Nothing Special   »   [go: up one dir, main page]

WO2014054792A1 - 活物質、活物質の製造方法、電極および二次電池 - Google Patents

活物質、活物質の製造方法、電極および二次電池 Download PDF

Info

Publication number
WO2014054792A1
WO2014054792A1 PCT/JP2013/077117 JP2013077117W WO2014054792A1 WO 2014054792 A1 WO2014054792 A1 WO 2014054792A1 JP 2013077117 W JP2013077117 W JP 2013077117W WO 2014054792 A1 WO2014054792 A1 WO 2014054792A1
Authority
WO
WIPO (PCT)
Prior art keywords
central portion
active material
fibrous carbon
secondary battery
negative electrode
Prior art date
Application number
PCT/JP2013/077117
Other languages
English (en)
French (fr)
Inventor
武 両角
敬太郎 北田
永田 佳秀
高敏 宗岡
健二 松原
裕子 大谷内
愛子 金澤
信之 長岡
吉川 正弘
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201380050827.7A priority Critical patent/CN104685676B/zh
Priority to US14/432,187 priority patent/US10665855B2/en
Priority to JP2014539851A priority patent/JP6413766B2/ja
Publication of WO2014054792A1 publication Critical patent/WO2014054792A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present technology relates to an active material containing at least one of silicon (Si) and tin (Sn) as a constituent element, a method for producing the same, and an electrode and a secondary battery using the active material.
  • a wide variety of electronic devices such as mobile phones and personal digital assistants (PDAs) are widely used, and there is a demand for further downsizing, weight reduction, and long life of the electronic devices.
  • PDAs personal digital assistants
  • a battery particularly a small, lightweight, high energy density secondary battery has been developed.
  • secondary batteries have been considered, not limited to the above-described electronic devices.
  • Typical examples of this variety of applications are battery packs that are removably mounted on electronic devices etc., electric vehicles such as electric vehicles, electric power storage systems such as household electric power servers, electric tools such as electric drills, etc. .
  • the secondary battery includes an electrolytic solution together with a positive electrode and a negative electrode, and the negative electrode includes an active material (negative electrode active material) capable of inserting and extracting an electrode reactant.
  • an active material negative electrode active material
  • carbon materials such as graphite are widely used, but recently, in order to further improve the battery capacity, it has been studied to use silicon.
  • the theoretical capacity (4199 mAh / g) of silicon is much larger than the theoretical capacity (372 mAh / g) of graphite, so that a significant improvement in battery capacity can be expected. In this case, tin having high theoretical capacity as well as silicon is considered promising.
  • the negative electrode active material is likely to break mainly in the vicinity of the surface layer.
  • a highly reactive new surface active surface
  • the surface area (reaction area) of the negative electrode active material is increased.
  • the decomposition reaction of the electrolytic solution occurs on the new surface, and the electrolytic solution is consumed to form a film derived from the electrolytic solution on the new surface, so that battery characteristics such as cycle characteristics are likely to be deteriorated.
  • the surface of the composite particle of silicon and metal is coated with a carbon nanotube (see, for example, Patent Document 1). .
  • the carbon nanotubes are formed by thermal decomposition and carbonization of hydrocarbon gas, and are grown using a metal component in composite particles as a catalyst.
  • an active material capable of obtaining excellent battery characteristics, a method of manufacturing the active material, an electrode and a secondary battery.
  • the active material according to an embodiment of the present technology includes a central portion and a covering portion provided on at least a part of the central portion.
  • the central portion contains at least one of silicon and tin as a constituent element
  • the covering portion contains a plurality of fibrous carbon materials. At least a portion of the plurality of fibrous carbon materials adheres to the central portion while extending in a direction along the surface of the central portion.
  • An electrode according to an embodiment of the present technology includes an active material, and the active material has the same configuration as the above-described active material of the present technology.
  • the secondary battery of one embodiment of the present technology includes the non-aqueous electrolyte together with the positive electrode and the negative electrode, and the negative electrode has the same configuration as the electrode of the present technology described above.
  • a sol solution containing a fibrous carbon material is brought into contact with at least a part of a central part containing at least one of silicon and tin as a constituent element, the sol The solution is heated to form a coating comprising a fibrous carbon material.
  • a coating containing a plurality of fibrous carbon materials is formed in the central part containing silicon or the like as a constituent element . At least a portion of the plurality of fibrous carbon materials adheres to the central portion while extending in the direction along the surface of the central portion. Therefore, excellent battery characteristics can be obtained.
  • FIG. 1 It is a sectional view showing composition of an electrode using an active material of one embodiment of this art. It is sectional drawing showing the structure of an active material. It is sectional drawing showing the other structure of an active material. It is sectional drawing showing the further another structure of an active material. It is a scanning electron microscope (SEM) photograph of an active material layer. It is a figure which represents typically a part of active material layer shown in FIG. It is another SEM photograph of an active material layer. It is a figure which represents typically a part of active material layer shown in FIG. It is a further another SEM photograph of an active material layer. It is a figure which represents typically a part of active material layer shown in FIG. FIG.
  • SEM scanning electron microscope
  • FIG. 1 is a cross-sectional view illustrating a configuration of a secondary battery (cylindrical) using an active material and an electrode according to an embodiment of the present technology. It is sectional drawing which expands and represents a part of winding electrode body shown in FIG. It is a top view which represents typically the structure of the positive electrode shown in FIG. 12, and a negative electrode. It is a perspective view showing the composition of other secondary batteries (laminated film type) using the active material of one embodiment of this art, and an electrode. 15 is a cross-sectional view of the spirally wound electrode body shown in FIG. It is a block diagram showing the composition of the example of application of a rechargeable battery (battery pack).
  • Electrode using active material 1-1. Configuration of Active Material and Electrode 1-2. Method of manufacturing active material and electrode Secondary battery 2-1. Lithium ion secondary battery (cylindrical) 2-2. Lithium ion secondary battery (laminated film type) 3. Applications of Secondary Battery 3-1. Battery pack 3-2. Electric vehicle 3-3. Power storage system 3-4. Electric tool
  • FIG. 1 shows a cross-sectional configuration of an electrode (hereinafter simply referred to as “electrode” or “electrode of the present technology”) using an active material according to an embodiment of the present technology, and FIGS. It shows the cross-sectional configuration of the active material.
  • Electrodes described herein are widely used in electrochemical devices for various applications, and the electrochemical devices are, for example, secondary batteries and capacitors. This electrode may be used as a positive electrode or may be used as a negative electrode.
  • the electrode has the active material layer 2 on the current collector 1 as shown in FIG. 1, for example.
  • the active material layer 2 may be provided on both sides of the current collector 1 or may be provided on only one side.
  • the current collector 1 may not be necessary because it is not necessarily required.
  • the current collector 1 is formed of, for example, a conductive material excellent in electrochemical stability, electrical conductivity and mechanical strength.
  • This conductive material is, for example, one or more of copper (Cu), nickel (Ni), stainless steel, and the like. Among them, a material that does not form an intermetallic compound with the electrode reactant and is alloyed with the active material layer 2 is preferable.
  • the “electrode reactant” is a substance that acts as a mediator of the electrode reaction, and is, for example, lithium (Li) of a lithium ion secondary battery.
  • the “electrode reaction” is, for example, the charge / discharge reaction of a secondary battery.
  • the surface of the current collector 1 (the surface in contact with the active material layer 2) may or may not be roughened.
  • the current collector 1 which is not roughened is, for example, a rolled metal foil, and the current collector 1 which is roughened is, for example, a metal foil which has been subjected to electrolytic treatment, sand blasting, etc. .
  • the electrolytic treatment is a method of forming fine particles on the surface of a metal foil or the like by using an electrolytic method in an electrolytic cell.
  • the metal foil produced by the electrolytic method is generally called electrolytic foil (for example, electrolytic copper foil etc.).
  • the surface of the current collector 1 is preferably roughened. This is because the adhesion of the active material layer 2 to the current collector 1 is improved by the anchor effect.
  • the surface roughness (for example, ten-point average roughness Rz) of the current collector 1 is not particularly limited, but is preferably as large as possible in order to improve the adhesion of the active material layer 2 using the anchor effect. . However, if the surface roughness is too large, the adhesion of the active material layer 2 may be reduced.
  • the active material layer 2 includes a plurality of active materials 100 capable of inserting and extracting an electrode reactant.
  • the active material layer 2 may further contain other materials such as a binder and a conductive agent.
  • the active material 100 includes a central portion 101 and a covering portion 102, as shown in FIG.
  • the covering portion 102 may be provided on the entire surface of the central portion 101 or may be provided on a part of the surface. When the covering portion 102 is provided in a part of the central portion 101, the covering portions 102 may be scattered at a plurality of places.
  • the central portion 101 is a portion that is substantially responsible for the storage and release of the electrode reactant in the active material 100, and includes at least one of silicon (Si) and tin (Sn) as a constituent element. This is because a high energy density can be obtained because of the excellent ability to occlude and release the electrode reactant.
  • the constituent material of the central portion 100 is not particularly limited as long as it contains one or both of silicon and tin as constituent elements. That is, it may be a simple substance of silicon, an alloy of silicon or a compound of silicon, or a simple substance of tin, an alloy of tin or a compound of tin. In addition to the above, two or more kinds of silicon single substance and tin single substance mentioned above may be used, or a material having at least a part of one or more kinds of phases thereof may be used. However, “a single substance” is a single substance in a general meaning to the last, and does not necessarily mean 100% purity, and may contain a trace amount of impurities. In addition, the “alloy” may contain any one or two or more of a metalloid element and a nonmetal element as a constituent element.
  • the alloy of silicon includes, for example, tin, nickel, copper, iron (Fe), cobalt (Co), manganese (Mn), zinc (Zn), indium (In), silver (Ag), as constituent elements other than silicon. It contains one or more kinds of titanium (Ti), germanium (Ge), bismuth (Bi), antimony (Sb), chromium (Cr) and the like.
  • the compound of silicon contains, for example, one or more kinds of carbon (C) and oxygen (O) as constituent elements other than silicon.
  • the compound of silicon may contain, for example, one or more of the series of elements described for the alloy of silicon as a constituent element other than silicon.
  • alloys of silicon and compounds of silicon are SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2), LiSiO, and the like.
  • the alloy of tin is, for example, silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium and the like as constituent elements other than tin. Includes the above.
  • the compound of tin contains, for example, one or more of carbon and oxygen as constituent elements other than tin.
  • the compound of tin may contain any one kind or two or more kinds of a series of elements described for the alloy of tin as a constituent element other than tin, for example.
  • alloys of tin and compounds of tin are SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSnO and Mg 2 Sn.
  • the material containing tin as a constituent element may be, for example, a material containing tin as a first constituent element and additionally containing a second constituent element and a third constituent element.
  • the second constituent element is, for example, cobalt, iron, magnesium (Mg), titanium, vanadium (V), chromium, manganese, nickel, copper, zinc, gallium (Ga), zirconium (Zr), niobium (Nb), molybdenum (Mo), silver, indium, cerium (Ce), hafnium (Hf), tantalum (Ta), tungsten (W), bismuth, silicon and the like, or any one or more kinds.
  • the third constituent element is, for example, one or more of boron (B), carbon, aluminum (Al), and phosphorus (P). By including the second and third constituent elements, high energy density can be obtained.
  • SnCoC-containing materials materials containing tin, cobalt and carbon as constituent elements
  • the content of carbon is 9.9% to 29.7% by mass
  • the ratio of the content of tin and cobalt (Co / (Sn + Co)) is 20% to 70% by mass . This is because a high energy density can be obtained.
  • the SnCoC-containing material has a phase containing tin, cobalt and carbon, which is preferably low crystalline or amorphous. Since this phase is a reaction phase capable of reacting with the electrode reactant, excellent properties are obtained by the presence of the reaction phase.
  • the half-width of the diffraction peak obtained by X-ray diffraction of this phase is preferably 1 ° or more at a diffraction angle 2 ⁇ when using CuK ⁇ rays as the specific X-ray and setting the drawing speed to 1 ° / min. . This is because the electrode reactant is absorbed and released more smoothly, and the reactivity with the electrolytic solution is reduced.
  • the SnCoC-containing material may include a phase containing a single element or a part of each constituent element.
  • Such a reaction phase has, for example, the above-described constituent elements, and is considered to be low in crystallization or amorphization mainly due to the presence of carbon.
  • the SnCoC-containing material it is preferable that at least a part of carbon which is a constituent element is bonded to one or both of a metal element and a metalloid element which are other constituent elements. This is because aggregation or crystallization of tin or the like is suppressed.
  • the bonding state of elements can be confirmed using, for example, X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • Al-K ⁇ rays or Mg-K ⁇ rays are used as soft X-rays.
  • the peak of the synthetic wave of carbon 1s orbital (C1s) appears in a region lower than 284.5 eV.
  • energy calibration is performed so that the peak of 4f orbit (Au4f) of a gold (Au) atom is obtained at 84.0 eV.
  • the C1s peak of the surface contamination carbon is 284.8 eV, which is used as an energy standard.
  • a SnCoC containing material is not restricted to the material (SnCoC) which contains only tin, cobalt, and carbon as a constitutent element.
  • the SnCoC-containing material is, for example, in addition to tin, cobalt and carbon, any one or more of silicon, iron, nickel, chromium, indium, niobium, germanium, titanium, molybdenum, aluminum, phosphorus, gallium and bismuth, etc. Two or more kinds may be contained as constituent elements.
  • SnCoC-containing materials materials containing tin, cobalt, iron and carbon as constituent elements
  • SnCoFeC-containing materials materials containing tin, cobalt, iron and carbon as constituent elements
  • the composition of the SnCoFeC-containing material may be arbitrary.
  • the content of iron is set to be small, the content of carbon is 9.9% by mass to 29.7% by mass, and the content of iron is 0.3% by mass to 5.9% by mass
  • the content ratio of tin and cobalt (Co / (Sn + Co)) is 30% by mass to 70% by mass.
  • the content of iron when the content of iron is set to be large, the content of carbon is 11.9 mass% to 29.7 mass%, and the content ratio of tin, cobalt and iron ((Co + Fe) / (Sn + Co + Fe)) Is 26.4% by mass to 48.5% by mass, and the ratio of the content of cobalt and iron (Co / (Co + Fe)) is 9.9% by mass to 79.5% by mass.
  • the physical properties (such as half width) of the SnCoFeC-containing material are the same as those of the above-described SnCoC-containing material.
  • the central portion 101 preferably contains silicon and oxygen as constituent elements. This is because a high energy density can be easily maintained even if the electrode reaction is repeated.
  • the central portion 101 may have any configuration as a whole as long as it contains silicon and oxygen as constituent elements.
  • the central portion 101 may be a single granular body.
  • the atomic ratio of the central portion 101 (SiO z ), that is, the atomic ratio z (O / Si) of oxygen to silicon is not particularly limited, but preferably satisfies, for example, 0.5 ⁇ z ⁇ 1.8. .
  • the central portion 101 may be, for example, iron, aluminum, chromium, nickel, boron, magnesium, calcium (Ca), titanium, vanadium, manganese, cobalt, copper, germanium, yttrium (Y), zirconium, along with silicon and oxygen. Containing one or more of molybdenum, silver, indium, tin, antimony, tantalum, tungsten, lead (Pb), lanthanum (La), cerium, praseodymium (Pr) and neodymium (Nd) as constituent elements It may be. This is because the electrical resistance of the central portion 101 is reduced.
  • the central portion 101 may be, for example, a composite particulate including an inner portion 101A and an outer portion 101B, as shown in FIG.
  • the outer portion 101B may be provided on all or part of the surface of the inner portion 101A, and in the latter case, the outer portions 101B may be scattered at a plurality of locations. It may be done.
  • the inner portion 101A may further contain iron or the like as a constituent element for the same reason as the central portion 101 which is a single granular body described above.
  • the atomic ratio y of the outer portion 101B is not particularly limited, but preferably satisfies, for example, 0.5 ⁇ y ⁇ 1.8. This is because the active material 100 is unlikely to deteriorate even if the electrode reaction is repeated. As a result, the inner portion 101A is physically and chemically protected by the outer portion 101B while securing the in / out of the electrode reactant in the inner portion 101A.
  • the outer portion 101B intervenes between the inner portion 101A and the electrolytic solution, the highly reactive inner portion 101A is less likely to come into contact with the electrolytic solution, whereby the decomposition reaction of the electrolytic solution is suppressed.
  • the outer portion 101B is formed of a material of the same family as the inner portion 101A, ie, a material containing a common element (here, silicon) as a constituent element, adhesion of the outer portion 101B to the inner portion 101A Sex also becomes high.
  • the outer portion 101B has flexibility (the property of being easily deformed), even if the inner portion 101A expands and contracts at the time of electrode reaction, the outer portion 101B is easily expanded and shrunk (stretched) following it. As a result, the outer portion 101B is less likely to be broken (eg, torn) during expansion and contraction of the inner portion 101A, so that the covering state of the inner portion 101A by the outer portion 101B is maintained even when the electrode reaction is repeated. Therefore, even if the inner portion 101A is broken during the electrode reaction, the new surface is less likely to be exposed, and the new surface is less likely to be in contact with the electrolyte, so the decomposition reaction of the electrolyte is significantly suppressed.
  • the outer portion 101B may be a single layer or a multilayer, and among them, a multilayer is preferable. This is because a stress relaxation space (air gap) is easily formed between the layers in the outer portion 101B.
  • the outer portion 101B may have a multilayer structure in part thereof.
  • the active material 100 includes the intermediate portion 103 provided in the central portion 101, and the covering portion 102 is provided in the central portion 101 via the intermediate portion 103. May be This is because the adhesion of the covering portion 102 to the central portion 101 is improved.
  • the intermediate portion 103 may be provided on all or part of the surface of the central portion 101. In the latter case, the covering portions 102 are scattered at a plurality of places. It may be
  • the middle portion 103 preferably has lower electrical resistance than the center portion 101. This is because the electrical resistance of the active material 100 is reduced.
  • the intermediate portion 103 preferably contains, for example, carbon having high conductivity as a constituent element. It is because a higher effect can be obtained.
  • a specific example of the constituent material of the intermediate portion 103 is a carbon material or the like which will be described later as the “other active material”.
  • the intermediate portion 103 may contain, as a constituent element, one or more of hydrogen and oxygen as well as carbon.
  • the coating portion 102 is a portion for protecting the central portion 101 in the active material 100, and includes a plurality of fibrous carbon materials.
  • the covering portion 102 has a characteristic structure mainly due to the formation method (the use of a sol solution) described later. Specifically, at least a part of the plurality of fibrous carbon materials extends in the direction along the surface of the central portion 101. In addition, at least a part of the plurality of fibrous carbon materials is in close contact with the central portion 101 while lying along the surface of the central portion 101.
  • At least a part of the plurality of fibrous carbon materials is preferably intertwined with one another, extending in a direction along the surface of the central portion 101, in particular, and a network structure (network-like conductive network) as a whole Are more preferably formed.
  • the detailed configuration of the covering portion 102 will be described later.
  • the "fibrous" of the fibrous carbon material means a three-dimensional shape having a sufficiently large length (fiber length) with respect to a diameter (fiber diameter), that is, an elongated (high aspect ratio) three-dimensional shape.
  • the aspect ratio is not particularly limited, but is preferably 5 or more. This is because the fibrous carbon material is likely to extend in the direction along the surface of the central portion 101 and to be in close contact with the central portion 101. Therefore, the fibrous carbon material may be any material as long as it has an elongated three-dimensional shape.
  • the fibrous carbon material is, for example, one or both of carbon nanotubes and carbon nanofibers, and the carbon nanotubes and carbon nanofibers also include vapor grown carbon fibers (VGCF) and the like.
  • the coating portion 102 is provided in the central portion 101 because the central portion 101 is physically and chemically protected by the coating portion 102. Specifically, since a plurality of fibrous carbon materials extend in a direction along the surface of the central portion 101 and adhere to the central portion 101, the adhesion of the covering portion 102 to the central portion 101 and the covering portion thereof The physical strength of 102 is significantly improved. In this case, since the central portion 101 is firmly held from the outside by the covering portion 102, the central portion 101 is difficult to be broken even if it is expanded and contracted at the time of the electrode reaction, so that a highly reactive new surface is hardly generated. . Thereby, the deterioration of the active material 100 is suppressed.
  • the electrode when used in the electrochemical device together with the electrolytic solution, the decomposition reaction of the electrolytic solution due to the reactivity of the electrode is also suppressed.
  • the covering portion 102 is carbonaceous, the electrical conductivity of the active material 100 is improved.
  • the adhesion and physical strength of the covering portion 102 described above are further improved if a plurality of fibrous carbon materials are intertwined with each other, and are further improved if a network structure is formed.
  • the proportion of the covering portion 102 (a plurality of fibrous carbon materials) in the active material 100 (the center portion 101 and the covering portion 102) is not particularly limited, but in particular, 0.1% by weight to 10% by weight is preferable More preferably, it is 0.5% by weight to 5% by weight. This is because a high discharge capacity can be obtained in the central portion 101 and a network structure can be easily formed in the covering portion 102.
  • the plurality of fibrous carbon materials may have one or more types of functional groups (surface functional groups) on the surface thereof.
  • surface functional groups surface functional groups
  • the kind of this surface functional group is not specifically limited, Especially, the group which contains oxygen as a constitutent element is preferable. More specifically, one or both of a hydroxyl group (-OH) and a carboxyl group (-COOH) are preferable, and a carboxyl group is more preferable. This is because the fibrous carbon material is likely to extend in the direction along the surface of the central portion 101 and to be in close contact with the central portion 101 in the process of forming the coating portion 102 using a sol solution described later.
  • the fibrous carbon material may be surface analyzed using XPS.
  • the fibrous carbon substance contained in the sol solution for example, after centrifuging the sol solution and discarding the upper solution, the sediment (hydrous cake) is vacuum dried You should analyze from.
  • the dimensions (fiber length and fiber diameter) of the fibrous carbon material are not particularly limited as long as the above-described high aspect ratio is secured.
  • the fiber lengths of the plurality of fibrous carbon substances are preferably distributed so as to satisfy a specific condition. More specifically, the ratio (short fiber ratio:%) of the fibrous carbon material having a fiber length of 4 ⁇ m or less among the plurality of fibrous carbon materials is preferably 85% or more, and 90% or more It is more preferable that This is because a plurality of fibrous carbon substances are uniformly dispersed in the sol solution, so that the fibrous carbon substances are less likely to aggregate. As a result, the plurality of fibrous carbon materials easily extend in the direction along the surface of the central portion 101 and also adhere easily to the central portion 101, so that the central portion 101 expands during charging and discharging.
  • the network structure is easily formed by aggregating a plurality of fibrous carbon substances to such an extent that they do not aggregate.
  • the fibrous carbon substances are uniformly dispersed for the same reason as the above-mentioned short fiber ratio, the fibrous carbon substances easily adhere to the central portion 101, and a network structure is easily formed. It is from. In this case, since the number of fibrous carbon materials per weight increases, the network structure is easily formed. If the average fiber diameter is larger than 102 nm, the flexibility of the fibrous carbon material is reduced, so the fibrous carbon material may not easily extend along the surface (curved surface) of the central portion 101. is there.
  • the procedure for examining the average fiber diameter is the same as the procedure for examining the proportion of short fibers, and after measuring the fiber diameter (nm) of 2000 fibrous carbon substances present in the secondary electron image, the average Calculate the value.
  • the fibrous carbon substance is graphitized by heat treatment.
  • coated part 102 (a plurality of fibrous carbon materials) analyzed using the Raman spectroscopy is satisfy
  • the ratio of the area of each peak is 1 or more Is preferably, and more preferably 3 or more.
  • the temperature during the heat treatment is not particularly limited as long as the G / D ratio satisfies the above condition, but is, for example, 2000 ° C. or more.
  • the average particle diameter of the central portion 101 is not particularly limited, but the median diameter (D50) of the central portion 101 is preferably 7.8 ⁇ m or less. This is because the physical strength of the central portion 101 can be easily secured. When D50 is larger than 7.8 ⁇ m, the central portion 101 expands and contracts at the time of charge and discharge, and the physical strength of the active material 100 may be reduced. However, when D50 is too small, the particle interface of the active material 100 is increased, and thus the conductivity of the active material layer 2 may be reduced. However, the conductivity of the active material layer 2 is ensured by providing the central portion 101 with the covering portion 102 containing a plurality of fibrous carbon materials. This D50 is measured, for example, using a laser diffraction type particle size distribution measuring apparatus (nano particle size distribution measuring apparatus SALD-7100 manufactured by Shimadzu Corporation).
  • FIGS. 5 to 10 are SEM photographs of the active material 100, and FIGS. 6, 8, and 10 schematically illustrate a part of the SEM photographs shown in FIGS. 5, 7, and 9, respectively. It represents.
  • the surface of the central portion 101 is covered by the covering portion.
  • the surface of the central portion 101 is not limited to the case where it is directly covered by the covering portion 102 (FIGS. 2 and 3), and indirectly by the covering portion 102 via the intermediate portion 103. It may be covered (FIG. 4).
  • the plurality of fibrous carbon materials 104 contained in the covering portion 102 are concentrated in the vicinity of the surface of the central portion 101, as shown in FIGS. It exists to make it happen. That is, the plurality of fibrous carbon materials 104 do not extend outward from the center side of the central portion 101, but extend in a direction along the surface of the central portion 101, and the central portion It is in close contact with the part 101. In this case, at least a part of one fibrous carbon substance 104 may be in close contact with the central part 101, and the whole of the fibrous carbon substance 104 (all one end part, central part and other end part) Is preferably in close contact with the central portion 101.
  • the fibrous carbon substances 104 it is not necessary for all the fibrous carbon substances 104 to extend in the direction along the surface of the central portion 101, and a part of the fibrous carbon substances 104 may extend in the same direction. In this case, it is preferable that the plurality of fibrous carbon materials 104 be intertwined with each other.
  • the plurality of fibrous carbon materials 104 are intertwined with each other while extending in the direction along the surface of the central portion 101, thereby forming the network structure 105.
  • the multi-layered (three-dimensional structure) network structure 105 may be formed by overlapping a plurality of fibrous carbon materials 104 intertwining with each other.
  • the plurality of fibrous carbon materials 104 be crosslinked. This is because the physical strength of the covering portion 102 is further improved, and the electrical conductivity between the active materials 100 is further improved.
  • the cross-linked portion 106 is formed in the gap between the active materials 100 by the fibrous carbon materials 104 present on the surface of different central portions 101.
  • FIGS. 6, 8 and 10 the illustrated contents are simplified. Specifically, in FIG. 6 and FIG. 8, only the outline of one active material 100 is shown, and only the outline of a part of the plurality of fibrous carbon materials 104 is shown. Further, in FIG. 10, illustration of the fibrous carbon material 104 present on the surface of the central portion 101 is omitted.
  • the binder contains, for example, any one or more kinds of synthetic rubber and polymer materials.
  • the synthetic rubber is, for example, styrene butadiene rubber, fluorine rubber and ethylene propylene diene.
  • the polymer material is, for example, polyvinylidene fluoride, polytetrafluoroethylene, polyimide, polyamide, polyamideimide, aramid, polyacrylic acid, lithium polyacrylate, sodium polyacrylate, polymaleic acid, and copolymers of these. .
  • the polymer material may be, for example, carboxymethyl cellulose, styrene butadiene rubber and polyvinyl alcohol.
  • the binder is one or more of polyimide, polyamide imide, aramid and polyacrylic acid. Is preferred. It is because high bondability is obtained.
  • the conductive agent includes, for example, one or more of carbon materials such as graphite, carbon black, acetylene black and ketjen black.
  • the negative electrode conductive agent may be a metal material, a conductive polymer, or the like as long as the material has conductivity.
  • the active material layer 2 may further include one or more other active materials.
  • the “other active material” is, for example, a material containing carbon as a constituent element, and more specifically, a carbon material is preferable. This is because the electrical resistance of the active material layer 2 is reduced, and the active material layer 2 is difficult to expand and contract during charge and discharge.
  • the other active material is a carbon material
  • the following advantages can also be obtained.
  • the electrode is less likely to expand and contract during charge and discharge, while the charge and discharge capacity per weight of the electrode is reduced.
  • the effect of the resulting irreversible capacity increases.
  • the discharge capacity at the first time tends to decrease.
  • the fibrous carbon substance is contained in the coating part 102 and provided in the central part 101, in particular, when the G / D ratio of the fibrous carbon substance is optimized, the above-mentioned irreversible capacity is Since the influence is suppressed, it is difficult to reduce the initial discharge capacity.
  • This carbon material is, for example, graphitizable carbon, non-graphitizable carbon having a plane spacing of (002) plane of 0.37 nm or more, graphite having a plane spacing of (002) plane of 0.34 nm or less, etc. is there. More specifically, there are pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon and carbon blacks. Among these, cokes include pitch coke, needle coke and petroleum coke. The organic polymer compound fired body is obtained by firing and carbonizing a phenol resin, furan resin or the like at an appropriate temperature. The shape of the carbon material may be any one or more of fibrous, spherical, granular and scaly.
  • the other active material may be any one or more of metal oxides and polymer compounds.
  • the metal oxide is, for example, iron oxide, ruthenium oxide and molybdenum oxide.
  • the polymer compounds are, for example, polyacetylene, polyaniline and polypyrrole.
  • the other active material may have the same configuration as that of the above-described active material 100 except that the forming material of the central portion 101 is different.
  • the central portion 101 in this case includes, for example, one or more of the carbon materials described as the “other active material”.
  • the active material layer 2 is formed by, for example, one or both of a coating method and a firing method (sintering method).
  • the coating method is, for example, a method of mixing an active material with a binder and the like, and then dispersing the mixture in a solvent such as an organic solvent before coating.
  • the baking method is, for example, a method in which heat treatment is performed at a temperature higher than the melting point of a binder or the like after coating is performed in the same procedure as the coating method.
  • known methods such as an atmosphere firing method, a reaction firing method and a hot press firing method can be used.
  • a sol solution containing a plurality of fibrous carbon materials and a core 101 are prepared.
  • the solvent of the sol solution is not particularly limited, it is, for example, water.
  • the preparation method of a sol solution is not specifically limited, For example, it is any one type or 2 or more types, such as a bead mill, a ball mill, a homogenizer, an ultrasonic homogenizer, a high pressure homogenizer, etc.
  • the sol solution may contain, for example, one or more additives such as a dispersant.
  • content of a dispersing agent is not specifically limited, For example, it is preferable that it is 30 weight% or less with respect to content of a fibrous carbon substance. Since the content of the fibrous carbon substance is secured, the function of the fibrous carbon substance is secured.
  • the fibrous carbon materials may be subjected to a cutting treatment, as needed, in order to adjust the proportion of short fibers and the like.
  • the apparatus used for this cutting process is, for example, one or more types such as a bead mill and a planetary ball mill.
  • the fibrous carbon substance graphitized by heat processing in order to maintain the graphitization structure, it is preferable to make damage to a fibrous carbon substance difficult to occur in a cutting process, for example.
  • a small amount of organic solvent may be added to the fibrous carbon material as a grinding aid, or the fibrous carbon material may be embedded with a resin, saccharides, etc.
  • the fibrous carbon material may be cooled using liquid nitrogen or the like.
  • the core part 101 (FIG. 2) which is a single granular body it is desired to use, for example, any one or two or more methods such as a gas atomizing method, a water atomizing method and a melt crushing method.
  • the center part 101 (FIG. 3) which is a composite granular material it is desired to use, for example, any one or two or more kinds of methods such as gas atomizing method, water atomizing method and melt crushing method.
  • a particulate (powdery) inner portion 101A having the following composition is obtained.
  • an outer portion 101B having a desired composition is formed on the surface of the inner portion 101A using any one or two or more methods (vapor phase growth method) such as vapor deposition and sputtering. .
  • the intermediate portion 103 may be formed on the surface of the central portion 101 using any one or two or more methods such as a vapor deposition method and a wet coating method.
  • the vapor phase growth method is, for example, one or more of vapor deposition method, sputtering method, thermal decomposition chemical vapor deposition (CVD) method, thermal decomposition CVD method, electron beam vapor deposition method and sugar carbonization method.
  • the thermal decomposition CVD method is preferable. This is because the middle portion 103 is easily formed to have a uniform thickness.
  • a sol solution containing a plurality of fibrous carbon materials 104 is supplied to the surface of the central portion 101, and the central portion 101 is brought into contact with the sol solution.
  • the plurality of fibrous carbon substances 104 contact the surface of the central portion 101 in a state of being dispersed in the sol solution.
  • the method of supplying the sol solution is not particularly limited.
  • a sol solution may be applied to the surface of the central portion 101, or the central portion 101 may be dipped in the sol solution and then pulled up.
  • the concentration of the sol solution is not particularly limited, but is preferably as high as possible. Since the contact probability of the fibrous carbon material 104 with the central portion 101 is high, the fibrous carbon material easily extends in the direction along the surface of the central portion 101 and also easily adheres to the central portion 101. It is.
  • the sol solution supplied to the surface of the central portion 101 is heated.
  • the plurality of fibrous carbon substances 104 extend in the direction along the surface of the central portion 101 and adhere closely to the central portion 101, so that the plurality of fibrous carbon substances are formed on the surface of the central portion 101.
  • a covering portion 102 including 104 is formed.
  • conditions, such as heating temperature and heating time, may be arbitrary. Thereby, the active material 100 is obtained.
  • the use of a sol solution to form the covering portion 102 facilitates extending of a plurality of fibrous carbon materials 104 along the surface of the central portion 101, and It is because it becomes easy to stick to the center part 101.
  • the fibrous carbon material 104 does not extend in the direction along the surface of the central portion 101, and the fibrous carbon materials 104 are mainly in the gaps between the active materials 100 or the like. It will aggregate.
  • the sol solution when the sol solution is used, the fibrous carbon material 104 extends in the direction along the surface of the central portion 101 and adheres to the central portion 101.
  • the active material 100 and another material such as a binder are mixed to form an electrode mixture, and the electrode mixture is dissolved or dispersed in a solvent to form an electrode mixture slurry.
  • an electrode mixture slurry is applied to the surface of the current collector 1, and then the electrode mixture slurry is heated (dried) to form an active material layer 2.
  • the active material layer 2 may be compression molded and heated (fired).
  • a sol solution containing a plurality of fibrous carbon materials and the core portion 101 are prepared by the same procedure as the first procedure described above.
  • the core portion 101, the sol solution, and another material such as a binder are mixed to form an electrode mixture.
  • the plurality of fibrous carbon materials 104 are in contact with the surface of the central portion 101 in the state of being dispersed in the sol solution.
  • the electrode mixture is dissolved or dispersed in a solvent to form an electrode mixture slurry.
  • an electrode mixture slurry is applied to the surface of the current collector 1, and then the electrode mixture slurry is heated (dried) to form an active material layer 2.
  • the plurality of fibrous carbon materials 104 extend in the direction along the surface of the central portion 101 and adhere to the central portion 101 as in the first procedure. For this reason, the coating
  • the covering portion 102 including the plurality of fibrous carbon materials 104 is provided in the central portion 101 including silicon or the like as a constituent element. At least a part of the plurality of fibrous carbon materials 104 is in close contact with the central portion 101 while extending in the direction along the surface of the central portion 101.
  • the plurality of fibrous carbon materials 104 are intertwined with each other, higher effects can be obtained.
  • the network structure 105 is formed of a plurality of fibrous carbon substances 104, a higher effect can be obtained. Even when the fibrous carbon materials 104 are crosslinked between the active materials 100, higher effects can be obtained.
  • the sol solution containing the plurality of fibrous carbon materials 104 is brought into contact with the central portion 101 containing silicon or the like as a constituent element, the sol solution is heated. Therefore, the covering portion 102 is formed.
  • the plurality of fibrous carbon materials 104 extend in the direction along the surface of the central portion 101 and adhere to the central portion 101.
  • the covering portion 102 firmly attached firmly to each other is formed easily and stably. Therefore, the advantage resulting from the above-mentioned covering part 102 can be acquired stably.
  • water is used as the solvent of the sol solution, water control and solvent recovery and the like become unnecessary, so that the manufacturing process of the electrode can be simplified and the cost can be reduced, and the environmental load can be reduced.
  • the coating portion 102 can be formed (the plurality of fibrous carbon materials 104 adhere closely to the central portion 101 while extending in the direction along the surface of the central portion 101). It is considered that the sol solution is used in the formation process of The demonstration regarding this will be performed in the examples described later.
  • Japanese Unexamined Patent Publication No. 2010-095797 Japanese Unexamined Patent Publication No. 2010-095797
  • the surface of the composite particle is coated with carbon nanotubes, but the carbon nanotube extends in the direction along the surface of the composite particle It is thought that they are not intertwined with each other. This is because thermal decomposition and carbonization of hydrocarbon gas are used to grow carbon nanotubes with the metal component in the composite particles as a catalyst.
  • the carbon nanotubes should extend radially in the direction intersecting mainly with the surface of the composite particle, even though the carbon nanotubes may intertwine with each other, the carbon nanotubes are along the surface of the composite particle It is not considered to extend in the direction. That is, carbon nanotubes grown using the metal component in the composite particles as a catalyst can not exist so as to stick the whole to the surface of the composite particles. For this reason, it is not considered that the coating part 102 of this technique can be formed in the above-mentioned prior art.
  • Secondary battery> The active material and electrode of the present technology described above are used, for example, in an electrochemical device as follows. Below, the secondary battery is mentioned as an example as an electrochemical device, and the application example of an active material and an electrode is demonstrated concretely.
  • Lithium ion secondary battery (cylindrical)> 11 and 12 show the cross-sectional configuration of the secondary battery.
  • FIG. 13 schematically shows a plan configuration of the positive electrode 21 and the negative electrode 22 shown in FIG. In FIG. 12, a part of the wound electrode body 20 shown in FIG. 11 is enlarged.
  • the secondary battery described here is a lithium ion secondary battery in which the capacity of the negative electrode 22 is obtained by insertion and extraction of lithium (lithium ion) which is an electrode reactant, and is a so-called cylindrical type.
  • a wound electrode body 20 and a pair of insulating plates 12 and 13 are housed inside a hollow cylindrical battery can 11.
  • the wound electrode body 20 is, for example, one in which the positive electrode 21 and the negative electrode 22 are stacked via the separator 23 and then wound.
  • the active material and the electrode of the present technology are applied to the negative electrode 22.
  • the battery can 11 has, for example, a hollow structure in which one end is closed and the other end is open, and is formed of iron, aluminum, or their alloys. Nickel or the like may be plated on the surface of the battery can 11.
  • the pair of insulating plates 12 and 13 is disposed so as to sandwich the wound electrode body 20 and extends perpendicularly to the winding circumferential surface of the wound electrode body 20.
  • the battery cover 14 At the open end of the battery can 11, the battery cover 14, the safety valve mechanism 15 and the thermal resistance element (PTC element) 16 are crimped via the gasket 17, so the battery can 11 is sealed.
  • the battery cover 14 is formed of, for example, the same material as the battery can 11.
  • the safety valve mechanism 15 and the thermal resistance element 16 are provided inside the battery cover 14, and the safety valve mechanism 15 is electrically connected to the battery cover 14 via the thermal resistance element 16.
  • the disc plate 15A In this safety valve mechanism 15, the disc plate 15A is reversed to cut off the electrical connection between the battery cover 14 and the wound electrode body 20 when the internal pressure exceeds a certain level due to internal short circuit or external heating. It is supposed to be.
  • the heat-sensitive resistance element 16 prevents abnormal heat generation caused by a large current, and the resistance of the heat-sensitive resistance element 16 is configured to increase in accordance with the temperature rise.
  • the gasket 17 is formed of, for example, an insulating material, and asphalt may be applied to the surface thereof.
  • a center pin 24 is inserted at the winding center of the winding electrode body 20.
  • the positive electrode 21 is connected to a positive electrode lead 25 formed of, for example, a conductive material such as aluminum
  • the negative electrode 22 is connected to a negative electrode lead 26 formed of, for example, a conductive material such as nickel.
  • the positive electrode lead 25 is, for example, welded to the safety valve mechanism 15 and electrically connected to the battery cover 14.
  • the negative electrode lead 26 is electrically connected to the battery can 11, for example, by being welded to the battery can 11.
  • the positive electrode 21 has a positive electrode active material layer 21B on one side or both sides of a positive electrode current collector 21A.
  • the positive electrode current collector 21A is made of, for example, a conductive material such as aluminum, nickel, or stainless steel.
  • the positive electrode active material layer 21 B contains, as a positive electrode active material, any one or two or more kinds of positive electrode materials capable of inserting and extracting lithium ions, and further includes other materials such as a positive electrode binder and a positive electrode conductive agent. Any one or two or more may be included.
  • the details regarding the positive electrode binder and the positive electrode conductive agent are the same as the binder and the conductive agent used for the electrode of the present technology.
  • the positive electrode material is preferably a lithium-containing compound. This is because a high energy density can be obtained.
  • the lithium-containing compound is, for example, a lithium transition metal composite oxide and a lithium transition metal phosphate compound.
  • the lithium transition metal complex oxide is an oxide containing Li and one or more transition metal elements as constituent elements
  • the lithium transition metal phosphate compound is Li and one or more transition metal elements It is a phosphoric acid compound which contains as a constituent element.
  • the transition metal element is preferably one or more of cobalt, nickel, manganese, iron and the like. It is because a higher voltage can be obtained.
  • the chemical formulas are represented by, for example, Li x M 1 O 2 and Li y M 2 PO 4 . In the formula, M1 and M2 are one or more transition metal elements.
  • the values of x and y vary depending on the charge and discharge state, but for example, 0.05 ⁇ x ⁇ 1.10, and 0.05 ⁇ y ⁇ 1.10.
  • the lithium transition metal composite oxide is, for example, LiCoO 2 , LiNiO 2 , and a lithium nickel composite oxide represented by the following formula (1).
  • the lithium transition metal phosphate compounds are, for example, LiFePO 4 and LiFe 1-u Mn u PO 4 (u ⁇ 1). While being able to obtain high battery capacity, it is because excellent cycle characteristics etc. are obtained.
  • LiNi 1-z M z O 2 (1) (M is Co, Mn, Fe, Al, V, Sn, Mg, Ti, Sr, Ca, Zr, Mo, Tc, Ru, Ta, W, Re, Yb, Cu, Zn, Ba, B, Cr, Si , Ga, P, Sb, and Nb, z satisfies 0.005 ⁇ z ⁇ 0.5).
  • the positive electrode material may be, for example, one or more of oxides, disulfides, chalcogenides, and conductive polymers.
  • the oxides are, for example, titanium oxide, vanadium oxide and manganese dioxide.
  • Examples of the disulfide include titanium disulfide and molybdenum sulfide.
  • the chalcogenide is, for example, niobium selenide or the like.
  • the conductive polymer is, for example, sulfur, polyaniline and polythiophene.
  • the positive electrode material is not limited to the above-described series of materials, and may be another material.
  • the negative electrode 22 has the same configuration as the electrode of the present technology. Specifically, for example, as shown in FIG. 12, the negative electrode 22 has the negative electrode active material layer 22B on one side or both sides of the negative electrode current collector 22A, and the negative electrode current collector 22A and the negative electrode active material layer The configuration of 22B is the same as the configuration of the current collector 1 and the active material layer 2, respectively.
  • the electrochemical equivalent of the negative electrode material capable of inserting and extracting lithium ions is higher than the electrochemical equivalent of the positive electrode. It is getting bigger.
  • the open circuit voltage that is, the battery voltage
  • the open circuit voltage at the time of full charge is 4.25 V or more, compared to the case of 4.20 V, even if the same positive electrode active material is used, lithium ion is released Since the amount is increased, the amounts of the positive electrode active material and the negative electrode active material are adjusted accordingly. Thereby, high energy density can be obtained.
  • the positive electrode active material layer 21B is provided on a part of the surface of the positive electrode current collector 21A (for example, the central region in the longitudinal direction).
  • the negative electrode active material layer 22B is provided, for example, on the entire surface of the negative electrode current collector 22A.
  • the negative electrode active material layer 22B is provided in the region (opposing region R1) facing the positive electrode active material layer 21B and the region not facing (negative region R2) of the negative electrode current collector 22A.
  • the portion provided in the facing region R1 participates in charging and discharging, but the portion provided in the non-facing region R2 hardly participates in charging and discharging.
  • the cathode active material layer 21B and the anode active material layer 22B are shaded.
  • the negative electrode active material contained in the negative electrode active material layer 22B contains a plurality of fibrous carbon materials, and there may be a case where the plurality of fibrous carbon materials form a network structure. In this case, there is a possibility that the negative electrode active material layer 22B may be deformed or damaged due to expansion and contraction at the time of charge and discharge. Therefore, the configuration of the negative electrode active material (the state of fibrous carbon material etc.) is a negative electrode active material layer It can vary from the state at the time of formation of 22B. However, in the non-facing region R ⁇ b> 2, the formation state of the negative electrode active material layer 22 ⁇ / b> B is substantially maintained with almost no influence of charge and discharge.
  • the negative electrode active material layer 22B in the non-facing region R2 for the configuration of the negative electrode active material. This is because the configuration of the negative electrode active material can be accurately and reproducibly checked without depending on the history of charge and discharge (the presence and the number of charge and discharge, etc.).
  • the separator 23 separates the positive electrode 21 and the negative electrode 22 to allow lithium ions to pass while preventing a short circuit of the current caused by the contact of the both electrodes.
  • the separator 23 is, for example, a porous film such as a synthetic resin or a ceramic, and may be a laminated film in which two or more types of porous films are laminated.
  • the synthetic resin is, for example, polytetrafluoroethylene, polypropylene or polyethylene.
  • the separator 23 is impregnated with an electrolytic solution which is a liquid electrolyte, and the electrolytic solution contains a solvent and an electrolyte salt.
  • the electrolytic solution may contain any one or two or more of other materials such as additives.
  • the solvent contains one or more non-aqueous solvents such as an organic solvent.
  • the non-aqueous solvent is, for example, a cyclic carbonate, a chain carbonate, a lactone, a chain carboxylate and a nitrile. This is because excellent battery capacity, cycle characteristics and storage characteristics can be obtained.
  • the cyclic carbonate is, for example, ethylene carbonate, propylene carbonate and butylene carbonate
  • the chain carbonate is, for example, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and methyl propyl carbonate.
  • Lactones are, for example, ⁇ -butyrolactone and ⁇ -valerolactone.
  • the carboxylic acid ester is, for example, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethylacetate and ethyl trimethylacetate.
  • Nitriles are, for example, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile and the like.
  • non-aqueous solvents are, for example, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1 And 4-dioxane, N, N-dimethylformamide, N-methyl pyrrolidinone, N-methyl oxazolidinone, N, N'-dimethyl imidazolidinone, nitromethane, nitroethane, sulfolane, trimethyl phosphate and dimethyl sulfoxide and the like. It is because the same advantage is obtained.
  • At least one of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate is preferable. This is because better battery capacity, cycle characteristics, storage characteristics and the like can be obtained.
  • high viscosity (high dielectric constant) solvents such as ethylene carbonate and propylene carbonate (for example, relative permittivity ⁇ ⁇ 30) and low viscosity solvents such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate (for example, viscosity ⁇ 1 mPa
  • the combination with s is more preferable. This is because the dissociative nature of the electrolyte salt and the mobility of the ions are improved.
  • the solvent may contain any one or more of unsaturated cyclic carbonate, halogenated carbonate, sultone (cyclic sulfonic acid) and acid anhydride.
  • unsaturated cyclic carbonate is a cyclic carbonate having one or more unsaturated bonds (carbon-carbon double bonds), such as vinylene carbonate, vinyl ethylene carbonate and methylene ethylene carbonate.
  • halogenated carbonate is a cyclic or chain carbonate containing one or more halogens as a constituent element.
  • Cyclic halogenated carbonates are, for example, 4-fluoro-1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one.
  • the chain halogenated carbonates are, for example, fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate and difluoromethyl methyl carbonate.
  • sultones include propane sultone and propene sultone.
  • the acid anhydride is, for example, succinic anhydride, ethanedisulfonic anhydride, sulfobenzoic anhydride and the like.
  • the electrolyte salt contains, for example, any one or more of salts such as lithium salts.
  • the electrolyte salt may include, for example, other salts than the lithium salt.
  • the “other salt” is, for example, a light metal salt other than a lithium salt.
  • lithium salt examples include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and tetrabasic acid.
  • LiPF 6 lithium hexafluorophosphate
  • LiBF 4 lithium tetrafluoroborate
  • LiClO 4 lithium perchlorate
  • LiAsF 6 lithium hexafluoroarsenate
  • tetrabasic acid examples include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and tetrabasic acid.
  • Lithium phenyl borate LiB (C 6 H 5 ) 4
  • lithium methanesulfonate LiCH 3 SO 3
  • lithium trifluoromethanesulfonate LiCF 3 SO 3
  • lithium tetrachloroaluminate LiAlCl 4
  • LiBr Lithium phenyl borate
  • Li 2 SiF 6 lithium chloride
  • LiCl lithium bromide
  • specific examples of the lithium salt are not limited to the above-mentioned compounds.
  • LiPF 6 LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 is preferable, and LiPF 6 is more preferable. This is because a higher effect can be obtained because the internal resistance is reduced.
  • the content of the electrolyte salt is not particularly limited, but preferably 0.3 mol / kg to 3.0 mol / kg with respect to the solvent. It is because high ion conductivity is obtained.
  • the secondary battery operates, for example, as follows. At the time of charge, lithium ions released from the positive electrode 21 are stored in the negative electrode 22 through the electrolytic solution. On the other hand, at the time of discharge, lithium ions released from the negative electrode 22 are stored in the positive electrode 21 through the electrolytic solution.
  • the secondary battery is manufactured, for example, by the following procedure.
  • the positive electrode 21 is manufactured.
  • the positive electrode active material and, if necessary, a positive electrode binder and the like are mixed to obtain a positive electrode mixture.
  • the positive electrode mixture is dispersed in an organic solvent or the like to form a paste-like positive electrode mixture slurry.
  • the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A and then dried to form the positive electrode active material layer 21B.
  • the positive electrode active material layer 21B may be compression molded using a roll press machine or the like.
  • the positive electrode active material layer 21B may be compression molded while being heated, or the compression molding may be repeated multiple times.
  • the negative electrode active material layer 22B is formed on both surfaces of the negative electrode current collector 22A by the same procedure as the electrode of the present technology, and the negative electrode 22 is manufactured.
  • the secondary battery is assembled using the positive electrode 21 and the negative electrode 22.
  • the positive electrode lead 25 is attached to the positive electrode current collector 21A by welding or the like
  • the negative electrode lead 26 is attached to the negative electrode current collector 22A by welding or the like.
  • the positive electrode 21 and the negative electrode 22 are stacked via the separator 23 and wound to form the wound electrode body 20, and then the center pin 24 is inserted into the winding center.
  • the spirally wound electrode body 20 is housed inside the battery can 11 while being sandwiched by the pair of insulating plates 12 and 13.
  • the tip end of the positive electrode lead 25 is attached to the safety valve mechanism 15 using a welding method or the like, and the tip end of the negative electrode lead 26 is attached to the battery can 11 using a welding method or the like.
  • an electrolytic solution in which an electrolyte salt is dispersed in a solvent is injected into the inside of the battery can 11 and impregnated in the separator 23.
  • the battery cover 14, the safety valve mechanism 15, and the thermal resistance element 16 are crimped to the open end of the battery can 11 through the gasket 17.
  • FIG. 14 shows an exploded perspective view of another secondary battery
  • FIG. 15 is an enlarged cross section taken along line XV-XV of the spirally wound electrode body 30 shown in FIG.
  • the components of the cylindrical secondary battery described above will be referred to at any time.
  • the secondary battery described here is a so-called laminate film type lithium ion secondary battery, and for example, as shown in FIG. 14, the wound electrode body 30 is housed inside the film-like exterior member 40 There is.
  • the wound electrode body 30 is wound after the positive electrode 33 and the negative electrode 34 are stacked via the separator 35 and the electrolyte layer 36.
  • the positive electrode lead 31 is attached to the positive electrode 33, and the negative electrode lead 32 is attached to the negative electrode 34.
  • the outermost periphery of the wound electrode body 30 is protected by a protective tape 37.
  • the positive electrode lead 31 and the negative electrode lead 32 are, for example, derived from the inside to the outside of the package member 40 in the same direction.
  • the positive electrode lead 31 is formed of, for example, a conductive material such as aluminum
  • the negative electrode lead 32 is formed of, for example, a conductive material such as copper, nickel, or stainless steel.
  • the conductive material is, for example, a thin plate or a mesh.
  • the exterior member 40 is, for example, a laminate film in which a fusion bonding layer, a metal layer, and a surface protective layer are laminated in this order.
  • the exterior member 40 is, for example, a laminate of two laminated films so that the fusion bonding layer faces the spirally wound electrode body 30, and then the outer peripheral edge portions of the respective fusion bonding layers are fused. .
  • the two laminated films may be laminated via an adhesive or the like.
  • the fusing layer is, for example, a film such as polyethylene and polypropylene.
  • the metal layer is, for example, an aluminum foil or the like.
  • the surface protective layer is, for example, a film such as nylon and polyethylene terephthalate.
  • the exterior member 40 is preferably an aluminum laminated film in which a polyethylene film, an aluminum foil, and a nylon film are laminated in this order.
  • the exterior member 40 may be a laminated film having another laminated structure, a polymer film such as polypropylene, or a metal film.
  • an adhesive film 41 is inserted between the package member 40 and the positive electrode lead 31 and the negative electrode lead 32 in order to prevent the entry of the outside air.
  • the adhesive film 41 is formed of a material having adhesiveness to the positive electrode lead 31 and the negative electrode lead 32.
  • the adhesive material is, for example, a polyolefin resin, and more specifically, polyethylene, polypropylene, modified polyethylene, modified polypropylene, and the like.
  • the positive electrode 33 has the positive electrode active material layer 33B on one side or both sides of the positive electrode current collector 33A, and the negative electrode 34 is, for example, the negative electrode current collector 34A.
  • the negative electrode active material layer 34B is provided on one side or both sides of the
  • the configurations of the positive electrode current collector 33A, the positive electrode active material layer 33B, the negative electrode current collector 34A and the negative electrode active material layer 34B are respectively the positive electrode current collector 21A, the positive electrode active material layer 21B, the negative electrode current collector 22A and the negative electrode active material layer
  • the configuration is similar to that of 22B.
  • the configuration of the separator 35 is similar to that of the separator 23.
  • the electrolyte layer 36 is one in which an electrolytic solution is held by a polymer compound, and is a so-called gel electrolyte. This is because high ionic conductivity (for example, 1 mS / cm or more at room temperature) can be obtained, and leakage of the electrolytic solution can be prevented.
  • the electrolyte layer 36 may optionally contain other materials such as additives.
  • the polymer compound is, for example, polyacrylonitrile, polyvinylidene fluoride, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, polysiloxane, polyvinyl fluoride, polyvinyl acetate, polyvinyl alcohol, polymethacryl Methyl acrylate, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene, polycarbonate, and copolymers of vinylidene fluoride and hexafluoropyrene, etc. .
  • polyvinylidene fluoride and a copolymer of vinylidene fluoride and hexafluoropyrene are preferable, and polyvinylidene fluoride is more preferable. It is because it is electrochemically stable.
  • the composition of the electrolytic solution is, for example, the same as that of the cylindrical type.
  • the “solvent” of the electrolyte is a broad concept including not only a liquid solvent but also a material having ion conductivity capable of dissociating the electrolyte salt. . Therefore, when using a polymer compound having ion conductivity, the polymer compound is also included in the solvent.
  • the electrolytic solution may be impregnated into the separator 35.
  • the secondary battery operates as follows. At the time of charging, lithium ions released from the positive electrode 33 are occluded by the negative electrode 34 through the electrolyte layer 36. On the other hand, at the time of discharge, lithium ions released from the negative electrode 34 are stored in the positive electrode 33 via the electrolyte layer 36.
  • the secondary battery provided with the gel electrolyte layer 36 is manufactured, for example, by the following three types of procedures.
  • the positive electrode 33 and the negative electrode 34 are manufactured by the same manufacturing procedure as the positive electrode 21 and the negative electrode 22. That is, the positive electrode active material layer 33B is formed on both surfaces of the positive electrode current collector 33A to produce the positive electrode 33, and the negative electrode active material layer 34B is formed on both surfaces of the negative electrode current collector 34A to produce the negative electrode 34. Subsequently, a precursor solution containing an electrolytic solution, a polymer compound, and a solvent such as an organic solvent is prepared, and the precursor solution is applied to the positive electrode 33 and the negative electrode 34 to form a gel electrolyte layer 36. .
  • the positive electrode lead 31 is attached to the positive electrode current collector 33A by a welding method or the like
  • the negative electrode lead 32 is attached to the negative electrode current collector 34A by a welding method or the like.
  • the positive electrode 33 and the negative electrode 34 are stacked via the separator 35 and wound to form the wound electrode body 30, and then the protective tape 37 is attached to the outermost peripheral portion.
  • the wound electrode body 30 is sandwiched between two film-like exterior members 40, and the outer peripheral edge portions of the exterior members 40 are adhered to each other using a heat fusion method or the like.
  • the wound electrode body 30 is enclosed inside the In this case, the adhesive film 41 is inserted between the positive electrode lead 31 and the negative electrode lead 32 and the package member 40.
  • the positive electrode lead 31 is attached to the positive electrode 33 and the negative electrode lead 52 is attached to the negative electrode 34.
  • the positive electrode 33 and the negative electrode 34 are laminated via the separator 35 and then wound to produce a wound body, which is a precursor of the wound electrode body 30, and then the protective tape 37 is formed on the outermost periphery.
  • the wound body is disposed between the two film-like exterior members 40, and then the remaining outer peripheral edge excluding one outer peripheral edge is adhered using a heat fusion method or the like, and a bag is produced.
  • the wound body is accommodated in the inside of the case-shaped exterior member 40.
  • a composition for electrolyte is prepared by mixing an electrolytic solution, a monomer which is a raw material of a polymer compound, a polymerization initiator and, if necessary, another material such as a polymerization inhibitor.
  • the composition for electrolyte is injected into the inside of the bag-like exterior member 40, the exterior member 40 is sealed using a heat fusion method or the like.
  • the monomers are thermally polymerized to form a polymer compound.
  • the polymer compound is impregnated with the electrolytic solution, and the polymer compound is gelated, whereby the electrolyte layer 36 is formed.
  • the polymer compound applied to the separator 35 is, for example, a polymer (homopolymer, copolymer or multicomponent copolymer) containing vinylidene fluoride as a component.
  • the homopolymer is polyvinylidene fluoride.
  • the copolymer is, for example, a binary copolymer having vinylidene fluoride and hexafluoropropylene as components.
  • the multicomponent copolymer is, for example, a ternary copolymer containing vinylidene fluoride, hexafluoropropylene and chlorotrifluoroethylene as components.
  • a ternary copolymer containing vinylidene fluoride, hexafluoropropylene and chlorotrifluoroethylene as components.
  • one or more other high molecular weight compounds may be used.
  • an electrolytic solution is prepared and injected into the inside of the exterior member 40, and then the opening of the exterior member 40 is sealed using a heat fusion method or the like.
  • the exterior member 40 is heated while being weighted, and the separator 35 is brought into close contact with the positive electrode 33 and the negative electrode 34 via the polymer compound.
  • the polymer compound is impregnated with the electrolytic solution, and the polymer compound is gelated, whereby the electrolyte layer 36 is formed.
  • the swelling of the secondary battery is suppressed more than in the first procedure. Further, in the third procedure, since almost no monomer or solvent as a raw material of the polymer compound remains in the electrolyte layer 36 than in the second procedure, the step of forming the polymer compound is well controlled. For this reason, the positive electrode 33, the negative electrode 34, and the separator 35 sufficiently adhere to the electrolyte layer 36.
  • Secondary batteries include machines, devices, instruments, devices and systems (aggregates of multiple devices etc.) that can be used as a power source for driving and a power storage source for power storage etc.
  • the secondary battery used as a power source may be a main power source (power source used preferentially) or an auxiliary power source (power source used instead of the main power source or switched from the main power source).
  • a secondary battery is used as an auxiliary power supply, the type of main power supply is not limited to the secondary battery.
  • the application of the secondary battery is, for example, as follows. They are electronic devices (including portable electronic devices) such as video cameras, digital still cameras, mobile phones, laptop computers, cordless phones, headphone stereos, portable radios, portable TVs, and portable information terminals. It is a portable household appliance such as an electric shaver. Storage devices such as backup power supplies and memory cards. It is a power tool such as a power drill and a power saw. It is a battery pack used for a notebook computer etc. as a detachable power supply. Medical electronics such as pacemakers and hearing aids. It is an electric vehicle such as an electric car (including a hybrid car). It is a power storage system such as a household battery system for storing power in preparation for an emergency or the like. Of course, applications other than the above may be used.
  • the secondary battery is applied to a battery pack, an electric vehicle, an electric power storage system, an electric tool, an electronic device, and the like. Since excellent battery characteristics are required, it is possible to effectively improve the performance by using the secondary battery of the present technology.
  • the battery pack is a power source using a secondary battery, and is a so-called assembled battery or the like.
  • the electric vehicle is a vehicle that operates (travels) using a secondary battery as a driving power source, and as described above, may be a car (such as a hybrid car) equipped with a driving source other than the secondary battery.
  • the power storage system is a system using a secondary battery as a power storage source.
  • the electric power tool is a tool in which a movable portion (for example, a drill or the like) moves using a secondary battery as a power source for driving.
  • the electronic device is a device that exhibits various functions as a power source (power supply source) for driving a secondary battery.
  • FIG. 16 shows a block configuration of the battery pack.
  • the battery pack includes, for example, a control unit 61, a power supply 62, a switch unit 63, a current measurement unit 64, a temperature detection unit 65, and a voltage detection unit inside a casing 60 formed of a plastic material or the like.
  • a switch control unit 67, a memory 68, a temperature detection element 69, a current detection resistor 70, and a positive electrode terminal 71 and a negative electrode terminal 72 are provided.
  • the control unit 61 controls the operation of the entire battery pack (including the use state of the power supply 62), and includes, for example, a central processing unit (CPU) and the like.
  • the power supply 62 includes one or more secondary batteries (not shown).
  • the power source 62 is, for example, a battery pack including two or more secondary batteries, and the connection form of the secondary batteries may be in series, in parallel, or a combination of both.
  • the power supply 62 includes six secondary batteries connected in two parallel three series.
  • the switch unit 63 switches the use state of the power supply 62 (whether or not the power supply 62 can be connected to an external device) in accordance with an instruction from the control unit 61.
  • the switch unit 63 includes, for example, a charge control switch, a discharge control switch, a charging diode, and a discharging diode (none of which are shown).
  • the charge control switch and the discharge control switch are, for example, semiconductor switches such as a field effect transistor (MOSFET) using a metal oxide semiconductor.
  • the current measuring unit 64 measures the current using the current detection resistor 70, and outputs the measurement result to the control unit 61.
  • the temperature detection unit 65 measures the temperature using the temperature detection element 69, and outputs the measurement result to the control unit 61.
  • the temperature measurement result is used, for example, when the control unit 61 performs charge / discharge control during abnormal heat generation, or when the control unit 61 performs correction processing when calculating the remaining capacity.
  • the voltage detection unit 66 measures the voltage of the secondary battery in the power supply 62, converts the measured voltage from analog to digital, and supplies the converted voltage to the control unit 61.
  • the switch control unit 67 controls the operation of the switch unit 63 in accordance with the signals input from the current measurement unit 64 and the voltage detection unit 66.
  • the switch control unit 67 disconnects the switch unit 63 (charge control switch) and performs control so that the charging current does not flow in the current path of the power supply 62. .
  • the power supply 62 can only discharge via the discharge diode.
  • the switch control unit 67 is configured to cut off the charging current, for example, when a large current flows during charging.
  • the switch control unit 67 disconnects the switch unit 63 (discharge control switch) so that the discharge current does not flow in the current path of the power supply 62. Do.
  • the power supply 62 can only charge via the charging diode.
  • the switch control unit 67 is configured to interrupt the discharge current, for example, when a large current flows during discharge.
  • the overcharge detection voltage is 4.20 V ⁇ 0.05 V
  • the over discharge detection voltage is 2.4 V ⁇ 0.1 V.
  • the memory 68 is, for example, an EEPROM, which is a non-volatile memory.
  • the memory 68 for example, numerical values calculated by the control unit 61, information of the secondary battery measured in the manufacturing process stage (for example, internal resistance in an initial state) and the like are stored. If the full charge capacity of the secondary battery is stored in the memory 68, the control unit 61 can grasp information such as the remaining capacity.
  • the temperature detection element 69 measures the temperature of the power supply 62 and outputs the measurement result to the control unit 61, and is, for example, a thermistor or the like.
  • the positive electrode terminal 71 and the negative electrode terminal 72 are connected to an external device (for example, a laptop personal computer) operated using a battery pack, an external device (for example, a charger or the like) used for charging the battery pack, and the like. Terminal. Charging and discharging of the power source 62 are performed via the positive electrode terminal 71 and the negative electrode terminal 72.
  • an external device for example, a laptop personal computer
  • an external device for example, a charger or the like
  • FIG. 17 shows a block configuration of a hybrid vehicle which is an example of the electric vehicle.
  • the electric vehicle includes, for example, a control unit 74, an engine 75, a power supply 76, a driving motor 77, a differential gear 78, a generator 79, and a transmission 80 in a metal casing 73. And a clutch 81, inverters 82 and 83, and various sensors 84.
  • the electric-powered vehicle includes, for example, a front wheel drive shaft 85 and a front wheel 86 connected to the differential 78 and the transmission 80, and a rear wheel drive shaft 87 and a rear wheel 88.
  • This electrically powered vehicle can travel with either the engine 75 or the motor 77 as a drive source.
  • the engine 75 is a main power source, such as a gasoline engine.
  • the driving force (rotational force) of the engine 75 is transmitted to the front wheel 86 or the rear wheel 88 via, for example, the differential 78 serving as a driving unit, the transmission 80 and the clutch 81.
  • the rotational force of the engine 75 is also transmitted to the generator 79, and the rotational force causes the generator 79 to generate AC power, which is converted to DC power via the inverter 83 and stored in the power supply 76. Be done.
  • the motor 77 which is a conversion unit is used as a power source
  • the electric power (DC power) supplied from the power source 76 is converted into AC power via the inverter 82, and the motor 77 is driven by the AC power.
  • the driving force (rotational force) converted from the electric power by the motor 77 is transmitted to the front wheel 86 or the rear wheel 88 via, for example, the differential 78 as a driving unit, the transmission 80 and the clutch 81.
  • the resistance at the time of deceleration is transmitted to the motor 77 as a rotational force, and the motor 77 may generate AC power by the rotational force.
  • the AC power is preferably converted to DC power via the inverter 82, and the DC regenerative power is preferably stored in the power supply 76.
  • the control unit 74 controls the operation of the entire electric vehicle, and includes, for example, a CPU.
  • the power source 76 includes one or more secondary batteries (not shown).
  • the power supply 76 may be connected to an external power supply, and may be capable of storing power by receiving power supply from the external power supply.
  • the various sensors 84 are used, for example, to control the rotational speed of the engine 75 and to control the opening degree (throttle opening degree) of a throttle valve (not shown).
  • the various sensors 84 include, for example, a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the electric powered vehicle may be a vehicle (electric car) that operates using only the power supply 76 and the motor 77 without using the engine 75.
  • FIG. 18 shows a block configuration of the power storage system.
  • the power storage system includes, for example, a control unit 90, a power supply 91, a smart meter 92, and a power hub 93 inside a house 89 such as a home or a commercial building.
  • the power source 91 is connected to, for example, the electric device 94 installed inside the house 89 and can be connected to the electric vehicle 96 stopped outside the house 89. Further, the power supply 91 is connected to, for example, a private generator 95 installed in a house 89 via the power hub 93, and can be connected to the external centralized power system 97 via the smart meter 92 and the power hub 93. It has become.
  • the electric device 94 includes, for example, one or more home appliances, and the home appliance is, for example, a refrigerator, an air conditioner, a television, a water heater, or the like.
  • the private generator 95 is, for example, one or more types such as a solar power generator or a wind power generator.
  • the electric vehicle 96 is, for example, one or more of an electric car, an electric bike, a hybrid car, and the like.
  • the centralized power system 97 is, for example, one or more types of thermal power plants, nuclear power plants, hydroelectric power plants or wind power plants.
  • the control unit 90 controls the operation of the entire power storage system (including the use state of the power supply 91), and includes, for example, a CPU.
  • the power supply 91 includes one or more secondary batteries (not shown).
  • the smart meter 92 is, for example, a network compatible power meter installed in a house 89 on the power demand side, and can communicate with the power supply side. Along with this, the smart meter 92 enables efficient and stable energy supply by controlling the balance of supply and demand in the house 89 while communicating with the outside, for example, as needed.
  • the power storage system for example, power is stored in the power source 90 from the centralized power system 97 which is an external power source through the smart meter 92 and the power hub 93, and from the private generator 95 which is an independent power source through the power hub 93.
  • power is stored in the power supply 91.
  • the electric power stored in the power supply 91 is supplied to the electric device 94 or the electric vehicle 96 as needed according to the instruction of the control unit 90, so that the electric device 94 can be operated and the electric vehicle 96 can be operated.
  • the power storage system is a system that enables storage and supply of power in the house 89 using the power supply 91.
  • the power stored in the power supply 91 is arbitrarily available. Therefore, for example, it is possible to accumulate power from the centralized power system 97 to the power supply 91 at midnight, where the amount of electricity used is low, and use the power accumulated in the power supply 91 during the day when the electricity charge is high. it can.
  • the above-mentioned electric power storage system may be installed for every one house (one household), and may be installed for every two or more houses (plural households).
  • FIG. 19 shows a block configuration of the power tool.
  • the electric power tool is, for example, an electric drill, and includes a control unit 99 and a power supply 100 inside a tool body 98 formed of a plastic material or the like.
  • a drill portion 101 which is a movable portion is attached to the tool body 98 so as to be operable (rotatable).
  • the control unit 99 controls the operation of the entire power tool (including the use state of the power supply 100), and includes, for example, a CPU.
  • the power supply 100 includes one or more secondary batteries (not shown).
  • the control unit 99 is configured to supply power from the power supply 100 to the drill unit 101 to move the control unit 99 as needed according to the operation of an operation switch (not shown).
  • Example 1-1 to 1-3 According to the following procedure, a coin-type secondary battery (lithium ion secondary battery) shown in FIG. 20 was produced.
  • the counter electrode 53 When producing the counter electrode 53, first, 91 parts by mass of a positive electrode active material (LiCoO 2 ), 6 parts by mass of a positive electrode conductive agent (carbon black), and 3 parts by mass of a positive electrode binder (polyvinylidene fluoride (PVDF)) The mixture was mixed with a portion to obtain a positive electrode mixture. Subsequently, the positive electrode mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone (NMP)) to obtain a paste-like positive electrode mixture slurry.
  • a positive electrode active material LiCoO 2
  • a positive electrode conductive agent carbon black
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • the test electrode 51 In the case of producing the test electrode 51, first, after preparing the inner portion 101A which is a simple substance (Si) of silicon, an oxide (SiO) of silicon is deposited on the surface of the inner portion 101A using a powder deposition method. The outer portion 101B was formed. Thereby, the central portion 101 including the inner portion 101A and the outer portion 101B was obtained. Subsequently, a carbon material (graphite: C) was deposited on the surface of the central portion 101 using a vapor deposition method to form an intermediate portion 103.
  • the central portion 101 is heated (190 ° C. ⁇ 6 hours) did.
  • the coated portion 102 including the plurality of fibrous carbon materials 104 is formed on the surface of the central portion 101, so that the negative electrode active material is obtained.
  • a non-sol solution was also used instead of the sol solution.
  • the composition and the like of this non-sol solution is the same as that of the sol solution except that it is not a sol (a powder dispersion solution).
  • the central portion 101 in which the intermediate portion 103 was formed was used as it is as a negative electrode active material.
  • a negative electrode binder 15% aqueous solution of polyacrylic acid
  • a negative electrode mixture was prepared according to the same procedure as in the case of forming the covering portion 102 except that it was changed to 6).
  • the average particle size of the negative electrode active material is about 2.5 ⁇ m
  • the weight average molecular weight (MW) of polyacrylic acid is about 1,000,000
  • the average particle size of artificial graphite is about 6 ⁇ m
  • the average particle size of denka black is about 48 nm. is there.
  • all are median diameters (D50).
  • the negative electrode mixture was mixed with water so that the concentration of solid content was 40%, the mixture was stirred using a rotation and revolution mixer to obtain a negative electrode mixture slurry.
  • the negative electrode mixture slurry is uniformly applied on both sides of the negative electrode current collector (15 ⁇ m thick strip-shaped electrolytic copper foil) using a coating apparatus, and then the negative electrode mixture slurry is dried to form a negative electrode active material layer. It formed.
  • the electrolyte salt LiPF 6
  • a solvent ethylene carbonate (EC) and diethyl carbonate (DEC)
  • the content of the electrolyte salt was 1 mol / kg with respect to the solvent.
  • the coated portion contains silicon as a constituent element
  • the coated portion is provided at the central portion.
  • the capacity retention rate was higher than that in the case (Experimental Example 1-3).
  • the coating is provided at the center, if a sol solution is used to form the coating (Experimental Example 1-1), if a non-sol solution is used (Experimental Example 1-2)
  • the capacity retention rate was significantly higher.
  • the coated portion was formed using a sol solution, when the fibrous carbon material had —COOH as a surface functional group, a remarkably high capacity retention rate was obtained.
  • FIGS. 21 and 22 are SEM photographs of Experimental Examples 1-2 and 1-3, respectively. 21 and 22 also show, along with the central portion 101, the negative electrode conductive agent 108 which is artificial graphite and the negative electrode conductive agent 109 which is Denka black.
  • the network structure can be specifically formed by the fibrous carbon substance 104 when the sol solution is used.
  • FIG. 21 and FIG. 22 are compared, the three-dimensional shape of the surface of the central portion 101 is common, and the fibrous carbon material 107 having an elongated three-dimensional shape is different from the central portion 101 (mainly In the gap between the parts 101). From this aspect, it is clear that the surface of the central portion 101 can not be coated with the fibrous carbon material 107 when a non-sol solution is used. Moreover, when FIG. 7 and FIG. 21 are compared, the three-dimensional shape of the surface of the central portion 101 is clearly different, and the fibrous carbon material 104 is hardly present in the gap between the central portions 101. The contour of the elongated fibrous carbon material 104 is concentrated on the surface of the central portion 101.
  • the surface of the central portion 101 can be coated with the fibrous carbon substance 104 when the sol solution is used.
  • the fibrous carbon materials 104 and 107 are used depends on whether or not the sol solution is used. More specifically, the fibrous carbon material 104 is used. , 107 is considered to be attributable to the difference in dispersibility.
  • the atomic ratio C / Si decreased before and after charge and discharge.
  • the cause of this is considered to be that the amount of detected silicon atoms is relatively increased with respect to the amount of detected carbon atoms, because a new surface is generated due to the cracking of the negative electrode active material during charge and discharge.
  • the reduction ratio of atomic ratio C / Si is about 14.9% in Example 1-1, about 31.5% in Example 1-2, and about 57.4% in Example 1-3.
  • the experimental example 1-1 is significantly smaller than the experimental examples 1-2 and 1-3. This result indicates that when the central portion 101 is covered with the mesh-like covering portion 102, the negative electrode active material is less likely to be broken during charge and discharge, and thus a new surface is less likely to be generated in the central portion 101.
  • a positive electrode active material LiCoO 2
  • 6 parts by mass of a positive electrode conductive agent carbon black
  • PVDF positive electrode binder
  • NMP organic solvent
  • coating positive mix slurry on both surfaces of a positive electrode collector (20 micrometers thick strip aluminum foil) using a coating apparatus the positive mix slurry was dried and the positive electrode active material layer was formed.
  • the volume density of the positive electrode active material layer was 3.5 g / cm 3 .
  • the weight per unit area of the positive electrode active material was adjusted so that the lithium release capacity per unit area of the test electrode 51 was 90% of the lithium storage capacity per unit area of the counter electrode 53.
  • the test electrode 51 When producing the test electrode 51, first, 73.5 parts by mass of the central portion 101 (silicon monoxide), 15 parts by mass of the negative electrode conductive agent (plate-like natural graphite), and the negative electrode binder (polyacrylic acid) 10 parts by mass and 1.5 parts by mass (converted to the weight of the fibrous carbon substance) of a sol solution in which a plurality of fibrous carbon substances 104 (CNTs) are dispersed are mixed to obtain a negative electrode mixture.
  • the median (D50: ⁇ m) of the central portion 101 is as shown in Table 2. In this case, a negative electrode mixture containing no sol solution was also prepared for comparison.
  • the procedure for preparing the sol solution is as follows.
  • a fibrous carbon material (graphitized CNT), a solvent for dispersion, and a dispersant were prepared.
  • CNT graphitized CNT
  • CT-12 manufactured by the company
  • VGCF VGCF manufactured by Showa Denko KK
  • electrochemical Denka black manufactured by Kogyo Co., Ltd.
  • Water or N-methyl pyrrolidone was used as a solvent for dispersion.
  • a dispersant carboxymethylcellulose sodium (manufactured by Wako Pure Chemical Industries, Ltd.) or polyvinyl pyrrolidone (K30 manufactured by Wako Pure Chemical Industries, Ltd.) was used.
  • CNT MDC Nanotech Co., Ltd. MDCNF
  • water was used as a dispersion medium
  • carboxymethylcellulose manufactured by Junsei Chemical Co., Ltd.
  • a dispersion solution was performed using an ultrasonic homogenizer (manufactured by Hielcher) to obtain a sol solution (5% by weight).
  • the fibrous carbon material was cut as needed.
  • a planetary ball mill P-5 manufactured by Fritsch Japan Co., Ltd.
  • a fibrous carbon substance CNT as described above
  • 100 g of fructose and 500 cm 3 of water 100 ° C.
  • the residue was dried under vacuum (120 ° C.) to obtain a fibrous carbon material coated with fructose.
  • the ground coated fibrous carbon material was washed with water to remove residual fructose, and then the coated fibrous carbon material was vacuum dried. Subsequently, using a ultrasonic homogenizer (manufactured by Hielcher), a coated fibrous carbon material, a solvent (water) for dispersion, and a dispersing agent (sodium carboxymethylcellulose: manufactured by Wako Pure Chemical Industries, Ltd.) are dispersed. Processing gave a sol solution (5% by weight).
  • the constitution (short fiber ratio (%) and average fiber diameter (nm)) and physical properties (G / D ratio) of the fibrous carbon material after formation of the covering portion 102 are as shown in Table 2.
  • the proportion of short fibers was changed by changing the conditions such as the dispersion method (planet ball mill or ultrasonic homogenizer), the type (material and diameter) of balls, the dispersion time, and the presence or absence of cutting treatment.
  • the G / D ratio also changed.
  • the G / D ratio can be adjusted according to the type of ball used for the planetary ball mill and the presence or absence of the embedding treatment using sugar. Thereby, it is possible to obtain fibrous carbon materials having different G / D ratios while having the same proportion of short fibers.
  • the negative electrode mixture was dispersed in a solvent (water) to obtain a paste-like negative electrode mixture slurry.
  • a negative electrode mixture slurry was applied to both sides of a negative electrode current collector (15 ⁇ m thick strip-shaped electrolytic copper foil) using a coating apparatus, and then the negative electrode mixture slurry was heated.
  • the covering portion 102 including the plurality of fibrous carbon materials 104 is formed on the surface of the central portion 101, so that the negative electrode active material layer including the negative electrode active material is formed.
  • the negative electrode active material layer was vacuum dried to remove residual water contained in the negative electrode active material layer.
  • solvents ethylene carbonate (EC), 4-fluoro-1,3-dioxolan-2-one (FEC), 4,5-difluoro-1,3-dioxolan-2-one
  • EC ethylene carbonate
  • FEC 4-fluoro-1,3-dioxolan-2-one
  • DMC dimethyl carbonate
  • constant-current charging was performed until the voltage reached 4.2 V at a current of 0.5 C
  • constant-voltage charging was performed until the current reached 0.05 C at a voltage of 4.2 V.
  • constant current discharge was performed until the voltage reached 3 V with a current of 0.5C.
  • 0.5 C is a current value which discharges a battery capacity (theoretical capacity) in 2 hours
  • 0.05 C is a current value which discharges a battery capacity in 20 hours.
  • Example 4 As shown in Table 4, except that the G / D ratio was changed, a secondary battery was produced in the same manner as in Example 2-3, and the first charge / discharge characteristics and the cycle characteristics were examined.
  • change the conditions such as dispersion method (planet ball mill or ultrasonic homogenizer), ball type (material and diameter), dispersion time, and presence or absence of cutting treatment in the process of preparing sol solution did.
  • a negative electrode mixture 10 parts by mass of the central portion 101 (silicon monoxide), 80 parts by mass of another negative electrode active material (artificial graphite), and 2 parts by mass of a negative electrode conductive agent (plate-like natural graphite) 1 part by mass of a sol solution in which 1 part by mass of another negative electrode conductive agent (carbon black), 6 parts by mass of a negative electrode binder (PVDF), and a plurality of fibrous carbon substances 104 (CNTs) are dispersed Mixed with the weight of the substance).
  • a sol solution 1 part by mass of another negative electrode conductive agent (carbon black), 6 parts by mass of a negative electrode binder (PVDF), and a plurality of fibrous carbon substances 104 (CNTs) are dispersed Mixed with the weight of the substance).
  • the fibrous carbon material As the fibrous carbon material, CNTs similar to those of Experimental Examples 2-1 to 2-5 were used, and the fibrous carbon material was cut as needed. Also, a sol solution was prepared using a bead mill or an ultrasonic homogenizer. When preparing this sol solution, polyvinyl pyrrolidone (K30 manufactured by Wako Pure Chemical Industries, Ltd.) was used as a dispersant, and N-methyl pyrrolidone was used as a solvent.
  • polyvinyl pyrrolidone K30 manufactured by Wako Pure Chemical Industries, Ltd.
  • a coating is provided on the surface of the central part containing silicon etc. as a constituent element, and a plurality of fibrous carbon substances contained in the coating are on the surface of the central part When it was in close contact with the central portion while extending in a direction along the line, excellent battery characteristics were obtained.
  • the capacity of the negative electrode includes the capacity due to absorption and release of lithium ions and the capacity accompanying precipitation and dissolution of lithium metal, and the secondary battery whose battery capacity is represented by the sum of both capacities Is equally applicable.
  • a negative electrode material capable of inserting and extracting lithium ions is used, and the chargeable capacity of the negative electrode material is set to be smaller than the discharge capacity of the positive electrode.
  • the secondary battery of the present technology is similarly applicable to the case where the battery structure has other shapes such as a square and a button type, and the battery element having another structure such as a laminated structure.
  • the electrode reactant may be another Group 1 element such as sodium (Na) and potassium (K), a Group 2 element such as magnesium and calcium, or another light metal such as aluminum. Since the effect of the present technology should be obtained independently of the type of electrode reactant, the same effect can be obtained even if the type of electrode reactant is changed.
  • the present technology can also be configured as follows. (1) Comprising a non-aqueous electrolyte together with a positive electrode and a negative electrode,
  • the negative electrode contains an active material,
  • the active material includes a central portion and a covering portion provided on at least a part of the central portion,
  • the central portion contains at least one of silicon (Si) and tin (Sn) as a constituent element,
  • the covering portion includes a plurality of fibrous carbon materials, At least a portion of the plurality of fibrous carbon materials is in close contact with the central portion while extending in a direction along the surface of the central portion, Secondary battery.
  • At least a portion of the plurality of fibrous carbon materials are intertwined with one another, The secondary battery as described in said (1).
  • the covering portion includes a network structure formed by at least a part of the plurality of fibrous carbon materials, The secondary battery as described in said (1) or (2).
  • the negative electrode contains a plurality of the active materials, Some of the plurality of fibrous carbon materials are cross-linked between the active materials, The secondary battery according to any one of the above (1) to (3).
  • the fibrous carbon material includes at least one of carbon nanotubes and carbon nanofibers, The secondary battery according to any one of the above (1) to (4).
  • the ratio of the fibrous carbon material having a fiber length of 4 ⁇ m or less among the plurality of fibrous carbon materials is 85% or more.
  • the average fiber diameter of the plurality of fibrous carbon materials is 102 nm or less.
  • the ratio of the area of the D-band peak to the area of the G-band peak (the area of the G-band peak / the area of the D-band peak in the Raman spectra of the plurality of fibrous carbon materials measured using Raman spectroscopy) Area is 1 or more,
  • the negative electrode contains a plurality of the active materials,
  • the median (D50) of the central portion is 7.8 ⁇ m or less 1 Secondary battery according to any one of (1) to (8) above.
  • At least a portion of the plurality of fibrous carbon materials has a carboxyl group (—COOH) on the surface thereof,
  • (11) The elemental analysis of the plurality of fibrous carbon materials using X-ray photoelectron spectroscopy (XPS) detects a peak due to the 1s orbital (O1s) of oxygen (O), The secondary battery according to any one of the above (1) to (10).
  • the central portion includes at least one of a silicon simple substance, a silicon alloy, a silicon compound, a tin simple substance, a tin alloy and a tin compound.
  • the active material includes an intermediate portion provided in at least a portion of the central portion, The intermediate portion contains carbon (C) as a constituent element, The covering portion is provided at the central portion via the intermediate portion.
  • the negative electrode contains another active material, The other active material contains carbon as a constituent element, The secondary battery according to any one of the above (1) to (13).
  • Being a lithium ion secondary battery The secondary battery according to any one of the above (1) to (14).
  • the active material includes a central portion and a covering portion provided on at least a part of the central portion,
  • the central portion contains at least one of silicon (Si) and tin (Sn) as a constituent element
  • the covering portion includes a plurality of fibrous carbon materials, At least a portion of the plurality of fibrous carbon materials is in close contact with the central portion while extending in a direction along the surface of the central portion, electrode.
  • the central portion contains at least one of silicon (Si) and tin (Sn) as a constituent element
  • the covering portion includes a plurality of fibrous carbon materials, At least a portion of the plurality of fibrous carbon materials is in close contact with the central portion while extending in a direction along the surface of the central portion, Active material.
  • a sol solution containing a plurality of fibrous carbon materials is brought into contact with at least a part of a central portion containing at least one of silicon (Si) and tin (Sn) as a constituent element, and then the sol solution is heated Forming a coating including the plurality of fibrous carbon materials, Method of manufacturing active material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 二次電池は、正極および負極と共に非水電解液を備える。負極は、活物質を含み、その活物質は、中心部と、その中心部の少なくとも一部に設けられた被覆部とを含む。中心部は、ケイ素およびスズのうちの少なくとも一方を構成元素として含む。被覆部は、複数の繊維状炭素物質を含み、その複数の繊維状炭素物質のうちの少なくとも一部は、中心部の表面に沿った方向に延在しながら、その中心部に密着している。

Description

活物質、活物質の製造方法、電極および二次電池
 本技術は、ケイ素(Si)およびスズ(Sn)のうちの少なくとも一方を構成元素として含む活物質およびその製造方法、ならびにその活物質を用いた電極および二次電池に関する。
 携帯電話機および携帯情報端末機器(PDA)などの多様な電子機器が広く普及しており、その電子機器のさらなる小型化、軽量化および長寿命化などが要望されている。これに伴い、電源として、電池、特に小型かつ軽量で高エネルギー密度の二次電池が開発されている。
 二次電池の用途は、最近では、上記した電子機器に限らず、多様な用途が検討されている。この多様な用途の代表例は、電子機器などに着脱可能に搭載される電池パックや、電気自動車などの電動車両や、家庭用電力サーバなどの電力貯蔵システムや、電動ドリルなどの電動工具である。
 電池容量を得るためにさまざまな充放電原理を利用する二次電池が提案されており、中でも、電極反応物質の吸蔵放出を利用する二次電池などが注目されている。鉛電池およびニッケルカドミウム電池などよりも高いエネルギー密度が得られるからである。
 二次電池は、正極および負極と共に電解液を備えており、その負極は、電極反応物質を吸蔵放出可能な活物質(負極活物質)を含んでいる。この負極活物質としては、黒鉛などの炭素材料が広く用いられているが、最近では、電池容量をさらに向上させるために、ケイ素を用いることが検討されている。ケイ素の理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも格段に大きいため、電池容量の大幅な向上を期待できるからである。この場合には、ケイ素と同様に高理論容量であるスズも有望視されている。
 ところが、ケイ素等は充放電時に激しく膨張収縮するため、負極活物質が主に表層近傍において割れやすくなる。負極活物質が割れると、高反応性の新生面(活性面)が生じるため、その負極活物質の表面積(反応面積)が増加する。これにより、新生面において電解液の分解反応が生じると共に、その新生面に電解液由来の被膜を形成するために電解液が消費されるため、サイクル特性などの電池特性が低下しやすくなる。
 そこで、電池特性を向上させるために、二次電池の構成に関してはさまざまな検討がなされている。具体的には、充放電時の体積変化を制御すると共に電気伝導度を向上させるために、ケイ素と金属との複合粒子の表面をカーボンナノチューブで被覆している(例えば、特許文献1参照。)。このカーボンナノチューブは、炭化水素ガスの熱分解および炭化により形成されており、複合粒子中の金属成分を触媒として成長している。
特開2010-095797号公報
 二次電池が用いられる電子機器などは益々高性能化および多機能化しており、その電子機器などの使用頻度も高まっているため、二次電池の電池特性についてさらなる改善が求められている。
 したがって、優れた電池特性を得ることが可能な活物質、活物質の製造方法、電極および二次電池を提供することが望ましい。
 本技術の一実施形態の活物質は、中心部と、その中心部の少なくとも一部に設けられた被覆部とを含むものである。中心部は、ケイ素およびスズのうちの少なくとも一方を構成元素として含み、被覆部は、複数の繊維状炭素物質を含む。複数の繊維状炭素物質のうちの少なくとも一部は、中心部の表面に沿った方向に延在しながら、その中心部に密着している。
 本技術の一実施形態の電極は、活物質を含み、その活物質が上記した本技術の活物質と同様の構成を有するものである。また、本技術の一実施形態の二次電池は、正極および負極と共に非水電解液を備え、その負極が上記した本技術の電極と同様の構成を有するものである。
 本技術の一実施形態の活物質の製造方法は、ケイ素およびスズのうちの少なくとも一方を構成元素として含む中心部の少なくとも一部に繊維状炭素物質を含むゾル溶液を接触させたのち、そのゾル溶液を加熱して繊維状炭素物質を含む被覆部を形成するものである。
 本技術の一実施形態の活物質またはその製造方法、あるいは電極または二次電池によれば、ケイ素等を構成元素として含む中心部に、複数の繊維状炭素物質を含む被覆部を形成している。この複数の繊維状炭素物質のうちの少なくとも一部は、中心部の表面に沿った方向に延在しながら、その中心部に密着している。よって、優れた電池特性を得ることができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本技術中に記載されたいずれの効果であってもよい。
本技術の一実施形態の活物質を用いた電極の構成を表す断面図である。 活物質の構成を表す断面図である。 活物質の他の構成を表す断面図である。 活物質のさらに他の構成を表す断面図である。 活物質層の走査型電子顕微鏡(SEM)写真である。 図5に示した活物質層の一部を模試的に表す図である。 活物質層の他のSEM写真である。 図7に示した活物質層の一部を模試的に表す図である。 活物質層のさらに他のSEM写真である。 図9に示した活物質層の一部を模試的に表す図である。 本技術の一実施形態の活物質および電極を用いた二次電池(円筒型)の構成を表す断面図である。 図11に示した巻回電極体の一部を拡大して表す断面図である。 図12に示した正極および負極の構成を模式的に表す平面図である。 本技術の一実施形態の活物質および電極を用いた他の二次電池(ラミネートフィルム型)の構成を表す斜視図である。 図14に示した巻回電極体のXV-XV線に沿った断面図である。 二次電池の適用例(電池パック)の構成を表すブロック図である。 二次電池の適用例(電動車両)の構成を表すブロック図である。 二次電池の適用例(電力貯蔵システム)の構成を表すブロック図である。 二次電池の適用例(電動工具)の構成を表すブロック図である。 試験用の二次電池(コイン型)の構成を表す断面図である。 実験例1-2の二次電池における活物質層のSEM写真である。 実験例1-3の二次電池における活物質層のSEM写真である。
 以下、本技術の一実施形態について、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。
 
 1.活物質を用いた電極
  1-1.活物質および電極の構成
  1-2.活物質および電極の製造方法
 2.二次電池
  2-1.リチウムイオン二次電池(円筒型)
  2-2.リチウムイオン二次電池(ラミネートフィルム型)
 3.二次電池の用途
  3-1.電池パック
  3-2.電動車両
  3-3.電力貯蔵システム
  3-4.電動工具
 
<1.活物質を用いた電極>
<1-1.活物質および電極の構成>
 図1は、本技術の一実施形態の活物質を用いた電極(以下では、単に「電極」または「本技術の電極」という。)の断面構成を表しており、図2~図4は、活物質の断面構成を表している。
[電極の全体構成]
 ここで説明する電極は、各種用途の電気化学デバイスに広く用いられるものであり、その電気化学デバイスは、例えば、二次電池およびキャパシタなどである。この電極は、正極として用いられてもよいし、負極として用いられてもよい。
 ここでは、電極は、例えば、図1に示したように、集電体1の上に活物質層2を有している。この活物質層2は、集電体1の両面に設けられていてもよいし、片面だけに設けられていてもよい。ただし、集電体1は、必ずしも必要でないため、なくてもよい。
[集電体]
 集電体1は、例えば、電気化学的安定性、電気伝導性および機械的強度に優れた導電性材料により形成されている。この導電性材料は、例えば、銅(Cu)、ニッケル(Ni)およびステンレスなどのいずれか1種類または2種類以上である。中でも、電極反応物質と金属間化合物を形成しないと共に活物質層2と合金化する材料が好ましい。
 「電極反応物質」とは、電極反応の媒介として働く物質であり、例えば、リチウムイオン二次電池のリチウム(Li)などである。また、「電極反応」とは、例えば、二次電池の充放電反応などである。
 集電体1の表面(活物質層2と接する面)は、粗面化されていてもよいし、粗面化されていなくてもよい。粗面化されていない集電体1は、例えば、圧延金属箔などであり、粗面化されている集電体1は、例えば、電解処理およびサンドブラスト処理などが施された金属箔などである。電解処理とは、電解槽中において電解法を用いて金属箔などの表面に微粒子を形成する方法である。電解法により作製された金属箔は、一般的に、電解箔(例えば電解銅箔など)と呼ばれている。
 中でも、集電体1の表面は、粗面化されていることが好ましい。アンカー効果により、集電体1に対する活物質層2の密着性が向上するからである。集電体1の表面粗さ(例えば十点平均粗さRzなど)は、特に限定されないが、アンカー効果を利用して活物質層2の密着性を向上させるためには、できるだけ大きいことが好ましい。ただし、表面粗さが大きすぎると、かえって活物質層2の密着性が低下し得る。
[活物質層]
 活物質層2は、例えば、図2~図4に示したように、電極反応物質を吸蔵放出可能である複数の活物質100を含んでいる。ただし、活物質層2は、活物質100に加えて、さらに結着剤および導電剤などの他の材料を含んでいてもよい。
[活物質の構成]
 この活物質100は、図2に示したように、中心部101および被覆部102を含んでいる。この被覆部102は、中心部101の表面のうち、全部に設けられていてもよいし、一部に設けられていてもよい。なお、被覆部102が中心部101の一部に設けられている場合には、その被覆部102は複数箇所に点在していてもよい。
[中心部]
 中心部101は、活物質100のうち、電極反応物質の吸蔵放出を実質的に担う部分であり、ケイ素(Si)およびスズ(Sn)のうちの少なくとも一方を構成元素として含んでいる。電極反応物質を吸蔵放出する能力が優れているため、高いエネルギー密度が得られるからである。
 中心部100の構成材料は、ケイ素およびスズの一方または双方を構成元素として含んでいれば、特に限定されない。すなわち、ケイ素の単体、ケイ素の合金またはケイ素の化合物でもよいし、スズの単体、スズの合金またはスズの化合物でもよいし。この他、上記したケイ素の単体およびスズの単体等のうちの2種類以上でもよいし、それらの1種類または2種類以上の相を少なくとも一部に有する材料でもよい。ただし、「単体」とは、あくまで一般的な意味合いでの単体であり、必ずしも純度100%を意味しているわけではないため、微量の不純物を含んでいてもよい。また、「合金」は、半金属元素および非金属元素のいずれか1種類または2種類以上を構成元素として含んでいてもよい。
 ケイ素の合金は、例えば、ケイ素以外の構成元素として、スズ、ニッケル、銅、鉄(Fe)、コバルト(Co)、マンガン(Mn)、亜鉛(Zn)、インジウム(In)、銀(Ag)、チタン(Ti)、ゲルマニウム(Ge)、ビスマス(Bi)、アンチモン(Sb)およびクロム(Cr)などのいずれか1種類または2種類以上を含んでいる。ケイ素の化合物は、例えば、ケイ素以外の構成元素として、炭素(C)および酸素(O)などのいずれか1種類または2種類以上を含んでいる。なお、ケイ素の化合物は、例えば、ケイ素以外の構成元素として、ケイ素の合金について説明した一連の元素のいずれか1種類または2種類以上を含んでいてもよい。
 ケイ素の合金およびケイ素の化合物の具体例は、SiB4 、SiB6 、Mg2 Si、Ni2 Si、TiSi2 、MoSi2 、CoSi2 、NiSi2 、CaSi2 、CrSi2 、Cu5 Si、FeSi2 、MnSi2 、NbSi2 、TaSi2 、VSi2 、WSi2 、ZnSi2 、SiC、Si3 4 、Si2 2 O、SiOv (0<v≦2)およびLiSiOなどである。
 スズの合金は、例えば、スズ以外の構成元素として、ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどのいずれか1種類または2種類以上を含んでいる。スズの化合物は、例えば、スズ以外の構成元素として、炭素および酸素などのいずれか1種類または2種類以上を含んでいる。なお、スズの化合物は、例えば、スズ以外の構成元素として、スズの合金について説明した一連の元素のいずれか1種類または2種類以上を含んでいてもよい。
 スズの合金およびスズの化合物の具体例は、SnOw (0<w≦2)、SnSiO3 、LiSnOおよびMg2 Snなどである。
 また、スズを構成元素として含む材料は、例えば、スズを第1構成元素とし、それに加えて第2構成元素および第3構成元素を含む材料でもよい。第2構成元素は、例えば、コバルト、鉄、マグネシウム(Mg)、チタン、バナジウム(V)、クロム、マンガン、ニッケル、銅、亜鉛、ガリウム(Ga)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、銀、インジウム、セリウム(Ce)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、ビスマスおよびケイ素などのいずれか1種類または2種類以上である。第3構成元素は、例えば、ホウ素(B)、炭素、アルミニウム(Al)およびリン(P)などのいずれか1種類または2種類以上である。第2および第3構成元素を含むことで、高いエネルギー密度が得られるからである。
 中でも、スズ、コバルトおよび炭素を構成元素として含む材料(SnCoC含有材料)が好ましい。このSnCoC含有材料では、例えば、炭素の含有量が9.9質量%~29.7質量%、スズおよびコバルトの含有量の割合(Co/(Sn+Co))が20質量%~70質量%である。高いエネルギー密度が得られるからである。
 SnCoC含有材料は、スズ、コバルトおよび炭素を含む相を有しており、その相は、低結晶性または非晶質であることが好ましい。この相は電極反応物質と反応可能な反応相であるため、その反応相の存在により優れた特性が得られる。この相のX線回折により得られる回折ピークの半値幅は、特定X線としてCuKα線を用いると共に挿引速度を1°/minとした場合において、回折角2θで1°以上であることが好ましい。電極反応物質がより円滑に吸蔵放出されると共に、電解液との反応性が低減するからである。なお、SnCoC含有材料は、低結晶性または非晶質の相に加えて、各構成元素の単体または一部を含む相を含んでいる場合もある。
 X線回折により得られた回折ピークが電極反応物質と反応可能な反応相に対応するものであるか否かについては、電極反応物質との電気化学的反応の前後におけるX線回折チャートを比較すれば容易に判断できる。例えば、電極反応物質との電気化学的反応の前後において回折ピークの位置が変化すれば、その電極反応物質と反応可能な反応相に対応するものである。この場合には、例えば、低結晶性または非晶質の反応相の回折ピークが2θ=20°~50°の間に見られる。このような反応相は、例えば、上記した各構成元素を有しており、主に、炭素の存在に起因して低結晶化または非晶質化していると考えられる。
 SnCoC含有材料では、構成元素である炭素の少なくとも一部が他の構成元素である金属元素および半金属元素の一方または双方と結合していることが好ましい。スズなどの凝集または結晶化が抑制されるからである。元素の結合状態については、例えば、X線光電子分光法(XPS)を用いて確認できる。市販の装置では、例えば、軟X線としてAl-Kα線またはMg-Kα線などが用いられる。炭素の少なくとも一部が金属元素および半金属元素などと結合している場合には、炭素の1s軌道(C1s)の合成波のピークが284.5eVよりも低い領域に現れる。なお、金(Au)原子の4f軌道(Au4f)のピークは84.0eVに得られるようにエネルギー較正されているものとする。この際、通常、物質表面に表面汚染炭素が存在しているため、表面汚染炭素のC1sのピークを284.8eVとし、それをエネルギー基準とする。XPS測定では、C1sのピークの波形が表面汚染炭素のピークとSnCoC含有材料中の炭素のピークとを含んだ形で得られるため、例えば、市販のソフトウエアを用いて解析することで、両者のピークを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。
 なお、SnCoC含有材料は、スズ、コバルトおよび炭素だけを構成元素として含む材料(SnCoC)に限られない。このSnCoC含有材料は、例えば、スズ、コバルトおよび炭素に加えて、さらにケイ素、鉄、ニッケル、クロム、インジウム、ニオブ、ゲルマニウム、チタン、モリブデン、アルミニウム、リン、ガリウムおよびビスマスなどのいずれか1種類または2種類以上を構成元素として含んでいてもよい。
 SnCoC含有材料の他、スズ、コバルト、鉄および炭素を構成元素として含む材料(SnCoFeC含有材料)も好ましい。このSnCoFeC含有材料の組成は、任意でよい。一例を挙げると、鉄の含有量を少なめに設定する場合は、炭素の含有量が9.9質量%~29.7質量%、鉄の含有量が0.3質量%~5.9質量%、スズおよびコバルトの含有量の割合(Co/(Sn+Co))が30質量%~70質量%である。また、鉄の含有量を多めに設定する場合は、炭素の含有量が11.9質量%~29.7質量%、スズ、コバルトおよび鉄の含有量の割合((Co+Fe)/(Sn+Co+Fe))が26.4質量%~48.5質量%、コバルトおよび鉄の含有量の割合(Co/(Co+Fe))が9.9質量%~79.5質量%である。このような組成範囲において高いエネルギー密度が得られるからである。なお、SnCoFeC含有材料の物性(半値幅など)は、上記したSnCoC含有材料と同様である。
 中でも、中心部101は、ケイ素および酸素を構成元素として含んでいることが好ましい。電極反応を繰り返しても高いエネルギー密度が維持されやすいからである。ケイ素および酸素を構成元素として含んでいれば、中心部101は、全体としてどのような構成を有していてもよい。
[中心部の構成例1]
 具体的には、中心部101は、例えば、図2に示したように、単一の粒状体でもよい。この中心部101(SiOz )の原子比、すなわちケイ素に対する酸素の原子比z(O/Si)は、特に限定されないが、例えば、0.5≦z≦1.8を満たしていることが好ましい。
 なお、中心部101は、例えば、ケイ素および酸素と共に、鉄、アルミニウム、クロム、ニッケル、ホウ素、マグネシウム、カルシウム(Ca)、チタン、バナジウム、マンガン、コバルト、銅、ゲルマニウム、イットリウム(Y)、ジルコニウム、モリブデン、銀、インジウム、スズ、アンチモン、タンタル、タングステン、鉛(Pb)、ランタン(La)、セリウム、プラセオジム(Pr)およびネオジム(Nd)などのいずれか1種類または2種類以上を構成元素として含んでいてもよい。中心部101の電気抵抗が低下するからである。
[中心部の構成例2]
 中心部101は、例えば、図3に示したように、内側部分101Aおよび外側部分101Bを含む複合粒状体でもよい。この外側部分101Bは、内側部分101Aの表面のうち、全部に設けられていてもよいし、一部に設けられていてもよいし、後者の場合には、外側部分101Bが複数箇所に点在していてもよい。
 内側部分101A(SiOx )の原子比xは、特に限定されないが、例えば、0≦x<0.5を満たしていることが好ましい。電極反応時に内側部分101Aが電極反応物質を吸蔵放出しやすいからである。ただし、xはできるだけ小さいことが好ましく、x=0がより好ましい。高いエネルギー密度が得られると共に、内側部分101Aの劣化が抑制されるからである。なお、内側部分101Aは、上記した単一の粒状体である中心部101と同様の理由により、さらに鉄などを構成元素として含んでいてもよい。
 外側部分101B(SiOy )の原子比yは、特に限定されないが、例えば、0.5≦y≦1.8を満たしていることが好ましい。電極反応を繰り返しても活物質100が劣化しにくいからである。これにより、内側部分101Aにおける電極反応物質の出入りを確保しつつ、外側部分101Bにより内側部分101Aが物理的かつ化学的に保護される。
 詳細には、内側部分101Aと電解液との間に外側部分101Bが介在すると、高反応性の内側部分101Aが電解液と接触しにくくなるため、その電解液の分解反応が抑制される。この場合には、外側部分101Bが内側部分101Aと同系統の材料、すなわち共通の元素(ここではケイ素)を構成元素として含む材料により形成されているため、その内側部分101Aに対する外側部分101Bの密着性も高くなる。
 また、外側部分101Bが柔軟性(変形しやすい性質)を有するため、電極反応時に内側部分101Aが膨張収縮しても、それに追随して外側部分101Bが膨張収縮(伸縮)しやすくなる。これにより、内側部分101Aの膨張収縮時に外側部分101Bが破損(断裂等)しにくくなるため、外側部分101Bによる内側部分101Aの被覆状態が電極反応を繰り返しても維持される。よって、電極反応時に内側部分101Aが割れても新生面が露出しにくくなると共に、その新生面が電解液と接触しにくくなるため、電解液の分解反応が著しく抑制される。
 この外側部分101Bは、単層でも多層でもよいが、中でも、多層であることが好ましい。外側部分101B中の層間に応力緩和用のスペース(空隙)が形成されやすいからである。ただし、外側部分101Bは、その一部に多層構造を有していてもよい。
[中心部の構成例3]
 なお、活物質100は、例えば、図4に示したように、中心部101に設けられた中間部103を含んでおり、被覆部102は、中間部103を介して中心部101に設けられていてもよい。中心部101に対する被覆部102の密着性が向上するからである。この中間部103は、中心部101の表面のうち、全部に設けられていてもよいし、一部に設けられていてもよいし、後者の場合には被覆部102が複数箇所に点在していてもよい。
 中間部103は、中心部101よりも低い電気抵抗を有していることが好ましい。活物質100の電気抵抗が低下するからである。具体的には、中間部103は、例えば、高導電率の炭素などを構成元素として含んでいることが好ましい。より高い効果が得られるからである。この中間部103の構成材料の具体例は、「他の活物質」として後述する炭素材料などである。なお、中間部103は、炭素と共に、水素および酸素などのいずれか1種類または2種類以上を構成元素として含んでいてもよい。
[被覆部]
 被覆部102は、活物質100のうち、中心部101を保護する部分であり、複数の繊維状炭素物質を含んでいる。この被覆部102は、主に後述する形成方法(ゾル溶液の使用)に起因して特徴的な構造を有している。具体的には、複数の繊維状炭素物質のうちの少なくとも一部は、中心部101の表面に沿った方向に延在している。しかも、複数の繊維状炭素物質のうちの少なくとも一部は、中心部101の表面に沿うように横たわりながら、その中心部101に密着している。この複数の繊維状炭素物質のうちの少なくとも一部は、特に、中心部101の表面に沿った方向に延在しながら互いに絡み合っていることが好ましく、全体として網目構造(網目状の導電ネットワーク)を形成していることがより好ましい。この被覆部102の詳細な構成については、後述する。
 繊維状炭素物質の「繊維状」とは、径(繊維径)に対して長さ(繊維長)が十分に大きい立体形状、すなわち細長(高アスペクト比)の立体形状を意味している。このアスペクト比は、特に限定されないが、中でも、5以上であることが好ましい。繊維状炭素物質が中心部101の表面に沿った方向に延在しやすくなると共に、その中心部101に密着しやすくなるからである。このため、繊維状炭素物質は、細長の立体形状を有していれば、どのような材料でもよい。具体的には、繊維状炭素物質は、例えば、カーボンナノチューブおよびカーボンナノファイバーの一方または双方などであり、そのカーボンナノチューブおよびカーボンナノファイバーには、気相成長炭素繊維(VGCF)なども含まれる。
 中心部101に被覆部102が設けられているのは、その被覆部102により中心部101が物理的および化学的に保護されるからである。詳細には、複数の繊維状炭素物質が中心部101の表面に沿った方向に延在しながらその中心部101に密着しているため、中心部101に対する被覆部102の密着力およびその被覆部102の物理的強度が著しく向上する。この場合には、中心部101が被覆部102により外側から強固に保持されることで、その中心部101が電極反応時に膨張収縮しても割れにくくなるため、高反応性の新生面が生じにくくなる。これにより、活物質100の劣化が抑制される。また、電極が電解液と共に電気化学デバイスに用いられる場合には、電極の反応性に起因する電解液の分解反応も抑制される。しかも、被覆部102が炭素質であるため、活物質100の電気伝導性が向上する。なお、上記した被覆部102の密着力および物理的強度は、複数の繊維状炭素物質が互いに絡み合っていればより向上すると共に、網目構造を形成していればさらに向上する。
 活物質100(中心部101および被覆部102)中における被覆部102(複数の繊維状炭素物質)の割合は、特に限定されないが、中でも、0.1重量%~10重量%であることが好ましく、0.5重量%~5重量%であることがより好ましい。中心部101において高い放電容量が得られると共に、被覆部102において網目構造が形成されやすくなるからである。
 ここで、複数の繊維状炭素物質のうちの少なくとも一部は、その表面に1種類または2種類以上の官能基(表面官能基)を有していてもよい。この表面官能基の種類は、特に限定されないが、中でも、酸素を構成元素として含む基が好ましい。より具体的には、水酸基(-OH)およびカルボキシル基(-COOH)の一方または双方が好ましく、カルボキシル基がより好ましい。後述するゾル溶液を用いた被覆部102の形成過程において、繊維状炭素物質が中心部101の表面に沿った方向に延在しやすくなると共に、その中心部101に密着しやすくなるからである。この表面官能基の種類を特定するためには、例えば、XPSを用いて繊維状炭素物質を表面分析すればよい。なお、ゾル溶液中に含まれている繊維状炭素物質を分析するためには、例えば、ゾル溶液を遠心分離処理してから上液を破棄したのち、沈降物(含水ケーキ)を真空乾燥してから分析すればよい。
  また、XPSを用いて繊維状炭素物質を元素分析した際、酸素の1s軌道(O1s)に起因するピークが検出されることが好ましい。繊維状炭素物質と、下地の中心部101(または中間部103)の最表面に存在する極性基(-OHなど)との親和性が高くなるからである。これにより、上記した表面官能基について説明した場合と同様に、繊維状炭素物質が中心部101の表面に沿った方向に延在しながらその中心部101に密着しやすくなる。
 ここで、繊維状炭素物質の寸法(繊維長および繊維径)は、上記した高アスペクト比が確保される寸法であれば、特に限定されない。
 中でも、複数の繊維状炭素物質の繊維長は、特定の条件を満たすように分布していることが好ましい。より具体的には、複数の繊維状炭素物質のうち、4μm以下の繊維長を有する繊維状炭素物質の割合(短繊維割合:%)は、85%以上であることが好ましく、90%以上であることがより好ましい。ゾル溶液中において複数の繊維状炭素物質が均一に分散されるため、その繊維状炭素物質が凝集しにくくなるからである。これにより、複数の繊維状炭素物質は、中心部101の表面に沿った方向に延在しやすくなると共に、その中心部101に対して密着しやすくなるため、充放電時において中心部101が膨張収縮しても、被覆部102が中心部101から脱離しにくくなる。また、複数の繊維状炭素物質が凝集しない程度に集合することで、網目構造が形成されやすくなる。なお、繊維長として「4μm」に着目しているのは、その繊維長(=4μm)を閾値として繊維状炭素物質の分散傾向が変化しやすいからである。
 この短繊維割合を調べる手順は、例えば、以下の通りである。最初に、複数の繊維状炭素物質が分散されたゾル溶液を準備する。続いて、ゾル溶液の溶媒と同じ種類の溶媒を用いて、そのゾル溶液を100倍に希釈する。続いて、希釈溶液を銅箔の表面に塗布したのち、その希釈溶液を乾燥させて、塗膜を形成する。続いて、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製S-4800)を用いて塗膜を観察して、二次電子像を得る。観察条件は、加速電圧=15kV、エミッション電流=20μAとする。最後に、画像処理ソフト(ImageJ)を用いて、二次電子像中に存在する任意の2000本の繊維状炭素物質の繊維長(長径:nm)を測定する。この結果から、短繊維割合(%)=(4μm以下の繊維長を有する繊維状炭素物質の本数/全ての繊維状炭素物質の本数)×100を算出する。
 また、複数の繊維状炭素物質の平均繊維径(nm)は、102nm以下であることが好ましく、80nm以下であることがより好ましい。上記した短繊維割合と同様の理由により、複数の繊維状炭素物質が均一に分散されるため、その繊維状炭素物質が中心部101に対して密着しやすくなると共に、網目構造が形成されやすくなるからである。この場合には、重量当たりにおける繊維状炭素物質の本数が増加するため、網目構造が容易に形成されやすくなる。なお、平均繊維径が102nmよりも大きいと、繊維状炭素物質の柔軟性が低下するため、その繊維状炭素物質が中心部101の表面(曲面)に沿うように延在しにくくなる可能性がある。
 この平均繊維径を調べる手順は、短繊維割合を調べた場合と同様の手順により、二次電子像中に存在する2000本の繊維状炭素物質の繊維径(nm)を測定したのち、その平均値を算出する。
 この他、被覆部102に含有されている複数の繊維状炭素物質の物性は、特に限定されないが、中でも、繊維状炭素物質は、熱処理により黒鉛化処理されていることが好ましい。これに伴い、ラマン分光法を用いて分析された被覆部102(複数の繊維状炭素物質)の分析結果(ラマンスペクトル)は、特定の条件を満たしていることが好ましい。具体的には、D-bandピークおよびG-bandピークに着目したとき、それぞれのピークの面積の比(G/D比:G-bandピークの面積/D-bandピークの面積)は、1以上であることが好ましく、3以上であることがより好ましい。繊維状炭素物質中において、低結晶性の炭素部分の割合が少なくなるからである。これにより、繊維状炭素物質の活性表面において、電解液が分解しにくくなる。また、繊維状炭素物質の微少空隙に電極反応物質が不可逆的に挿入することが抑制される。なお、熱処理時の温度は、G/D比が上記した条件を満たすことになる温度であれば、特に限定されないが、例えば、2000℃以上である。
 このG/D比を調べる手順は、例えば、以下の通りである。最初に、複数の繊維状炭素物質が分散されたゾル溶液を準備したのち、遠心分離機を用いてゾル溶液を遠心分離して、溶媒と固形分とに分離する。続いて、固形分を真空乾燥して、残留溶媒を除去する。続いて、ラマン分光装置(ナノフォトン株式会社製Raman-11)を用いて固形分を分析して、ラマンスペクトルを得る。分析条件は、レーザ波長=532nm、倍率=50倍、積算秒数=30秒、フィルタサイズ=ND200として、出力=0.2mWの状態で観察する。続いて、ローレンツ関数を用いたフィッティングにより、1350cm-1付近に検出されるD-Bandピークと、1580cm-1付近に検出されるG-Bandピークとを他のピークから分割する。最後に、D-Bandピークの面積と、G-Bandピークの面積とを求めたのち、G/D比=G-bandピークの面積/D-bandピークを算出する。
 なお、中心部101の平均粒径は、特に限定されないが、中でも、中心部101のメジアン径(D50)は、7.8μm以下であることが好ましい。中心部101の物理的強度が確保されやすいからである。なお、D50が7.8μmよりも大きいと、充放電時において中心部101が激しく膨張収縮するため、活物質100の物理的強度が低下し得る。ただし、D50が小さすぎると、活物質100の粒子界面が増大するため、活物質層2の導電性が低下し得る。しかしながら、複数の繊維状炭素物質を含む被覆部102が中心部101に設けられることで、活物質層2の導電性が確保される。このD50は、例えば、レーザ回折式粒度分布測定装置(株式会社島津製作所製ナノ粒子径分布測定装置SALD-7100)を用いて測定される。
[活物質の詳細な構成]
 ここで、図5~図10を参照して、活物質100の詳細な構成について説明する。図5、図7および図9は、活物質100のSEM写真であり、図6、図8および図10は、それぞれ図5、図7および図9に示したSEM写真の一部を模試的に表している。
 活物質100では、図5~図8に示したように、中心部101の表面が被覆部102により覆われている。ただし、上記したように、中心部101の表面は、被覆部102により直接的に覆われている場合(図2および図3)に限られず、中間部103を介して被覆部102により間接的に覆われている場合(図4)もあり得る。
 被覆部102に含まれている複数の繊維状炭素物質104は、図5および図6に示したように、中心部101の表面近傍に集中しており、特に、全体を中心部101の表面にへばり付かせるように存在している。すなわち、複数の繊維状炭素物質104は、中心部101の中心側から外側に向かって延在しているのではなく、その中心部101の表面に沿った方向に延在しており、しかも中心部101に密着している。この場合には、1つの繊維状炭素物質104のうちの少なくとも一部分が中心部101に密着していればよく、中でも、繊維状炭素物質104の全体(一端部分、中央部分および他端部分の全て)が中心部101に密着していることが好ましい。ただし、被覆部102に起因する上記利点を得るためには、全ての繊維状炭素物質104が中心部101の表面に沿った方向に延在している必要はなく、一部の繊維状炭素物質104が同方向に延在していてもよい。この場合には、複数の繊維状炭素物質104が互いに絡み合っていることが好ましい。
 中でも、図7および図8に示したように、複数の繊維状炭素物質104が中心部101の表面に沿った方向に延在しながら互いに絡み合うことで、網目構造105を形成していることが好ましい。この場合には、互いに絡み合う複数の繊維状炭素物質104が重なり合うことで、多層(3次元構造)の網目構造105を形成していてもよい。
 特に、隣り合う活物質100間では、例えば、図9および図10に示したように、複数の繊維状炭素物質104のうちの一部同士が架橋していることが好ましい。被覆部102の物理的強度がより向上すると共に、活物質100間の電気伝導性もより向上するからである。この場合には、異なる中心部101の表面に存在する繊維状炭素物質104同士により、活物質100間の隙間に架橋部106が形成される。
 なお、図6、図8および図10では、図示内容を簡略化している。具体的には、図6および図8では、1つの活物質100の輪郭だけを示していると共に、複数の繊維状炭素物質104のうちの一部の輪郭だけを示している。また、図10では、中心部101の表面に存在している繊維状炭素物質104の図示を省略している。
 結着剤は、例えば、合成ゴムおよび高分子材料などのいずれか1種類または2種類以上を含んでいる。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子材料は、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリイミド、ポリアミド、ポリアミドイミド、アラミド、ポリアクリル酸、ポリアクリル酸リチウム、ポリアクリル酸ナトリウム、ポリマレイン酸およびそれらの共重合体などである。この他、高分子材料は、例えば、カルボキシメチルセルロース、スチレンブタジエンゴムおよびポリビニルアルコールなどでもよい。
 中でも、活物質層2中における活物質100の含有量が50重量%以上である場合には、結着剤は、ポリイミド、ポリアミドイミド、アラミドおよびポリアクリル酸のいずれか1種類または2種類以上であることが好ましい。高い結着性が得られるからである。
 導電剤は、例えば、黒鉛、カーボンブラック、アセチレンブラックおよびケチェンブラックなどの炭素材料のうちのいずれか1種類または2種類以上を含んでいる。なお、負極導電剤は、導電性を有する材料であれば、金属材料または導電性高分子などでもよい。
 なお、活物質層2は、上記した活物質100に加えて、さらに他の活物質のいずれか1種類または2種類以上を含んでいてもよい。
 この「他の活物質」は、例えば、炭素を構成元素として含む材料であり、より具体的には、炭素材料であることが好ましい。活物質層2の電気抵抗が低下すると共に、その活物質層2が充放電時に膨張収縮しにくくなるからである。
 また、他の活物質が炭素材料であると、以下の利点も得られる。活物質100の一部を他の活物質(炭素材料)に置き換えると、充放電時において電極が膨張収縮しにくくなる反面、電極の重量当たりの充放電容量が減少すると共に、繊維状炭素物質に起因する不可逆容量の影響が大きくなる。このため、電極を用いた二次電池では、初回の放電容量が減少しやすい傾向にある。しかしながら、繊維状炭素物質が被覆部102に含有された状態で中心部101に設けられており、特に、その繊維状炭素物質のG/D比が適正化されていると、上記した不可逆容量の影響が抑制されるため、初回の放電容量が減少しにくくなる。
 この炭素材料は、例えば、易黒鉛化性炭素や、(002)面の面間隔が0.37nm以上の難黒鉛化性炭素や、(002)面の面間隔が0.34nm以下の黒鉛などである。より具体的には、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭およびカーボンブラック類などがある。このうち、コークス類には、ピッチコークス、ニードルコークスおよび石油コークスなどが含まれる。有機高分子化合物焼成体とは、フェノール樹脂やフラン樹脂などを適当な温度で焼成して炭素化したものである。炭素材料の形状は、繊維状、球状、粒状および鱗片状のいずれか1種類または2種類以上でよい。
 この他、他の活物質は、金属酸化物および高分子化合物などのいずれか1種類または2種類以上でもよい。金属酸化物は、例えば、酸化鉄、酸化ルテニウムおよび酸化モリブデンなどである。高分子化合物は、例えば、ポリアセチレン、ポリアニリンおよびポリピロールなどである。
 なお、他の活物質は、中心部101の形成材料が異なることを除き、上記した活物質100と同様の構成を有していてもよい。この場合の中心部101は、例えば、「他の活物質」として説明した炭素材料などのうちのいずれか1種類または2種類以上を含んでいる。
 この活物質層2は、例えば、塗布法および焼成法(焼結法)の一方または双方の方法により形成されている。塗布法とは、例えば、活物質を結着剤などと混合したのち、有機溶剤などの溶媒に分散させてから塗布する方法である。焼成法とは、例えば、塗布法と同様の手順により塗布したのち、結着剤などの融点よりも高い温度で熱処理する方法である。焼成法としては、雰囲気焼成法、反応焼成法およびホットプレス焼成法などの公知の手法を用いることができる。
<1-2.活物質および電極の製造方法>
 この活物質を用いた電極は、例えば、以下の2通りの手順により製造される。以下では、集電体1および活物質層2の形成材料については既に詳細に説明したので、その説明を省略する。なお、本技術の一実施形態の活物質の製造方法については、以下で併せて説明する。
 第1手順では、最初に、複数の繊維状炭素物質を含むゾル溶液と、中心部101とを準備する。
 ゾル溶液の溶媒は、特に限定されないが、例えば、水などである。ゾル溶液の調製方法は、特に限定されないが、例えば、ビーズミル、ボールミル、ホモジナイザ、超音波ホモジナイザおよび高圧ホモジナイザなどのいずれか1種類または2種類以上である。なお、ゾル溶液は、例えば、分散剤などの添加剤のいずれか1種類または2種類以上を含んでいてもよい。分散剤の含有量は、特に限定されないが、例えば、繊維状炭素物質の含有量に対して30重量%以下であることが好ましい。繊維状炭素物質の含有量が確保されるため、その繊維状炭素物質の機能が担保されるからである。
 複数の繊維状炭素物質を準備する場合には、必要に応じて、短繊維割合などを調整するために、その繊維状炭素物質に切断処理を施してもよい。この切断処理に用いる装置は、例えば、ビーズミルおよび遊星ボールミルなどのいずれか1種類または2種類以上である。なお、熱処理により黒鉛化された繊維状炭素物質を用いる場合には、その黒鉛化構造を維持するために、例えば、切断工程において繊維状炭素物質にダメージが及びにくくすることが好ましい。これに伴い、例えば、切断処理を行う際に、繊維状炭素物質に粉砕助剤として少量の有機溶剤を加えてもよいし、樹脂および糖類などで繊維状炭素物質を包埋してもよいし、液体窒素などを用いて繊維状炭素物質を冷却してもよい。
 単一の粒状体である中心部101(図2)を準備する場合には、例えば、ガスアトマイズ法、水アトマイズ法および溶融粉砕法などのいずれか1種類または2種類以上の方法を用いて、所望の組成を有する粒子(粉末)を得る。一方、複合粒状体である中心部101(図3)を準備する場合には、例えば、ガスアトマイズ法、水アトマイズ法および溶融粉砕法などのいずれか1種類または2種類以上の方法を用いて、所望の組成を有する粒子状(粉末状)の内側部分101Aを得る。こののち、例えば、蒸着法およびスパッタ法などのいずれか1種類または2種類以上の方法(気相成長法)を用いて、内側部分101Aの表面に、所望の組成を有する外側部分101Bを形成する。
 この場合には、気相成長法および湿式コート法などのいずれか1種類または2種類以上の方法を用いて、中心部101の表面に中間部103(図4)を形成してもよい。この気相成長法は、例えば、蒸着法、スパッタ法、熱分解化学蒸着(CVD)法、熱分解CVD法、電子ビーム蒸着法および糖炭化法などのいずれか1種類または2種類以上である。中でも、熱分解CVD法が好ましい。中間部103が均一な厚さとなるように形成されやすいからである。
 続いて、中心部101の表面に、複数の繊維状炭素物質104を含むゾル溶液を供給して、その中心部101に、ゾル溶液を接触させる。これにより、複数の繊維状炭素物質104は、ゾル溶液に中に分散された状態で中心部101の表面に接触する。このゾル溶液の供給方法は、特に限定されない。例えば、中心部101の表面にゾル溶液を塗布してもよいし、ゾル溶液中に中心部101を浸漬させてから引き上げてもよい。また、ゾル溶液の濃度は、特に限定されないが、できるだけ高いことが好ましい。中心部101に対する繊維状炭素物質104の接触確率が高くなるため、その繊維状炭素物質が中心部101の表面に沿った方向に延在しやすくなると共に、その中心部101に密着しやすくなるからである。
 続いて、中心部101の表面に供給されたゾル溶液を加熱する。この加熱処理により、複数の繊維状炭素物質104が中心部101の表面に沿った方向に延在すると共にその中心部101に密着するため、その中心部101の表面に、複数の繊維状炭素物質104を含む被覆部102が形成される。なお、加熱温度および加熱時間などの条件は、任意でよい。これにより、活物質100が得られる。
 被覆部102を形成するためにゾル溶液を用いるのは、非ゾル溶液を用いる場合とは異なり、複数の繊維状炭素物質104が中心部101の表面に沿った方向に延在しやすくなると共に、その中心部101に密着しやすくなるからである。詳細には、非ゾル溶液を用いると、繊維状炭素物質104が中心部101の表面に沿った方向に延在せず、その繊維状炭素物質104同士が主に活物質100間の隙間などにおいて凝集してしまう。これに対して、ゾル溶液を用いると、繊維状炭素物質104が中心部101の表面に沿った方向に延在すると共に、その中心部101に密着する。
 続いて、活物質100と結着剤などの他の材料とを混合して電極合剤としたのち、その電極合剤を溶媒に溶解または分散させて電極合剤スラリーとする。最後に、集電体1の表面に電極合剤スラリーを塗布したのち、その電極合剤スラリーを加熱(乾燥)して、活物質層2を形成する。こののち、活物質層2を圧縮成型および加熱(焼成)してもよい。
 第2手順では、最初に、上記した第1手順と同様の手順により、複数の繊維状炭素物質を含むゾル溶液と、中心部101とを準備する。
 続いて、中心部101と、ゾル溶液と、結着剤などの他の材料とを混合して、電極合剤とする。この混合工程において、第1手順を用いた場合と同様に、複数の繊維状炭素物質104がゾル溶液に中に分散された状態で中心部101の表面に接触する。
 続いて、電極合剤を溶媒に溶解または分散させて、電極合剤スラリーとする。最後に、集電体1の表面に電極合剤スラリーを塗布したのち、その電極合剤スラリーを加熱(乾燥)して、活物質層2を形成する。この加熱処理により、第1手順と同様に、複数の繊維状炭素物質104が中心部101の表面に沿った方向に延在すると共に、その中心部101に密着する。このため、中心部101の表面に、複数の繊維状炭素物質104を含む被覆部102が形成される。これにより、活物質100が得られる。こののち、活物質層2を圧縮成型および加熱(焼成)してもよい。
[活物質を用いた電極の作用および効果]
 上記した活物質を用いた電極によれば、ケイ素等を構成元素として含む中心部101に、複数の繊維状炭素物質104を含む被覆部102が設けられている。この複数の繊維状炭素物質104のうちの少なくとも一部は、中心部101の表面に沿った方向に延在しながら、その中心部101に密着している。これにより、上記したように、強固に密着された被覆部102により中心部101が物理的および化学的に保護されるため、活物質100の劣化および電解液の分解反応が抑制されると共に、その活物質100の電気伝導性が向上する。よって、電極を用いた電気化学デバイスの性能向上に寄与できる。
 特に、複数の繊維状炭素物質104が互いに絡み合っていれば、より高い効果を得ることができる。この場合には、複数の繊維状炭素物質104により網目構造105が形成されていれば、さらに高い効果を得ることができる。なお、繊維状炭素物質104同士が活物質100間において架橋していても、より高い効果を得ることができる。
 また、上記した活物質の製造方法によれば、ケイ素等を構成元素として含む中心部101に、複数の繊維状炭素物質104を含むゾル溶液を接触させたのち、そのゾル溶液を加熱しているため、被覆部102が形成される。これにより、上記したように、被覆部102の形成工程において、複数の繊維状炭素物質104が中心部101の表面に沿った方向に延在すると共にその中心部101に密着するため、中心部101に強固に密着された被覆部102が容易かつ安定に形成される。よって、上記した被覆部102に起因する利点を安定して得ることができる。しかも、ゾル溶液の溶媒として水を用いれば、水分制御および溶媒回収などが不要になるため、電極の製造工程を簡略化および低コスト化できると共に、環境負荷の低減を図ることもできる。
 ここで、本技術において被覆部102を形成できる(複数の繊維状炭素物質104が中心部101の表面に沿った方向に延在しながらその中心部101に密着する)のは、その被覆部102の形成工程においてゾル溶液を用いているからであると考えられる。これに関する実証は、後述する実施例において行うこととする。これに対して、上記した先行技術(特開2010-095797号公報)では、複合粒子の表面をカーボンナノチューブで被覆しているが、そのカーボンナノチューブは、複合粒子の表面に沿った方向に延在しながら互いに絡み合っていないと考えられる。なぜなら、炭化水素ガスの熱分解および炭化を利用して、複合粒子中の金属成分を触媒としてカーボンナノチューブを成長させているからである。この場合には、カーボンナノチューブが主に複合粒子の表面と交差する方向に向かって放射状に延在するはずであるため、カーボンナノチューブ同士が互いに絡み合うことはあっても、複合粒子の表面に沿った方向に延在するとは考えられない。すなわち、複合粒子中の金属成分を触媒として成長したカーボンナノチューブは、その全体を複合粒子の表面にへばり付かせるように存在できるはずがない。このため、上記した先行技術において本技術の被覆部102を形成できているとは考えられない。
<2.二次電池>
 上記した本技術の活物質および電極は、例えば、以下のようにして電気化学デバイスに用いられる。以下では、電気化学デバイスとして二次電池を例に挙げて、活物質および電極の適用例を具体的に説明する。
<2-1.リチウムイオン二次電池(円筒型)>
 図11および図12は、二次電池の断面構成を表している。図13は、図12に示した正極21および負極22の平面構成を模式的に表している。なお、図12では、図11に示した巻回電極体20の一部を拡大している。
[二次電池の全体構成]
 ここで説明する二次電池は、電極反応物質であるリチウム(リチウムイオン)の吸蔵放出により負極22の容量が得られるリチウムイオン二次電池であり、いわゆる円筒型である。
 この二次電池では、例えば、図11に示したように、中空円柱状の電池缶11の内部に、巻回電極体20と、一対の絶縁板12,13とが収納されている。巻回電極体20は、例えば、セパレータ23を介して正極21と負極22とが積層されてから巻回されたものである。ここでは、例えば、本技術の活物質および電極は、負極22に適用される。
 電池缶11は、例えば、一端部が閉鎖されると共に他端部が開放された中空構造を有していると共に、鉄、アルミニウムまたはそれらの合金などにより形成されている。この電池缶11の表面には、ニッケルなどが鍍金されていてもよい。一対の絶縁板12,13は、巻回電極体20を挟むように配置されていると共に、その巻回電極体20の巻回周面に対して垂直に延在している。
 電池缶11の開放端部には、電池蓋14、安全弁機構15および熱感抵抗素子(PTC素子)16がガスケット17を介してかしめられているため、その電池缶11は密閉されている。電池蓋14は、例えば、電池缶11と同様の材料により形成されている。安全弁機構15および熱感抵抗素子16は、電池蓋14の内側に設けられており、その安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されている。この安全弁機構15では、内部短絡、または外部からの加熱などに起因して内圧が一定以上になると、ディスク板15Aが反転して電池蓋14と巻回電極体20との電気的接続を切断するようになっている。熱感抵抗素子16は、大電流に起因する異常な発熱を防止するものであり、その熱感抵抗素子16の抵抗は、温度の上昇に応じて増加するようになっている。ガスケット17は、例えば、絶縁材料により形成されており、その表面にアスファルトが塗布されていてもよい。
 巻回電極体20の巻回中心には、例えば、センターピン24が挿入されている。ただし、センターピン24は挿入されていなくてもよい。正極21には、例えば、アルミニウムなどの導電性材料により形成された正極リード25が接続されていると共に、負極22には、例えば、ニッケルなどの導電性材料により形成された負極リード26が接続されている。正極リード25は、例えば、安全弁機構15に溶接されていると共に、電池蓋14と電気的に接続されている。負極リード26は、例えば、電池缶11に溶接されることで、その電池缶11と電気的に接続されている。
[正極]
 正極21は、例えば、図12に示したように、正極集電体21Aの片面または両面に正極活物質層21Bを有している。正極集電体21Aは、例えば、アルミニウム、ニッケルまたはステンレスなどの導電性材料により形成されている。
 正極活物質層21Bは、正極活物質として、リチウムイオンを吸蔵放出可能な正極材料のいずれか1種類または2種類以上を含んでおり、さらに正極結着剤および正極導電剤などの他の材料のいずれか1種類または2種類以上を含んでいてもよい。なお、正極結着剤および正極導電剤に関する詳細は、本技術の電極に用いられる結着剤および導電剤と同様である。
 正極材料は、リチウム含有化合物であることが好ましい。高いエネルギー密度が得られるからである。このリチウム含有化合物は、例えば、リチウム遷移金属複合酸化物およびリチウム遷移金属リン酸化合物などである。リチウム遷移金属複合酸化物とは、Liと1または2以上の遷移金属元素とを構成元素として含む酸化物であり、リチウム遷移金属リン酸化合物とは、Liと1または2以上の遷移金属元素とを構成元素として含むリン酸化合物である。中でも、遷移金属元素は、コバルト、ニッケル、マンガンおよび鉄などのいずれか1種類または2種類以上であることが好ましい。より高い電圧が得られるからである。その化学式は、例えば、Lix M1O2 およびLiy M2PO4 で表される。式中、M1およびM2は、1種類以上の遷移金属元素である。xおよびyの値は、充放電状態に応じて異なるが、例えば、0.05≦x≦1.10、0.05≦y≦1.10である。
 リチウム遷移金属複合酸化物は、例えば、LiCoO2 、LiNiO2 、および下記の式(1)で表されるリチウムニッケル系複合酸化物などである。リチウム遷移金属リン酸化合物は、例えば、LiFePO4 およびLiFe1-u Mnu PO4 (u<1)などである。高い電池容量が得られると共に、優れたサイクル特性なども得られるからである。
 LiNi1-z z 2   …(1)
(MはCo、Mn、Fe、Al、V、Sn、Mg、Ti、Sr、Ca、Zr、Mo、Tc、Ru、Ta、W、Re、Yb、Cu、Zn、Ba、B、Cr、Si、Ga、P、SbおよびNbのうちの少なくとも1種である。zは0.005<z<0.5を満たす。)
 この他、正極材料は、例えば、酸化物、二硫化物、カルコゲン化物および導電性高分子などのいずれか1種類または2種類以上でもよい。酸化物は、例えば、酸化チタン、酸化バナジウムおよび二酸化マンガンなどである。二硫化物は、例えば、二硫化チタンおよび硫化モリブデンなどである。カルコゲン化物は、例えば、セレン化ニオブなどである。導電性高分子は、例えば、硫黄、ポリアニリンおよびポリチオフェンなどである。ただし、正極材料は、上記した一連の材料に限られず、他の材料でもよい。
[負極]
 負極22は、本技術の電極と同様の構成を有している。具体的には、負極22は、例えば、図12に示したように、負極集電体22Aの片面または両面に負極活物質層22Bを有しており、負極集電体22Aおよび負極活物質層22Bの構成は、それぞれ集電体1および活物質層2の構成と同様である。
 この二次電池では、充電途中において意図せずにリチウム金属が負極22に析出することを防止するために、リチウムイオンを吸蔵放出可能である負極材料の電気化学当量が正極の電気化学当量よりも大きくなっている。また、完全充電時の開回路電圧(すなわち電池電圧)が4.25V以上であると、4.20Vである場合と比較して、同じ正極活物質を用いても単位質量当たりのリチウムイオンの放出量が多くなるため、それに応じて正極活物質と負極活物質との量が調整されている。これにより、高いエネルギー密度が得られるようになっている。
 ここで、例えば、図13に示したように、正極活物質層21Bは、正極集電体21Aの表面の一部(例えば長手方向における中央領域)に設けられている。これに対して、負極活物質層22Bは、例えば、負極集電体22Aの全面に設けられている。これにより、負極活物質層22Bは、負極集電体22Aのうち、正極活物質層21Bと対向する領域(対向領域R1)および対向しない領域(非対向領域R2)に設けられている。この場合には、負極活物質層22Bのうち、対向領域R1に設けられている部分は充放電に関与するが、非対向領域R2に設けられている部分は充放電にほとんど関与しない。なお、図13では、正極活物質層21Bおよび負極活物質層22Bに網掛けしている。
 上記したように、負極活物質層22Bに含まれる負極活物質は、複数の繊維状炭素物質を含んでおり、その複数の繊維状炭素物質により網目構造が形成されている場合もある。この場合には、充放電時の膨張収縮に起因して負極活物質層22Bが変形または破損する可能性があるため、負極活物質の構成(繊維状炭素物質の状態など)が負極活物質層22Bの形成時の状態から変動し得る。しかしながら、非対向領域R2では、充放電の影響をほとんど受けず、負極活物質層22Bの形成状態がほぼ維持される。このため、負極活物質の構成については、非対向領域R2の負極活物質層22Bを調べることが好ましい。充放電の履歴(充放電の有無および回数など)に依存せずに、負極活物質の構成を再現性よく正確に調べることができるからである。
[セパレータ]
 セパレータ23は、正極21と負極22とを隔離することで、両極の接触に起因する電流の短絡を防止しながらリチウムイオンを通過させるものである。このセパレータ23は、例えば、合成樹脂またはセラミックなどの多孔質膜であり、2種類以上の多孔質膜が積層された積層膜でもよい。合成樹脂は、例えば、ポリテトラフルオロエチレン、ポリプロピレンまたはポリエチレンなどである。
[電解液]
 セパレータ23には、液状の電解質である電解液が含浸されており、その電解液は、溶媒および電解質塩を含んでいる。ただし、電解液は、添加剤などの他の材料のいずれか1種類または2種類以上を含んでいてもよい。
 溶媒は、有機溶媒などの非水溶媒のいずれか1種類または2種類以上を含んでいる。この非水溶媒は、例えば、環状炭酸エステル、鎖状炭酸エステル、ラクトン、鎖状カルボン酸エステルおよびニトリルなどである。優れた電池容量、サイクル特性および保存特性などが得られるからである。環状炭酸エステルは、例えば、炭酸エチレン、炭酸プロピレンおよび炭酸ブチレンなどであると共に、鎖状炭酸エステルは、例えば、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルおよび炭酸メチルプロピルなどである。ラクトンは、例えば、γ-ブチロラクトンおよびγ-バレロラクトンなどである。カルボン酸エステルは、例えば、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチルおよびトリメチル酢酸エチルなどである。ニトリルは、例えば、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリルおよび3-メトキシプロピオニトリルなどである。
 この他、非水溶媒は、例えば、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N’-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチルおよびジメチルスルホキシドなどでもよい。同様の利点が得られるからである。
 中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルのうちの少なくとも1種が好ましい。より優れた電池容量、サイクル特性および保存特性などが得られるからである。この場合には、炭酸エチレンおよび炭酸プロピレンなどの高粘度(高誘電率)溶媒(例えば比誘電率ε≧30)と、炭酸ジメチル、炭酸エチルメチルおよび炭酸ジエチルなどの低粘度溶媒(例えば粘度≦1mPa・s)との組み合わせがより好ましい。電解質塩の解離性およびイオンの移動度が向上するからである。
 特に、溶媒は、不飽和環状炭酸エステル、ハロゲン化炭酸エステル、スルトン(環状スルホン酸エステル)および酸無水物のいずれか1種類または2種類以上を含んでいてもよい。電解液の化学的安定性が向上するからである。不飽和環状炭酸エステルとは、1または2以上の不飽和結合(炭素間二重結合)を有する環状炭酸エステルであり、例えば、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンなどである。ハロゲン化炭酸エステルとは、1または2以上のハロゲンを構成元素として含む環状または鎖状の炭酸エステルである。環状のハロゲン化炭酸エステルは、例えば、4-フルオロ-1,3-ジオキソラン-2-オンおよび4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどである。鎖状のハロゲン化炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)および炭酸ジフルオロメチルメチルなどである。スルトンは、例えば、プロパンスルトンおよびプロペンスルトンなどである。酸無水物は、例えば、例えば、無水コハク酸、無水エタンジスルホン酸および無水スルホ安息香酸などである。
 電解質塩は、例えば、リチウム塩などの塩のいずれか1種類または2種類以上を含んでいる。ただし、電解質塩は、例えば、リチウム塩以外の他の塩を含んでいてもよい。この「他の塩」とは、例えば、リチウム塩以外の軽金属塩などである。
 このリチウム塩は、例えば、六フッ化リン酸リチウム(LiPF6 )、四フッ化ホウ酸リチウム(LiBF4 )、過塩素酸リチウム(LiClO4 )、六フッ化ヒ酸リチウム(LiAsF6 )、テトラフェニルホウ酸リチウム(LiB(C6 5 4 )、メタンスルホン酸リチウム(LiCH3 SO3 )、トリフルオロメタンスルホン酸リチウム(LiCF3 SO3 )、テトラクロロアルミン酸リチウム(LiAlCl4 )、六フッ化ケイ酸二リチウム(Li2 SiF6 )、塩化リチウム(LiCl)および臭化リチウム(LiBr)などである。優れた電池容量、サイクル特性および保存特性などが得られるからである。ただし、リチウム塩の具体例は、上記した化合物に限られない。
 中でも、LiPF6 、LiBF4 、LiClO4 およびLiAsF6 のうちの少なくとも1種類が好ましく、LiPF6 がより好ましい。内部抵抗が低下するため、より高い効果が得られるからである。
 電解質塩の含有量は、特に限定されないが、中でも、溶媒に対して0.3mol/kg~3.0mol/kgであることが好ましい。高いイオン伝導性が得られるからである。
[二次電池の動作]
 この二次電池は、例えば、以下のように動作する。充電時には、正極21から放出されたリチウムイオンが電解液を介して負極22に吸蔵される。一方、放電時には、負極22から放出されたリチウムイオンが電解液を介して正極21に吸蔵される。
[二次電池の製造方法]
 この二次電池は、例えば、以下の手順により製造される。
 最初に、正極21を作製する。正極活物質と、必要に応じて正極結着剤などとを混合して、正極合剤とする。続いて、有機溶剤などに正極合剤を分散させて、ペースト状の正極合剤スラリーとする。続いて、正極集電体21Aの両面に正極合剤スラリーを塗布してから乾燥させて、正極活物質層21Bを形成する。こののち、ロールプレス機などを用いて正極活物質層21Bを圧縮成型してもよい。この正極活物質層21Bを形成する場合には、加熱しながら正極活物質層21Bを圧縮成型してもよいし、圧縮成型を複数回繰り返してもよい。
 また、本技術の電極と同様の手順により、負極集電体22Aの両面に負極活物質層22Bを形成して、負極22を作製する。
 最後に、正極21および負極22を用いて二次電池を組み立てる。溶接法などを用いて正極集電体21Aに正極リード25を取り付けると共に、溶接法などを用いて負極集電体22Aに負極リード26を取り付ける。続いて、セパレータ23を介して正極21と負極22とを積層してから巻回させて巻回電極体20を作製したのち、その巻回中心にセンターピン24を挿入する。続いて、一対の絶縁板12,13で挟みながら巻回電極体20を電池缶11の内部に収納する。この場合には、溶接法などを用いて正極リード25の先端部を安全弁機構15に取り付けると共に、溶接法などを用いて負極リード26の先端部を電池缶11に取り付ける。続いて、電池缶11の内部に、溶媒に電解質塩が分散された電解液を注入してセパレータ23に含浸させる。続いて、ガスケット17を介して電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16をかしめる。
[二次電池の作用および効果]
 この円筒型の二次電池によれば、負極22が本技術の電極と同様の構成を有しているので、負極活物質の劣化および電解液の分解反応が抑制されると共に、その負極活物質の電気伝導性が向上する。よって、充放電を繰り返しても放電容量が低下しにくくなるため、優れた電池特性を得ることができる。これ以外の作用および効果は、本技術の活物質および電極などと同様である。
<2-2.リチウムイオン二次電池(ラミネートフィルム型)>
 図14は、他の二次電池の分解斜視構成を表しており、図15は、図14に示した巻回電極体30のXV-XV線に沿った断面を拡大している。以下では、既に説明した円筒型の二次電池の構成要素を随時引用する。
[二次電池の全体構成]
 ここで説明する二次電池は、いわゆるラミネートフィルム型のリチウムイオン二次電池であり、例えば、図14に示したように、フィルム状の外装部材40の内部に巻回電極体30が収納されている。この巻回電極体30は、セパレータ35および電解質層36を介して正極33と負極34とが積層されてから巻回されたものである。正極33に正極リード31が取り付けられていると共に、負極34に負極リード32が取り付けられている。巻回電極体30の最外周部は、保護テープ37により保護されている。
 正極リード31および負極リード32は、例えば、外装部材40の内部から外部に向かって同一方向に導出されている。正極リード31は、例えば、アルミニウムなどの導電性材料により形成されていると共に、負極リード32は、例えば、銅、ニッケルまたはステンレスなどの導電性材料により形成されている。この導電性材料は、例えば、薄板状または網目状である。
 外装部材40は、例えば、融着層と、金属層と、表面保護層とがこの順に積層されたラミネートフィルムである。この外装部材40は、例えば、融着層が巻回電極体30と対向するように2枚のラミネートフィルムが重ねられたのち、各融着層の外周縁部同士が融着されたものである。ただし、2枚のラミネートフィルムは、接着剤などを介して貼り合わされていてもよい。融着層は、例えば、ポリエチレンおよびポリプロピレンなどのフィルムである。金属層は、例えば、アルミニウム箔などである。表面保護層は、例えば、ナイロンおよびポリエチレンテレフタレートなどのフィルムである。
 中でも、外装部材40は、ポリエチレンフィルムと、アルミニウム箔と、ナイロンフィルムとがこの順に積層されたアルミラミネートフィルムであることが好ましい。ただし、外装部材40は、他の積層構造を有するラミネートフィルムでもよいし、ポリプロピレンなどの高分子フィルムでもよいし、金属フィルムでもよい。
 外装部材40と正極リード31および負極リード32との間には、例えば、外気の侵入を防止するために密着フィルム41が挿入されている。この密着フィルム41は、正極リード31および負極リード32に対して密着性を有する材料により形成されている。この密着性材料は、例えば、ポリオレフィン樹脂などであり、より具体的には、ポリエチレン、ポリプロピレン、変性ポリエチレンおよび変性ポリプロピレンなどである。
 例えば、図13および図15に示したように、正極33は、正極集電体33Aの片面または両面に正極活物質層33Bを有していると共に、負極34は、例えば、負極集電体34Aの片面または両面に負極活物質層34Bを有している。正極集電体33A、正極活物質層33B、負極集電体34Aおよび負極活物質層34Bの構成は、それぞれ正極集電体21A、正極活物質層21B、負極集電体22Aおよび負極活物質層22Bの構成と同様である。また、セパレータ35の構成は、セパレータ23の構成と同様である。
 電解質層36は、高分子化合物により電解液が保持されたものであり、いわゆるゲル状の電解質である。高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に、電解液の漏液が防止されるからである。この電解質層36は、必要に応じて、添加剤などの他の材料を含んでいてもよい。
 高分子化合物は、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリフッ化ビニル、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレン、ポリカーボネート、およびフッ化ビニリデンとヘキサフルオロピレンとの共重合体などのいずれか1種類または2種類以上である。中でも、ポリフッ化ビニリデンや、フッ化ビニリデンとヘキサフルオロピレンとの共重合体が好ましく、ポリフッ化ビニリデンがより好ましい。電気化学的に安定だからである。
 電解液の組成は、例えば、円筒型の場合と同様である。ただし、ゲル状の電解質である電解質層36において、電解液の「溶媒」とは、液状の溶媒だけでなく、電解質塩を解離させることが可能なイオン伝導性を有する材料まで含む広い概念である。よって、イオン伝導性を有する高分子化合物を用いる場合には、その高分子化合物も溶媒に含まれる。
 なお、ゲル状の電解質層36に代えて、電解液をそのまま用いてもよい。この場合には、電解液がセパレータ35に含浸される。
[二次電池の動作]
 この二次電池では、例えば、以下のように動作する。充電時には、正極33から放出されたリチウムイオンが電解質層36を介して負極34に吸蔵される。一方、放電時には、負極34から放出されたリチウムイオンが電解質層36を介して正極33に吸蔵される。
[二次電池の製造方法]
 ゲル状の電解質層36を備えた二次電池は、例えば、以下の3種類の手順により製造される。
 第1手順では、正極21および負極22と同様の作製手順により、正極33および負極34を作製する。すなわち、正極集電体33Aの両面に正極活物質層33Bを形成して正極33を作製すると共に、負極集電体34Aの両面に負極活物質層34Bを形成して負極34を作製する。続いて、電解液と、高分子化合物と、有機溶剤などの溶媒とを含む前駆溶液を調製したのち、その前駆溶液を正極33および負極34に塗布して、ゲル状の電解質層36を形成する。続いて、溶接法などを用いて正極集電体33Aに正極リード31を取り付けると共に、溶接法などを用いて負極集電体34Aに負極リード32を取り付ける。続いて、セパレータ35を介して正極33と負極34とを積層してから巻回させて巻回電極体30を作製したのち、その最外周部に保護テープ37を貼り付ける。続いて、2枚のフィルム状の外装部材40の間に巻回電極体30を挟み込んだのち、熱融着法などを用いて外装部材40の外周縁部同士を接着させて、その外装部材40の内部に巻回電極体30を封入する。この場合には、正極リード31および負極リード32と外装部材40との間に密着フィルム41を挿入する。
 第2手順では、正極33に正極リード31を取り付けると共に、負極34に負極リード52を取り付ける。続いて、セパレータ35を介して正極33と負極34とを積層してから巻回させて、巻回電極体30の前駆体である巻回体を作製したのち、その最外周部に保護テープ37を貼り付ける。続いて、2枚のフィルム状の外装部材40の間に巻回体を配置したのち、熱融着法などを用いて一辺の外周縁部を除いた残りの外周縁部を接着させて、袋状の外装部材40の内部に巻回体を収納する。続いて、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤などの他の材料とを混合して、電解質用組成物を調製する。続いて、袋状の外装部材40の内部に電解質用組成物を注入したのち、熱融着法などを用いて外装部材40を密封する。続いて、モノマーを熱重合させて高分子化合物を形成する。これにより、高分子化合物に電解液が含浸され、その高分子化合物がゲル化するため、電解質層36が形成される。
 第3手順では、高分子化合物が両面に塗布されたセパレータ35を用いることを除き、上記した第2手順と同様に、巻回体を作製して袋状の外装部材40の内部に収納する。このセパレータ35に塗布する高分子化合物は、例えば、フッ化ビニリデンを成分とする重合体(単独重合体、共重合体または多元共重合体)などである。具体的には、単独重合体は、ポリフッ化ビニリデンである。共重合体は、例えば、フッ化ビニリデンとヘキサフルオロプロピレンとを成分とする二元系の共重合体などである。多元共重合体は、例えば、フッ化ビニリデンとヘキサフルオロプロピレンとクロロトリフルオロエチレンとを成分とする三元系の共重合体などである。なお、フッ化ビニリデンを成分とする重合体と一緒に、他の1種類または2種類以上の高分子化合物を用いてもよい。続いて、電解液を調製して外装部材40の内部に注入したのち、熱融着法などを用いて外装部材40の開口部を密封する。続いて、外装部材40に加重をかけながら加熱して、高分子化合物を介してセパレータ35を正極33および負極34に密着させる。これにより、高分子化合物に電解液が含浸され、その高分子化合物がゲル化するため、電解質層36が形成される。
 この第3手順では、第1手順よりも二次電池の膨れが抑制される。また、第3手順では、第2手順よりも高分子化合物の原料であるモノマーまたは溶媒などが電解質層36中にほとんど残らないため、高分子化合物の形成工程が良好に制御される。このため、正極33、負極34およびセパレータ35と電解質層36とが十分に密着する。
[二次電池の作用および効果]
 このラミネートフィルム型の二次電池によれば、負極34が本技術の電極と同様の構成を有しているので、円筒型の二次電池と同様の理由により、優れた電池特性を得ることができる。これ以外の作用および効果は、円筒型の場合と同様である。
<3.二次電池の用途>
 次に、上記した二次電池の適用例について説明する。
 二次電池の用途は、その二次電池を駆動用の電源および電力蓄積用の電力貯蔵源などとして使用可能な機械、機器、器具、装置およびシステム(複数の機器などの集合体)などであれば、特に限定されない。なお、電源として使用される二次電池は、主電源(優先的に使用される電源)でもよいし、補助電源(主電源に代えて、または主電源から切り換えて使用される電源)でもよい。二次電池を補助電源として使用する場合、主電源の種類は二次電池に限られない。
 二次電池の用途は、例えば、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、コードレス電話機、ヘッドホンステレオ、携帯用ラジオ、携帯用テレビおよび携帯用情報端末などの電子機器(携帯用電子機器を含む)である。電気シェーバなどの携帯用生活器具である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。着脱可能な電源としてノート型パソコンなどに用いられる電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用バッテリシステムなどの電力貯蔵システムである。もちろん、上記以外の用途でもよい。
 中でも、二次電池は、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器などに適用されることが有効である。優れた電池特性が要求されるため、本技術の二次電池を用いることで、有効に性能向上を図ることができるからである。なお、電池パックは、二次電池を用いた電源であり、いわゆる組電池などである。電動車両は、二次電池を駆動用電源として作動(走行)する車両であり、上記したように、二次電池以外の駆動源を併せて備えた自動車(ハイブリッド自動車など)でもよい。電力貯蔵システムは、二次電池を電力貯蔵源として用いるシステムである。例えば、家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に電力が蓄積されており、その電力が必要に応じて消費されるため、家庭用の電気製品などが使用可能になる。電動工具は、二次電池を駆動用の電源として可動部(例えばドリルなど)が可動する工具である。電子機器は、二次電池を駆動用の電源(電力供給源)として各種機能を発揮する機器である。
 ここで、二次電池のいくつかの適用例について具体的に説明する。なお、以下で説明する各適用例の構成はあくまで一例であるため、適宜変更可能である。
<3-1.電池パック>
 図16は、電池パックのブロック構成を表している。この電池パックは、例えば、プラスチック材料などにより形成された筐体60の内部に、制御部61と、電源62と、スイッチ部63と、電流測定部64と、温度検出部65と、電圧検出部66と、スイッチ制御部67と、メモリ68と、温度検出素子69と、電流検出抵抗70と、正極端子71および負極端子72とを備えている。
 制御部61は、電池パック全体の動作(電源62の使用状態を含む)を制御するものであり、例えば、中央演算処理装置(CPU)などを含んでいる。電源62は、1または2以上の二次電池(図示せず)を含んでいる。この電源62は、例えば、2以上の二次電池を含む組電池であり、それらの二次電池の接続形式は、直列でもよいし、並列でもよいし、双方の混合型でもよい。一例を挙げると、電源62は、2並列3直列となるように接続された6つの二次電池を含んでいる。
 スイッチ部63は、制御部61の指示に応じて電源62の使用状態(電源62と外部機器との接続の可否)を切り換えるものである。このスイッチ部63は、例えば、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオード(いずれも図示せず)などを含んでいる。充電制御スイッチおよび放電制御スイッチは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などの半導体スイッチである。
 電流測定部64は、電流検出抵抗70を用いて電流を測定して、その測定結果を制御部61に出力するものである。温度検出部65は、温度検出素子69を用いて温度を測定して、その測定結果を制御部61に出力するようになっている。この温度測定結果は、例えば、異常発熱時に制御部61が充放電制御を行う場合や、制御部61が残容量の算出時に補正処理を行う場合などに用いられる。電圧検出部66は、電源62中における二次電池の電圧を測定して、その測定電圧をアナログ-デジタル変換して制御部61に供給するものである。
 スイッチ制御部67は、電流測定部64および電圧検出部66から入力される信号に応じて、スイッチ部63の動作を制御するものである。
 このスイッチ制御部67は、例えば、電池電圧が過充電検出電圧に到達した場合に、スイッチ部63(充電制御スイッチ)を切断して、電源62の電流経路に充電電流が流れないように制御する。これにより、電源62では、放電用ダイオードを介して放電のみが可能になる。なお、スイッチ制御部67は、例えば、充電時に大電流が流れた場合に、充電電流を遮断するようになっている。
 また、スイッチ制御部67は、例えば、電池電圧が過放電検出電圧に到達した場合に、スイッチ部63(放電制御スイッチ)を切断して、電源62の電流経路に放電電流が流れないように制御する。これにより、電源62では、充電用ダイオードを介して充電のみが可能になる。なお、スイッチ制御部67は、例えば、放電時に大電流が流れた場合に、放電電流を遮断するようになっている。
 なお、二次電池では、例えば、過充電検出電圧は4.20V±0.05Vであり、過放電検出電圧は2.4V±0.1Vである。
 メモリ68は、例えば、不揮発性メモリであるEEPROMなどである。このメモリ68には、例えば、制御部61により演算された数値や、製造工程段階において測定された二次電池の情報(例えば、初期状態の内部抵抗など)などが記憶されている。なお、メモリ68に二次電池の満充電容量を記憶させておけば、制御部61が残容量などの情報を把握可能になる。
 温度検出素子69は、電源62の温度を測定すると共にその測定結果を制御部61に出力するものであり、例えば、サーミスタなどである。
 正極端子71および負極端子72は、電池パックを用いて稼働される外部機器(例えばノート型のパーソナルコンピュータなど)や、電池パックを充電するために用いられる外部機器(例えば充電器など)などに接続される端子である。電源62の充放電は、正極端子71および負極端子72を介して行われる。
<3-2.電動車両>
 図17は、電動車両の一例であるハイブリッド自動車のブロック構成を表している。この電動車両は、例えば、金属製の筐体73の内部に、制御部74と、エンジン75と、電源76と、駆動用のモータ77と、差動装置78と、発電機79と、トランスミッション80およびクラッチ81と、インバータ82,83と、各種センサ84とを備えている。この他、電動車両は、例えば、差動装置78およびトランスミッション80に接続された前輪用駆動軸85および前輪86と、後輪用駆動軸87および後輪88とを備えている。
 この電動車両は、エンジン75またはモータ77のいずれか一方を駆動源として走行可能である。エンジン75は、主要な動力源であり、例えば、ガソリンエンジンなどである。エンジン75を動力源とする場合、エンジン75の駆動力(回転力)は、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して前輪86または後輪88に伝達される。なお、エンジン75の回転力は発電機79にも伝達され、その回転力により発電機79が交流電力を発生させると共に、その交流電力はインバータ83を介して直流電力に変換され、電源76に蓄積される。一方、変換部であるモータ77を動力源とする場合、電源76から供給された電力(直流電力)がインバータ82を介して交流電力に変換され、その交流電力によりモータ77が駆動する。このモータ77により電力から変換された駆動力(回転力)は、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して前輪86または後輪88に伝達される。
 なお、図示しない制動機構を介して電動車両が減速すると、その減速時の抵抗力がモータ77に回転力として伝達され、その回転力によりモータ77が交流電力を発生させるようにしてもよい。この交流電力はインバータ82を介して直流電力に変換され、その直流回生電力は電源76に蓄積されることが好ましい。
 制御部74は、電動車両全体の動作を制御するものであり、例えば、CPUなどを含んでいる。電源76は、1または2以上の二次電池(図示せず)を含んでいる。この電源76は、外部電源と接続され、その外部電源から電力供給を受けることで電力を蓄積可能になっていてもよい。各種センサ84は、例えば、エンジン75の回転数を制御すると共に、図示しないスロットルバルブの開度(スロットル開度)を制御するために用いられる。この各種センサ84は、例えば、速度センサ、加速度センサ、エンジン回転数センサなどを含んでいる。
 なお、電動車両がハイブリッド自動車である場合について説明したが、その電動車両は、エンジン75を用いずに電源76およびモータ77だけを用いて作動する車両(電気自動車)でもよい。
<3-3.電力貯蔵システム>
 図18は、電力貯蔵システムのブロック構成を表している。この電力貯蔵システムは、例えば、一般住宅または商業用ビルなどの家屋89の内部に、制御部90と、電源91と、スマートメータ92と、パワーハブ93とを備えている。
 ここでは、電源91は、例えば、家屋89の内部に設置された電気機器94に接続されていると共に、家屋89の外部に停車された電動車両96に接続可能になっている。また、電源91は、例えば、家屋89に設置された自家発電機95にパワーハブ93を介して接続されていると共に、スマートメータ92およびパワーハブ93を介して外部の集中型電力系統97に接続可能になっている。
 なお、電気機器94は、例えば、1または2以上の家電製品を含んでおり、その家電製品は、例えば、冷蔵庫、エアコン、テレビまたは給湯器などである。自家発電機95は、例えば、太陽光発電機または風力発電機などの1種類または2種類以上である。電動車両96は、例えば、電気自動車、電気バイクまたはハイブリッド自動車などの1種類または2種類以上である。集中型電力系統97は、例えば、火力発電所、原子力発電所、水力発電所または風力発電所などの1種類または2種類以上である。
 制御部90は、電力貯蔵システム全体の動作(電源91の使用状態を含む)を制御するものであり、例えば、CPUなどを含んでいる。電源91は、1または2以上の二次電池(図示せず)を含んでいる。スマートメータ92は、例えば、電力需要側の家屋89に設置されるネットワーク対応型の電力計であり、電力供給側と通信可能になっている。これに伴い、スマートメータ92は、例えば、必要に応じて外部と通信しながら、家屋89における需要・供給のバランスを制御することで、効率的で安定したエネルギー供給を可能とする。
 この電力貯蔵システムでは、例えば、外部電源である集中型電力系統97からスマートメータ92およびパワーハブ93を介して電源90に電力が蓄積されると共に、独立電源である自家発電機95からパワーハブ93を介して電源91に電力が蓄積される。この電源91に蓄積された電力は、制御部90の指示に応じて、必要に応じて電気機器94または電動車両96に供給されるため、その電気機器94が稼働可能になると共に、電動車両96が充電可能になる。すなわち、電力貯蔵システムは、電源91を用いて、家屋89内における電力の蓄積および供給を可能にするシステムである。
 電源91に蓄積された電力は、任意に利用可能である。このため、例えば、電気使用量が安い深夜に集中型電力系統97から電源91に電力を蓄積しておき、その電源91に蓄積しておいた電力を電気使用料が高い日中に用いることができる。
 なお、上記した電力貯蔵システムは、1戸(1世帯)ごとに設置されていてもよいし、複数戸(複数世帯)ごとに設置されていてもよい。
<3-4.電動工具>
 図19は、電動工具のブロック構成を表している。この電動工具は、例えば、電動ドリルであり、プラスチック材料などにより形成された工具本体98の内部に、制御部99と、電源100とを備えている。この工具本体98には、例えば、可動部であるドリル部101が稼働(回転)可能に取り付けられている。
 制御部99は、電動工具全体の動作(電源100の使用状態を含む)を制御するものであり、例えば、CPUなどを含んでいる。電源100は、1または2以上の二次電池(図示せず)を含んでいる。この制御部99は、図示しない動作スイッチの操作に応じて、必要に応じて電源100からドリル部101に電力を供給して可動させるようになっている。
 本技術の実施例について、詳細に説明する。
(実施例1-1~1-3)
 以下の手順により、図20に示したコイン型の二次電池(リチウムイオン二次電池)を作製した。
 対極53を作製する場合には、最初に、正極活物質(LiCoO2 )91質量部と、正極導電剤(カーボンブラック)6質量部と、正極結着剤(ポリフッ化ビニリデン(PVDF))3質量部とを混合して、正極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン(NMP))に正極合剤を分散させて、ペースト状の正極合剤スラリーとした。続いて、コーティング装置を用いて正極集電体(12μm厚の帯状アルミニウム箔)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させて、正極活物質層を形成した。最後に、ロールプレス機を用いて正極活物質層を圧縮成型してから、ペレット状(直径=16mm)に打ち抜いた。この場合には、満充電時において対極53にリチウム金属が析出しないように、正極活物質層の厚さを調整した。
 試験極51を作製する場合には、最初に、ケイ素の単体(Si)である内側部分101Aを準備したのち、粉末蒸着法を用いて内側部分101Aの表面にケイ素の酸化物(SiO)を堆積させて、外側部分101Bを形成した。これにより、内側部分101Aおよび外側部分101Bを含む中心部101が得られた。続いて、蒸着法を用いて中心部101の表面に炭素材料(黒鉛:C)を堆積させて、中間部103を形成した。続いて、複数の繊維状炭素物質104であるカーボンナノチューブ(CNT)が分散されたゾル溶液中に中心部101を浸漬させてから引き上げたのち、その中心部101を加熱(190℃×6時間)した。これにより、複数の繊維状炭素物質104を含む被覆部102が中心部101の表面に形成されたため、負極活物質が得られた。
 ここで用いたゾル溶液は、カーボンナノファイバー(エムディーナノテック株式会社製MDCNF-D)の水分散液であり、溶媒は水、繊維状炭素物質104の寸法は繊維径(短径)=約10nm~20nm、繊維長(長径)=約0.1μm~10μm、pH=2.8である。
 なお、比較のために、ゾル溶液の代わりに非ゾル溶液も用いた。この非ゾル溶液の組成等は、ゾルでない(粉末分散溶液である)ことを除き、ゾル溶液と同様である。また、比較のために、被覆部102を形成せずに、中間部103が形成された中心部101をそのまま負極活物質として用いた。
 ここで、XPSを用いて、ゾル溶液および非ゾル溶液に含まれている繊維状炭素物質の表面分析を行ったところ、ゾル溶液では-OHおよび-COOHが検出されたのに対して、非ゾル溶液では表面官能基が検出されなかった。
 続いて、被覆部102を形成した場合には、負極活物質(中心部/中間部/被覆部=Si/SiO/C)70質量部と、負極結着剤(ポリアクリル酸の15%水溶液)12.5質量部と、負極導電剤12.5質量部と、ゾル溶液または非ゾル溶液5質量部とを混合して、負極合剤とした。この負極導電剤は、人造黒鉛(ティムカル・ジャパン株式会社製KS6)10質量部と、デンカブラック(電気化学工業株式会社製HS100)2.5質量部との混合物である。一方、被覆部102を形成しなかった場合には、混合比(質量比)を負極活物質:負極結着剤:負極導電剤=73.7:13.2:13.1(10.5+2.6)に変更したことを除き、被覆部102を形成した場合と同様の手順により負極合剤を準備した。なお、負極活物質の平均粒径は約2.5μm、ポリアクリル酸の重量平均分子量(MW)は約100万、人造黒鉛の平均粒径は約6μm、デンカブラックの平均粒径は約48nmである。なお、上記した平均粒径は、いずれもメジアン径(D50)である。
 続いて、固形分の濃度が40%となるように負極合剤を水と混合させたのち、自転公転ミキサを用いて攪拌して、負極合剤スラリーとした。続いて、コーティング装置を用いて負極集電体(15μm厚の帯状電解銅箔)の両面に負極合剤スラリーを均一に塗布したのち、その負極合剤スラリーを乾燥させて、負極活物質層を形成した。最後に、ロールプレス機を用いて負極活物質層を圧縮成型してから、ペレット状(直径=16mm)に打ち抜いた。
 電解液を調製する場合には、溶媒(炭酸エチレン(EC)および炭酸ジエチル(DEC))に電解質塩(LiPF6 )を溶解させた。この場合には、溶媒の組成を重量比でEC:DEC=50:50、電解質塩の含有量を溶媒に対して1mol/kgとした。
 二次電池を組み立てる場合には、最初に、試験極51を外装缶52に収容すると共に、対極53を外装カップ54に収容した。続いて、電解液が含浸されたセパレータ55(23μm厚のポリエチレンフィルム)を介して正極活物質層と負極活物質層とが対向するように、外装缶52と外装カップ54とを積層させた。最後に、ガスケット56を介して外装缶52および外装カップ54をかしめた。これにより、コイン型の二次電池(直径=20mm×高さ=1.6mm)が完成した。
 これらの二次電池のサイクル特性を調べたところ、表1に示した結果が得られた。サイクル特性を調べる場合には、最初に、電池状態を安定化させるために二次電池を1サイクル充放電させたのち、再び充放電させて放電容量を測定した。続いて、サイクル数の合計が100サイクルになるまで二次電池を充放電させて放電容量を測定した。最後に、容量維持率(%)=(100サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。1,2サイクル目の充放電時には、1.23mAの電流で上限電圧が4.2Vに到達するまで定電流充電してから、4.2Vの電圧で電流が0.04mAに到達するまで定電圧充電したのち、1.23mAの電流で終始電圧2.5Vに到達するまで定電流放電した。3~100サイクル目の充放電時には、4.4mAの電流で上限電圧が4.2Vに到達するまで定電流充電してから、4.2Vの電圧で電流が0.04mAに到達するまで定電圧充電したのち、4.4mAの電流で終始電圧2.5Vに到達するまで定電流放電した。
Figure JPOXMLDOC01-appb-T000001
 中心部がケイ素を構成元素として含む場合には、複数の繊維状炭素物質を含む被覆部が中心部に設けられていると(実験例1-1,1-2)、その被覆部が設けられていない場合(実験例1-3)と比較して、容量維持率が高くなった。また、被覆部が中心部に設けられている場合には、その被覆部を形成するためにゾル溶液を用いると(実験例1-1)、非ゾル溶液を用いた場合(実験例1-2)と比較して、容量維持率が著しく高くなった。特に、ゾル溶液を用いて被覆部を形成した場合には、繊維状炭素物質が表面官能基として-COOHを有していると、著しく高い容量維持率が得られた。
 ここで、SEMを用いて実験例1-1~1-3の負極活物質層(圧縮成型後充放電前の状態)を観察したところ、図7、図21および図22に示した結果が得られた。図21および図22は、それぞれ実験例1-2,1-3のSEM写真である。なお、図21および図22では、中心部101と共に、人造黒鉛である負極導電剤108およびデンカブラックである負極導電剤109も示している。
 被覆部102を形成していない実験例1-3では、図22に示したように、中心部101と共に負極導電剤108,109だけが存在しており、その中心部101は露出している。
 これに対して、非ゾル溶液を用いた実験例1-2では、図21に示したように、中心部101および負極導電剤108,109の他に、複数の繊維状炭素物質107が存在している。しかしながら、繊維状炭素物質107は、中心部101から離れて存在しており、その中心部101は、繊維状炭素物質107により覆われていない。
 一方、ゾル溶液を用いた実験例1-1では、図7に示したように、中心部101は、被覆部102(複数の繊維状炭素物質104)により覆われており、その中心部101は、露出していない。この場合には、上記したように、複数の繊維状炭素物質104が中心部101の表面に沿った方向に延在しながらその中心部101に密着しており、その複数の繊維状炭素物質104により網目構造が形成されている。
 ゾル溶液を用いた場合において、繊維状炭素物質104により網目構造が特異的に形成され得ることは、図7、図21および図22の比較から明らかである。
 詳細には、図21と図22とを比較すると、中心部101の表面の立体形状が共通していると共に、細長い立体形状を有する繊維状炭素物質107が中心部101とは別個(主に中心部101間の隙間)に存在している。この様子から、非ゾル溶液を用いた場合には、中心部101の表面を繊維状炭素物質107で被覆できないことが明らかである。また、図7と図21とを比較すると、中心部101の表面の立体形状が明らかに異なっていると共に、その中心部101間の隙間に繊維状炭素物質104がほとんど存在しておらず、その中心部101の表面に細長い繊維状炭素物質104の輪郭が集中している。この様子から、ゾル溶液を用いた場合には、中心部101の表面を繊維状炭素物質104で被覆できることが明らかである。このように繊維状炭素物質104,107を用いた場合において網目構造を形成できるか否かは、ゾル溶液を用いているか否かに依存しており、より具体的には、繊維状炭素物質104,107の分散性の違いに起因していると考えられる。
 なお、容量維持率に違いが生じた原因を究明するために、走査型電子顕微鏡(SEM-EDX)を用いて実験例1-1~1-3の負極活物質層の表面を元素マッピングしたところ、表1に示した結果が得られた。この元素マッピングでは、サイクル特性を調べるために二次電池を充放電させる前後において原子比C/Siを測定した。
 実験例1-1~1-3のいずれにおいても、充放電の前後において原子比C/Siが減少した。この原因は、充放電時において負極活物質の割れに起因して新生面が生じたため、ケイ素の原子検出量が炭素の原子検出量に対して相対的に増加したからであると考えられる。しかしながら、原子比C/Siの減少割合は、実験例1-1が約14.9%、実験例1-2が約31.5%、実験例1-3が約57.4%であり、実験例1-1において実験例1-2,1-3よりも大幅に小さくなった。この結果は、中心部101が網目状の被覆部102により覆われていると、充放電時において負極活物質が割れにくくなるため、中心部101において新生面が生じにくくなることを表している。
(実験例2-1~2-6)
 以下の手順により、コイン型のリチウムイオン二次電池を作製した。
 対極53を作製する場合には、最初に、正極活物質(LiCoO2 )91質量部と、正極導電剤(カーボンブラック)6質量部と、正極結着剤(PVDF)3質量部とを混合して、正極合剤とした。続いて、有機溶剤(NMP)に正極合剤を分散させて、ペースト状の正極合剤スラリーとした。続いて、コーティング装置を用いて正極集電体(20μm厚の帯状アルミニウム箔)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させて、正極活物質層を形成した。最後に、ロールプレス機を用いて正極活物質層を圧縮成型したのち、ペレット状(直径=15mm)に打ち抜いた。この場合には、正極活物質層の体積密度を3.5g/cm3 とした。また、試験極51の単位面積当たりのリチウム放出容量が対極53の単位面積当たりのリチウム吸蔵容量に対して90%となるように、正極活物質の単位面積当たりの重量を調整した。
 試験極51を作製する場合には、最初に、中心部101(一酸化ケイ素)73.5質量部と、負極導電剤(板状天然黒鉛)15質量部と、負極結着剤(ポリアクリル酸)10質量部と、複数の繊維状炭素物質104(CNT)が分散されたゾル溶液1.5質量部(繊維状炭素物質の重量に換算)とを混合して、負極合剤とした。中心部101のメジアン系(D50:μm)は、表2に示した通りである。この場合には、比較のために、ゾル溶液を含有しない負極合剤も準備した。
 ゾル溶液を調製する手順は、以下の通りである。
 最初に、繊維状炭素物質(黒鉛化処理されたCNT)と、分散用の溶媒と、分散剤とを準備した。CNTとしては、保土谷化学工業株式会社製NT7K(平均繊維径=70nm)、同社製CT-12(平均繊維径=105nm)、昭和電工株式会社製VGCF(平均繊維径=150nm)、または電気化学工業株式会社製デンカブラックを用いた。分散用の溶媒としては、水またはN-メチルピロリドンを用いた。分散剤としては、カルボキシメチルセルロースナトリウム(和光純薬工業株式会社製)またはポリビニルピロリドン(和光純薬株式会社製K30)を用いた。分散用の装置としては、ビーズミル(アシザワ・ファインテック株式会社製LMZ2)を用いた。分散条件は、ビーズ径=0.8mm、周速=10m/秒とした。分散処理を行う場合には、分散剤の溶液を循環させながら、その溶液にCNTを少しずつ添加して、そのCNTの濃度が5重量%に到達したのち、さらに分散処理を2時間続けた。
 なお、繊維状炭素物質として、黒鉛化処理されていないCNT(エムディーナノテック株式会社製MDCNF)も用いた。この場合には、分散媒として水、分散剤としてカルボキシメチルセルロース(純正化学株式会社製)を用いた。また、超音波ホモジナイザ(Hielcher社製)を用いて分散処理を行うことで、ゾル溶液(5重量%)を得た。
 必要に応じて、繊維状炭素物質の切断処理を行った。
 具体的には、切断装置として遊星ボールミル(フリッチュ・ジャパン株式会社製P-5)を用いて、繊維状炭素物質を切断処理した。詳細には、ジルコニア製容器(容積=500cm3 )の内部に、繊維状炭素物質(上記したCNT)10gと、粉砕助剤(エタノール)10gと、ジルコニアボール(直径=2mm)550gとを投入したのち、粉砕処理(400rpm×30分間)した。なお、必要に応じて、アルミナボール(直径=4mm)も用いた。続いて、粉砕後の繊維状炭素物質を真空乾燥して、残留エタノールを除去した。続いて、超音波ホモジナイザ(Hielcher社製)を用いて、粉砕後の繊維状炭素物質と、分散用の溶媒(水)と、分散剤(カルボキシメチルセルロースナトリウム:和光純薬工業株式会社製)とを分散処理して、ゾル溶液(5重量%)を得た。
 または、繊維状炭素物質(上記したCNT)30gと、フルクトース100gと、水500cm3 (100℃)とを混合して、スラリーとした。続いて、水を蒸発させたのち、残留物を真空乾燥(120℃)して、フルクトースにより被覆された繊維状炭素物質を得た。続いて、ジルコニア製容器(容積=500cm3 )の内部に、被覆済み繊維状炭素物質30gと、ジルコニアボール(直径=10mm)150gとを投入したのち、粉砕処理(400rpm×5時間)した。続いて、粉砕後の被覆済み繊維状炭素物質を水洗浄して、残留しているフルクトースを除去したのち、その被覆済み繊維状炭素物質を真空乾燥した。続いて、超音波ホモジナイザ(Hielcher社製)を用いて、被覆済み繊維状炭素物質と、分散用の溶媒(水)と、分散剤(カルボキシメチルセルロースナトリウム:和光純薬工業株式会社製)とを分散処理して、ゾル溶液(5重量%)を得た。
 被覆部102の形成後における繊維状炭素物質の構成(短繊維割合(%)および平均繊維径(nm))および物性(G/D比)は、表2に示した通りである。ここでは、分散方法(遊星ボールミルまたは超音波ホモジナイザ)、ボールの種類(材質および径)、分散時間、および切断処理の有無などの条件を変更することで、短繊維割合を変化させた。この場合には、繊維状炭素物質中において黒鉛結晶が破壊されたため、G/D比も変化した。このG/D比は、遊星ボールミルに用いるボールの種類や、糖を用いた包理処理の有無に応じて、調整可能である。これにより、短繊維割合が同程度でありながら、G/D比が異なる繊維状炭素物質を得ることが可能である。
 続いて、溶媒(水)に負極合剤を分散させて、ペースト状の負極合剤スラリーとした。続いて、コーティング装置を用いて負極集電体(15μm厚の帯状電解銅箔)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを加熱した。これにより、複数の繊維状炭素物質104を含む被覆部102が中心部101の表面に形成されたため、負極活物質を含む負極活物質層が形成された。続いて、平板プレス機を用いて負極活物質層を圧縮成型したのち、ペレット状(直径=16mm)に打ち抜いた。この場合には、負極活物質層の体積密度を1.8g/cm3 とした。最後に、負極活物質層を真空乾燥させて、その負極活物質層中に含まれている残留水を除去した。
 電解液を調製する場合には、溶媒(炭酸エチレン(EC)、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、4,5-ジフルオロ-1,3-ジオキソラン-2-オン(DFEC)および炭酸ジメチル(DMC))に電解質塩(LiPF6 )を溶解させた。この場合には、溶媒の組成を重量比でEC:FEC:DFEC:DMC=25:25:25:25、電解質塩の含有量を溶媒に対して1mol/dm3 (=1mol/l)とした。
 二次電池を組み立てる場合には、最初に、試験極51を外装缶52に収容すると共に、対極53を外装カップ54に収容した。続いて、電解液が含浸されたセパレータ55(23μm厚のポリエチレンフィルム)を介して正極活物質層と負極活物質層とが対向するように、外装缶52と外装カップ54とを積層させた。最後に、ガスケット56を介して外装缶52および外装カップ54をかしめた。これにより、コイン型の二次電池(直径=20mm×高さ=2.5mm)が完成した。
 これらの二次電池の初回充放電特性およびサイクル特性を調べたところ、表2に示した結果が得られた。
 初回充放電特性を調べる場合には、最初に、電池状態を安定化させるために、二次電池を1サイクル充放電させた。続いて、二次電池を再び充電させて充電容量を測定したのち、その二次電池を放電させて放電容量を測定した。最後に、初回効率(%)=(2サイクル目の放電容量/2サイクル目の充電容量)×100を算出した。充電時には、0.5Cの電流で電圧が4.2Vに到達するまで定電流充電したのち、4.2Vの電圧で電流が0.05Cに到達するまで定電圧充電した。放電時には、0.5Cの電流で電圧が3Vに到達するまで定電流放電した。なお、0.5Cとは、電池容量(理論容量)を2時間で放電しきる電流値であると共に、0.05Cとは、電池容量を20時間で放電しきる電流値である。
 サイクル特性を調べる場合には、最初に、初回充放電特性を調べた場合と同様に、二次電池を2サイクル充放電させて放電容量を測定した。続いて、サイクル数の合計が100サイクルになるまで二次電池を充放電させて放電容量を測定した。最後に、容量維持率(%)=(100サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。充放電条件は、初回充放電特性を調べた場合と同様にした。
Figure JPOXMLDOC01-appb-T000002
 被覆部102を形成した場合(実験例2-1~2-5)には、短繊維割合に依存せずに、高い初回効率および高い容量維持率が得られた。この場合には、特に、短繊維割合が85%以上であると、初回効率および容量維持率がいずれもより高くなった。
(実験例3-1~3-3)
 表3に示したように、平均繊維径を変更したことを除き、実験例2-3と同様の手順により二次電池を作製すると共に初回充放電特性およびサイクル特性を調べた。平均繊維径を変更する場合には、ゾル溶液の調整過程において、分散方法(遊星ボールミルまたは超音波ホモジナイザ)、ボールの種類(材質および径)、分散時間および切断処理の有無などの条件を変更した。
Figure JPOXMLDOC01-appb-T000003
 被覆部102を形成した場合(実験例3-1~3-3)には、平均繊維径に依存せずに、高い初回効率および高い容量維持率が得られた。この場合には、特に、平均繊維径が102nm以下であると、初回効率および容量維持率がいずれもより高くなった。
(実験例4-1~4-4)
 表4に示したように、G/D比を変更したことを除き、実験例2-3と同様の手順により二次電池を作製すると共に初回充放電特性およびサイクル特性を調べた。G/D比を変更する場合には、ゾル溶液の調整過程において、分散方法(遊星ボールミルまたは超音波ホモジナイザ)、ボールの種類(材質および径)、分散時間および切断処理の有無などの条件を変更した。
Figure JPOXMLDOC01-appb-T000004
 被覆部102を形成した場合(実験例4-1~4-4)には、G/D比に依存せずに、高い初回効率および高い容量維持率が得られた。この場合には、特に、G/D比が1以上であると、初回効率および容量維持率がいずれもより高くなった。
(実験例5-1~5-4)
 表5に示したように、中心部101のメジアン径(D50)を変更したことを除き、実験例2-3と同様の手順により二次電池を作製すると共に初回充放電特性およびサイクル特性を調べた。D50を変更する場合には、遊星ボールミルを用いて中心部101(一酸化ケイ素)を粉砕した。
Figure JPOXMLDOC01-appb-T000005
 被覆部102を形成した場合(実験例5-1~5-4)には、D50に依存せずに、高い初回効率および高い容量維持率が得られた。この場合には、特に、D50が7.8μm以下であると、初回効率および容量維持率がいずれもより高くなった。
(実験例6-1~6-7)
 表6に示したように、負極合剤の組成等を変更したことを除き、実験例2-1~2-6と同様の手順により二次電池を作製すると共に初回充放電特性およびサイクル特性を調べた。
 負極合剤を準備する場合には、中心部101(一酸化ケイ素)10質量部と、他の負極活物質(人造黒鉛)80質量部と、負極導電剤(板状天然黒鉛)2質量部と、他の負極導電剤(カーボンブラック)1質量部と、負極結着剤(PVDF)6質量部と、複数の繊維状炭素物質104(CNT)が分散されたゾル溶液1質量部(繊維状炭素物質の重量に換算)とを混合した。
 繊維状炭素物質として、実験例2-1~2-5と同様のCNTを用いると共に、必要に応じて、繊維状炭素物質を切断処理した。また、ビーズミルまたは超音波ホモジナイザを用いて、ゾル溶液を調製した。このゾル溶液を調製する場合には、分散剤としてポリビニルピロリドン(和光純薬工業株式会社製K30)、溶媒としてN-メチルピロリドンを用いた。
Figure JPOXMLDOC01-appb-T000006
 負極合剤の組成を変更した場合(表6)においても、表2~表5と同様の結果が得られた。具体的には、被覆部102を形成した場合(実験例6-1~6-6)には、その被覆部102を形成しなかった場合(実験例6-7)と比較して、初回効率および容量維持率がいずれも高くなった。
 表1~表6等の結果から、ケイ素等を構成元素として含む中心部の表面に被覆部が設けられており、その被覆部に含まれている複数の繊維状炭素物質が中心部の表面に沿った方向に延在しながらその中心部に密着していると、優れた電池特性が得られた。
 以上、実施形態および実施例を挙げて本技術について説明したが、本技術は実施形態および実施例において説明した態様に限定されず、種々の変形が可能である。例えば、本技術の二次電池は、負極の容量がリチウムイオンの吸蔵放出による容量とリチウム金属の析出溶解に伴う容量とを含み、両者の容量の和により電池容量が表される二次電池についても同様に適用可能である。この場合には、リチウムイオンを吸蔵放出可能である負極材料が用いられると共に、その負極材料の充電可能な容量は正極の放電容量よりも小さくなるように設定される。
 また、例えば、本技術の二次電池は、角型およびボタン型などの他の電池構造を有する場合や、電池素子が積層構造などの他の構造を有する場合についても同様に適用可能である。
 また、例えば、電極反応物質は、ナトリウム(Na)およびカリウム(K)などの他の1族元素や、マグネシウムおよびカルシウムなどの2族元素や、アルミニウムなどの他の軽金属でもよい。本技術の効果は、電極反応物質の種類に依存せずに得られるはずであるため、その電極反応物質の種類を変更しても同様の効果を得ることができる。
 なお、本明細書中に記載された効果は、あくまで例示であって限定されるものではなく、また、他の効果があってもよい。
 なお、本技術は以下のような構成を取ることも可能である。
(1)
 正極および負極と共に非水電解液を備え、
 前記負極は、活物質を含み、
 前記活物質は、中心部と、その中心部の少なくとも一部に設けられた被覆部とを含み、
 前記中心部は、ケイ素(Si)およびスズ(Sn)のうちの少なくとも一方を構成元素として含み、
 前記被覆部は、複数の繊維状炭素物質を含み、
 前記複数の繊維状炭素物質のうちの少なくとも一部は、前記中心部の表面に沿った方向に延在しながら、その中心部に密着している、
 二次電池。
(2)
 前記複数の繊維状炭素物質のうちの少なくとも一部は、互いに絡み合っている、
 上記(1)に記載の二次電池。
(3)
 前記被覆部は、前記複数の繊維状炭素物質のうちの少なくとも一部により形成された網目構造を含む、
 上記(1)または(2)に記載の二次電池。
(4)
 前記負極は、前記活物質を複数含み、
 前記複数の繊維状炭素物質のうちの一部同士は、前記活物質間において架橋している、
 上記(1)ないし(3)のいずれかに記載の二次電池。
(5)
 前記繊維状炭素物質は、カーボンナノチューブおよびカーボンナノファイバーのうちの少なくとも一方を含む、
 上記(1)ないし(4)のいずれかに記載の二次電池。
(6)
 前記複数の繊維状炭素物質のうち、4μm以下の繊維長を有する繊維状炭素物質の割合は、85%以上である、
 上記(1)ないし(5)のいずれかに記載の二次電池。
(7)
 前記複数の繊維状炭素物質の平均繊維径は、102nm以下である、
 上記(1)ないし(6)のいずれかに記載の二次電池。
(8)
 ラマン分光法を用いて測定された前記複数の繊維状炭素物質のラマンスペクトルにおいて、D-bandピークの面積とG-bandピークの面積との比(G-bandピークの面積/D-bandピークの面積)は、1以上である、
 上記(1)ないし(7)のいずれかに記載の二次電池。
(9)
 前記負極は、前記活物質を複数含み、
 前記中心部のメジアン系(D50)は、7.8μm以下である、
 1上記(1)ないし(8)のいずれかに記載の二次電池。
(10)
 前記複数の繊維状炭素物質のうちの少なくとも一部は、その表面にカルボキシル基(-COOH)を有する、
 上記(1)ないし(9)のいずれかに記載の二次電池。
(11)
 X線光電子分光法(XPS)を用いた前記複数の繊維状炭素物質の元素分析により、酸素(O)の1s軌道(O1s)に起因するピークが検出される、
 上記(1)ないし(10)のいずれかに記載の二次電池。
(12)
 前記中心部は、ケイ素の単体、ケイ素の合金、ケイ素の化合物、スズの単体、スズの合金およびスズの化合物のうちの少なくとも1種を含む、
 上記(1)ないし(11)のいずれかに記載の二次電池。
(13)
 前記活物質は、前記中心部の少なくとも一部に設けられた中間部を含み、
 前記中間部は、炭素(C)を構成元素として含み、
 前記被覆部は、前記中間部を介して前記中心部に設けられている、
 上記(1)ないし(12)のいずれかに記載の二次電池。
(14)
 前記負極は、他の活物質を含み、
 前記他の活物質は、炭素を構成元素として含む、
 上記(1)ないし(13)のいずれかに記載の二次電池。
(15)
 リチウムイオン二次電池である、
 上記(1)ないし(14)のいずれかに記載の二次電池。
(16)
 活物質を含み、
 前記活物質は、中心部と、その中心部の少なくとも一部に設けられた被覆部とを含み、
 前記中心部は、ケイ素(Si)およびスズ(Sn)のうちの少なくとも一方を構成元素として含み、
 前記被覆部は、複数の繊維状炭素物質を含み、
 前記複数の繊維状炭素物質のうちの少なくとも一部は、前記中心部の表面に沿った方向に延在しながら、その中心部に密着している、
 電極。
(17)
 中心部と、その中心部の少なくとも一部に設けられた被覆部とを含み、
 前記中心部は、ケイ素(Si)およびスズ(Sn)のうちの少なくとも一方を構成元素として含み、
 前記被覆部は、複数の繊維状炭素物質を含み、
 前記複数の繊維状炭素物質のうちの少なくとも一部は、前記中心部の表面に沿った方向に延在しながら、中心部に密着している、
 活物質。
(18)
 ケイ素(Si)およびスズ(Sn)のうちの少なくとも一方を構成元素として含む中心部の少なくとも一部に、複数の繊維状炭素物質を含むゾル溶液を接触させたのち、そのゾル溶液を加熱して、前記複数の繊維状炭素物質を含む被覆部を形成する、
 活物質の製造方法。
(19)
 上記(1)ないし(15)のいずれかに記載の二次電池と、
 前記二次電池の動作を制御する制御部と、
 前記制御部の指示に応じて前記二次電池の動作を切り換えるスイッチ部と
 を備えた、電池パック。
(20)
 上記(1)ないし(15)のいずれかに記載の二次電池と、
 前記二次電池から供給された電力を駆動力に変換する変換部と、
 前記駆動力に応じて駆動する駆動部と、
 前記二次電池の動作を制御する制御部と
 を備えた、電動車両。
(21)
 上記(1)ないし(15)のいずれかに記載の二次電池と、
 前記二次電池から電力を供給される1または2以上の電気機器と、
 前記二次電池からの前記電気機器に対する電力供給を制御する制御部と
 を備えた、電力貯蔵システム。
(22)
 上記(1)ないし(15)のいずれかに記載の二次電池と、
 前記二次電池から電力を供給される可動部と
 を備えた、電動工具。
(23)
 上記(1)ないし(15)のいずれかに記載の二次電池を電力供給源として備えた、電子機器。
 本出願は、日本国特許庁において2012年10月5日に出願された日本特許出願番号第2012-222774号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲の趣旨やその均等物の範囲に含まれるものであることが理解される。

Claims (18)

  1.  正極および負極と共に非水電解液を備え、
     前記負極は、活物質を含み、
     前記活物質は、中心部と、その中心部の少なくとも一部に設けられた被覆部とを含み、
     前記中心部は、ケイ素(Si)およびスズ(Sn)のうちの少なくとも一方を構成元素として含み、
     前記被覆部は、複数の繊維状炭素物質を含み、
     前記複数の繊維状炭素物質のうちの少なくとも一部は、前記中心部の表面に沿った方向に延在しながら、その中心部に密着している、
     二次電池。
  2.  前記複数の繊維状炭素物質のうちの少なくとも一部は、互いに絡み合っている、
     請求項1記載の二次電池。
  3.  前記被覆部は、前記複数の繊維状炭素物質のうちの少なくとも一部により形成された網目構造を含む、
     請求項1記載の二次電池。
  4.  前記負極は、前記活物質を複数含み、
     前記複数の繊維状炭素物質のうちの一部同士は、前記活物質間において架橋している、
     請求項1記載の二次電池。
  5.  前記繊維状炭素物質は、カーボンナノチューブおよびカーボンナノファイバーのうちの少なくとも一方を含む、
     請求項1記載の二次電池。
  6.  前記複数の繊維状炭素物質のうち、4μm以下の繊維長を有する繊維状炭素物質の割合は、85%以上である、
     請求項1記載の二次電池。
  7.  前記複数の繊維状炭素物質の平均繊維径は、102nm以下である、
     請求項1記載の二次電池。
  8.  ラマン分光法を用いて測定された前記複数の繊維状炭素物質のラマンスペクトルにおいて、D-bandピークの面積とG-bandピークの面積との比(G-bandピークの面積/D-bandピークの面積)は、1以上である、
     請求項1記載の二次電池。
  9.  前記負極は、前記活物質を複数含み、
     前記中心部のメジアン系(D50)は、7.8μm以下である、
     請求項1記載の二次電池。
  10.  前記複数の繊維状炭素物質のうちの少なくとも一部は、その表面にカルボキシル基(-COOH)を有する、
     請求項1記載の二次電池。
  11.  X線光電子分光法(XPS)を用いた前記複数の繊維状炭素物質の元素分析により、酸素(O)の1s軌道(O1s)に起因するピークが検出される、
     請求項1記載の二次電池。
  12.  前記中心部は、ケイ素の単体、ケイ素の合金、ケイ素の化合物、スズの単体、スズの合金およびスズの化合物のうちの少なくとも1種を含む、
     請求項1記載の二次電池。
  13.  前記活物質は、前記中心部の少なくとも一部に設けられた中間部を含み、
     前記中間部は、炭素(C)を構成元素として含み、
     前記被覆部は、前記中間部を介して前記中心部に設けられている、
     請求項1記載の二次電池。
  14.  前記負極は、他の活物質を含み、
     前記他の活物質は、炭素を構成元素として含む、
     請求項1記載の二次電池。
  15.  リチウムイオン二次電池である、
     請求項1記載の二次電池。
  16.  活物質を含み、
     前記活物質は、中心部と、その中心部の少なくとも一部に設けられた被覆部とを含み、
     前記中心部は、ケイ素(Si)およびスズ(Sn)のうちの少なくとも一方を構成元素として含み、
     前記被覆部は、複数の繊維状炭素物質を含み、
     前記複数の繊維状炭素物質のうちの少なくとも一部は、前記中心部の表面に沿った方向に延在しながら、その中心部に密着している、
     電極。
  17.  中心部と、その中心部の少なくとも一部に設けられた被覆部とを含み、
     前記中心部は、ケイ素(Si)およびスズ(Sn)のうちの少なくとも一方を構成元素として含み、
     前記被覆部は、複数の繊維状炭素物質を含み、
     前記複数の繊維状炭素物質のうちの少なくとも一部は、前記中心部の表面に沿った方向に延在しながら、その中心部に密着している、
     活物質。
  18.  ケイ素(Si)およびスズ(Sn)のうちの少なくとも一方を構成元素として含む中心部の少なくとも一部に、複数の繊維状炭素物質を含むゾル溶液を接触させたのち、そのゾル溶液を加熱して、前記複数の繊維状炭素物質を含む被覆部を形成する、
     活物質の製造方法。
PCT/JP2013/077117 2012-10-05 2013-10-04 活物質、活物質の製造方法、電極および二次電池 WO2014054792A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380050827.7A CN104685676B (zh) 2012-10-05 2013-10-04 活性材料、活性材料的制造方法、电极及二次电池
US14/432,187 US10665855B2 (en) 2012-10-05 2013-10-04 Active material, method of manufacturing active material, electrode, and secondary battery
JP2014539851A JP6413766B2 (ja) 2012-10-05 2013-10-04 活物質、活物質の製造方法、電極および二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-222774 2012-10-05
JP2012222774 2012-10-05

Publications (1)

Publication Number Publication Date
WO2014054792A1 true WO2014054792A1 (ja) 2014-04-10

Family

ID=50435110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077117 WO2014054792A1 (ja) 2012-10-05 2013-10-04 活物質、活物質の製造方法、電極および二次電池

Country Status (4)

Country Link
US (1) US10665855B2 (ja)
JP (1) JP6413766B2 (ja)
CN (1) CN104685676B (ja)
WO (1) WO2014054792A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015185229A (ja) * 2014-03-20 2015-10-22 三菱マテリアル株式会社 リチウムイオン二次電池の電極
JP2018170250A (ja) * 2017-03-30 2018-11-01 Tdk株式会社 リチウムイオン二次電池用負極活物質、負極及びリチウムイオン二次電池
JP2019528574A (ja) * 2016-08-24 2019-10-10 ディーエスティー イノベーションズ リミテッドDst Innovations Limited 再充電可能なパワーセル
WO2021066458A1 (ko) * 2019-09-30 2021-04-08 주식회사 엘지화학 복합 음극 활물질, 이의 제조방법, 및 이를 포함하는 음극
JPWO2022085694A1 (ja) * 2020-10-21 2022-04-28

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636614B (zh) * 2015-09-30 2018-09-21 蕭鎮能 碳披覆矽/碳化矽複合活性材料的製備方法
WO2018000101A1 (en) * 2016-06-30 2018-01-04 HYDRO-QUéBEC Electrode materials and processes for their preparation
KR102377623B1 (ko) * 2018-01-29 2022-03-24 주식회사 엘지화학 탄소나노튜브 분산액의 제조방법
US12062779B2 (en) * 2019-03-29 2024-08-13 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
ES2973131T3 (es) * 2019-05-30 2024-06-18 Acondicionamiento Tarrasense Anodo de litio funcionalizado para baterías
CN114207933A (zh) * 2019-07-19 2022-03-18 株式会社村田制作所 电池、电池包、电子设备、电动车辆、蓄电装置及电力系统
US11791521B2 (en) * 2019-09-13 2023-10-17 Hutchinson Technology Incorporated Electrode tabs and methods of forming
US11319613B2 (en) 2020-08-18 2022-05-03 Enviro Metals, LLC Metal refinement

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173612A (ja) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその負極材料
JP2001068096A (ja) * 1999-08-30 2001-03-16 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極、その製造方法および非水電解質二次電池
JP2003303588A (ja) * 2002-02-07 2003-10-24 Hitachi Maxell Ltd 電極材料およびその製造方法、並びに非水二次電池用負極および非水二次電池
JP2004178922A (ja) * 2002-11-26 2004-06-24 Showa Denko Kk 負極材料及びそれを用いた二次電池
JP2004244309A (ja) * 2003-01-23 2004-09-02 Canon Inc ナノカーボン材料の製造方法
JP2006100244A (ja) * 2004-09-06 2006-04-13 Pionics Co Ltd リチウム二次電池用負極活物質粒子と負極及びそれらの製造方法
JP2009176721A (ja) * 2007-12-25 2009-08-06 Kao Corp リチウム電池正極用複合材料
JP2009272041A (ja) * 2008-04-30 2009-11-19 Mitsubishi Materials Corp リチウムイオン二次電池
WO2011114724A1 (ja) * 2010-03-19 2011-09-22 株式会社豊田自動織機 負極材料、非水電解質二次電池および負極材料の製造方法
WO2011142575A2 (ko) * 2010-05-11 2011-11-17 주식회사 루트제이제이 리튬 이차전지용 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2012086976A2 (en) * 2010-12-22 2012-06-28 Hanwha Chemical Corporation A composite comprising an electrode-active transition metal compound and a fibrous carbon material, and a method for preparing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100473601C (zh) * 2003-01-23 2009-04-01 佳能株式会社 制造纳米碳材料的方法
KR100738054B1 (ko) * 2004-12-18 2007-07-12 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
CN101180753A (zh) * 2005-03-23 2008-05-14 百欧尼士株式会社 锂二次电池用负极活性物质粒子和负极以及它们的制造方法
KR100728160B1 (ko) * 2005-11-30 2007-06-13 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를포함하는 리튬 이차 전지
KR100796687B1 (ko) * 2005-11-30 2008-01-21 삼성에스디아이 주식회사 리튬 이차 전지용 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
US8999585B2 (en) * 2007-07-18 2015-04-07 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
KR101065778B1 (ko) * 2008-10-14 2011-09-20 한국과학기술연구원 탄소나노튜브 피복 실리콘-구리 복합 입자 및 그 제조 방법과, 이를 이용한 이차전지용 음극 및 이차전지
CN103329313B (zh) * 2011-02-15 2015-12-02 株式会社Lg化学 制备负极活性材料的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173612A (ja) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその負極材料
JP2001068096A (ja) * 1999-08-30 2001-03-16 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極、その製造方法および非水電解質二次電池
JP2003303588A (ja) * 2002-02-07 2003-10-24 Hitachi Maxell Ltd 電極材料およびその製造方法、並びに非水二次電池用負極および非水二次電池
JP2004178922A (ja) * 2002-11-26 2004-06-24 Showa Denko Kk 負極材料及びそれを用いた二次電池
JP2004244309A (ja) * 2003-01-23 2004-09-02 Canon Inc ナノカーボン材料の製造方法
JP2006100244A (ja) * 2004-09-06 2006-04-13 Pionics Co Ltd リチウム二次電池用負極活物質粒子と負極及びそれらの製造方法
JP2009176721A (ja) * 2007-12-25 2009-08-06 Kao Corp リチウム電池正極用複合材料
JP2009272041A (ja) * 2008-04-30 2009-11-19 Mitsubishi Materials Corp リチウムイオン二次電池
WO2011114724A1 (ja) * 2010-03-19 2011-09-22 株式会社豊田自動織機 負極材料、非水電解質二次電池および負極材料の製造方法
WO2011142575A2 (ko) * 2010-05-11 2011-11-17 주식회사 루트제이제이 리튬 이차전지용 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2012086976A2 (en) * 2010-12-22 2012-06-28 Hanwha Chemical Corporation A composite comprising an electrode-active transition metal compound and a fibrous carbon material, and a method for preparing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015185229A (ja) * 2014-03-20 2015-10-22 三菱マテリアル株式会社 リチウムイオン二次電池の電極
JP2019528574A (ja) * 2016-08-24 2019-10-10 ディーエスティー イノベーションズ リミテッドDst Innovations Limited 再充電可能なパワーセル
JP2018170250A (ja) * 2017-03-30 2018-11-01 Tdk株式会社 リチウムイオン二次電池用負極活物質、負極及びリチウムイオン二次電池
WO2021066458A1 (ko) * 2019-09-30 2021-04-08 주식회사 엘지화학 복합 음극 활물질, 이의 제조방법, 및 이를 포함하는 음극
US11891523B2 (en) 2019-09-30 2024-02-06 Lg Energy Solution, Ltd. Composite negative electrode active material, method of manufacturing the same, and negative electrode including the same
JPWO2022085694A1 (ja) * 2020-10-21 2022-04-28
JP7462066B2 (ja) 2020-10-21 2024-04-04 旭化成株式会社 非水系アルカリ金属蓄電素子および正極塗工液

Also Published As

Publication number Publication date
JPWO2014054792A1 (ja) 2016-08-25
CN104685676A (zh) 2015-06-03
CN104685676B (zh) 2017-10-27
US20150318542A1 (en) 2015-11-05
JP6413766B2 (ja) 2018-10-31
US10665855B2 (en) 2020-05-26

Similar Documents

Publication Publication Date Title
JP7120307B2 (ja) 電池用電極およびその製造方法
CN110521029B (zh) 二次电池、电池包、电动车辆、电动工具以及电子设备
JP6413766B2 (ja) 活物質、活物質の製造方法、電極および二次電池
JP5861444B2 (ja) 二次電池用活物質、二次電池および電子機器
JP5982811B2 (ja) 二次電池用活物質、二次電池および電子機器
JP6003015B2 (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6208957B2 (ja) 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP5849912B2 (ja) 二次電池、電池パックおよび電動車両
WO2016009794A1 (ja) 二次電池用負極活物質、二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6908113B2 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6966422B2 (ja) 二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2015045707A1 (ja) 二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6763410B2 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6874777B2 (ja) 二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
CN108292781B (zh) 二次电池、电池组、电动车辆、电力储存系统、电动工具以及电子设备
JP6257087B2 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6849066B2 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6773119B2 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6288062B2 (ja) 二次電池用活物質、二次電池、電子機器、電動車両および電動工具
WO2017168982A1 (ja) 二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014539851

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14432187

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843306

Country of ref document: EP

Kind code of ref document: A1