Nothing Special   »   [go: up one dir, main page]

WO2013129283A1 - 分離膜モジュールおよび分離膜エレメントの交換方法 - Google Patents

分離膜モジュールおよび分離膜エレメントの交換方法 Download PDF

Info

Publication number
WO2013129283A1
WO2013129283A1 PCT/JP2013/054675 JP2013054675W WO2013129283A1 WO 2013129283 A1 WO2013129283 A1 WO 2013129283A1 JP 2013054675 W JP2013054675 W JP 2013054675W WO 2013129283 A1 WO2013129283 A1 WO 2013129283A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
membrane element
pressure vessel
raw water
loaded
Prior art date
Application number
PCT/JP2013/054675
Other languages
English (en)
French (fr)
Inventor
谷口 雅英
智宏 前田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP13754538.0A priority Critical patent/EP2821123B1/en
Priority to CN201380011706.1A priority patent/CN104136102B/zh
Priority to ES13754538.0T priority patent/ES2691741T3/es
Priority to JP2013515626A priority patent/JP6201752B2/ja
Priority to US14/381,427 priority patent/US20150096930A1/en
Priority to SG11201405248XA priority patent/SG11201405248XA/en
Publication of WO2013129283A1 publication Critical patent/WO2013129283A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/12Spiral-wound membrane modules comprising multiple spiral-wound assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/106Anti-Telescopic-Devices [ATD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/003Membrane bonding or sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/025Removal of membrane elements before washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • B01D2313/041Gaskets or O-rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • B01D2313/042Adhesives or glues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49718Repairing
    • Y10T29/49721Repairing with disassembling
    • Y10T29/4973Replacing of defective part

Definitions

  • the present invention relates to a separation membrane module loaded with a plurality of spiral separation membrane elements for separating and removing components present in a fluid to be treated.
  • separation membranes have various forms such as a flat membrane, a tubular membrane, and a hollow fiber membrane.
  • a flat membrane they are often used in the form of a spiral type separation membrane element.
  • a structure of a conventional spiral type separation membrane element for example, as shown in Patent Document 1 and FIG. 1, a single or a plurality of laminates of a separation membrane 1, a supply-side channel material 3 and a permeation-side channel material 2 are used. It is known that it is wound around a perforated central tube 4 and telescope prevention plates 5 are installed on both ends thereof.
  • a fluid (raw water) 6 to be treated is supplied from one end face, and a part of the components (for example, water in the case of seawater desalination) is separated from the separation membrane while flowing along the supply-side flow path material 3. 1 is separated by permeation.
  • the component (permeated fluid (permeated water) 7 a) that has permeated the separation membrane flows along the permeate-side flow path member 2, flows into the central tube 4 from the hole on the side surface thereof, and enters the central tube 4. And is taken out as a permeated fluid (permeated water) 7 from the other end face of the separation membrane element.
  • the processing fluid containing a high concentration of non-permeating components in the case of seawater desalination, salinity
  • concentrated fluid (concentrated water) 8 is taken out as concentrated fluid (concentrated water) 8 from the other end face of the separation membrane element.
  • an elastic seal member is usually fitted in a circumferential groove on the outer peripheral side of the telescope prevention plate arranged on the raw water side, and the separation membrane element is a pressure vessel.
  • a plurality of tubes are loaded and used in the vessel.
  • the separation membrane element can seal the gap between the separation membrane element and the pressure vessel with the elastic material sealing member by fitting the elastic material sealing member in the circumferential groove on the outer peripheral side of the telescope prevention plate.
  • an elastic resin seal member such as an O-ring seal having an O-shaped cross section or a U-cup seal having a U-shaped cross section has been used.
  • the O-ring seal fitted in the circumferential groove on the outer periphery of the telescope prevention plate comes into contact with the inner wall of the pressure vessel, and the O-ring seal collapses and deforms.
  • the gap between the separation membrane element and the pressure vessel is filled.
  • FIG. 2 shows a state in which the separation membrane element in which the O-ring seal 12 is fitted to the outer peripheral portion 10 of the telescope prevention plate 5 is loaded in the pressure vessel. It is a partial expanded sectional view which expands and shows the neighborhood typically.
  • the O-ring seal 12 is deformed at the portion in pressure contact with the inner wall 9 of the pressure vessel, and the contact area with the inner wall 9 of the pressure vessel is increased. Further, since the O-ring seal 12 is made of an elastic resin, sliding friction with the inner wall 9 of the pressure vessel is large.
  • the separation membrane element when the separation membrane element is moved in the pressure vessel, a large load is required to resist the friction between the O-ring seal 12 and the inner wall 9 of the pressure vessel. In particular, a plurality of separation membrane elements are required. In the case where the separation membrane element is moved in the pressure vessel, the load becomes particularly large and labor is required, so that the operation of actually attaching / detaching the separation membrane element to / from the pressure vessel is inefficient.
  • U-coupling seals or V-coupling seals have been devised and widely used as seal members for separation membrane elements.
  • This U-coupling seal uses elastic resin and is set on the telescope prevention plate of the separation membrane element so that the U-shaped open part faces the raw water side.
  • the U-cup seal has a structure in which, when water is supplied from the raw water side, the U-shape is opened by the water pressure to fill the gap between the U-cup seal and the pressure vessel. The same applies to the V-coupling seal.
  • FIG. 3 shows a state in which the separation membrane element in which the U-cup seal 13 is fitted to the outer peripheral portion 10 of the telescope prevention plate is loaded in the pressure vessel, and in the vicinity of the U-cup seal mounting portion. It is an expanded sectional view which expands and shows typically.
  • the U-cup seal 13 has a relatively small contact area with the inner wall 9 of the pressure vessel.
  • the U-cup seal 13 against the fluid flowing from the raw water upstream to the downstream (direction from left to right in FIG. 3).
  • the seal function is demonstrated.
  • the sealing function tends to be insufficient for fluid flowing from right to left in FIG.
  • the U-cup seal is such that when the separation membrane element is moved from the raw water upstream side to the raw water downstream side in the pressure vessel, the end of the U-cup seal is in light contact with the inner wall of the pressure vessel.
  • the separation membrane element can be moved in the pressure vessel.
  • the end of the U-cup seal comes into strong contact with the inner wall of the pressure vessel.
  • the end of the U-cup seal warps and the U-cup seal is caught in the gap between the separation membrane element and the pressure vessel, and a very large load is required to move the separation membrane element in the pressure vessel.
  • the U-cup seal is damaged and the sealing function is impaired.
  • the U-coupling seal has a characteristic that it cannot substantially move from the raw water downstream side to the raw water upstream side in the pressure vessel. Therefore, when a U-cup seal is applied, the separation membrane element is removed from the pressure vessel by inserting the separation membrane element from the upstream side of the raw water into the pressure vessel and pushing it into the downstream side of the raw water.
  • the separation membrane element on the downstream side of the raw water is extracted from the side, or the separation membrane element on the downstream side of the raw water is drawn from the downstream side of the raw water (concentrated water).
  • the separation membrane element may be used with only one separation membrane element loaded in a pressure vessel. However, as illustrated in FIG. 5, a plurality of separation membrane elements are connected to one pressure vessel and loaded. Is common.
  • the separation membrane elements loaded in the pressure vessel accumulate and deposit dirt substances in the raw water on the membrane surface in the separation membrane element upstream of the raw water. In general, the function is reduced, and the volume and quality of the entire production water is reduced.
  • the adhesion and accumulation of dirt on this membrane surface is particularly important in the separation membrane element closest to the upstream side of the raw water. There are many in the upstream part of the raw water of the membrane surface of the water. In addition, as the raw water permeates the separation membrane, it is concentrated.
  • the solute exceeding the solubility is deposited as a scale near the downstream side of the raw water, and accumulates on the membrane surface or blocks the raw water flow path.
  • concentration limit so as not to exceed the solubility
  • scale precipitation may occur.
  • the U-cup seal when the U-cup seal is fitted to the separation membrane element in the pressure vessel as shown in FIG. 3, when the separation membrane element is moved in the pressure vessel, the raw water is always downstream from the raw water (concentration).
  • the other separation membrane element on the downstream side in the pressure vessel is once taken out of the pressure vessel from the downstream side of the raw water. It is necessary and requires a lot of time and labor. After that, in the reloading work, replace some separation membrane elements from the most upstream side or upstream side of the last extracted raw water with new separation membrane elements, and replace new separation membrane elements from the upstream side of the raw water again.
  • the pressure vessel is loaded from the raw water side.
  • the order of loading is appropriately determined according to the state of the separation membrane element that has not been replaced with a new separation membrane element.
  • the new separation membrane element is loaded on the most downstream (concentrated water) side. To do.
  • the next replacement will replace the old separation membrane element arranged at the head, and the use time of each separation membrane element is made uniform and effective. Similarly, it required a lot of effort.
  • the separation membrane element must also be taken out once, and labor is required as in the case of taking out the separation membrane element.
  • Patent Document 2 discloses a sealing member for a separation membrane element in order to reduce the resistance when the separation membrane element moves in the vessel and to load the separation membrane element regardless of the direction.
  • this technology can be applied when there is only one separation membrane element in the vessel, the above-mentioned vessel device structure (the O-ring seal in the pressure vessel) is added to a device for loading a plurality of separation membrane elements in the vessel.
  • split ring seal As a method for solving the disadvantages of the O-ring seal and the U-cup seal, a split ring-shaped seal member 14 (hereinafter referred to as “split ring seal”) shown in FIG.
  • the split ring seal has a shape in which an annular seal member is cut and divided at one or more locations, and is made of an inelastic material such as an inelastic resin or metal.
  • the outer ring 17 is slightly larger in outer diameter 17 when the split ring seal split part 15 is connected to form an annular shape than the diameter size of the inner wall of the pressure vessel.
  • the structure is designed such that when the separation membrane element is actually mounted on the telescope prevention plate and loaded into the pressure vessel, the gap of the split portion 15 is reduced, and the split ring seal is in close contact with the inner wall of the pressure vessel. It is supposed to be.
  • Patent Document 3 In particular, in the case of partial replacement work of a separation membrane element in which a separation membrane element closest to the raw water side in the pressure vessel is extracted and a new separation membrane element is replenished to a position closest to the concentrated water side, the invention of Patent Document 3 According to the above, it is possible to push a new separation membrane element from the raw water downstream (concentrated water) side of the pressure vessel, and to extract a predetermined separation membrane element from the raw water upstream side. It can be done very efficiently.
  • an object of the present invention is to provide a separation membrane module in which a cylindrical pressure-resistant container is loaded with a plurality of spiral separation membrane elements.
  • An object of the present invention is to provide a separation membrane module and a method for replacing a separation membrane element that make it easy to load and take out while sufficiently exhibiting performance and reduce maintenance time and labor.
  • the present invention relates to the following embodiments (1) to (6).
  • a separation membrane module in which a plurality of separation membrane elements are loaded in a cylindrical pressure vessel, An outer periphery of a membrane unit winding body in which a membrane unit including a separation membrane is wound is covered with an exterior body, and a telescope prevention plate is provided on at least one end of the membrane unit winding body and the exterior body, A spiral separation membrane element in which a raw water sealing member is provided on the outer periphery of one telescope prevention plate, A separation membrane element (A) provided with a raw water seal member (a) that allows the separation membrane element to move substantially in both directions within the cylindrical pressure vessel is loaded on at least one end of the plurality of separation membrane elements Has been A separation membrane element (B) comprising a raw water seal member (b) that allows the separation membrane element to move substantially only in one direction within the cylindrical pressure vessel is a separation membrane element (b) in the plurality of separation membrane elements ( A separation membrane module, which is loaded at all positions other than the position where A) is loaded.
  • the sealing performance is maintained and the performance of the separation membrane module is fully exhibited. It is possible to provide a method for facilitating loading and unloading of separation membrane elements and reducing maintenance time and labor.
  • FIG. 1 is a partially broken perspective view showing an example of a spiral separation membrane element according to the present invention.
  • FIG. 2 is a partially enlarged cross-sectional view schematically showing an enlarged vicinity of an O-ring seal mounting portion, showing a state where a separation membrane element having an O-ring seal mounted on a telescope prevention plate is loaded in a pressure vessel.
  • FIG. 3 is a partially enlarged cross-sectional view schematically showing an enlarged vicinity of a U-cup seal mounting portion, showing a state where a separation membrane element having a U-cup seal mounted on a telescope prevention plate is loaded in a pressure vessel.
  • FIG. FIG. 4 is a plan view schematically showing an example of a split ring-shaped non-elastic seal member on the telescope prevention plate (FIG.
  • FIG. 5 is a cross-sectional view showing an example of a separation membrane module in which a plurality of spiral separation membrane elements according to the present invention are loaded in a cylindrical pressure vessel.
  • FIG. 1 is a partially broken perspective view showing an example of a spiral separation membrane element to which the present invention is applied.
  • a typical example of a spiral separation membrane element is a spiral wound around a perforated central tube 4 in a state where a separation membrane 1, a supply-side flow channel material 3, and a permeation-side flow channel material 2 are laminated.
  • the telescope prevention plate 5 is installed at both ends of the separation membrane wound body. The end of the separation membrane 1 is sealed to prevent mixing of the supply fluid and the permeated fluid.
  • the separation membrane 1 is a flat membrane-like separation membrane, and a reverse osmosis membrane, an ultrafiltration membrane, a microfiltration membrane, a gas separation membrane, a degassing membrane, etc. can be used.
  • a net-like material, a mesh-like material, a grooved sheet, a corrugated sheet or the like can be used.
  • a net-like material, a mesh-like material, a grooved sheet, a corrugated sheet or the like can be used. Any of them may be a net or sheet independent of the separation membrane, or may be integrated by adhesion or fusion.
  • the telescope prevention plate 5 is a plate-like object having a gap, which is installed to prevent deformation into a cylindrical shape (telescope phenomenon) due to the pressure of the fluid that the separation membrane winding passes through, It is preferable to have a circumferential groove for loading a sealing material. If the telescope prevention plate 5 has a function of preventing deformation, the material is not particularly limited. However, when chemical resistance, heat resistance, or the like is required according to the application, it can be appropriately selected according to the required specifications. In general, a resin material such as a thermoplastic resin, a thermosetting resin, or a heat resistant resin is suitable.
  • the telescope prevention plate 5 preferably has a spoke-type structure having an outer peripheral annular portion, an inner peripheral annular portion, and a radial spoke portion for the purpose of maintaining strength without hindering the flow of raw water as much as possible.
  • the central tube 4 has a plurality of holes on the side surface of the tube, and the material of the central tube 4 may be any of resin, metal, etc., but in view of cost and durability, plastics such as noryl resin and ABS resin Is generally used.
  • an adhesion method is preferably used.
  • the adhesive any known adhesive such as a urethane-based adhesive, an epoxy-based adhesive, and a hot melt adhesive can be used.
  • the spiral separation membrane element has a structure in which the outer peripheral portion of the separation membrane wound body is not expanded by being constrained by an exterior material.
  • the exterior material is a sheet made of polyester, polypropylene, polyethylene, polyvinyl chloride, or the like, or a glass fiber coated with a curable resin, and the sheet or fiber is wound around the outer peripheral surface of the separation membrane wound body. The separation membrane element is restrained so as not to expand its diameter.
  • the present invention is applied to a separation membrane module in which a plurality of spiral type separation membrane elements as illustrated in FIG. 1 are loaded in a cylindrical pressure vessel 26 as illustrated in a sectional view in FIG.
  • reference numerals 19a to 19f denote the separation membrane elements shown in FIG.
  • the treated fluid raw water
  • the concentrated fluid (concentrated water) treated with the first separation membrane element is supplied to the second separation membrane element 19b, and then sequentially supplied to 19c, 19d, 19e, and 19f, processed, and finally concentrated. It is discharged from the fluid discharge port 20.
  • the central pipes of the separation membrane elements 19a to 19f are respectively connected by connectors 21 and connected to permeate fluid (permeate) outlets 23a and 23b provided on the end plates 22a and 22b.
  • permeate fluid (permeate) outlets 23a and 23b provided on the end plates 22a and 22b.
  • the permeated fluid (permeated water) obtained by the separation membrane element is collected and taken out of the system.
  • the processed fluid supply port 18 and the concentrated fluid discharge port 20 are provided in the end plate, but the vicinity of the end plate of the pressure vessel body 24 (that is, the processed fluid supply port 18 is the end plate).
  • the concentrated fluid discharge port 20 may be provided between the end plate 22b and the final separation membrane element 19f between 22a and the first separation membrane element 19a.
  • the separation membrane elements 19a to 19f are provided with seal members 25a1, 25a2 to 25f1 and 25f2 at the telescope prevention plate 5 portion in FIG. 1, and the processed fluid and the concentrated fluid of each separation membrane element are separated.
  • seal members are provided on both sides of the separation membrane elements 19a to 19f, but they may be arranged on one side (that is, 25a1 to 25f1 or 25a2 to 25f2). With both, the sealing performance is improved, but the degree of difficulty increases during loading and unloading, and a dead space is likely to occur between the sealing members (for example, between 25a1 and 25a2). When it becomes a problem when the concentrated liquid is contaminated, it is not preferable.
  • the seal member of at least one separation membrane element (A) (hereinafter referred to as “separation membrane element A”) allows the separation membrane element A to move substantially in both directions within the cylindrical pressure vessel 26.
  • the separation membrane element A is made of at least one side of a plurality of spiral separation membrane elements, and is made of a raw water seal member (b) (hereinafter referred to as “seal member b”).
  • the end portion that is, the most upstream side in the raw water supply direction and / or the most downstream side in the raw water supply direction is loaded, and the separation membrane element B is loaded in all positions other than the position where the separation membrane element A is loaded.
  • seal members 25a1 and 25a2 in FIG. 5 are shown as split ring seals, and the other seal members 25b1, 25b2, 25c1, 25c2, 25d1, 25d2, 25e1, 25e2, 25f1, and 25f2 are shown as U-coupling seals in FIG.
  • the end plate 22a on the treated liquid supply side in FIG. 5 is opened to replace the first separation membrane element 19a.
  • the separation membrane element can be easily replaced only by extracting it and loading a new separation membrane element [the above embodiment (6)].
  • the U-coupling seal member is not removed after the second separation membrane element 19b. Since it is attached to the left opening with certainty, there is no leakage of the liquid to be treated after the second separation membrane element 19b, so that the separation membrane element can be easily replaced and the risk of performance deterioration due to a leak seal failure. Both reductions can be achieved.
  • seal members 25f1 and 25f2 are shown as split ring seals, and the other seal members 25a1, 25a2, 25b1, 25b2, 25c1, 25c2, 25d1, 25d2, 25e1, and 25e2 are shown as U-coupling seals in FIG.
  • the seal members 25f1 and 25f2 are shown as split ring seals, and the other seal members 25a1, 25a2, 25b1, 25b2, 25c1, 25c2, 25d1, 25d2, 25e1, and 25e2 are shown as U-coupling seals in FIG.
  • the separation membrane element A is continuous from at least one end of the plurality of separation membrane elements, that is, the most upstream side in the raw water supply direction or the most downstream side in the raw water supply direction. It is also a preferred embodiment that a plurality is loaded. [Embodiment (2) above].
  • this embodiment for example, when exchanging the second separation membrane element from the most upstream side in the raw water supply direction, only two separation membrane elements are extracted from the most upstream side in the raw water supply direction, and a novel separation membrane element is obtained.
  • the separation membrane element to be loaded can be easily replaced.
  • the separation membrane element when the separation membrane element is replaced due to contamination of the separation membrane element or scale deposition, there is often only one separation membrane element that needs to be replaced. Therefore, only the separation membrane element on the most upstream side or the most downstream side is separated.
  • the membrane element A is particularly preferable.
  • Examples of the seal member used in the present invention include an O-ring seal, an X-shaped ring seal, a U-coupling ring, and a split ring seal as described above. -When characteristics change depending on the fitting direction as in the case of a coupling seal, even if the fitting direction is different, it is handled as "different seal members". Further, when the same seal member is used twice, for example, one seal member is used at the position of 25a1, two same seal members are used for 25b1 to f1, and a seal member is provided for 25a1. , 25a2 is not provided with a seal member, and the seal members are used for the remaining 25b1 to f1 and 25b2 to f2. As shown in International Publication No.
  • the split ring seal has various materials and shapes, and has different sealing properties and sliding friction. It is possible to appropriately select a seal member of another separation membrane element.
  • the separation membrane element A needs to be able to be loaded and unloaded by moving the inside of the pressure vessel in both directions as compared with the separation membrane element B, while the separation membrane element B is restricted in movement within the pressure vessel. Even if there is, it is preferable that the sealing property is high.
  • the separation membrane element can be moved substantially in both directions within the cylindrical pressure vessel” is required. That is, there is no substantial difference in sliding resistance when moving in both directions.
  • the raw water seal member (a) having such characteristics has a split ring shape or an O-ring shape, and further has a delta ring shape in which the seal contact surface is sharp, that is, the cross section is, for example, a triangle. It is possible to apply a convex lens shape whose cross section is not O, or a corrugated shape whose contact surface is uneven [the above embodiment (3)].
  • the material is preferably an inelastic material, and the organic material may be various hard plastics and inorganic materials such as polytetrafluoroethylene, polyvinylidene fluoride, polyethylene and polypropylene. , Iron, stainless steel, copper, aluminum, titanium and their alloys can be used, ceramic, graphite, asbestos can be used, and organic-inorganic composites such as FRP and multiple layers of the above materials It is also possible to use a product.
  • the elastic material is not particularly limited, and generally used sealing materials such as nitrile rubber, styrene rubber, silicone rubber, fluorine rubber, acrylic rubber, ethylene propylene rubber, and urethane rubber can be used.
  • these materials have durability in the fluid that is the target of the separation membrane module. For example, when seawater is used as a target, use of an iron alloy tends to corrode, so care must be taken.
  • the sliding resistance in one direction is significantly larger than the sliding resistance in the opposite direction, and the sliding resistance is substantially larger. It is something that cannot be moved to.
  • the raw water seal member (b) having such characteristics is asymmetrical. For example, when it is slid from one direction (right) as illustrated in FIG. It is preferable to use a U-cup-shaped or V-cup-shaped sealing member made of an elastic material, in which the contact is tight [the above embodiment (4)].
  • the present invention provides a separation membrane module by loading a separation vessel element having different characteristics (water permeability performance, removal performance, pressure resistance, etc.) into a pressure vessel in addition to the case of replacing a dirty separation membrane element.
  • the overall performance balance can be enhanced [the above embodiment (5)].
  • a separation membrane element having different water permeability is loaded into one pressure vessel, a plug that does not allow fluid to pass through one of the connectors of the plurality of separation membrane elements
  • a method for taking out permeated water from two directions has also been proposed in, for example, Japanese Patent Application Laid-Open No. 2001-137672, but in these cases, separation membranes of the same product type can be used even if they are not contaminated or scale-deposited. This is suitable for the present invention because the elements need to be loaded at the same position.
  • the fluid to be treated (raw water) to which the present invention is applicable is not particularly limited, and can include various fluids such as river water, seawater, sewage treated water, rainwater, industrial water, industrial wastewater, It is suitable for highly concentrated fluids, particularly seawater, in which the operating conditions and separation performance of the separation membrane vary greatly due to changes in the raw water concentration.
  • the present invention relates to a separation membrane module in which a plurality of spiral separation membrane elements are loaded in a cylindrical pressure vessel, and the separation membrane module that facilitates loading and unloading while reducing the maintenance time and labor while sufficiently exhibiting performance. It can be suitably used as a method for replacing the separation membrane element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 本発明は、被処理流体中に存在している成分を分離除去するためのスパイラル型分離膜エレメントを複数装填した分離膜モジュールに関する。本発明は、筒状耐圧容器に複数のスパイラル型分離膜エレメントを装填した分離膜モジュールにおいて、シール面に高硬度の異物があった場合でもシール性を維持して分離膜モジュールの性能を十分に発揮しつつ、装填、取り出しを容易にし、メンテナンス時間や労力を低減する分離膜モジュールおよび分離膜エレメントの交換方法を提供する。

Description

分離膜モジュールおよび分離膜エレメントの交換方法
 本発明は、被処理流体中に存在している成分を分離除去するためのスパイラル型分離膜エレメントを複数装填した分離膜モジュールに関するものである。
 近年、気体分離膜、逆浸透膜、ナノ濾過膜、限外濾過膜、精密濾過膜等、様々な分離膜を用いた流体分離技術は、高精度で省エネルギーの処理プロセスとして注目され、各種流体処理への適用が進められている。たとえば、逆浸透膜を用いた逆浸透分離法では、塩分等の溶質を含んだ溶液を該溶液の浸透圧以上の圧力で逆浸透膜を透過させることで、塩分等の溶質の濃度が低減された液体を得ることが可能であり、例えば海水やかん水の淡水化、超純水の製造、有価物の濃縮回収など幅広く用いられている。
 これらの分離膜は、平膜、管状膜、中空糸膜など様々な形態を有するが、平膜の場合、スパイラル型分離膜エレメントという形態で用いられることが多い。従来のスパイラル型分離膜エレメントの構造としては、たとえば特許文献1や図1に示すように、分離膜1、供給側流路材3及び透過側流路材2の積層体の単数または複数が、有孔の中心管4の周りに巻きつけられ、その両端側にテレスコープ防止板5を設置したものが知られている。
 この分離膜エレメントは、被処理流体(原水)6が一端面より供給され、供給側流路材3に沿って流動しながら成分の一部(例えば、海水淡水化の場合は水)が分離膜1を透過することにより分離される。その後、分離膜を透過した成分(透過流体(透過水)7a)は、透過側流路材2に沿って流動して、中心管4内へとその側面の孔から流入し、中心管4内を流動し、分離膜エレメントの他端面より透過流体(透過水)7として取り出される。一方、非透過成分(海水淡水化の場合は塩分)を高濃度に含有する処理流体は、分離膜エレメントの他端面より濃縮流体(濃縮水)8として取り出される。
 上記した従来の分離膜エレメントにおいては、通常、原水側に配置されたテレスコープ防止板の外周側の周回溝に弾性材製シール部材が嵌着されていて、その分離膜エレメントが圧力容器であるベッセル内に、複数本、装填されて使用される。分離膜エレメントは、テレスコープ防止板の外周側の周回溝に弾性材製シール部材が嵌着されることにより、分離膜エレメントと圧力容器との隙間を弾性材製シール部材にてシールすることができ、その隙間内の被処理液体の流通が阻止されるので、効率良く被処理流体を分離膜エレメントにて処理することができる。従来は、断面O字状のO-リングシールや断面U字状のU-カップシールなどの弾性樹脂製シール部材が使用されている。O-リングシールを使用した場合は、テレスコープ防止板の外周側の周回溝に嵌着されたO-リングシールが、圧力容器の内壁と接触し、O-リングシールがつぶれて変形することで、分離膜エレメントと圧力容器内との隙間を埋めている。
 図2は、O-リングシール12がテレスコープ防止板5の外周部10に嵌着された分離膜エレメントが圧力容器内に装填された状態を示すものであって、O-リングシール装着部分の近傍を拡大して模式的に示す部分拡大断面図である。図2において、O-リングシール12は、圧力容器の内壁9と圧接している部分において変形し、圧力容器の内壁9との接触面積が大きくなっている。さらに、O-リングシール12は弾性樹脂で構成されているので圧力容器の内壁9との摺動摩擦が大きい。
 そのため、圧力容器内で分離膜エレメントを移動させる際には、O-リングシール12と圧力容器の内壁9との摩擦に抗するために大きな荷重が必要であり、特に、複数本の分離膜エレメントを圧力容器内で移動させる場合は特に大きな荷重となって労力がかかるため、実際に圧力容器内に分離膜エレメントを着脱させる作業は非効率となる。
 このようなO-リングシールの問題点を解消するために、分離膜エレメントのシール部材として、U-カップリングシールもしくはV-カップリングシールが考案され広く使用されている。このU-カップリングシールは、弾性樹脂を用い、U字状の開いた部分が原水側に向くように分離膜エレメントのテレスコープ防止板にセットされている。このU-カップシールは、原水側から水が供給された時に、その水圧でU字が開き、U-カップシールと圧力容器との隙間を埋める構造になっている。V-カップリングシールも同様である。
 図3は、U-カップシール13がテレスコープ防止板の外周部10に嵌着された分離膜エレメントが圧力容器内に装填された状態を示すものであって、U-カップシール装着部分の近傍を拡大して模式的に示す拡大断面図である。図3において、U-カップシール13は、圧力容器の内壁9との接触面積は比較的小さいが、前述したとおり、原水上流から下流(図3の左から右への方向)に流れる流体に対してはシール機能が発揮される。しかし、図3の右から左へと流れる流体に対してはシール機能不十分になりやすい。すなわち、U-カップシールは、圧力容器内で原水上流側から原水下流側に分離膜エレメントを移動させる際は、U-カップシールの端が圧力容器の内壁と軽く接触する程度であり、容易に圧力容器内で分離膜エレメントを移動させることができるが、圧力容器内で原水下流側から原水上流側に移動させようとすると、U-カップシールの端が圧力容器の内壁と強く接触し、さらには、U-カップシールの端が反り返り、分離膜エレメントと圧力容器の隙間にU-カップシールが挟まってしまい、圧力容器内で分離膜エレメントを移動させるために非常に大きな荷重が必要となるとともに、U-カップシールを損傷してシール機能を損なうこととなる。そのため、U-カップリングシールはO-リングシールと異なり、実質的には圧力容器内で原水下流側から原水上流側に移動することはできないという特徴を有している。そこで、U-カップシールを適用する場合、分離膜エレメントの圧力容器内への脱着作業は、圧力容器の原水上流側から分離膜エレメントを挿入し、原水下流側に押し込み、原水下流(濃縮水)側から原水下流側にある分離膜エレメントを抜き出す、あるいは、原水下流(濃縮水)側から原水下流側にある分離膜エレメントを引き出す方法を採用している。
 分離膜エレメントは、1つの分離膜エレメントのみを圧力容器に装填して使用する場合もあるが、図5に例示するように、複数の分離膜エレメントを1つの圧力容器に連結して装填するのが一般的である。複数の分離膜エレメントを装填する場合、圧力容器内に装填された分離膜エレメントは、原水中の汚れ物質が原水上流の分離膜エレメント内の膜面に付着し堆積していき、分離膜エレメントの機能が低下し、全体の生産水の水量、水質が低下してくることが一般的であり、この膜面への汚れの付着・堆積は、特に、原水上流側に一番近い分離膜エレメント内の膜面の原水上流側部分において多い。また、原水が分離膜を透過するに従って、濃縮された結果、最も原水下流側に近いところでは、溶解度を超えた溶質がスケールとなって析出し、膜面に堆積したり、原水流路を閉塞したりする場合がある。もちろん、通常は溶解度を超えないように濃縮限界以内で運転するが、原水濃度や温度が想定外に変動した場合は、スケール析出に至る場合がある。いずれも、分離膜エレメントを装填したまま、様々な洗浄作業を実施することによって、ある程度回復させることはできるが、最終的には、最も汚れた原水上流側に一番近い分離膜エレメントやスケール析出した最も下流側にある分離膜エレメントを取り除いて、新しい分離膜エレメントを装填することで、全体の生産水の水量、水質を改善することになる。ここで、圧力容器内の分離膜エレメントにU-カップシールが図3のように嵌着されている場合、圧力容器内で分離膜エレメントを移動させる場合には常に原水上流側から原水下流(濃縮水)側への方向である必要があるので、原水最上流側の分離膜エレメントを取り除くためには、圧力容器内の他の下流側の分離膜エレメントを一旦原水下流側から圧力容器外に取り出す必要があり、多大な時間と労力を要する作業となっている。その後の再装填作業では、最後に取り出された原水最上流側もしくは、上流側からいくつかの分離膜エレメントを新品の分離膜エレメントに交換して、再度、原水上流側から新品の分離膜エレメントを最初に原水側から圧力容器内に装填する。このとき、装填する順番は、新品の分離膜エレメントに交換しなかった分離膜エレメントの状態によって適宜決定されるが、一般的には、新品の分離膜エレメントを最も下流(濃縮水)側に装填する。このことによって、次回の交換は、先頭に配置された古い分離膜エレメントを交換することになり、各分離膜エレメントの使用時間が均一化され、効果的であるが、分離膜エレメントを取り出す場合と同様に、多大な労力を要していた。最も下流側の分離膜エレメントを交換する場合は、1本だけ取り出すことは可能であるが、その部分に新品の分離膜エレメントを装填したい場合は、原水上流側から装填する必要があり、結局他の分離膜エレメントも一度取り出さなければならなくなり、分離膜エレメントを取り出す場合と同様に労力を要することとなる。
 かかる課題を解決すべく、特許文献2には、ベッセル内での分離膜エレメント移動時の抵抗を低減し、方向に関係無く分離膜エレメントを装填できるようにするために、分離膜エレメントのシール部材にO-リングシールや断面略X状シール部材を使用し、分離膜エレメント装填完了時にO-リングシール部材が接触する部分以外の圧力容器の内径を大きくし、摩擦抵抗が発生する箇所を低減させることが提案されている。ただし、本技術はベッセル内の分離膜エレメントが1本の場合は適用可能であるものの、複数本の分離膜エレメントをベッセル内に装填する装置に上記ベッセル装置構造(圧力容器内のO-リングシールが装填完了時に接触する部分以外の内径のサイズを大きくする装置構造)を適用した場合には、圧力容器内に複数の凹凸が存在し、装填、抜き出し作業時に、隣接する分離膜エレメントの位置がずれることになる。また、分離膜エレメントを圧力容器内に複数本装填する際には、分離膜エレメントの透過水パイプ部に、O-リングなどのシール部材を有するコネクターを挿入して連結する必要があるが、分離膜エレメントを圧力容器内で移動させる時に圧力容器内の凹凸で、隣接する分離膜エレメントの透過水パイプの位置がずれ易くなる。透過水パイプの位置ずれが生じると、コネクターの装着が困難となり易いなどの問題が生じるため、複数の分離膜エレメントの装填には不適である。
 さらに、O-リングシールとU-カップシールの欠点を解決する方法として、図4に示すスプリットリング状のシール部材14(以下、「スプリットリングシール」という)が特許文献3に提案されている。スプリットリングシールは、環状シール部材が1箇所以上で切断・分割された形状を有するものであって、非弾性樹脂や金属などの非弾性の材料を素材とするものである。また、スプリットリングシールの外周部の長さ(外周長)は、そのスプリットリングシールのスプリット部15を繋げて環状にした時の外径17が、圧力容器の内壁の直径サイズよりも少し大きくなるように設計され、実際に分離膜エレメントのテレスコープ防止板に装着して圧力容器内に装填された時には、そのスプリット部15の隙間が縮まり、スプリットリングシールが圧力容器の内壁と密接する構造となるようになっている。これによって、上記の従来技術における問題点を解決し、スパイラル型分離膜エレメントを筒状圧力容器内に装填する時も、また、分離膜エレメントを圧力容器から抜き取る時も、容易に分離膜エレメントを圧力容器内で移動させることができる。特に、圧力容器内の原水側に一番近い分離膜エレメントを抜き取り、新品の分離膜エレメントを濃縮水側に一番近い位置に補充する分離膜エレメント一部交換作業の場合、特許文献3の発明によると、圧力容器の原水下流(濃縮水)側から新品の分離膜エレメントを押し込み、原水上流側から所定の分離膜エレメントを抜きとることが可能となり、分離膜エレメントの抜き取りと補充の作業を、非常に効率良く行うことができる。
日本国特開平10-137558号公報 日本国特開2008-207049号公報 国際公開第2011/046944号
 しかし、特許文献3に記載されたスプリットリングシールは非弾性体であるため、圧力容器内側とスプリットリングシール外側において高い表面加工精度が要求され、さらに、分離膜エレメントの装填、取り出しに際して、シール面に高硬度の異物があった場合、分離膜エレメントを圧力容器内で摺動させた結果スプリットリングシールに傷がつく危険性があり、分離膜エレメントの圧力容器からの装填、取り出しは非常に容易であるものの、シール性が損なわれるリスクを有していた。ここで、万一、シール不良によるリークが起こってしまうと、被処理流体の一部が圧力容器内の分離膜エレメント外側を通ることとなり、分離膜エレメントを通らずに直接濃縮流体側へショートパスするため、実質的な分離性能が低下してしまう問題があった。
 そこで、本発明の目的は、筒状耐圧容器に複数のスパイラル型分離膜エレメントを装填した分離膜モジュールにおいて、シール面に高硬度の異物があった場合でもシール性を維持して分離膜モジュールの性能を十分に発揮しつつ、装填、取り出しを容易にし、メンテナンス時間や労力を低減する分離膜モジュールおよび分離膜エレメントの交換方法を提供することにある。
 前記課題を解決するために、本発明は次の(1)~(6)の実施態様に関する。
 (1)複数の分離膜エレメントを、筒状圧力容器内に装填した分離膜モジュールにおいて、
 分離膜エレメントが、分離膜を含む膜ユニットが巻回されてなる膜ユニット巻体の外周が外装体で覆われ、膜ユニット巻体及び外装体の少なくとも片端にテレスコープ防止板が設けられ、少なくとも1つのテレスコープ防止板の外周に原水シール部材が設けられてなるスパイラル型分離膜エレメントであり、
分離膜エレメントを筒状圧力容器内で実質的に両方向に移動可能とする原水シール部材(a)を備える分離膜エレメント(A)が、複数の分離膜エレメントの中の少なくとも片側の端部に装填されており、
分離膜エレメントを筒状圧力容器内で実質的に一方向にのみ移動可能とする原水シール部材(b)を備える分離膜エレメント(B)が、前記複数の分離膜エレメントの中の分離膜エレメント(A)が装填された位置以外の全ての位置に装填されていることを特徴とする分離膜モジュール。
 (2)分離膜エレメント(A)が複数の分離膜エレメントの中の少なくとも片側の端部から連続して複数個装填されていることを特徴とする(1)に記載の分離膜モジュール。
 (3)原水シール部材(a)がスプリットリング状の非弾性材製シール部材またはO-リング状の弾性材製シール部材であることを特徴とする(1)または(2)に記載の分離膜モジュール。
 (4)原水シール部材(b)がU-カップ状またはV-カップ状の弾性材製シール部材であることを特徴とする(1)~(3)のいずれか一項に記載の分離膜モジュール。
 (5)分離膜エレメント(A)の性能が分離膜エレメント(B)の性能と異なることを特徴とする(1)~(4)のいずれか一項に記載の分離膜モジュール。
 (6)(1)~(5)のいずれか一項に記載の分離膜モジュールにおいて分離膜エレメントを交換する方法であって、分離膜エレメント(B)を筒状圧力容器内から取り出すことなく少なくとも片側の端部に装填された分離膜エレメント(A)を筒状圧力容器内から取り出すことを特徴とする分離膜エレメントの交換方法。
 本発明によって、スパイラル型分離膜エレメントを耐圧容器に複数装填した分離膜モジュールにおいて、シール面に高硬度の異物があった場合でもシール性を維持して分離膜モジュールの性能を十分に発揮しつつ、分離膜エレメントの装填、取り出しを容易にし、メンテナンス時間や労力を低減する方法を提供することが可能となる。
図1は、本発明に係るスパイラル型分離膜エレメントの一例を示す部分破断斜視図である。 図2は、テレスコープ防止板にO-リングシールが装着された分離膜エレメントが圧力容器内に装填された状態を示す、O-リングシール装着部分近傍を拡大して模式的に示す部分拡大断面図である。 図3は、テレスコープ防止板にU-カップシールが装着された分離膜エレメントが圧力容器内に装填された状態を示す、U-カップシール装着部分近傍を拡大して模式的に示す部分拡大断面図である。 図4は、テレスコープ防止板にスプリットリング状の非弾性材製シール部材の一例を模式的に示す平面図(図4(a))、b-bでの断面図(図4(b))である。 図5は、本発明に係る複数のスパイラル型分離膜エレメントを筒状圧力容器に装填した分離膜モジュールの一例を示す断面図である。
 以下、本発明の実施の形態について、図面を参照しながら説明するが、本発明はこれら図面に示す実施態様に限定されるものではない。
 図1は、本発明が適用されるスパイラル型分離膜エレメントの一例を示す部分破断した斜視図である。スパイラル型分離膜エレメントの代表例は、図1に示すように、分離膜1、供給側流路材3、および透過側流路材2が積層状態で、有孔の中心管4の周囲にスパイラル状に巻回され、その分離膜巻回体の両端にテレスコープ防止板5が設置されている。分離膜1は端部が封止されて、供給流体と透過流体の混合を防止している。
 分離膜1は平膜状の分離膜であって、逆浸透膜、限外ろ過膜、精密ろ過膜、ガス分離膜、脱ガス膜などが使用できる。供給側流路材3には、ネット状材料、メッシュ状材料、溝付シート、波形シート等が使用できる。透過側流路材2には、ネット状材料、メッシュ状材料、溝付シート、波形シート等が使用できる。いずれも、分離膜と独立したネットやシートでも構わないし、接着や融着するなどして一体化したものでも差し支えない。
 テレスコープ防止板5は、分離膜巻回体が通過する流体の圧力により筒状に変形すること(テレスコープ現象)を防止するために設置された、空隙を有する板状物であり、外周側にはシール材を装填するための周回溝を有していることが好ましい。テレスコープ防止板5は変形防止の機能を有すれば、その材質は特に制約はない。ただし、用途に応じて、耐薬品性や耐熱性など必要になる場合は、要求仕様に応じて適宜選択することが可能である。一般には、熱可塑性樹脂、熱硬化性樹脂、耐熱性樹脂などの樹脂材が好適である。また、このテレスコープ防止板5は、原水の流れをなるべく妨げずに強度を維持する目的から、外周環状部と内周環状部と放射状スポーク部とを有するスポーク型構造であることが好ましい。
 中心管4は、管の側面に複数の孔を有するものであり、中心管4の材質は、樹脂、金属など何れでもよいが、コスト、耐久性を鑑みて、ノリル樹脂、ABS樹脂等のプラスチックが通常使用されることが一般的である。
 分離膜1の端部を封止するための方法としては、接着法が好適に用いられる。接着剤としては、ウレタン系接着剤、エポキシ系接着剤、ホットメルト接着剤等、公知の何れの接着剤も使用することができる。
 また、スパイラル型分離膜エレメントは、分離膜巻回体の外周部が外装材により拘束されて拡径しない構造になっていることも好ましい。外装材は、ポリエステル、ポリプロピレン、ポリエチレン、ポリ塩化ビニルなどからなるシートや、硬化性樹脂を塗ったガラス繊維などからなるもので、分離膜巻回体の外周表面に、かかるシートや繊維を巻回して分離膜エレメントが拡径しないように拘束する。
 本発明は、図1に例示したようなスパイラル型分離膜エレメントを図5に断面図を例示するように筒状圧力容器26に複数装填した分離膜モジュールに適用するものである。図5では、19a~19fがそれぞれ図1に示す分離膜エレメントを示している。被処理流体(原水)は、被処理流体供給口18から供給され、第1の分離膜エレメント19aの端部に供給される。第1の分離膜エレメントで処理された濃縮流体(濃縮水)は、第2の分離膜エレメント19bに供給されその後、順次19c,19d,19e,19fに供給、処理された後、最終的に濃縮流体排出口20から排出される。それぞれの分離膜エレメント19a~19fの中心パイプは、それぞれコネクター21で連接されるとともに、端板22a,22bに設けられた透過流体(透過水)取出口23a,23bに接続されており、それぞれの分離膜エレメントで得られた透過流体(透過水)が集められ、系外に取り出される。
 なお、図5では、被処理流体供給口18と濃縮流体排出口20が、端板に備えられているが、耐圧容器胴部24の端板近傍(すなわち、被処理流体供給口18が端板22aと第1の分離膜エレメント19aの間、濃縮流体排出口20が端板22bと最終分離膜エレメント19fの間)に備えられていても差し支えない。
 それぞれの分離膜エレメント19a~19fは、図1におけるテレスコープ防止板5部分にシール部材25a1,25a2~25f1,25f2が備えられ、それぞれの分離膜エレメントの被処理流体と濃縮流体が隔離されている。なお、この図では、それぞれの分離膜エレメント19a~19fの両側にシール部材が備えられているが、片側(すなわち、25a1~25f1もしくは25a2~25f2)とすることも可能である。両方備えた方がシール性は向上するが、装填、取り出し時に困難度が増すこと、また、シール部材間(例えば、25a1と25a2の間)にデッドスペースを生じやすくなるため、例えば、ジュースの濃縮など濃縮液体が汚染されると問題となる場合は、好ましくない。
 本発明では、図5に例示するように複数のスパイラル型分離膜エレメントを筒状圧力容器26内に装填した分離膜モジュールにおいて、テレスコープ防止板の外周側に装着される原水シール部材が2種類以上用いられ、少なくとも1つの分離膜エレメント(A)(以下、「分離膜エレメントA」という)のシール部材が、分離膜エレメントAを筒状圧力容器26内で実質的に両方向に移動可能とする(実質的に両方向への移動を限定しない)原水シール部材(a)(以下、「シール部材a」という)からなり、かつ、分離膜エレメントA以外の他の分離膜エレメント(B)(以下、「分離膜エレメントB」という)のシール部材が、分離膜エレメントを筒状圧力容器26内で実質的に一方向にのみ移動可能とする(実質的に一方向への移動が不可となり他の方向への移動は限定されない)原水シール部材(b)(以下、「シール部材b」という)からなるとともに、分離膜エレメントAを複数のスパイラル型分離膜エレメントの中の少なくとも片側の端部、すなわち、原水供給方向の最上流側、および/または、原水供給方向の最下流側に装填し、分離膜エレメントBを分離膜エレメントAが装填された位置以外の全ての位置に装填することによって達成することができる[上記実施態様(1)]。
 例えば、図5においてシール部材25a1と25a2をスプリットリングシール、それ以外のシール部材25b1,25b2,25c1,25c2,25d1,25d2,25e1,25e2,25f1,25f2をU-カップリングシールとして図3に示すように左開きに嵌着することによって、前述のように第1の分離膜エレメント19aのみを交換するにあたり、図5の被処理液供給側の端板22aを開け、第1の分離膜エレメント19aだけ抜き出し、新規の分離膜エレメントを装填するという分離膜エレメントの交換作業が容易に実施できる[上記実施態様(6)]。また、シール部材がすべてスプリットリングシールである場合の問題である、スプリットリングシールのシール不良によるわずかなリークが発生した場合でも、第2の分離膜エレメント19b以降でU-カップリングのシール部材が確実な左開きに装着されているため、第2の分離膜エレメント19b以降での被処理液のリークは発生しないため、分離膜エレメントの交換が容易であることと、リークシール不良による性能低下リスク削減を両立できることとなる。
 また、図5においてシール部材25f1と25f2をスプリットリングシール、それ以外のシール部材25a1,25a2,25b1,25b2,25c1,25c2,25d1,25d2,25e1,25e2をU-カップリングシールとして図3に示すように左開きに嵌着することによって、前述のように第6の分離膜エレメント19fのみを交換するにあたり、図5の濃縮流体排出側の端板22bを開け、1本だけ抜き出し、新規の分離膜エレメントを装填するという分離膜エレメントの交換作業が容易に実施できる。
 従って本発明の主旨を鑑みると、分離膜エレメントAは、複数の分離膜エレメントの中の少なくとも片側の端部、すなわち、原水供給方向の最上流側または原水供給方向の最下流側から連続して複数個装填されていることも好ましい実施態様である。[上記実施態様(2)]。この実施態様の場合、例えば原水供給方向の最上流側から2番目の分離膜エレメントを交換する際に、原水供給方向の最上流側から2本の分離膜エレメントだけを抜き出し、新規の分離膜エレメントを装填する分離膜エレメントの交換作業が容易に実施できる。ただし、分離膜エレメントの汚れやスケール析出によって分離膜エレメントを交換する場合は、交換が必要な分離膜エレメントは1本だけであることが多いので、最上流や最下流の分離膜エレメントのみを分離膜エレメントAとすることが特に好ましい。
 本発明で、用いるシール部材としては、これまでに述べてきたようにO-リングシール、X状リングシール、U-カップリングシール、スプリットリングシールを挙げることができるが、本発明においては、U-カップリングシールのように嵌着方向によって特性が変化する場合は、嵌着方向が異なる場合も、「異なるシール部材」と取り扱う。さらに、同じシール部材であっても二重に用いる場合、例えば、25a1の位置に一つのシール部材を使う、25b1~f1には同じシール部材を二つ用いる、また、25a1にはシール部材を備え、25a2にはシール部材を備えず、残りの25b1~f1、25b2~f2にはシール部材を用いるといった構成も、実質的に一部の分離膜エレメントのシール部材が異なることになる。スプリットリングシールにおいても国際公開第2011/046944号(特許文献3)に例示されているように、様々な材質、形状があり、シール性や摺動摩擦も異なるため、その特性によって分離膜エレメントAと他の分離膜エレメントのシール部材を適宜選択することが可能である。ただし、分離膜エレメントAは、分離膜エレメントBに比べ、圧力容器内を両方向に動かして装填、取り出しが可能であることが必要である一方で、分離膜エレメントBは圧力容器内の移動に制約があってもシール性が高いことが好ましい。具体的には、原水シール部材(a)の特性としては、「分離膜エレメントを筒状圧力容器内で実質的に両方向に移動可能とする」ことが求められる。すなわち、両方向に移動させる場合の摺動抵抗に実質的な差がない、例えば、摺動面とシール部材が並行もしくは両方向対称に接触するものが求められる。このような特性を有する原水シール部材(a)の形状としては、スプリットリング状、もしくはO-リング状、さらに、シール接触面がとがった、すなわち、断面がたとえば三角形になっているデルタリング状や断面がOではなく凸レンズ状、また、接触面が凹凸を保った波板状などを適用することができる[上記実施態様(3)]。素材は、スプリットリング状の場合は、非弾性材を用いることが好ましく、有機材料としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレンを始めとする、様々な硬質プラスチック、無機材料としても、鉄、ステンレス、銅、アルミニウム、チタンやそれらの合金を使うこともできれば、セラミック、黒鉛、石綿も用いることができるし、また、FRPなどのように有機無機複合体や以上の素材の複層品を用いることも可能である。
 O-リングやデルタリングなどの場合、弾性材製シール部材を用いるとシール性が高くなるため好ましいが、摺動性が損なわれやすいため、注意が必要である。摺動性を重視するため、弾性材製シール材で一般に考慮する潰し代(弾性材からなるO-リングなどで密着性を上げるため、使用時に圧縮変形させる割合のことで、通常時の弾性材製シール材の外径における使用時に圧縮変形されて縮む外径の割合のことを指す。)を小さくすることが重要である。具体的には、通常8~30%とされている潰し代を、10%以下、より好ましくは5%以下にすることによって、圧力容器内での良好な摺動性を保つことが可能となる。
 弾性材としては、特に制約はなく、ニトリルゴム、スチロールゴム、シリコーンゴム、フッ素ゴム、アクリルゴム、エチレンプロピレンゴム、ウレタンゴムなど、一般に多用されるシール材を用いることができる。
 なお、これらの素材は、分離膜モジュールの対象となる流体に耐久性があることが好ましい。たとえば、海水を対象にする場合は、鉄合金を用いると腐食しやすいので注意を要する。
 一方、原水シール部材(b)としては、原水シール材(a)と逆に、一方向への摺動抵抗が反対方向への摺動抵抗よりも著しく大きく、実質的に摺動抵抗が大きい方向に動かすことができないものである。このような特性を有する原水シール部材(b)としては、非対称であって、例えば、図3に例示するように一方向(右)から摺動させようとするとV形状が開いて摺動面との接触が密になるU-カップ状またはV-カップ状の弾性材製シール部材であることが好ましい[上記実施態様(4)]。
 さらに、本発明は、汚れた分離膜エレメントを交換する場合以外にも、複数種類の特性(透水性能、除去性能、耐圧性など)が異なる分離膜エレメントを圧力容器に装填することによって分離膜モジュール内全体の性能バランスを高めることができる[上記実施態様(5)]。例えば、国際公開WO2005/082497号で提案されているように、透水性能の異なる分離膜エレメントをひとつの圧力容器に装填する場合、また、複数分離膜エレメントのコネクターの一つを流体が通らないプラグにして、透過水を2方向から取り出す方法も、例えば日本国特開2001-137672号公報で提案されているが、これらのケースでは、汚れたりスケール析出したりしない場合でも、同じ品種の分離膜エレメントを同じ位置に装填する必要があるため、本発明に好適である。
 本発明を適用可能な被処理流体(原水)は特に、制限されるものではなく、河川水、海水、下水処理水、雨水、工業用水、工業廃水など、いろいろな流体を挙げることができるが、原水濃度変化によって、分離膜の運転条件や分離性能が大きく変動する、濃度の高い流体、とくに海水に好適である。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
本出願は、2012年2月29日出願の日本特許出願2012-042969に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、筒状圧力容器に複数のスパイラル型分離膜エレメントを装填した分離膜モジュールにおいて、性能を十分に発揮しつつ、装填、取り出しを容易にし、メンテナンス時間や労力を低減する分離膜モジュールおよび分離膜エレメントの交換方法として、好適に利用することができる。
1:分離膜
2:透過側流路材
3:供給側流路材
4:中心管
5:テレスコープ防止板
6,6a:被処理流体(原水)
7,7a:透過流体(透過水)
8:濃縮流体(濃縮水)
9:筒状圧力容器の内壁
10:テレスコープ防止板の外周部
11:テレスコープ防止板の外周面
12:O-リングシール
13:U-カップシール
14:スプリットリング状の非弾性材製シール部材
15:スプリットリング状の非弾性材製シール部材のスプリット部
16:スプリットリング状の非弾性材製シール部材の内径
17:スプリットリング状の非弾性材製シール部材の外径
18:被処理流体(原水)供給口
19a,19b,19c,19d,19e,19f:分離膜エレメント
20:濃縮流体(濃縮水)排出口
21:コネクター
22a,22b:端板
23a,23b:透過流体(透過水)取出口
24:耐圧容器胴部
25a1,25b1,25c1,25d1,25e1,25f1:シール部材
25a2,25b2,25c2,25d2,25e2,25f2:シール部材
26:筒状圧力容器

Claims (6)

  1.  複数の分離膜エレメントを、筒状圧力容器内に装填した分離膜モジュールにおいて、
     分離膜エレメントが、分離膜を含む膜ユニットが巻回されてなる膜ユニット巻体の外周が外装体で覆われ、膜ユニット巻体及び外装体の少なくとも片端にテレスコープ防止板が設けられ、少なくとも1つのテレスコープ防止板の外周に原水シール部材が設けられてなるスパイラル型分離膜エレメントであり、
     分離膜エレメントを筒状圧力容器内で実質的に両方向に移動可能とする原水シール部材(a)を備える分離膜エレメント(A)が、複数の分離膜エレメントの中の少なくとも片側の端部に装填されており、
     分離膜エレメントを筒状圧力容器内で実質的に一方向にのみ移動可能とする原水シール部材(b)を備える分離膜エレメント(B)が、前記複数の分離膜エレメントの中の分離膜エレメント(A)が装填された位置以外の全ての位置に装填されていることを特徴とする分離膜モジュール。
  2.  分離膜エレメント(A)が複数の分離膜エレメントの中の少なくとも片側の端部から連続して複数個装填されていることを特徴とする請求項1に記載の分離膜モジュール。
  3.  原水シール部材(a)がスプリットリング状の非弾性材製シール部材またはO-リング状の弾性材製シール部材であることを特徴とする請求項1または2に記載の分離膜モジュール。
  4.  原水シール部材(b)がU-カップ状またはV-カップ状の弾性材製シール部材であることを特徴とする請求項1~3のいずれか一項に記載の分離膜モジュール。
  5.  分離膜エレメント(A)の性能が分離膜エレメント(B)の性能と異なることを特徴とする請求項1~4のいずれか一項に記載の分離膜モジュール。
  6.  請求項1~5のいずれか一項に記載の分離膜モジュールにおいて分離膜エレメントを交換する方法であって、分離膜エレメント(B)を筒状圧力容器内から取り出すことなく少なくとも片側の端部に装填された分離膜エレメント(A)を筒状圧力容器内から取り出すことを特徴とする分離膜エレメントの交換方法。
PCT/JP2013/054675 2012-02-29 2013-02-25 分離膜モジュールおよび分離膜エレメントの交換方法 WO2013129283A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP13754538.0A EP2821123B1 (en) 2012-02-29 2013-02-25 Separation membrane module and replacement method for separation membrane element
CN201380011706.1A CN104136102B (zh) 2012-02-29 2013-02-25 分离膜模块以及分离膜元件的更换方法
ES13754538.0T ES2691741T3 (es) 2012-02-29 2013-02-25 Módulo de membrana de separación y método de reemplazo para elemento de membrana de separación
JP2013515626A JP6201752B2 (ja) 2012-02-29 2013-02-25 分離膜モジュールおよび分離膜エレメントの交換方法
US14/381,427 US20150096930A1 (en) 2012-02-29 2013-02-25 Separation membrane module and replacement method for separation membrane element
SG11201405248XA SG11201405248XA (en) 2012-02-29 2013-02-25 Separation membrane module and replacement method for separation membrane element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012042969 2012-02-29
JP2012-042969 2012-02-29

Publications (1)

Publication Number Publication Date
WO2013129283A1 true WO2013129283A1 (ja) 2013-09-06

Family

ID=49082482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054675 WO2013129283A1 (ja) 2012-02-29 2013-02-25 分離膜モジュールおよび分離膜エレメントの交換方法

Country Status (7)

Country Link
US (1) US20150096930A1 (ja)
EP (1) EP2821123B1 (ja)
JP (1) JP6201752B2 (ja)
CN (1) CN104136102B (ja)
ES (1) ES2691741T3 (ja)
SG (1) SG11201405248XA (ja)
WO (1) WO2013129283A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016028813A (ja) * 2014-07-23 2016-03-03 エア・リキード・アドバンスド・テクノロジーズ・ユー.エス.・エルエルシー 改良されたガスシールを備えるガス分離膜モジュール
WO2019208275A1 (ja) * 2018-04-26 2019-10-31 東レ株式会社 分離膜モジュール
JP2022528103A (ja) * 2019-04-17 2022-06-08 コーロン インダストリーズ インク 燃料電池用加湿器及びそのためのパッキング部材

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6435961B2 (ja) 2014-03-31 2018-12-12 宇部興産株式会社 ガス分離システム及び富化ガスの製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10137558A (ja) 1996-11-11 1998-05-26 Nitto Denko Corp スパイラル型分離膜エレメントおよびその製造方法
JP2000288356A (ja) * 1999-02-02 2000-10-17 Toray Ind Inc 逆浸透膜分離装置および造水方法
JP2001137672A (ja) 1999-11-18 2001-05-22 Toray Ind Inc 逆浸透処理装置および造水方法
JP2001300271A (ja) * 2000-04-25 2001-10-30 Toray Ind Inc 流体分離素子
WO2005082497A1 (en) 2004-02-25 2005-09-09 Dow Global Technologies, Inc. Apparatus for treating solutions of high osmotic strength
JP2008207049A (ja) 2007-02-23 2008-09-11 Miura Co Ltd 逆浸透膜処理装置
JP2009154159A (ja) * 2004-01-09 2009-07-16 Koch Membrane Systems Inc フィルタエレメント及びフィルタ装置の組立方法
JP2009220104A (ja) * 2008-02-21 2009-10-01 Nitto Denko Corp 膜エレメント用圧力容器及びこれを備えた膜濾過装置、並びに、膜濾過装置の製造方法
JP2009291745A (ja) * 2008-06-06 2009-12-17 Nitto Denko Corp 膜濾過装置管理システム及びこれに用いられる膜濾過装置、並びに、膜濾過装置管理方法
WO2011046944A1 (en) 2009-10-12 2011-04-21 Toray Membrane USA, Inc. Radial split ring seal for filtration systems
JP2011152538A (ja) * 2011-04-01 2011-08-11 Toray Ind Inc 流体分離素子及び流体分離装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100354613B1 (ko) * 2001-11-06 2002-10-11 박헌휘 교체 가능한 침지형 중공사막 모듈
KR100789032B1 (ko) * 2003-09-17 2007-12-26 닛토덴코 가부시키가이샤 막 요소용 시일 링 홀더 및 막 요소
EP1731214A1 (de) * 2005-06-06 2006-12-13 Rochem RO-Wasserbehandlung GmbH Abstandselement zur Führung von Strömungsmedien
CN101888897A (zh) * 2007-12-17 2010-11-17 日东电工株式会社 螺旋型膜过滤装置和安装部件以及使用了它的膜过滤装置管理系统和膜过滤装置管理方法
EP2240262A1 (en) * 2008-02-08 2010-10-20 Millipore Corporation Multi filtration cartridge filtration apparatus
KR101656902B1 (ko) * 2009-02-06 2016-09-12 도레이 카부시키가이샤 유체 분리 소자, 유체 분리 소자용 텔레스코핑 방지판, 및 유체 분리 장치
KR101766497B1 (ko) * 2009-10-12 2017-08-23 도레이 카부시키가이샤 여과 시스템을 위한 축방향 미로 밀봉부
SG182307A1 (en) * 2010-01-15 2012-08-30 Hydranautics Brine seal for a filtration device
JP5509021B2 (ja) * 2010-10-04 2014-06-04 日東電工株式会社 分離膜モジュール

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10137558A (ja) 1996-11-11 1998-05-26 Nitto Denko Corp スパイラル型分離膜エレメントおよびその製造方法
JP2000288356A (ja) * 1999-02-02 2000-10-17 Toray Ind Inc 逆浸透膜分離装置および造水方法
JP2001137672A (ja) 1999-11-18 2001-05-22 Toray Ind Inc 逆浸透処理装置および造水方法
JP2001300271A (ja) * 2000-04-25 2001-10-30 Toray Ind Inc 流体分離素子
JP2009154159A (ja) * 2004-01-09 2009-07-16 Koch Membrane Systems Inc フィルタエレメント及びフィルタ装置の組立方法
WO2005082497A1 (en) 2004-02-25 2005-09-09 Dow Global Technologies, Inc. Apparatus for treating solutions of high osmotic strength
JP2007523744A (ja) * 2004-02-25 2007-08-23 ダウ グローバル テクノロジーズ インコーポレーテッド 高い浸透力の溶液を処理する装置
JP2008207049A (ja) 2007-02-23 2008-09-11 Miura Co Ltd 逆浸透膜処理装置
JP2009220104A (ja) * 2008-02-21 2009-10-01 Nitto Denko Corp 膜エレメント用圧力容器及びこれを備えた膜濾過装置、並びに、膜濾過装置の製造方法
JP2009291745A (ja) * 2008-06-06 2009-12-17 Nitto Denko Corp 膜濾過装置管理システム及びこれに用いられる膜濾過装置、並びに、膜濾過装置管理方法
WO2011046944A1 (en) 2009-10-12 2011-04-21 Toray Membrane USA, Inc. Radial split ring seal for filtration systems
JP2011152538A (ja) * 2011-04-01 2011-08-11 Toray Ind Inc 流体分離素子及び流体分離装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016028813A (ja) * 2014-07-23 2016-03-03 エア・リキード・アドバンスド・テクノロジーズ・ユー.エス.・エルエルシー 改良されたガスシールを備えるガス分離膜モジュール
WO2019208275A1 (ja) * 2018-04-26 2019-10-31 東レ株式会社 分離膜モジュール
JP6607336B1 (ja) * 2018-04-26 2019-11-20 東レ株式会社 分離膜モジュール
JP2022528103A (ja) * 2019-04-17 2022-06-08 コーロン インダストリーズ インク 燃料電池用加湿器及びそのためのパッキング部材

Also Published As

Publication number Publication date
CN104136102A (zh) 2014-11-05
EP2821123A4 (en) 2015-11-04
SG11201405248XA (en) 2014-11-27
ES2691741T3 (es) 2018-11-28
US20150096930A1 (en) 2015-04-09
EP2821123B1 (en) 2018-08-08
EP2821123A1 (en) 2015-01-07
CN104136102B (zh) 2016-09-28
JP6201752B2 (ja) 2017-09-27
JPWO2013129283A1 (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
US9901878B2 (en) Membrane separation device and operation method for membrane separation device
JP6102921B2 (ja) 分離膜ユニットを用いた造水方法
US8728213B2 (en) Radial split ring seal for filtration systems
EP2488284B1 (en) Filtration systems with radial split ring seal
JPWO2010090251A1 (ja) 流体分離素子、流体分離素子用テレスコープ防止板、及び流体分離装置
JP6201752B2 (ja) 分離膜モジュールおよび分離膜エレメントの交換方法
JP2018126706A (ja) 膜分離装置および流体分離方法
WO2015093088A1 (ja) 逆浸透膜濾過装置
WO2015141693A1 (ja) 半透膜分離装置および半透膜分離装置の運転方法
US9144773B2 (en) Method for manipulating a membrane element within a pressure vessel
JP7342850B2 (ja) 分離膜モジュール及びその運転方法
JP2006281125A (ja) スパイラル型膜モジュール
JP2015033673A (ja) 膜分離装置および膜分離装置の運転方法
JP6607336B1 (ja) 分離膜モジュール
JP2012139614A (ja) 分離膜エレメントの洗浄方法
JP6771812B2 (ja) スパイラル型分離膜モジュール
JP2012148269A (ja) 筒状圧力容器内への分離膜エレメントの着脱方法
JP4697120B2 (ja) 流体分離膜モジュール
AU2011100303A4 (en) Energy Extraction Device in Reverse Osmosis Desalination using standard polymenr materials
JP2012217885A (ja) 圧力容器及びこれを備えた分離膜モジュール

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013515626

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754538

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 234330

Country of ref document: IL

Ref document number: 14381427

Country of ref document: US

Ref document number: 2013754538

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE