部は、前記無線環境情報に基づいて、各々の前記無線LAN基地局において無線環境が改善するように、前記パラメータを求める請求項2、3または4に記載の無線通信装置。
  6.  前記情報収集部は、前記無線LAN基地局配下の無線端末のそれぞれにおいて、周波数チャネル上で運用する周辺他基地局数、受信する受信信号のレベル、チャネルの時間占有率を前記無線環境情報として収集する請求項2または3に記載の無線通信装置。
  7.  前記情報収集部は、前記無線LAN基地局配下の無線端末のそれぞれにおいて、周波数チャネル上で運用する周辺他基地局数、使用可能帯域幅、受信する受信信号のレベルを前記無線環境情報として収集する請求項2または3に記載の無線通信装置。
  8.  前記情報収集部は、前記無線環境情報として、前記無線LAN基地局で一定期間にわたって収集された情報の瞬時値、または、前記無線LAN基地局で一定期間にわたって収集された情報の統計値、瞬時値、平均値、最小値、もしくは、最大値を収集する請求項2から7のいずれか1項に記載の無線通信装置。
  9.  前記情報収集部及び前記パラメータ設定部は、外部インタフェース用プロトコルを用いて情報収集及びパラメータの設定を行う請求項2から8のいずれか1項に記載の無線通信装置。
  10.  前記パラメータ設定部は、定期的な実施、ネットワーク側のオペレータによる手動実施、サービスを受けるユーザの要求による手動実施、または予め決められた事象が発生した際の実施のいずれかによって前記パラメータ設定を実施する請求項2から9のいずれか1項に記載の無線通信装置。
  11.  前記データベースは、新たな機種の無線LAN基地局の発売、または、既存の無線LAN基地局の機能変更に応じてアップデートされる請求項2から10のいずれか1項に記載の無線通信装置。
  12.  前記無線LAN基地局は、複数のチャネルのうち少なくとも一つのチャネルを使用して無線通信を行い、
     前記情報収集部は、前記無線LAN基地局が検知した周辺無線環境を表す情報を前記無線環境情報として収集し、
     前記パラメータ算出部は、前記無線環境情報に基づいて、前記無線LAN基地局が使用すべきチャネルを決定するための指標値を計算し、前記指標値に基づき前記無線LAN基地局が使用すべきチャネルを前記パラメータとして求める
     請求項1に記載の無線通信装置。
  13.  前記パラメータ算出部は、
     前記指標値として、使用可能な全てのチャネルに対して、
     U=1-他無線装置による該当チャネルの媒体使用率
     で表されるU値を計算し、
     前記U値が最大となるチャネルまたは前記U値が予め設定された閾値以上となるチャネルのうちの1チャネルを前記無線LAN基地局に割り当てる仮チャネルとして決定する請求項12に記載の無線通信装置。
  14.  前記パラメータ算出部は、
     前記指標値として、使用可能な全てのチャネルに対して、
     U=満足度
     で表されるU値を計算し、
     前記U値が最大となるチャネルまたは前記U値が予め設定された閾値以上となるチャネルのうちの1チャネルを前記無線LAN基地局に割り当てる仮チャネルとして決定する請求項12に記載の無線通信装置。
  15.  前記パラメータ算出部は、
     前記指標値として、使用可能な各チャネルに対して、
     U=単位時間当たりにおいて無線LAN基地局が当該チャネルを占有可能な時間長/単位時間当たりにおいて前記無線LAN基地局がフレーム送受信を行うのに必要な総時間長
     で表されるU値を計算し、
     前記U値が最大となるチャネルまたは前記U値が予め設定された閾値以上となるチャネルのうちの1チャネルを前記無線LAN基地局に割り当てる仮チャネルとして決定する請求項12に記載の無線通信装置。
  16.  前記パラメータ算出部は、
     前記指標値として、使用可能な各チャネルおよび帯域幅に対して、
     U=前記無線LAN基地局が使用可能な各チャネルを周辺基地局と共用した場合に取得可能なスループット(見込みスループット)/前記無線LAN基地局のみが使用可能な各チャネルを使用した場合(他干渉基地局がない場合)に取得可能なスループット
     で表されるU値を計算し、
     前記U値が予め設定された閾値β以上となるチャネルおよび帯域幅を前記無線LAN基地局に割り当てる仮チャネルおよび仮帯域幅として決定する請求項12に記載の無線通信装置。
  17.  前記U値が前記閾値β以上となるチャネルおよび帯域幅が存在しない場合は、前記U値が最大となるチャネルおよび帯域幅を前記無線LAN基地局に割り当てる前記仮チャネルおよび前記仮帯域幅として決定する請求項16に記載の無線通信装置。
  18.  前記パラメータ算出部は、
     前記指標値として、使用可能な全てのチャネルに対して、
     U=無線LAN基地局が取得可能なスループット/要求トラヒック量
     で表されるU値を計算し、
     前記U値が最大となるチャネルまたは前記U値が予め設定された閾値以上となるチャネルのうちの1チャネルを前記無線LAN基地局に割り当てる仮チャネルとして決定する請求項12に記載の無線通信装置。
  19.  前記パラメータ算出部は、
     前記各無線LAN基地局における前記仮チャネルを算出し、
     前記各無線LAN基地局における前記U値と、全ての前記無線LAN基地局における前記U値の総和Utotalを算出し、
     予め設定された閾値UTH以下のU値を有する無線LAN基地局の中から1つの無線LAN基地局を選択し、
     所定条件を満たすチャネルを算出し、前記チャネルを選択した前記無線LAN基地局の新しい仮チャネルとする動作を予め設定されたMax_r回繰り返し実施する
     請求項13から18のいずれか1項に記載の無線通信装置。
  20.  r回目の繰り返し計算におけるUtotalをUtotal (r)とすると、
     前記所定条件を満たすチャネルは、
     Utotal (r)≧α・Utotal (r-1)の条件下で、
     選択した前記無線LAN基地局のU値が、U≧βとなるチャネル(0≦α、β≦1)である
     請求項19に記載の無線通信装置。
  21.  前記パラメータ算出部は、
     前記各無線LAN基地局における前記仮チャネルを算出し、
     前記各無線LAN基地局における前記U値と、全ての前記無線LAN基地局における前記U値の総積Uproductを算出し、
     予め設定された閾値UTH以下のU値を有する無線LAN基地局の中から1つの無線LAN基地局を選択し、
     所定条件を満たすチャネルを算出し、前記チャネルを選択した前記無線LAN基地局の新しい仮チャネルとする動作を予め設定されたMax_r回繰り返し実施する
     請求項13から18のいずれか1項に記載の無線通信装置。
  22.  r回目の繰り返し計算におけるUproductをUproduct (r)とすると、
     前記所定条件を満たすチャネルは、
     Uproduct (r)≧α・Uproduct (r-1)の条件下で、
     選択した前記無線LAN基地局のU値が、U≧βとなるチャネル(0≦α、β≦1)である
     請求項21に記載の無線通信装置。
  23.  前記パラメータ算出部は、
     すべての前記無線LAN基地局のU値が1となった場合、又は、所定の繰り返し計算の回数が予め設定されたMax_r回になった場合、又は、予め設定された収束条件を満たした場合に、その時点での各無線LAN基地局の前記仮チャネルを各々の前記無線LAN基地局に設定するチャネルとして決定する請求項13から22のいずれか1項に記載の無線通信装置。
  24.  前記パラメータ算出部は、
     チャネルを割り当てる全ての無線LAN基地局の前記U値の合計である合計U値を計算し、
     前記合計U値が劣化しないように、所定の条件を満たすU値を持つ無線LAN基地局に割り当てるチャネルの最適化を行う請求項13から18のいずれか1項に記載の無線通信装置。
  25.  前記パラメータ算出部は、
     チャネルを割り当てる全ての無線LAN基地局の前記U値の乗算値を計算し、
     前記U値の乗算値が劣化しないように、所定の条件を満たすU値を持つ無線LAN基地局に割り当てるチャネルの最適化を行う請求項13から18のいずれか1項に記載の無線通信装置。
  26.  前記パラメータ算出部は、
     前記無線LAN基地局又は無線端末の時間占有率又は前記時間占有率と同等なパラメータ値を用いて、前記U値を計算する請求項13から18のいずれか1項に記載の無線通信装置。
  27.  前記無線LAN基地局は、複数の無線通信方式のうち少なくとも一つの無線通信方式のチャネルを使用して無線通信を行い、
     前記情報収集部は、前記無線LAN基地局が検知した周辺無線環境を表す情報を前記無線環境情報として収集し、
     前記パラメータ算出部は、前記無線環境情報に基づいて、前記無線LAN基地局が使用すべき無線通信方式を決定するための指標値を計算し、前記指標値に基づき前記無線LAN基地局が使用すべき無線通信方式を前記パラメータとして求める
     請求項1に記載の無線通信装置。
  28.  前記パラメータ算出部は、
     前記指標値として、各々の前記無線LAN基地局において、
     U=他の無線通信方式に移行した場合の見込みスループット/現在使用中のシステムにおける平均スループット
     で表されるU値を計算し、
     前記U値が最大となる無線通信方式のチャネルを前記無線LAN基地局に割り当てる仮無線通信方式のチャネルとして決定し、
     繰り返し計算により、最終的に使用すべき無線通信方式のチャネルを決定する
     請求項27に記載の無線通信装置。
  29.  無線通信ネットワークを構成する無線LAN基地局が動作するために必要な設定を行うマネジメントエンジンを備える無線通信システムであって、
     前記マネジメントエンジンは、
     前記無線LAN基地局に設定されている設定情報と、前記無線LAN基地局における無線環境情報とを収集する情報収集部と、
     収集した前記設定情報と前記無線環境情報とに基づき、収集元の無線LAN基地局に対して設定すべきパラメータを求めるパラメータ算出部と、
     求めた前記パラメータをネットワークを介して収集元の前記無線LAN基地局に対して送信し、パラメータ設定を行うパラメータ設定部とを備え、
     前記無線LAN基地局は、
     前記情報収集部から情報収集の要求を受けると、前記設定情報と前記無線環境情報とを前記マネジメントエンジンへ送信する情報送信部と、
     前記パラメータ設定部から前記パラメータを受け取ると、前記パラメータに基づき自己の設定を行う設定部とを備える
     無線通信システム。
  30.  前記マネジメントエンジンは、
     前記無線LAN基地局の属性に関する属性情報を記憶するデータベースを有し、
     前記パラメータ算出部は、前記設定情報、前記無線環境情報、および、前記属性情報に基づいて前記パラメータを求める請求項29に記載の無線通信システム。
  31.  前記情報収集部は、
     異なるメーカ、異なる型番、異なるバージョンの前記無線LAN基地局のそれぞれから前記設定情報と前記無線環境情報とを収集する請求項30に記載の無線通信システム。
  32.  前記情報収集部は、前記無線LAN基地局配下の無線端末のそれぞれにおいて、周波数チャネル上で運用する周辺他基地局数、受信する受信信号のレベル、チャネルの時間占有率を前記無線環境情報として収集する請求項30または31に記載の無線通信システム。
  33.  前記無線通信システムは、複数のチャネルのうち少なくとも一つのチャネルを使用して無線通信を行う複数の無線LAN基地局を具備し、
     前記無線LAN基地局は、周辺無線環境を検知して、前記周辺無線環境を表す情報を前記無線環境情報として生成し、生成した前記無線環境情報を前記マネジメントエンジンに通知する周辺無線環境通知部を備え、
     前記パラメータ算出部は、前記無線環境情報に基づいて、前記無線LAN基地局が使用すべきチャネルを決定するための指標値を計算し、前記指標値に基づき前記無線LAN基地局が使用すべきチャネルを前記パラメータとして求める
     請求項29に記載の無線通信システム。
  34.  前記パラメータ算出部は、
     前記指標値として、使用可能な全てのチャネルに対して、
     U=1-他無線装置による該当チャネルの媒体使用率
     で表されるU値を計算し、
     前記U値が最大となるチャネルを前記無線LAN基地局に割り当てる仮チャネルとして決定する請求項33に記載の無線通信システム。
  35.  前記パラメータ算出部は、
     前記指標値として、使用可能な全てのチャネルに対して、
     U=満足度
     で表されるU値を計算し、
     前記U値が最大となるチャネルを前記無線LAN基地局に割り当てる仮チャネルとして決定する請求項33に記載の無線通信システム。
  36.  前記パラメータ算出部は、
     前記指標値として、使用可能な各チャネルに対して、
     U=単位時間当たりにおいて無線LAN基地局が当該チャネルを占有可能な時間長/単位時間当たりにおいて前記無線LAN基地局がフレーム送受信を行うのに必要な総時間長
     で表されるU値を計算し、
     前記U値が最大となるチャネルを前記無線LAN基地局に割り当てる仮チャネルとして決定する請求項33に記載の無線通信システム。
  37.  前記無線通信システムは、複数の無線通信方式のうち少なくとも一つの無線通信方式のチャネルを使用して無線通信を行う複数の無線LAN基地局を具備し、
     前記無線LAN基地局は、周辺無線環境を検知して、前記周辺無線環境を表す情報を前記無線環境情報として生成し、生成した前記無線環境情報を前記マネジメントエンジンに通知する周辺無線環境通知部を備え、
     前記パラメータ算出部は、前記無線環境情報に基づいて、前記無線LAN基地局が使用すべき無線通信方式を決定するための指標値を計算し、前記指標値に基づき前記無線LAN基地局が使用すべき無線通信方式を前記パラメータとして求める請求項29に記載の無線通信システム。
  38.  無線通信ネットワークを構成する無線LAN基地局が動作するために必要なパラメータ設定を行う無線通信システムが行う無線通信方法であって、
     前記無線LAN基地局に設定されている設定情報と、前記無線LAN基地局における無線環境情報とを収集する情報収集ステップと、
     収集した前記設定情報と前記無線環境情報とに基づき、収集元の無線LAN基地局に対して設定すべきパラメータを求めるパラメータ算出ステップと、
     求めた前記パラメータをネットワークを介して収集元の前記無線LAN基地局に対して送信し、パラメータ設定を行うパラメータ設定ステップと
     を有する無線通信方法。
  39.  前記パラメータ算出ステップにおいて、前記設定情報、前記無線環境情報、および、データベースに記憶された前記無線LAN基地局の属性に関する属性情報に基づいて前記パラメータを求める請求項38に記載の無線通信方法。
  40.  前記情報収集ステップにおいて、
     異なるメーカ、異なる型番、異なるバージョンの前記無線LAN基地局のそれぞれから前記設定情報と前記無線環境情報とを収集する請求項39に記載の無線通信方法。
  41.  前記情報収集ステップにおいて、前記無線LAN基地局配下の無線端末のそれぞれにおいて、周波数チャネル上で運用する周辺他基地局数、受信する受信信号のレベル、チャネルの時間占有率を前記無線環境情報として収集する請求項39または40に記載の無線通信方法。
  42.  前記無線LAN基地局は、複数のチャネルのうち少なくとも一つのチャネルを使用して無線通信を行い、
     前記情報収集ステップにおいて、前記無線LAN基地局が検知した周辺無線環境を表す情報を前記無線環境情報として収集し、
     前記パラメータ算出ステップにおいて、前記無線環境情報に基づいて、前記無線LAN基地局が使用すべきチャネルを決定するための指標値を計算し、前記指標値に基づき前記無線LAN基地局が使用すべきチャネルを前記パラメータとして求める請求項38に記載の無線通信方法。
  43.  前記パラメータ算出ステップにおいて、
     前記指標値として、使用可能な全てのチャネルに対して、
     U=1-他無線装置による該当チャネルの媒体使用率
     で表されるU値を計算し、
     前記U値が最大となるチャネルを前記無線LAN基地局に割り当てる仮チャネルとして決定する請求項42に記載の無線通信方法。
  44.  前記パラメータ算出ステップにおいて、
     前記指標値として、使用可能な全てのチャネルに対して、
     U=満足度
     で表されるU値を計算し、
     前記U値が最大となるチャネルを前記無線LAN基地局に割り当てる仮チャネルとして決定する請求項42に記載の無線通信方法。
  45.  前記パラメータ算出ステップにおいて、
     前記指標値として、使用可能な各チャネルに対して、
     U=単位時間当たりにおいて無線LAN基地局が当該チャネルを占有可能な時間長/単位時間当たりにおいて前記無線LAN基地局がフレーム送受信を行うのに必要な総時間長
     で表されるU値を計算し、
     前記U値が最大となるチャネルを前記無線LAN基地局に割り当てる仮チャネルとして決定する請求項42に記載の無線通信方法。
  46.  前記無線LAN基地局は、複数の無線通信方式のうち少なくとも一つの無線通信方式のチャネルを使用して無線通信を行い、
     前記情報収集ステップにおいて、前記無線LAN基地局が検知した周辺無線環境を表す情報を前記無線環境情報として収集し、
     前記パラメータ算出ステップにおいて、前記無線環境情報に基づいて、前記無線LAN基地局が使用すべき無線通信方式を決定するための指標値を計算し、前記指標値に基づき前記無線LAN基地局が使用すべき無線通信方式を前記パラメータとして求める請求項38に記載の無線通信方法。
PCT/JP2013/080597 2012-11-12 2013-11-12 無線通信装置、無線通信システム及び無線通信方法 WO2014073706A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014545792A JP6126621B2 (ja) 2012-11-12 2013-11-12 無線通信装置、無線通信システム及び無線通信方法
US14/441,055 US10602367B2 (en) 2012-11-12 2013-11-12 Wireless communication apparatus, wireless communication system, and wireless communication method
EP13853482.1A EP2905983B1 (en) 2012-11-12 2013-11-12 Wireless communication device, wireless communication system, and wireless communication method
CN201380058471.1A CN104756532B (zh) 2012-11-12 2013-11-12 无线通信装置、无线通信系统和无线通信方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012248430 2012-11-12
JP2012-248430 2012-11-12
JP2013-151812 2013-07-22
JP2013151812 2013-07-22
JP2013-175038 2013-08-26
JP2013175038 2013-08-26

Publications (1)

Publication Number Publication Date
WO2014073706A1 true WO2014073706A1 (ja) 2014-05-15

Family

ID=50684793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080597 WO2014073706A1 (ja) 2012-11-12 2013-11-12 無線通信装置、無線通信システム及び無線通信方法

Country Status (5)

Country Link
US (1) US10602367B2 (ja)
EP (1) EP2905983B1 (ja)
JP (5) JP6126621B2 (ja)
CN (1) CN104756532B (ja)
WO (1) WO2014073706A1 (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167286A (ja) * 2014-03-03 2015-09-24 日本電信電話株式会社 無線通信システム、基地局、集中制御局及び無線通信方法
JP2016021647A (ja) * 2014-07-14 2016-02-04 日本電信電話株式会社 無線通信システム及び無線通信方法
JP2016218958A (ja) * 2015-05-26 2016-12-22 セイコーソリューションズ株式会社 アクセスポイント接続装置、注文管理システム、およびアクセスポイント接続プログラム
JP2017046284A (ja) * 2015-08-28 2017-03-02 西日本電信電話株式会社 Wi−Fi機能付きゲートウェイ装置
JP2017103553A (ja) * 2015-11-30 2017-06-08 日本電信電話株式会社 無線通信システム、無線通信方法、集中制御局および無線基地局
JP2017103556A (ja) * 2015-11-30 2017-06-08 日本電信電話株式会社 無線通信システム、無線通信方法および集中制御局
JP2017139596A (ja) * 2016-02-03 2017-08-10 株式会社リコー 無線通信装置、無線通信システム及び無線ネットワーク設定方法
JP2017175205A (ja) * 2016-03-18 2017-09-28 日本電信電話株式会社 無線通信システムおよび無線通信方法
JP2017175204A (ja) * 2016-03-18 2017-09-28 日本電信電話株式会社 無線通信システムおよび無線通信方法
KR101817862B1 (ko) * 2016-06-20 2018-01-11 포항공과대학교 산학협력단 통신 네트워크에서 통신 노드의 채널 선택 방법
JP2018037966A (ja) * 2016-09-01 2018-03-08 ソフトバンク株式会社 無線通信制御装置、プログラム及び無線通信システム
WO2018043600A1 (ja) * 2016-09-02 2018-03-08 日本電信電話株式会社 無線通信システムおよび無線通信方法
JP2018074192A (ja) * 2016-10-24 2018-05-10 富士通株式会社 無線通信システム、基地局装置、無線通信制御装置及び無線通信制御方法
JP2019041339A (ja) * 2017-08-28 2019-03-14 日本電信電話株式会社 無線通信システム、無線通信方法、無線基地局および制御局
JP2019509702A (ja) * 2016-03-18 2019-04-04 プリューム デザイン インコーポレイテッドPlume Design, Inc. 分散Wi−Fiネットワークの最適化を可能にするためのデータ収集
JP2019512992A (ja) * 2016-03-18 2019-05-16 プリューム デザイン インコーポレイテッドPlume Design, Inc. 分散Wi−Fiネットワークの最適化
JP2020068470A (ja) * 2018-10-24 2020-04-30 日本電信電話株式会社 無線lan通信品質推定方法、無線lan通信品質推定システム、情報収集装置および無線lan通信品質推定装置
JP2020092368A (ja) * 2018-12-07 2020-06-11 株式会社国際電気通信基礎技術研究所 通信システム、アクセスポイント、通信方法、および、プログラム
JP2020115617A (ja) * 2019-01-17 2020-07-30 株式会社Nttドコモ 通信制御装置及び通信制御方法
JPWO2020250287A1 (ja) * 2019-06-10 2020-12-17
JPWO2020250285A1 (ja) * 2019-06-10 2020-12-17
JP2021093598A (ja) * 2019-12-09 2021-06-17 富士通株式会社 無線通信チャネル選択システム、及び、無線通信チャネル選択装置
WO2021152696A1 (ja) * 2020-01-28 2021-08-05 日本電信電話株式会社 無線通信システム、基地局制御装置、通信制御方法及び通信制御プログラム
JPWO2021152695A1 (ja) * 2020-01-28 2021-08-05
JPWO2021186625A1 (ja) * 2020-03-18 2021-09-23
US11317421B2 (en) 2014-11-20 2022-04-26 British Telecommunications Public Limited Company Cellular communications network
WO2022137478A1 (ja) * 2020-12-25 2022-06-30 日本電信電話株式会社 データ処理装置、データ処理方法、及びデータ処理プログラム
WO2024100799A1 (ja) * 2022-11-09 2024-05-16 日本電信電話株式会社 無線エリア設計支援装置、無線エリア設計支援方法及びプログラム
WO2024161599A1 (ja) * 2023-02-02 2024-08-08 日本電信電話株式会社 無線通信システム、無線通信方法、制御装置及び集中制御プログラム

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111417013B (zh) * 2014-01-09 2021-12-10 三星电子株式会社 多媒体传输系统中发送和接收数据相关信息的方法和装置
US10015683B1 (en) * 2014-10-31 2018-07-03 Quantenna Communications, Inc Device optimization across wireless local area networks
WO2016130430A1 (en) * 2015-02-11 2016-08-18 Arris Enterprises, Inc. Wireless video performance self-monitoring and alert system
EP3334202B1 (en) * 2015-08-04 2020-12-02 Nippon Telegraph and Telephone Corporation Wireless environment information collecting system and method
WO2017028899A1 (en) * 2015-08-17 2017-02-23 Nokia Solutions And Networks Oy Multi-channel listen-before-talk arrangements for licensed-assisted access in lte
US10305666B2 (en) * 2015-11-05 2019-05-28 Huawei Technologies Co., Ltd. Systems and methods for multi-channel beacon transmission in a wireless network
CN105357719B (zh) * 2015-12-10 2018-11-09 魅族科技(中国)有限公司 无线局域网的通信方法及通信装置、站点和接入点
WO2017115191A1 (en) * 2015-12-29 2017-07-06 Telefonaktiebolaget Lm Ericsson (Publ) Network performance framework for wireless local area networks
US10667280B2 (en) * 2016-05-03 2020-05-26 Reliance Jio Infocomm Limited Systems and methods for allocating at least one wireless channel to an access point
KR102105685B1 (ko) * 2016-07-15 2020-04-29 주식회사 케이티 무선랜 기반 데이터 트래픽 전송을 위한 최적 dfs 채널 선택 방법, 장치 및 컴퓨터 프로그램
JP6563881B2 (ja) * 2016-09-08 2019-08-21 Necプラットフォームズ株式会社 通信切替装置、アクセスポイント、端末、通信切替方法
WO2018098769A1 (en) * 2016-12-01 2018-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Method for channel access and related network node
WO2019131548A1 (en) * 2017-12-25 2019-07-04 Panasonic Intellectual Property Corporation Of America Communication apparatus and communication method for low power fast smart scanning
WO2019167609A1 (ja) * 2018-02-27 2019-09-06 ソニー株式会社 無線通信装置および方法
US11451969B2 (en) * 2018-03-26 2022-09-20 Sony Corporation Communication control device and communication control method
JP2019186864A (ja) * 2018-04-16 2019-10-24 日本電信電話株式会社 通信制御装置、通信制御方法及び通信制御システム
JP6963180B2 (ja) * 2018-04-16 2021-11-05 日本電信電話株式会社 アクセスポイント管理方法、アクセスポイント管理装置及びアクセスポイント管理システム
JP2021182656A (ja) * 2018-08-16 2021-11-25 ソニーグループ株式会社 無線通信装置および無線通信方法
JP2020068469A (ja) * 2018-10-24 2020-04-30 日本電信電話株式会社 無線lan通信システム、アクセスポイント通信品質判定方法および情報収集サーバ
CN109246712A (zh) * 2018-10-31 2019-01-18 陕西烽火实业有限公司 一种适用于短波电台的频率管理系统及方法
US10939471B2 (en) * 2019-06-13 2021-03-02 David E. Newman Managed transmission of wireless DAT messages
JP7272434B2 (ja) * 2019-06-21 2023-05-12 日本電信電話株式会社 無線通信システムおよび無線通信方法
JP7259989B2 (ja) * 2019-11-26 2023-04-18 日本電信電話株式会社 無線lanシステム、干渉制御信号管理装置、基地局装置および干渉制御方法
JP7385869B2 (ja) * 2020-07-16 2023-11-24 日本電信電話株式会社 無線通信システムの最適化方法、無線通信システムおよび無線通信システム用プログラム
EP4161131B1 (en) * 2021-10-04 2024-07-10 EXFO Oy Ad hoc radio base station, method and computer program
TWI819855B (zh) * 2022-10-18 2023-10-21 瑞昱半導體股份有限公司 計算裝置及計算方法
FR3142644A1 (fr) * 2022-11-29 2024-05-31 Orange Réseau radio courte portée avec paramètre de connectivité
WO2024161610A1 (ja) * 2023-02-02 2024-08-08 日本電信電話株式会社 無線通信システム、無線通信方法、集中制御装置及び集中制御プログラム
WO2024161609A1 (ja) * 2023-02-02 2024-08-08 日本電信電話株式会社 無線通信システム、無線通信方法、集中制御装置及び集中制御プログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006025003A (ja) * 2004-07-06 2006-01-26 Iwatsu Electric Co Ltd アクセスポイントへの自動チャネル・アサイン・システム
JP2006054849A (ja) * 2004-07-13 2006-02-23 Iwatsu Electric Co Ltd アクセスポイントにおける自動化チャネル決定方法及び自動化チャネル割当システム
JP2008067121A (ja) * 2006-09-08 2008-03-21 Iwatsu Electric Co Ltd 自動チャネル決定方法と装置。
JP2008283508A (ja) * 2007-05-11 2008-11-20 Matsushita Electric Ind Co Ltd 無線通信システム
JP2010171893A (ja) * 2009-01-26 2010-08-05 Canon Inc 通信チャネル決定方法及び決定装置
JP2013081089A (ja) * 2011-10-04 2013-05-02 Nippon Telegr & Teleph Corp <Ntt> 無線通信システム、及びチャネル割当方法
JP2013093708A (ja) * 2011-10-25 2013-05-16 Nippon Telegr & Teleph Corp <Ntt> 無線通信システム
JP2013115503A (ja) * 2011-11-25 2013-06-10 Nippon Telegr & Teleph Corp <Ntt> 無線通信システム

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7239877B2 (en) * 2003-10-07 2007-07-03 Accenture Global Services Gmbh Mobile provisioning tool system
CA2600724A1 (en) 2005-03-14 2006-09-21 H-Stream Wireless, Inc. Method and apparatus for operating a wireless pan network using an overlay protocol that enhances co-existence with a wireless lan network
US20080316959A1 (en) * 2007-06-19 2008-12-25 Rainer Bachl Method of transmitting scheduling requests over uplink channels
US8116687B2 (en) * 2007-07-25 2012-02-14 Freescale Semiconductor, Inc. Dynamic frequency selection in wireless devices
JP4846676B2 (ja) 2007-08-22 2011-12-28 日本電信電話株式会社 伝送レート制御方法、無線基地局装置、および無線パケット通信システム
JP5115852B2 (ja) 2008-04-28 2013-01-09 国立大学法人電気通信大学 コグニティブ無線通信システム、通信方法、および通信機器
US8238298B2 (en) 2008-08-29 2012-08-07 Trapeze Networks, Inc. Picking an optimal channel for an access point in a wireless network
US8305972B2 (en) * 2009-01-27 2012-11-06 Motorola Solutions, Inc. Proactive scheduling methods and apparatus to enable peer-to-peer communication links in a wireless OFDMA system
US8379551B2 (en) * 2009-08-18 2013-02-19 Qualcomm Incorporated Radio selection in a multi-radio device
CN102056180B (zh) 2009-10-27 2013-12-18 华为技术有限公司 一种无线局域网接入点部署方案的获得方法及系统
JP2012005075A (ja) * 2010-06-21 2012-01-05 Ntt Docomo Inc 移動端末装置及び無線通信方法
KR20130101540A (ko) 2010-10-11 2013-09-13 인터디지탈 패튼 홀딩스, 인크 인지적 무선 네트워크의 대역폭 할당을 위한 방법 및 장치
JP5618363B2 (ja) 2010-10-14 2014-11-05 日本電気株式会社 移動通信システムの管理システム及び方法と装置
US8923225B2 (en) * 2011-04-05 2014-12-30 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry, Through The Communications Research Centre Canada Cognitive WiFi radio network
WO2012156574A1 (en) * 2011-05-13 2012-11-22 Nokia Corporation Interference management in wireless network
US8502733B1 (en) * 2012-02-10 2013-08-06 CBF Networks, Inc. Transmit co-channel spectrum sharing
US9237475B2 (en) * 2012-03-09 2016-01-12 Samsung Electronics Co., Ltd. Channel quality information and beam index reporting
US9967130B2 (en) * 2012-05-21 2018-05-08 Sony Corporation Devices and methods for dynamic broadcast
EP3087791B1 (en) * 2014-01-15 2018-12-12 Huawei Technologies Co., Ltd. System and method for uplink ofdma transmission
US20150348498A1 (en) * 2014-05-30 2015-12-03 Identity Systems, Inc. Digital badge and signage system and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006025003A (ja) * 2004-07-06 2006-01-26 Iwatsu Electric Co Ltd アクセスポイントへの自動チャネル・アサイン・システム
JP2006054849A (ja) * 2004-07-13 2006-02-23 Iwatsu Electric Co Ltd アクセスポイントにおける自動化チャネル決定方法及び自動化チャネル割当システム
JP2008067121A (ja) * 2006-09-08 2008-03-21 Iwatsu Electric Co Ltd 自動チャネル決定方法と装置。
JP2008283508A (ja) * 2007-05-11 2008-11-20 Matsushita Electric Ind Co Ltd 無線通信システム
JP2010171893A (ja) * 2009-01-26 2010-08-05 Canon Inc 通信チャネル決定方法及び決定装置
JP2013081089A (ja) * 2011-10-04 2013-05-02 Nippon Telegr & Teleph Corp <Ntt> 無線通信システム、及びチャネル割当方法
JP2013093708A (ja) * 2011-10-25 2013-05-16 Nippon Telegr & Teleph Corp <Ntt> 無線通信システム
JP2013115503A (ja) * 2011-11-25 2013-06-10 Nippon Telegr & Teleph Corp <Ntt> 無線通信システム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IEEE 802.11AC DRAFT STANDARD, D3. 0, June 2012 (2012-06-01)
MASAHIRO MORIKURA; SHUJI KUBOTA, 802.11 HIGH-SPEED WIRELESS LAN TEXTBOOK, March 2008 (2008-03-01), pages 6 - 9
R. JAIN ET AL.: "A quantitative measure of fairness and discrimination for resource allocation in shared computer system", DIGITAL EQUIPMENT CORPORATION TECHNICAL REPORT, DEC-TR-301, September 1984 (1984-09-01)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167286A (ja) * 2014-03-03 2015-09-24 日本電信電話株式会社 無線通信システム、基地局、集中制御局及び無線通信方法
JP2016021647A (ja) * 2014-07-14 2016-02-04 日本電信電話株式会社 無線通信システム及び無線通信方法
US11317421B2 (en) 2014-11-20 2022-04-26 British Telecommunications Public Limited Company Cellular communications network
JP2016218958A (ja) * 2015-05-26 2016-12-22 セイコーソリューションズ株式会社 アクセスポイント接続装置、注文管理システム、およびアクセスポイント接続プログラム
JP2017046284A (ja) * 2015-08-28 2017-03-02 西日本電信電話株式会社 Wi−Fi機能付きゲートウェイ装置
JP2017103553A (ja) * 2015-11-30 2017-06-08 日本電信電話株式会社 無線通信システム、無線通信方法、集中制御局および無線基地局
JP2017103556A (ja) * 2015-11-30 2017-06-08 日本電信電話株式会社 無線通信システム、無線通信方法および集中制御局
JP2017139596A (ja) * 2016-02-03 2017-08-10 株式会社リコー 無線通信装置、無線通信システム及び無線ネットワーク設定方法
JP2017175204A (ja) * 2016-03-18 2017-09-28 日本電信電話株式会社 無線通信システムおよび無線通信方法
JP2017175205A (ja) * 2016-03-18 2017-09-28 日本電信電話株式会社 無線通信システムおよび無線通信方法
JP2019509702A (ja) * 2016-03-18 2019-04-04 プリューム デザイン インコーポレイテッドPlume Design, Inc. 分散Wi−Fiネットワークの最適化を可能にするためのデータ収集
US10470082B2 (en) 2016-03-18 2019-11-05 Plume Design, Inc. Data gathering to enable the optimization of distributed Wi-Fi networks
JP2019512992A (ja) * 2016-03-18 2019-05-16 プリューム デザイン インコーポレイテッドPlume Design, Inc. 分散Wi−Fiネットワークの最適化
KR101817862B1 (ko) * 2016-06-20 2018-01-11 포항공과대학교 산학협력단 통신 네트워크에서 통신 노드의 채널 선택 방법
JP2018037966A (ja) * 2016-09-01 2018-03-08 ソフトバンク株式会社 無線通信制御装置、プログラム及び無線通信システム
CN109716831A (zh) * 2016-09-02 2019-05-03 日本电信电话株式会社 无线通信系统以及无线通信方法
JPWO2018043600A1 (ja) * 2016-09-02 2019-06-24 日本電信電話株式会社 無線通信システムおよび無線通信方法
US10555265B2 (en) 2016-09-02 2020-02-04 Nippon Telegraph And Telephone Corporation Wireless communication system and wireless communication method
WO2018043600A1 (ja) * 2016-09-02 2018-03-08 日本電信電話株式会社 無線通信システムおよび無線通信方法
CN109716831B (zh) * 2016-09-02 2022-03-04 日本电信电话株式会社 无线通信系统以及无线通信方法
JP2018074192A (ja) * 2016-10-24 2018-05-10 富士通株式会社 無線通信システム、基地局装置、無線通信制御装置及び無線通信制御方法
JP2019041339A (ja) * 2017-08-28 2019-03-14 日本電信電話株式会社 無線通信システム、無線通信方法、無線基地局および制御局
JP7077914B2 (ja) 2018-10-24 2022-05-31 日本電信電話株式会社 無線lan通信品質推定方法、無線lan通信品質推定システム、情報収集装置および無線lan通信品質推定装置
JP2020068470A (ja) * 2018-10-24 2020-04-30 日本電信電話株式会社 無線lan通信品質推定方法、無線lan通信品質推定システム、情報収集装置および無線lan通信品質推定装置
WO2020085254A1 (ja) * 2018-10-24 2020-04-30 日本電信電話株式会社 無線lan通信品質推定方法、無線lan通信品質推定システム、情報収集装置および無線lan通信品質推定装置
JP7149583B2 (ja) 2018-12-07 2022-10-07 株式会社国際電気通信基礎技術研究所 通信システム、アクセスポイント、通信方法、および、プログラム
JP2020092368A (ja) * 2018-12-07 2020-06-11 株式会社国際電気通信基礎技術研究所 通信システム、アクセスポイント、通信方法、および、プログラム
JP2020115617A (ja) * 2019-01-17 2020-07-30 株式会社Nttドコモ 通信制御装置及び通信制御方法
JP7278082B2 (ja) 2019-01-17 2023-05-19 株式会社Nttドコモ 通信制御装置及び通信制御方法
WO2020250285A1 (ja) * 2019-06-10 2020-12-17 日本電信電話株式会社 無線通信システム、無線通信方法および無線局装置
US11956662B2 (en) 2019-06-10 2024-04-09 Nippon Telegraph And Telephone Corporation Wireless communication system, wireless communication method, and wireless station device
US11818670B2 (en) 2019-06-10 2023-11-14 Nippon Telegraph And Telephone Corporation Wireless communication system, wireless communication method, and wireless station device
JP7314996B2 (ja) 2019-06-10 2023-07-26 日本電信電話株式会社 無線通信システム、無線通信方法、無線局装置および無線局装置の制御装置
JP7180773B2 (ja) 2019-06-10 2022-11-30 日本電信電話株式会社 無線通信システム、無線通信方法および無線局装置
JPWO2020250285A1 (ja) * 2019-06-10 2020-12-17
WO2020250287A1 (ja) * 2019-06-10 2020-12-17 日本電信電話株式会社 無線通信システム、無線通信方法および無線局装置
JPWO2020250287A1 (ja) * 2019-06-10 2020-12-17
JP7310581B2 (ja) 2019-12-09 2023-07-19 富士通株式会社 無線通信チャネル選択システム、及び、無線通信チャネル選択装置
JP2021093598A (ja) * 2019-12-09 2021-06-17 富士通株式会社 無線通信チャネル選択システム、及び、無線通信チャネル選択装置
JPWO2021152696A1 (ja) * 2020-01-28 2021-08-05
WO2021152695A1 (ja) * 2020-01-28 2021-08-05 日本電信電話株式会社 無線通信システム、中間処理装置、通信制御方法及び通信制御プログラム
JPWO2021152695A1 (ja) * 2020-01-28 2021-08-05
JP7416093B2 (ja) 2020-01-28 2024-01-17 日本電信電話株式会社 無線通信システム、中間処理装置、通信制御方法及び通信制御プログラム
WO2021152696A1 (ja) * 2020-01-28 2021-08-05 日本電信電話株式会社 無線通信システム、基地局制御装置、通信制御方法及び通信制御プログラム
JP7468549B2 (ja) 2020-01-28 2024-04-16 日本電信電話株式会社 無線通信システム、基地局制御装置、通信制御方法及び通信制御プログラム
US12075257B2 (en) 2020-01-28 2024-08-27 Nippon Telegraph And Telephone Corporation Wireless communication system, intermediate processing device, communication control method, and communication control program
JP7298773B2 (ja) 2020-03-18 2023-06-27 日本電信電話株式会社 無線通信システム、無線通信制御装置および方法
JPWO2021186625A1 (ja) * 2020-03-18 2021-09-23
WO2022137478A1 (ja) * 2020-12-25 2022-06-30 日本電信電話株式会社 データ処理装置、データ処理方法、及びデータ処理プログラム
WO2024100799A1 (ja) * 2022-11-09 2024-05-16 日本電信電話株式会社 無線エリア設計支援装置、無線エリア設計支援方法及びプログラム
WO2024161599A1 (ja) * 2023-02-02 2024-08-08 日本電信電話株式会社 無線通信システム、無線通信方法、制御装置及び集中制御プログラム

Also Published As

Publication number Publication date
JP6310504B2 (ja) 2018-04-11
EP2905983A4 (en) 2016-06-08
CN104756532B (zh) 2019-05-17
JP6712297B2 (ja) 2020-06-17
JP6126621B2 (ja) 2017-05-10
JP6491717B2 (ja) 2019-03-27
JP6378814B2 (ja) 2018-08-22
US10602367B2 (en) 2020-03-24
CN104756532A (zh) 2015-07-01
US20150289142A1 (en) 2015-10-08
JP2017212761A (ja) 2017-11-30
JP2019009817A (ja) 2019-01-17
JP2016158305A (ja) 2016-09-01
JPWO2014073706A1 (ja) 2016-09-08
EP2905983A1 (en) 2015-08-12
JP2018007269A (ja) 2018-01-11
EP2905983B1 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
JP6378814B2 (ja) 無線通信装置、無線通信システム及び無線通信方法
EP3616429B1 (en) Channel selection constraints in a network having multiple access points
CN114513861B (zh) 用于具有混合客户端的BSS中的802.11ax客户端的优先信道接入的系统和方法
US20220225172A1 (en) Switch and backhaul capacity-based radio resource management
JP6891733B2 (ja) 無線通信システム、無線通信方法、無線基地局および制御局
JP6449188B2 (ja) 無線通信システムおよび無線通信方法
Jamali et al. Improving performance of association control in IEEE 802.11 ah-based massive IoT networks
WO2021152696A1 (ja) 無線通信システム、基地局制御装置、通信制御方法及び通信制御プログラム
US20220201718A1 (en) Systems and methods for ul scheduler optimization with a self-adjustment bsrp scheme
Hassan et al. Enhancement techniques of IEEE 802.11 wireless local area network distributed coordination function: A review
Yarinezhad et al. A novel scheduling algorithm for LTE on unlicensed bands to ensure fair coexistence with Wi-Fi
Ertürk et al. A framework for modeling and implementing QoS-aware load balancing solutions in WiFi hotspots
JP6434929B2 (ja) 無線通信システムおよび無線通信方法
JP7260004B2 (ja) 無線通信システム、通信制御方法及び通信制御プログラム
JP7416093B2 (ja) 無線通信システム、中間処理装置、通信制御方法及び通信制御プログラム
JP7318747B2 (ja) 無線通信システム、基地局制御装置、及び通信制御方法
Amer Centralized Optimization of the Association in IEEE 802.11 Networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853482

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545792

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14441055

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013853482

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE