WO2013137389A1 - 光学フィルムロール - Google Patents
光学フィルムロール Download PDFInfo
- Publication number
- WO2013137389A1 WO2013137389A1 PCT/JP2013/057189 JP2013057189W WO2013137389A1 WO 2013137389 A1 WO2013137389 A1 WO 2013137389A1 JP 2013057189 W JP2013057189 W JP 2013057189W WO 2013137389 A1 WO2013137389 A1 WO 2013137389A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- optical film
- liquid crystal
- roll
- crystal cell
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
- G02B5/3041—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
- G02B5/305—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/14—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/16—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial simultaneously
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
- G02F1/133533—Colour selective polarisers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2029/00—Use of polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals or derivatives thereof as moulding material
- B29K2029/04—PVOH, i.e. polyvinyl alcohol
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0018—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
- B29K2995/0034—Polarising
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2323/00—Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
- C09K2323/03—Viewing layer characterised by chemical composition
- C09K2323/031—Polarizer or dye
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
- G02F1/133531—Polarisers characterised by the arrangement of polariser or analyser axes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/04—Processes
- Y10T83/0448—With subsequent handling [i.e., of product]
Definitions
- Patent Document 1 A number of methods (so-called roll-to-panel; RTP) in which a roll-shaped optical film is cut while being sent out in a liquid crystal display panel production line and bonded to a liquid crystal cell have been proposed (for example, Patent Document 1).
- a long optical film that includes a polarizing film having an absorption axis in the longitudinal direction and is cut (slit) into a width corresponding to the short side of the liquid crystal cell is wound into a roll.
- a roll-shaped optical film that includes a film and is slit to a width corresponding to the long side of the liquid crystal cell is cut out to a length corresponding to the short side of the liquid crystal cell, and bonded to the other surface of the liquid crystal cell.
- the present invention has been made to solve the above-described conventional problems, and a main object thereof is to provide an optical film roll capable of realizing excellent display characteristics while maintaining manufacturing efficiency. .
- the optical film roll of the present invention has a width corresponding to a pair of opposite sides of the liquid crystal cell, and is cut into a length corresponding to the other pair of opposite sides of the liquid crystal cell.
- a long optical material including a polarizing film containing a dichroic substance, composed of a polyvinyl alcohol resin film having an Nz coefficient of 1.10 or more, and having an absorption axis in the width direction.
- a long optical film obtained by slitting the original film in the conveying direction while being conveyed in the long direction is wound into a roll.
- the polarizing film has a thickness of less than 10 ⁇ m.
- the said polarizing film is obtained by shrinking
- the said optical film original fabric has laminated
- the said optical film original fabric has laminated
- an optical film roll set is provided.
- the optical film roll set has a width corresponding to one pair of sides facing the liquid crystal cell, and the other pair of sides facing the liquid crystal cell.
- a long optical film including a polarizing film having an absorption axis in the longitudinal direction was wound into a roll shape.
- the driving mode of the liquid crystal cell is a VA mode or an IPS mode.
- the manufacturing method of an optical film roll is provided. This method of manufacturing an optical film roll has a width corresponding to a pair of opposite sides of the liquid crystal cell, and is cut into a length corresponding to the other pair of opposite sides of the liquid crystal cell.
- a method for producing an optical film roll used for bonding to the surface of a cell comprising a dichroic material, comprising a polyvinyl alcohol resin film having an Nz coefficient of 1.10 or more, and having an absorption axis in the width direction.
- the polarizing film has a thickness of less than 10 ⁇ m.
- the optical film roll of the present invention it is possible to provide a liquid crystal display panel having excellent display characteristics while being excellent in production efficiency.
- FIG. 1 is a schematic perspective view of an optical film roll according to a preferred embodiment of the present invention. It is a partial expanded sectional view of the film of FIG. 1A. It is a partial expanded sectional view of the optical film by another embodiment of the present invention. It is a partial expanded sectional view of the optical film by another embodiment of this invention. It is a graph explaining the calculation method of the Nz coefficient of a polyvinyl alcohol-type resin film. It is the schematic explaining the specific example of the manufacturing method of a polarizing film. It is the schematic explaining the specific example of the manufacturing method of a polarizing film. It is a schematic perspective view of an example of a reflective polarizing film. It is the schematic explaining the evaluation method of orientation nonuniformity.
- the optical film roll 100 is formed by winding a long optical film into a roll shape.
- the optical film 100 has a width corresponding to a pair of opposing sides of the liquid crystal cell to be bonded. More specifically, RTP has a width corresponding to the side of the liquid crystal cell in the direction (width direction) orthogonal to the direction (bonding direction) when continuously pasting to the surface of the liquid crystal cell.
- the optical film 100 includes a polarizing plate 10. In one embodiment, as illustrated in FIG. 1B, the polarizing plate 10 is disposed on the polarizing film 11, the first protective film 21 disposed on one side of the polarizing film 11, and the other side of the polarizing film 10. And a second protective film 22.
- the polarizing plate 10 includes a polarizing film 11 and a first protective film 21 disposed on one side of the polarizing film 11. That is, the second protective film 22 may be omitted. According to this embodiment, there is an advantage that a reduction in thickness can be achieved while imparting appropriate resistance to environmental changes.
- the polarizing plate 10 can be composed of a polarizing film 11. That is, both the first protective film 21 and the second protective film 22 may be omitted.
- the polarizing film 11 has an absorption axis in the width direction X.
- the direction of the absorption axis of the polarizing film 11 may include a direction of ⁇ 5 ° to + 5 ° counterclockwise with respect to the width direction X of the optical film.
- the polarizing plate includes at least a polarizing film.
- the polarizing plate is configured by arranging a protective film on at least one side of the polarizing film.
- the polarizing film is typically composed of a polyvinyl alcohol resin (hereinafter referred to as “PVA resin”) film containing a dichroic substance.
- PVA resin polyvinyl alcohol resin
- dichroic substance examples include iodine and organic dyes. These may be used alone or in combination of two or more. Preferably, iodine is used.
- any appropriate resin can be used as the PVA resin for forming the PVA resin film.
- Examples thereof include polyvinyl alcohol and ethylene-vinyl alcohol copolymer.
- Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
- the ethylene-vinyl alcohol copolymer can be obtained by saponifying an ethylene-vinyl acetate copolymer.
- the degree of saponification of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, more preferably 99.0 mol% to 99.93 mol%. .
- the degree of saponification can be determined according to JIS K 6726-1994. By using a PVA resin having such a saponification degree, a polarizing film having excellent durability can be obtained. If the degree of saponification is too high, there is a risk of gelation.
- the average degree of polymerization of the PVA resin can be appropriately selected according to the purpose.
- the average degree of polymerization is usually 1000 to 10,000, preferably 1200 to 4500, and more preferably 1500 to 4300.
- the average degree of polymerization can be determined according to JIS K 6726-1994.
- the Nz coefficient of the PVA resin film is 1.10 or more, preferably 1.20 or more.
- the orientation of the PVA-based resin film the orientation state of the polyvinyl alcohol-based resin molecules
- the Nz coefficient of the PVA resin film is preferably 1.50 or less, more preferably 1.40 or less. When the Nz coefficient exceeds 1.50, the orientation (uniaxiality) of the PVA-based resin film is low, and for example, the display quality required for a liquid crystal television may not be obtained.
- the thickness of the polarizing film can be set to any appropriate value.
- the thickness is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, still more preferably 20 ⁇ m or less, and particularly preferably less than 10 ⁇ m.
- the polarizing film has a larger shrinkage force than the protective film, and a stress may be generated at the interface between the polarizing film and the protective film to cause cracks.
- the shrinkage force of the polarizing film depends on the thickness. The thinner the thickness, the smaller the shrinkage force, and a polarizing plate having excellent durability can be obtained.
- the thickness is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more. If the thickness is less than 0.5 ⁇ m, sufficient optical properties may not be obtained.
- the polarizing film is produced by any appropriate method as long as it has an absorption axis in the width direction.
- the polarizing film is typically produced by subjecting a PVA resin film to treatments such as stretching and dyeing as appropriate.
- the PVA-based resin film is typically formed in a long shape.
- the thickness of the PVA resin film is preferably less than 100 ⁇ m.
- the PVA resin film may be, for example, a PVA resin film or a PVA resin layer formed on a thermoplastic resin substrate.
- the PVA resin film is preferably used when a polarizing film having a thickness of 10 ⁇ m or more is produced.
- the thickness of the PVA resin film is preferably 30 ⁇ m to 80 ⁇ m.
- the laminate of the thermoplastic resin substrate and the PVA resin layer is preferably used when a polarizing film having a thickness of less than 10 ⁇ m is produced.
- the thickness of the PVA resin layer is preferably 3 ⁇ m to 20 ⁇ m. Even such a thin thickness can be satisfactorily stretched by using a thermoplastic resin substrate.
- the thickness (before stretching) of the thermoplastic resin base material constituting the laminate is preferably 50 ⁇ m to 250 ⁇ m. If it is less than 50 ⁇ m, there is a risk of breaking during stretching. In addition, the thickness may become too thin after stretching, which may make conveyance difficult. If it exceeds 250 ⁇ m, an excessive load may be applied to the stretching machine. Moreover, there exists a possibility that conveyance may become difficult.
- the glass transition temperature (Tg) of the thermoplastic resin substrate is preferably 170 ° C. or lower. By using such a thermoplastic resin base material, it is possible to stretch the laminate at a temperature at which crystallization of the PVA resin does not proceed rapidly, and defects due to the crystallization (for example, the PVA resin layer due to stretching). Which prevents orientation).
- the glass transition temperature (Tg) is a value determined according to JIS K 7121.
- the thermoplastic resin substrate is stretched before forming the PVA-based resin layer.
- the stretching direction can be set in any appropriate direction.
- an extending direction is a conveyance direction (MD) of a thermoplastic resin base material.
- the conveying direction is preferably the long direction of the long thermoplastic resin base material, and includes the direction of ⁇ 5 ° to + 5 ° counterclockwise with respect to the long direction of the thermoplastic resin base material.
- the stretching direction is a direction (TD) orthogonal to the transport direction.
- the direction orthogonal to the transport direction is preferably the width direction of the elongated thermoplastic resin base material, and is in the direction of 85 ° to 95 ° counterclockwise with respect to the long direction of the thermoplastic resin base material.
- orthogonal includes the case of being substantially orthogonal.
- substantially orthogonal includes the case of 90 ° ⁇ 5.0 °, preferably 90 ° ⁇ 3.0 °, more preferably 90 ° ⁇ 1.0 °.
- Arbitrary appropriate methods can be employ
- the stretching of the thermoplastic resin substrate may be performed in one step or in multiple steps. When performed in multiple stages, the stretch ratio of the thermoplastic resin substrate described later is the product of the stretch ratios of the respective stages.
- stretching system in this process is not specifically limited, An air extending
- the stretching temperature of the thermoplastic resin substrate can be set to any appropriate value depending on the forming material of the thermoplastic resin substrate, the stretching method, and the like.
- the stretching temperature is typically not less than the glass transition temperature (Tg) of the thermoplastic resin substrate, preferably not less than Tg + 10 ° C., more preferably not less than Tg + 15 ° C. to Tg + 30 ° C.
- Tg glass transition temperature
- the stretching temperature is set to the glass transition temperature of the thermoplastic resin base material (for example, 60 ° C. to 100 ° C. ° C).
- the surface of the thermoplastic resin substrate may be subjected to surface modification treatment (for example, corona treatment), or an easy adhesion layer may be formed on the thermoplastic resin substrate.
- surface modification treatment for example, corona treatment
- an easy adhesion layer may be formed on the thermoplastic resin substrate.
- a PVA-based resin layer is formed by applying a coating solution containing a PVA-based resin on a thermoplastic resin substrate and drying it.
- the PVA-based resin layer thus obtained is not only used as a laminate (as it is formed on the thermoplastic resin substrate), but is peeled off from the thermoplastic resin substrate and used as a PVA-based resin film. Also good.
- the coating solution is typically a solution obtained by dissolving the PVA resin in a solvent.
- the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These may be used alone or in combination of two or more. Among these, water is preferable.
- the concentration of the PVA resin in the solution is preferably 3 to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film in close contact with the thermoplastic resin substrate can be formed.
- Additives may be added to the coating solution.
- the additive include a plasticizer and a surfactant.
- the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin.
- the surfactant include nonionic surfactants. These can be used for the purpose of further improving the uniformity, dyeability and stretchability of the resulting PVA resin layer.
- any appropriate method can be adopted as a coating method of the coating solution. Examples thereof include a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (comma coating method and the like).
- the drying temperature is preferably not higher than the glass transition temperature (Tg) of the thermoplastic resin substrate, more preferably not higher than Tg-20 ° C.
- Tg glass transition temperature
- the thermoplastic resin base material is prevented from being deformed before the PVA resin layer is formed, and the orientation of the resulting PVA resin layer is prevented from deteriorating. Can do.
- the thermoplastic resin substrate can be deformed well together with the PVA-based resin layer, and the later-described laminate can be satisfactorily contracted and stretched.
- good orientation can be imparted to the PVA-based resin layer, and a polarizing film having excellent optical properties can be obtained.
- “orientation” means the orientation of molecular chains of the PVA resin layer.
- stretching methods include fixed end stretching using a tenter stretching machine, free end stretching using rolls having different peripheral speeds, biaxial stretching using a simultaneous biaxial stretching machine, and sequential biaxial stretching. These may be employed alone or in combination of two or more.
- the transport direction (MD) through the rolls 32, 32, 33, 33 having different peripheral speeds (free end stretching)
- stretching to the direction (TD) orthogonal to a conveyance direction is mentioned.
- the Nz coefficient can be controlled by appropriately selecting stretching conditions such as a stretching method, a stretching ratio, and a stretching temperature.
- the polarizing film is produced by shrinking a PVA-based resin film in the transport direction (MD) and stretching it in a direction (TD) perpendicular to the transport direction.
- the transport direction is preferably the long direction of the long PVA resin film, and includes the direction of ⁇ 5 ° to + 5 ° counterclockwise with respect to the long direction of the PVA resin film. obtain.
- the direction orthogonal to the transport direction is preferably the width direction of the long PVA resin film, and includes the direction of 85 ° to 95 ° counterclockwise with respect to the long direction of the PVA resin film. obtain.
- thermoplastic resin base material When a laminate is composed of a thermoplastic base material obtained by subjecting MD to a stretching process in advance, the thermoplastic resin base material can be returned to the state before stretching by stretching to TD, heat, etc. Can be uniformly shrunk to MD. In this way, even when the shrinkage rate is high, it is possible to obtain a polarizing film having excellent in-plane uniformity by suppressing problems such as alignment unevenness and reduced thickness uniformity. Moreover, the uniaxiality of TD can be improved and the outstanding optical characteristic can be acquired by shrink
- the thermoplastic resin base material When the laminate is composed of a thermoplastic resin base material that has been subjected to fixed-end stretching on TD in advance, the thermoplastic resin base material generates a force that shrinks to MD due to heat during stretching to TD, etc. It is possible to suppress deterioration of uniformity due to necking between clips, which becomes a problem when the laminated body is stretched at the fixed end TD (not causing MD shrinkage). In particular, even when a thin PVA-based resin film is stretched at a high magnification, it is possible to obtain a polarizing film having excellent in-plane uniformity by suppressing problems such as uneven orientation and reduced thickness uniformity. . Moreover, the uniaxiality of TD can be improved and the outstanding optical characteristic can be acquired by shrink
- Shrinkage may be performed simultaneously with stretching or may be performed at another timing. Also, the order is not limited, and it may be contracted in one step or may be contracted in multiple steps.
- the PVA-based resin film is contracted to MD while being stretched to TD.
- the PVA resin film is preferably contracted to MD and then stretched to TD.
- a method of shrinking the laminate separately from stretching a method of heating (thermally shrinking) the laminate is preferable. The heating temperature is preferably equal to or higher than the glass transition temperature (Tg) of the thermoplastic resin substrate.
- the Nz coefficient can be satisfactorily satisfied by adjusting the shrinkage rate of the PVA resin film.
- the MD shrinkage of the PVA-based resin film is preferably 40% or less, more preferably 35% or less, and particularly preferably 20% or less. Excellent durability can be achieved. Note that the contraction of MD may be omitted as long as the Nz coefficient can be satisfactorily satisfied.
- the lower limit of MD shrinkage may be 0% in one embodiment and 5% in another embodiment.
- the shrinkage of MD is preferably greater than 25%, more preferably greater than 30% and less than 50%.
- the stretching of the PVA resin film may be performed in one stage or in multiple stages. When performed in multiple stages, the stretch ratio of the PVA-based resin film described later is the product of the stretch ratios of the respective stages.
- the stretching method in this step is not particularly limited, and may be an air stretching (dry stretching) method or an underwater stretching (wet stretching) method.
- the stretching temperature can be set to any appropriate value depending on the stretching method, the stretching target, and the like.
- the stretching temperature in the case of stretching a laminate of a thermoplastic resin substrate and a PVA resin layer by an air stretching method is set to any appropriate value depending on the material for forming the thermoplastic resin substrate. be able to.
- the stretching temperature is typically at least the glass transition temperature (Tg) of the thermoplastic resin substrate, preferably the glass transition temperature (Tg) of the thermoplastic resin substrate + 10 ° C. or more, more preferably Tg + 15 ° C. or more. .
- the stretching temperature is preferably 170 ° C. or lower.
- the stretching temperature is typically 70 ° C to 130 ° C, preferably 80 ° C to 120 ° C.
- the PVA resin film When employing an underwater stretching method, it is preferable to stretch the PVA resin film in a boric acid aqueous solution.
- a boric acid aqueous solution By using a boric acid aqueous solution, the PVA resin film can be provided with rigidity that can withstand the tension applied during stretching and water resistance that does not dissolve in water.
- boric acid can generate a tetrahydroxyborate anion in an aqueous solution and can be cross-linked with a PVA resin by hydrogen bonding, and can impart rigidity and water resistance.
- the aqueous boric acid solution is obtained by dissolving boric acid and / or borate in water as a solvent.
- the boric acid concentration is usually 1 to 10 parts by weight per 100 parts by weight of water.
- the immersion time of the PVA resin film in the stretching bath is preferably about 15 seconds to 5 minutes.
- the TD stretch ratio is preferably 4.0 times or more with respect to the original length of the PVA resin film. By contracting to MD, stretching at such a high magnification is possible, and a polarizing film having excellent optical characteristics can be obtained. On the other hand, the TD stretch ratio is preferably 6.0 times or less, and more preferably 5.5 times or less.
- FIG. 1 A specific example of the shrinking / stretching process is shown in FIG.
- the PVA resin film 11 ′ is contracted in the transport direction (MD) using a simultaneous biaxial stretching machine while the PVA resin film 11 ′ is transported in the longitudinal direction, and orthogonal to the transport direction. Stretch in the direction (TD).
- the PVA resin film 11 ′ held by the left and right clips 31, 31 at the tenter inlet is TD-stretched while being conveyed at a predetermined speed.
- the shrinkage of the PVA-based resin film is controlled, for example, by gradually decelerating the moving speed of the clip in the transport direction and shortening the distance between the clips.
- the shrinkage rate can be controlled by adjusting the distance L1 between the clips in the transport direction of the tenter inlet and the distance L2 between the clips in the transport direction of the tenter outlet (the moving speed of the clips in the transport direction). Specifically, a desired shrinkage rate can be achieved by setting the speed of the tenter outlet of the clip to the speed of the tenter inlet ⁇ (1 ⁇ shrinkage rate). In FIG. 3, the broken line indicates the rail of the clip 31.
- the PVA resin film when contracted and stretched using a simultaneous biaxial stretching machine, the PVA resin film is preferably contracted and then stretched. Specifically, TD stretching is performed after the distance between clips in the transport direction is shortened. According to such an embodiment, a force is applied uniformly by the PVA-based resin film during stretching, and the clip gripping portion can be prevented from being selectively stretched. Specifically, it is possible to prevent the portion that is not gripped by the clip from being bent inward at the edge of the PVA-based resin film. As a result, uniformity can be improved.
- A-2-3 Other treatments
- the treatment for producing the polarizing film include a dyeing treatment, an insolubilization treatment, a crosslinking treatment, a washing treatment, and a drying treatment in addition to the stretching treatment. These processes can be performed at any appropriate timing.
- the dyeing process is typically a process of dyeing a PVA resin film with the dichroic substance.
- the dichroic substance is adsorbed on the PVA resin film.
- the adsorption method include a method of immersing a PVA resin film in a dye solution containing a dichroic substance, a method of applying a dye solution to the PVA resin film, a method of spraying the dye solution on the PVA resin film, and the like. Is mentioned.
- the PVA-based resin film is immersed in a staining solution containing a dichroic substance. It is because a dichroic substance can adsorb
- the staining solution is preferably an iodine aqueous solution.
- the amount of iodine is preferably 0.04 to 5.0 parts by weight per 100 parts by weight of water.
- an iodide salt is added to the aqueous iodine solution.
- Examples of the iodide salt include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and iodide.
- Examples include titanium. Among these, potassium iodide and sodium iodide are preferable.
- the blending amount of the iodide salt is preferably 0.3 to 15 parts by weight with respect to 100 parts by weight of water.
- the liquid temperature during staining of the staining liquid is preferably 20 ° C. to 40 ° C.
- the immersion time is preferably 5 seconds to 300 seconds. Under such conditions, the dichroic substance can be sufficiently adsorbed on the PVA resin film.
- the insolubilization treatment and the crosslinking treatment are typically performed by immersing a PVA resin film in an aqueous boric acid solution.
- the cleaning treatment is typically performed by immersing a PVA resin film in an aqueous potassium iodide solution.
- the drying temperature in the drying treatment is preferably 30 ° C. to 100 ° C.
- protective film examples of the material for forming the protective film include (meth) acrylic resins, cellulose resins such as diacetyl cellulose and triacetyl cellulose, cycloolefin resins, olefin resins such as polypropylene, and polyethylene terephthalate resins. Examples thereof include ester resins, polyamide resins, polycarbonate resins, and copolymer resins thereof. In addition, you may use the said thermoplastic resin base material as a protective film as it is.
- the thickness of the protective film is preferably 20 ⁇ m to 100 ⁇ m.
- the protective film may be laminated on the polarizing film via an adhesive layer (specifically, an adhesive layer or an adhesive layer), or may be laminated in close contact with the polarizing film (without an adhesive layer). Also good.
- the adhesive layer is formed of any appropriate adhesive. Examples of the adhesive include a polyvinyl alcohol-based adhesive.
- the release film is typically composed of a plastic film and a release imparting layer provided on one side of the plastic film.
- a polyester film is preferably used as the plastic film.
- the thickness of the release film is preferably 25 to 50 ⁇ m.
- the surface protective film can function as a protective film for the polarizing plate.
- the surface protective film is typically a plastic film or a laminate of plastic films. Examples of the material of the plastic film include polyester and polypropylene.
- the thickness of the surface protective film is preferably 25 ⁇ m to 75 ⁇ m.
- Examples of the other film (layer) include a retardation plate and a reflective polarizing film.
- Arbitrary appropriate adhesives or adhesives are typically used for lamination
- FIG. 5 is a schematic perspective view of an example of a reflective polarizing film.
- the reflective polarizing film is a multilayer laminate in which layers A having birefringence and layers B having substantially no birefringence are alternately laminated.
- the refractive index nx in the x-axis direction of the A layer is larger than the refractive index ny in the y-axis direction, and the refractive index nx in the x-axis direction and the refractive index ny in the y-axis direction of the B layer are substantially equal.
- the difference in refractive index between the A layer and the B layer is large in the x-axis direction and is substantially zero in the y-axis direction.
- the x-axis direction becomes the reflection axis
- the y-axis direction becomes the transmission axis.
- the refractive index difference in the x-axis direction between the A layer and the B layer is preferably 0.2 to 0.3.
- the x-axis direction corresponds to the stretching direction of the reflective polarizing film in the manufacturing method described later.
- the A layer is preferably made of a material that exhibits birefringence by stretching.
- Typical examples of such materials include naphthalene dicarboxylic acid polyester (for example, polyethylene naphthalate), polycarbonate, and acrylic resin (for example, polymethyl methacrylate). Polyethylene naphthalate is preferred.
- the B layer is preferably made of a material that does not substantially exhibit birefringence even when stretched.
- a typical example of such a material is a copolyester of naphthalenedicarboxylic acid and terephthalic acid.
- the reflective polarizing film includes a reflective layer R as the outermost layer opposite to the polarizing film 11 as shown in FIG.
- a reflective layer R as the outermost layer opposite to the polarizing film 11 as shown in FIG.
- a commercially available product may be used as it is, or a commercially available product may be used after secondary processing (for example, stretching).
- a commercial item 3M company brand name DBEF and 3M company brand name APF are mentioned, for example.
- the width of a long optical film wound into a roll as an optical film roll is preferably set corresponding to the size of the liquid crystal cell to be bonded.
- the long optical film has a width corresponding to a pair of opposing sides of the liquid crystal cell.
- the long optical film is preferably manufactured by slitting a wide and long optical film original sheet (roll original film before slitting). More preferably, a plurality of long optical films having the same width or different widths are simultaneously manufactured by slitting a wide and long optical film original (roll raw roll before slit).
- the slit processing includes a method of rewinding the optical film original and a method of rewinding without rewinding, both of which can be adopted.
- the slit processing is performed while rewinding the optical film original.
- the slit processing accuracy is further improved.
- you may slit before the winding in the production line of an optical film original fabric.
- the method for producing the optical film roll includes a release film, a pressure-sensitive adhesive layer, and a polarizing plate including a polarizing film having an absorption axis in the width direction in this order.
- the process of producing the optical film original, and the optical film original in parallel with the longitudinal direction (in the conveying direction while conveying in the longitudinal direction) Including a step of slitting with a width to be wound, and a step of winding the long optical film obtained in the slit step into a roll.
- the method for producing an optical film roll has a release film, an adhesive layer, a polarizing plate including a polarizing film having an absorption axis in the width direction, and a reflection axis in the width direction.
- the term “parallel” includes the case of being substantially parallel.
- substantially parallel includes the case of 0 ° ⁇ 5.0 °, preferably 0 ° ⁇ 3.0 °, more preferably 0 ° ⁇ 1.0 °.
- FIG. 7A is a schematic perspective view for explaining an example of a production process of a long optical film original.
- a release film, an adhesive layer, a polarizing plate including a polarizing film having an absorption axis in the width direction, and a reflective polarizing film having a reflection axis in the width direction are laminated in this order to form a long optical
- a film original fabric is produced will be described.
- the long optical film original fabric 100 ′ is composed of a polarizing plate 91 with a pressure-sensitive adhesive layer (a laminate of the polarizing plate 10, the pressure-sensitive adhesive layer 30, and the release film 50) and a reflective polarizing film 92 with a surface protective film ( A laminate of the reflective polarizing film 40 and the surface protective film 60) can be obtained by laminating with a roll-to-roll. Lamination is performed such that the polarizing plate 10 and the reflective polarizing film 40 face each other via any appropriate pressure-sensitive adhesive or adhesive (not shown).
- a surface protective film is disposed on the surface where the protective film of the polarizing film is not provided in the polarizing plate with an adhesive layer. Then, lamination is performed while peeling the surface protective film (not shown).
- FIG. 7B is a schematic view showing an example of an apparatus for producing an optical film roll of the present invention.
- This manufacturing apparatus includes a roll R0 rewinding mechanism 80 of an optical film original fabric (roll original roll before slit) 100 ', a cutting mechanism 70 of the optical film original fabric 100', and a long shape obtained by slit processing. And a winding device 63 for winding rolls R1, R2 of the optical film 100. In the production line for long sheet-shaped products, the rewinding mechanism 80 is not necessary when slitting.
- the rewinding mechanism 80 is for rewinding the optical film original 100 'from the roll R0 by the tension generated by the nip roller 57, and includes a nip roller 57 and a roll support portion that rotates and supports the roll R0.
- the roll support portion may be provided with a braking mechanism, a drive mechanism, a tension control mechanism, and the like.
- the cutting mechanism 70 includes a cutting blade 51 provided in the conveyance path of the optical film original fabric 100 ′.
- the cutting blade include a gang blade and a gobel blade.
- the cutting method include a gang method and a share cut method.
- a rotatable circular cutting blade is arranged at a predetermined interval in the direction of the slit, and the slit is continuously performed while passing the optical film original 100 ′ between the cutting blade and the support roll. Is possible.
- FIG. 7C is a schematic perspective view illustrating details of the slit processing. In FIG. 7C, the cutting device 70 provided with the gang blade is shown. As shown in FIG.
- a plurality of optical films (optical film rolls) 100 can be obtained from the optical film original fabric 100 ′.
- the number of optical films obtained from the original optical film can be appropriately set according to the purpose.
- the width of each optical film may be the same or different as long as it corresponds to the size of the liquid crystal cell to be bonded.
- the optical film roll of the present invention is cut into a length corresponding to another set of opposite sides of the liquid crystal cell, and is continuously bonded to the surface of the liquid crystal cell.
- “the length (width) corresponding to one pair (another pair) of opposite sides of the liquid crystal cell” refers to the case where the optical film is aligned and bonded to the liquid crystal cell. It refers to a length (width) that can ensure an appropriate manufacturing margin (specifically, an exposed portion where the optical film is not bonded) at the peripheral edge of the liquid crystal cell.
- the length (width) corresponding to one set (another set) of opposite sides of the liquid crystal cell is the exposure of both ends of the opposite set (another set) of the liquid crystal cell in the side direction.
- the cutting may include at least a mode in which a polarizing film (polarizing plate) is cut to form a cut line (so-called half cut).
- a polarizing film polarizing plate
- the surface protective film 50, the polarizing plate 10, and the pressure-sensitive adhesive layer 30 are cut while leaving the release film 40.
- the long optical film is in a state in which a plurality of the score lines are formed at intervals corresponding to the other pair of sides of the liquid crystal cell. May be.
- the optical film of the present invention (hereinafter referred to as “first optical film”) is bonded to one side of the liquid crystal cell, and a second optical film different from the first optical film is attached to the liquid crystal cell.
- a liquid crystal display panel is manufactured by bonding to the other side.
- the second optical film is long and has a width corresponding to a pair of opposing sides of the liquid crystal cell.
- the second optical film is cut to a length corresponding to another set of sides facing the liquid crystal cell, and is continuously bonded to the surface of the liquid crystal cell.
- the second optical film includes a polarizing film having an absorption axis in the longitudinal direction.
- the direction of the absorption axis of the polarizing film may include a direction of ⁇ 5 ° to + 5 ° counterclockwise with respect to the longitudinal direction of the second optical film.
- the absorption axes of the upper and lower polarizing films of the liquid crystal display panel obtained by this embodiment are orthogonal to each other.
- the optical film roll set of the present invention includes the optical film roll of the present invention (first optical film roll) and the second optical film roll in which the second optical film is wound into a roll shape.
- any appropriate mode is adopted as the driving mode of the liquid crystal cell.
- the VA mode or the IPS mode is preferable.
- the measuring method of the thickness of the obtained polarizing film is as follows. (Thickness of polarizing film) Using a dial gauge (manufactured by PEACOCK, product name “DG-205 type pds-2”), the thickness of the PVA resin layer or the PVA resin film was measured after the dyeing treatment described later.
- the coating solution was applied to one side of a stretched thermoplastic resin substrate by a die coater (die coating method) and then dried at 100 ° C. for 180 seconds to form a 9 ⁇ m thick PVA resin layer. In this way, a laminate was produced.
- ⁇ Crosslinking treatment> The layered product after dyeing was immersed in an aqueous boric acid solution at 60 ° C. (boric acid concentration: 5% by weight, potassium iodide concentration: 5% by weight) for 60 seconds.
- a protective film (thickness: 40 ⁇ m, manufactured by Fuji Film Co., Ltd., trade name “TD40UL”) was bonded to the polarizing film side of the laminate through a polyvinyl alcohol adhesive. Next, the thermoplastic resin substrate was peeled from the polarizing film to obtain a polarizing plate.
- a surface protective film with a pressure-sensitive adhesive layer having a thickness of 60 ⁇ m (trade name “PPF-100T” manufactured by Mitsubishi Polyester Co., Ltd.) is bonded to the polarizing film side of the polarizing plate, an acrylic film having a thickness of 23 ⁇ m is applied to the protective film side of the polarizing plate.
- a pressure-sensitive adhesive layer was formed, and a 38 ⁇ m-thick release film (manufactured by Mitsubishi Polyester Film Co., Ltd., trade name “MRF-ELB4”) was bonded to the surface to obtain a long optical film original.
- the obtained optical film original roll was wound to obtain an optical film original roll.
- Example 2 In producing the laminate, a 10 ⁇ m thick PVA resin layer was formed, the shrinkage of MD in the shrinkage / stretching process was set to 35%, and the iodine concentration was set to 0.45% by weight in the dyeing process. A polarizing plate was produced in the same manner as Example 1 except for the above. In addition, the thickness of the obtained polarizing film was 3 micrometers. Further, an optical film original roll was obtained in the same manner as in Example 1.
- Example 3 At the time of producing the laminate, a 13 ⁇ m-thick PVA resin layer was formed, the MD shrinkage rate was 15% in the shrinkage / stretching process, and the iodine concentration was 0.35% by weight in the dyeing process.
- a polarizing plate was produced in the same manner as Example 1 except for the above. In addition, the thickness of the obtained polarizing film was 3 micrometers. Further, an optical film original roll was obtained in the same manner as in Example 1.
- the polarizing plate or the optical film original fabric roll obtained in Examples and Comparative Examples was evaluated. Evaluation methods and evaluation criteria are as follows. The measurement results are shown in Table 1. 1. Nz coefficient of PVA resin film Wavelength ( ⁇ ) 848.2 nm, 903.4 nm, 954.7 nm at 23 ° C. using a phase difference measuring device (trade name “KOBRA 31X100 / IR” manufactured by Oji Scientific Instruments) The retardation of the polarizing film was measured with light of 1000.9 nm, 1045.9 nm, and 1089.0 nm.
- the front phase difference (Re) of each wavelength and the phase difference (R30) measured by tilting by 30 ° with the absorption axis as the tilt axis are measured, and the three-dimensional refractive index calculation software is obtained from the obtained phase difference value.
- the Nz coefficient was determined using (N-Calc. Ver. 1.23).
- the measurement performed the frequency
- Slit durability The obtained polarizing plate was wound into a roll (optical film roll) having a length of 50 m. While transporting this roll at 30 m / min, slit processing was performed at a position of 100 mm from both ends in the width direction to produce an optical film roll.
- the state of occurrence of cracks at both ends of the obtained optical film roll and the presence or absence of breakage were examined and used as an index of slit durability.
- the slit process was performed by the shear cut method, using a Goebel blade as a cutting blade.
- the optical film of the present invention is applied to a liquid crystal display panel such as a liquid crystal television, a liquid crystal display, a mobile phone, a personal digital assistant, a digital camera, a video camera, a portable game machine, a car navigation system, a copy machine, a printer, a fax machine, a clock, and a microwave oven.
- a liquid crystal display panel such as a liquid crystal television, a liquid crystal display, a mobile phone, a personal digital assistant, a digital camera, a video camera, a portable game machine, a car navigation system, a copy machine, a printer, a fax machine, a clock, and a microwave oven.
- a liquid crystal display panel such as a liquid crystal television, a liquid crystal display, a mobile phone, a personal digital assistant, a digital camera, a video camera, a portable game machine, a car navigation system, a copy machine, a printer, a fax machine, a clock, and a microwave oven.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
- Laminated Bodies (AREA)
Abstract
Description
好ましい実施形態においては、上記偏光膜の厚みが10μm未満である。
好ましい実施形態においては、上記偏光膜が、ポリビニルアルコール系樹脂フィルムまたは熱可塑性樹脂基材上に形成されたポリビニルアルコール系樹脂層をMDに収縮させて、TDに延伸することにより得られる。
好ましい実施形態においては、上記光学フィルム原反が、剥離フィルムと、粘着剤層と、上記偏光膜とがこの順で積層されている。
好ましい実施形態においては、上記光学フィルム原反が、剥離フィルムと、粘着剤層と、前記偏光膜と、前記反射偏光フィルムとがこの順で積層されている。
本発明の別の局面によれば、光学フィルムロールセットが提供される。この光学フィルムロールセットは、上記光学フィルムロールである第1の光学フィルムロールと、上記液晶セルの対向する一組の辺に対応する幅を有し、該液晶セルの対向するもう一組の辺に対応する長さに切断し、連続的に液晶セルの表面に貼り合わせるのに用いられ、長尺方向に吸収軸を有する偏光膜を含む長尺状の光学フィルムがロール状に巻回された第2の光学フィルムロールとを備える。
好ましい実施形態においては、上記液晶セルの駆動モードが、VAモードまたはIPSモードである。
本発明のさらに別の局面によれば、光学フィルムロールの製造方法が提供される。この光学フィルムロールの製造方法は、液晶セルの対向する一組の辺に対応する幅を有し、該液晶セルの対向するもう一組の辺に対応する長さに切断し、連続的に液晶セルの表面に貼り合わせるのに用いられる光学フィルムロールの製造方法であって、二色性物質を含み、Nz係数が1.10以上のポリビニルアルコール系樹脂膜から構成され、幅方向に吸収軸を有する偏光膜を含む長尺状の光学フィルム原反を、その長尺方向と平行に、該液晶セルの対向する一組の辺に対応する幅でスリット加工する工程と、該スリット工程で得られた長尺状の光学フィルムをロール状に巻回する工程とを含む。
好ましい実施形態においては、上記偏光膜の厚みが10μm未満である。
本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向の屈折率であり、「nz」は厚み方向の屈折率である。
(2)正面位相差(Re)
正面位相差(Re)は、膜(層)の厚みをd(nm)としたとき、Re=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
厚み方向の位相差(Rth)は、膜(層)の厚みをd(nm)としたとき、Rth={(nx+ny)/2-nz}×dによって求められる。
(4)Nz係数
Nz係数は、Nz=(nx-nz)/(nx-ny)によって求められる。
偏光板は、少なくとも偏光膜を含む。好ましくは、偏光板は、偏光膜の少なくとも片側に保護フィルムが配置されて構成されている。
上記偏光膜は、代表的には、二色性物質を含むポリビニルアルコール系樹脂(以下、「PVA系樹脂」と称する)膜から構成される。
R=a+b/(λ2-6002)
ここで、R:偏光膜の位相差、a:PVA系樹脂膜の位相差、b:定数である。
上記偏光膜は、その幅方向に吸収軸を有する限り、任意の適切な方法により製造される。偏光膜は、代表的には、PVA系樹脂膜に、適宜、延伸、染色等の処理を施すことにより製造される。
上記PVA系樹脂膜は、代表的には、長尺状に形成される。PVA系樹脂膜の厚みは、好ましくは100μm未満である。PVA系樹脂膜は、例えば、PVA系樹脂フィルムであってもよいし、熱可塑性樹脂基材上に形成されたPVA系樹脂層であってもよい。PVA系樹脂フィルムは、厚み10μm以上の偏光膜を製造する場合に好ましく用いられる。PVA系樹脂フィルムの厚みは、好ましくは30μm~80μmである。熱可塑性樹脂基材とPVA系樹脂層との積層体は、厚み10μm未満の偏光膜を製造する場合に好ましく用いられる。PVA系樹脂層の厚みは、好ましくは3μm~20μmである。このような薄い厚みでも、熱可塑性樹脂基材を用いることで良好に延伸することができる。
延伸方法としては、例えば、テンター延伸機を用いた固定端延伸、周速の異なるロールを用いた自由端延伸、同時二軸延伸機を用いた二軸延伸、逐次二軸延伸が挙げられる。これらは、単独で、または、二種以上組み合わせて採用し得る。具体的には、図4に示すように、PVA系樹脂膜11’を周速の異なるロール32,32,33,33間に通して搬送方向(MD)に延伸(自由端延伸)する場合、例えば、搬送方向に直交する方向(TD)への延伸と組み合わせる形態が挙げられる。なお、上記Nz係数は、例えば、延伸方法、延伸倍率、延伸温度等の延伸条件を適宜選択することにより制御することができる。以下、好ましい実施形態について具体的に説明する。
偏光膜を製造するための処理としては、延伸処理以外に、例えば、染色処理、不溶化処理、架橋処理、洗浄処理、乾燥処理等が挙げられる。これらの処理は、任意の適切なタイミングで施し得る。
上記保護フィルムの形成材料としては、例えば、(メタ)アクリル系樹脂、ジアセチルセルロース、トリアセチルセルロース等のセルロース系樹脂、シクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重体樹脂等が挙げられる。なお、上記熱可塑性樹脂基材を、そのまま保護フィルムとして用いてもよい。
上記粘着剤層は、任意の適切な粘着剤により形成される。代表的には、アクリル系粘着剤が用いられる。粘着剤層の厚みは、好ましくは7μm~25μmである。
光学フィルムロールとしてロール状に巻回された長尺状の光学フィルムの幅は、好ましくは、貼り合わせる液晶セルのサイズに対応して設定される。具体的には、長尺状の光学フィルムは、液晶セルの対向する一組の辺に対応する幅を有する。長尺状の光学フィルムは、好ましくは、広幅で長尺状の光学フィルム原反(スリット前ロール原反)を、スリット加工することにより製造される。より好ましくは、広幅で長尺状の光学フィルム原反(スリット前ロール原反)をスリット加工することにより、同じ幅または異なる幅の長尺状の光学フィルムが同時に複数製造される。
本発明の光学フィルムロールは、液晶セルの対向するもう一組の辺に対応する長さに切断され、連続的に液晶セルの表面に貼り合わされる。本明細書において「液晶セルの対向する一組(もう一組)の辺に対応する長さ(幅)」とは、光学フィルムを液晶セルに対して位置合わせして貼り合わせた場合に、当該液晶セルの周縁部に適切な製造上のマージン(具体的には、光学フィルムが貼り合わされていない露出部分)を確保できる長さ(幅)をいう。具体的には、「液晶セルの対向する一組(もう一組)の辺に対応する長さ(幅)」は、液晶セルの対向する一組(もう一組)の辺方向両端部の露出部分を除いた長さ(幅)をいう。
(偏光膜の厚み)
ダイヤルゲージ(PEACOCK社製、製品名「DG-205 type pds-2」)を用いて、後述の染色処理後に、PVA系樹脂層もしくはPVA系樹脂フィルムの厚みを測定した。
<積層体の作製>
(熱可塑性樹脂基材)
熱可塑性樹脂基材として、長尺状で厚み200μm、Tg123℃のシクロオレフィン系樹脂フィルム(JSR社製、商品名「ARTON」)を用いた。
(塗布液の調製)
重合度1800、ケン化度98~99%のポリビニルアルコール(PVA)樹脂(日本合成化学工業社製、商品名「ゴーセノール(登録商標)NH-18」)を水に溶解させて、濃度7重量%のポリビニルアルコール水溶液を調製した。
(PVA系樹脂層の形成)
延伸処理を施した熱可塑性樹脂基材の片面に、上記塗布液をダイコーター(ダイコート法)により塗布した後、100℃で180秒間乾燥して、厚み9μmのPVA系樹脂層を形成した。このようにして、積層体を作製した。
得られた積層体を、図3に示すように、同時二軸延伸機を用いて、140℃で、MDに40%収縮させると同時に、TDに5.0倍に乾式延伸した。
次いで、積層体を、25℃のヨウ素水溶液(ヨウ素濃度:0.5重量%、ヨウ化カリウム濃度:10重量%)に30秒間浸漬させた。
染色後の積層体を、60℃のホウ酸水溶液(ホウ酸濃度:5重量%、ヨウ化カリウム濃度:5重量%)に60秒間浸漬させた。
架橋処理後、積層体を、25℃のヨウ化カリウム水溶液(ヨウ化カリウム濃度:5重量%)に5秒間浸漬させた。
このようにして、熱可塑性樹脂基材上に、厚み3μmの偏光膜を作製した。
積層体の作製に際し、厚み10μmのPVA系樹脂層を形成したこと、収縮・延伸処理においてMDの収縮率を35%としたこと、および、染色処理に際してヨウ素濃度を0.45重量%としたこと以外は、実施例1と同様にして偏光板を作製した。なお、得られた偏光膜の厚みは、3μmであった。さらに、実施例1と同様にして光学フィルム原反ロールを得た。
積層体の作製に際し、厚み13μmのPVA系樹脂層を形成したこと、収縮・延伸処理においてMDの収縮率を15%としたこと、および、染色処理に際してヨウ素濃度を0.35重量%としたこと以外は、実施例1と同様にして偏光板を作製した。なお、得られた偏光膜の厚みは、3μmであった。さらに、実施例1と同様にして光学フィルム原反ロールを得た。
積層体のかわりに厚み75μmのPVA系樹脂フィルム(クラレ社製、商品名「PS-7500」)を用いたこと、収縮・延伸処理の温度を110℃としてMDの収縮率を20%としたこと、および、染色処理に際してヨウ素濃度を0.2重量%としたこと以外は、実施例1と同様にして偏光板を作製した。なお、得られた偏光膜の厚みは、19μmであった。さらに、実施例1と同様にして光学フィルム原反ロールを得た。
積層体の作製に際し、厚み7μmのPVA系樹脂層を形成したこと、収縮・延伸処理においてMDの収縮率を55%としたこと、および、染色処理に際してヨウ素濃度を0.53重量%としたこと以外は、実施例1と同様にして偏光板を作製した。なお、得られた偏光膜の厚みは、3μmであった。さらに、実施例1と同様にして光学フィルム原反ロールを得た。
1.PVA系樹脂膜のNz係数
位相差測定装置(王子計測機器社製、商品名「KOBRA 31X100/IR」)を用いて、23℃における波長(λ)848.2nm,903.4nm,954.7nm,1000.9nm,1045.9nmおよび1089.0nmの光で偏光膜の位相差を測定した。具体的には、各波長の正面位相差(Re)および吸収軸を傾斜軸として30°傾斜させて測定した位相差(R30)を測定し、得られた位相差値から3次元屈折率計算ソフト(N-Calc.Ver.1.23)を用いて、Nz係数を求めた。なお、測定は、上記近似曲線に関する決定係数が0.9以上となる回数を実施した。
2.スリット耐久性
得られた偏光板を巻回して長さ50mのロール(光学フィルム原反ロール)とした。このロールを30m/minで搬送しながら、幅方向の両端部から100mmの位置にスリット加工を行い、光学フィルムロールを作製した。得られた光学フィルムロールの両端部のクラックの発生状態および破断の有無を調べ、スリット耐久性の指標とした。なお、スリット加工は、切断刃としてゲーベル刃を用い、シェアカット方式で行った。
(評価基準)
◎:クラックが0~5個
○:クラックが5~10個
△:クラックが10~15個
×:クラックが15個以上または破断
3.偏光度
分光光度計(村上色彩社製、製品名「Dot-41」)を用いて、偏光膜(偏光板)の単体透過率(Ts)、平行透過率(Tp)および直交透過率(Tc)を測定し、単体透過率40%における偏光度(P)を次式にて求めた。なお、これらの透過率は、JIS Z 8701の2度視野(C光源)により測定し、視感度補正を行ったY値である。
偏光度(P)={(Tp-Tc)/(Tp+Tc)}1/2×100
(評価基準)
◎:99.95%以上
○:99.93%以上
×:99.9%未満
表1から明らかなように、偏光膜の厚みが小さい(例えば、10μm未満である)場合に、Nz係数を所定の値以上に最適化することにより、優れたスリット耐久性を確保することができる。
11 偏光膜
21 第1の保護フィルム
22 第2の保護フィルム
30 粘着剤層
40 剥離フィルム
50 表面保護フィルム
100 光学フィルムロール(光学フィルム)
Claims (9)
- 液晶セルの対向する一組の辺に対応する幅を有し、該液晶セルの対向するもう一組の辺に対応する長さに切断し、連続的に液晶セルの表面に貼り合わせるのに用いられる光学フィルムロールであって、
二色性物質を含み、Nz係数が1.10以上のポリビニルアルコール系樹脂膜から構成され、幅方向に吸収軸を有する偏光膜を含む長尺状の光学フィルム原反を、その長尺方向に搬送しながら搬送方向にスリット加工することで得られた長尺状の光学フィルムがロール状に巻回されている、
光学フィルムロール。 - 前記偏光膜の厚みが10μm未満である、請求項1に記載の光学フィルムロール。
- 前記偏光膜が、ポリビニルアルコール系樹脂フィルムまたは熱可塑性樹脂基材上に形成されたポリビニルアルコール系樹脂層をMDに収縮させて、TDに延伸することにより得られる、請求項1または2に記載の光学フィルムロール。
- 前記光学フィルム原反が、剥離フィルムと、粘着剤層と、前記偏光膜とがこの順で積層されている、請求項1から3のいずれかに記載の光学フィルムロール。
- 前記光学フィルム原反が、剥離フィルムと、粘着剤層と、前記偏光膜と、前記反射偏光フィルムとがこの順で積層されている、請求項1から4のいずれかに記載の光学フィルムロール。
- 請求項1から5のいずれかに記載の光学フィルムロールである第1の光学フィルムロールと、
前記液晶セルの対向する一組の辺に対応する幅を有し、該液晶セルの対向するもう一組の辺に対応する長さに切断し、連続的に液晶セルの表面に貼り合わせるのに用いられ、長尺方向に吸収軸を有する偏光膜を含む長尺状の光学フィルムがロール状に巻回された第2の光学フィルムロールと
を備える、光学フィルムロールセット。 - 前記液晶セルの駆動モードが、VAモードまたはIPSモードである、請求項6に記載の光学フィルムロールセット。
- 液晶セルの対向する一組の辺に対応する幅を有し、該液晶セルの対向するもう一組の辺に対応する長さに切断し、連続的に液晶セルの表面に貼り合わせるのに用いられる光学フィルムロールの製造方法であって、
二色性物質を含み、Nz係数が1.10以上のポリビニルアルコール系樹脂膜から構成され、幅方向に吸収軸を有する偏光膜を含む長尺状の光学フィルム原反を、その長尺方向と平行に、該液晶セルの対向する一組の辺に対応する幅でスリット加工する工程と、
該スリット工程で得られた長尺状の光学フィルムをロール状に巻回する工程と
を含む、光学フィルムロールの製造方法。 - 前記偏光膜の厚みが10μm未満である、請求項8に記載の光学フィルムロールの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/373,765 US9581743B2 (en) | 2012-03-14 | 2013-03-14 | Optical film roll |
CN201380013724.3A CN104169756B (zh) | 2012-03-14 | 2013-03-14 | 光学膜卷筒、光学膜卷筒套组以及光学膜卷筒的制造方法 |
KR1020147024962A KR101658720B1 (ko) | 2012-03-14 | 2013-03-14 | 광학 필름 롤 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-057935 | 2012-03-14 | ||
JP2012057935 | 2012-03-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013137389A1 true WO2013137389A1 (ja) | 2013-09-19 |
Family
ID=49161292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/057189 WO2013137389A1 (ja) | 2012-03-14 | 2013-03-14 | 光学フィルムロール |
Country Status (6)
Country | Link |
---|---|
US (1) | US9581743B2 (ja) |
JP (1) | JP6176827B2 (ja) |
KR (1) | KR101658720B1 (ja) |
CN (1) | CN104169756B (ja) |
TW (1) | TWI494621B (ja) |
WO (1) | WO2013137389A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016118776A (ja) * | 2014-12-22 | 2016-06-30 | 住友化学株式会社 | プロテクトフィルム付偏光板及びそれを含む積層体 |
JP2016118771A (ja) * | 2014-12-18 | 2016-06-30 | 住友化学株式会社 | プロテクトフィルム付偏光板及びそれを含む積層体 |
WO2020170521A1 (ja) * | 2019-02-20 | 2020-08-27 | 日東電工株式会社 | 切削加工された粘着剤層付光学積層体の製造方法 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105717569A (zh) * | 2014-12-18 | 2016-06-29 | 住友化学株式会社 | 带有保护膜的偏振板及包含它的层叠体 |
JP6619986B2 (ja) * | 2015-10-23 | 2019-12-11 | 住友化学株式会社 | 延伸フィルムの製造方法及び偏光フィルムの製造方法 |
JP6771913B2 (ja) | 2016-03-22 | 2020-10-21 | 日東電工株式会社 | 表面保護フィルム付偏光フィルム、及び偏光フィルムの製造方法 |
JP6905312B2 (ja) | 2016-03-30 | 2021-07-21 | 日東電工株式会社 | 光学フィルム、剥離方法及び光学表示パネルの製造方法 |
JP7005400B2 (ja) * | 2017-04-20 | 2022-01-21 | 住友化学株式会社 | 光学積層体の製造方法及び積層束の製造方法 |
CN107791499B (zh) * | 2017-11-01 | 2024-09-27 | 池州市星聚信息技术服务有限公司 | 一种预压式pet膜单向拉伸装置 |
KR102291616B1 (ko) * | 2017-12-21 | 2021-08-23 | 산진 옵토일렉트로닉스 (쑤저우) 컴퍼니 리미티드 | 디스플레이 유닛 제조방법 및 제조시스템 |
JP2019174636A (ja) * | 2018-03-28 | 2019-10-10 | コニカミノルタ株式会社 | 斜め延伸フィルム、偏光板、異形表示装置および斜め延伸フィルムの製造方法 |
CN111045135B (zh) * | 2018-10-15 | 2023-08-22 | 日东电工株式会社 | 带相位差层的偏振片及使用了该带相位差层的偏振片的图像显示装置 |
JP7238520B2 (ja) * | 2019-03-20 | 2023-03-14 | 東洋紡株式会社 | 多層積層フィルム |
EP4021693A4 (en) * | 2019-08-27 | 2023-11-01 | Blue Solutions Canada Inc. | SYSTEM AND METHOD FOR CUTTING A METAL FILM |
JP7544059B2 (ja) | 2019-09-05 | 2024-09-03 | 日本ゼオン株式会社 | 偏光フィルムの製造方法、及び製造装置 |
JP2020190754A (ja) * | 2020-08-18 | 2020-11-26 | 日東電工株式会社 | 光学フィルム、剥離方法及び光学表示パネルの製造方法 |
WO2023176690A1 (ja) * | 2022-03-14 | 2023-09-21 | 日東電工株式会社 | 表示システム、光学積層体、および表示システムの製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009113123A (ja) * | 2007-11-01 | 2009-05-28 | Nitto Denko Corp | 積層光学フィルムの切断方法 |
JP2009282140A (ja) * | 2008-05-20 | 2009-12-03 | Nitto Denko Corp | 画像表示パネル及びその製造方法 |
WO2010092926A1 (ja) * | 2009-02-13 | 2010-08-19 | 日東電工株式会社 | 積層光学体、光学フィルム、および該光学フィルムを用いた液晶表示装置、ならびに積層光学体の製造方法 |
JP2010243858A (ja) * | 2009-04-07 | 2010-10-28 | Nitto Denko Corp | 偏光板、液晶パネルおよび液晶表示装置 |
US20120055608A1 (en) * | 2010-09-03 | 2012-03-08 | Nitto Denko Corporation | Method of producing roll of laminate strip with polarizing film |
WO2012176614A1 (ja) * | 2011-06-20 | 2012-12-27 | コニカミノルタアドバンストレイヤー株式会社 | 長尺状偏光板及び液晶表示装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3448011B2 (ja) | 2000-04-25 | 2003-09-16 | 株式会社クラレ | 偏光フィルムの製造法 |
CN100520454C (zh) * | 2004-08-04 | 2009-07-29 | 富士胶片株式会社 | 热塑性膜和制备该热塑性膜的方法 |
JP2009093074A (ja) * | 2007-10-11 | 2009-04-30 | Nitto Denko Corp | 偏光板の製造方法、偏光板、光学フィルムおよび画像表示装置 |
JP5375043B2 (ja) * | 2007-11-30 | 2013-12-25 | Jsr株式会社 | 積層光学フィルムの製造方法、積層光学フィルムおよびその用途 |
JP2009157339A (ja) * | 2007-12-05 | 2009-07-16 | Nitto Denko Corp | 偏光板、液晶パネルおよび液晶表示装置 |
JP4855493B2 (ja) * | 2008-04-14 | 2012-01-18 | 日東電工株式会社 | 光学表示装置製造システム及び光学表示装置製造方法 |
JP4406043B2 (ja) | 2008-04-16 | 2010-01-27 | 日東電工株式会社 | ロール原反セット、及びロール原反の製造方法 |
JP2009300768A (ja) * | 2008-06-13 | 2009-12-24 | Sumitomo Chemical Co Ltd | 偏光板ロールおよびそれを用いた感圧式接着剤層付き偏光板ロール、偏光板、液晶表示装置 |
JP2012198449A (ja) * | 2011-03-23 | 2012-10-18 | Nitto Denko Corp | 偏光膜および偏光フィルム |
-
2013
- 2013-03-13 JP JP2013049995A patent/JP6176827B2/ja active Active
- 2013-03-14 KR KR1020147024962A patent/KR101658720B1/ko active IP Right Grant
- 2013-03-14 CN CN201380013724.3A patent/CN104169756B/zh active Active
- 2013-03-14 US US14/373,765 patent/US9581743B2/en not_active Expired - Fee Related
- 2013-03-14 TW TW102109094A patent/TWI494621B/zh active
- 2013-03-14 WO PCT/JP2013/057189 patent/WO2013137389A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009113123A (ja) * | 2007-11-01 | 2009-05-28 | Nitto Denko Corp | 積層光学フィルムの切断方法 |
JP2009282140A (ja) * | 2008-05-20 | 2009-12-03 | Nitto Denko Corp | 画像表示パネル及びその製造方法 |
WO2010092926A1 (ja) * | 2009-02-13 | 2010-08-19 | 日東電工株式会社 | 積層光学体、光学フィルム、および該光学フィルムを用いた液晶表示装置、ならびに積層光学体の製造方法 |
JP2010243858A (ja) * | 2009-04-07 | 2010-10-28 | Nitto Denko Corp | 偏光板、液晶パネルおよび液晶表示装置 |
US20120055608A1 (en) * | 2010-09-03 | 2012-03-08 | Nitto Denko Corporation | Method of producing roll of laminate strip with polarizing film |
WO2012176614A1 (ja) * | 2011-06-20 | 2012-12-27 | コニカミノルタアドバンストレイヤー株式会社 | 長尺状偏光板及び液晶表示装置 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016118771A (ja) * | 2014-12-18 | 2016-06-30 | 住友化学株式会社 | プロテクトフィルム付偏光板及びそれを含む積層体 |
JP2017161915A (ja) * | 2014-12-18 | 2017-09-14 | 住友化学株式会社 | プロテクトフィルム付偏光板及びそれを含む積層体 |
JP2016118776A (ja) * | 2014-12-22 | 2016-06-30 | 住友化学株式会社 | プロテクトフィルム付偏光板及びそれを含む積層体 |
WO2020170521A1 (ja) * | 2019-02-20 | 2020-08-27 | 日東電工株式会社 | 切削加工された粘着剤層付光学積層体の製造方法 |
JP2020134709A (ja) * | 2019-02-20 | 2020-08-31 | 日東電工株式会社 | 切削加工された粘着剤層付光学積層体の製造方法 |
JP7257810B2 (ja) | 2019-02-20 | 2023-04-14 | 日東電工株式会社 | 切削加工された粘着剤層付光学積層体の製造方法 |
JP2023057095A (ja) * | 2019-02-20 | 2023-04-20 | 日東電工株式会社 | 切削加工された粘着剤層付光学積層体の製造方法 |
JP7378654B2 (ja) | 2019-02-20 | 2023-11-13 | 日東電工株式会社 | 切削加工された粘着剤層付光学積層体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2013218317A (ja) | 2013-10-24 |
TWI494621B (zh) | 2015-08-01 |
CN104169756B (zh) | 2016-11-23 |
CN104169756A (zh) | 2014-11-26 |
US20150029447A1 (en) | 2015-01-29 |
KR20140131948A (ko) | 2014-11-14 |
TW201348761A (zh) | 2013-12-01 |
KR101658720B1 (ko) | 2016-09-21 |
US9581743B2 (en) | 2017-02-28 |
JP6176827B2 (ja) | 2017-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6176827B2 (ja) | 光学フィルムロール | |
JP6245817B2 (ja) | 光学フィルムロール | |
JP6112921B2 (ja) | 液晶表示パネルの製造方法 | |
JP6172980B2 (ja) | 液晶表示パネルの製造方法 | |
JP6409142B1 (ja) | 偏光膜、偏光板、および偏光膜の製造方法 | |
JP6083924B2 (ja) | 光学積層体、光学積層体のセットおよびそれらを用いた液晶パネル | |
KR20200054184A (ko) | 편광판, 편광판 롤 및 편광막의 제조 방법 | |
KR20200054183A (ko) | 편광판, 편광판 롤 및 편광막의 제조 방법 | |
KR20210005013A (ko) | 편광판, 편광판 롤 및 편광막의 제조 방법 | |
WO2023176360A1 (ja) | レンズ部、積層体、表示体、表示体の製造方法および表示方法 | |
JP2019194660A (ja) | 偏光膜、偏光板、偏光板ロール、および偏光膜の製造方法 | |
JP2023166827A (ja) | レンズ部、積層体、表示体、表示体の製造方法および表示方法 | |
JP2019197204A (ja) | 偏光板および偏光板ロール | |
KR20200054182A (ko) | 편광판, 편광판 롤 및 편광막의 제조 방법 | |
JP2019197206A (ja) | 偏光板および偏光板ロール | |
JP2019197205A (ja) | 偏光板および偏光板ロール | |
KR20200054185A (ko) | 편광판, 편광판 롤 및 편광막의 제조 방법 | |
KR20200054186A (ko) | 편광판, 편광판 롤 및 편광막의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13760780 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14373765 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20147024962 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13760780 Country of ref document: EP Kind code of ref document: A1 |