Nothing Special   »   [go: up one dir, main page]

WO2013133284A1 - 抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板 - Google Patents

抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板 Download PDF

Info

Publication number
WO2013133284A1
WO2013133284A1 PCT/JP2013/056021 JP2013056021W WO2013133284A1 WO 2013133284 A1 WO2013133284 A1 WO 2013133284A1 JP 2013056021 W JP2013056021 W JP 2013056021W WO 2013133284 A1 WO2013133284 A1 WO 2013133284A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
group
coating film
coating
metal plate
Prior art date
Application number
PCT/JP2013/056021
Other languages
English (en)
French (fr)
Inventor
湯淺 健正
山岡 育郎
森下 敦司
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/383,382 priority Critical patent/US20150044450A1/en
Priority to CA2861763A priority patent/CA2861763C/en
Priority to CN201380002931.9A priority patent/CN103781627B/zh
Priority to RU2014140202/05A priority patent/RU2592895C2/ru
Priority to MX2014009405A priority patent/MX2014009405A/es
Priority to KR1020147024146A priority patent/KR101915343B1/ko
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2013555114A priority patent/JP5940097B2/ja
Priority to EP13758164.1A priority patent/EP2823959A4/en
Priority to KR1020167022810A priority patent/KR101957004B1/ko
Priority to BR112014019369A priority patent/BR112014019369A8/pt
Publication of WO2013133284A1 publication Critical patent/WO2013133284A1/ja
Priority to ZA2014/06025A priority patent/ZA201406025B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0272Rods, electrodes, wires with more than one layer of coating or sheathing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/226Non-corrosive coatings; Primers applied before welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/365Selection of non-metallic compositions of coating materials either alone or conjoint with selection of soldering or welding materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/20Aqueous dispersion or solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2701/00Coatings being able to withstand changes in the shape of the substrate or to withstand welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/252Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31605Next to free metal

Definitions

  • the present invention provides resistance weldability, corrosion resistance, and moldability, in which at least a part of the surface is coated with a film containing an organic resin, particles of non-oxide ceramics having an electrical resistivity in a specific range, and a rust preventive pigment.
  • the present invention relates to a coated metal plate for automobiles that excels in the performance of the automobile.
  • Most automobile body members are made of a metal plate such as a steel plate, and [1] a blank process for cutting the metal plate into a predetermined size, [2] an oil washing process for washing the metal plate with oil, and [3] a blank. [4] a joining step for assembling the molded material into a member having a desired shape by spot welding or adhesion, [5] a step for degreasing and washing the press oil on the member surface, [6] a chemical conversion treatment step, [ 7] Manufactured through many processes called an electrodeposition coating process.
  • the body member used as the outer plate is further subjected to a coating process such as [8] intermediate coating process and [9] top coating process. Therefore, in the automobile industry, there is a high need for cost reduction by omitting or simplifying the manufacturing process, particularly the chemical conversion treatment process and the painting process.
  • the corrosion resistance of automobile members is often ensured by the chemical conversion coating and the subsequent electrodeposition coating.
  • corrosion resistance is supplemented by using rust preventive auxiliary materials such as body sealers, undercoats, adhesives, and bag part waxes.
  • Such a coated metal plate is assembled into a desired shape by spot welding or the like after press forming, and then is subjected to electrodeposition coating or intermediate coating when the electrodeposition coating process is omitted. Therefore, it is necessary to enhance the press formability, to make the coating film conductive and to provide sufficient corrosion resistance so that resistance welding or further electrodeposition coating coating can be performed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 55-17508 proposes a technique of an alloyed galvanized steel sheet that has a resin-based conductive coating film containing zinc powder and has high corrosion resistance and can be welded. ing. It is described that the zinc powder is preferably contained in the coating film in an amount of 30 to 90% by mass, and the coating film thickness is preferably 2 to 30 ⁇ m.
  • Patent Document 2 Japanese Patent Laid-Open No. 9-276788 discloses an organic resin coating film containing 3 to 59% by volume of conductive powder and a rust preventive pigment on a rust preventive treatment layer mainly composed of a chromium compound. Discloses a technique of an organic composite plated steel sheet that is coated with a thickness of 0.5 to 20 ⁇ m and has excellent corrosion resistance and is capable of resistance welding.
  • the type of the conductive powder is not limited, but in the examples, iron phosphide, Fe-Si alloy, Fe-Co alloy, etc. are used as the conductive powder, and it is said that it is excellent in corrosion resistance and spot weldability. .
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-70842 describes a 25 to 45 mass% conductive pigment containing iron phosphide as a main component and rust prevention, on top of a chromate base treatment that improves corrosion resistance and coating film adhesion.
  • a technique of Ni-containing electrogalvanized steel sheet for automobile repair parts which is coated with an organic resin layer containing a pigment in a thickness of 2 to 8 ⁇ m and has excellent corrosion resistance, resistance weldability and the like. Since both water-based and solvent-based coating resins are exemplified in the examples, the coating composition for forming the resin coating layer can be either water-based or solvent-based.
  • Patent Document 4 Japanese Patent Publication No. 2003-513141 discloses a specific organic binder 10 to 30 mass as a metal surface coating agent that can form a corrosion-resistant coating film that is conductive and weldable after being cured on a metal surface. And water-based coating agent containing 30 to 60% by weight of conductive powder has been proposed. Examples of conductive powders suitable for the preparation of this coating agent include zinc, aluminum, graphite, carbon black, molybdenum sulfide, and phosphation. Iron is mentioned.
  • Patent Document 5 Japanese Patent Laid-Open No. 2005-288730
  • Patent Document 6 Japanese Patent Laid-Open No. 2005-325427
  • the first is to strengthen the adhesion to the plating on the surface of a zinc-based plated steel sheet or an aluminum-based plated steel sheet.
  • a technology for organic coated steel sheets for automobiles that achieves both excellent corrosion resistance and weldability by coating a resin-based second layer film containing a conductive pigment and an antirust additive via a layer film has been proposed.
  • the coating composition for forming the first layer film is water-based
  • the coating composition for forming the second layer film indicates both aqueous and solvent-based resin compositions in the literature.
  • the conductive pigment is contained in an amount of 5 to 70% by volume in the second layer film having a film thickness of 1 to 30 ⁇ m.
  • Suitable conductive pigments include metals, alloys, conductive carbon, iron phosphide, carbides, and semiconductor oxides. Illustrated.
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2004-42622 discloses that a conductive coating film containing an alloy or compound of a metal and a metalloid element as a conductive particle and a specific urethane-based resin can be welded with high corrosion resistance. New technology for painted metal has been proposed. It is described that the conductive particles are preferably an alloy or compound containing 50% by mass or more of Si, and more preferably ferrosilicon containing 70% by mass or more of Si.
  • Patent Document 8 Japanese Patent Laid-Open No. 2003-268567 discloses a core metal of titanium, zirconium, tantalum, niobium, or these. It is covered with a clad layer made of a corrosion-resistant metal selected from alloys of the above, and further comprises at least one conductive material selected from a carbon material, conductive ceramics, and metal powder, and an arbitrary resin that binds them.
  • a technique of a conductive material-coated corrosion-resistant metal material that is coated with a surface treatment layer and has excellent corrosion resistance and conductivity has been proposed.
  • JP-A-55-17508 JP-A-9-276788 JP 2000-70842 A Japanese translation of PCT publication No. 2003-513141 JP 2005-288730 A JP 2005-325427 A JP 2004-42622 A JP 2003-268567 A
  • Patent Document 1 As described in the section of “Background Art”, the technique of Patent Document 1 is used in order to make a coating film conductive and to provide sufficient corrosion resistance so that it can be resistance-welded, or can be further coated with an electrodeposition coating film.
  • the document 1 describes that the alloyed galvanized layer and the coating film are in close contact with each other, so that it has excellent peeling resistance at the time of molding. There was a problem that the corrosion resistance of the part where the coating film peeled off was lowered.
  • a rust preventive layer containing a chromium compound must be used as a base in order to develop desired corrosion resistance. This does not match the current needs to avoid the harmfulness and environmental impact of hexavalent chromium. Also, powders such as iron phosphide and Fe-Si alloys used as conductive pigments are much less conductive than metal powders, so it is necessary to add a large amount of conductive powder to make the coating film conductive. There was a problem that remarkable coating film peeling and galling occurred during press molding, and the corrosion resistance of the part where the coating film was peeled was lowered.
  • Patent Document 4 when metal powder such as zinc or aluminum is used among suitable conductive powders, if the metal powder content in the coating film increases, the conductivity ( Resistance weldability) is improved, but there is a conflicting tendency that the corrosion resistance is remarkably lowered, and it is impossible to achieve both weldability and corrosion resistance.
  • powders such as conductive carbon, molybdenum sulfide, iron phosphide, and semiconductor oxide, these are much less conductive than metal powders.
  • it is necessary to add a large amount of powder and there is a problem that remarkable coating film peeling or galling occurs during press molding, resulting in a decrease in corrosion resistance.
  • Patent Document 8 is a technique proposed for special applications such as a fuel cell separator and an electrochemical electrode. Therefore, the corrosion-resistant metal used for the cladding layer is very expensive, and it is difficult to apply it to automobile body members. was.
  • Patent Documents 2 and 3 As described above, in the conventional technique, a chromate base must be used together in order to achieve both sufficient conductivity and corrosion resistance (Patent Documents 2 and 3), and the addition of conventional conductive particles sacrifices corrosion resistance and moldability. (Patent Documents 2 to 7), there are various problems such as an inability to obtain an inexpensive coated metal plate applicable to automobile body members (Patent Document 8).
  • the present invention has been made in view of the above problems, and at least a part of the surface is coated with a chromate-free film containing non-oxide ceramic particles whose electric resistivity is limited to a very low range.
  • the present invention relates to a coated metal sheet for automobiles having excellent resistance weldability, corrosion resistance, and formability.
  • the present inventors have obtained an electrical resistivity of 0.1 ⁇ 10 ⁇ 6 to 185 ⁇ 10 ⁇ 6 ⁇ cm, which is industrially available at a relatively low cost. It was found that a coated metal sheet for automobiles excellent in all of conductivity, corrosion resistance and formability can be obtained by forming a film containing an organic resin containing non-oxide ceramic particles and an antirust pigment on a metal surface.
  • An automotive painted metal plate comprising a metal plate and a coating film ( ⁇ ) on at least one surface of the metal plate,
  • the coating film ( ⁇ ) is selected from at least one of the organic resin (A), boride, carbide, nitride, and silicide, and the electrical resistivity at 25 ° C. is 0.1 ⁇ 10 ⁇ 6 to 185 ⁇ .
  • the organic resin (A) includes an organic resin (A1) having at least one hydrophilic functional group.
  • the organic resin (A) includes an organic resin (A1) having at least one hydrophilic functional group and a derivative (A2) of the resin (A1). Board.
  • the organic resin (A1) contains a carboxyl group (—COOH), a carboxylate group (—COO ⁇ M + , M + is a monovalent cation), a sulfonate group (—SO 3 H), a sulfonate group ( —SO 3 ⁇ M + , where M + is a monovalent cation), primary amino group (—NH 2 ), secondary amino group (—NHR 1 , where R 1 is a hydrocarbon group), tertiary amino group (—NR 1 R 2 , where R 1 and R 2 are hydrocarbon groups), quaternary ammonium base (—N + R 1 R 2 R 3 X ⁇ , where R 1 , R 2 , R 3 are hydrocarbons group, X - 1 monovalent anion), sulfon
  • A1 represents an organic resin (A1)
  • Z— represents a hydrocarbon chain having 1 to 9 carbon atoms, 0 to 2 nitrogen atoms, and 0 to 2 oxygen atoms
  • ⁇ Z indicates that “A1” and “Z” are covalently bonded via both functional groups, “—O—” is an ether bond, and “—OH” is a hydroxyl group.
  • —X is a hydrolyzable alkoxy group having 1 to 3 carbon atoms, a hydrolyzable halogeno group or a hydrolyzable acetoxy group
  • —R is an alkyl group having 1 to 3 carbon atoms
  • the painted metal plate for automobiles according to (3) which is a resin (A2 Si ) represented by: (6) The electrical resistivity at 25 ° C.
  • non-oxide ceramic particles (B) is 0.1 ⁇ 10 ⁇ 6 to 100 ⁇ 10 ⁇ 6 ⁇ cm, (1) to (5)
  • (B1) having a particle size of 1 ⁇ m to 24 ⁇ m is 0.8 particles / mm 2 to 40000 particles / mm on at least one surface of the metal plate. 2.
  • non-oxide ceramic particles (B) are boride ceramics: BaB 6 , CeB 6 , Co 2 B, CoB, FeB, GdB 4 , GdB 6 , LaB 4 , LaB 6 , Mo 2 B, MoB, MoB 2, Mo 2 B 5, Nb 3 B 2, NbB, Nb 3 B 4, NbB 2, NdB 4, NdB 6, PrB 4, PrB 6, SrB 6, TaB, TaB 2, TiB, TiB 2, VB, VB 2, W 2 B 5, YB 4, YB 6, YB 12, and ZrB 2, carbide ceramics: MoC, Mo 2 C, Nb 2 C, NbC, Ta 2 C, TaC, TiC, V 2 C, VC, WC, W 2 C, and ZrC, nitride ceramics: Mo 2 N, Nb 2 N, NbN, ScN, Ta 2 N, TiN, and ZrN, silicide ceramics: CoSi 2 , Mo 3 Si, Mo 5
  • the metal oxide fine particles (D) contain one or more metal elements selected from the group consisting of Si, Ti, Al, and Zr.
  • the non-oxidized ceramic particles (D) having a total volume in the coating film ( ⁇ ) of metal oxide nanoparticles (D1) having a particle diameter of 1 nm to 100 nm
  • the present invention it is possible to provide a coated metal sheet for automobiles that is excellent in sufficient resistance weldability, corrosion resistance, and formability, simply by adding specific conductive particles and antirust pigments to the coating film.
  • the conductive particles described above are stable for a long time in acidic or alkaline aqueous solutions, neutral water, and various non-aqueous solvents, so that aqueous or solvent-based coating compositions suitable for obtaining the coating film of the present invention are used. You can choose things freely.
  • FIG. 1 shows a schematic view of a cross section of a painted metal sheet for automobiles of the present invention.
  • FIG. 2 represents a cross-sectional photograph of a painted metal plate.
  • Fig.2 (a) is a surface layer cross-sectional SEM photograph of a coating metal plate
  • FIG.2 (b) is a cross-sectional SEM photograph at the time of pressurization with a welding electrode of a coating metal plate joining part.
  • FIG. 3 is a schematic diagram showing a state during welding of a painted metal plate for automobiles.
  • FIG. 4 is a schematic view showing that the metal oxide fine particles (D) adhere to the periphery of the non-oxide ceramic particles (B) or are sandwiched between the non-oxide ceramic particles (B) to inhibit current conduction.
  • FIG. D metal oxide fine particles
  • the coated metal plate of the present invention is a metal plate having at least a part of the surface coated with a specific conductive coating film.
  • the metal plate may be coated on both sides of the metal plate with a coating film, or may be coated on only one side, or even on a part of the surface. It may be.
  • the part covered with the coating film of the metal plate has excellent resistance weldability, corrosion resistance, and formability.
  • the metal plate As a constituent metal of the metal plate that can be used for the painted metal plate of the present invention, for example, aluminum, titanium, zinc, copper, nickel, steel, and the like can be included.
  • the components of these metals are not particularly limited.
  • steel when steel is used, it may be ordinary steel or steel containing additive elements such as chromium.
  • additive elements such as chromium.
  • the metal plate of the present invention is press-molded, the type and amount of additive elements and the metal structure are appropriately controlled so as to have the desired formability followability in any metal plate. Is preferred.
  • the surface may have a coating plating layer, but the type is not particularly limited.
  • Applicable plating layers include, for example, plating containing any one of zinc, aluminum, cobalt, tin, and nickel, and alloy plating containing these metal elements, and other metal elements and non-metal elements. Etc.
  • the zinc-based plating layer for example, plating made of zinc, alloy plating of zinc and at least one of aluminum, cobalt, tin, nickel, iron, chromium, titanium, magnesium, manganese, or other
  • Various zinc-based alloy plating containing metal elements and non-metal elements can be mentioned, but alloy components other than zinc are not particularly limited.
  • cobalt, molybdenum, tungsten, nickel, titanium, chromium, aluminum, manganese, iron, magnesium, lead, bismuth, antimony, tin, copper, cadmium, arsenic, etc. as a small amount of different metal elements or impurities in these plating layers
  • those containing inorganic substances such as silica, alumina, and titania may be included.
  • aluminum plating layer aluminum or alloy plating of at least one of aluminum and silicon, zinc, and magnesium (for example, aluminum and silicon alloy plating, aluminum and zinc alloy plating, aluminum, silicon, and magnesium ternary) Alloy plating) and the like.
  • multi-layer plating in combination with the above plating and other types of plating such as iron plating, iron-phosphorus alloy plating, nickel plating, cobalt plating and the like is also applicable.
  • the method for forming the plating layer is not particularly limited.
  • electroplating, electroless plating, hot dipping, vapor deposition plating, dispersion plating, or the like can be used.
  • the plating method may be either a continuous type or a batch type.
  • post-plating treatments include zero spangle treatment, which is uniform appearance after hot dipping, annealing treatment, which is a modification treatment of the plating layer, temper rolling for surface condition and material adjustment, etc.
  • these are not particularly limited in the present invention, and any of them can be applied.
  • the coating film ( ⁇ ) for coating the metal plate of the present invention is formed on at least one side of the metal plate, and has an organic resin (A) and an electrical resistivity at 25 ° C. of 0.1 ⁇ 10 ⁇ 6 to 185 ⁇ 10 ⁇ . 6 ⁇ cm non-oxide ceramic particles (B) selected from borides, carbides, nitrides and silicides, and rust preventive pigments (C).
  • the coating composition for obtaining the coating film ( ⁇ ) in the present invention is referred to as a coating composition ( ⁇ ).
  • the coating composition ( ⁇ ) include a water-based coating composition and an organic solvent-based coating composition.
  • the “water-based coating composition” refers to a composition formed using an “water-based solvent” in which water is 50% by mass or more of the entire solvent.
  • the “organic solvent-based coating composition” refers to a composition formed using an “organic solvent-based solvent” in which the organic solvent is 50% by mass or more of the entire solvent.
  • aqueous solvent examples include, for example, inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, boric acid, and hydrofluoric acid that are well mixed with water, metal salts of the inorganic acids, Examples of inorganic salts such as ammonium salts include those that dissolve in water, inorganic compounds such as silicates, thiosulfates, and thiocyanates that dissolve in water, and organic compounds that are miscible with water. Moreover, an organic solvent can also be added to said "aqueous solvent” as needed. However, from the viewpoint of occupational health, the “water-based coating composition” of the present invention uses organic solvents, etc.
  • a method for forming a film on a metal plate for example, in the case of a water-based or solvent-based coating composition, known methods such as roll coating, groove roll coating, curtain flow coating, roller curtain coating, dipping (dip), air knife squeezing, etc.
  • a method of applying the coating composition ( ⁇ ) on the metal plate by a coating method and then drying the moisture and solvent of the wet coating film is preferable.
  • a method for curing these dry coating films polymerization and curing by heating and baking of an organic resin in the coating film are preferable.
  • the resin in the coating film can be polymerized by ultraviolet rays, polymerization or curing by ultraviolet irradiation, coating and coating are possible.
  • the resin in the film can be polymerized with an electron beam, it may be polymerized or cured by electron beam irradiation.
  • a chromate-free undercoat film may be provided between the coating film and the metal plate surface.
  • the number and composition of the layers are not limited, but the ground treatment film is formed on the metal plate so as not to impair the processing followability and corrosion resistance of the coating film ( ⁇ ) when forming the metal plate.
  • the thickness of the base treatment film be 0.5 ⁇ m or less.
  • the method for forming the base treatment film is not limited as long as it is an industrially applicable film formation method.
  • the method for forming the surface treatment film include methods such as coating, vapor deposition, and film sticking of the surface treatment composition.
  • an aqueous or solvent-based substrate is used.
  • a method of coating and drying the treatment composition is preferred.
  • by repeating coating and drying (sequential coating method) for each layer from the bottom layer to the top surface layer of a plurality of coating films including the base coating film A multilayer coating film may be formed.
  • the wet-on-wet coating method is a method in which a coating solution is applied onto a metal plate, and another coating solution is applied on the solvent-containing state (wet state) before the coating solution is dried.
  • the solvent of the laminated coating solution obtained is simultaneously dried and cured to form a film.
  • the multi-layer simultaneous coating method is a method in which multiple layers of coating liquid are applied simultaneously on a metal plate in a laminated state using a multilayer slide curtain coder, slot die coater, etc., and then the solvent of the laminated coating liquid is simultaneously dried and cured. It is a method to form a film.
  • the coating film ( ⁇ ) for coating the metal plate of the present invention comprises an organic resin (A) described later, non-oxide ceramic particles (B) having a specific range of electrical resistivity and a rust preventive pigment (C), or further If necessary, it contains a surfactant described in the section ⁇ Preparation of coating composition ( ⁇ )>.
  • the content of the non-oxide ceramic particles (B) in the coating film ( ⁇ ) at 25 ° C. is preferably 0.5 to 65% by volume, and the electrical conductivity and corrosion resistance during resistance welding are From the viewpoint of securing moldability, it is more preferably 1 to 40% by volume, and further preferably 2 to 20% by volume. From the viewpoint of securing sufficient resistance weldability in addition to ensuring sufficient corrosion resistance and formability, the range of 4 to 20% by volume is particularly preferable.
  • the reason why the coating film ( ⁇ ) exhibits good conductivity is that the non-oxide ceramic particles (B) which are conductive particles are almost aggregated in the coating film ( ⁇ ). This is considered to be because it is sufficiently uniformly distributed over the entire coating surface, and the electric conduction path to the underlying metal plate is not unevenly distributed in the coating film.
  • the conductive particles are agglomerated in the coating film, an electric conduction path in a state of being uniformly dispersed over the entire coating surface is difficult to be formed in the coating film, and there is no electric conduction path in the coating film. There is a tendency to create areas that hinder resistance welding. In such a case, more conductive material must be added in order to secure a conduction path, and the possibility that good corrosion resistance and moldability cannot be maintained increases. In the coated metal plate of the present invention, such a problem is very unlikely to occur.
  • the addition of conductive particles of 0.5 vol% or more and less than 1 vol% of the coating film may result in insufficient electrical conductivity during resistance welding, and more than 40 vol% of the coating film, Since addition of 65% by volume or less of conductive particles may result in insufficient moldability and corrosion resistance, it is more preferable that the volume ratio of (B) be 1% by volume or more and less than 40% by volume. Moreover, even if 1% by volume or more and less than 2% by volume of conductive particles are added to the coating film, the electrical conductivity during resistance welding may be slightly insufficient. Addition of less than 2% by volume of conductive particles may result in slightly insufficient moldability and corrosion resistance, so addition of 2% by volume or more and less than 20% by volume is more preferable.
  • the conductivity has been described from the viewpoint of the filling amount (volume%) of the non-oxide ceramic particles in the coating film ( ⁇ ), but during resistance welding, the amount of non-oxide ceramic particles occupying the surface of the coated metal plate ( The number) also affects the conductivity (ie, weldability). This will be described later.
  • the thickness of the coating film ( ⁇ ) covering the metal plate of the present invention is preferably in the range of 2 to 30 ⁇ m, more preferably in the range of 3 to 15 ⁇ m. If the thickness is less than 2 ⁇ m, the coating film may be too thin to obtain sufficient corrosion resistance. When the coating film thickness exceeds 30 ⁇ m, the amount of the coating composition ( ⁇ ) to be used increases, resulting in an increase in production cost, and the coating film may be cohesively broken or peeled off during press molding. In addition, since the film is thick, electrical insulation in the film thickness direction is increased, and resistance welding becomes difficult. Furthermore, when a water-based coating composition is used, there is a high possibility of occurrence of coating film defects such as armpits, and it is not easy to stably obtain the appearance necessary for industrial products.
  • the thickness of the coating film ( ⁇ ) can be measured by observing the section of the coating film.
  • the mass of the coating film adhered to the unit area of the metal plate may be calculated by dividing by the specific gravity of the coating film or the specific gravity after drying of the coating composition ( ⁇ ).
  • the adhesion mass of the coating film is the mass difference before and after coating, the mass difference before and after peeling of the coating film after coating, or the presence of an element whose content in the coating film is known in advance by fluorescent X-ray analysis. It is possible to appropriately select from existing methods such as measuring the amount.
  • the specific gravity of the coating film or the coating composition ( ⁇ ) after drying is determined by measuring the volume and mass of the isolated coating film after taking an appropriate amount of the coating composition ( ⁇ ) in a container and drying it. It can be appropriately selected from existing methods such as measuring the volume and mass, or calculating from the blending amount of the coating film components and the known specific gravity of each component.
  • the organic resin (A) of the present invention is a binder component of the coating film ( ⁇ ) and may be either water-based or organic solvent-based resin, and includes or additionally includes the resin (A1) described later. Reaction derivative (A2).
  • the coating composition ( ⁇ ) used for forming the coating film ( ⁇ ) in the present invention can be used in either an aqueous system or an organic solvent system, and the resin (A1) described later contains 50 to 100 mass of nonvolatile components. % Is included.
  • the resin (A1) is stably present in the coating composition ( ⁇ ). When such a coating composition ( ⁇ ) is applied to a metal plate and heated, in many cases, the resin (A1) does not react and is dried as it is.
  • at least a part of the resin (A1) contains a silane coupling agent, a curing agent, a crosslinking agent, etc. in the coating composition ( ⁇ ), it reacts with them to produce a derivative (A2) of the resin (A1) Form.
  • the organic resin (A) that is a binder component of the coating film ( ⁇ ) includes the unreacted resin (A1) and the reaction derivative (A2) of the resin (A1).
  • the type of the resin (A1) is not particularly limited, and examples thereof include polyurethane resins, polyester resins, epoxy resins, (meth) acrylic resins, polyolefin resins, phenol resins, and modified products thereof. One or two or more of these may be mixed and used as the resin (A1), or one or more organic resins obtained by modifying at least one organic resin may be mixed and You may use as resin (A1).
  • the reason why the type of the resin (A1) is not particularly limited in the present invention is that the rust preventive pigment (C) coexists even if the coating film ( ⁇ ) becomes conductive and the corrosion current easily flows. This is because it is not necessary to use a special corrosion-resistant resin as the binder component of the coating film.
  • the resin (A1) it is preferable to use a polyurethane resin, a modified polyurethane resin, a polyurethane resin composite, a mixture of these with other resins, or the like. Since the urethane group (—NHCOO—) in the polyurethane resin has higher molecular cohesive energy (8.74 kcal / mol) than many other organic groups, if the polyurethane resin is contained in the resin (A1), The coating film becomes tough and does not easily peel or galling during press molding. In addition, the relatively high cohesive energy improves corrosion factor shielding (coating film density) and increases corrosion resistance. There is.
  • Organic groups other than urethane groups such as methylene group (—CH 2 —), ether group (—O—), secondary amino group (imino group, —NH—), ester group (—COO—), benzene ring
  • the molecular aggregation energy is 0.68 kcal / mol, 1.00 kcal / mol, 1.50 kcal / mol, 2.90 kcal / mol, 3.90 kcal / mol, respectively, and the molecular aggregation energy of the urethane group (—NHCOO—) is , Quite high compared to these.
  • a coating film containing a polyurethane resin is tougher than a coating film made of many other resins, for example, a polyester resin, a (meth) acrylic resin, a polyolefin resin, and a phenol resin, and has a high corrosion resistance. is there.
  • the resin (A1) is not particularly limited as long as it is stably present in the coating composition ( ⁇ ).
  • a carboxyl group (—COOH), a carboxylate group (—COO ⁇ M + , M + is a monovalent cation), a sulfonate group (—SO 3 H), a sulfonate group (—SO 3 ⁇ M + ;
  • M + is a monovalent cation), primary amino group (—NH 2 ), secondary amino group (—NHR 1 ; R 1 is a hydrocarbon group), tertiary amino group (—NR 1 R 2 R 1 and R 2 are hydrocarbon groups), quaternary ammonium base (—N + R 1 R 2 R 3 X ⁇ ; R 1 , R 2 and R 3 are hydrocarbon groups, X ⁇ is a monovalent anion), Sulfonium base (—S + R 1 R 2 X ⁇ ; R 1 and R 2 are hydrocarbon groups, X
  • the resin used for the coating composition ( ⁇ ) for obtaining the coating film ( ⁇ ) includes water-soluble and solvent-soluble resins that are completely soluble in water and organic solvents, and emulsions and suspensions.
  • (meth) acrylic resin means acrylic resin and methacrylic resin.
  • the polyurethane resin is not particularly limited. Examples thereof include those obtained by reacting a polyol compound with a polyisocyanate compound and then further chain extending with a chain extender.
  • the polyol compound is not particularly limited as long as it is a compound containing two or more hydroxyl groups per molecule.
  • examples include glycols, glycerin, trimethylol ethane, trimethylol propane, polycarbonate polyols, polyester polyols, polyether polyols such as bisphenol hydroxypropyl ether, polyester amide polyols, acrylic polyols, polyurethane polyols, or mixtures thereof.
  • the polyisocyanate compound is not particularly limited as long as it is a compound containing two or more isocyanate groups per molecule, and examples thereof include aliphatic isocyanates such as hexamethylene diisocyanate (HDI) and fats such as isophorone diisocyanate (IPDI).
  • aliphatic isocyanates such as hexamethylene diisocyanate (HDI) and fats such as isophorone diisocyanate (IPDI).
  • An aromatic diisocyanate such as cyclic diisocyanate, tolylene diisocyanate (TDI), an araliphatic diisocyanate such as diphenylmethane diisocyanate (MDI), or a mixture thereof.
  • the chain extender is not particularly limited as long as it is a compound containing one or more active hydrogens in the molecule, and ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, dipropylenetriamine, triethylenetetramine, tetraethylenepenta.
  • Aliphatic polyamines such as min, aromatic polyamines such as tolylenediamine, xylylenediamine, diaminodiphenylmethane, alicyclic polyamines such as diaminocyclohexylmethane, piperazine, 2,5-dimethylpiperazine, isophoronediamine, hydrazine, Hydrazines such as succinic acid dihydrazide, adipic acid dihydrazide, phthalic acid dihydrazide, hydroxyethyldiethylenetriamine, 2-[(2-aminoethyl) amino] ethanol, 3-aminopropane Alkanolamines such as ol.
  • an aqueous polyurethane resin for example, at the time of resin production, at least a part of the polyol compound is replaced with a carboxyl group-containing polyol compound, reacted with a polyisocyanate compound to introduce a carboxyl group into the resin chain, Can be neutralized with a base to form a water-based resin.
  • at the time of resin production at least a part of the polyol compound is replaced with a polyol compound having a secondary amino group or a tertiary amino group in the molecule and reacted with a polyisocyanate compound to form a secondary amino group or tertiary on the resin chain.
  • water-based resin examples include neutralization with an acid after introduction of an amino group.
  • the resin chain has a tertiary amino group, it can be made quaternized by introducing an alkyl group into the tertiary amino group to be an aqueous cationic resin having a quaternary ammonium base.
  • These compounds can be used alone or in a mixture of two or more.
  • the polyurethane resin that can be used as the resin (A1) is not particularly limited.
  • the resin (A1) it is preferable to use a polyurethane resin that does not have an aromatic ring or has few aromatic rings.
  • a polyurethane resin has a glass transition temperature lower than that of a polyurethane resin containing a large amount of aromatic rings. Therefore, the molecular chain mobility tends to be excellent and the film forming property during film formation tends to be excellent. Since it is high, the process followability at the time of press molding is often better than a polyurethane resin containing many aromatic rings.
  • polystyrene resin there are no particular restrictions on the polyol compound, polyisocyanate compound, and chain extender used in resin production, but there are no aliphatic rings or alicyclics, or araliphatic or araliphatic groups with few aromatic rings. It is preferable to use a compound such as
  • the polyester resin is not particularly limited.
  • the epoxy resin is not particularly limited.
  • bisphenol A type epoxy resin, bisphenol F type epoxy resin, resorcin type epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, resorcin type epoxy resin, novolac type epoxy resin, etc. It can be obtained by reacting with an amine compound such as N-methylethanolamine. Furthermore, these are neutralized with an organic acid or inorganic acid to form an aqueous resin, or after radical polymerization of a high acid value acrylic resin in the presence of the epoxy resin, neutralized with ammonia or an amine compound to make an aqueous system. Can be mentioned.
  • the (meth) acrylic resin is not particularly limited.
  • ethyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, alkyl (meth) acrylate such as n-butyl (meth) acrylate, hydroxyalkyl (meth) acrylate such as 2-hydroxyethyl (meth) acrylate, alkoxysilane examples thereof include those obtained by radical polymerization of (meth) acrylates such as (meth) acrylates with (meth) acrylic acid in water using a polymerization initiator.
  • the polymerization initiator is not particularly limited, and for example, persulfates such as potassium persulfate and ammonium persulfate, azo compounds such as azobiscyanovaleric acid and azobisisobutyronitrile can be used.
  • persulfates such as potassium persulfate and ammonium persulfate
  • azo compounds such as azobiscyanovaleric acid and azobisisobutyronitrile
  • (meth) acrylate” means acrylate and methacrylate
  • (meth) acrylic acid” means acrylic acid and methacrylic acid.
  • the polyolefin resin is not particularly limited.
  • examples thereof include radical polymerization of ethylene and unsaturated carboxylic acids such as methacrylic acid, acrylic acid, maleic acid, fumaric acid, itaconic acid and crotonic acid under high temperature and high pressure. Further, these can be further neutralized with ammonia, amine compounds, basic metal compounds such as KOH, NaOH, LiOH, or ammonia or amine compounds containing the above metal compounds to obtain water-based resins.
  • the phenol resin is not particularly limited.
  • phenol resins such as methylolated phenol resin obtained by addition reaction of aromatic compounds such as phenol, resorcinol, cresol, bisphenol A, paraxylylene dimethyl ether and formaldehyde in the presence of a reaction catalyst are used as diethanolamine, N-methylethanol.
  • aromatic compounds such as phenol, resorcinol, cresol, bisphenol A, paraxylylene dimethyl ether and formaldehyde
  • examples thereof include those obtained by reacting with amine compounds such as amines.
  • what was neutralized with the organic acid or the inorganic acid and made into the water-system resin etc. can be mentioned.
  • the resin (A1) may be used alone or in combination of two or more. Further, as a main component of the coating composition ( ⁇ ), one or more composite resins obtained by modifying at least part of the resin (A1) in the presence of at least one resin (A1) or Two or more kinds may be collectively used as the resin (A1).
  • a curing agent or a crosslinking agent for the resin (A1) may be added.
  • a crosslinking agent may be introduced into the resin structure.
  • the crosslinking agent is not particularly limited, and examples thereof include at least one crosslinking agent selected from the group consisting of amino resins, polyisocyanate compounds, blocked polyisocyanates, epoxy compounds, carbodiimide group-containing compounds, and the like.
  • the amino resin is not particularly limited, and examples thereof include melamine resin, benzoguanamine resin, urea resin, and glycoluril resin.
  • the polyisocyanate compound is not particularly limited, and examples thereof include hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, and tolylene diisocyanate.
  • the blocked polyisocyanate is a blocked product of the polyisocyanate compound.
  • the epoxy compound is not particularly limited as long as it is a compound having a plurality of epoxy groups (oxirane rings) which are 3-membered cyclic ether groups.
  • adipic acid diglycidyl ester phthalic acid diglycidyl ester, terephthalic acid diglycidyl ester Esters, sorbitan polyglycidyl ether, pentaerythritol polyglycidyl ether, glycerin polyglycidyl ether, trimethylpropane polyglycidyl ether, neopentyl glycol polyglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene Glycol diglycidyl ether, 2,2-bis- (4′-glycidyloxyphenyl) propane, tris (2,3- Epoxypropyl) isocyanurate, bisphenol A
  • carbodiimide group-containing compound for example, after synthesizing an isocyanate-terminated polycarbodiimide by a condensation reaction involving decarbonization of a diisocyanate compound such as an aromatic diisocyanate, an aliphatic diisocyanate, and an alicyclic diisocyanate, and further with an isocyanate group
  • a diisocyanate compound such as an aromatic diisocyanate, an aliphatic diisocyanate, and an alicyclic diisocyanate
  • an isocyanate group examples thereof include a compound to which a hydrophilic segment having a reactive functional group is added.
  • the amount of these crosslinking agents is preferably 1 to 40 parts by mass with respect to 100 parts by mass of the resin (A1) for forming the coating film ( ⁇ ). If the amount is less than 1 part by mass, the added amount may be insufficient and the added effect may not be obtained. If the amount exceeds 40 parts by mass, the coating film becomes brittle due to over-curing, and the corrosion resistance and process followability during molding are reduced. May be reduced.
  • the organic resin (A) is the resin (A1) alone, or in addition, the following general formula (I) It is particularly preferable that the resin (A2 Si ) shown in FIG.
  • A1 represents the resin (A1)
  • Z— represents a hydrocarbon chain having 1 to 9 carbon atoms, 0 to 2 nitrogen atoms, and 0 to 2 oxygen atoms;
  • the notation “ ⁇ Z” indicates that “A1” and “Z” are covalently bonded via the functional groups of both, “-O—” is an ether bond, and “—OH” is a hydroxyl group.
  • “—X” is a hydrolyzable alkoxy group having 1 to 3 carbon atoms, hydrolyzable halogeno group or hydrolyzable acetoxy group
  • “—R” is an alkyl group having 1 to 3 carbon atoms.
  • the coating composition ( ⁇ ) used for forming the coating film ( ⁇ ) of the present invention contains the resin (A1) in a nonvolatile content of 50 to 100% by mass.
  • Nonvolatile components other than the resin (A1) contained in the coating composition ( ⁇ ) include a rust preventive pigment (C), a silane coupling agent (s), a curing agent, a crosslinking agent, and the like as described in detail later. It is.
  • the content of these compounds in the coating film ( ⁇ ) after film formation has a preferable range with respect to the total mass of the resin (A1) alone or (A2 Si ).
  • the blending amount is adjusted so that these are within the preferable content range in the coating film ( ⁇ ) after film formation.
  • resin contained in the organic resin (A) (A2 Si), for example, coating composition containing a resin (A1) and a silane coupling agent (s) and (beta), a metal plate used in the present invention It is obtained by coating and drying.
  • silane coupling agents can be chemically bonded to metal surfaces with functional groups such as hydroxyl groups and many functional organic resins, so in the presence of metal surfaces, functional organic resins, and silane coupling agents, It is possible to crosslink between the functional organic resin and the functional organic resin between the molecules or within the molecule.
  • the coating composition ( ⁇ ) containing the resin (A1) and the silane coupling agent (s) is applied to a metal plate and dried, so that at least one functional group of the resin (A1) is obtained. and parts, at least some of the functional groups of the metal surface is reacted respectively silane coupling agent (s), the resin (A2 Si) is produced. At least a part of —O— (ether bond) or —OH (hydroxyl group) of the resin (A2 Si ) represented by the general formula (I) is bonded to the metal surface.
  • At least —O— (ether bond) or —OH (hydroxyl group) of the resin (A2 Si ) represented by the general formula (I) is used.
  • a part is bonded to the surface of the ground film.
  • the bond between the ether bond and the metal surface, and the bond between the ether bond and the base treatment component are covalent bonds, and the bond between the hydroxyl group and the metal surface, and between the hydroxyl group and the base treatment film component.
  • the bond is often a hydrogen bond or a coordination bond.
  • Such a chemical bond between the film-constituting resin and the metal surface, or a chemical bond between the upper-layer film-constituting resin and the base treatment film increases the adhesion between the two, and the film forms when the metal plate deforms during the molding process. Since excellent process followability is exhibited, the appearance of the processed part is not impaired, and the corrosion resistance of the processed part is improved.
  • the multilayer coating may be formed by a sequential coating method in which coating and drying are repeated for each layer from the base treatment layer to the outermost layer.
  • the above-described wet-on-wet coating method or multilayer simultaneous coating method can be used as a method for easily and efficiently forming a film on the surface of the metal plate. In these methods, the laminated state from the lowermost layer to the outermost layer is once formed on the metal plate in a water-containing or solvent-containing state (wet state).
  • the general formula silane coupling agent used to form the resin (A2 Si) of (I) (s) is a molecular structure represented by the general formula Y-Z-SiX m R 3 -m It can be one or more selected from coupling agents.
  • the —X group which is a reaction point with the metal surface or other silane coupling agent, is a hydrolyzable alkoxy group having 1 to 3 carbon atoms or a hydrolyzable group.
  • a halogeno group fluoro group (—F), chloro group (—Cl), bromo group (—Br), etc.
  • hydrolyzable acetoxy group —O—CO—CH 3 ).
  • a hydrolyzable alkoxy group having 1 to 3 carbon atoms is preferable because the hydrolyzability is easily adjusted by changing the number of carbon atoms of the alkoxy group, and a methoxy group (—OCH 3 ) or an ethoxy group (— OCH 2 CH 3 ) is particularly preferred.
  • a silane coupling agent having a functional group other than those described above is not desirable in the present invention because the hydrolyzability of the -X group is low or too high. If the coating composition ( ⁇ ) is not aqueous, a small amount of water and a hydrolysis catalyst are added to the coating composition ( ⁇ ) in advance in order to decompose the hydrolyzable functional group of the silane coupling agent. May be.
  • the —R group in the molecular structure is an alkyl group having 1 to 3 carbon atoms.
  • the —R group is a methyl group or an ethyl group, compared to the bulky n-propyl group or isopropyl group, the —X group is relatively easy without interfering with the access of water molecules to the —X group in the composition.
  • a methyl group is particularly preferable.
  • Silane coupling agents in which the —R group is a functional group other than those described above are not desirable in the present invention because the hydrolyzability of the —X group is extremely low or the reactivity is too high.
  • m indicating the number of substituents is an integer of 1 to 3.
  • the silane coupling agent (s) is a hydrocarbon chain having 1 to 9 carbon atoms, 0 to 2 nitrogen atoms, and 0 to 2 oxygen atoms.
  • the hydrocarbon chain having 2 to 5 carbon atoms, 0 or 1 nitrogen atoms, and 0 or 1 oxygen atoms has a good balance between dispersibility and reactivity of the silane coupling agent in water or solvent. ,preferable.
  • the number of carbon atoms of -Z- is 10 or more, the number of nitrogen atoms is 3 or more, or the number of oxygen atoms is 3 or more, the balance between the dispersibility of the silane coupling agent in water or solvent and the reactivity is poor, This is not desirable in the present invention.
  • the —Y group that becomes a reaction point with the functional group of the resin (A1) or other coexisting resin is the resin (A1 )
  • the —SiX m group of the silane coupling agent (s) molecule represented by the molecular structure YZ—SiX m R 3-m reacts with the metal surface and the like.
  • the resin (A1) or the like reacts with the resin (A1) or the like, the resin (A2 Si ) represented by the general formula (I) is obtained. That is, at least a part of —Si—X at the molecular end of the silane coupling agent (s) is hydrolyzed to produce —Si—OH (silanol group), and at least a part thereof is a metal surface or other silane cup.
  • Ring agent (s) is dehydrated and condensed with the hydroxyl group of the molecule, and is covalently bonded via an ether bond.
  • Si-O-Me (Me is a metal atom) or -Si-O-Si *-(Si * is another silane coupling Si atoms derived from agent molecules).
  • the —Y group at the other end of the silane coupling agent (s) molecule reacts with the functional group of the resin (A1) to form bonds of A1 to Z.
  • the following general formula (I) is shown. It becomes a resin (A2 Si ) having a structure.
  • the notation “A1 to Z” in the general formula (I) indicates that A1 and Z are covalently bonded via both functional groups.
  • silane coupling agent (s) include the general formula: YZ-SiX m R 3-m
  • the -X group is a hydrolyzable alkoxy group having 1 to 3 carbon atoms, a hydrolyzable halogeno group, or a hydrolyzable acetoxy group
  • the -R group is an alkyl group having 1 to 3 carbon atoms
  • M is an integer of 1 to 3
  • -Z- is a hydrocarbon chain having 1 to 9 carbon atoms, 0 to 2 nitrogen atoms, and 0 to 2 oxygen atoms
  • -Y group is a functional group that reacts with the resin (A1).
  • the coating composition ((beta)) to be used is a silane coupling agent (s) with respect to 100 mass parts of resin (A1).
  • a silane coupling agent (s) with respect to 100 mass parts of resin (A1).
  • ) Is preferably contained in an amount of 1 to 100 parts by mass. If the amount is less than 1 part by mass, the amount of the silane coupling agent (s) is small, and the crosslinked structure by the silane coupling agent does not develop so much, so that a sufficiently fine coating film cannot be obtained and the corrosion resistance may be slightly insufficient.
  • the processing adhesion to the metal surface or the like during molding may be insufficient. If it exceeds 100 parts by mass, the effect of improving the adhesion is saturated, and an expensive silane coupling agent is used more than necessary, which is not economical and may reduce the stability of the coating composition ( ⁇ ). .
  • the organic resin (A) in the present invention preferably contains the resin (A1) alone or in addition to the resin (A2 Si ) in a total amount of 50 to 100% by mass of the resin (A1). ) And the resin (A2 Si ) in a total amount of 75 to 100% by mass of the organic resin (A) is more preferable. If the sum of the resin (A1) and the resin (A2 Si) is less than 50% by weight of the organic resin (A), the may be insufficient adhesion to the ⁇ property and the metal surface of the coating, the desired corrosion resistance There is a possibility that the coating film adhesion and the coating film following property at the time of molding cannot be obtained.
  • the identification and quantification of Si atoms forming the —C—Si—O— bond can be performed using an analysis method such as FT-IR spectrum of a coating film on a metal plate or 29 Si-NMR. it can.
  • the resin (A1) is contained as a component of the coating composition ( ⁇ ) used for forming the coating film ( ⁇ ) of the present invention in a non-volatile content of 50 to 100% by mass, and After the coating film ( ⁇ ) is formed by application to a metal plate, the organic resin (A) in the coating film contains the resin (A1) or further contains the reaction derivative (A2).
  • the resin (A1) is not particularly limited in type or structure as long as it is stably present in the aqueous or organic solvent-based coating composition ( ⁇ ).
  • a carboxyl group (—COOH), a carboxylate group (—COO ⁇ M + , M + is a monovalent cation), a sulfonate group (—SO 3 H), a sulfonate group (—SO 3 ⁇ M + ; M + Is a monovalent cation), primary amino group (—NH 2 ), secondary amino group (—NHR 1 ; R 1 is a hydrocarbon group), tertiary amino group (—NR 1 R 2 ; R 1 and R 2 Is a hydrocarbon group), a quaternary ammonium base (—N + R 1 R 2 R 3 X ⁇ ; R 1 , R 2 and R 3 are hydrocarbon groups, X ⁇ is a monovalent anion), a sulfonium base (—S + R 1 R 2 X ⁇ ; R 1 and R 2 are hydrocarbon groups, X ⁇ is a monovalent anion), phosphonium base —P + R 1 R 2 R
  • the organic resin (A) in the coating film ( ⁇ ) is composed of the above carboxyl group, carboxylate group, sulfonate group, sulfonate group, secondary amino group, tertiary amino group, quaternary ammonium base, sulfonium.
  • a resin (A1) containing in its structure at least one functional group selected from a base and a phosphonium base (hereinafter collectively referred to as “polar functional group” in the present invention), or a derivative (A2) of the resin Is preferred.
  • the resin (A1) preferably contains the polar functional group group in the structure will be described below.
  • the coating composition ( ⁇ ) includes a resin (A1) constituting at least a part of the organic resin (A) after film formation.
  • the low-polarity structure of the resin (A1) mainly composed of hydrocarbon chains during storage of the coating composition ( ⁇ ) or in an environment with much water immediately after coating.
  • the polar functional group group exists, the polar functional group group having high polarity and extremely high hydrophilicity extends into water and hydrates with surrounding water.
  • these polar functional group groups are adsorbed on the surface of the non-oxide ceramic particles (B) present in the coating composition, prevent aggregation of the non-oxide ceramic particles (B), and maintain dispersibility. effective.
  • water-based coating compositions unlike organic solvent-based coating compositions, contain a large amount of water during storage or immediately after coating and are highly polar, but when water evaporates during the coating formation process.
  • the polar environment in the coating composition changes greatly from high polarity to low polarity.
  • since there is a polar functional group in the structure of the resin (A1) when water evaporates and the polarity rapidly decreases in the coating film forming process, at least a part of the polar functional group is hydrated water. It is detached from the metal surface and shrinks into a coil shape.
  • the low-polarity resin chain portion of the resin (A1) extends to form a steric hindrance layer and to prevent aggregation of the non-oxide ceramic particles (B).
  • the aqueous coating composition may be stored or coated.
  • groups and chains suitable for the polarity are elongated, and the dispersibility of the non-oxide ceramic particles is easily maintained.
  • the coating composition ( ⁇ ) is an organic solvent
  • the polar functional group group having high polarity and extremely high hydrophilicity is present in the low polarity structure of the resin (A1) mainly composed of hydrocarbon chains, These are adsorbed on the surface of the non-oxide ceramic particles (B) present in the coating composition, and in the organic solvent, the low-polarity resin chain portion of the resin (A1) extends to polar functionalities in the resin structure.
  • the non-oxide ceramic particles (B) are prevented from agglomerating and maintaining dispersibility in the coating composition or in the coating film forming process.
  • the adhesiveness with the metal plate as the base material is obtained by including these functional groups. Improvement, corrosion resistance of coating film ( ⁇ ), processing followability of coating film during molding (coating film adhesion, crack resistance, color fading resistance, etc. at the time of metal plate molding), scratch resistance, etc. Is improved.
  • the sulfonic acid group is a functional group represented by the structural formula —SO 3 H.
  • the sulfonate group is a functional group represented by the structural formula —SO 3 ⁇ M + (M + is a monovalent cation), and the sulfonic acid group is neutralized with an alkali metal, an amine containing ammonia, or the like. Is.
  • the resin (A1) is a polyester resin containing a sulfonic acid group or a sulfonic acid group in the structure
  • the polyol polyvalent carboxylic acid, sulfonic acid group-containing compound, and sulfonic acid group-containing compound used as a raw material for resin synthesis. Absent.
  • the polyol and the polyvalent carboxylic acid those already exemplified can be used.
  • the sulfonic acid group-containing compound examples include dicarboxylic acids containing a sulfonic acid group such as 5-sulfoisophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, and 5 (4-sulfophenoxy) isophthalic acid, Alternatively, diols such as 2-sulfo-1,4-butanediol and 2,5-dimethyl-3-sulfo-2,5-hexyldiol can be used.
  • the sulfonate group-containing compound for example, 5-sulfosodium isophthalic acid, dimethyl 5-sulfosodium isophthalate and the like can be used.
  • the already neutralized sulfonic acid groups may be incorporated into the resin, or may be neutralized after the sulfonic acid groups have been incorporated into the resin.
  • the coating composition ( ⁇ ) is water-based, the resin was uniformly and finely dispersed in water, so it was neutralized with alkali metals, amines containing ammonia, etc., compared to the number of sulfonic acid groups that were not neutralized. It is preferable that the number of sulfonate groups is large. This is because sulfonate groups neutralized with alkali metals, amines containing ammonia, etc.
  • sulfonic acid metal bases neutralized with alkali metals such as Li, Na, and K are non-oxidized during storage of the aqueous coating composition ( ⁇ ) or in an environment with a lot of water immediately after coating.
  • alkali metals such as Li, Na, and K
  • a sulfonic acid Na base is most preferable.
  • the amount of the dicarboxylic acid or diol containing the sulfonic acid group or sulfonate group is the sum of the dicarboxylic acid or diol containing the sulfonic acid group or sulfonate group relative to the total polyvalent carboxylic acid component or total polyol component.
  • the content is preferably 0.1 to 10 mol%. If it is less than 0.1 mol%, the resin containing a carboxyl group, a sulfonic acid group, or a sulfonate group is stably dispersed during storage of the aqueous coating composition ( ⁇ ) or in an environment with a lot of water immediately after coating.
  • the amount of water retained by the coating film increases due to the sulfonic acid group or sulfonate group, and the corrosion resistance may decrease. Considering the balance of performance, it is more preferably in the range of 0.5 to 5 mol%.
  • the carboxyl group is a functional group represented by the structural formula —COOH.
  • the carboxylate group is a functional group represented by the structural formula —COO ⁇ M + (M + is a monovalent cation), and the carboxyl group is neutralized with an alkali metal, an amine containing ammonia, or the like. .
  • the resin (A1) is a polyester resin containing a carboxyl group or a carboxylate group in the structure
  • the method for introducing the carboxyl group or carboxylate group into the polyester resin For example, after polymerizing polyester resin, trimellitic anhydride, phthalic anhydride, pyromellitic anhydride, succinic anhydride, 1,8-naphthalic anhydride, 1,2-cyclohexanedicarboxylic anhydride under normal pressure and nitrogen atmosphere , Cyclohexane-1,2,3,4-tetracarboxylic acid-3,4-anhydride, ethylene glycol bisanhydro trimellitate, 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl Select one or more of -3-cyclohexene-1,2-dicarboxylic acid anhydride, naphthalene-1,4,5,8-tetracarboxylic acid dianhydride, etc.
  • trimellitic anhydride phthal
  • the neutralized carboxyl group may be incorporated into the resin, or may be neutralized after the carboxyl group is incorporated into the resin.
  • the coating composition ( ⁇ ) is water-based, the resin is uniformly and finely dispersed in water, so that the number of carboxyl groups is not neutralized, compared with the number of carboxyl groups neutralized with alkali metals, amines containing ammonia, etc. A larger number of acid-base groups is preferred. This is because carboxylate bases neutralized with alkali metals, amines containing ammonia, etc. are easily ionized and hydrated in water, so resins containing many of these groups in the structure are uniformly finely dispersed in water. Because it is easy to do.
  • the amount of the carboxyl group or carboxylate group introduced is not particularly limited.
  • the acid value corresponding to the total amount of carboxyl groups and carboxylate groups is preferably in the range of 0.1 to 50 mg KOH / g.
  • the resin containing a carboxyl group or a sulfonic acid group is dispersed and stabilized during storage of the aqueous coating composition ( ⁇ ) or in a water-rich environment immediately after coating. There are few carboxyl group parts, and sufficient resin dispersibility may not be obtained.
  • the acid value is more than 50 mgKOH / g, the amount of water retained by the coating film by the carboxyl group or the carboxylate group increases, and the corrosion resistance may decrease. In consideration of the balance of performance, the acid value is more preferably in the range of 0.5 to 25 mgKOH / g.
  • the primary amino group, secondary amino group, tertiary amino group, and quaternary ammonium base are each —NH 2 , —NHR 1 , —NR 1 R 2 , —N + R 1 R 2 R 3 X ⁇ , respectively.
  • Is a functional group represented by R 1 , R 2 and R 3 are hydrocarbon groups, and X ⁇ is a monovalent anion.
  • the method for introducing these groups into the resin skeleton is not particularly limited.
  • a compound having two or more primary amino groups such as urea, melamine, hexamethoxymethylmelamine, benzoguanamine, and formaldehyde is subjected to condensation polymerization, and some or all of the methylol groups of the resulting product are methanol, ethanol, And a method of etherification with a lower alcohol such as butanol to obtain an amino resin.
  • the method for introducing the functional group into the resin skeleton is not particularly limited.
  • a primary, secondary or tertiary amine compound is reacted with an epoxy group (oxirane ring) which is a three-membered cyclic ether group in an epoxy resin chain, and a secondary amino group or tertiary amino group is reacted with the resin chain, respectively.
  • Group, a method of introducing a quaternary ammonium group, and the like are also obtained by neutralizing these groups with an organic acid, an inorganic acid or the like to form a water-based resin can be exemplified.
  • the structural formulas of the secondary amino group, tertiary amino group, quaternary ammonium base, sulfonium base, and phosphonium base are respectively —NHR 1 , —NR 1 R 2 , —N + R 1 R 2 R 3 X ⁇ . , -S + R 1 R 2 X -, -P + R 1 R 2 R 3 X - is represented by wherein, R 1, R 2, R 3 is a hydrocarbon group, X - is a monovalent anion .
  • R 1 , R 2 , R 3 , and X ⁇ are resins having the above functional groups that are stably present in the coating composition ( ⁇ ), and have good coating properties and film-forming properties on metal plates. And as long as the resistance weldability, corrosion resistance, and formability of the coated metal plate after film formation are good, it is not particularly limited.
  • R 1 , R 2 , and R 3 include a straight chain or branched alkyl group having 1 to 18 carbon atoms, an aryl group, a hydroxyl group, or an alkyl group substituted with an alkoxy group, an aryl group, or an aralkyl group. Can be mentioned.
  • alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl and dodecyl groups, aryl groups such as phenyl, tolyl and xylyl groups, aralkyl groups such as benzyl and phenethyl groups, Examples thereof include those substituted with a hydroxyl group, an alkoxy group, and the like.
  • R 1 , R 2 and R 3 may be the same group or different groups.
  • Examples of X ⁇ include halide ions such as fluorine, chlorine, bromine and iodine, sulfate ions, phosphate ions, perchlorate ions, and the like.
  • the organic resin (A) is preferably a resin cured with a curing agent.
  • the curing agent is not particularly limited as long as it can cure the organic resin (A).
  • at least one crosslinking agent selected from melamine resins and polyisocyanate compounds, which are one of amino resins, may be used as the curing agent.
  • the melamine resin is a resin obtained by etherifying a part or all of methylol groups of a product obtained by condensing melamine and formaldehyde with a lower alcohol such as methanol, ethanol, or butanol. It does not specifically limit as a polyisocyanate compound.
  • a polyisocyanate compound For example, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, tolylene diisocyanate and the like already exemplified as the crosslinking agent for the resin (A1) can be mentioned.
  • Examples of the blocked product include a blocked product of hexamethylene diisocyanate, a blocked product of isophorone diisocyanate, a blocked product of xylylene diisocyanate, and a blocked product of tolylene diisocyanate, which are blocked products of the polyisocyanate compound.
  • These curing agents may be used alone or in combination of two or more.
  • the content of the curing agent is preferably 5 to 35% by mass of the organic resin (A). If it is less than 5% by mass, bake hardening may be insufficient, and corrosion resistance and scratch resistance may be reduced. If it exceeds 35% by mass, bake hardening will be excessive, and corrosion resistance and workability will be reduced. There is.
  • the curing agent preferably contains a melamine resin.
  • the content of the melamine resin is preferably 30 to 100% by mass of the curing agent. When it is less than 30% by mass, the scratch resistance of the obtained coating film ( ⁇ ) may be lowered.
  • non-oxide ceramic particles (B) are used as the conductive particles in the coating film ( ⁇ ).
  • these non-oxide ceramic particles (B) do not deteriorate in the composition and have high conductivity. Hold it permanently. Therefore, superior resistance weldability can be maintained for a very long period of time compared to conductive particles that deteriorate due to moisture, such as base metal particles and ferrosilicon particles.
  • the non-oxide ceramic constituting the non-oxide ceramic particles (B) contained in the coating film ( ⁇ ) of the present invention has an electrical resistivity (volume resistivity, specific resistance) at 25 ° C. of 0.1 ⁇ 10 ⁇ 6.
  • the non-oxide ceramic referred to here is a ceramic made of an element or compound not containing oxygen.
  • the boride ceramics, carbide ceramics, nitride ceramics, and silicide ceramics referred to here are non-oxide ceramics containing boron B, carbon C, nitrogen N, and silicon Si as the main non-metallic constituent elements, respectively.
  • the non-oxide ceramic particles (B) contained in the coating film ( ⁇ ) of the present invention have high conductivity, the addition amount for imparting sufficient conductivity to the resin coating film may be smaller. As a result, the adverse effect on the corrosion resistance and formability of the coated metal plate is reduced.
  • the electrical resistivity of a pure metal is in the range of 1.6 ⁇ 10 ⁇ 6 ⁇ cm (Ag simple substance) to 185 ⁇ 10 ⁇ 6 ⁇ cm (Mn simple substance), and is used as a conductive particle in the present invention. It can be seen that oxide ceramics (electrical resistivity 0.1 ⁇ 10 ⁇ 6 to 185 ⁇ 10 ⁇ 6 ⁇ cm) have excellent conductivity equivalent to that of pure metal.
  • non-oxide ceramics examples include the following. That is, as boride ceramics, transition metal of group IV (Ti, Zr, Hf), group V (V, Nb, Ta), group VI (Cr, Mo, W) of the periodic table, Mn, Fe, Examples thereof include borides of alkaline earth metals (Ca, Sr, Ba) other than Co, Ni, rare earth elements, or Be, Mg. However, Be borides whose electrical resistivity at 25 ° C. exceeds 185 ⁇ 10 ⁇ 6 ⁇ cm (for example, Be 2 B, BeB 6, etc.) are not sufficiently conductive, and thus are applicable to the present invention. Not suitable for.
  • Mg borides are not suitable for application to the present invention because they are unstable to water and acids.
  • carbide ceramics include Group IV, Group V, Group VI transition metals, and carbides of Mn, Fe, Co, and Ni.
  • carbides of rare earth elements or alkaline earth metals that may be hydrolyzed in a humid atmosphere for example, YC 2 , LaC 2 , CeC 2 , PrC 2 , Be 2 C, Mg 2 C 3 , SrC 2, etc. Is not suitable for application to the present invention.
  • nitride ceramics include group IV, group V, and group VI transition metals, or nitrides of Mn, Fe, Co, and Ni.
  • rare earth elements and alkaline earth metal nitrides for example, LaN, Mg 3 N 2 , Ca 3 N 2, etc.
  • silicide ceramics include Group IV, Group V, and Group VI transition metals, or silicides of Mn, Fe, Co, and Ni.
  • silicides of rare earth elements or alkaline earth metals for example, LaSi, Mg 2 Si, SrSi 2 , BaSi 2, etc.
  • silicides of rare earth elements or alkaline earth metals that may generate hydrogen by reacting with water in a humid atmosphere are not included in the present invention. Not suitable for application.
  • a mixture of two or more selected from these borides, carbides, nitrides and silicides, or cermets obtained by mixing these ceramics with a metal binder and sintering them can be exemplified.
  • the standard electrode potential of the metal constituting a part of the cermet is ⁇ 0.3 V or more and is water-resistant.
  • the standard electrode potential of the metal constituting a part of the cermet is less than ⁇ 0.3 V, if this cermet particle is present in the aqueous coating composition for a long time, a rust layer or a thick oxide insulating layer is formed on the surface of the particle. This is because the conductivity of the particles may be lost.
  • water-resistant cermet particles include WC-12Co, WC-12Ni, TiC-20TiN-15WC-10Mo 2 C-5Ni, and the like.
  • the standard electrode potentials of Co and Ni are ⁇ 0.28 V and ⁇ 0.25 V, respectively, which are nobler than ⁇ 0.3 V, and both metals are resistant to water.
  • non-oxide ceramics Of the non-oxide ceramics described above, Cr-based ceramics (CrB, CrB 2 , Cr 3 C 2 , Cr 2 N, CrSi, etc.) are concerned with environmental load, and Hf-based ceramics (HfB 2 , HfC, HfN). Etc.), since many of rare earth element-based ceramics on the side of rare earth than Tb are expensive and are not distributed in the market, in the present invention, non-oxide ceramics excluding these from the above group, Alternatively, it is preferable to use a mixture of two or more selected from these.
  • non-oxide ceramics are more preferable from the viewpoints of the presence or absence of industrial products, stable distribution in domestic and overseas markets, price, electrical resistivity, and the like. That is, BaB 6 (electric resistivity 77 ⁇ 10 ⁇ 6 ⁇ cm), CeB 6 (30 ⁇ 10 ⁇ 6 ⁇ cm), Co 2 B (33 ⁇ 10 ⁇ 6 ⁇ cm), CoB (76 ⁇ 10 ⁇ 6 ⁇ cm).
  • non-oxide ceramics having an electrical resistivity at 25 ° C. of 0.1 ⁇ 10 ⁇ 6 to 100 ⁇ 10 ⁇ 6 ⁇ cm are particularly preferable. Because they have higher electrical conductivity than non-oxide ceramics whose electrical resistivity at 25 ° C. is in the range of more than 100 ⁇ 10 ⁇ 6 ⁇ cm and up to 185 ⁇ 10 ⁇ 6 ⁇ cm, it is sufficient for resin coatings. This is because the amount of particles added for imparting electrical conductivity may be smaller, and only a small number of corrosion current conduction paths penetrating the coating film are formed, and the corrosion resistance is hardly lowered. In addition, since the addition of particles is small, the moldability hardly deteriorates without inducing peeling or galling of the coating film during press molding.
  • the electrical resistivity indicated in parentheses of the non-oxide ceramic is a representative value (literature value) of what is sold and used as an industrial material. Since these electrical resistivity increases and decreases depending on the type and amount of impurity elements that have entered the crystal lattice of the non-oxide ceramics, when used in the present invention, for example, a resistivity meter manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • the particle shape of the non-oxide ceramic particles (B) is spherical particles, pseudo-spherical particles (for example, elliptical sphere shape, egg shape, rugby ball shape, etc.) or polyhedral particles (for example, soccer ball shape, dice shape, various jewels).
  • Slender shapes eg, rods, needles, fibers, etc.
  • flat shapes eg, flakes, flat plates, flakes, etc.
  • the average particle diameter of the non-oxide ceramic particles (B) is not particularly limited, but it is preferably present as particles having a volume average diameter of 0.2 to 20 ⁇ m in the coating composition ( ⁇ ) of the present invention. More preferably, the particles have a volume average diameter of 0.5 to 12 ⁇ m, and particularly preferably, the particles have a volume average diameter of 1 to 8 ⁇ m.
  • Dispersed particles with these volume average diameters are used in the coating composition ( ⁇ ) manufacturing process, storage and transport, and as a base material for coating, a metal plate (if the metal surface has a ground treatment, a ground treatment layer) As long as it is stably present in the coating composition ( ⁇ ) in the coating step or the like, it may be a single particle or a secondary particle in which a plurality of single particles are strongly aggregated.
  • the (B) particles may be aggregated during the drying and film formation of the coating film, and the volume average diameter in the coating film may increase.
  • the volume average diameter referred to here is the volume-based average diameter obtained from the volume distribution data of the particles. This may be determined using any generally known particle size distribution measurement method, but it is preferable to use the average value of the sphere volume equivalent diameter distribution measured by the Coulter method (pore electrical resistance method). preferable. This is because the Coulter method uses other particle size distribution measurement methods (for example, (a) Calculate from the volume distribution obtained by the laser diffraction scattering method, (b) The circular area equivalent diameter distribution obtained by the image analysis method is the volume distribution. Compared to (c) calculated from mass distribution obtained by centrifugal sedimentation method, etc.), there is almost no difference in measured values by measuring machine manufacturers and models, and accurate and highly accurate measurement can be performed.
  • the test particles are suspended in an aqueous electrolyte solution, a constant current is passed through the pores of the glass tube, and the particles are set to pass through the pores by negative pressure.
  • Non-oxide ceramic particles having a volume average diameter of less than 0.2 ⁇ m are generally more expensive than non-oxide ceramic particles having a volume average diameter larger than that, and few are marketed as industrial products.
  • the specific surface area is relatively large, it is difficult to wet and disperse the entire particle surface using a wetting dispersant when preparing a water-based or organic solvent-based coating composition. It is better not to use it in the present invention, because there are many cases where no splints or lumps occur.
  • non-oxide ceramic particles having a volume average diameter exceeding 20 ⁇ m are more likely to settle faster in water-based or organic solvent-based coating compositions than non-oxide ceramic particles having a volume average diameter smaller than that (Stokes' formula). More obvious).
  • FIG. 1 shows a schematic view of a cross section of a painted metal sheet for automobiles of the present invention.
  • (A) is an organic resin
  • (B) and (B ′) are non-oxide ceramic particles
  • (C) is a rust preventive pigment
  • ( ⁇ ) is a metal plate.
  • (B) is a particle having a ratio c / b of a particle diameter to a thickness of 0.5 or more. In this case, conductivity in the thickness direction is ensured.
  • (B ′) is a particle having a ratio c / b of particle diameter to thickness of less than 0.5, and in this case, sufficient conductivity may not be ensured.
  • the ratio c / b of the particle diameter to the thickness exceeds 1.5, the corrosion resistance and press formability may be deteriorated.
  • the non-oxidizing ceramic particles (B) that can be obtained are generally prepared to a predetermined particle size by pulverizing the raw material and classification as necessary, so that particles having different particle sizes are mixed. It has a particle size distribution. Therefore, even if the volume average diameter is in the above-mentioned particle size range, the weldability is affected depending on the particle size distribution.
  • the non-oxidizing ceramic particles (B), (B1) having a volume particle diameter of 1 to 24 ⁇ m has an effect particularly on good weldability.
  • the amount of non-oxidizing ceramic particles (B) occupying the surface of the coated metal plate also affects the weldability.
  • the non-oxidizing ceramic particles (B1) having a particle diameter of 1 ⁇ m to 24 ⁇ m are arranged on the surface of the coated metal plate at 0.8 particles / mm 2 to 40000 particles / mm 2, so that the painted metal plate is welded.
  • (B) having a particle diameter of less than 1 ⁇ m has a small contribution to weldability, and (B) having a particle diameter of more than 24 ⁇ m is likely to fall off from the coating film, particularly when the film thickness is thin, and hardly exhibits an effect on welding. If the number is less than 0.8 pieces / mm 2 , the effect on improving the weldability is small, and if it exceeds 40000 pieces / mm 2 , the effect on improving the weldability with respect to the added amount is small.
  • Anti-rust pigment (C) Although it does not specifically limit as a kind of rust preventive pigment (C) used for this invention, 1 type or 2 types chosen from a silicate compound, a phosphate compound, a vanadate compound, and a metal oxide fine particle (D) It is preferable to include the above.
  • silicate compound, phosphate compound, and vanadate compound are used in the coating composition ( ⁇ ) and the coating film ( ⁇ ). Releases silicate ions, phosphate ions, vanadate ions, and counter cations of these anions (eg, alkaline earth metal ions, Zn ions, Al ions, etc.) in response to environmental changes such as contact and pH, respectively. can do.
  • anions eg, alkaline earth metal ions, Zn ions, Al ions, etc.
  • the ions that have already eluted in the coating composition ( ⁇ ) are taken into the coating film ( ⁇ ) during film formation, and the increase or decrease of moisture in the coating film, the coexisting substances and the substrate surface It is considered that, depending on the contact with the substrate, pH change, etc., it forms a film of a hardly soluble salt or oxide with other coexisting atoms or atomic groups to suppress corrosion.
  • silicate compounds, phosphate compounds, and vanadate compounds incorporated in the coating film ( ⁇ ) the above-mentioned anions and cations are gradually released according to the environmental changes after the coating film is formed. However, it is considered that a film of hardly soluble salt or oxide is formed to suppress corrosion.
  • alkali metal such as lithium silicate, sodium silicate, and potassium silicate.
  • examples thereof include silicate and aluminum silicate.
  • lithium silicate, sodium silicate, and potassium silicate the constituent molar ratio of silicon oxide (SiO 2 ) and lithium oxide (Li 2 O) is 0.5 ⁇ (SiO 2 / Li 2 O) ⁇ 8
  • sodium silicate, silicon oxide (SiO 2 ) in which the constituent molar ratio of lithium silicate, silicon oxide (SiO 2 ) and sodium oxide (Na 2 O) is 0.5 ⁇ (SiO 2 / Na 2 O) ⁇ 4 2 ) and potassium silicate (K 2 O) having a constituent molar ratio of 0.5 ⁇ (SiO 2 / K 2 O) ⁇ 4, and hydrates of these silicates
  • lithium orthosilicate Li 4 SiO 4 ; 2Li 2 O ⁇ SiO 2
  • ortholithium hexalithium Li 6 Si 2 O 7 ; 3Li 2 O ⁇ 2SiO 2
  • lithium metasilicate Li 2 SiO 3; Li 2 O ⁇ SiO 2)
  • lithium disilicate Li 2 Si 2 O 5; Li 2 O ⁇ 2SiO 2
  • seven silicic tetracalcium lithium 2Li 2 O ⁇ 7SiO 2
  • four silicate lithium Li 2 Si 4 O 9; Li 2 O ⁇ 4SiO 2)
  • nine silicic tetracalcium lithium (2Li 2 O ⁇ 9SiO 2) fifteen silicic tetracalcium lithium (2Li 2 O ⁇ 15SiO 2)
  • orthosilicate Sodium Na 4 SiO 4 ; 2Na 2 O ⁇ SiO 2
  • sodium metasilicate Na 2 SiO 3 ; Na 2 O ⁇
  • Examples of the phosphate compound that can be used in the present invention include orthophosphoric acid, polyphosphoric acid (a linear polymer having a degree of polymerization of orthophosphoric acid up to 6 or a mixture of two or more thereof), and metaphosphoric acid.
  • orthophosphoric acid cyclic polymer having a degree of polymerization of 3 to 6 or a mixture of two or more thereof metal salts such as tetrametaphosphoric acid and hexametaphosphoric acid, phosphorous pentoxide, monetite, tolufilite, witrockite , Xenotime, starcolite, struvite, phosphate minerals such as ore iron ore, commercially available complex phosphate pigments such as polyphosphate silica and tripolyphosphate, phytic acid, phosphonic acid (phosphorous acid), phosphinic acid Examples thereof include metal salts such as (hypophosphorous acid) or a mixture of two or more thereof.
  • the orthophosphate referred to here includes its monohydrogen salt (HPO 4 2 ⁇ ) and dihydrogen salt (H 2 PO 4 ⁇ ).
  • the polyphosphate includes a hydrogen salt.
  • the cationic species that form the phosphate such as Co, Cu, Fe, Mn, Nb, Ni, Sn, Ti, V, Y, Zr, Al, Ba, Ca, Mg, Sr, and Zn.
  • metal ions such as vanadyl, titanyl, zirconyl and the like, and Al, Ca, Mg, Mn, and Ni are preferably used.
  • the said phosphate compound may be used independently and may use 2 or more types together.
  • alkali metal phosphate it is not preferable to use a large amount of alkali metal as the cationic species that form phosphate.
  • the product obtained by firing in an industrial production process tends to be excessively dissolved in water.
  • the solubility control in water can be controlled during the production of rust preventive pigments, during the production of coating compositions, during the formation of films on metal plates, If it can be carried out at the time of use, it may be used slightly more.
  • Such control can be achieved by, for example, coexisting rust preventive pigments with other additives that suppress water solubility, or coexisting with highly crosslinked resin-based or inorganic polymers. Examples include a method of controlling the elution rate.
  • the vanadate compound that can be used in the present invention is a composite compound in which the valence of vanadium is any one of 0, 2, 3, 4, or 5, or two or more kinds, These oxides, hydroxides, oxyacid salts of various metals, vanadyl compounds, halides, sulfates, metal powders, and the like. These decompose when heated or in the presence of water and react with the coexisting oxygen.
  • a vanadium metal powder or a divalent compound finally changes to a trivalent, tetravalent, or pentavalent compound.
  • Zero-valent ones, such as vanadium metal powder can be used for the above reasons, but are not preferred in practice because of problems such as insufficient oxidation reaction.
  • the pentavalent vanadium compound has vanadate ions and is easily heated to react with phosphate ions to make a heteropolymer that contributes to rust prevention, it is preferable to contain the pentavalent vanadium compound as one component.
  • vanadium compounds include vanadium (II) compounds such as vanadium oxide (II) and vanadium hydroxide (II), vanadium (III) compounds such as vanadium oxide (III), vanadium oxide (IV), and vanadyl halide.
  • Vanadium (IV) compounds such as vanadium (IV) compounds, vanadium oxide (V), vanadate (ortho vanadates of various metals, metavanadate, pyrovanadate, etc.), etc., or a mixture thereof Can be mentioned.
  • the preferred metal species constituting the vanadate are the same as the metals shown for phosphate.
  • alkali metal vanadate When alkali metal vanadate is used, the product obtained by firing in an industrial manufacturing process tends to dissolve too much in water, so as in the case of phosphate, alkali metal vanadate. Is not preferable. However, as long as the solubility in water can be controlled similarly to the case of using an alkali metal phosphate, these can be used. The same applies to vanadium halides and sulfates.
  • the total amount of the silicate compound, phosphate compound and vanadate compound is 1 to 40% by volume of the coating film ( ⁇ ), and 1 to 20% by volume. Preferably, 2 to 15% by volume is more preferable. If it is less than 1% by volume, the silicate compound, the phosphate compound, and the vanadate compound are insufficient in action, and thus the corrosion resistance may be lowered. If it exceeds 20% by volume, the coating film becomes brittle, and the coating film adhesion and coating followability at the time of molding may decrease due to coating film cohesive failure, or the weldability may decrease.
  • the rust preventive pigment (C) preferably contains one or more of silicate compounds, phosphate compounds, and vanadate compounds, but the phosphate compound (phosphate ion source),
  • the coexistence of at least one of an acid salt compound (silicate ion source) or a vanadate compound (vanadate ion source) is more preferable in terms of enhancing the rust prevention effect.
  • the ratio of the phosphate ion source and the total amount of the silicate ion source and vanadate ion source is the ratio of [number of moles of P 2 O 5 ]: [total number of moles of SiO 2 and V 2 O 5 ]. More preferably, it is 25:75 to 99: 1.
  • the rust prevention effect due to the phosphate ions may decrease.
  • the molar ratio of the total amount of silicate ion source and vanadate ion source is less than 1%, the effect of oxidizing or fixing peripheral chemical species by silicate ions (or vanadate ions) may be insufficient. is there.
  • metal oxide fine particles (D) composed of one or more metal elements selected from the group consisting of Si, Ti, Al and Zr can be used. Corrosion resistance can be further enhanced by using these metal oxide fine particles (D) alone or by blending them together with a silicate compound, a phosphate compound, and a vanadate compound.
  • a silicate compound, a phosphate compound, a vanadate compound and silica coexist, it is preferable because corrosion resistance is further improved.
  • silica include fumed silica, colloidal silica, and agglomerated silica. Calcium deposited silica can also be used.
  • Examples of the metal oxide fine particles (D) that can be used in the present invention include silica fine particles, alumina fine particles, titania fine particles, zirconia fine particles, and the like, and a metal oxide having a volume average diameter of about 1 to 100 nm. Nanoparticles (D1) are more preferred. These may be used alone or in combination of two or more. Among these, silica nanoparticles can be added when both improvement in corrosion resistance and toughening of the coating film are required.
  • the metal oxide nanoparticle (D1) having a particle size of 1 nm or more and less than 100 nm for example, colloidal silica, colloidal titania, colloidal zirconia can be used. Since these are different in production method from those obtained by pulverizing the above metal oxides, they are dispersed in the coating material and in the coating metal material after coating as fine primary particles (particle size: 1 nm to 100 nm). easy. These metal oxide nanoparticles (D1) have a higher rust prevention effect than metal oxide particles of the same composition having a larger particle size. However, such metal oxide nanoparticles (D1) may impede weldability in current resistance welding, such as spot welding, in which current is applied while applying a load with an electrode and welding is performed by Joule heat.
  • current resistance welding such as spot welding
  • FIG. 2 shows a cross-sectional photograph of a painted metal plate.
  • FIG. 2A is a SEM photograph of the surface layer cross section of the coated metal plate.
  • FIG. 2 (b) is a cross-sectional SEM photograph of the painted metal plate mating portion during pressurization with a welding electrode, and shows a cross section of the painted metal plate mating portion in a state of being pressurized during energization welding. It can be seen that the non-oxide ceramic particles (B) pass through the coating film at the position of the arrow and are in contact with each other and become a current-carrying path.
  • FIG. 3 is a schematic diagram showing a state in which painted metal plates for automobiles are overlapped and a load is applied by electrodes during current welding.
  • the position of the painted metal plate matching portion shown in FIG. 2B is indicated by a square frame in FIG.
  • the painted metal plate for automobiles used for welding is that when two or more coated metal plates are overlapped and a load is applied with a welding electrode, the electrode and non-oxide ceramic particles (B) come into contact with each other, and the coating film ( ⁇ )
  • the non-oxide ceramic particles (B) in the middle or the non-oxide ceramic particles (B) and the metal plate come into contact with each other to form a current-carrying path, and current-carrying resistance welding becomes possible.
  • FIG. 4 shows that the metal oxide nanoparticles (D1) adhere to the periphery of the non-oxide ceramic particles (B) or are sandwiched between the non-oxide ceramic particles (B) to inhibit current conduction.
  • It is a schematic diagram.
  • metal oxide nanoparticles (D1) having a particle size of 1 nm or more and less than 100 nm are present in the coating film ( ⁇ ), the electrode, the non-oxide ceramic particles (B), and the non-oxide ceramic particles ( B)
  • the metal oxide nanoparticles (D1) impede electrical conduction between each other or between the non-oxide ceramic particles (B) and the metal plate, which adversely affects weldability.
  • the amount of metal oxide nanoparticles (D1) is such that the ratio (D1 / B) of the total volume of metal oxide nanoparticles (D1) to the total volume of non-oxidized ceramic particles (B) in the coating film is 20 or less. It is preferable that When emphasizing the weldability, 10 or less is more preferable.
  • the lower limit of (D1 / B) is preferably 0.1 or more. When (D1 / B) is less than 0.1, there are too many non-oxidized ceramic particles (B) in the coating film or too few metal oxide nanoparticles (D1).
  • the antirust property which is reduced by suppressing the amount of the metal oxide nanoparticle (D1) in order to ensure weldability can be supplemented by adding an antirust pigment (C) having a particle size of 100 nm or more.
  • the rust preventive pigment (C) having a particle diameter of 100 nm or more the whole or a part thereof may be metal oxide fine particles (D2) having a particle diameter of 100 nm or more.
  • the anticorrosive pigment (C) having a particle size of 100 nm or more is formed between the electrode and (B) and (B) in a state where the coating film is applied on the metal plate or in a state where the coating film is deformed by a load by the welding electrode. Or, since it is difficult to enter between (B) and the metal plate, the adverse effect on current resistance welding is smaller than that of the metal oxide nanoparticle (D1).
  • the amount of the rust preventive pigment (C) is preferably 1 to 40% by volume of the coating film ( ⁇ ), and the total amount with the amount of the non-oxide ceramic particles (B) preferably does not exceed 80% by volume.
  • the amount of the rust preventive pigment (C) is more preferably 1 to 20% by volume, and further preferably 2 to 15% by volume.
  • the amount of the anticorrosive pigment (C) is preferably 3 to 40% by volume, more preferably 7.5 to 40% by volume. Further, when the corrosion resistance of a further coated metal plate is emphasized, the amount of the rust preventive pigment (C) is more preferably 13 to 40% by volume.
  • the amount is less than 1% by volume, the amount of the anticorrosive pigment (C) is insufficient, and thus the effect of enhancing the corrosion resistance may not be sufficiently obtained. If it exceeds 40% by volume, the coating plate will be embrittled or the adhesion of the coating to the metal plate will be reduced. The effect of improving the corrosion resistance by the coating film may be reduced.
  • the amount of the metal oxide fine particles (D2) can be calculated by observing the cross section of the coating film with an electron microscope to identify each particle, counting the number per cross section, and converting it to the number per coating film volume. it can. In this case, each particle can be identified using an EDX spectroscopic device or the like as necessary.
  • the amount of each particle in the coating film is calculated from the amount of (B), (C), (D1), and (D2) contained in the coating material before painting and the coating film adhesion amount to the metal plate. . If the charge amount of (B), (C), (D1), and (D2) in the paint before painting is known, the amount of each particle in the coating film is determined from the charge amount and the paint adhesion amount to the metal plate. It can be calculated. If the amount charged is unknown, for example, it can be calculated by identifying and counting the particles in the paint diluted to an appropriate concentration by image analysis using a device such as Malvern's particle image analyzer Morphologi G3. It is. This technique can also be used when the number of particles is counted by dissolving the coating film adhering to the metal plate.
  • an appropriate amount of the various antirust pigments is previously dissolved or dispersed and stabilized in the coating composition ( ⁇ ) and then introduced into the organic resin (A) in the coating film ( ⁇ ).
  • the manufacturing method of the coating composition ( ⁇ ) used for forming the coating film ( ⁇ ) of the present invention is not particularly limited.
  • a method of adding each coating film ( ⁇ ) forming component in water or an organic solvent, stirring with a disperser such as a disper, and dissolving, dispersing or crushing and dispersing can be mentioned.
  • a known hydrophilic solvent or the like may be added, if necessary, in order to improve the solubility or dispersibility of each coating film ( ⁇ ) forming component.
  • water-based paint or coating in addition to the resin (A1), the non-oxide ceramic particles (B), and the rust-preventing pigment (C), if necessary, water-based paint or coating
  • Various water-soluble or water-dispersible additives may be added as long as the properties are not impaired.
  • surfactants such as antifoaming agents, anti-settling agents, leveling agents, wetting and dispersing agents, thickeners, viscosity adjustments An agent or the like may be added.
  • the coating film ( ⁇ ) of the present invention is formed from the aqueous coating composition ( ⁇ ), since it is aqueous, the surface tension is higher than that of the organic solvent coating composition, and the metal plate as the substrate (If there is a base treatment, it is inferior in wettability to the base treatment layer), non-oxide ceramic particles (B), and anticorrosive pigment (C). And particle dispersibility may not be obtained.
  • a surfactant that lowers the surface tension can be used, but it is better to use a polymer surfactant (polymer dispersant) having a molecular weight of 2000 or more.
  • Low molecular surfactants can move relatively easily through moisture-containing resin coatings, so that water adsorbed on polar groups of surfactants and corrosive factors such as dissolved oxygen and dissolved salts can be removed via the water. It is easy to attract to the metal surface, and bleeds out on its own, so that it is easy to elute and often deteriorates the rust prevention property of the coating film.
  • polymer surfactants can be adsorbed on the surface of metals, ceramic particles and pigments at multiple points, so that they are difficult to separate once adsorbed, and are effective in improving wettability even at low concentrations.
  • the molecules are bulky, it is difficult to move through the resin coating film, and it is difficult to attract the corrosion factor to the metal surface.
  • Part of the acrylic resin recommended to be added to the organic resin (A) in the section ⁇ Organic resin (A)> has the function of such a polymer surfactant, and is used for water-based coating.
  • the non-oxide ceramic particles (B), the rust preventive pigment (C) and the like are prevented from being settled and uniformly dispersed.
  • Thickener is sufficient when wetting and dispersing agent alone does not provide sufficient surface coverage for the repellent area of the substrate surface, or the viscosity of the aqueous coating composition is too low to ensure the required coating thickness It can be added as a countermeasure when not. Many have a molecular weight of several thousand to several tens of thousands, adsorbed on the surface of pigments and the like, and the thickeners themselves associate with each other to form a weak network structure, thereby increasing the viscosity of the coating composition.
  • the aqueous coating composition ( ⁇ ) contains non-oxide ceramic particles (B) with high specific gravity, rust-preventive pigment (C), etc., viscosity that can impart thixotropic properties (thixotropic properties) to the paint as required It is better to add a regulator.
  • the viscosity modifier is adsorbed on the surface of a pigment or the like in the aqueous coating composition to form a network structure. Since the molecular weight of such a viscosity modifier is very high at hundreds of thousands to millions, it forms a strong network structure with a large yield value in the aqueous coating composition ( ⁇ ), and thus the coating composition.
  • an organic solvent-based coating composition ( ⁇ ) a coating composition in which a resin is dissolved in an organic solvent has a relatively high viscosity and is easy to adjust the viscosity. Therefore, the viscosity of the coating composition can be easily and stably maintained at 100 mPa ⁇ s or more, which is advantageous for suppressing pigment settling.
  • non-oxide ceramics used as conductive materials are substances that also have hydrophobic sites on the surface, they are generally easy to disperse in organic solvent-based coating compositions ( ⁇ ), and coating Since the non-oxide ceramic particles (B) in the coating composition ( ⁇ ) can sometimes be coated without settling, it is preferable.
  • Non-oxide ceramic particles (B) are more preferable because they are less likely to settle.
  • the viscosity of the coating composition ( ⁇ ) is less than 100 mPa ⁇ s, the non-oxide ceramic particles (B) are likely to settle, and when the viscosity exceeds 2000 mPa ⁇ s, the viscosity is too high and is generally referred to as living etc. There is a risk of appearance failure. More preferably, it is 250 to 1000 mPa ⁇ s.
  • the viscosity of the organic solvent-based coating composition ( ⁇ ) can be measured using a B-type viscometer at the same temperature as that of the coating composition when applied by a roll coater or a curtain coater.
  • Viscosity can be adjusted by the type of organic solvent used and the amount of solvent.
  • the organic solvent generally known solvents can be used, but organic solvents having a high boiling point are preferable. In the metal plate production line of the present invention, since the baking time is short, if a solvent having a low boiling point is used, there is a possibility that a coating defect generally called boiling will occur. It is preferable to use a solvent having a boiling point of 120 ° C. or higher.
  • known solvents such as cyclohexane and aromatic hydrocarbon organic solvent Solvesso (product name of ExxonMobil Co., Ltd.) can be used.
  • the coating film ( ⁇ ) of the present invention is a roll coat or groove roll when the coating composition ( ⁇ ) is an aqueous or organic solvent composition.
  • a coating method such as coating, curtain flow coating, roller curtain coating, dipping (dip), air knife drawing, etc.
  • the coating composition ( ⁇ ) is applied on the metal plate.
  • a film forming method for drying the solvent is preferred.
  • moisture or solvent is dried, and ultraviolet rays or electron beams are applied. It is preferable to polymerize by irradiation.
  • the baking drying method in the case where the coating composition ( ⁇ ) is a water-based or organic solvent-based baking curable composition will be specifically described.
  • the baking and drying method is not particularly limited, either by heating the metal plate in advance or heating the metal plate after application, Or you may dry these combining these.
  • limiting in particular in a heating method A hot air, induction heating, near infrared rays, a direct fire, etc. can be used individually or in combination.
  • the coating composition ( ⁇ ) is a water-based baking curable composition
  • it is preferably 120 ° C. to 250 ° C. and preferably 150 ° C. to 230 ° C. at the metal plate surface arrival temperature. More preferably, it is 180 to 220 ° C.
  • the coating film is not sufficiently cured and the corrosion resistance may be lowered.
  • the temperature exceeds 250 ° C. the bake hardening becomes excessive, and the corrosion resistance and the moldability may be lowered.
  • the baking and drying time is preferably 1 to 60 seconds, and more preferably 3 to 20 seconds. If it is less than 1 second, the bake hardening is insufficient and the corrosion resistance may be lowered, and if it exceeds 60 seconds, the productivity may be lowered.
  • the metal plate surface temperature is preferably 180 ° C. to 260 ° C., more preferably 210 ° C. to 250 ° C.
  • the coating film is not sufficiently cured, and the corrosion resistance may be lowered.
  • the temperature exceeds 260 ° C. the bake hardening becomes excessive, and the corrosion resistance and formability may be lowered.
  • the baking and drying time is preferably 10 to 80 seconds, and more preferably 40 to 60 seconds. If it is less than 10 seconds, the bake hardening is insufficient and the corrosion resistance may be lowered, and if it exceeds 80 seconds, the productivity may be lowered.
  • the coating composition ( ⁇ ) is a water-based or organic solvent-based ultraviolet curable composition or electron beam curable composition
  • the moisture and solvent content of the wet coating film are dried, and then irradiated with ultraviolet rays or electron beams. Since the coating film is cured and formed mainly from radicals generated by irradiation with ultraviolet rays or electron beams, the drying temperature may be lower than that for the bake curable composition. In the drying process, it is preferable to irradiate with ultraviolet rays or electron beams after volatilizing most of moisture and solvent at a relatively low metal surface reaching temperature of about 80 to 120 ° C.
  • the UV irradiation for radical polymerization of the UV curable resin in the coating film by UV irradiation and curing is usually performed in an air atmosphere, in an inert gas atmosphere, in a mixed atmosphere of air and an inert gas, or the like.
  • the adhesion to the non-oxide ceramic particles (B) and the metal plate surface is increased, and as a result, the corrosion resistance of the coating film is improved as compared with the case of ultraviolet curing in the air atmosphere.
  • the inert gas used here include nitrogen gas, carbon dioxide gas, argon gas, and mixed gas thereof.
  • the ultraviolet light source can be irradiated with ultraviolet rays by using, for example, a metal vapor discharge type high pressure mercury lamp, a metal halide lamp, a rare gas discharge type xenon lamp, an electrodeless lamp using microwaves, or the like.
  • any lamp may be used as long as the ultraviolet curable coating film can be sufficiently cured and desired resistance weldability, corrosion resistance, and formability can be obtained.
  • the peak illuminance and integrated light intensity of the ultraviolet rays received by the coating film influence the curability of the coating film, but the UV curing type coating film can be sufficiently cured, and the desired corrosion resistance and moldability can be obtained. If there is, ultraviolet irradiation conditions are not particularly limited.
  • the coating composition ( ⁇ ) is an electron beam curable composition
  • a normal electron beam irradiation apparatus used in the fields of printing, painting, film coating, packaging, sterilization, etc. is used for electron beam curing. be able to. These are accelerated by applying a high voltage to thermoelectrons generated from a hot filament in a high vacuum, and the resulting electron stream is taken out in an inert gas atmosphere and irradiated to a polymerizable substance.
  • any apparatus may be used as long as the electron beam curable coating film can be sufficiently cured and desired resistance weldability, corrosion resistance, and formability can be obtained.
  • the acceleration voltage of the electron beam absorbed by the coating film affects the depth at which the electron beam penetrates the coating film, and the absorbed dose affects the polymerization rate (curability of the coating film).
  • the irradiation conditions of the electron beam are not particularly limited as long as the coating film of the mold can be sufficiently cured and desired corrosion resistance and moldability can be obtained.
  • the inert gas used here include nitrogen gas, carbon dioxide gas, argon gas, and mixed gas thereof.
  • Example I Hereinafter, the present invention will be specifically described by Example I using a water-based coating composition.
  • Preparation of metal plate Prepare the following five types of galvanized steel sheets and immerse them in a 2.5% by weight, 40 ° C aqueous solution of an aqueous alkaline degreasing agent (FC-301 manufactured by Nihon Parkerizing Co., Ltd.) for 2 minutes. After degreasing, it was washed with water and dried to obtain a metal plate for painting.
  • FC-301 aqueous alkaline degreasing agent manufactured by Nihon Parkerizing Co., Ltd.
  • EG Electrogalvanized steel sheet (plate thickness 0.8 mm, plating adhesion 40 g / m 2 )
  • ZL Electric Zn-10% Ni alloy plated steel sheet (plate thickness 0.8mm, plating adhesion 40g / m 2 )
  • GI Hot dip galvanized steel sheet (plate thickness 0.8 mm, plating adhesion 60 g / m 2 ) SD: Hot-dip Zn-11% Al-3% Mg-0.2% Si alloy-plated steel sheet (plate thickness 0.8 mm, plating adhesion 60 g / m 2 )
  • GA Alloyed hot-dip galvanized steel sheet (plate thickness 0.8 mm, 10% Fe, plating adhesion 45 g / m 2 )
  • p1 A composition for aqueous coating comprising a Zr compound, a silane coupling agent and silica fine particles
  • p2 A composition for aqueous coating comprising a polyester resin, silica fine particles and a silane coupling agent
  • the coating metal plate was bar-coated with p1 or p2 to a film thickness of 0.08 ⁇ m, dried at a metal surface temperature of 70 ° C. in a hot air oven, and air-dried.
  • Resin (A1) Resins A11 to A13 were synthesized, and commercially available resins A14 and A15 were prepared. These are all resins used in the present invention.
  • A11 Carboxyl group-containing polyester urethane resin (synthesized in Production Example 1 and recovered as an aqueous dispersion) [Production Example 1] Into a 10 L reaction vessel equipped with a stirrer, reflux condenser, nitrogen gas inlet tube and thermometer, thermostat, 1628 g of 2,2-dimethylolbutanoic acid and 3872 g of ⁇ -caprolactone were charged, and stannous chloride as a catalyst. 27.5 mg was added, and the temperature in the reaction vessel was kept at 120 ° C. and reacted for 3 hours. As a result, a liquid carboxyl group-containing polyester diol (a11) having a hydroxyl value of 225.5 mgKOH / g and an acid value of 114.6 mgKOH / g was obtained.
  • A12 Sulfonic acid group-containing polyester urethane resin (synthesized in Production Example 2 and dispersed in water) Recovered as a liquid)
  • Production Example 2 In a pressure-resistant reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen gas introduction tube and a thermometer, and a thermostat, while stirring under a nitrogen stream, 1100 g of adipic acid, 900 g of 3-methyl-1,5-pentanediol, and tetrabutyl 0.5 g of titanate was charged, the temperature in the reaction vessel was maintained at 170 ° C., and the reaction was continued until the acid value was 0.3 mg KOH / g or less.
  • the reaction was carried out under reduced pressure conditions of 180 ° C. and 5 kPa or less for 2 hours to obtain a polyester having a hydroxyl value of 112 mgKOH / g and an acid value of 0.2 mgKOH / g.
  • 280 g of the sulfonic acid group-containing polyester (a12), 200 g of polybutylene adipate, 35 g of 1,4-butanediol, 118 g of hexamethylene diisocyanate and 400 g of methyl ethyl ketone were mixed with a stirrer, a reflux condenser, a nitrogen gas inlet tube and a thermometer, and a thermostat.
  • the reaction vessel equipped was charged under a nitrogen stream, and the urethanization reaction was carried out with stirring while maintaining the liquid temperature at 75 ° C. to obtain a urethane prepolymer having an NCO content of 1%.
  • the temperature in the reaction vessel was lowered to 40 ° C., 955 g of ion-exchanged water was uniformly added dropwise with sufficient stirring, and phase inversion emulsification was performed.
  • the internal temperature was lowered to room temperature, and an adipic acid hydrazide aqueous solution in which 13 g of adipic acid hydrazide and 110 g of ion exchange water were mixed was added to perform amine elongation. After distilling off the solvent at 60 ° C.
  • A13 Sulfonic acid group-containing polyester resin (synthesized in Production Example 3 and recovered as an aqueous dispersion) [Production Example 3]
  • a pressure-resistant reaction vessel equipped with a stirrer, reflux condenser, nitrogen gas inlet tube and thermometer, thermostat, stirring in a nitrogen stream, 199 g of terephthalic acid, 232 g of isophthalic acid, 199 g of adipic acid, 5-sulfosodium isophthalic acid 33 g, 312 g of ethylene glycol, 125 g of 2,2-dimethyl-1,3-propanediol, 187 g of 1,5-pentanediol and 0.41 g of tetrabutyl titanate are added, and the temperature in the reaction vessel is increased from 160 ° C.
  • A14 Amino group-containing epoxy resin (Adeka Resin EM-0718, manufactured by ADEKA Corporation, aqueous solution)
  • A15 Nonionic polyether-based urethane resin (DIC Corporation Bondic 1520, aqueous dispersion)
  • Non-oxide ceramic particles Commercially available fine particles (reagents) were used. The volume average diameter was measured using Multisizer 3 (precision particle size distribution measuring apparatus based on the Coulter principle) manufactured by Beckman Coulter, Inc. The electrical resistivity is 80 mm long, 50 mm wide, and 2 to 4 mm thick sintered plate made from each fine particle. The resistivity meter Loresta EP (MCP-T360 type) manufactured by Mitsubishi Chemical Analytech Co., Ltd. and ESP are used. The measurement was performed at 25 ° C. in accordance with JIS K7194 by a four-terminal four-probe method using a probe (diameter 2 mm of the flat head of the terminal) and a constant current application method.
  • TiN TiN fine particles (manufactured by Wako Pure Chemical Industries, Ltd., volume average diameter 1.6 ⁇ m, electrical resistivity 20 ⁇ 10 ⁇ 6 ⁇ cm)
  • TiB TiB 2 fine particles (TII11PB manufactured by Purifying Research Institute Co., Ltd., volume average diameter 2.9 ⁇ m, electrical resistivity 30 ⁇ 10 ⁇ 6 ⁇ cm)
  • VC VC fine particles (manufactured by Wako Pure Chemical Industries, Ltd., volume average diameter 2.3 ⁇ m, electrical resistivity 140 ⁇ 10 ⁇ 6 ⁇ cm)
  • ZrB ZrB 2 fine particles (manufactured by Wako Pure Chemical Industries, Ltd., volume average diameter 2.2 ⁇ m, electrical resistivity 70 ⁇ 10 ⁇ 6 ⁇ cm)
  • MoB Mo 2 B fine particles (manufactured by Mitsuwa Chemical Co., Ltd., dimolybdenum boride, volume average diameter 5.2 ⁇ m, electrical resistivity 30 ⁇ 10 ⁇
  • TiC TiC fine particles (manufactured by Wako Pure Chemical Industries, Ltd., volume average diameter 3.2 ⁇ m, electrical resistivity 180 ⁇ 10 ⁇ 6 ⁇ cm)
  • TiN + VC Mixture of TiN and VC (volume ratio 1: 1)
  • VC + ZrB Mixture of the VC and the ZrB (volume ratio 1: 1)
  • ZrB + TiC mixture of ZrB and TiC (volume ratio 1: 1)
  • Conductive particles other than (B) Commercially available fine particles (reagents) were used. Among these, the volume average diameter and electric resistivity of each particle of TaN, VN, and CrSi 2 (non-oxide ceramics) were measured in the same manner as in (2) above. The volume average diameter of each particle of Al (aluminum), C (isotropic graphite), ZnO (conductive zinc oxide), FSi 2 (ferrosilicon No. 2 whose components are defined in JIS G 2302) is the above (2) Measured in the same manner as described above, and the electrical resistivity is a literature value.
  • TaN TaN fine particles (Sotantagawa Chemical Co., Ltd. tantalum nitride, volume average diameter 3.7 ⁇ m, electrical resistivity 205 ⁇ 10 ⁇ 6 ⁇ cm)
  • VN VN fine particles (Soenagawa Chemical Co., Ltd. vanadium nitride, volume average diameter 5.8 ⁇ m, electrical resistivity 220 ⁇ 10 ⁇ 6 ⁇ cm)
  • CrSi CrSi 2 fine particles (Sodium River Chemical Co., Ltd. chromium silicide is added to water, stirred and suspended, and fine particles still floating after 5 minutes are filtered and used.
  • Al Aluminum particles (ALE11PB manufactured by Kojundo Chemical Laboratory Co., Ltd., volume average diameter 3.3 ⁇ m, electrical resistivity 2.7 ⁇ 10 ⁇ 6 ⁇ cm)
  • C Isotropic graphite particles (CCE03PB, manufactured by Purifying Research Laboratory Co., Ltd., volume average diameter 6.5 ⁇ m, electric resistivity 1200 ⁇ 10 ⁇ 6 ⁇ cm)
  • ZnO Conductive zinc oxide particles (Huxitec Co., Ltd. passette 23-K, volume average diameter 6.6 ⁇ m, electrical resistivity 190 ⁇ 10 ⁇ 6 ⁇ cm)
  • FSi2 Ferrosilicon No.
  • Anticorrosive pigment Commercially available reagents, industrial products, or blends of these were used.
  • i1 Magnesium pyrophosphate (reagent manufactured by Soekawa Rikagaku Co., Mg 2 P 2 O 7 )
  • i2 Calcium silicate (Wako Pure Chemical Industries, Ltd.
  • Silane coupling agent (s) s1 3-glycidoxypropyltrimethoxysilane (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.)
  • s2 3-aminopropyltrimethoxysilane (KBM-903 manufactured by Shin-Etsu Chemical Co., Ltd.)
  • a water-based coating composition was prepared at a blending ratio of
  • silane coupling agent s1 or s2 it added to the composition for water-system coating so that it might become 5 mass parts with respect to 100 mass parts of resin (A1) in the said non volatile matter.
  • the concentration of the non-volatile content of the water-based coating composition was appropriately adjusted by changing the amount of water added in order to obtain the target coating amount and good coating properties.
  • the “nonvolatile content” means a component remaining after volatilizing water and organic solvents mixed as a solvent in the paint or composition.
  • conductive particles other than the resin (A1), non-oxide ceramic particles (B) and (B) contained in the non-volatile content of each water-based coating composition, anti-rust pigment (C) and the kind of silane coupling agent (s) are shown.
  • conductive particles other than the non-oxide ceramic particles (B) and (B) and the anticorrosive pigment (C) the content (% by volume) in the coating film is also shown.
  • each component is uniformly dispersed, it is applied to the metal plate for coating or a metal plate provided with a base treatment film using a roll coater, and this is applied to the metal surface in a hot air oven. It was dried at an ultimate temperature of 200 ° C., water-cooled and air-dried.
  • Tables 1 to 6 and 8 show the coating thicknesses ( ⁇ m units) after film formation. The coating thickness was calculated by dividing the mass difference before and after peeling of the coating after coating by the specific gravity of the coating. The specific gravity of the coating film was calculated from the blending amount of the coating film components and the known specific gravity of each component.
  • Non-oxide ceramic particles (B) and conductive particles (C) other than (B) prepared in the section of the aqueous coating composition, the rust preventive pigment (C), and the Solvesso 150: cyclohexanone 50: 50 (mass ratio)
  • the organic solvent-based coating composition was prepared at various blending ratios.
  • the non-oxide ceramic particles (B), conductive particles other than (B), and the rust preventive pigment (C) are included in the nonvolatile content of the organic solvent-based coating composition.
  • the resin (A *), non-oxide ceramic particles (B), conductive particles other than (B), and a desired volume ratio with respect to the total amount of the anticorrosive pigment (C) were blended.
  • the concentration of the non-volatile content of the organic solvent-based coating composition was appropriately adjusted by changing the amount of the mixed solvent added in order to obtain the target coating amount and good coating properties.
  • Table 7 shows the conductive particles other than the resin (A *), non-oxide ceramic particles (B) and (B), and the anticorrosive pigment (C) contained in the nonvolatile content of the organic solvent-based coating composition. Indicates the type.
  • the non-oxide ceramic particles (B), conductive particles other than (B), and the anticorrosive pigment (C) also show the content (% by volume) in the coating film.
  • Table 7 shows the coating thickness ( ⁇ m unit) after film formation.
  • the coating thickness was calculated by dividing the mass difference before and after peeling of the coated film after coating by the coating film specific gravity, as in the case of the coating film of the aqueous coating composition.
  • the specific gravity of the coating film was calculated from the blending amount of the coating film components and the known specific gravity of each component.
  • the number of striking points is 2000 points or more 4: 1000 points or more, less than 2000 points 3: 500 points or more, less than 1000 points 2: Less than 500 points 1: Nugget is not generated and one point cannot be welded
  • Tables 1 to 8 also show the evaluation results.
  • the coated metal plate of the present invention can achieve both excellent weldability, formability and corrosion resistance regardless of the type of metal plate, resin (A1), and non-oxide ceramic particles (B). What should be noted about the performance of the coated metal sheet of the example of the present invention is as follows.
  • the resin (A1) is a polyurethane resin or a modified polyurethane resin
  • the urethane group (—NHCOO—) in the resin structure is another organic group.
  • the coating film is tough and the coating film is less likely to peel or galling during press molding.
  • corrosion factor shielding due to relatively high cohesive energy. Improves the corrosion resistance.
  • the corrosion resistance of the coating film tends to be improved as compared to the case where it is not.
  • the content of the non-oxide ceramic particles (B) in the coating film is larger than the preferred range (0.5 to 60% by volume), the moldability and corrosion resistance are liable to be adversely affected.
  • the coating thickness is thinner than the preferred thickness range (2 to 30 ⁇ m thickness), the corrosion resistance tends to be low, and when it is thick, the weldability and formability tend to decrease.
  • non-oxide ceramic particles (TaN, VN, CrSi 2 ) having an electrical resistivity exceeding 185 ⁇ 10 ⁇ 6 ⁇ cm are used, desired weldability cannot be obtained.
  • Typical conductive particles (aluminum particles, isotropic graphite particles, conductive zinc oxide particles, ferrosilicon No. 2 particles) used in conventional technology (patent literature group shown in the above "Background Art” section)
  • conductive particles used in conventional technology (patent literature group shown in the above "Background Art” section)
  • the literature value of the electrical resistivity of aluminum is slightly lower than the electrical resistivity of the non-oxide ceramic particles (B) used in the present invention, the above-mentioned isotropic graphite particles, conductive zinc oxide particles, ferrosilicon No. 2
  • aluminum particles easily grow an aluminum oxide insulating layer (bayerite) with a thickness of several hundreds of nanometers on the particle surface due to moisture in the storage atmosphere, the electrical resistivity of the particles is limited unless stored in an absolutely dry atmosphere. Because it rises.
  • non-oxide ceramic particles (B) When a mixture of the non-oxide ceramic particles as a constituent element of the present invention at an arbitrary ratio was used as the non-oxide ceramic particles (B), the same effect as when used alone was shown.
  • Example II Next, the particle size of the non-oxide ceramic particles (B), the influence on the weldability of the number of particles arranged on the surface of the metal plate, and the metal oxide nanoparticles (D1) in the form of primary particles (1 nm to 100 nm) The effect of the ratio (D1 / B) to the total volume of the non-oxidized ceramic particles (B) on the weldability will be specifically described in Example II.
  • EG Electrogalvanized steel sheet (plate thickness 0.8 mm, plating adhesion 40 g / m 2 )
  • ZL Electric Zn-10% Ni alloy plated steel sheet (plate thickness 0.8mm, plating adhesion 40g / m 2 )
  • GI Hot dip galvanized steel sheet (plate thickness 0.8 mm, plating adhesion 60 g / m 2 ) SD: Hot-dip Zn-11% Al-3% Mg-0.2% Si alloy-plated steel sheet (plate thickness 0.8 mm, plating adhesion 60 g / m 2 )
  • GA Alloyed hot-dip galvanized steel sheet (plate thickness 0.8 mm, 10% Fe, plating adhesion 45 g / m 2 )
  • Example II Base Treatment Film
  • the coating metal plate used was evaluated without providing a ground treatment film.
  • conductive particles other than resin (A1), non-oxide ceramic particles (B), (B), anti-rust pigment (C ) was prepared.
  • Resin (A1) Resin A11 synthesized in Example I was used in Example II.
  • Non-oxide ceramic particles Commercially available fine particles (reagents) were used. The volume average diameter was measured using Multisizer 3 (precision particle size distribution measuring apparatus based on the Coulter principle) manufactured by Beckman Coulter, Inc. The electrical resistivity is 80 mm long, 50 mm wide, and 2 to 4 mm thick sintered plate made from each fine particle. The resistivity meter Loresta EP (MCP-T360 type) manufactured by Mitsubishi Chemical Analytech Co., Ltd. and ESP are used. The measurement was performed at 25 ° C. in accordance with JIS K7194 by a four-terminal four-probe method using a probe (diameter 2 mm of the flat head of the terminal) and a constant current application method.
  • TiN TiN fine particles (manufactured by Wako Pure Chemical Industries, Ltd., volume average diameter 1.6 ⁇ m, electrical resistivity 20 ⁇ 10 ⁇ 6 ⁇ cm)
  • ZrB ZrB 2 fine particles (manufactured by Wako Pure Chemical Industries, Ltd., volume average diameter 2.2 ⁇ m, electrical resistivity 70 ⁇ 10 ⁇ 6 ⁇ cm)
  • NiSi Ni 2 Si fine particles (NII11PB manufactured by Kojundo Chemical Laboratory Co., Ltd.) was added to water, stirred and suspended, and the fine particles still floating after 5 minutes were filtered and used. Volume average diameter 4.8 ⁇ m, electricity Resistivity 40 ⁇ 10 -6 ⁇ cm)
  • Rust prevention pigment (C) i4 Magnesium hydrogen phosphate (MgHPO 4 manufactured by Kanto Chemical Co., Inc.) was used.
  • aqueous coating compositions were prepared at various blending ratios using the resin (A1), non-oxide ceramic particles (B), rust preventive pigment (C), and distilled water.
  • the number of (B1) having a particle size of 1 to 24 ⁇ m arranged on the surface of the metal plate was determined as follows. First, the particle size distribution based on the volume of the non-oxide ceramic particles (B) is obtained using the above-mentioned Beckman Coulter Co., Ltd. Multisizer 3, and the particle size 1 contained per unit volume of the ceramic ceramic particles (B) The number of particles (number (B1) / vol (B)) (unit: pieces / ⁇ m 3 ) of ⁇ 24 ⁇ m was determined.
  • the number of particles (B1) having a particle size of 1 to 24 ⁇ m (number (B1)), which can be known from the frequency distribution of the number of particles with respect to the particle size in the particle size distribution, is determined by measuring the particle size distribution. It was calculated as the quotient divided by the total volume (vol (B)) of the oxide ceramic particles (B). The total volume (vol (B)) of the non-oxide ceramic particles (B) was calculated by totaling the products of the average particle volume and the number of particles in each particle size category of the frequency distribution.
  • Number of (B1) particles having a particle diameter of 1 to 24 ⁇ m arranged on the surface of the metal plate (Number (B1) / vol (B)) ⁇ (aveT) ⁇ (fraction (B)) ⁇ 10 6
  • Example II the above method was used to calculate the number of (B1) particles having a particle size of 1 to 24 ⁇ m arranged on the surface of the metal plate.
  • the number of (B1) arranged on the surface of the metal plate can also be calculated by analyzing the coated metal plate as described below.
  • the amount of non-oxidizing ceramic particles (B) (including non-oxidizing ceramic particles (B1) having a particle size of 1 to 24 ⁇ m) and the amount of rust preventive pigment (C) (metal oxide having a particle size of 1 nm or more and less than 100 nm)
  • the amount of the fine particles (D1) and the metal oxide fine particles (D2) having a particle diameter of 100 nm or more are counted by observing the cross section of the coating film with an electron microscope to identify each particle, and counting the number per cross section. It can be calculated in terms of the number per membrane volume. In this case, each particle can be identified using an EDX spectroscopic device or the like as necessary.
  • the amount of (B) (including (B1)) and (C) (including (D1) and (D2)) contained in the paint before coating and the amount of coating applied to the metal plate (paint onto the metal plate) It is also possible to calculate the amount of each particle in the coating film from the product of the adhesion amount and the non-volatile content ratio in the paint. In that case, for example, by using an apparatus such as a particle image analyzer Morphology G3 manufactured by Malvern, the particles in the paint diluted to an appropriate concentration are individually identified and counted by image analysis. This technique can also be used when the number of particles is counted by dissolving the coating film adhering to the metal plate.
  • each component is uniformly dispersed, it is applied to the metal plate for coating or a metal plate provided with a base treatment film using a roll coater, and this is applied to the metal surface in a hot air oven. It was dried at an ultimate temperature of 200 ° C., water-cooled and air-dried.
  • Table 9 shows the number (unit: pieces / mm 2 ) of the coating thickness (unit: ⁇ m) and (B1) after the film formation is arranged on the surface of the metal plate.
  • the coating thickness was calculated by dividing the mass difference before and after peeling of the coating after coating by the specific gravity of the coating.
  • the specific gravity of the coating film was calculated from the blending amount of the coating film components and the known specific gravity of each component.
  • the minimum current at which the nugget diameter is 3 ⁇ t (t is the plate thickness) or more is defined as the minimum nugget formation current, and the minimum current at which explosion occurs is defined as the minimum current at which explosion occurs.
  • (Explosion flying minimum current)-(nugget formation minimum current) was set to an appropriate welding current range, and the superiority or inferiority of appropriate weldability was evaluated using the following evaluation points. Appropriate welding current range ensures sufficient nugget diameter to ensure welding strength, and does not cause defects such as deterioration of appearance and deterioration of corrosion resistance due to reattachment of exploded components to the painted metal plate It is an indicator of whether or not good welding is easy (a coated metal plate having a large appropriate welding current range is easily welded well).
  • the appropriate welding current range is a discrete numerical value with an interval of 0.1 kA because of the measurement method. Even if the evaluation score is low, if the nugget is formed, the welding strength is ensured. However, as described above, there may be defects such as deterioration of the appearance and deterioration of corrosion resistance, and it may be necessary to care for the welded part. .
  • Appropriate welding current range is 2 kA or more 4: Appropriate welding current range is 1.5 kA or more and less than 2.0 kA 3: Appropriate welding current range is 1.0 kA or more and less than 1.5 kA 2: Appropriate welding current range is 0. 5 kA or more and less than 1.0 kA 1: Appropriate welding current range is less than 0.5 kA (including the case where the minimum current of explosion occurrence ⁇ the minimum current of nugget formation)
  • Table 9 also shows the evaluation results.
  • Example II the following effects were confirmed in Example II.
  • the number of (B1) having a particle size of 1 to 24 ⁇ m disposed on the surface of the metal plate, the (D1 / B) ratio, and the coating thickness are within the ranges specified in the present invention.
  • the coated steel sheet of the invention example within the scope of the present invention had good weldability with a score of 2 or more.
  • non-oxidizing ceramic particles (B1) having a particle size of 1 ⁇ m to 24 ⁇ m arranged on the surface of the metal plate increases, the appropriate weldability tends to be improved. Moreover, there existed a tendency for suitable weldability to become favorable, so that (D1 / B) was small or the coating-film thickness was thin.
  • the coated steel sheet in which the content of the rust preventive pigment (C) and the coating film thickness are within the range defined by the present invention has good corrosion resistance of the flat part, the formed part (cup), and the formed part (1T bending). Met.
  • the content of the metal oxide particles (D1) having a particle diameter of 1 to 100 nm in the rust preventive pigment (C) is large, the proper weldability tends to be slightly lowered while the corrosion resistance tends to be further improved.
  • Corrosion resistance is improved by adding metal oxide particles (D2) with a particle size of 100 nm or more when the content of metal oxide particles (D1) with a particle size of 1 to 100 nm is the same among the anticorrosive pigments (C). There was an effect to.
  • a coated metal sheet for automobiles having excellent resistance weldability, corrosion resistance, and formability can be obtained simply by adding specific conductive particles and rust preventive pigments to a resin coating film. It is done.
  • the above conductive particles are stable for a long time in any of acidic and alkaline aqueous solutions, neutral water, and various non-aqueous solvents, and are suitable for obtaining the coating film of the present invention.
  • the coating composition can be freely selected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

 抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板を提供する。 本発明は、金属板、および前記金属板の少なくとも一方の表面上にある塗膜(α)を含む自動車用塗装金属板であって、 前記塗膜(α)が、有機樹脂(A)と、ホウ化物、炭化物、窒化物、ケイ化物の少なくとも1種から選ばれる、25℃の電気抵抗率が0.1×10-6~185×10-6Ωcmの非酸化物セラミックス粒子(B)と、防錆顔料(C)とを含む自動車用塗装金属板である。

Description

抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板
 本発明は、有機樹脂と、電気抵抗率が特定範囲にある非酸化物セラミクスの粒子と、防錆顔料とを含む皮膜によって表面の少なくとも一部が被覆された、抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板に関する。
 以下、本発明の背景技術について説明する。
 自動車車体用部材の多くは、鋼板等の金属板を素材とし、[1]金属板を所定のサイズに切断するブランク工程、[2]金属板を油で洗浄する油洗工程、[3]ブランクをプレス成形する工程、[4]成形材をスポット溶接や接着等で所望形状の部材に組み立てる接合工程、[5]部材表面のプレス油を脱脂及び洗浄する工程、[6]化成処理工程、[7]電着塗装工程という多くの工程を経て製造される。外板として使われる車体用部材は、更に、[8]中塗り工程、[9]上塗り工程等の塗装工程を経るのが一般的である。従って、自動車業界では、製造工程、特に化成処理工程や塗装工程の省略や簡略化によるコスト削減のニーズが高い。
 また、自動車部材の耐食性は、上記の化成処理皮膜及びその後の電着塗膜により確保されていることが多い。しかし、金属板の接合部(板合わせ部)、特に袋状部材の内面の板合わせ部や折り曲げヘム部等では、皮膜や塗装の回り込みがない部分が生じることがある。その場合、金属部材の接合部分は裸状態で腐食環境に晒される可能性が高くなる。そのため、ボデーシーラー、アンダーコート、アドヒーシブ、袋部ワックス等の防錆副資材を用いてそれらの耐食性を補っている。これらの防錆副資材は、自動車製造コストの増加要因になっているだけでなく、生産性低下、車体重量増加の要因にもなっているため、これら副資材を削減しても耐食性が確保できる自動車用塗装鋼板へのニーズが高かった。
 これらのニーズに応え、自動車製造時の化成処理工程の省略、電着塗装工程の省略や簡略化、副資材の省略や削減、を同時に達成できる塗装金属板の研究開発が盛んに行われてきた。このような塗装金属板は、プレス成形後、スポット溶接等で所望の形状に組み立てられ、その後に電着塗装されたり、電着塗装工程が省略される場合は中塗り塗装される。そのため、プレス成形性を高め、抵抗溶接、あるいは更に電着塗膜被覆ができるように塗膜を導電化し、かつ、十分な耐食性を付与する必要がある。
 例えば、特許文献1(特開昭55-17508号公報)には、亜鉛粉末を含む樹脂系導電性塗膜を有する、高耐食性を有し、溶接可能な合金化亜鉛めっき鋼板の技術が提案されている。亜鉛粉末が塗膜中に30~90質量%含まれるのが好ましく、塗膜厚は2~30μmが好ましいと記載されている。
 例えば、特許文献2(特開平9-276788号公報)に、クロム化合物を主体とする防錆処理層の上に、3~59体積%の導電性粉末と防錆顔料とを含む有機樹脂塗膜を0.5~20μm厚で被覆した、耐食性に優れ抵抗溶接可能な有機複合めっき鋼板の技術が開示されている。導電性粉末の種類は限定されていないが、実施例では導電性粉末としてリン化鉄、Fe-Si合金、Fe-Co合金等が用いられており、耐食性やスポット溶接性に優れるとされている。
 特許文献3(特開2000-70842号公報)には、耐食性と塗膜密着性を向上させるクロメート下地処理の上に、リン化鉄を主成分とする25~45質量%の導電顔料と防錆顔料とを含む有機樹脂層を2~8μm厚で被覆した、耐食性、抵抗溶接性等に優れた自動車補修部品用のNi含有電気亜鉛めっき鋼板の技術が提案されている。実施例に、水系、溶剤系の両方の塗料用樹脂が例示されていることから、樹脂被覆層形成用の塗料組成物は水系、溶剤系のいずれでも用いることができる。
 特許文献4(特表2003-513141号公報)には、金属表面上で硬化後、導電性を有し、溶接可能な耐食性皮膜を形成できる金属表面塗装剤として、特定の有機バインダー10~30質量%と導電性粉末30~60質量%を含む水系塗装剤が提案されており、本塗装剤の調製に好適な導電性粉末の例として、亜鉛、アルミニウム、グラファイト、カーボンブラック、硫化モリブデン、リン化鉄が挙げられている。
 特許文献5(特開2005-288730号公報)、特許文献6(特開2005-325427号公報)には、亜鉛系めっき鋼板やアルミニウム系めっき鋼板表面に、めっきとの密着性を強化する第一層皮膜を介して、導電性顔料と防錆添加剤とを含む樹脂系第二層皮膜を被覆することによって、優れた耐食性と溶接性を両立させる自動車用有機被覆鋼板の技術が提案されている。第一層皮膜形成用の塗料組成物は水系であり、また、第二層皮膜形成用の塗料組成物は、文献中に水系、溶剤系の両方の塗料用樹脂組成物が示されていることから、水系、溶剤系のいずれも適用可能である。導電性顔料は、膜厚1~30μmの第二層皮膜中に5~70体積%含まれ、好適な導電性顔料として、金属、合金、導電性炭素、リン化鉄、炭化物、半導体酸化物が例示されている。
 特許文献7(特開2004-42622号公報)には、導電性粒子として金属及び半金属元素の合金または化合物と、特定のウレタン系樹脂とを含む導電性塗膜を有する、高耐食性で溶接可能な塗装金属材の技術が提案されている。導電性粒子は50質量%以上のSiを含有する合金または化合物が好ましく、70質量%以上のSiを含有するフェロシリコンがより好ましいと記載されている。
 金属粒子以外の導電性粒子のうち、導電性セラミクス粒子を用いる技術としては、例えば、特許文献8(特開2003-268567号公報)に、コア金属を、チタン、ジルコニウム、タンタル、ニオブ、またはこれらの合金から選ばれる耐食性金属からなるクラッド層で被覆し、更にその上を、カーボン材料、導電性セラミクス、金属粉末から選ばれる少なくとも1つ以上の導電材とこれらを結着する任意の樹脂からなる表面処理層で被覆した、耐食性と導電性に優れた導電材被覆耐食性金属材料の技術が提案されている。
特開昭55-17508号公報 特開平9-276788号公報 特開2000-70842号公報 特表2003-513141号公報 特開2005-288730号公報 特開2005-325427号公報 特開2004-42622号公報 特開2003-268567号公報
 [背景技術]の項で述べたように、抵抗溶接でき、あるいは更に電着塗膜被覆ができるように塗膜を導電化し、かつ、十分な耐食性を付与するため、特許文献1の技術を用いた場合、文献1には、合金化亜鉛めっき層と塗膜とが強固に密着しているため成形時の耐剥離性に優れると記載されているが、実際にはプレス成形時に著しい塗膜剥離が生じ、塗膜が剥離した部分の耐食性が低下するという問題があった。
 特許文献2や特許文献3に記載するような技術を用いた場合、所望の耐食性を発現させるためにクロム化合物を含む防錆処理層を下地としなければならない。このことは、6価クロムの有害性や環境負荷性を避ける現在のニーズにマッチしない。また、導電顔料として用いているリン化鉄やFe-Si合金等の粉末は、金属粉末より格段に導電性が劣るため、塗膜の導電化には導電性粉末を多量に添加する必要があり、プレス成形時に著しい塗膜剥離やかじりが生じ、塗膜が剥離した部分の耐食性が低下するという問題があった。
 特許文献4、特許文献5、特許文献6記載の技術では、好適な導電性粉末のうち亜鉛、アルミニウム等の金属粉末を用いた場合、塗膜中の金属粉末含有量が増大すると、導電性(抵抗溶接性)は向上するが、耐食性が著しく低下するという相反傾向があり、溶接性と耐食性を両立できない。また、導電性炭素、硫化モリブデン、リン化鉄、半導体酸化物等の粉末を用いた場合、これらは金属粉末より格段に導電性が劣るため、特許文献2、3記載の技術場合と同様に、塗膜を導電化するために粉末を多量に添加する必要があり、プレス成形時に著しい塗膜剥離やかじりが生じ、耐食性が低下するという問題があった。
 特許文献7記載の技術では、導電性粉末として金属やそれらの合金の粒子を用いた場合、上記の場合と同様に、塗膜の粒子含有量の増大により導電性は向上するが、耐食性が著しく低下する傾向がある。また、フェロシリコン粒子を用いた場合は、金属粒子より格段に導電性が劣るため、塗膜の導電化に粒子を多量に添加する必要があり、上記の場合と同様、プレス成形時に著しい塗膜剥離やかじりが生じ、耐食性が低下するという問題があった。
 特許文献8記載の技術は、燃料電池のセパレータや電気化学電極等の特殊用途向けに提案された技術のため、クラッド層に用いる耐食性金属が非常に高価で、自動車車体用部材への適用は困難だった。
 このように、従来の技術では、十分な導電性と耐食性とを両立させるためクロメート下地を併用しなければならない(特許文献2、3)、従来の導電性粒子の添加では耐食性や成形性が犠牲になる(特許文献2~7)、自動車車体用部材に適用できる安価な塗装金属板を得ることができない(特許文献8)、などの種々の課題があった。
 以上述べたように、自動車製造時の化成処理工程の省略、電着塗装工程の省略や簡略化、副資材の省略や削減、を同時に達成するためには、優れたプレス成形性、導電性、耐食性をすべて備えた塗装金属板が求められている。このような塗装金属板を提供するには、次のような特性を合せ持つ導電性粒子を見出す必要があった。即ち、(a)塗装用塗料組成物中で、長期間安定であり、(b)塗膜への比較的少量の添加でも優れた導電性が発現し、(c)塗膜への添加量を増やしても耐食性や成形性の低下が少ないこと、である。
 本発明は、以上のような課題に鑑みてなされたものであり、電気抵抗率を非常に低い範囲に限定した非酸化物セラミクス粒子を含むクロメートフリー皮膜で表面の少なくとも一部が被覆された、抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板に関する。
 本発明者らは、前記のような目的を達成するため鋭意研究を行った結果、工業的に比較的安価に入手できる、電気抵抗率が0.1×10-6~185×10-6Ωcmの非酸化物セラミクスの粒子と防錆顔料とを有機樹脂に含む皮膜を金属表面に形成すれば、導電性、耐食性、成形性の全てに優れる自動車用塗装金属板が得られることを見出した。
 本発明は、以上の知見をもとに完成されたものであって、具体的には、以下の通りである。
 (1)金属板、および前記金属板の少なくとも一方の表面上にある塗膜(α)を含む自動車用塗装金属板であって、
 前記塗膜(α)が、有機樹脂(A)と、ホウ化物、炭化物、窒化物、ケイ化物の少なくとも1種から選ばれる、25℃の電気抵抗率が0.1×10-6~185×10-6Ωcmの非酸化物セラミクス粒子(B)と、防錆顔料(C)とを含む自動車用塗装金属板。
 (2)前記有機樹脂(A)が、少なくとも1種の親水性官能基を有する有機樹脂(A1)を含む、(1)に記載の自動車用塗装金属板。
 (3)前記有機樹脂(A)が、少なくとも1種の親水性官能基を有する有機樹脂(A1)および該樹脂(A1)の誘導体(A2)を含む、(1)に記載の自動車用塗装金属板。
 (4)前記有機樹脂(A1)が、カルボキシル基(-COOH)、カルボン酸塩基(-COO-+、M+は1価カチオン)、スルホン酸基(-SO3H)、スルホン酸塩基(-SO3 -+、ここでM+は1価カチオン)、1級アミノ基(-NH2)、2級アミノ基(-NHR1、ここでR1は炭化水素基)、3級アミノ基(-NR12、ここでR1とR2は炭化水素基)、4級アンモニウム塩基(-N+123-、ここでR1、R2、R3は炭化水素基、X-は1価アニオン)、スルホニウム塩基(-S+12-、ここでR1、R2は炭化水素基、X-は1価アニオン)、ホスホニウム塩基(-P+123-、ここでR1、R2、R3は炭化水素基、X-は1価アニオン)から選ばれる少なくとも1種の官能基を有する、(2)または(3)に記載の自動車用塗装金属板。
 (5)前記樹脂(A1)の誘導体(A2)が、下記一般式(I):
Figure JPOXMLDOC01-appb-C000002
 (式中、「A1」は有機樹脂(A1)を示し、「Z-」は炭素原子数1~9、窒素原子数0~2、酸素原子数0~2の炭化水素鎖を示し、「A1~Z」は、「A1」と「Z」が両者の官能基を介して共有結合していることを示す。また、「-O-」はエーテル結合であり、「-OH」は水酸基であり、「-X」は炭素原子数1~3の加水分解性アルコキシ基、加水分解性ハロゲノ基または加水分解性アセトキシ基であり、「-R」は炭素原子数1~3のアルキル基であり、置換基の数を示すa、b、c、dはいずれも0~3の整数であるが、但し、a+b+c+d=3である。)
で表される樹脂(A2Si)である、(3)に記載の自動車用塗装金属板。
 (6)前記非酸化物セラミクス粒子(B)の25℃の電気抵抗率が0.1×10-6~100×10-6Ωcmであることを特徴とする、(1)~(5)のいずれかに記載の自動車用塗装金属板。
 (7)前記非酸化物セラミクス粒子(B)のうち、粒径が1μm~24μmである(B1)が、前記金属板の少なくとも一方の表面上に0.8個/mm2~40000個/mm2配置されている、(1)~(6)のいずれかに記載の自動車用塗装金属板。
 (8)前記非酸化物セラミクス粒子(B)が、ホウ化物セラミクス:BaB6、CeB6、Co2B、CoB、FeB、GdB4、GdB6、LaB4、LaB6、Mo2B、MoB、MoB2、Mo25、Nb32、NbB、Nb34、NbB2、NdB4、NdB6、PrB4、PrB6、SrB6、TaB、TaB2、TiB、TiB2、VB、VB2、W25、YB4、YB6、YB12、およびZrB2、炭化物セラミクス:MoC、Mo2C、Nb2C、NbC、Ta2C、TaC、TiC、V2C、VC、WC、W2C、およびZrC、窒化物セラミクス:Mo2N、Nb2N、NbN、ScN、Ta2N、TiN、およびZrN、ケイ化物セラミクス:CoSi2、Mo3Si、Mo5Si3、MoSi2、NbSi2、Ni2Si、Ta2Si、TaSi2、TiSi、TiSi2、V5Si3、VSi2、W3Si、WSi2、ZrSi、およびZrSi2から成る群から選ばれる1種または2種以上の混合物である、(1)~(7)のいずれかに記載の自動車用塗装金属板。
 (9)前記防錆顔料(C)が、ケイ酸塩化合物、リン酸塩化合物、バナジン酸塩化合物、および金属酸化物微粒子(D)から選ばれる1種または2種以上を含む、(1)~(8)のいずれかに記載の自動車用塗装金属板。
 (10)前記金属酸化物微粒子(D)が、Si、Ti、Al、Zrからなる群より選ばれる1種または2種以上の金属元素を含む、(9)に記載の自動車用塗装金属板。
 (11)前記金属酸化物微粒子(D)のうち、粒径が1nm~100nmである金属酸化物ナノ微粒子(D1)の、前記塗膜(α)中における総体積の、前記非酸化セラミクス粒子(B)の総体積に対する比(D1/B)が、20以下である、(1)~(10)のいずれかに記載の自動車用塗装金属板。
 前(12)記非酸化物セラミクス粒子(B)の25℃での塗膜(α)中の含有量が0.5~65体積%である、(1)~(11)のいずれかに記載の自動車用塗装金属板。
 (13)前記塗膜(α)の膜厚が2~30μmである、(1)~(12)のいずれかに記載の自動車用塗装金属板。
 (14)前記塗膜(α)が水系塗装用組成物の塗布により形成されている、(1)~(13)のいずれかに記載の自動車用塗装金属板。
 本発明によれば、特定の導電性粒子と防錆顔料を塗膜に添加するだけで、十分な抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板を提供することができる。また、上記の導電性粒子は、酸性やアルカリ性の水溶液、中性の水、種々の非水系溶媒中でも長期間安定なため、本発明の塗膜を得るために相応しい水系や溶剤系の塗装用組成物を自由に選ぶことができる。
図1は、本発明の自動車用塗装金属板の断面の模式図を表す。 図2は、塗装金属板の断面写真を表す。図2(a)は、塗装金属板の表層断面SEM写真であり、図2(b)は、塗装金属板合わせ部の、溶接電極で加圧時の断面SEM写真である。 図3は、自動車用塗装金属板の溶接時の状態を表す模式図である。 図4は、金属酸化物微粒子(D)が非酸化物セラミクス粒子(B)の周囲に付着し、又は非酸化物セラミクス粒子(B)同士の間に挟まり通電を阻害していることを示す模式図である。
 以下、本発明について詳細に説明する。
 <金属板>
 本発明の塗装金属板は、特定の導電性塗膜で表面の少なくとも一部が被覆された金属板である。当該金属板は、用途に応じ、金属板の両面が塗膜で被覆されていても、片面のみが被覆されていてもよく、また、表面の一部が被覆されていても、全面が被覆されていてもよい。金属板の塗膜で被覆された部位は抵抗溶接性、耐食性、成形性が優れるものである。
 本発明の塗装金属板に用いることができる金属板の構成金属としては、例えば、アルミニウム、チタン、亜鉛、銅、ニッケル、そして鋼等を含むことができる。これらの金属の成分は特に限定されず、例えば、鋼を使用する場合には、普通鋼であっても、クロム等の添加元素含有鋼であってもよい。ただし、本発明の金属板はプレス成形されるため、いずれの金属板の場合も、所望の成形加工追従性を備えるように、添加元素の種類と添加量、および金属組織を適正に制御したものが好ましい。
 また、金属板として鋼板を使用する場合、その表面には被覆めっき層があってもよいが、その種類は特に限定されない。適用可能なめっき層としては、例えば、亜鉛、アルミニウム、コバルト、錫、ニッケルのうちのいずれか1種を含むめっき、および、これらの金属元素やさらに他の金属元素、非金属元素を含む合金めっき等が挙げられる。特に、亜鉛系めっき層としては、例えば、亜鉛からなるめっき、亜鉛と、アルミニウム、コバルト、錫、ニッケル、鉄、クロム、チタン、マグネシウム、マンガンの少なくとも1種との合金めっき、または、さらに他の金属元素、非金属元素を含む種々の亜鉛系合金めっき(例えば、亜鉛と、アルミニウム、マグネシウム、シリコンの4元合金めっき)が挙げられるが、亜鉛以外の合金成分は特に限定されない。さらには、これらのめっき層に少量の異種金属元素または不純物としてコバルト、モリブデン、タングステン、ニッケル、チタン、クロム、アルミニウム、マンガン、鉄、マグネシウム、鉛、ビスマス、アンチモン、錫、銅、カドミウム、ヒ素等を含有したもの、シリカ、アルミナ、チタニア等の無機物を分散させたものが含んでもよい。
 アルミニウム系めっき層としては、アルミニウム、またはアルミニウムとシリコン、亜鉛、マグネシウムの少なくとも1種との合金めっき(例えば、アルミニウムとシリコンの合金めっき、アルミニウムと亜鉛の合金めっき、アルミニウム、シリコン、マグネシウムの3元合金めっき)等が挙げられる。
 更に、前記めっきと他の種類のめっき、例えば鉄めっき、鉄とリンの合金めっき、ニッケルめっき、コバルトめっき等と組み合わせた複層めっきも適用可能である。
 めっき層の形成方法は特に限定されない。例えば、電気めっき、無電解めっき、溶融めっき、蒸着めっき、分散めっき等を用いることができる。めっき処理方法は、連続式、バッチ式のいずれでもよい。また、鋼板を使用する場合、めっき後の処理として、溶融めっき後の外観均一処理であるゼロスパングル処理、めっき層の改質処理である焼鈍処理、表面状態や材質調整のための調質圧延等があり得るが、本発明においては特にこれらを限定されず、いずれを適用することも可能である。
 <塗膜(α)>
 本発明の金属板を被覆する塗膜(α)は、金属板の少なくとも片面に形成され、有機樹脂(A)と、25℃の電気抵抗率が0.1×10-6~185×10-6Ωcmのホウ化物、炭化物、窒化物、ケイ化物から選ばれる非酸化物セラミクス粒子(B)と、防錆顔料(C)を含んでいる。
 前記塗膜は、塗装用組成物の塗布により工業的に製造できるものであれば、塗布溶剤の種類、および、金属板表面への製膜方法、硬化方法は限定されない。以下、本発明において塗膜(α)を得るための塗装用組成物を塗装用組成物(β)と記す。塗装用組成物(β)としては、水系塗装用組成物、有機溶剤系塗装用組成物が挙げられる。
 本発明において、「水系塗装用組成物」とは、水が溶媒全体の50質量%以上である「水系溶媒」を用いて構成された組成物のことを言う。また、「有機溶剤系塗装用組成物」とは、有機溶剤が溶媒全体の50質量%以上である「有機溶剤系溶媒」を用いて構成された組成物のことを言う。
 上記の「水系溶媒」の水以外の構成成分としては、例えば、水によく混和する硫酸、硝酸、塩酸、リン酸、ホウ酸、フッ化水素酸等の無機酸、前記無機酸の金属塩やアンモニウム塩等の無機塩類のうち水に溶解するもの、水に溶解するケイ酸塩、チオ硫酸塩、チオシアン酸塩等の無機化合物、及び、水に混和する有機化合物が挙げられる。また、必要に応じて、上記の「水系溶媒」に有機溶媒を加えることもできる。しかし、労働衛生上の観点から、本発明の「水系塗装用組成物」では、労働安全衛生法施行令(有機溶剤中毒予防規則第一章第一条)で定義される有機溶剤等(第1種有機溶剤、第2種有機溶剤、第3種有機溶剤、または、前記有機溶剤を、5質量%を超えて含有するもの)に該当しない塗装用組成物となるよう、有機溶媒の種類や添加量を調整することが好ましい。
 金属板への製膜方法としては、例えば、水系や溶剤系塗装用組成物の場合は、ロールコート、グルーブロールコート、カーテンフローコート、ローラーカーテンコート、浸漬(ディップ)、エアナイフ絞り等の公知の塗装方法で金属板上に塗装用組成物(β)を塗布し、その後、ウェット塗膜の水分や溶剤を乾燥する方法が好ましい。これらの乾燥塗膜の硬化方法としては、塗膜中の有機樹脂の加熱焼付による重合、硬化が好ましいが、塗膜中の樹脂が紫外線で重合可能であれば、紫外線照射による重合又は硬化、塗膜中の樹脂が電子線で重合可能であれば、電子線照射による重合又は硬化によってもよい。
 前記塗膜(α)の金属板への密着性や耐食性等を更に改善する目的で、該塗膜と金属板表面の間にクロメートフリーの下地処理皮膜を設けてもよい。下地処理皮膜を設ける場合は、その層の数、組成は限定されないが、金属板を成形加工する際の塗膜(α)の加工追従性や耐食性を損なわないよう、下地処理皮膜が、金属板と上層塗膜(α)への密着性に優れる必要がある。また、皮膜厚方向の十分な導電性を確保するため、下地処理皮膜厚を0.5μm以下とするのが好ましい。
 下地処理皮膜を設ける場合、工業的に適用できる製膜方法であれば、下地処理皮膜の製膜方法は限定されない。下地処理皮膜の製膜方法は、下地処理用組成物の塗装、蒸着、フィルム貼付等の方法を例示できるが、製膜コスト(生産性)や汎用性等の観点から、水系または溶剤系の下地処理用組成物の塗装、乾燥による方法が好ましい。水系または溶剤系の下地処理用組成物を用いる場合、下地処理皮膜を含めた複数の塗膜の最下層から最表面層まで1層毎に、塗り重ねと乾燥を繰返すこと(逐次塗装法)により複層塗膜を形成してもよい。また、簡便にかつ効率的に塗膜を金属板表面に形成する方法として、金属板表面に接する最下層から最表層までの各層の塗膜を、ウェット状態で、順次または同時に複層被覆する工程(塗装用組成物のウェット・オン・ウェット塗装または多層同時塗装工程)、ウェット状態の各層皮膜の水分や溶剤を同時に乾燥させる乾燥工程、前記複層塗膜を硬化する製膜工程をこの順序で含む積層方法で製膜してもよい。ここで、ウェット・オン・ウェット塗装法とは、金属板上に塗液を塗布後、この塗液が乾燥する前の含溶媒状態(ウェット状態)のうちに、その上に他の塗液を塗布し、得られる積層塗液の溶媒を同時に乾燥、硬化させ、製膜する方法である。また、多層同時塗装法とは、多層スライド式カーテンコーダーやスロットダイコーター等により、複数層の塗液を積層状態で同時に金属板上に塗布後、積層塗液の溶媒を同時に乾燥、硬化させ製膜する方法である。
 本発明の金属板を被覆する塗膜(α)は、後述する有機樹脂(A)と特定範囲の電気抵抗率を有する非酸化物セラミクス粒子(B)と防錆顔料(C)と、または更に必要に応じて<塗装用組成物(β)の調製>の項で述べる界面活性剤等を含む。このような塗膜(α)中の非酸化物セラミクス粒子(B)の25℃での含有量は、0.5~65体積%であるのが好ましく、抵抗溶接時の電気導通性、耐食性と成形性確保の観点から1~40体積%であるのがより好ましく、2~20体積%であるのが更に好ましい。十分な耐食性と成形性確保に加え、十分な抵抗溶接性も確保するとの観点から、4~20体積%の範囲が特に好ましい。
 本発明の塗装金属板において、塗膜(α)が良好な導電性を発現する理由は、塗膜(α)中で、導電性粒子である非酸化物セラミクス粒子(B)が殆ど凝集することなく、塗膜面全体にわたって十分に均一に分散されており、下にある金属板への電気導通路が塗膜内に偏在していないからであると考えられる。導電性粒子が塗膜内で凝集をおこしていると、塗膜面全体にわたり均一に撒き散らされた状態の電気導通路が塗膜内に形成されにくく、塗膜内に、電気導通路が全くない抵抗溶接に支障を与える領域が生じやすい。そのような場合は、導通路を確保するためにより多くの導電材料を添加しなければならず、良好な耐食性と成形性を保持できなくなる可能性が高まる。本発明の塗装金属板では、そのような問題が生じる可能性が非常に低い。
 塗膜(α)中の(B)の含有量が65体積%を超えると、十分な導電性を保持できるが、プレス成形時に塗膜剥離やかじりが生じやすくなり、良好な成形性を保持できず、塗膜剥離部位の耐食性が低下するおそれがある。また、65体積%を超えると、塗膜中に分散する導電性粒子の量が多くなるため、通電点が増えすぎて腐食電流が非常に流れやすくなり、防錆顔料(C)の共存下でも塗膜全体の耐食性が不十分になるおそれがある。
 なお、塗膜の0.5体積%以上、1体積%未満の導電性粒子添加では、抵抗溶接時の電気導通性が不十分になる可能性があり、また、塗膜の40体積%以上、65体積%以下の導電性粒子添加では、成形性と耐食性が不十分となることがあるため、(B)の体積比は1体積%以上、40体積%未満までの添加がより好ましい。また、塗膜の1体積%以上、2体積%未満の導電性粒子添加でも、抵抗溶接時の電気導通性がやや不十分になる可能性があり、また、塗膜の20体積%以上、40体積%未満の導電性粒子添加でも、成形性と耐食性がやや不十分となる可能性があるため、2体積%以上、20体積%未満までの添加が更に好ましい。しかし塗膜の2体積%以上、4体積%未満の導電性粒子添加では、抵抗溶接条件を大きく変えた場合、常に高く安定した溶接性を確保できなくなるおそれがあるため、4体積%以上、20体積%未満の添加が特に好ましい。
 塗膜(α)中の(B)の含有量が0.5体積%未満の場合、塗膜中に分散する非酸化物セラミクス粒子の量が少ないため良好な導電性を確保できず、塗膜(α)の厚みによっては、塗膜に十分な抵抗溶接性を付与できないおそれがある。ここでは、塗膜(α)中の非酸化物セラミクス粒子の充填量(体積%)の観点から導電性を説明したが、抵抗溶接時には、塗装金属板表面に占める非酸化物セラミクス粒子の量(個数)も導電性(即ち、溶接性)に影響する。この点に関しては、後で説明する。
 本発明の金属板を被覆する塗膜(α)の厚は、2~30μm厚の範囲が好ましく、3~15μm厚の範囲がより好ましい。2μm未満の厚では、塗膜が薄すぎて、十分な耐食性が得られないことがある。塗膜厚が30μmを超えると、使用する塗装用組成物(β)の量が増えて製造コスト高になるだけでなく、プレス成形時に塗膜が凝集破壊したり剥離することがある。また、厚膜のため膜厚方向の電気的な絶縁性が高まり、抵抗溶接が困難になる。更に、水系塗装用組成物を用いた場合、ワキ等の塗膜欠陥が発生する可能性が高くなり、工業製品として必要な外観を安定して得ることが容易でない。
 前記塗膜(α)の厚は、塗膜の断面観察等により測定できる。その他に、金属板の単位面積に付着した塗膜の質量を、塗膜の比重、または塗装用組成物(β)の乾燥後の比重で除算して算出してもよい。塗膜の付着質量は、塗装前後の質量差、塗装後の塗膜の剥離前後の質量差、または、塗膜を蛍光X線分析して予め塗膜中の含有量が分かっている元素の存在量を測定する等、既存の手法から適切に選択することができる。塗膜の比重または塗装用組成物(β)の乾燥後の比重は、単離した塗膜の容積と質量を測定する、適量の塗装用組成物(β)を容器に取り乾燥させた後の容積と質量を測定する、または、塗膜構成成分の配合量と各成分の既知の比重から計算する等、既存の手法から適切に選択することができる。
 <有機樹脂(A)>
 本発明の有機樹脂(A)は、塗膜(α)のバインダー成分であり、水系、有機溶剤系樹脂のいずれでもよく、後述する樹脂(A1)を含み、または更に追加して樹脂(A1)の反応誘導体(A2)を含む。
 本発明で塗膜(α)を形成するために用いる塗装用組成物(β)は、水系、有機溶剤系のいずれでも用いることができ、後述する樹脂(A1)を不揮発分の50~100質量%含む。樹脂(A1)は、塗装用組成物(β)中で安定に存在している。このような塗装用組成物(β)を金属板に塗布し、加熱すると、多くの場合、樹脂(A1)が反応せずそのまま乾燥する。樹脂(A1)の少なくとも一部が、前記塗装用組成物(β)中にシランカップリング剤、硬化剤、架橋剤等を含む場合は、それらと反応して樹脂(A1)の誘導体(A2)を形成する。従って、この場合、未反応の樹脂(A1)と樹脂(A1)の反応誘導体(A2)を包含したものが、塗膜(α)のバインダー成分である有機樹脂(A)となる。
 前記樹脂(A1)の種類としては特に限定されず、例えば、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、(メタ)アクリル樹脂、ポリオレフィン樹脂、フェノール樹脂、またはそれらの変性体等を挙げることができる。これらの1種または2種以上を混合して前記樹脂(A1)として用いてもよいし、少なくとも1種の有機樹脂を変性することによって得られる有機樹脂を1種または2種以上混合して前記樹脂(A1)として用いてもよい。このように、本発明にて樹脂(A1)の種類を特に限定しなくてよい理由は、塗膜(α)を導電化して腐食電流が流れやすくなっても、防錆顔料(C)が共存するため、塗膜のバインダー成分を特殊な耐食性樹脂とする必要がないからである。
 前記樹脂(A1)として種々の樹脂を用いることができる。樹脂(A1)としては、ポリウレタン樹脂、ポリウレタン樹脂変性体、ポリウレタン樹脂複合物、これらと他樹脂との混合物等を用いるのが好ましい。ポリウレタン樹脂中のウレタン基(-NHCOO-)は、他の多くの有機基に比べ高い分子凝集エネルギー(8.74kcal/mol)を持つため、樹脂(A1)中にポリウレタン樹脂が含まれていれば塗膜が強靭になり、プレス成形の際、塗膜の剥離やかじりが生じにくく、加えて、比較的高い凝集エネルギーにより腐食因子遮蔽性(塗膜の緻密性)が向上して耐食性を高める効果がある。ウレタン基以外の有機基、例えば、メチレン基(-CH2-)、エーテル基(-O-)、2級アミノ基(イミノ基、-NH-)、エステル基(-COO-)、ベンゼン環の分子凝集エネルギーは、それぞれ0.68kcal/mol、1.00kcal/mol、1.50kcal/mol、2.90kcal/mol、3.90kcal/molであり、ウレタン基(-NHCOO-)の分子凝集エネルギーは、これらに比べかなり高い。そのため、多くの場合、ポリウレタン樹脂を含む塗膜は、他の多くの樹脂、例えば、ポリエステル樹脂、(メタ)アクリル樹脂、ポリオレフィン樹脂、フェノール樹脂等からなる塗膜よりも強靭で、かつ高耐食性である。
 前記樹脂(A1)は、既に述べたように、塗装用組成物(β)中で安定に存在するものであれば、その種類に特に制限はない。樹脂(A1)の構造中に、カルボキシル基(-COOH)、カルボン酸塩基(-COO-+、M+は1価カチオン)、スルホン酸基(-SO3H)、スルホン酸塩基(-SO3 -+;M+は1価カチオン)、1級アミノ基(-NH2)、2級アミノ基(-NHR1;R1は炭化水素基)、3級アミノ基(-NR12;R1とR2は炭化水素基)、4級アンモニウム塩基(-N+123-;R1、R2、R3は炭化水素基、X-は1価アニオン)、スルホニウム塩基(-S+12-;R1、R2は炭化水素基、X-は1価アニオン)、ホスホニウム塩基-P+123-;R1、R2、R3は炭化水素基、X-は1価アニオン)から選ばれる少なくとも1種の官能基を構造中に含む樹脂であることが好ましい。これらの詳細や具体例については後述する。
 なお、本発明において塗膜(α)を得るための塗装用組成物(β)に用いられる樹脂には、水や有機溶剤に完全溶解する水溶性や溶剤溶解型の樹脂、および、エマルションやサスペンジョン等の形態で水や溶剤中に均一に微分散している樹脂(水分散性樹脂や溶剤分散性樹脂)を含めることができる。またここで、「(メタ)アクリル樹脂」とはアクリル樹脂およびメタクリル樹脂を意味する。
 前記樹脂(A1)のうち、ポリウレタン樹脂としては、特に限定されない。例えば、ポリオール化合物とポリイソシアネート化合物とを反応させ、その後に更に鎖伸長剤によって鎖伸長して得られるもの等を挙げることができる。前記ポリオール化合物としては、1分子当たり2個以上の水酸基を含有する化合物であれば特に限定されず、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、1,6-へキサンジオール、ネオペンチルグリコール、トリエチレングリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン、ポリカーボネートポリオール、ポリエステルポリオール、ビスフェノールヒドロキシプロピルエーテル等のポリエーテルポリオール、ポリエステルアミドポリオール、アクリルポリオール、ポリウレタンポリオール、またはそれらの混合物が挙げられる。前記ポリイソシアネート化合物としては、1分子当たり2個以上のイソシアネート基を含有する化合物であれば特に限定されず、例えば、ヘキサメチレンジイソシアネート(HDI)等の脂肪族イソシアネート、イソホロンジイソシアネート(IPDI)等の脂環族ジイソシアネート、トリレンジイソシアネート(TDI)等の芳香族ジイソシアネート、ジフェニルメタンジイソシアネート(MDI)等の芳香脂肪族ジイソシアネート、またはそれらの混合物が挙げられる。前記鎖伸長剤としては、分子内に1個以上の活性水素を含有する化合物であれば特に限定されず、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、ジプロピレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等の脂肪族ポリアミンや、トリレンジアミン、キシリレンジアミン、ジアミノジフェニルメタン等の芳香族ポリアミンや、ジアミノシクロヘキシルメタン、ピペラジン、2,5-ジメチルピペラジン、イソホロンジアミン等の脂環式ポリアミンや、ヒドラジン、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、フタル酸ジヒドラジド等のヒドラジン類や、ヒドロキシエチルジエチレントリアミン、2-[(2-アミノエチル)アミノ]エタノール、3-アミノプロパンジオール等のアルカノールアミン等が挙げられる。
 水系ポリウレタン樹脂を得たい場合は、例えば、樹脂製造時に、前記ポリオール化合物の少なくとも一部をカルボキシル基含有ポリオール化合物に替え、ポリイソシアネート化合物と反応させて樹脂鎖にカルボキシル基を導入した後、カルボキシル基を塩基で中和し水系樹脂としたものを挙げることができる。あるいは、樹脂製造時に、前記ポリオール化合物の少なくとも一部を2級アミノ基または3級アミノ基を分子内に持つポリオール化合物に替え、ポリイソシアネート化合物と反応させて樹脂鎖に2級アミノ基または3級アミノ基を導入した後、酸で中和し水系樹脂としたものを挙げることができる。3級アミノ基を樹脂鎖に持つ場合は、3級アミノ基へのアルキル基導入により4級化し、4級アンモニウム塩基を持つ水系カチオン樹脂とすることもできる。これらの化合物は、単独で、または2種類以上の混合物で使用することができる。
 このように、前記樹脂(A1)として用いることができるポリウレタン樹脂は特に限定されない。樹脂(A1)として、芳香環を持たない、あるいは芳香環が少ないポリウレタン樹脂を用いるのが好ましい。このようなポリウレタン樹脂は、芳香環を多く含むポリウレタン樹脂よりガラス転移温度が低いため、分子鎖のモビリティが高く製膜時の造膜性に優れる傾向があり、かつ、塗膜の伸び変形率が高いため、プレス成形時の加工追従性が、芳香環を多く含むポリウレタン樹脂より良好な場合が多い。従って、樹脂製造に用いるポリオール化合物、ポリイソシアネート化合物、鎖伸長剤には特に制限がないが、芳香環を含まない脂肪族や脂環族、または、芳香環が少ない芳香脂肪族や芳香脂環族等の化合物を用いるのが好ましい。
 前記樹脂(A1)のうち、ポリエステル樹脂としては、特に限定されない。例えば、エチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、プロピレングリコール、ジエチレングリコール、1,6-へキサンジオール、ネオペンチルグリコール、トリエチレングリコール、ビスフェノールヒドロキシプロピルエーテル、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、2-ブチル-2-エチル1,3-プロパンジオール、1,4-ブタンジオール、2-メチル-1,4-ブタンジオール、2-メチル-3-メチル-1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、水添ビスフェノール-A、ダイマージオール、トリメチロールエタン、トリメチロールプロパン、グリセリン、ペンタエリスリトール等のポリオールと、フタル酸、無水フタル酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、メチルテトラフタル酸、メチルテトラヒドロ無水フタル酸、イソフタル酸、テレフタル酸、無水コハク酸、アジピン酸、セバシン酸、マレイン酸、無水マレイン酸、イタコン酸、フマル酸、無水ハイミック酸、トリメリット酸、無水トリメリット酸、ピロメリット酸、無水ピロメリット酸、アゼライン酸、コハク酸、無水コハク酸、乳酸、ドデセニルコハク酸、ドデセニル無水コハク酸、シクロヘキサン-1,4-ジカルボン酸、無水エンド酸等の多価カルボン酸とを、脱水重縮合させたものを挙げることができる。更に、これらをアンモニアやアミン化合物等で中和し、水系樹脂としたもの等を挙げることができる。
 前記樹脂(A1)のうち、エポキシ樹脂としては、特に限定されない。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、レゾルシン型エポキシ樹脂、水素添加ビスフェノールA型エポキシ樹脂、水素添加ビスフェノールF型エポキシ樹脂、レゾルシン型エポキシ樹脂、ノボラック型エポキシ樹脂等のエポキシ樹脂をジエタノールアミン、N-メチルエタノールアミン等のアミン化合物と反応させて得られる。更に、これらを有機酸または無機酸で中和、水系樹脂としたものや、前記エポキシ樹脂の存在下で、高酸価アクリル樹脂をラジカル重合した後、アンモニアやアミン化合物等で中和し水系化したもの等を挙げることができる。
 前記樹脂(A1)のうち、(メタ)アクリル樹脂としては、特に限定されない。例えば、エチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-ブチル(メタ)アクリレート等のアルキル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、アルコキシシラン(メタ)アクリレート等の(メタ)アクリル酸エステルを、(メタ)アクリル酸と共に水中で重合開始剤を用いてラジカル重合することにより得られるものを挙げることができる。前記重合開始剤は特に限定されず、例えば、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、アゾビスシアノ吉草酸、アゾビスイソブチロニトリル等のアゾ化合物等を使用することができる。ここで、「(メタ)アクリレート」とはアクリレートとメタクリレートを意味し、「(メタ)アクリル酸」とはアクリル酸とメタクリル酸を意味する。
 前記樹脂(A1)のうち、ポリオレフィン樹脂としては、特に限定されない。例えば、エチレンとメタクリル酸、アクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸等の不飽和カルボン酸類とを高温高圧下でラジカル重合したものを挙げることができる。また、これらを更にアンモニアやアミン化合物、KOH、NaOH、LiOH等の塩基性金属化合物あるいは前記金属化合物を含有するアンモニアやアミン化合物等で中和し、水系樹脂としたもの等を挙げることができる。
 前記樹脂(A1)のうち、フェノール樹脂としては、特に限定されない。例えば、フェノール、レゾルシン、クレゾール、ビスフェノールA、パラキシリレンジメチルエーテル等の芳香族化合物とホルムアルデヒドとを反応触媒の存在下で付加反応させたメチロール化フェノール樹脂等のフェノール樹脂を、ジエタノールアミン、N-メチルエタノールアミン等のアミン化合物類と反応させて得られるもの等を挙げることができる。更に、有機酸または無機酸で中和し水系樹脂としたもの等を挙げることができる。
 前記樹脂(A1)は、1種または2種以上を混合して用いてもよい。また、前記塗装用組成物(β)の主成分として、少なくとも1種の樹脂(A1)の存在下で、少なくともその一部の樹脂(A1)を変性することによって得られる複合樹脂の1種または2種以上を総括して樹脂(A1)として用いてもよい。
 更に、必要に応じ、前記樹脂(A1)を含む塗装用組成物(β)を調合する際、以下に詳細に述べるが、前記樹脂(A1)の硬化剤や架橋剤を添加しても良いし、樹脂構造中に架橋剤を導入してもよい。前記架橋剤としては特に限定されず、例えば、アミノ樹脂、ポリイソシアネート化合物、ブロック化ポリイソシアネート、エポキシ化合物、カルボジイミド基含有化合物等からなる群から選択される少なくとも1種の架橋剤が挙げられる。これらの架橋剤を配合することで、塗膜(α)の架橋密度や金属表面への密着性を高めることができ、耐食性や、加工時の塗膜追従性が向上する。これらの架橋剤は単独で使用してもよいし、2種以上を併用してもよい。
 前記アミノ樹脂としては、特に限定されず、例えば、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、グリコールウリル樹脂等を挙げることができる。
 前記ポリイソシアネート化合物としては、特に限定されず、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、トリレンジイソシアネート等を挙げることができる。また、ブロック化ポリイソシアネートは、前記ポリイソシアネート化合物のブロック化物である。
 前記エポキシ化合物は、3員環の環状エーテル基であるエポキシ基(オキシラン環)を複数有する化合物であれば特に限定されず、例えば、アジピン酸ジグリシジルエステル、フタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、ソルビタンポリグルシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、グリセリンポリグリシジルエーテル、トリメチルプロパンポリグリシジルエーテル、ネオペンチルグリコールポリグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、2,2-ビス-(4’-グリシジルオキシフェニル)プロパン、トリス(2,3-エポキシプロピル)イソシアヌレート、ビスフェノールAジグリシジルエーテル、水素添加ビスフェノールAジグリシジルエーテル等を挙げることができる。これらのエポキシ化合物の多くは、エポキシ基に1基の-CH2-が付加したグリシジル基を持つため、化合物名の中に「グリシジル」という語を含む。
 前記カルボジイミド基含有化合物としては、例えば、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネート等のジイソシアネート化合物の脱二酸化炭素を伴う縮合反応により、イソシアネート末端ポリカルボジイミドを合成した後、更にイソシアネート基との反応性を有する官能基を持つ親水系セグメントを付加した化合物等を挙げることができる。
 これらの架橋剤の量は、塗膜(α)を形成するための樹脂(A1)100質量部に対して1~40質量部が好ましい。1質量部未満の場合、添加量が不十分で添加した効果が得られない可能性があり、40質量部を超える量では過剰硬化で塗膜が脆くなり、耐食性や、成形時の加工追従性が低下する可能性がある。
 既に述べたように、本発明では塗膜(α)中に防錆顔料(C)が共存するため、塗膜の導電化に伴い、塗膜構成樹脂を特定の高耐食性樹脂とする必要は、特にない。しかし、塗膜の耐食性を高めて本発明の塗装金属板の適用範囲を広げるため、前記有機樹脂(A)は、前記樹脂(A1)単独、または更に追加してその誘導体の下記一般式(I)に示す樹脂(A2Si)を合計で前記有機樹脂(A)の50~100質量%含有するのが特に好ましい。
Figure JPOXMLDOC01-appb-C000003
 (式中、「A1」の表記は樹脂(A1)を示し、「Z-」は炭素原子数1~9、窒素原子数0~2、酸素原子数0~2の炭化水素鎖で、「A1~Z」の表記は、「A1」と「Z」が両者の官能基を介して共有結合していることを示す。また、「-O-」はエーテル結合であり、「-OH」は水酸基であり、「-X」は炭素原子数1~3の加水分解性アルコキシ基、加水分解性ハロゲノ基または加水分解性アセトキシ基であり、「-R」は炭素原子数1~3のアルキル基であり、置換基の数を示すa、b、c、dはいずれも0~3の整数であるが、但し、a+b+c+d=3である。)
 既に述べたように、本発明の塗膜(α)の形成に用いる塗装用組成物(β)は、樹脂(A1)を不揮発分の50~100質量%含む。前記塗装用組成物(β)に含まれる樹脂(A1)以外の不揮発成分は、後に詳述するような、防錆顔料(C)や、シランカップリング剤(s)、硬化剤、架橋剤等である。製膜後の塗膜(α)におけるこれらの化合物の含有量には、後述するように、前記樹脂(A1)単独、または(A2Si)との合計質量に対し好ましい範囲があるため、これらの化合物を含む塗装用組成物(β)を調合する際、製膜後の塗膜(α)中でこれらが好ましい含有量範囲に収まるように配合量を調節する。
 本発明において、有機樹脂(A)に含まれる樹脂(A2Si)は、例えば、樹脂(A1)とシランカップリング剤(s)を含む塗装用組成物(β)を、本発明で用いる金属板に塗布、乾燥することにより得られる。一般に、シランカップリング剤は、水酸基などの官能基を持つ金属表面や、多くの官能性有機樹脂に化学結合できるため、金属表面、官能性有機樹脂、シランカップリング剤の共存下で、金属表面と官能性有機樹脂の架橋や、官能性有機樹脂どうしの分子間あるいは分子内架橋が可能である。本発明においては、前記樹脂(A1)とシランカップリング剤(s)を含む塗装用組成物(β)を金属板に塗布し、乾燥することにより、前記樹脂(A1)の官能基の少なくとも一部と、金属表面の官能基の少なくとも一部がそれぞれシランカップリング剤(s)と反応し、樹脂(A2Si)が生成する。前記一般式(I)に示す樹脂(A2Si)の-O-(エーテル結合)または-OH(水酸基)の少なくとも一部は、金属表面と結合している。前記塗膜(α)と金属板表面の間に下地処理皮膜を設ける場合は、前記一般式(I)に示す樹脂(A2Si)の-O-(エーテル結合)または-OH(水酸基)の少なくとも一部が、下地処理皮膜面と結合している。前記エーテル結合と金属表面との結合、および、前記エーテル結合と下地処理構成成分との結合は共有結合であり、前記水酸基と金属表面との結合、および、前記水酸基と下地処理皮膜構成成分との結合は、多くの場合、水素結合または配位結合である。このような、皮膜構成樹脂と金属表面との化学結合、あるいは、上層皮膜構成樹脂と下地処理皮膜との化学結合により、両者の密着性が高まり、成形工程で金属板が変形する際に皮膜が優れた加工追従性を示すため、加工部の外観を損なわず、かつ、加工部の耐食性が向上する。
 前記シランカップリング剤(s)を含む塗装用組成物(β)の塗布、乾燥で得られる塗膜(α)と金属板表面の間に、更に下地処理皮膜を設ける場合、既に述べたように、下地処理層から最表層まで1層毎に、塗り重ねと乾燥を繰返す逐次塗装法により複層皮膜を形成してもよい。また、簡便にかつ効率的に皮膜を金属板表面に形成する方法として、前記のウェット・オン・ウェット塗装法や多層同時塗装法を用いることもできる。これらの方法では、最下層から最表層までの積層状態が、含水または含溶剤状態(ウェット状態)で金属板上に一旦形成される。そのような状態では、最表層に含まれるシランカップリング剤(s)の移動度が高いため、シランカップリング剤(s)の少なくとも一部が、その直下の下地層に含まれる官能性化合物とも効率的に反応する。これらの化学結合(層間架橋の促進)により、最表層と下地層の密着性が逐次塗装法の場合より高まる傾向があり、成形工程で金属板が変形する際の皮膜追従性や、加工部の耐食性が逐次塗装法で製膜した場合より向上する。
 本発明において、一般式(I)の樹脂(A2Si)を形成するために用いるシランカップリング剤(s)は、一般式Y-Z-SiXm3-mで示される分子構造を持つシランカップリング剤から選ばれる1種または2種以上となることができる。前記分子構造中の各官能基のうち、主として金属表面や他のシランカップリング剤との反応点となる-X基は、炭素原子数1~3の加水分解性アルコキシ基、または、加水分解性ハロゲノ基(フルオロ基(-F)、クロロ基(-Cl)、ブロモ基(-Br)など)、または、加水分解性アセトキシ基(-O-CO-CH3)である。これらのうち、炭素原子数1~3の加水分解性アルコキシ基が、アルコキシ基の炭素原子数を変えることにより加水分解性を調整しやすいため好ましく、メトキシ基(-OCH3)またはエトキシ基(-OCH2CH3)が特に好ましい。-X基が前記以外の官能基のシランカップリング剤は、-X基の加水分解性が低いか、または加水分解性が高すぎるため、本発明では望ましくない。なお、塗装用組成物(β)が水系でない場合、シランカップリング剤の加水分解性の官能基を分解させるため、塗装用組成物(β)に予め少量の水、更に加水分解用触媒を加えてもよい。
 前記分子構造中の-R基は、炭素原子数1~3のアルキル基である。-R基がメチル基またはエチル基の場合、嵩高いn-プロピル基やイソプロピル基に比べ、組成物中で前記-X基への水分子の接近を妨げず、-X基が比較的容易に加水分解するため好ましく、中でもメチル基が特に好ましい。-R基が前記以外の官能基であるシランカップリング剤は、-X基の加水分解性が極端に低いか、または反応性が高すぎるため、本発明では望ましくない。
 前記分子構造にて、置換基の数を示すmは1~3の整数である。加水分解性の-X基が多いほど金属表面との反応点が多いため、置換基の数を示すmは、2または3が好ましい。
 前記シランカップリング剤(s)の分子構造中の-Z-は、炭素原子数1~9、窒素原子数0~2、酸素原子数0~2の炭化水素鎖である。これらのうち、炭素原子数2~5、窒素原子数0または1、酸素原子数0または1の炭化水素鎖が、シランカップリング剤の水や溶剤への分散性と反応性のバランスが良いため、好ましい。-Z-の炭素原子数が10以上、窒素原子数が3以上、または酸素原子数が3以上の場合、シランカップリング剤の水や溶剤への分散性と反応性のバランスが不良のため、本発明では望ましくない。
 シランカップリング剤(s)の前記分子構造Y-Z-SiXm3-mにて、樹脂(A1)や他の共存樹脂の官能基との反応点となる-Y基は、樹脂(A1)や他の共存樹脂と反応するものであれば特に制限がないが、反応性の高さから、エポキシ基、アミノ基、メルカプト基、またはメチリデン基(H2C=)が好ましく、エポキシ基またはアミノ基が特に好ましい。
 本発明の被覆塗膜形成時に、前記分子構造Y-Z-SiXm3-mで示されるシランカップリング剤(s)分子の-SiXm基が金属表面等と反応する。また、-Y基が樹脂(A1)等と反応すると、前記一般式(I)に示す樹脂(A2Si)となる。即ち、前記シランカップリング剤(s)分子末端の-Si-Xの少なくとも一部が加水分解して-Si-OH(シラノール基)を生成し、その少なくとも一部が金属表面や他のシランカップリング剤(s)分子の水酸基と脱水縮合し、エーテル結合を介した共有結合一Si-O-Me(Meは金属原子)や-Si-O-Si*-(Si*は他のシランカップリング剤分子由来のSi原子)を生成する。前記シランカップリング剤(s)分子の他端にある-Y基が、樹脂(A1)の官能基と反応し、A1~Zの結合を生成し、その結果、下記一般式(I)に示す構造を持つ樹脂(A2Si)となる。これらの反応が終わり、樹脂(A2Si)が生成した後に(A2Si)中のSi原子に結合している-O-、-OH、-X、-R基の数をそれぞれa、b、c、dとすると、a+b+c=mである。また、前記シランカップリング剤(s)の-R基は前記反応に関与せず樹脂(A2)に残るため、-R基の数は、d=3-m=3-(a+b+c)、a+b+c+d=3である。なお、一般式(I)の「A1~Z」の表記は、A1とZが両者の官能基を介して共有結合していることを示す。
 前記シランカップリング剤(s)の具体例としては、前記一般式:
Y-Z-SiXm3-m
(-X基は炭素原子数1~3の加水分解性アルコキシ基、加水分解性ハロゲノ基、または加水分解性アセトキシ基、-R基は炭素原子数1~3のアルキル基、置換基の数を示すmは1~3の整数、-Z-は炭素原子数1~9、窒素原子数0~2、酸素原子数0~2の炭化水素鎖、-Y基は樹脂(A1)と反応する官能基)
に示す分子構造を持つものとして、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン等を挙げることができる。
 本発明において、有機樹脂(A)を含む塗膜(α)を金属表面に形成する時、用いる塗装用組成物(β)は、樹脂(A1)100質量部に対し、シランカップリング剤(s)を1~100質量部含有するのが好ましい。1質量部未満ではシランカップリング剤(s)の量が少なく、シランカップリング剤による架橋構造があまり発達しないため、十分に繊密な塗膜が得られず耐食性がやや不十分になる可能性や、成形時の金属表面等との加工密着性が不十分になる可能性がある。100質量部を超えると、密着性向上効果が飽和し、高価なシランカップリング剤を必要以上に用いるため不経済なだけでなく、塗装用組成物(β)の安定性を低下させることがある。
 本発明における有機樹脂(A)は、前記樹脂(A1)単独、または更に追加して前記樹脂(A2Si)を合計で樹脂(A)の50~100質量%含有するのが好ましく、樹脂(A1)と樹脂(A2Si)の合計で有機樹脂(A)の75~100質量%含有するのがより好ましい。樹脂(A1)と樹脂(A2Si)の合計が有機樹脂(A)の50質量%未満の場合、塗膜の繊密性や金属表面との密着性が不足する可能性があり、所望の耐食性や塗膜密着性、成形時の塗膜追従性が得られない可能性がある。
 本発明にて、樹脂(A1)と樹脂(A2Si)を含む塗膜(α)は、前記樹脂(A1)と(A2Si)の合計100質量部に対し、前記樹脂(A2Si)中の-C-Si-O-結合を形成するSi原子を0.1~30質量部含むのが好ましい。0.1質量部未満では、塗膜の繊密性、金属表面等との密着性、金属板を成形する時の塗膜加工追従性を左右する-C-Si-O-結合の量が少なく、十分な耐食性や密着性が得られない可能性がある。また、30質量部を超えると、金属表面等との密着性向上効果が飽和し、塗膜形成のために高価なシランカップリング剤を必要以上に用いるため、不経済であったり、塗装用組成物(β)の安定性を低下させることがある。なお、前記-C-Si-O-結合を形成するSi原子の同定や定量は、金属板上の塗膜のFT-IRスペクトルや、29Si-NMR等の分析方法を利用して行うことができる。
 既に述べたように、前記樹脂(A1)は、本発明の塗膜(α)の形成に用いる塗装用組成物(β)の1成分としてその不揮発分の50~100質量%含まれ、かつ、金属板への塗布により塗膜(α)形成後は、塗膜中の有機樹脂(A)は、前記樹脂(A1)を含み、または更に追加してその反応誘導体(A2)を含む。前記樹脂(A1)は、既に述べたように、水系または有機溶剤系の塗装用組成物(β)中で安定に存在するものであれば、その種類や構造に特に制限はないが、その構造中に、カルボキシル基(-COOH)、カルボン酸塩基(-COO-+、M+は1価カチオン)、スルホン酸基(-SO3H)、スルホン酸塩基(-SO3 -+;M+は1価カチオン)、1級アミノ基(-NH2)、2級アミノ基(-NHR1;R1は炭化水素基)、3級アミノ基(-NR12;R1とR2は炭化水素基)、4級アンモニウム塩基(-N+123-;R1、R2、R3は炭化水素基、X-は1価アニオン)、スルホニウム塩基(-S+12-;R1、R2は炭化水素基、X-は1価アニオン)、ホスホニウム塩基-P+123-;R1、R2、R3は炭化水素基、X-は1価アニオン)から選ばれる少なくとも1種の官能基を含むのが好適である。即ち、塗膜(α)中の前記有機樹脂(A)は、上記のカルボキシル基、カルボン酸塩基、スルホン酸基、スルホン酸塩基、2級アミノ基、3級アミノ基、4級アンモニウム塩基、スルホニウム塩基、ホスホニウム塩基から選ばれる少なくとも1種の官能基(以下、本発明では「極性官能基群」と総称する)を構造中に含む樹脂(A1)、または更に該樹脂の誘導体(A2)を含むのが好適である。
 前記樹脂(A1)が、その構造中に前記の極性官能基群を含むのが好ましい理由について、以下に述べる。
 塗装用組成物(β)には、製膜後の有機樹脂(A)の少なくとも一部を構成する樹脂(A1)が含まれている。塗装用組成物(β)が水系の場合、塗装用組成物(β)の保管中や塗装直後の水の多い環境下では、炭化水素鎖を主体とする樹脂(A1)の低極性構造中に極性官能基群が存在すると、高極性で極めて高い親水性を示す極性官能基群が水中に伸び、周辺の水と水和する。その結果、樹脂(A1)は、塗装用組成物(β)中で分散安定化し易い。また、これらの極性官能基群は、塗装用組成物中に存在する非酸化物セラミクス粒子(B)の表面に吸着し、非酸化物セラミクス粒子(B)同士の凝集を防ぎ、分散性を保つ効果がある。
 一般に、水系塗装用組成物は、有機溶剤系塗装用組成物と異なり、塗装用組成物の保管中や塗装直後は多量の水を含んでいて高極性だが、塗膜形成過程で水が蒸発すると、塗装用組成物中の極性環境が高極性から低極性へ大きく変化する。本発明の場合、前記樹脂(A1)の構造中に極性官能基群があるため、塗膜形成過程で水が蒸発し極性が急激に低下すると、極性官能基群の少なくとも一部は水和水や金属表面から脱着してコイル状に縮む。その一方で、樹脂(A1)の低極性の樹脂鎖部分が伸び、立体障害層を形成し、非酸化物セラミクス粒子(B)同士の凝集を防ぐ役割を果たすと考えられる。
 このように、炭化水素鎖を主体とする樹脂(A1)の低極性構造中に、高極性で極めて高い親水性を示す極性官能基群があれば、水系塗装用組成物の保管中や、塗膜形成時の塗装用組成物(塗膜)中の極性変化に応じてその極性に適合した基や鎖が伸び、非酸化物セラミクス粒子の分散性を保ち易くなる。
 塗装用組成物(β)が有機溶剤系の場合、炭化水素鎖を主体とする樹脂(A1)の低極性構造中に、高極性で極めて高い親水性を示す前記極性官能基群があれば、これらが塗装用組成物中に存在する非酸化物セラミクス粒子(B)の表面に吸着し、かつ、有機溶剤中では樹脂(A1)の低極性の樹脂鎖部分が伸びて樹脂構造中の極性官能基群同士を互いに遠ざけるため、塗装用組成物中や塗膜形成過程で、非酸化物セラミクス粒子(B)同士の凝集を防ぎ、分散性を保つ効果がある。
 樹脂(A1)が前記の極性官能基群を含むその他のメリットとしては、これらの官能基を含むことで、基材である金属板(下地処理皮膜がある場合はその皮膜)との密着性が向上し、塗膜(α)の耐食性、成形時の塗膜の加工追従性(金属板成形加工時の加工部の塗膜密着性、耐亀裂性、耐色落ち性等)、耐傷付き性等が向上することが挙げられる。
 前記スルホン酸基は構造式-SO3Hで表される官能基である。また、スルホン酸塩基は、構造式-SO3 -+(M+は1価カチオン)で表される官能基であり、スルホン酸基をアルカリ金属類、アンモニアを含むアミン類等で中和したものである。
 樹脂(A1)が、構造中にスルホン酸基またはスルホン酸塩基を含むポリエステル樹脂の場合、樹脂の合成原料として用いるポリオール、多価カルボン酸、スルホン酸基含有化合物、スルホン酸塩基含有化合物に制限はない。ポリオールと多価カルボン酸としては、既に例示したものを使用できる。また、スルホン酸基含有化合物としては、例えば、5-スルホイソフタル酸、4-スルホナフタレン-2、7-ジカルボン酸、5(4-スルホフェノキシ)イソフタル酸等のスルホン酸基を含有するジカルボン酸類、または2-スルホ-1,4-ブタンジオール、2,5-ジメチル-3-スルホ-2,5-ヘキシルジオール等のジオール類等を使用できる。スルホン酸塩基含有化合物としては、例えば、5-スルホナトリウムイソフタル酸、5-スルホナトリウムイソフタル酸ジメチル等を使用できる。スルホン酸基が中和された樹脂を得たい場合は、すでに中和されたスルホン酸基を樹脂中に組み込んでもよいし、スルホン酸基を樹脂中に組み込んだ後に中和してもよい。塗装用組成物(β)が水系の場合、樹脂を水中に均一微細分散させるため、中和されていないスルホン酸基の基数に比べ、アルカリ金属類、アンモニアを含むアミン類等で中和されたスルホン酸塩基の基数が多い方が好ましい。何故なら、アルカリ金属類、アンモニアを含むアミン類等で中和されたスルホン酸塩基は、水中で容易に電離し水和するため、これらの基を構造中に多く含む樹脂は水中に均一微細分散しやすいからである。これらの中で、Li、Na、Kなどのアルカリ金属類で中和されたスルホン酸金属塩基が、水系塗装用組成物(β)の保管中や、塗装直後の水の多い環境下で非酸化物セラミクス粒子(B)の凝集を抑止したり、塗膜(α)と基材との密着性を高める上で特に好ましく、スルホン酸Na塩基が最も好ましい。
 前記スルホン酸基またはスルホン酸塩基を含有するジカルボン酸またはジオールの使用量は、全多価カルボン酸成分または全ポリオール成分に対し、スルホン酸基またはスルホン酸塩基を含有するジカルボン酸またはジオールの総和で0.1~10モル%含有することが好ましい。0.1モル%未満であると、水系塗装用組成物(β)の保管中や、塗装直後の水の多い環境下にて、カルボキシル基やスルホン酸基、スルホン酸塩基を含む樹脂を分散安定化するためのスルホン酸基、スルホン酸塩基部分が少なく、十分な樹脂分散性が得られない可能性がある。また、塗装用組成物中に共存する非酸化物セラミクス粒子(B)に吸着するスルホン酸基、スルホン酸塩基の量が少ないため、非酸化物セラミクス粒子どうしの凝集を防ぐ効果が不足する場合がある。また、基材である金属板(下地処理がある場合は下地処理層)に作用するスルホン酸基、スルホン酸塩基の量が少ないため、密着性や耐食性の向上効果が得られない場合がある。10モル%超であると、スルホン酸基、スルホン酸塩基により塗膜が保持する水分量が増え、耐食性が低下する場合がある。性能のバランスを考慮すると、0.5~5モル%の範囲にあるのがより好ましい。
 前記カルボキシル基は構造式-COOHで表される官能基である。また、カルボン酸塩基は構造式-COO-+(M+は1価カチオン)で表される官能基であり、カルボキシル基をアルカリ金属類、アンモニアを含むアミン類等で中和したものである。
 樹脂(A1)が、構造中にカルボキシル基またはカルボン酸塩基を含むポリエステル樹脂の場合、ポリエステル樹脂に前記カルボキシル基またはカルボン酸塩基を導入する場合の方法としては特に制限はない。例えば、ポリエステル樹脂を重合した後に、常圧、窒素雰囲気下、無水トリメリット酸、無水フタル酸、無水ピロメリット酸、無水コハク酸、無水1,8-ナフタル酸、無水1,2-シクロヘキサンジカルボン酸、シクロヘキサン-1,2,3,4-テトラカルボン酸-3,4-無水物、エチレングリコールビスアンヒドロトリメリテート、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、ナフタレン-1,4,5,8-テトラカルボン酸ニ無水物などから1種または2種以上を選択し、後付加する方法やポリエステルを高分子量化する前のオリゴマー状態のものにこれらの酸無水物を投入し、次いで減圧下の重縮合により高分子量化する方法等が挙げられる。
 カルボキシル基が中和された樹脂を用いる場合は、すでに中和されたカルボキシル基を樹脂中に組み込んでもよいし、カルボキシル基を樹脂中に組み込んだ後に中和してもよい。塗装用組成物(β)が水系の場合、樹脂を水中に均一微細分散させるため、中和されていないカルボキシル基の基数に比べ、アルカリ金属類、アンモニアを含むアミン類等で中和されたカルボン酸塩基の基数が多い方が好ましい。何故なら、アルカリ金属類、アンモニアを含むアミン類等で中和されたカルボン酸塩基は、水中で容易に電離し水和するため、これらの基を構造中に多く含む樹脂は水中に均一微細分散しやすいからである。
 前記カルボキシル基またはカルボン酸塩基の導入量としては特に制限はない。カルボキシル基とカルボン酸塩基の総量に対応する酸価が、0.1~50mgKOH/gの範囲にあることが好ましい。0.1mgKOH/g未満であると、水系塗装用組成物(β)の保管中や、塗装直後の水の多い環境下にて、カルボキシル基やスルホン酸基を含む樹脂を分散安定化するためのカルボキシル基部分が少なく、十分な樹脂分散性が得られない可能性がある。また、塗装用組成物中に共存する非酸化物セラミクス粒子(B)に吸着するカルボキシル基またはカルボン酸塩基の量が少ないため、非酸化物セラミクス粒子同士の凝集を防ぐ効果が不足する場合がある。また、基材である金属板(下地処理がある場合は下地処理層)に作用するカルボキシル基またはカルボン酸塩基の量が少ないため、密着性や耐食性の向上効果が得られない場合がある。酸価が、50mgKOH/g超であると、カルボキシル基またはカルボン酸塩基により塗膜が保持する水分量が増え、耐食性が低下する場合がある。性能のバランスを考慮すると、酸価が0.5~25mgKOH/gの範囲にあるのがより好ましい。
 前記の1級アミノ基、2級アミノ基、3級アミノ基、4級アンモニウム塩基は、それぞれ、-NH2、-NHR1、-NR12、-N+123-で表される官能基である。R1、R2、R3は炭化水素基、X-は1価アニオンである。
 樹脂(A1)が、1級アミノ基または2級アミノ基(イミノ基)を含む場合、樹脂骨格にこれらの基を導入する場合の方法としては特に制限はない。例えば、尿素、メラミン、ヘキサメトキシメチルメラミン、ベンゾグアナミン等の2つ以上の1級アミノ基を持つ化合物とホルムアルデヒドとを縮合重合し、得られる生成物のメチロール基の一部またはすべてをメタノール、エタノール、ブタノールなどの低級アルコールでエーテル化してアミノ樹脂とする方法等が挙げられる。
 樹脂(A1)が、2級アミノ基、3級アミノ基、または4級アンモニウム塩基を含むカチオン性樹脂の場合、樹脂骨格に前記官能基を導入する場合の方法としては特に制限はない。例えば、エポキシ樹脂鎖中の3員環の環状エーテル基であるエポキシ基(オキシラン環)に1級、2級または3級アミン化合物を反応させ、それぞれ、樹脂鎖に2級アミノ基、3級アミノ基、4級アンモニウム基を導入する方法等が挙げられる。更に、これらの基を有機酸、無機酸等で中和し水系樹脂化したもの等を挙げることができる。
 前記の2級アミノ基、3級アミノ基、4級アンモニウム塩基、スルホニウム塩基、ホスホニウム塩基の構造式は、それぞれ、-NHR1、-NR12、-N+123-、-S+12-、-P+123-で表され、ここで、R1、R2、R3は炭化水素基、X-は1価アニオンである。R1、R2、R3、及び、X-は、前記官能基を持つ樹脂が、塗装用組成物(β)中で安定に存在し、金属板への塗工性や製膜性が良好で、製膜後の塗装金属板の抵抗溶接性、耐食性、成形性が良好であれば、特に限定されない。
 R1、R2、R3としては、例えば、炭素原子数1~18個の直鎖若しくは分岐を有するアルキル基、アリール基、ヒドロキシル基またはアルコキシ基で置換されたアルキル基、アリール基又はアラルキル基を挙げることができる。それらの具体例としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ドデシル基等のアルキル基、フェニル、トリル、キシリル基等のアリール基、ベンジル、フェニチル基等のアラルキル基、ヒドロキシル基、アルコキシ基等で置換されたもの等が挙げられる。R1、R2、R3は、同一の基でも異なる基でもよい。X-は、例えば、フッ素、塩素、臭素またはヨウ素等のハロゲン化物イオン、硫酸イオン、リン酸イオン、過塩素酸イオン、等が挙げられる。
 前記有機樹脂(A)は、硬化剤で硬化された樹脂であることが好ましい。前記硬化剤は、前記有機樹脂(A)を硬化させるものであれば特に制限はない。前記樹脂(A1)の架橋剤として既に例示したものの中で、アミノ樹脂の1つであるメラミン樹脂やポリイソシアネート化合物から選択される少なくとも1種の架橋剤を前記硬化剤として用いるのがよい。
 メラミン樹脂は、メラミンとホルムアルデヒドとを縮合して得られる生成物のメチロール基の一部または全部をメタノール、エタノール、ブタノールなどの低級アルコールでエーテル化した樹脂である。ポリイソシアネート化合物としては特に限定されない。例えば、前記樹脂(A1)の架橋剤として既に例示したヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、トリレンジイソシアネート等を挙げることができる。また、そのブロック化物は、前記ポリイソシアネート化合物のブロック化物であるヘキサメチレンジイソシアネートのブロック化物、イソホロンジイソシアネートのブロック化物、キシリレンジイソシアネートのブロック化物、トリレンジイソシアネートのブロック化物等を挙げることができる。これらの硬化剤は単独で使用してもよいし、2種以上を併用してもよい。
 前記硬化剤の含有量は、前記有機樹脂(A)の5~35質量%であることが好ましい。5質量%未満であると、焼付硬化が不十分で、耐食性、耐傷付き性が低下する場合があり、35質量%超であると、焼付硬化が過剰になり、耐食性、加工性が低下する場合がある。
 塗膜(α)の耐傷付き性の観点から、前記硬化剤にはメラミン樹脂を含有することが好ましい。メラミン樹脂の含有量は、前記硬化剤の30~100質量%であることが好ましい。30質量%未満であると、得られた塗膜(α)の耐傷付き性が低下する場合がある。
 <非酸化物セラミクス粒子(B)>
 本発明では、塗膜(α)中の導電性粒子として、非酸化物セラミクス粒子(B)を用いている。本発明において、塗膜(α)を得るための塗装用組成物(β)が水系組成物の場合でも、これらの非酸化物セラミクス粒子(B)は組成物中で劣化せず、高い導電能を恒久的に保持する。そのため、水分により劣化する導電性粒子、例えば、卑な金属粒子やフェロシリコン粒子等に比べ、優れた抵抗溶接性を非常に長い期間保持できる。
 本発明の塗膜(α)に含まれる非酸化物セラミクス粒子(B)を構成する非酸化物セラミクスは、25℃の電気抵抗率(体積抵抗率、比抵抗)が0.1×10-6~185×10-6Ωcmの範囲にあるホウ化物セラミクス、炭化物セラミクス、窒化物セラミクス、またはケイ化物セラミクスである。ここでいう非酸化物セラミクスとは、酸素を含まない元素や化合物からなるセラミクスのことである。また、ここでいうホウ化物セラミクス、炭化物セラミクス、窒化物セラミクス、ケイ化物セラミクスとは、それぞれ、ホウ素B、炭素C、窒素N、ケイ素Siを主要な非金属構成元素とする非酸化物セラミクスのことである。これらのうち、25℃の電気抵抗率が0.1×10-6Ωcm未満のものは見当たらない。また、非酸化物セラミクスの25℃の電気抵抗率(体積抵抗率、比抵抗)が185×10-6Ωcmを超える場合、樹脂塗膜に十分な導電性を付与するために塗膜への多量添加が必要となり、本発明の塗装金属板をプレス成形する際に著しい塗膜剥離やかじりが生じ、耐食性が低下するため不適である。
 本発明の塗膜(α)に含まれる非酸化物セラミクス粒子(B)は、高い導電性を有するため、樹脂塗膜に十分な導電性を付与するための添加量がより少量でよく、その結果、塗装金属板の耐食性や成形性への悪影響がより少なくなる。なお、参考までに、純金属の電気抵抗率は1.6×10-6Ωcm(Ag単体)~185×10-6Ωcm(Mn単体)の範囲にあり、本発明で導電性粒子として用いる非酸化物セラミクス(電気抵抗率0.1×10-6~185×10-6Ωcm)は、純金属と同程度の優れた導電性を持つことがわかる。
 本発明にて用いることができる非酸化物セラミクスとしては、以下を例示できる。即ち、ホウ化物セラミクスとしては、周期律表のIV族(Ti、Zr、Hf)、V族(V、Nb、Ta)、VI族(Cr、Mo、W)の各遷移金属、Mn、Fe、Co、Ni、希土類元素、またはBe、Mg以外のアルカリ土類金属(Ca、Sr、Ba)のホウ化物を例示できる。
 但し、Beのホウ化物のうち25℃に於ける電気抵抗率が185×10-6Ωcmを超えるもの(例えば、Be2B、BeB6等)は、導電性能が十分でないため本発明への適用には不適である。また、Mgのホウ化物(Mg32、MgB2等)は水や酸に対し不安定なため、本発明への適用には不適である。
 炭化物セラミクスとしては、IV族、V族、VI族の各遷移金属、Mn、Fe、Co、Niの炭化物を例示できる。ただし、湿潤雰囲気下で加水分解する恐れのある、希土類元素やアルカリ土類金属の炭化物(例えば、YC2、LaC2、CeC2、PrC2、Be2C、Mg23、SrC2等)は、本発明への適用には不適である。
 窒化物セラミクスとしては、IV族、V族、VI族の各遷移金属、またはMn、Fe、Co、Niの窒化物を例示できる。ただし、湿潤雰囲気下で加水分解する恐れのある、希土類元素やアルカリ土類金属の窒化物(例えば、LaN、Mg32、Ca32等)は本発明への適用には不適である。ケイ化物セラミクスとしては、IV族、V族、VI族の各遷移金属、またはMn、Fe、Co、Niのケイ化物を例示できる。ただし、湿潤雰囲気下で水と反応し水素を発生する恐れのある、希土類元素やアルカリ土類金属のケイ化物(例えば、LaSi、Mg2Si、SrSi2、BaSi2等)は、本発明への適用には不適である。
 更に、これらホウ化物、炭化物、窒化物、ケイ化物から選ばれる2種以上の混合物、または、これらのセラミクスを金属の結合材と混合して焼結したサーメット等を例示できる。
 塗膜(α)を水系塗装用組成物から作製する場合は、サーメットの一部を構成する金属の標準電極電位は-0.3V以上で耐水劣化性であることが好ましい。サーメットの一部を構成する金属の標準電極電位が-0.3V未満の場合、このサーメット粒子が水系塗装用組成物中に長期間存在すると、粒子の表面に錆層や厚い酸化絶縁層が生じ、粒子の導電性が失われる恐れがあるからである。耐水劣化性のサーメット粒子の例としては、WC-12Co、WC-12Ni、TiC-20TiN-15WC-10Mo2C-5Ni等が挙げられる。Co、Niの標準電極電位はそれぞれ-0.28V、-0.25Vでいずれも-0.3Vより貴であり、いずれの金属も耐水劣化性である。
 前記の非酸化物セラミクスのうち、Cr系セラミクス(CrB、CrB2、Cr32、Cr2N、CrSi等)は環境負荷への懸念から、また、Hf系セラミクス(HfB2、HfC、HfN等)、Tbより重希土側の希土類元素系のセラミクスの多くは高価格であり、また市場に流通していないため、本発明においては、上記の群からこれらを除いた非酸化物セラミクス、または、これらから選ばれる2種以上の混合物を用いるのが好ましい。
 更に、工業製品の有無や国内外市場での安定流通性、価格、電気抵抗率等の観点から、以下の非酸化物セラミクスがより好ましい。即ち、BaB6(電気抵抗率77×10-6Ωcm)、CeB6(同30×10-6Ωcm)、Co2B(同33×10-6Ωcm)、CoB(同76×10-6Ωcm)、FeB(同80×10-6Ωcm)、GdB4(同31×10-6Ωcm)、GdB6(同45×10-6Ωcm)、LaB4(同12×10-6Ωcm)、LaB6(同15×10-6Ωcm)、Mo2B(同40×10-6Ωcm)、MoB(同35×10-6Ωcm)、MoB2(同45×10-6Ωcm)、Mo25(同26×10-6Ωcm)、Nb32(同45×10-6Ωcm)、NbB(同6.5×10-6Ωcm)、Nb34(同34×10-6Ωcm)、NbB2(同10×10-6Ωcm)、NdB4(同39×10-6Ωcm)、NdB6(同20×10-6Ωcm)、PrB4(同40×10-6Ωcm)、PrB6(同20×10-6Ωcm)、SrB6(同77×10-6Ωcm)、TaB(同100×10-6Ωcm)、TaB2(同100×10-6Ωcm)、TiB(同40×10-6Ωcm)、TiB2(同28×10-6Ωcm)、VB(同35×10-6Ωcm)、VB2(同150×10-6Ωcm)、W25(同80×10-6Ωcm)、YB4(同29×10-6Ωcm)、YB6(同40×10-6Ωcm)、YB12(同95×10-6Ωcm)、ZrB2(同60×10-6Ωcm)、MoC(同97×10-6Ωcm)、Mo2C(同100×10-6Ωcm)、Nb2C(同144×10-6Ωcm)、NbC(同74×10-6Ωcm)、Ta2C(同49×10-6Ωcm)、TaC(同30×10-6Ωcm)、TiC(同180×10-6Ωcm)、V2C(同140×10-6Ωcm)、VC(同150×10-6Ωcm)、WC(同80×10-6Ωcm)、W2C(同80×10-6Ωcm)、ZrC(同70×10-6Ωcm)、Mo2N(同20×10-6Ωcm)、Nb2N(同142×10-6Ωcm)、NbN(同54×10-6Ωcm)、ScN(同25×10-6Ωcm)、Ta2N(同135×10-6Ωcm)、TiN(同22×10-6Ωcm)、ZrN(同14×10-6Ωcm)、CoSi2(同18×10-6Ωcm)、Mo3Si(同22×10-6Ωcm)、Mo5Si3(同46×10-6Ωcm)、MoSi2(同22×10-6Ωcm)、NbSi2(同6.3×10-6Ωcm)、Ni2Si(同20×10-6Ωcm)、Ta2Si(同124×10-6Ωcm)、TaSi2(同8.5×10-6Ωcm)、TiSi(同63×10-6Ωcm)、TiSi2(同123×10-6Ωcm)、V5Si3(同115×10-6Ωcm)、VSi2(同9.5×10-6Ωcm)、W3Si(同93×10-6Ωcm)、WSi2(同33×10-6Ωcm)、ZrSi(同49×10-6Ωcm)、ZrSi2(同76×10-6Ωcm)、または、これらから選ばれる2種以上の混合物を用いるのが好ましい。
 これらの中でも、25℃の電気抵抗率が0.1×10-6~100×10-6Ωcmにある、非酸化物セラミクスが、特に好ましい。何故なら、これらは、25℃の電気抵抗率が100×10-6Ωcmを超え185×10-6Ωcmまでの範囲にある非酸化物セラミクスより高い導電性を有するため、樹脂塗膜に十分な導電性を付与するための粒子添加量がより少ない量でよく、塗膜を貫通する腐食電流の導通路が僅かしか形成されず、耐食性が殆ど低下しないからである。また、粒子添加が少量のためプレス成形時に塗膜剥離やかじりを誘発することなく、成形性が殆ど低下しないからである。
 前記の非酸化物セラミクスの括弧内に付記した電気抵抗率は、それぞれ、工業用素材として販売され使用されているものの代表値(文献値)である。これらの電気抵抗率は、非酸化物セラミクスの結晶格子に入り込んだ不純物元素の種類や量により増減するため、本発明での使用に際しては、例えば、(株)三菱化学アナリテック製の抵抗率計ロレスタEP(MCP-T360型)とESPプローブ(端子の平頭部の直径2mm)を用いた4端子4探針法、定電流印加方式で、JIS K7194に準拠して25℃の電気抵抗率を実測し、0.1×10-6~185×10-6Ωcmの範囲にあることを確認してから使用すればよい。
 前記非酸化物セラミクス粒子(B)の粒子形状は、球状粒子、または、擬球状粒子(例えば楕円球体状、鶏卵状、ラグビーボール状等)や多面体粒子(例えばサッカーボール状、サイコロ状、各種宝石のブリリアントカット形状等)のような、球に近い形状が好ましい。細長い形状(例えば棒状、針状、繊維状等)や平面形状(例えばフレーク状、平板状、薄片状等)のものは、塗装過程で塗膜面に平行に配列したり、塗装用基材である金属板(金属面に下地処理がある場合は下地処理層)と塗膜の界面付近に沈積したりして、塗膜の厚方向を貫く有効な通電路を形成しにくいため、本発明の用途に適さない。
 前記非酸化物セラミクス粒子(B)の平均粒子径は特に限定しないが、本発明の塗装用組成物(β)中にて、体積平均径が0.2~20μmの粒子で存在するのが好ましく、体積平均径が0.5~12μmの粒子で存在するのがより好ましく、体積平均径が1~8μmの粒子で存在するのが特に好ましい。これらの体積平均径を持つ分散粒子は、塗装用組成物(β)の製造工程、保管・運搬時や、塗装用基材である金属板(金属面に下地処理がある場合は下地処理層)への塗装工程等にて、塗装用組成物(β)中で安定に存在すれば、単一粒子であっても、複数の単一粒子が強く凝集した二次粒子であってもよい。塗装用組成物の基材への塗装工程にて、塗膜の乾燥、製膜の際に前記(B)粒子が凝集し、塗膜中での体積平均径が大きくなっても差支えない。
 なお、ここで言う体積平均径とは、粒子の体積分布データから求めた体積基準の平均径のことである。これは、一般に知られているどのような粒子径分布測定方法を用いて求めても良いが、コールター法(細孔電気抵抗法)により測定される球体積相当径分布の平均値を用いるのが好ましい。何故なら、コールター法は、他の粒子径分布測定方法(例えば、(a)レーザー回折散乱法で得た体積分布から算出する、(b)画像解析法で得た円面積相当径分布を体積分布に換算する、(c)遠心沈降法で得た質量分布から算出する、等)に比べ、測定機メーカーや機種による測定値の違いが殆どなく、正確で高精度な測定ができるからである。コールター法では、電解質水溶液中に被験粒子を懸濁させ、ガラス管の細孔に一定の電流を流し、陰圧により粒子が細孔を通過するように設定する。粒子が細孔を通過すると、粒子が排除した電解質水溶液の体積(=粒子の体積)によって、細孔の電気抵抗が増加する。一定電流を印加すれば、粒子通過時の抵抗変化が電圧パルス変化に反映されるため、この電圧パルス高さを1個ずつ計測処理することにより、個々の粒子の体積を直接測定できる。粒子は不規則形状の場合が多いので、粒子と同一体積の球体を仮定し、その球体の径(=球体積相当径)に換算する。このようなコールター法による球体積相当径の測定方法は、よく知られており、例えば文献:ベックマン・コールター(株)インターネット公式サイト上のウェブページ〔http://www.beckmancoulter.co.jp/product/product03/Multisizer3.html(精密粒度分布測定装置 Multisizer3)〕に、詳細に記載されている。
 体積平均径が0.2μm未満の非酸化物セラミクス粒子は、体積平均径がそれより大きな非酸化物セラミクス粒子より一般に高価で、工業製品として市場に流通しているものが少ない。また、比表面積が比較的大きいため、水系または有機溶剤系の塗装用組成物を調製する際、湿潤分散剤を用いても粒子表面全体を濡らし分散させるのが困難で、水や有機溶剤になじまない継粉(ままこ)、ダマが生じることが多いため、本発明では使用しない方がよい。また、体積平均径が20μmを超える非酸化物セラミクス粒子は、体積平均径がそれより小さな非酸化物セラミクス粒子より、水系または有機溶剤系の塗装用組成物中で速く沈降しやすい(ストークスの式により明らか)。従って、分散剤を工夫しても分散安定性を確保することが難しく、粒子が浮遊せず短時間で沈降し、凝集・固化し再分散が困難になる等の不具合を生じる場合があるため、本発明では使用しない方がよい。
 前記塗膜(α)中に分散されている前記非酸化物セラミクス粒子(B)の体積平均径をcμm、前記塗膜(α)の厚みをbμmとした時、0.5≦c/b≦1.5の関係を満足することが好ましい。図1は、本発明の自動車用塗装金属板の断面の模式図を表す。(A)は有機樹脂、(B)、(B’)は、非酸化物セラミクス粒子、(C)は防錆顔料を表し、(γ)は金属板を表す。(B)は厚みに対する粒径の比c/bが0.5以上となっている粒子であり、この場合厚み方向の導電性は確保される。(B’)は、厚みに対する粒径の比c/bが0.5未満の粒子であり、この場合、導電性が十分に確保されない場合がある。厚みに対する粒径の比c/bが1.5を超えると、耐食性、プレス成形性が低下する場合がある。
 入手可能な非酸化性セラミクス粒子(B)は、一般的に、原料を粉砕し必要に応じて分級して所定の粒子径に調製されることが多いので、粒子径の異なる粒子が混合された粒径分布を有している。したがって、体積平均径が上述した粒径範囲中にあっても、その粒径分布によっては、溶接性に影響を与える。非酸化性セラミクス粒子(B)のうち、それぞれの体積粒子径が1~24μmの(B1)が、良好な溶接性に対してとくに効果を示す。
 また、塗装金属板表面に占める非酸化性セラミクス粒子(B)の量も溶接性に影響を与える。本発明では、粒径1μm~24μmの非酸化性セラミクス粒子粒子(B1)が塗装金属板表面に0.8個/mm2~40000個/mm2配置されていることが、塗装金属板の溶接性において好ましい。粒子径1μm未満の(B)は溶接性への寄与が小さく、粒子径24μm超の(B)は、とくに膜厚が薄い場合に塗膜から脱落しやすく溶接に効果を示しにくい。個数が0.8個/mm2未満では溶接性の向上に対する効果が小さく、40000個/mm2超では添加量に対する溶接性の向上効果が小さい。
 <防錆顔料(C)>
 本発明に用いる防錆顔料(C)の種類としては特に限定されないが、ケイ酸塩化合物、リン酸塩化合物、バナジン酸塩化合物、および金属酸化物微粒子(D)から選ばれる1種または2種以上を含むのが好ましい。
 ケイ酸塩化合物、リン酸塩化合物、バナジン酸塩化合物は、塗装用組成物(β)や塗膜(α)中で、該組成物や塗膜中の水分、共存物質や基材面との接触、pHなどの環境変化に応じて、それぞれ、ケイ酸イオン、リン酸イオン、バナジン酸イオン、及びこれらのアニオンの対カチオン(例えば、アルカリ土類金属イオン、Znイオン、Alイオン等)を放出することができる。これらのイオンのうち、既に塗装用組成物(β)中に溶出していたイオンは、製膜時に塗膜(α)に取り込まれ、塗膜内での水分の増減、共存物質や基材面との接触、pH変化などに応じ、共存する他の原子や原子団と難溶性塩や酸化物の皮膜を形成し、腐食を抑制すると考えられる。また、塗膜(α)に取り込まれたケイ酸塩化合物、リン酸塩化合物、バナジン酸塩化合物の場合も同様に、塗膜形成後の環境変化に応じ、上記のアニオン、カチオンを徐々に放出し、難溶性塩や酸化物の皮膜を形成し、腐食を抑制すると考えられる。
 本発明で用いることができるケイ酸塩化合物としては、例えば、ケイ酸マグネシウム、ケイ酸カルシウム等のアルカリ土類金属のケイ酸塩、ケイ酸リチウム、ケイ酸ナトリウム、ケイ酸カリウム等のアルカリ金属のケイ酸塩、ケイ酸アルミニウム等が挙げられる。これらのうち、ケイ酸リチウム、ケイ酸ナトリウム、ケイ酸カリウムとしては、酸化ケイ素(SiO2)と酸化リチウム(Li2O)の構成モル比率が0.5≦(SiO2/Li2O)≦8であるケイ酸リチウム、酸化ケイ素(SiO2)と酸化ナトリウム(Na2O)の構成モル比率が0.5≦(SiO2/Na2O)≦4であるケイ酸ナトリウム、酸化ケイ素(SiO2)と酸化カリウム(K2O)の構成モル比率が0.5≦(SiO2/K2O)≦4であるケイ酸カリウム、及び、これらのケイ酸塩の水和物を例示できる。これらの具体例としては、オルトケイ酸リチウム(Li4SiO4;2Li2O・SiO2)、オルト二ケイ酸六リチウム(Li6Si27;3Li2O・2SiO2)、メタケイ酸リチウム(Li2SiO3;Li2O・SiO2)、二ケイ酸リチウム(Li2Si25;Li2O・2SiO2)、七ケイ酸四リチウム(2Li2O・7SiO2)、四ケイ酸リチウム(Li2Si49;Li2O・4SiO2)、九ケイ酸四リチウム(2Li2O・9SiO2)、十五ケイ酸四リチウム(2Li2O・15SiO2)、及び、オルトケイ酸ナトリウム(Na4SiO4;2Na2O・SiO2)、メタケイ酸ナトリウム(Na2SiO3;Na2O・SiO2)、二ケイ酸ナトリウム(Na2Si25;Na2O・2SiO2)、四ケイ酸ナトリウム(Na2Si49;Na2O・4SiO2)、オルトケイ酸カリウム(K4SiO4;2K2O・SiO2)、メタケイ酸カリウム(K2SiO3;K2O・SiO2)、二ケイ酸カリウム(K2Si25;K2O・2SiO2)、四ケイ酸カリウム(K2Si49;K2O・4SiO2)、及び、これらのケイ酸塩の水和物が挙げられる。なお、これらのケイ酸塩の水和物の多くは、pHや温度等の環境変化により水和状態のまま容易にゲル化し、一部が高分子化してポリケイ酸塩になる場合がある。本発明に適用できるケイ酸塩化合物には、そのようなポリケイ酸塩も含まれる。
 本発明で用いることができるリン酸塩化合物としては、例えば、オルトリン酸、ポリリン酸(オルトリン酸の重合度6までの直鎖状重合体の単体、またはこれらの2種以上の混合物)、メタリン酸(オルトリン酸の重合度3~6までの環状重合体の単体、またはこれらの2種以上の混合物)、テトラメタリン酸、ヘキサメタリン酸等の金属塩、五酸化リン、モネタイト、トルフィル石、ウィトロック石、ゼノタイム、スターコライト、ストルーブ石、ラン鉄鉱石等のリン酸塩鉱物、ポリリン酸シリカやトリポリリン酸塩等の市販の複合リン酸塩顔料、フィチン酸、ホスホン酸(亜リン酸)、ホスフィン酸(次亜リン酸)などの金属塩、又は、これらの2種以上の混合物などが挙げられる。ここで言うオルトリン酸塩には、その一水素塩(HPO4 2-)の塩、二水素塩(H2PO4 -)も含む。また、ポリリン酸塩には水素塩を含む。リン酸塩を形成するカチオン種としては特に制限はなく、例えば、Co、Cu、Fe、Mn、Nb、Ni、Sn、Ti、V、Y、Zr、Al、Ba、Ca、Mg、SrおよびZn等の金属イオン、バナジル、チタニル、ジルコニル等のオキソカチオンが挙げられるが、Al、Ca、Mg、Mn、Niを用いるのが好ましい。前記リン酸塩化合物は、単独で用いてもよく、2種以上を併用してもよい。
 リン酸塩を形成するカチオン種として、アルカリ金属の多量の使用は好ましくない。アルカリ金属のリン酸塩を用いた場合、工業的な製造工程で焼成して得られる生成物が水に溶解し過ぎる傾向にある。しかし、アルカリ金属のリン酸塩を用いた場合において、水への溶解性の制御を、防錆顔料製造時、塗装用組成物の製造時、金属板への製膜時、あるいは塗装金属板の使用時等に実施できれば、やや多めに使用してもよい。そのような制御は、例えば、防錆顔料を、水への溶解性を抑止する他の添加剤と共存させたり、高度に架橋させた樹脂系や無機系の高分子と共存させて水への溶出速度を制御する、等の方法が挙げられる。
 本発明で用いることができるバナジン酸塩化合物は、バナジウムの原子価が0、2、3、4または5のいずれか1つの価数、または2種以上の価数を有する複合化合物であり、例えば、これらの酸化物、水酸化物、種々の金属の酸素酸塩、バナジル化合物、ハロゲン化物、硫酸塩、金属粉等が挙げられる。これらは、加熱時または水の存在下で分解し、共存する酸素と反応する。例えば、バナジウムの金属粉または2価の化合物は、最終的に3、4、5価のいずれかの化合物に変化する。0価のもの、例えば、バナジウム金属粉は、上記の理由で使用可能であるが、酸化反応が不十分等の問題があるので、実用上好ましくない。5価のバナジウム化合物はバナジン酸イオンを有し、リン酸イオンと加熱反応し、防錆に寄与するヘテロポリマーを作り易いため、5価のバナジウム化合物を1つの成分として含むのは好ましい。バナジウム化合物の具体例としては、酸化バナジウム(II)、水酸化バナジウム(II)等のバナジウム(II)化合物、酸化バナジウム(III)等のバナジウム(III)化合物、酸化バナジウム(IV)、ハロゲン化バナジル等のバナジウム(IV)化合物、酸化バナジウム(V)、バナジン酸塩(種々の金属のオルトバナジン酸塩、メタバナジン酸塩、ピロバナジン酸塩等)等のバナジウム(V)化合物、または、これらの混合物が挙げられる。バナジン酸塩を構成する好ましい金属種は、リン酸塩で示した金属と同じである。
 アルカリ金属のバナジン酸塩を用いた場合、工業的な製造工程で焼成して得られる生成物が水に溶解し過ぎる傾向にあるため、リン酸塩の場合と同様に、アルカリ金属のバナジン酸塩の多量使用は好ましくない。ただし、アルカリ金属のリン酸塩を用いた場合と同様に水への溶解性を制御できれば、これらの使用も差し支えない。バナジウムのハロゲン化物、硫酸塩の場合も同様である。
 本発明の塗装金属板では、前記ケイ酸塩化合物、リン酸塩化合物、バナジン酸塩化合物の総量は、塗膜(α)の1~40体積%であり、1~20体積%であるのが好ましく、2~15体積%がより好ましい。1体積%未満ではケイ酸塩化合物、リン酸塩化合物、バナジン酸塩化合物の作用が不十分なため、耐食性が低下することがある。20体積%を超えると塗膜が脆くなり、塗膜凝集破壊により成形時の塗膜密着性や塗膜追従性が低下したり、溶接性が低下することがある。
 防錆顔料(C)は、ケイ酸塩化合物、リン酸塩化合物、バナジン酸塩化合物のうち1種または2種以上を含むのが好ましいが、リン酸塩化合物(リン酸イオン源)と、ケイ酸塩化合物(ケイ酸イオン源)またはバナジン酸塩化合物(バナジン酸イオン源)の少なくとも1種が共存するのが、防錆効果を高める上でより好ましい。配合するリン酸イオン源と、ケイ酸イオン源、バナジン酸イオン源の総量との比は、[P25のモル数]:[SiO2とV25の総モル数]の比率を25:75~99:1とするのがより好ましい。リン酸イオン源、ケイ酸イオン源、バナジン酸イオン源の総量に対するケイ酸イオン源とバナジン酸イオン源の総量のモル比が75%を超えると、リン酸イオンによる防錆効果が低下することがあり、ケイ酸イオン源とバナジン酸イオン源の総量のモル比が1%より少ない場合には、ケイ酸イオン(またはバナジン酸イオン)による周辺化学種の酸化や固定効果が不十分になることがある。
 本発明に用いる防錆顔料(C)として、Si、Ti、Al、Zrからなる群より選ばれる1種または2種以上の金属元素からなる金属酸化物微粒子(D)を用いることができる。これらの金属酸化物微粒子(D)を単独で用いるか、またはケイ酸塩化合物、リン酸塩化合物、バナジン酸塩化合物と一緒に配合することにより、耐食性をより高めることができる。ケイ酸塩化合物、リン酸塩化合物、バナジン酸塩化合物とシリカを共存させると、耐食性がより一層向上するので好ましい。シリカとしては、例えば、ヒュームドシリカ、コロイダルシリカ、凝集シリカ等が挙げられる。また、カルシウム沈着シリカを用いることもできる。
 本発明で用いることができる前記金属酸化物微粒子(D)としては、例えば、シリカ微粒子、アルミナ微粒子、チタニア微粒子、ジルコニア微粒子等を挙げることができ、体積平均径が1~100nm程度の金属酸化物ナノ微粒子(D1)がさらに好適である。これらは単独で用いてもよく、2種以上を併用してもよい。これらのうち、シリカナノ微粒子は、塗膜の耐食性向上および強靭化の両方が必要な場合に添加することができる。
 粒径が1nm以上100nm未満の金属酸化物ナノ微粒子(D1)として、例えばコロイダルシリカ、コロイダルチタニア、コロイダルジルコニアを用いることができる。これらは、上記金属酸化物を粉砕により微粒子化したものとは製法が異なるため、微細な一次粒子(粒径1nm~100nm)のまま塗料中及び塗装後の塗装金属材の塗膜中に分散し易い。これらの金属酸化物ナノ微粒子(D1)は、粒子径がより大きい同組成の金属酸化物微粒子に比べて防錆効果が高い。しかし、このような金属酸化物ナノ微粒子(D1)は、例えばスポット溶接のような、電極で荷重を加えつつ通電しジュール熱により溶接する通電抵抗溶接にて溶接性を阻害することがある。
 図2は、塗装金属板の断面写真を表す。図2(a)は、塗装金属板の表層断面SEM写真である。図2(b)は、塗装金属板合わせ部の、溶接電極で加圧時の断面SEM写真であり、通電溶接時に加圧を受けた状態での塗装金属板合わせ部断面が示されている。矢印位置で非酸化物セラミクス粒子(B)同士が塗膜を貫通し接触、通電経路となっていることがわかる。
 図3は、通電溶接時に自動車用塗装金属板が重なり、電極で荷重を加えられている状態を表す模式図である。図2(b)で示した塗装金属板合わせ部の位置は、図3中の四角枠で示される。溶接時の自動車用塗装金属板は、2枚以上の塗装金属板が重なり溶接電極で荷重を加えられた際に、電極と非酸化物セラミクス粒子(B)が接触し、そして塗膜(α)中の非酸化物セラミクス粒子(B)同士、または非酸化物セラミクス粒子(B)と金属板とが接触して通電経路を形成して、通電抵抗溶接が可能となる。
 図4は、金属酸化物ナノ微粒子(D1)が非酸化物セラミクス粒子(B)の周囲に付着し、又は非酸化物セラミクス粒子(B)同士の間に挟まり通電を阻害していることを示す模式図である。このように、塗膜(α)中に粒径が1nm以上100nm未満の金属酸化物ナノ粒子(D1)が大量に存在すると、電極と非酸化物セラミクス粒子(B)、非酸化物セラミクス粒子(B)同士、あるいは非酸化物セラミクス粒子(B)と金属板との間で金属酸化物ナノ粒子(D1)が通電を阻害し、溶接性に悪影響を及ぼす。例えば溶接の電気抵抗が高くなりすぎることによる過剰な発熱で金属材や塗膜が飛散し、溶接強度不足や飛散した物質の付着による外観劣化などの悪影響が生じる場合がある。より著しい場合は電気抵抗が高すぎるために溶接ができない場合がある。したがって、塗膜中の(B)の量に対して(D1)が多すぎないことが溶接性を確保するために好ましい。
 金属酸化物ナノ微粒子(D1)の量は、塗膜中の、金属酸化物ナノ微粒子(D1)の総体積の、非酸化セラミクス粒子(B)の総体積に対する比(D1/B)が20以下となることが好ましい。溶接性を重視する場合には10以下がより好ましい。(D1/B)の下限としては0.1以上が好ましい。(D1/B)が0.1未満では、塗膜中の非酸化セラミクス粒子(B)が多すぎる、あるいは金属酸化物ナノ微粒子(D1)が少なすぎる状態である。前者では、塗膜中の非酸化セラミクス粒子(B)の量が多すぎるために塗膜が脆くなり、成形時の塗膜割れや塗膜脱落が発生することがある。塗膜割れや塗膜脱落は、塗膜による耐食性の低下や塗装金属板の外観不良につながる。後者では、塗膜中の金属酸化物ナノ微粒子(D1)の量が不十分であるため、耐食性を高める効果が十分得られないことがある。特に好ましい(D1/B)の範囲は、0.5~6である。溶接性を確保するために金属酸化物ナノ微粒子(D1)の量を抑制することで低下する防錆性は、粒径100nm以上の防錆顔料(C)を添加することで補うことができる。粒径100nm以上の防錆顔料(C)として、その全量又は一部を粒径100nm以上の金属酸化物微粒子(D2)としてもよい。粒径100nm以上の防錆顔料(C)は、塗膜が金属板上に塗布された状態、あるいは、溶接電極による荷重で塗膜が変形した状態で、電極と(B)、(B)同士、あるいは(B)と金属板との間に入り込みにくいので、金属酸化物ナノ微粒子(D1)に比べて通電抵抗溶接への悪影響が小さい。
 前記防錆顔料(C)の量は、塗膜(α)の1~40体積%であり、かつ非酸化物セラミクス粒子(B)の量との合計が80体積%を超えないことが好ましい。塗装金属板の溶接性を重視する場合は防錆顔料(C)の量が1~20体積%であるのがより好ましく、2~15体積%がさらに好ましい。塗装金属板の耐食性を重視する場合は防錆顔料(C)の量が3~40体積%であるのがより好ましく、7.5~40体積%がさらに好ましい。さらにより一層の塗装金属板の耐食性を重視する場合は、防錆顔料(C)の量が13~40体積%であるのがより好ましい。1体積%未満では防錆顔料(C)の量が不十分であるため、耐食性を高める効果が十分に得られないことがある。40体積%を超えると塗膜の脆化や金属板への塗膜密着性低下のために、成形時の塗膜破壊や塗膜剥離による金属板の露出が生じ、塗装金属板の外観劣化や塗膜による耐食性向上効果の低下が生じる場合がある。
 非酸化性セラミクス粒子(B)の量、粒径が1nm以上100nm未満の金属酸化物ナノ微粒子(D1)の量、粒径100nm以上の防錆顔料(C)の量、及び粒径100nm以上の金属酸化物微粒子(D2)の量は、塗膜断面を電子顕微鏡観察してそれぞれの粒子を識別した上で断面あたりの個数を数え、塗膜体積当たりの個数に換算した上で算出することができる。この場合、必要に応じてEDX分光装置などを用いて各粒子を識別することができる。塗装前の塗料に含まれる(B)、(C)、(D1)、及び(D2)の量と金属板への塗膜付着量から塗膜中の各粒子量を算出することも可能である。塗装前の塗料における(B)、(C)、(D1)、及び(D2)の仕込み量が判明していれば、仕込み量と金属板への塗料付着量から塗膜中の各粒子量を算出可能である。仕込み量が不明な場合は、例えばMalvern社製の粒子画像解析装置Morphologi G3等の装置を用いて、適切な濃度に希釈した塗料中の粒子を画像解析にて個々識別し数えることで、算出可能である。この手法は、金属板に付着した塗膜を溶解して粒子の個数を数える場合にも用いることができる。
 前記の各種防錆顔料は、塗装用組成物(β)に適量を予め溶解、あるいは分散安定化させ、塗膜(α)中の有機樹脂(A)に導入するのが好ましい。
 <塗装用組成物(β)の調製>
 本発明の塗膜(α)を形成するのに用いる塗装用組成物(β)の製造方法は特に限定されない。例えば、水中または有機溶剤中に各々の塗膜(α)形成成分を添加し、ディスパー等の分散機で攪拌し、溶解、分散もしくは破砕分散する方法が挙げられる。水系塗装用組成物の場合、各々の塗膜(α)形成成分の溶解性、もしくは分散性を向上させるために、必要に応じて、公知の親水性溶剤等を添加してもよい。
 特に、水系塗装用組成物(β)の場合には、前記樹脂(A1)、前記非酸化物セラミクス粒子(B)、防錆顔料(C)に加えて必要に応じ、塗料の水性や塗工性を損なわない範囲で種々の水溶性または水分散性の添加剤を添加してもよい。例えば、顔料の形態を取らない水溶性または水分散性の種々の防錆剤や、消泡剤、沈降防止剤、レベリング剤、湿潤分散剤等の界面活性剤、および、増粘剤、粘度調整剤等などを添加してもよい。更に、樹脂や他の有機化合物など塗装用組成物(β)の構成成分の安定化等のために、労働安全衛生法施行令(有機溶剤中毒予防規則第一章第一条)で定義される有機溶剤等(第1種有機溶剤、第2種有機溶剤、第3種有機溶剤、または、前記有機溶剤を、5質量%を超えて含有するもの)に該当しない範囲で、少量の有機溶剤を添加してもよい。
 本発明の塗膜(α)を、水系塗装用組成物(β)から形成する場合、水系であるため、有機溶剤系塗装用組成物に比較して表面張力が高く、基材である金属板(下地処理がある場合は下地処理層)や、非酸化物セラミクス粒子(B)、防錆顔料(C)への濡れ性に劣り、基材に所定量の塗布を行う場合、均一な塗装性や粒子分散性が得られないことがある。そのような場合は、前記の湿潤分散剤や増粘剤を添加するのがよい。湿潤分散剤としては、表面張力を低下させる界面活性剤を用いることができるが、分子量が2000以上の高分子界面活性剤(高分子分散剤)を用いる方がよい。低分子界面活性剤は、湿気を含む樹脂塗膜中を比較的容易に移動できるため、界面活性剤の極性基に吸着した水や、その水を介して溶存酸素、溶存塩等の腐食因子を金属面に呼び込み易く、また、自らブリードアウトして、溶出し易いため、塗膜の防錆性を劣化させることが多い。これに対し、高分子界面活性剤は、金属、セラミクス粒子や顔料の表面に多点吸着できるため一旦吸着すると離れにくく、低濃度でも濡れ性改善に有効である。その上、分子が嵩高いため樹脂塗膜中を移動しにくく、腐食因子を金属面に呼び込みにくい。前記<有機樹脂(A)>の項にて、有機樹脂(A)への添加を推奨しているアクリル樹脂の一部には、このような高分子界面活性剤の機能があり、水系塗装用組成物中で、非酸化物セラミクス粒子(B)や防錆顔料(C)等の沈降を抑止し、かつ均一に分散させる効果がある。
 増粘剤は、基材表面のはじき箇所に対して湿潤分散剤だけでは十分な表面被覆性が得られない場合、または、水系塗装用組成物の粘度が低すぎて必要な塗膜厚が確保されない場合の対策として添加することができる。分子量が数千~数万のものが多く、顔料等の表面に多点吸着し、増粘剤自身は互いに会合して弱い網目構造を形成し、塗装用組成物の粘度を高めることができる。
 水系塗装用組成物(β)が高比重の非酸化物セラミクス粒子(B)や防錆顔料(C)等を含む場合、必要に応じ、塗料にチクソトロピックな性質(揺変性)を付与できる粘度調整剤を添加するのがよい。粘度調整剤は、前記増粘剤の場合と同様に、水系塗装用組成物中で顔料等の表面に多点吸着し、網目構造を作る。このような粘度調整剤の分子量は数十万~数百万で非常に高いため、水系塗装用組成物(β)中で大きな降伏値を持つ強固な網目構造を作り、従って、塗装用組成物(β)は低剪断速度では変形しにくく、高粘度である。降伏値を上回る大きな剪断応力が塗装用組成物(β)に加われば、網目構造が崩壊して粘度が急激に下がる。従って、粘度調整剤を添加すれば、水系塗装用組成物(β)がほぼ静止状態を保つ保管時や運送時には、塗装用組成物(β)の粘度を高めて重質顔料類の沈降を抑止し、塗装工場で配管内を流動する時や、基材への塗装時等、高い剪断応力(高剪断速度)が加わる際には塗装用組成物(β)の粘度を下げて流動し易くする。
 有機溶剤系の塗装用組成物(β)の場合には、有機溶剤に樹脂を溶解させた塗装用組成物は比較的粘度が高く、かつ、粘度を調整しやすい。そのため、塗装用組成物粘度を、顔料沈降抑制に有利とされる100mPa・s以上に容易にかつ安定的に保持することができる。また、導電性材料として用いる非酸化物セラミクスは表面に疎水性部位も持つ物質であることから、一般的に、有機溶剤系の塗装用組成物(β)への分散も容易であり、塗工時に塗装用組成物(β)中の非酸化物セラミクス粒子(B)が沈降することなく塗装できるため、好適である。
 塗膜を形成する有機溶剤系の塗装用組成物(β)の粘度が、100~2000mPa・sである塗装用組成物をロールコーターまたはカーテンコーターにて金属板上に塗布した後に乾燥焼付けすると、非酸化物セラミクス粒子(B)が沈降しにくく、より好適である。塗装用組成物(β)の粘度が100mPa・s未満であると、非酸化物セラミクス粒子(B)が沈降しやすく、2000mPa・sを超える場合では、粘度が高すぎて一般にリビング等と呼ばれる塗装時の外観不良を起こす恐れがある。より好ましくは、250~1000mPa・sである。有機溶剤系の塗装用組成物(β)の粘度は、ロールコーターまたはカーテンコーターで塗布する際の塗装用組成物の温度と同じ温度でB型粘度計を用いて測定することができる。
 粘度調整は、使用する有機溶剤の種類、溶媒量で調整することができる。有機溶剤は、一般に公知の溶剤を用いることができるが、沸点の高い有機溶剤が好ましい。本発明の金属板の製造ラインでは、焼付け時間が短いため、沸点の低い溶剤を用いると、一般にボイリングと呼ばれる塗装欠陥が発生する恐れがある。溶剤の沸点は、120℃以上のものを用いるのが好ましい。これらの沸点の高い有機溶剤としては、公知の溶剤、例えば、シクロヘキサン、芳香族炭化水素系有機溶剤であるソルベッソ(エクソンモービル(有)の製品名)等を用いることができる。
 <塗膜(α)の形成>
 本発明の前記塗膜(α)は、<塗膜(α)>の項で述べたように、塗装用組成物(β)が水系や有機溶剤系組成物の場合は、ロールコート、グルーブロールコート、カーテンフローコート、ローラーカーテンコート、浸漬(ディップ)、エアナイフ絞り等の公知の塗装方法を用いて、金属板上に塗装用組成物(β)を塗布し、その後、ウェット塗膜の水分や溶剤分を乾燥する製膜方法が好ましい。これらのうち、水系や有機溶剤系の紫外線硬化型組成物や電子線硬化型組成物の場合は、前記の塗布方法で金属板に塗布後、水分または溶剤分を乾燥し、紫外線や電子線を照射して重合させるのが好ましい。
 塗装用組成物(β)が水系または有機溶剤系の焼付硬化型組成物の場合の焼付乾燥方法について、具体的に述べる。塗装用組成物(β)が水系または有機溶剤系の焼付硬化型組成物の場合、焼付乾燥方法は特に制限はなく、あらかじめ金属板を加熱しておくか、塗布後に金属板を加熱するか、或いはこれらを組み合わせて乾燥を行ってもよい。加熱方法は特に制限はなく、熱風、誘導加熱、近赤外線、直火等を単独もしくは組み合わせて使用することができる。
 焼付乾燥温度については、塗装用組成物(β)が水系の焼付硬化型組成物の場合、金属板表面到達温度で120℃~250℃であることが好ましく、150℃~230℃であることが更に好ましく、180℃~220℃であることが最も好ましい。到達温度が120℃未満では、塗膜硬化が不十分で、耐食性が低下する場合があり、250℃超であると、焼付硬化が過剰になり、耐食性や成形性が低下する場合がある。焼付乾燥時間は1~60秒であることが好ましく、3~20秒であることが更に好ましい。1秒未満であると、焼付硬化が不十分で、耐食性が低下する場合があり、60秒を超えると、生産性が低下する場合がある。
 塗装用組成物(β)が有機溶剤系の焼付硬化型組成物の場合、金属板表面到達温度が180℃~260℃であることが好ましく、210℃~250℃であることが更に好ましい。到達温度が180℃未満では、塗膜硬化が不十分で、耐食性が低下する場合があり、260℃超であると、焼付硬化が過剰になり、耐食性や成形性が低下する場合がある。焼付乾燥時間は10~80秒であることが好ましく、40~60秒であることが更に好ましい。10秒未満であると、焼付硬化が不十分で、耐食性が低下する場合があり、80秒を超えると、生産性が低下する場合がある。
 塗装用組成物(β)が、水系または有機溶剤系の紫外線硬化型組成物や電子線硬化型組成物の場合の製膜方法について具体的に述べる。これらの組成物を、前記の水系や有機溶剤系組成物の場合と同様な方法で塗布後、ウェット塗膜の水分や溶剤分を乾燥し、その後、紫外線または電子線を照射する。塗膜は、主に紫外線または電子線照射で生成するラジカルを起点に硬化製膜するため、乾燥温度は、焼付硬化型組成物の場合より低い乾燥温度でよい。乾燥工程にて、80~120℃程度の比較的低い金属表面到達温度で水分や溶剤の多くを揮発させてから紫外線または電子線照射するのが好ましい。
 塗膜中の紫外線硬化型樹脂を紫外線でラジカル重合し硬化する紫外線照射は、通常、大気雰囲気中、不活性ガス雰囲気中、大気と不活性ガスの混合雰囲気中等で行われる。本発明の紫外線硬化では、酸素濃度を10体積%以下に調整した大気と不活性ガスの混合雰囲気や、不活性ガス雰囲気中で紫外線照射するのが好ましい。酸素はラジカル重合の禁止剤となるため、紫外線照射時の雰囲気酸素濃度が低い場合、生成ラジカルへの酸素付加による失活や架橋反応阻害が少なく、本発明に用いる紫外線硬化型組成物が、ラジカル重合や架橋を経て十分に高分子化する。そのため、非酸化物セラミクス粒子(B)や金属板表面への密着性が高まり、結果として、大気雰囲気中での紫外線硬化の場合より、塗膜の耐食性が向上する。ここで用いる不活性ガスとしては、窒素ガス、炭酸ガス、アルゴンガス、およびこれらの混合ガス等を例示できる。
 紫外光源としては、例えば、金属蒸気放電方式の高圧水銀ランプ、メタルハライドランプ等、希ガス放電方式のキセノンランプ等、マイクロ波を用いた無電極ランプ等を用いることにより、紫外線を照射できる。本発明の塗装金属板において、紫外線硬化型の塗膜を十分に硬化でき、所望の抵抗溶接性、耐食性、成形性が得られるものであれば、どのようなランプを用いてもよい。また、一般に、塗膜が受光する紫外線のピーク照度や積算光量は塗膜の硬化性を左右するが、紫外線硬化型の塗膜を十分に硬化でき、所望の耐食性や成形性が得られるものであれば、紫外線の照射条件は特に限定されない。
 塗装用組成物(β)が、電子線硬化型組成物の場合、電子線硬化には、印刷、塗装、フィルムコーティング、包装、滅菌等の分野で用いられている通常の電子線照射装置を用いることができる。これらは、高真空中で熱フィラメントから発生した熱電子に高電圧をかけて加速し、得られた電子流を不活性ガス雰囲気中に取り出し、重合性物質に照射するものである。本発明の塗装金属板において、電子線硬化型の塗膜を十分に硬化でき、所望の抵抗溶接性、耐食性、成形性が得られるものであれば、どのような装置を用いてもよい。また、一般に、塗膜が吸収する電子線の加速電圧は、電子線が塗膜を浸透する深さを左右し、吸収線量は重合速度(塗膜の硬化性)を左右するが、電子線硬化型の塗膜を十分に硬化でき、所望の耐食性や成形性が得られるものであれば、電子線の照射条件を特に限定しない。ただし、電子線によるラジカル重合の場合、微量の酸素が存在しても、生成ラジカルへの酸素付加による失活や架橋反応阻害が生じ、硬化が不十分になるため、酸素濃度が500ppm以下の不活性ガス雰囲気中で電子線照射するのが好ましい。ここで用いる不活性ガスとしては、窒素ガス、炭酸ガス、アルゴンガス、およびこれらの混合ガス等を例示できる。
 実施例I
 以下、水系塗装用組成物を用いた実施例Iにより本発明を具体的に説明する。
 1.金属板の準備
 以下の5種の亜鉛系めっき鋼板を準備し、水系アルカリ脱脂剤(日本パーカライジング(株)製FC-301)の2.5質量%、40℃水溶液に2分間浸漬して表面を脱脂した後、水洗、乾燥して塗装用の金属板とした。
 EG:電気亜鉛めっき鋼板(板厚0.8mm、めっき付着量40g/m2
 ZL:電気Zn-10%Ni合金めっき鋼板(板厚0.8mm、めっき付着量40g/m2
 GI:溶融亜鉛めっき鋼板(板厚0.8mm、めっき付着量60g/m2
 SD:溶融Zn-11%Al-3%Mg-0.2%Si合金めっき鋼板(板厚0.8mm、めっき付着量60g/m2
 GA:合金化溶融亜鉛めっき鋼板(板厚0.8mm、10%Fe、めっき付着量45g/m2
 2.下地処理皮膜の製膜
 <塗膜(α)>の項で述べたように、本発明においては、塗膜(α)と金属板表面の間に必ずしも下地処理皮膜を設ける必要はないが、塗膜(α)の金属板への密着性や耐食性等を更に改善するために用いることがある。ここでは、一部の塗装用金属板に下地処理皮膜を設けて評価した。
 下地処理皮膜を製膜するための塗装用組成物として、以下を準備した。
p1:Zr化合物、シランカップリング剤、シリカ微粒子からなる水系塗装用組成物
p2:ポリエステル樹脂、シリカ微粒子、シランカップリング剤からなる水系塗装用組成物
 p1またはp2を皮膜厚0.08μmになるように前記の塗装用金属板にバーコートし、これを熱風炉にて金属表面到達温度70℃で乾燥し、風乾した。
 3.水系塗装用組成物の調製と製膜
 水系塗装用組成物の調製のため、まず、樹脂(A1)、非酸化物セラミクス粒子((B)、(B)以外の導電性粒子、防錆顔料(C)、シランカップリング剤(s)を準備した。
 (1)樹脂(A1)
 樹脂A11~A13を合成し、また、市販樹脂A14、A15を準備した。これらはいずれも本発明に用いる樹脂である。
 A11: カルボキシル基含有ポリエステル系ウレタン樹脂(製造例1で合成し、水分散液として回収)
 [製造例1]
 攪拌装置、還流冷却器、窒素ガス導入管および温度計、サーモスタットを備えた10Lの反応容器に、2,2-ジメチロールブタン酸1628gとε-カプロラクトン3872gとを仕込み、触媒としての塩化第一錫27.5mgを添加して、反応容器内の温度を120℃に保持し、3時間反応させた。これにより、水酸基価225.5mgKOH/g、酸価114.6mgKOH/gの液状のカルボキシル基含有ポリエステルジオール(a11)を得た。
 次に、攪拌装置、還流冷却器、窒素ガス導入管および温度計、サーモスタットを備えた2Lの反応容器に、2,4-トリレンジイソシアネート149.9gとアセトン140.0gとを仕込み、窒素気流下で攪拌しながら、前記カルボキシル基含有ポリエステルジオール(a11)124.6g、数平均分子量1000のポリカプロラクトンジオール(ダイセル化学工業(株)製PLACCEL210)273.1gおよび1,4-ブタンジオール12.4gを加えた。反応容器内の温度を60℃に4時間保持してウレタン化反応を進行させ、NCO基末端ウレタンプレポリマーを調製した。このウレタンプレポリマー168.3gを攪拌しながら、トリエチルアミン6.1gを添加したイオン交換水230gを添加し、さらにヘキサメチレンジアミン1.67gを添加したイオン交換水230gを添加した。次いで、減圧下、60℃にて3時間かけてアセトンを溜去し、固形分濃度35%、酸価24.6mgKOH/g(固形分換算)のカルボキシル基含有ポリエステル系ウレタン樹脂(A11)の水分散液を得た。
 A12: スルホン酸基含有ポリエステル系ウレタン樹脂(製造例2で合成し、水分散
液として回収)
 [製造例2]
 攪拌装置、還流冷却器、窒素ガス導入管および温度計、サーモスタットを備えた耐圧反応容器に、窒素気流下で攪拌しながら、アジピン酸1100gと3メチル-1,5-ペンタンジオール900gと、テトラブチルチタネート0.5gとを仕込み、反応容器内の温度を170℃に保持し、酸価が0.3mgKOH/g以下になるまで反応させた。次に、180℃、5kPa以下の減圧条件下で2時間反応を行い、水酸基価112mgKOH/g、酸価0.2mgKOH/gのポリエステルを得た。
 次に、上記反応容器と同じ装置の付いた別の反応容器に、このポリエステルポリオール500g、5-スルホナトリウムイソフタル酸ジメチル134gとテトラブチルチタネート2gを仕込み、上記と同じようにして、窒素気流下で攪拌しながら、反応容器内の温度を180℃に保持してエステル化反応を行い、最終的に分子量2117、水酸基価53mgKOH/g、酸価0.3mgKOH/gのスルホン酸基含有ポリエステル(a12)を得た。
 前記スルホン酸基含有ポリエステル(a12)280g、ポリブチレンアジペート200g、1,4-ブタンジオール35g、ヘキサメチレンジイソシアネート118gおよびメチルエチルケトン400gを、攪拌装置、還流冷却器、窒素ガス導入管および温度計、サーモスタットを備えた反応容器に窒素気流下で仕込み、攪拌しながら液温を75℃に保持してウレタン化反応を行い、NCO含有率が1%のウレタンプレポリマーを得た。続いて、上記反応容器中の温度を40℃に下げて、十分攪拌しながらイオン交換水955gを均一に滴下し、転相乳化を行った。次に、内部温度を室温に下げて、アジピン酸ヒドラジド13gとイオン交換水110gとを混合したアジピン酸ヒドラジド水溶液を添加してアミン伸長を行った。若干の減圧下、60℃にて溶剤を溜去した後、イオン交換水を追加し、固形分濃度35%、酸価11mgKOH/g(固形分換算)のスルホン酸基含有ポリエステル系ウレタン樹脂(A12)の水分散液を得た。
 A13: スルホン酸基含有ポリエステル樹脂(製造例3で合成し、水分散液として回収)
 [製造例3]
 攪拌装置、還流冷却器、窒素ガス導入管および温度計、サーモスタットを備えた耐圧反応容器に、窒素気流下で攪拌しながら、テレフタル酸199gとイソフタル酸232gとアジピン酸199g、5-スルホナトリウムイソフタル酸33g、エチレングリコール312gと2,2-ジメチル-1,3-プロパンジオール125gと1,5-ペンタンジオール187g、テトラブチルチタネート0.41gとを仕込み、反応容器内の温度を160℃から230℃まで4時間かけて昇温し、エステル化反応を行った。次いで、容器内を20分かけて徐々に5mmHgまで減圧し、更に0.3mmHg以下で、260℃にて40分間重縮合反応を行った。得られた共重合ポリエステル樹脂100gに、ブチルセロソルブ20g、メチルエチルケトン42gを添加した後、80℃で2時間攪拌溶解を行い、更に213gのイオン交換水を添加し、水分散を行った。その後、加熱しながら溶剤を留去し、固形分濃度30%のスルホン酸基含有ポリエステル樹脂(A13)の水分散液を得た。
A14: アミノ基含有エポキシ樹脂((株)ADEKA製アデカレジンEM-0718、水溶液)
A15: ノニオン性ポリエーテル系ウレタン樹脂(DIC(株)製ボンディック1520、水分散液)
 (2)非酸化物セラミクス粒子(B)
 市販の微粒子(試薬)を用いた。体積平均径は、ベックマン・コールター(株)製Multisizer3(コールター原理による精密粒度分布測定装置)を用いて測定した。電気抵抗率は、各微粒子から長さ80mm、幅50mm、厚さ2~4mmの焼結板を作製し、(株)三菱化学アナリテック製の抵抗率計ロレスタEP(MCP-T360型)とESPプローブ(端子の平頭部の直径2mm)を用いた4端子4探針法、定電流印加方式で、JIS K7194に準拠して25℃で測定した。
 TiN:TiN微粒子(和光純薬工業(株)製、体積平均径1.6μm、電気抵抗率20×10-6Ωcm)
TiB:TiB2微粒子((株)高純度化研究所製TII11PB、体積平均径2.9μm、電気抵抗率30×10-6Ωcm)
VC:VC微粒子(和光純薬工業(株)製、体積平均径2.3μm、電気抵抗率140×10-6Ωcm)
ZrB:ZrB2微粒子(和光純薬工業(株)製、体積平均径2.2μm、電気抵抗率70×10-6Ωcm)
MoB:Mo2B微粒子(三津和化学薬品(株)製ほう化二モリブデン、体積平均径5.2μm、電気抵抗率30×10-6Ωcm)
LaB:LaB6微粒子(添川理化学(株)製六硼化ランタン、体積平均径2.8μm、電気抵抗率20×10-6Ωcm)
NiSi:Ni2Si微粒子((株)高純度化学研究所製NII11PBを水に添加し攪拌、懸濁させ、5分経過後になお浮遊する微小粒子を濾別して使用。体積平均径4.8μm、電気抵抗率40×10-6Ωcm)
TiC:TiC微粒子(和光純薬工業(株)製、体積平均径3.2μm、電気抵抗率180×10-6Ωcm)
TiN+VC:前記TiNと前記VCの混合物(体積比1:1)
VC+ZrB:前記VCと前記ZrBの混合物(体積比1:1)
ZrB+TiC:前記ZrBと前記TiCの混合物(体積比1:1)
 (3)(B)以外の導電性粒子
 市販の微粒子(試薬)を用いた。これらのうち、TaN、VN、CrSi2(非酸化物セラミクス)の各粒子の体積平均径、電気抵抗率は、前記(2)と同様にして測定した。Al(アルミニウム)、C(等方性黒鉛)、ZnO(導電性酸化亜鉛)、FSi2(JIS G 2302で成分を規定されたフェロシリコン2号)の各粒子の体積平均径は前記(2)と同様にして測定し、電気抵抗率は文献値を記載した。
TaN:TaN微粒子(添川理化学(株)製チッ化タンタル、体積平均径3.7μm、電気抵抗率205×10-6Ωcm)
VN:VN微粒子(添川理化学(株)製チッ化バナジウム、体積平均径5.8μm、電気抵抗率220×10-6Ωcm)
CrSi:CrSi2微粒子(添川理化学(株)製ケイ化クロムを水に添加し攪拌、懸濁させ、5分経過後になお浮遊する微小粒子を濾別して使用。体積平均径4.2μm、電気抵抗率900×10-6Ωcm)
Al:アルミニウム粒子((株)高純度化学研究所製ALE11PB、体積平均径3.3μm、電気抵抗率2.7×10-6Ωcm)
C:等方性黒鉛粒子((株)高純度化研究所製CCE03PB、体積平均径6.5μm、電気抵抗率1200×10-6Ωcm)
ZnO:導電性酸化亜鉛粒子(ハクスイテック(株)製パゼット23-K、体積平均径6.6μm、電気抵抗率190×10-6Ωcm)
FSi2:フェロシリコン2号粒子(日本重化学工業(株)から入手した塊状製品(大きさ5~50mm、Si含有量78質量%)をジェットミルで微粒子化して使用。体積平均径4.4μm、電気抵抗率1000×10-6Ωcm)
 (4)防錆顔料(C)
 市販の試薬、工業製品、またはこれらをブレンドして用いた。
i1:ピロリン酸マグネシウム(添川理化学(株)製試薬、Mg227
i2:ケイ酸カルシウム(和光純薬工業(株)試薬、CaSiO3
i3:リン酸水素マグネシウム(関東化学(株)製MgHPO4):シリカ微粒子(日産化学工業(株)製スノーテックスN)=50:50(モル比)の混合物
i4:リン酸水素マグネシウム(関東化学(株)製MgHPO4
i5:リン酸三カルシウム(関東化学(株)製Ca3(PO42):五酸化バナジウム(関東化学(株)製V25):シリカ微粒子(日産化学工業(株)製スノーテックスN)=25:25:50(モル比)の混合物
 (5)シランカップリング剤(s)
s1:3-グリシドキシプロピルトリメトキシシラン(信越化学工業(株)製KBM-403)
s2:3-アミノプロピルトリメトキシシラン(信越化学工業(株)製KBM-903)
 次に、前記の樹脂(A1)、非酸化物セラミクス粒子(B)、(B)以外の導電性粒子、防錆顔料(C)、シランカップリング剤(s)と蒸留水を用いて、種々の配合比率で水系塗装用組成物を調製した。
 非酸化物セラミクス粒子(B)、(B)以外の導電性粒子、防錆顔料(C)については、水系塗装用組成物の不揮発分中に含まれる、樹脂(A1)、非酸化物セラミクス粒子(B)、(B)以外の導電性粒子、防錆顔料(C)の総量に対する所望の体積比率で配合した。また、シランカップリング剤s1またはs2を用いる場合は、前記不揮発分中の樹脂(A1)の100質量部に対し5質量部となるように水系塗装用組成物に添加した。水系塗装用組成物の不揮発分の濃度は、狙いの塗膜付着量や良好な塗装性を得るため、水の添加量を変えて適宜調整した。ここで、「不揮発分」とは、塗料や組成物に溶媒として配合されている水や有機溶剤類を揮発させた後に残る成分のことを意味する。
 表1~表6、表8に、各水系塗装用組成物の不揮発分中に含まれる、樹脂(A1)、非酸化物セラミクス粒子(B)、(B)以外の導電性粒子、防錆顔料(C)、シランカップリング剤(s)の種類を示す。非酸化物セラミクス粒子(B)、(B)以外の導電性粒子、防錆顔料(C)については、塗膜中の含有量(体積%)も示した。
 前記水系塗装用組成物を調製し各成分を均一に分散後、前記の塗装用金属板、または下地処理皮膜を設けた金属板にロールコーターを用いて塗布し、これを熱風炉にて金属表面到達温度200℃で乾燥し、水冷、風乾した。表1~表6、表8に、製膜後の塗膜厚(μm単位)を示した。なお、前記塗膜厚は、塗装後の塗膜の剥離前後の質量差を塗膜比重で除算して算出した。塗膜比重は、塗膜構成成分の配合量と各成分の既知比重から計算した。
 4.有機溶剤系塗装用組成物の調製と製膜
 有機溶剤系塗装用組成物の調製のため、以下の有機樹脂(A)を準備した。
 エクソンモービル(有)製の高沸点芳香族炭化水素系溶剤であるソルベッソ150:シクロヘキサノン=50:50(質量比)の混合溶媒に、有機溶剤可溶型の非晶性ポリエステル樹脂(東洋紡績(株)製バイロンGK140)を溶解した。次に、前記樹脂100質量部に対し、硬化剤(ヘキサメトキシメチルメラミン、三井サイテック(株)製サイメル303)15質量部、酸触媒(ドデシルベンゼンスルホン酸のブロックタイプ、三井サイテック(株)製キャタリスト6003B)0.5質量部を前記溶液に添加して攪拌し、メラミン硬化型ポリエステル樹脂(A*)の溶液を得た。
 次に、この樹脂(A*)の溶液と、前記3.水系塗装用組成物の項で準備した非酸化物セラミクス粒子(B)、(B)以外の導電性粒子、防錆顔料(C)と、前記のソルベッソ150:シクロヘキサノン=50:50(質量比)の混合溶媒とを用いて、種々の配合比率で有機溶剤系塗装用組成物を調製した。
 水系塗装用組成物の場合と同様に、非酸化物セラミクス粒子(B)、(B)以外の導電性粒子、防錆顔料(C)については、有機溶剤系塗装用組成物の不揮発分中に含まれる、樹脂(A*)、非酸化物セラミクス粒子(B)、(B)以外の導電性粒子、防錆顔料(C)の総量に対する所望の体積比率で配合した。有機溶剤系塗装用組成物の不揮発分の濃度は、狙いの塗膜付着量や良好な塗装性を得るため、前記の混合溶媒の添加量を変えて適宜調整した。
 表7に、有機溶剤系塗装用組成物の不揮発分中に含まれる、樹脂(A*)、非酸化物セラミクス粒子(B)、(B)以外の導電性粒子、防錆顔料(C)の種類を示す。非酸化物セラミクス粒子(B)、(B)以外の導電性粒子、防錆顔料(C)については塗膜中の含有量(体積%)も示した。
 前記有機溶剤系塗装用組成物を調製し、各成分を均一に分散後、前記の塗装用金属板にロールコーターを用いて塗布し、これを熱風炉にて金属表面到達温度230℃で乾燥、硬化させ、水冷、風乾した。表7に、製膜後の塗膜厚(μm単位)を示した。塗膜厚は、水系塗装用組成物の塗膜の場合と同様に、塗装後の塗膜の剥離前後の質量差を塗膜比重で除算して算出した。塗膜比重は、塗膜構成成分の配合量と各成分の既知比重から計算した。
 5.性能評価
 前記3.及び4.の方法で作製した塗装金属板を用い、溶接性、成形性、耐食性について評価を行った。以下に、各試験と評価の方法を示す。
 (1)溶接性
 先端径5mm、R40のCF型Cr-Cu電極を用い、加圧力1.96kN、溶接電流8kA、通電時間12サイクル/50Hzにてスポット溶接の連続打点性試験を行い、ナゲット径が3√t(tは板厚)を切る直前の打点数を求めた。以下の評価点を用いてスポット溶接性の優劣を評価した。
 5:打点数が2000点以上
 4:1000点以上、2000点未満
 3:500点以上、1000点未満
 2:500点未満
 1:ナゲットが生成せず1点も溶接できない
 (2)成形性
 油圧成形試験機により、ポンチ径50mm、ポンチ肩半径3mm、ダイス径50mm、ダイス肩半径3mm、絞り比1.8、しわ押さえ圧1トンの条件で、加工油を塗布して円筒カップ成形試験を行った。成形性の評価は、次の指標によった。
5:成形後の塗膜加工部に、塗膜のツヤひけや表面疵、亀裂、剥離等の塗膜欠陥が全く見られない。
4:成形可能で、塗膜加工部に僅かな疵や色調変化が見られるが、塗膜の亀裂や剥離は全く見られない。
3:成形可能だが、塗膜加工部には明確な疵や、少々の塗膜亀裂または剥離が見られる。
2:成形可能だが、塗膜加工部に大きな疵や、大きな塗膜亀裂または剥離が見られる。
1:成形不可。
 (3)耐食性
 前記3.及び4.の方法で作製した塗装金属板から150×70mmサイズの長方形の試験片を切り出し、端部を樹脂シールして平面部耐食性の試験片とした。また、前記(2)の円筒カップ成形品を水系脱脂剤(日本ペイント(株)製EC-92)の2質量%、40℃水溶液に2分間浸漬し、表面を脱脂した後、水洗、乾燥して成形後の加工部耐食性の評価試験片とした。
 これらの試験片に対し、塩水噴霧2時間、乾燥4時間、湿潤2時間の合計8時間を1サイクルとしたサイクル腐食試験を実施した。塩水噴霧の条件はJIS-Z2371に準拠した。乾燥条件は、温度60℃、湿度30%RH以下とし、湿潤条件は、温度50℃、湿度95%RH以上とした。加工部の赤錆発生状況を調べ、以下の評価点を用いて加工部耐食性の優劣を評価した。
 5:600サイクルで赤錆発生なし
 4:450サイクルで赤錆発生なし
 3:300サイクルで赤錆発生なし
 2:150サイクルで赤錆発生なし
 1:150サイクルで赤錆発生あり
 表1~表8に評価結果を併せて示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 本発明例の塗装金属板では、金属板、樹脂(A1)、非酸化物セラミクス粒子(B)の種類に関わらず、優れた溶接性、成形性と耐食性を両立できる。本発明例の塗装金属板の性能について特筆すべきことは、以下の通りである。
 実施例の中で、樹脂A11(カルボキシル基含有ポリエステル系ウレタン樹脂)、A12(スルホン酸基含有ポリエステル系ウレタン樹脂)を用いた場合は、A13(スルホン酸基含有ポリエステル樹脂)、A14(アミノ基含有エポキシ樹脂)、A15(ノニオン性ポリエーテル系ウレタン樹脂)を用いた場合に比べ、成形性や耐食性が優れる傾向にある。その理由は、以下のように考えられる。<有機樹脂(A)>の項で述べたように、樹脂(A1)の構造中にカルボキシル基、スルホン酸基やアミノ基等の極性官能基群があれば、基材である金属板(下地処理がある場合は下地処理層)との密着性が向上し、塗膜(α)の成形加工追従性(塗膜密着性、耐亀裂性等)や耐食性等を高める効果がある。また、同じく<有機樹脂(A)>の項で述べたように、樹脂(A1)がポリウレタン樹脂やポリウレタン樹脂変性体であれば、樹脂構造中のウレタン基(-NHCOO-)が他の有機基に比べかなり高い分子凝集エネルギーを持つため、塗膜が強靭で、プレス成形時に塗膜の剥離やかじりが生じにくく、加えて、比較的高い凝集エネルギーにより腐食因子遮蔽性(塗膜の緻密性)が向上して耐食性を高める効果がある。このように、メカニズムは異なるが、樹脂構造中にカルボキシル基、スルホン酸基やアミノ基等の極性官能基群がある場合、及び、樹脂構造中にウレタン基(-NHCOO-)がある場合のいずれによっても、成形性や耐食性が高まる。樹脂A11やA12は、樹脂構造中に極性官能基群とウレタン基の両方を持つため、いずれか片方しか持たないA13、A14、A15の場合より、成形性や耐食性が優れる傾向にあると考えられる。
 塗装用組成物にシランカップリング剤を配合したり、塗膜と金属板表面の間に下地処理皮膜を設けると、そうでない場合に比べ、塗膜の耐食性が向上する傾向がある。
 塗膜中の非酸化物セラミクス粒子(B)の含有量が好ましい範囲(0.5~60体積%)より多いと、成形性や耐食性に悪影響を与えやすくなる。
 塗膜厚が好ましい厚み範囲(2~30μm厚)より薄い場合、耐食性が低い傾向があり、厚い場合は溶接性や成形性が低下する傾向がある。
 電気抵抗率が185×10-6Ωcmを超える非酸化物セラミクスの粒子(TaN、VN、CrSi2)を用いた場合、所望の溶接性が得られない。
 従来の技術(前記「背景技術」の項で示した特許文献群)で使われている代表的な導電性粒子(アルミニウム粒子、等方性黒鉛粒子、導電性酸化亜鉛粒子、フェロシリコン2号粒子)を用いて得た塗装金属板では、十分な抵抗溶接性を得るためにこれらの導電性粒子を多量に添加する必要があり、その場合はプレス成形性や耐食性が著しく低下する。
 なお、アルミニウムの電気抵抗率の文献値は本発明に用いる非酸化物セラミクス粒子(B)の電気抵抗率よりやや低いが、前記の等方性黒鉛粒子、導電性酸化亜鉛粒子、フェロシリコン2号粒子の場合と同様、十分な抵抗溶接性を得るためには塗膜に大量に添加する必要がある。アルミニウム粒子は、保管雰囲気中の湿分で粒子表面に数百nm厚の酸化アルミニウム絶縁層(バイヤライト)が容易に成長するため、絶乾雰囲気中での保管でない限り、粒子の電気抵抗率が上昇するからである。
 非酸化物セラミクス粒子(B)として、本発明の構成要素である非酸化物セラミクス粒子の任意の割合での混合物を用いた場合も、単独で用いた場合と同様の効果を示した。
 実施例II
 次に、非酸化物セラミクス粒子(B)の粒径と、金属板の表面上に配置される個数の溶接性に与える影響、および一次粒子(1nm~100nm)形態の金属酸化物ナノ微粒子(D1)の総体積の、前記非酸化セラミクス粒子(B)の総体積に対する比(D1/B)が溶接性に与える影響を実施例IIにより具体的に説明する。
 1.金属板の準備
 以下に示す実施例Iで用いたのと同じ5種の亜鉛系めっき鋼板を準備し、実施例Iの場合と同様に調製して、塗装用の金属板とした。
 EG:電気亜鉛めっき鋼板(板厚0.8mm、めっき付着量40g/m2
 ZL:電気Zn-10%Ni合金めっき鋼板(板厚0.8mm、めっき付着量40g/m2
 GI:溶融亜鉛めっき鋼板(板厚0.8mm、めっき付着量60g/m2
 SD:溶融Zn-11%Al-3%Mg-0.2%Si合金めっき鋼板(板厚0.8mm、めっき付着量60g/m2
 GA:合金化溶融亜鉛めっき鋼板(板厚0.8mm、10%Fe、めっき付着量45g/m2
 2.下地処理皮膜
 実施例IIでは、使用した塗装用金属板に下地処理皮膜を設けないで評価した。
 3.水系塗装用組成物の調製と製膜
 水系塗装用組成物の調製のため、まず、樹脂(A1)、非酸化物セラミクス粒子(B)、(B)以外の導電性粒子、防錆顔料(C)を準備した。
 (1)樹脂(A1)
 実施例Iで合成した樹脂A11を実施例IIで用いた。
 (2)非酸化物セラミクス粒子(B)
 市販の微粒子(試薬)を用いた。体積平均径は、ベックマン・コールター(株)製Multisizer3(コールター原理による精密粒度分布測定装置)を用いて測定した。電気抵抗率は、各微粒子から長さ80mm、幅50mm、厚さ2~4mmの焼結板を作製し、(株)三菱化学アナリテック製の抵抗率計ロレスタEP(MCP-T360型)とESPプローブ(端子の平頭部の直径2mm)を用いた4端子4探針法、定電流印加方式で、JIS K7194に準拠して25℃で測定した。
 TiN:TiN微粒子(和光純薬工業(株)製、体積平均径1.6μm、電気抵抗率20×10-6Ωcm)
 ZrB:ZrB2微粒子(和光純薬工業(株)製、体積平均径2.2μm、電気抵抗率70×10-6Ωcm)
 NiSi:Ni2Si微粒子((株)高純度化学研究所製NII11PBを水に添加し攪拌、懸濁させ、5分経過後になお浮遊する微小粒子を濾別して使用。体積平均径4.8μm、電気抵抗率40×10-6Ωcm)
 (3)防錆顔料(C)
i4:リン酸水素マグネシウム(関東化学(株)製MgHPO4)を用いた。
 (4)シランカップリング剤(s)
 実施例IIではシランカップリング剤は用いなかった。
 (5)粒径が1nm以上100nm未満である、Si、Ti、Al、Zrからなる群より選ばれる1種または2種以上の金属元素を含む金属酸化物ナノ微粒子(D1)
on1:平均粒径10~20nmのシリカナノ微粒子(日産化学工業(株)製スノーテックスN)
on2:平均粒径70~100nmのシリカナノ微粒子(日産化学工業(株)製スノーテックスZL)
on3:コロイダルアルミナ(日産化学工業(株)製アルミナゾル100)
on4:平均粒径40nmのナノジルコニア分散液(住友大阪セメント(株)製)
 (6)Si、Ti、Al、Zrからなる群より選ばれる1種または2種以上の金属元素を含む、粒径100nm以上の金属酸化物(D2)
o1:平均粒径0.25μmのチタニア微粒子(石原産業(株)製CR-EL)
o2:平均粒径0.7μmのシリカ微粒子(電気化学工業(株)製SFP-30M)
o3:平均粒径1.5μmのシリカ微粒子(コアフロント(株)製sicastar43-00-153)
 次に、前記の樹脂(A1)、非酸化物セラミクス粒子(B)、防錆顔料(C)、と蒸留水を用いて、種々の配合比率で水系塗装用組成物を調製した。
 非酸化物セラミクス粒子(B)のうち、粒径1~24μmである(B1)が金属板表面に配置される個数は、下記のように決定した。まず、前述のベックマン・コールター(株)製Multisizer3を用いて非酸化物セラミクス粒子(B)の体積に基づいた粒子径分布を求め、セラミクスセラミクス粒子(B)の単位体積当たりに含まれる粒径1~24μmの粒子の個数(number(B1)/vol(B))(単位:個/μm3)を求めた。これは、前記の粒子径分布における、粒子径に対する粒子個数の度数分布から知ることができる粒径1~24μmの粒子(B1)の個数(number(B1))を、粒子径分布を測定した非酸化物セラミクス粒子(B)の総体積(vol(B))で割った商として算出した。非酸化物セラミクス粒子(B)の総体積(vol(B))は、度数分布の各粒子径区分における平均粒子体積と粒子個数の積を合計して算出した。この(number(B1)/vol(B))と、平均塗膜厚み(aveT)(単位:μm)、及び、非酸化物セラミクス粒子(B)の塗膜中体積分率(fraction(B))から、下記式にて、粒径1~24μmである(B1)が金属板表面に配置される個数を算出した。
 粒径1~24μmである(B1)が金属板表面に配置される個数(単位:個/mm2
=(number(B1)/vol(B))×(aveT)×(fraction(B))×106
 実施例IIでは、上記手法を用いて粒径1~24μmである(B1)が金属板表面に配置される個数を算出したが、既に塗装された塗装金属板及び塗膜組成が不明の場合には、下記のとおり塗装金属板を分析することで、(B1)が金属板表面に配置される個数を算出することもできる。
 非酸化性セラミクス粒子(B)の量(粒子径1~24μmの非酸化性セラミクス粒子(B1)を含む)、及び防錆顔料(C)の量(粒径が1nm以上100nm未満の金属酸化物微粒子(D1)の量、及び粒径100nm以上の金属酸化物微粒子(D2)を含む)は、塗膜断面を電子顕微鏡観察してそれぞれの粒子を識別した上で断面あたりの個数を数え、塗膜体積当たりの個数に換算して算出することができる。この場合、必要に応じてEDX分光装置などを用いて各粒子を識別することができる。
 塗装前の塗料に含まれる(B)((B1)を含む)、及び(C)((D1)及び(D2)を含む)の量と金属板への塗膜付着量(金属板への塗料付着量と、塗料中の不揮発分比率の積)から塗膜中の各粒子量を算出することも可能である。その場合は、例えばMalvern社製の粒子画像解析装置Morphologi G3等の装置を用いて、適切な濃度に希釈した塗料中の粒子を画像解析にて個々識別し数えることで、算出可能である。この手法は、金属板に付着した塗膜を溶解して粒子の個数を数える場合にも用いることができる。
 表9に、各水系塗装用組成物の不揮発分中に含まれる、樹脂(A1)、非酸化物セラミクス粒子(B)((B1)を含む)、防錆顔料(C)((D1)及び(D2)を含む)の種類及び塗膜中への含有率(単位:体積%)を示す。(D1/B)比率も表9に示す。
 前記水系塗装用組成物を調製し各成分を均一に分散後、前記の塗装用金属板、または下地処理皮膜を設けた金属板にロールコーターを用いて塗布し、これを熱風炉にて金属表面到達温度200℃で乾燥し、水冷、風乾した。表9に、製膜後の塗膜厚(単位:μm)及び(B1)が金属板表面に配置される個数(単位:個/mm)を示した。なお、前記塗膜厚は、塗装後の塗膜の剥離前後の質量差を塗膜比重で除算して算出した。塗膜比重は、塗膜構成成分の配合量と各成分の既知比重から計算した。
 4.性能評価
 前記方法で作製した塗装金属板を用い、溶接性、成形性、耐食性について評価を行った。以下に、各試験と評価の方法を示す。
 (1)適正溶接性
 同仕様の塗装金属板2枚を、先端径5mm、R40のCF型Cr-Cu電極を用い、加圧力1.96kN、通電時間12サイクル/50Hzにて、溶接電流を変えてスポット溶接性を試験した。溶接電流を3kAから0.1kAずつ上昇させて溶接し、溶接時に溶融又は熱分解した金属板及び塗膜が塗装金属板と電極との間から爆発的に噴出する現象(爆飛)の発生有無を観察した。溶接ナゲットを形成した場合はナゲット径(ナゲットの長径と短径の平均)を測定した。ナゲット径が3√t(tは板厚)以上となる最小の電流をナゲット形成最小電流とし、爆飛が生じる最小の電流を爆飛発生最小電流とした。(爆飛発生最小電流)-(ナゲット形成最小電流)を適正溶接電流範囲とし、以下の評価点を用いて適正溶接性の優劣を評価した。適正溶接電流範囲は、溶接強度を確保するために十分なナゲット径が確保され、かつ、爆飛した成分が塗装金属板に再付着することによる外観の劣化や耐食性の低下等の不具合が生じない、良好な溶接をし易いか否かの指標である(適正溶接電流範囲が大きい塗装金属板は良好に溶接され易い)。適正溶接電流範囲は、その測定方法のために0.1kA間隔の離散的な数値となる。評価点が低くてもナゲットが形成されていれば溶接強度は確保されるが、前述の通り外観の劣化や耐食性の低下等の不具合があり得、溶接部の手入れ等が必要となる場合がある。
 5:適正溶接電流範囲が2kA以上
 4:適正溶接電流範囲が1.5kA以上、2.0kA未満
 3:適正溶接電流範囲が1.0kA以上、1.5kA未満
 2:適正溶接電流範囲が0.5kA以上、1.0kA未満
 1:適正溶接電流範囲が0.5kA未満(爆飛発生最小電流<ナゲット形成最小電流の場合も含む)
 (2)成形性の評価方法は、実施例Iと同じである。
 (3)耐食性
 前記方法で作製した塗装金属板から150×70mmサイズの長方形の試験片を切り出し、端部を樹脂シールして平面部耐食性の試験片とした。また、前記(2)の円筒カップ成形品を水系脱脂剤(日本ペイント(株)製EC-92)の2質量%、40℃水溶液に2分間浸漬し、表面を脱脂した後、水洗、乾燥して成形後の加工部耐食性の評価試験片とした。また、70×70mmサイズの正方形の試験片を切り出し、1T曲げ(試験片と同じ厚みの板を挟み込んで180度折曲げ)し、端部を樹脂シールして1T曲げ部耐食性の試験片とした。
 これらの試験片に対し、塩水噴霧2時間、乾燥4時間、湿潤2時間の合計8時間を1サイクルとしたサイクル腐食試験を実施した。塩水噴霧の条件はJIS-Z2371に準拠した。乾燥条件は、温度60℃、湿度30%RH以下とし、湿潤条件は、温度50℃、湿度95%RH以上とした。一部の水準は1000サイクルまで試験を延長した。加工部の赤錆発生状況を調べ、以下の評価点を用いて加工部耐食性の優劣を評価した。
 6:1000サイクルで赤錆発生なし
 5:600サイクルで赤錆発生なし
 4:450サイクルで赤錆発生なし
 3:300サイクルで赤錆発生なし
 2:150サイクルで赤錆発生なし
 1:150サイクルで赤錆発生あり
 表9に評価結果を併せて示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 以上述べてきたように、実施例IIにで、下記の効果が確認できた。
 非酸化物セラミクス粒子(B)のうち、粒径1~24μmである(B1)が金属板表面に配置される個数、(D1/B)比、及び塗膜厚みが本発明で規定する範囲内であり、かつ塗膜厚み本発明の範囲内である発明例の塗装鋼板は、適正溶接性が評点2以上と良好であった。
 粒径1μm~24μmの非酸化性セラミクス粒子(B1)が金属板表面に配置される個数が多いほど適正溶接性が良好となる傾向があった。また、(D1/B)が小さい、あるいは塗膜厚みが薄いほど、適正溶接性が良好となる傾向があった。
 防錆顔料(C)の含有量、及び塗膜厚みが本発明で規定する範囲内である塗装鋼板は、平面部、成形加工部(カップ)、及び成形加工部(1T曲げ)の耐食性が良好であった。防錆顔料(C)のうち、粒径1~100nmの金属酸化物粒子(D1)の含有率が多いと、適正溶接性はやや低下する一方で耐食性はさらに向上する傾向があった。防錆顔料(C)のうち、粒径1~100nmの金属酸化物粒子(D1)の含有率が同等の場合、粒径100nm以上の金属酸化物粒子(D2)を添加することで耐食性を向上する効果があった。その場合、(D1/B)が同等ならば適正溶接性の低下は小さい。非酸化物セラミクス粒子(B)の面積当たり個数が本発明の範囲内である場合、適正溶接性が向上する効果を示した。面積当たり個数が少ない場合は、多い水準に比べて適正溶接性が低下した。一方、多すぎる場合は、適正溶接性の向上は飽和して、成形性や耐食性が低下した。なお、上記の非酸化物セラミクス導電性粒子は、酸性やアルカリ性の水溶液、中性の水、種々の非水系溶媒中のいずれにおいても長期間安定なため、本発明の塗膜を得るために好適な、水系や溶剤系の塗装用組成物を自由に選ぶことができる。
 以上述べてきたように、本発明によれば、特定の導電性粒子と防錆顔料を樹脂系塗膜に添加するだけで、抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板が得られる。上記の導電性粒子は、酸性やアルカリ性の水溶液、中性の水、種々の非水系溶媒中のいずれにおいても長期間安定なため、本発明の塗膜を得るために好適な、水系や溶剤系の塗装用組成物を自由に選ぶことができる。

Claims (14)

  1.  金属板、および前記金属板の少なくとも一方の表面上にある塗膜(α)を含む自動車用塗装金属板であって、
     前記塗膜(α)が、有機樹脂(A)と、ホウ化物、炭化物、窒化物、ケイ化物の少なくとも1種から選ばれる、25℃の電気抵抗率が0.1×10-6~185×10-6Ωcmの非酸化物セラミックス粒子(B)と、防錆顔料(C)とを含む自動車用塗装金属板。
  2.  前記有機樹脂(A)が、少なくとも1種の親水性官能基を有する有機樹脂(A1)を含む、請求項1に記載の自動車用塗装金属板。
  3.  前記有機樹脂(A)が、少なくとも1種の親水性官能基を有する有機樹脂(A1)および該樹脂(A1)の誘導体(A2)を含む、請求項1に記載の自動車用塗装金属板。
  4.  前記有機樹脂(A1)が、カルボキシル基(-COOH)、カルボン酸塩基(-COO-+、M+は1価カチオン)、スルホン酸基(-SO3H)、スルホン酸塩基(-SO3 -+、ここでM+は1価カチオン)、1級アミノ基(-NH2)、2級アミノ基(-NHR1、ここでR1は炭化水素基)、3級アミノ基(-NR12、ここでR1とR2は炭化水素基)、4級アンモニウム塩基(-N+123-、ここでR1、R2、R3は炭化水素基、X-は1価アニオン)、スルホニウム塩基(-S+12-、ここでR1、R2は炭化水素基、X-は1価アニオン)、ホスホニウム塩基(-P+123-、ここでR1、R2、R3は炭化水素基、X-は1価アニオン)から選ばれる少なくとも1種の官能基を有する、請求項2または3に記載の自動車用塗装金属板。
  5.  前記樹脂(A1)の誘導体(A2)が、下記一般式(I):
    Figure JPOXMLDOC01-appb-C000001
     (式中、「A1」は有機樹脂(A1)を示し、「Z-」は炭素原子数1~9、窒素原子数0~2、酸素原子数0~2の炭化水素鎖を示し、「A1~Z」は、「A1」と「Z」が両者の官能基を介して共有結合していることを示す。また、「-O-」はエーテル結合であり、「-OH」は水酸基であり、「-X」は炭素原子数1~3の加水分解性アルコキシ基、加水分解性ハロゲノ基または加水分解性アセトキシ基であり、「-R」は炭素原子数1~3のアルキル基であり、置換基の数を示すa、b、c、dはいずれも0~3の整数であるが、但し、a+b+c+d=3である。)
    で表される樹脂(A2Si)である、請求項3に記載の自動車用塗装金属板。
  6.  前記非酸化物セラミックス粒子(B)の25℃の電気抵抗率が0.1×10-6~100×10-6Ωcmであることを特徴とする、請求項1~5のいずれか1項に記載の自動車用塗装金属板。
  7.  前記非酸化物セラミックス粒子(B)のうち、粒径が1μm~24μmである(B1)が、前記金属板の少なくとも一方の表面上に0.8個/mm2~40000個/mm2配置されている、請求項1~6のいずれか1項に記載の自動車用塗装金属板。
  8.  前記非酸化物セラミックス粒子(B)が、ホウ化物セラミックス:BaB6、CeB6、Co2B、CoB、FeB、GdB4、GdB6、LaB4、LaB6、Mo2B、MoB、MoB2、Mo25、Nb32、NbB、Nb34、NbB2、NdB4、NdB6、PrB4、PrB6、SrB6、TaB、TaB2、TiB、TiB2、VB、VB2、W25、YB4、YB6、YB12、およびZrB2、炭化物セラミックス:MoC、Mo2C、Nb2C、NbC、Ta2C、TaC、TiC、V2C、VC、WC、W2C、およびZrC、窒化物セラミックス:Mo2N、Nb2N、NbN、ScN、Ta2N、TiN、およびZrN、ケイ化物セラミックス:CoSi2、Mo3Si、Mo5Si3、MoSi2、NbSi2、Ni2Si、Ta2Si、TaSi2、TiSi、TiSi2、V5Si3、VSi2、W3Si、WSi2、ZrSi、およびZrSi2から成る群から選ばれる1種または2種以上の混合物である、請求項1~7のいずれか1項に記載の自動車用塗装金属板。
  9.  前記防錆顔料(C)が、ケイ酸塩化合物、リン酸塩化合物、バナジン酸塩化合物、および金属酸化物微粒子(D)から選ばれる1種または2種以上を含む、請求項1~8のいずれか1項に記載の自動車用塗装金属板。
  10.  前記金属酸化物微粒子(D)が、Si、Ti、Al、Zrからなる群より選ばれる1種または2種以上の金属元素を含む、請求項9に記載の自動車用塗装金属板。
  11.   前記金属酸化物微粒子(D)のうち、粒径が1nm~100nmである金属酸化物ナノ微粒子(D1)の、前記塗膜(α)中における総体積の、前記非酸化セラミックス粒子(B)の総体積に対する比(D1/B)が、20以下である、請求項1~10のいずれか1項に記載の自動車用塗装金属板。
  12.  前記非酸化物セラミックス粒子(B)の25℃での塗膜(α)中の含有量が0.5~65体積%である、請求項1~11のいずれか1項に記載の自動車用塗装金属板。
  13.  前記塗膜(α)の膜厚が2~30μmである、請求項1~12のいずれか1項に記載の自動車用塗装金属板。
  14.  前記塗膜(α)が水系塗装用組成物の塗布により形成されている、請求項1~13のいずれか1項に記載の自動車用塗装金属板。
PCT/JP2013/056021 2012-03-06 2013-03-05 抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板 WO2013133284A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CA2861763A CA2861763C (en) 2012-03-06 2013-03-05 Precoated metal sheet for automobile use excellent in resistance weldability, corrosion resistance, and formability
CN201380002931.9A CN103781627B (zh) 2012-03-06 2013-03-05 电阻焊焊接性、耐蚀性和成形性优异的汽车用涂装金属板
RU2014140202/05A RU2592895C2 (ru) 2012-03-06 2013-03-05 Металлический лист с предварительным покрытием для применения в автомобилях, имеющий превосходную пригодность к контактной сварке, коррозионную стойкость и формуемость
MX2014009405A MX2014009405A (es) 2012-03-06 2013-03-05 Plancha de metal revestida para vehiculos que muestra excelente soldabilidad por resistencia, resistencia a la corrosion y moldeabilidad.
KR1020147024146A KR101915343B1 (ko) 2012-03-06 2013-03-05 저항 용접성, 내식성, 성형성이 우수한 자동차용 도장 금속판
US14/383,382 US20150044450A1 (en) 2012-03-06 2013-03-05 Precoated metal sheet for automobile use excellent in resistance weldability, corrosion resistance, and formability
JP2013555114A JP5940097B2 (ja) 2012-03-06 2013-03-05 抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板
EP13758164.1A EP2823959A4 (en) 2012-03-06 2013-03-05 COATED METAL PLATE FOR VEHICLES WITH EXCELLENT RESISTANCE TO WELDING, CORROSION RESISTANCE AND FORMABILITY
KR1020167022810A KR101957004B1 (ko) 2012-03-06 2013-03-05 저항 용접성, 내식성, 성형성이 우수한 자동차용 도장 금속판
BR112014019369A BR112014019369A8 (pt) 2012-03-06 2013-03-05 Folha de metal pré-revestida para uso em automóvel, excelente em resistência à soldabilidade, resistência à corrosão, e formabilidade
ZA2014/06025A ZA201406025B (en) 2012-03-06 2014-08-15 Precoated metal sheet for automobile use excellent in resistance weldability, corrosion resistance, and formability

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-049111 2012-03-06
JP2012049111 2012-03-06
JP2012-258553 2012-11-27
JP2012258553 2012-11-27

Publications (1)

Publication Number Publication Date
WO2013133284A1 true WO2013133284A1 (ja) 2013-09-12

Family

ID=49116759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056021 WO2013133284A1 (ja) 2012-03-06 2013-03-05 抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板

Country Status (11)

Country Link
US (1) US20150044450A1 (ja)
EP (1) EP2823959A4 (ja)
JP (2) JP5940097B2 (ja)
KR (2) KR101915343B1 (ja)
CN (1) CN103781627B (ja)
BR (1) BR112014019369A8 (ja)
CA (1) CA2861763C (ja)
MX (1) MX2014009405A (ja)
RU (1) RU2592895C2 (ja)
WO (1) WO2013133284A1 (ja)
ZA (1) ZA201406025B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103491A1 (ja) * 2014-12-26 2016-06-30 日本パーカライジング株式会社 どぶ漬け溶融亜鉛メッキ鋼板用塗料、どぶ漬け溶融亜鉛メッキ鋼板の処理方法、表面処理どぶ漬け溶融亜鉛メッキ鋼板の製造方法、および、表面処理溶融亜鉛メッキ鋼板
JP2016194137A (ja) * 2015-03-31 2016-11-17 新日鐵住金株式会社 表面処理鋼板、及び塗装部材
JP2017121778A (ja) * 2016-01-08 2017-07-13 新日鐵住金株式会社 被覆鋼板
US20180162099A1 (en) * 2015-05-29 2018-06-14 Prc-Desoto International, Inc. Curable Film-Forming Compositions Containing Lithium Silicates as Corrosion Inhibitors and Multilayer Coated Metal Substrates
JPWO2022065323A1 (ja) * 2020-09-25 2022-03-31

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2727808C2 (ru) * 2012-05-29 2020-07-24 Прк-Десото Интернэшнл, Инк. Отверждающиеся пленкообразующие композиции, содержащие силикаты лития в качестве ингибиторов коррозии, и многослойные металлические подложки с покрытием
JP2016536566A (ja) * 2013-11-22 2016-11-24 シリコーン バリー カンパニー,リミテッド 金属薄板を積層した半導体検査パッド及び製造方法
CN107000379B (zh) * 2014-09-30 2019-10-25 日本制铁株式会社 低温行驶环境中的防锈性优异的汽车用涂装金属板
CN109642111B (zh) * 2016-08-24 2021-11-23 巴斯夫涂料有限公司 制备具有水性底色漆的涂层体系的方法
EP3296054B1 (de) * 2016-09-19 2020-12-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur herstellung eines mikrobearbeiteten werkstücks mittels laserabtrag
JP6759940B2 (ja) * 2016-09-29 2020-09-23 日本製鉄株式会社 熱間プレス用Zn系めっき鋼板
JP6733467B2 (ja) * 2016-09-29 2020-07-29 日本製鉄株式会社 熱間プレス用Zn系めっき鋼板
MX2019005820A (es) * 2016-11-17 2019-09-13 Nippon Steel Corp Lamina de acero recubierta y miembro pintado.
WO2018124025A1 (ja) * 2016-12-28 2018-07-05 東洋鋼鈑株式会社 ポリエステル樹脂被覆金属板、及びプレス成形される金属板の被覆用ポリエステルフィルム
WO2018164276A1 (ja) * 2017-03-10 2018-09-13 新日鐵住金株式会社 有機樹脂被覆めっき鋼板
US10370555B2 (en) * 2017-05-16 2019-08-06 Ppg Industries Ohio, Inc. Curable film-forming compositions containing hydroxyl functional acrylic polymers and bisurea compounds and multilayer composite coatings
CN108384448B (zh) * 2017-05-17 2019-10-29 东华大学 一种仿贝壳结构的复合纳米防腐涂层及其制备方法
DE102018209553A1 (de) * 2018-06-14 2019-12-19 Voestalpine Stahl Gmbh Verfahren zur herstellung von lackbeschichteten elektrobändern und lackbeschichtetes elektroband
JP7258024B2 (ja) * 2018-06-27 2023-04-14 東洋鋼鈑株式会社 温間プレス成形用樹脂被覆金属板および有機樹脂フィルム
TWI841603B (zh) * 2018-09-27 2024-05-11 德商漢高股份有限及兩合公司 用於熱介面之耐磨塗層
US11904948B2 (en) 2018-09-28 2024-02-20 Nippon Steel Corporation Adhesively joined structure and component for vehicle
KR102091969B1 (ko) * 2019-03-29 2020-03-23 오현철 전도성 도료 조성물
CN110423501B (zh) * 2019-06-19 2021-07-09 永康市嘉禧厨具有限公司 一种抗菌不粘锅涂层、制备方法及其不粘锅
US11383319B2 (en) 2019-09-05 2022-07-12 GM Global Technology Operations LLC Method of joining steel having different resistivities
US11590601B2 (en) 2019-09-20 2023-02-28 GM Global Technology Operations LLC Method of joining steel work-pieces having different gauge ratios
CN111570237A (zh) * 2020-05-27 2020-08-25 四川金城栅栏工程有限公司 一种栅栏防腐工艺及其生产的防腐栅栏
CN114539887A (zh) * 2020-11-26 2022-05-27 庞贝捷涂料(昆山)有限公司 富锌环氧涂料
CN112961521A (zh) * 2021-02-02 2021-06-15 黄生旺 一种地下通道用高耐腐蚀性加固涂料
JP2022162812A (ja) * 2021-04-13 2022-10-25 本田技研工業株式会社 電気パルス分解方法、複合材、複合材分解方法
CN113930126B (zh) * 2021-09-30 2022-08-30 洛阳双瑞防腐工程技术有限公司 石油储罐内壁介质环境下水性环氧防腐涂料及其制备方法
KR20240143736A (ko) 2023-03-24 2024-10-02 현대제철 주식회사 마찰 계수 예측 방법 및 이에 따른 마찰 계수 제어 방법

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5164542A (en) * 1974-12-02 1976-06-04 Nippon Steel Corp Yosetsukanotosokohan
JPS5517508A (en) 1978-07-25 1980-02-07 Kawasaki Steel Co Compound coating steel plate for high anticorrosive working that have excellent adherence property
JPS57189842A (en) * 1981-05-19 1982-11-22 Nippon Steel Corp High corrosion-resisting weldable painted steel plate
JPS6176570A (ja) * 1984-09-21 1986-04-19 Mitsui Eng & Shipbuild Co Ltd 防錆塗料組成物
JPH09276788A (ja) 1996-04-18 1997-10-28 Nippon Steel Corp 耐食性およびプレス成形性に優れる抵抗溶接可能有機複合めっき鋼板
JP2000070842A (ja) 1998-08-31 2000-03-07 Sumitomo Metal Ind Ltd 自動車補修部品用の樹脂被覆鋼板
JP2001234315A (ja) * 2000-02-23 2001-08-31 Nippon Steel Corp 耐食性と成形性に優れ電気抵抗溶接が可能な塗装鋼板
JP2003513141A (ja) 1999-10-23 2003-04-08 日本パーカライジング株式会社 導電性有機塗料
JP2003268567A (ja) 2002-03-19 2003-09-25 Hitachi Cable Ltd 導電材被覆耐食性金属材料
JP2004042622A (ja) 2002-05-14 2004-02-12 Nippon Steel Corp 成形加工部の耐食性に優れる溶接可能な塗装金属材
JP2005288731A (ja) * 2004-03-31 2005-10-20 Jfe Steel Kk 溶接可能な自動車用有機被覆鋼板
JP2005288730A (ja) 2004-03-31 2005-10-20 Jfe Steel Kk 溶接可能な自動車用有機被覆鋼板
JP2005325427A (ja) 2004-05-17 2005-11-24 Jfe Steel Kk 溶接可能な自動車用高耐食性表面処理鋼板及びその製造方法
JP2012162713A (ja) * 2011-01-19 2012-08-30 Nippon Steel Corp 導電性と耐食性に優れる塗膜形成用の水系組成物
JP5021107B2 (ja) * 2010-09-02 2012-09-05 新日本製鐵株式会社 導電性、耐食性に優れる塗装金属板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079163A (en) * 1974-11-29 1978-03-14 Nippon Steel Corporation Weldable coated steel sheet
JPH1043677A (ja) * 1996-08-06 1998-02-17 Nkk Corp 耐食性、耐パウダリング性及び塗装性に優れた溶接可能なプレプライムド鋼板
DE10247691A1 (de) * 2002-10-12 2004-04-29 Georg Gros Gemisch zum Aufbringen eines dünnen polymeren korrosionsbeständigen verschleißarm umformbaren Überzugs und Verfahren zum Herstellen dieses Überzugs
JP4500113B2 (ja) * 2003-06-16 2010-07-14 Jfeスチール株式会社 高耐食性表面処理鋼板及びその製造方法
US20050137291A1 (en) * 2003-12-17 2005-06-23 Schneider John R. Coating compositions with enhanced corrosion resistance and appearance
WO2006055038A1 (en) * 2004-05-24 2006-05-26 Hontek Corporation Abrasion resistant coatings
EP1776196A2 (de) * 2004-08-03 2007-04-25 Chemetall GmbH Verfahren zum schützen einer metallischen oberfläche mit einer korrosions-inhibierenden beschichtung
DE102005059614A1 (de) * 2005-12-12 2007-06-14 Nano-X Gmbh Beschichtungsmaterial zum Schutz von Metallen, insbesondere Stahl, vor Korrosion und/oder Verzunderung, Verfahren zum Beschichten von Metallen und Metallelement
US7699916B1 (en) * 2008-05-28 2010-04-20 The United States Of America As Represented By The United States Department Of Energy Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack
TWI393755B (zh) * 2008-11-28 2013-04-21 Ind Tech Res Inst 粉體塗裝之塗料及方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5164542A (en) * 1974-12-02 1976-06-04 Nippon Steel Corp Yosetsukanotosokohan
JPS5517508A (en) 1978-07-25 1980-02-07 Kawasaki Steel Co Compound coating steel plate for high anticorrosive working that have excellent adherence property
JPS57189842A (en) * 1981-05-19 1982-11-22 Nippon Steel Corp High corrosion-resisting weldable painted steel plate
JPS6176570A (ja) * 1984-09-21 1986-04-19 Mitsui Eng & Shipbuild Co Ltd 防錆塗料組成物
JPH09276788A (ja) 1996-04-18 1997-10-28 Nippon Steel Corp 耐食性およびプレス成形性に優れる抵抗溶接可能有機複合めっき鋼板
JP2000070842A (ja) 1998-08-31 2000-03-07 Sumitomo Metal Ind Ltd 自動車補修部品用の樹脂被覆鋼板
JP2003513141A (ja) 1999-10-23 2003-04-08 日本パーカライジング株式会社 導電性有機塗料
JP2001234315A (ja) * 2000-02-23 2001-08-31 Nippon Steel Corp 耐食性と成形性に優れ電気抵抗溶接が可能な塗装鋼板
JP2003268567A (ja) 2002-03-19 2003-09-25 Hitachi Cable Ltd 導電材被覆耐食性金属材料
JP2004042622A (ja) 2002-05-14 2004-02-12 Nippon Steel Corp 成形加工部の耐食性に優れる溶接可能な塗装金属材
JP2005288731A (ja) * 2004-03-31 2005-10-20 Jfe Steel Kk 溶接可能な自動車用有機被覆鋼板
JP2005288730A (ja) 2004-03-31 2005-10-20 Jfe Steel Kk 溶接可能な自動車用有機被覆鋼板
JP2005325427A (ja) 2004-05-17 2005-11-24 Jfe Steel Kk 溶接可能な自動車用高耐食性表面処理鋼板及びその製造方法
JP5021107B2 (ja) * 2010-09-02 2012-09-05 新日本製鐵株式会社 導電性、耐食性に優れる塗装金属板
JP2012162713A (ja) * 2011-01-19 2012-08-30 Nippon Steel Corp 導電性と耐食性に優れる塗膜形成用の水系組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2823959A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103491A1 (ja) * 2014-12-26 2016-06-30 日本パーカライジング株式会社 どぶ漬け溶融亜鉛メッキ鋼板用塗料、どぶ漬け溶融亜鉛メッキ鋼板の処理方法、表面処理どぶ漬け溶融亜鉛メッキ鋼板の製造方法、および、表面処理溶融亜鉛メッキ鋼板
JPWO2016103491A1 (ja) * 2014-12-26 2017-08-24 日本パーカライジング株式会社 どぶ漬け溶融亜鉛メッキ鋼板用塗料、どぶ漬け溶融亜鉛メッキ鋼板の処理方法、表面処理どぶ漬け溶融亜鉛メッキ鋼板の製造方法、および、表面処理溶融亜鉛メッキ鋼板
JP2016194137A (ja) * 2015-03-31 2016-11-17 新日鐵住金株式会社 表面処理鋼板、及び塗装部材
US20180162099A1 (en) * 2015-05-29 2018-06-14 Prc-Desoto International, Inc. Curable Film-Forming Compositions Containing Lithium Silicates as Corrosion Inhibitors and Multilayer Coated Metal Substrates
JP2017121778A (ja) * 2016-01-08 2017-07-13 新日鐵住金株式会社 被覆鋼板
JPWO2022065323A1 (ja) * 2020-09-25 2022-03-31
JP7488348B2 (ja) 2020-09-25 2024-05-21 中国塗料株式会社 表面保護用塗料組成物

Also Published As

Publication number Publication date
US20150044450A1 (en) 2015-02-12
EP2823959A1 (en) 2015-01-14
EP2823959A4 (en) 2015-11-18
CN103781627B (zh) 2015-11-25
JP2015091657A (ja) 2015-05-14
CN103781627A (zh) 2014-05-07
ZA201406025B (en) 2016-03-30
KR20160102582A (ko) 2016-08-30
KR101957004B1 (ko) 2019-03-11
KR101915343B1 (ko) 2018-11-05
JP5940097B2 (ja) 2016-06-29
MX2014009405A (es) 2014-11-10
CA2861763A1 (en) 2013-09-12
JPWO2013133284A1 (ja) 2015-07-30
CA2861763C (en) 2016-09-27
BR112014019369A8 (pt) 2017-07-11
RU2592895C2 (ru) 2016-07-27
RU2014140202A (ru) 2016-04-27
KR20140119791A (ko) 2014-10-10
BR112014019369A2 (ja) 2017-06-20

Similar Documents

Publication Publication Date Title
JP5940097B2 (ja) 抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板
JP5021107B2 (ja) 導電性、耐食性に優れる塗装金属板
JP6466954B2 (ja) 低温走行環境での防錆性に優れる自動車用塗装金属板
JP5273316B2 (ja) 表面処理鋼板
JP6366333B2 (ja) 抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板
AU2012330587B2 (en) Chromate-free coated metal sheet having metallic appearance and water-based coating composition used in the same
JP5640924B2 (ja) 導電性、耐食性に優れる塗装金属板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758164

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013555114

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2861763

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/009405

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20147024146

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013758164

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201405299

Country of ref document: ID

Ref document number: 14383382

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014140202

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014019369

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014019369

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140806