WO2013128793A1 - 電池用極板及びその製造方法、該極板を有する極板群並びに鉛蓄電池 - Google Patents
電池用極板及びその製造方法、該極板を有する極板群並びに鉛蓄電池 Download PDFInfo
- Publication number
- WO2013128793A1 WO2013128793A1 PCT/JP2013/000323 JP2013000323W WO2013128793A1 WO 2013128793 A1 WO2013128793 A1 WO 2013128793A1 JP 2013000323 W JP2013000323 W JP 2013000323W WO 2013128793 A1 WO2013128793 A1 WO 2013128793A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode plate
- battery
- lead
- battery electrode
- thickness
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/14—Electrodes for lead-acid accumulators
- H01M4/16—Processes of manufacture
- H01M4/20—Processes of manufacture of pasted electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/14—Electrodes for lead-acid accumulators
- H01M4/16—Processes of manufacture
- H01M4/22—Forming of electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/72—Grids
- H01M4/73—Grids for lead-acid accumulators, e.g. frame plates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to an electrode plate for a battery and a method for manufacturing the same, and more specifically, a battery electrode plate having a simple process, low cost, good capacity, cycle life, and charging efficiency, and a method for manufacturing the same.
- the present invention relates to an electrode plate group having the electrode plate and a lead storage battery.
- Lead-acid batteries are used as main power sources in addition to power sources for vehicle start-up and backup, that is, for example, power sources such as electric cars, electric bicycles, electric motorcycles, electric scooters, moped electric motorcycles, golf carts, and solar energy. It is widely used as a power source for equipment for charging and discharging independently, such as batteries for batteries. In these applications, lead-acid batteries have operational characteristics such as a large current at start-up, a small discharge current during vehicle travel, and a long discharge time. At the same time, the lead storage battery is required to reduce maintenance, and in particular, to increase its cycle life.
- the cross-sectional area of the positive electrode current collector is reduced, leading to a decrease in the conductivity of the positive electrode plate, As a result, the voltage characteristics when the battery performs high rate discharge deteriorates. If such corrosion of the positive electrode current collector further proceeds, the positive electrode current collector itself will eventually break. Therefore, the battery capacity is suddenly reduced and the life is exhausted.
- the battery performance gradually decreases.
- the internal pressure of the battery increases, and a large pressure may be applied between the positive electrode plate and the negative electrode plate.
- the electrode group tends to be compressed or deformed. That is, the electrode group tends to be crushed as the internal pressure of the battery increases.
- the Chinese utility model No. CN201820837U discloses a warp degree paste shielding plate for electrode plate double-side coating, and the problems to be solved are as follows. That is, the work surface at the lower end of the conventional paste blocker is flat, and when the paste is discharged, the electrode plate is depressed downward with a constant pressure by the lead paste, and the distance between the paste blocker and the center of the plate increases. However, the amount of paste applied at the center was relatively large. And the electrode plate before hardening after double-sided coating is often thick at the center and thin at both ends, and the electrode plate is significantly curved after hardening, affecting the quality of the electrode plate.
- the above-described warpage degree paste shielding plate for double-sided application of an electrode plate includes a paste shielding plate and a paste outlet provided in the paste shielding plate for applying paste to the electrode plate, and the paste outlet is a paste
- the arc-shaped work surface that protrudes outwardly compensates for the deformation of the electrode plate, so that the paste coating thickness of the electrode plate can be made substantially the same and the product quality can be improved. It is balanced with the board.
- an eccentricity adjusting device for controlling the thickness of the electrode plate in the coater.
- the eccentricity adjustment device can detect the electrode plate thickness at random during actual operation, and when the fluctuation occurs, the coater is stopped so that the thickness of the electrode plate passing through the coater becomes constant. It can be adjusted dynamically without
- Japanese Laid-Open Patent Publication No. 57-21068 discloses a method for producing a positive electrode for a sealed lead-acid battery.
- the manufacturing method of the positive electrode for a sealed lead-acid battery is an active material lead paste having a lead paste density of only 3.0 to 3.4 g / cm 3 (the normal lead paste density is 3.7 to 4.1 g / cm 3 ). Is packed in a lattice and dried.
- the problem to be solved by this method is to increase the porosity of the positive electrode plate by lowering the paste density of the positive electrode plate, thereby improving the rapid discharge characteristics of the sealed lead-acid battery.
- an aqueous dispersion of polytetrafluoroethylene is added to the lead paste in order to prevent the life from being shortened by reducing the lead paste density.
- JP-A-58-223259 discloses a method for producing a lead-acid battery electrode plate.
- the lead-acid battery plate is manufactured by filling a strip-shaped expanded lattice plate made of lead or a lead alloy with an active material lead paste, and then adding a cutting portion having a certain width in the longitudinal direction. It is characterized in that it is pressed and compressed, and the center of this cutting part is cut into individual plates and then dried. As shown in FIG. 4 of this document, the thickness of both end portions of the electrode plate obtained by the manufacturing method is thinner than the intermediate portion.
- the problem to be solved by the production method is to overcome the conventional drawback that the active material has a weak holding power in the cut portion and the active material is easily dropped.
- Japanese Unexamined Patent Application Publication No. 2007-258088 discloses an electrode plate for a lead storage battery in which an active material is filled in a grid having a current collecting ear on one end side.
- the lattice body is formed so as to gradually increase in thickness from the one end side toward the other end side, and the active material layer extends from one end side of the lattice body to the other end.
- the thickness of the electrode plate is the sum of the thickness of the lattice body and the thickness of the active material layer covering the lattice body. It is almost equal from one end side to the other end side.
- the electrode plate for a lead-acid battery can prevent the active material layer in the vicinity of the ears covering the grid body from becoming too thin and part of the grid body from being exposed, thereby preventing deterioration in battery performance. be able to.
- Japanese Unexamined Patent Application Publication No. 2003-86175 discloses a filled electrode plate for a lead storage battery having no surface unevenness and having no thickness variation.
- the thickness of the filling electrode plate is suppressed to a uniform thickness, and the filling electrode Flatten deposits and protrusions on both sides of the plate.
- the filled electrode plate for a lead-acid battery can prevent defects such as a short circuit more satisfactorily.
- the electrode plate design has also been considered, and several methods have been discovered. For example, as described above, the porosity of the positive electrode plate is increased by lowering the lead paste density of the positive electrode plate, thereby improving the rapid discharge characteristics of the sealed lead-acid battery. Battery life will be shortened. Alternatively, the thickness of both end portions of the electrode plate is made thinner than that of the intermediate portion, thereby overcoming the disadvantage that the active material holding force at the end portions is weak and the active material is likely to fall off.
- the electrode plate surface is flat and the electrode plate thickness is constant, more sulfuric acid cannot be retained and more chemical reaction cannot be performed, so it is difficult to increase the capacity. In addition, the designed initial capacity may not be achieved. In addition, if the electrode plate surface is flat and the electrode plate thickness is constant, the pitch between the positive electrode plate and the negative electrode plate becomes too small, which may cause a short circuit, affecting the cycle life. In addition, since the electrode plate is too flat and the separator and the electrode plate are in close contact with each other, the oxygen gas generated at the end of charging in the positive electrode plate cannot be immediately diffused to the negative electrode, affecting the recombination of oxygen gas. , Charging efficiency will decrease.
- the present invention provides an electrode plate for a battery having a simple process, low cost, good capacity, cycle life and charging efficiency, a method for manufacturing the same, an electrode plate group having the electrode plate, and a lead storage battery. For the purpose.
- the electrode plate is designed so that the end portion is formed with a protrusion to form a protruding end portion having a protrusion, and the thickness of the end portion of the electrode plate is larger than the thickness of the other portion of the electrode plate.
- the present invention is a battery electrode plate comprising a current collector and an active material layer held by the current collector, wherein the current collector is an expanded lattice produced by an expanding method
- the electrode plate includes two protruding end portions having protrusions and a flat intermediate portion located between the two end portions, and the thickness of the end portion is larger than the thickness of the intermediate portion,
- the thickness of the intermediate portion is H2 and the difference between the thickness of the end portion and the thickness of the intermediate portion is H1
- the ratio of H1 to H2 H1 / H2 is 3% to 9%.
- the ratio H1 / H2 is preferably 4% to 8%.
- the width of the end is preferably 5% to 25%, more preferably 10% to 20% of the entire width of the electrode plate.
- the protrusions of each of the two protrusion-shaped end portions may be formed on the same side of the electrode plate, or may be formed on different sides of the electrode plate. Good.
- the protrusions are preferably formed by cutting in the rotary plate method in the electrode plate cutting step, and the blade angle of the rotary cut tool used is 45 ° to 75 °. It is preferable that the angle is 50 ° to 70 °. Further, the protrusion may be formed by being cut by a punching method in the step of cutting the electrode plate.
- density or lead paste density of the active material layer of the electrode plate is preferably 4.15g / cm 3 ⁇ 5.0g / cm 3.
- battery plate of the present invention is preferably a positive electrode plate, the density or lead paste density of the active material layer of the positive electrode plate is 4.15g / cm 3 ⁇ 4.45g / cm 3 .
- the present invention is a method for producing the electrode plate, wherein in the step of cutting the electrode plate, cutting is performed by a rotary cut method, and the blade angle of the rotary cut tool used in the rotary cut method is 45 °.
- a method is further provided that is ⁇ 75 °, and the blade angle is preferably 50 ° -70 °.
- density or lead paste density of the active material layer of the electrode plate is preferably 4.15g / cm 3 ⁇ 5.0g / cm 3.
- the electrode plate is a positive electrode plate
- the density or lead paste density of the active material layer of the positive electrode plate is to be 4.15g / cm 3 ⁇ 4.45g / cm 3 preferable.
- the present invention is an electrode plate group, wherein a plurality of positive electrodes and a plurality of negative electrodes are alternately arranged via separators, and at least the positive electrode plate is the battery electrode plate of the present invention. Groups are further provided.
- the present invention further provides a lead-acid battery, which is provided with the electrode plate group of the present invention.
- the electrode plate is designed so that the end part is formed with a protrusion to be a protruding end part having a protrusion, and the thickness of the end part of the electrode plate is set to the thickness of the other part of the electrode plate.
- the pitch between the positive electrode plate and the negative electrode plate is appropriately increased, thereby significantly reducing the possibility of occurrence of a short circuit, thereby improving the cycle life.
- more electrolytic solution can be held, and more chemical reaction can be performed, thereby improving the capacity and from the positive electrode plate at the end of charging.
- the generated oxygen gas can be immediately diffused into the negative electrode plate, which is advantageous for recombination of the oxygen gas and increases the charging efficiency.
- Embodiment 1 of the battery electrode plate according to the present invention It is a schematic diagram of Embodiment 2 of the battery electrode plate according to the present invention.
- A) is a perspective view which shows typically the battery electrode plate which concerns on Embodiment 1 of this invention
- (b) is a front view of the battery electrode plate shown to (a)
- (c) is ( It is a cross-sectional view of the battery electrode plate shown in a).
- (A) is process drawing which shows the process of processing by an expanding method and manufacturing an expanded grating
- (b) is a schematic diagram which expands and shows a part of said process.
- FIG. 8 is a front view corresponding to FIG. 7.
- the present invention provides a battery electrode plate, the battery electrode plate comprising a current collector and an active material layer held by the current collector, wherein the current collector is an expanded material produced by an expanding method.
- the grid is composed of two projecting end portions having projections and a flat intermediate portion located between the two end portions, and the thickness of the end portion is the thickness of the intermediate portion.
- the thickness of the intermediate portion is H2 and the difference between the thickness of the end portion and the thickness of the intermediate portion is H1
- the ratio H1 / H2 to H2 is 3% to 9%. Is preferred.
- the thickness of the end portion refers to the maximum thickness of the protruding end portion.
- the electrode plate is designed so that the end part is formed with a protrusion to be a protruding end part having a protrusion, and the thickness of the end part of the electrode plate is set to the thickness of the other part of the electrode plate.
- the pitch between the positive electrode plate and the negative electrode plate is appropriately increased, so that a battery electrode plate having a good capacity, cycle life and charging efficiency can be provided.
- the reaction space can be increased, more sulfuric acid can be retained, and the capacity can be increased by allowing the reaction to be performed for a longer period of time.
- both ends of the electrode plate are thick, the lattice bones at the lattice cutting portions at both ends are far from the electrode plate surface, and it is difficult to cause a short circuit by breaking through the separator, and the strength of both ends is also increased. It is possible to bring about an effect of suppressing the growth of the lattice (the growth of the lattice bone), thereby improving the cycle life. Furthermore, since both ends are thick, a certain gap can be provided between the middle part of the electrode plate and the separator, which is advantageous for sending out oxygen gas during charging, and oxygen gas cannot be diffused immediately. In addition, charging efficiency can be increased by suppressing a reduction in charging efficiency due to loss of oxygen gas.
- the battery charges normally, some of the electricity is used for lead sulfate reaction and some is used for water decomposition, but oxygen gas cannot be immediately transported to the negative electrode. Gas tends to accumulate, resulting in the following two things. That is, for one thing, the oxygen gas accumulates, thereby inhibiting the reaction of lead sulfate and affecting the chemical conversion efficiency. Second, when oxygen gas accumulates, the oxygen gas cannot be immediately diffused to the negative electrode, and the oxygen gas flows away, resulting in moisture loss. Both of the above two things reduce the charging efficiency.
- the charging efficiency refers to the ease of lead sulfate reaction and the efficiency of oxygen gas circulation.
- FIG. 1 is a schematic diagram of Embodiment 1 of a battery electrode plate according to the present invention.
- the thickness of the intermediate portion of the electrode plate is H2
- the difference between the thickness of the end portion of the electrode plate and the thickness of the intermediate portion is H1
- the width of the end portion of the electrode plate is H3.
- the width of the entire electrode plate is H4.
- the protrusions of each of the two protrusion-shaped end portions are formed on the same side of the electrode plate, and are formed by being cut by a rotary cut method in a cutting process described later. It is preferable.
- FIG. 2 is a schematic view of Embodiment 2 of the battery electrode plate according to the present invention.
- the shape of each of the two protrusion-shaped ends is different from the shape of the protrusion shown in FIG. Are formed on different sides.
- the protrusion is preferably formed by being cut by a punching method in a cutting step described later.
- FIG. 3A is a perspective view of the battery electrode plate according to the first embodiment of the present invention.
- FIG. 3B is a front view of the battery electrode plate shown in FIG.
- FIG. 3C is a cross-sectional view of the battery electrode plate shown in FIG.
- the electrode plate comprises two protruding end portions having protrusions and a flat intermediate portion located between the two end portions, The end portion is thicker than the intermediate portion.
- the protrusions of the two protrusion-shaped end portions can be formed by a current collector and / or an active material layer held by the current collector. From the viewpoint of simplification of the process and cost reduction, Is preferably composed only of an active material layer.
- the thickness of the protrusion is the difference H1 in the thickness, and if the H1 is within a certain range, an appropriate gap is provided between the separator and the electrode plate, thereby effectively improving the charging efficiency. Can increase, prevent short circuit and increase capacity. If H1 is too large, the active material at both ends protrudes excessively, which increases the risk of short-circuiting, and excessively increases the gap between the electrode plates, leading to a loss of water in the battery and adverse effects. End up. On the other hand, if H1 is too small, the difference in thickness between the two end portions and the intermediate portion is not clear, and the charging efficiency cannot be increased effectively, and the effect of suppressing the growth of the grid of the electrode plate is also obtained. It will not be possible.
- the ratio H1 / H2 of H1 to H2 is preferably 3% or more and 9% or less. Furthermore, when the ratio H1 / H2 is 3% to 9%, the battery capacity can be increased by about 10% to 20% compared to the case where the ratio H1 / H2 is 0, but the effect is better. In view of the above, the ratio H1 / H2 is more preferably 4% or more and 8% or less.
- the shape of the protrusion is not particularly limited as long as it can form a protruding end, and may be, for example, a dome shape or a mountain shape.
- the thickness of the protrusion refers to the maximum thickness at the apex of the protrusion.
- the width of the protrusion is the width H3 of the end of the electrode plate. If the H3 is too large, the production is difficult and the gap between the separator and the electrode plate is too large. The expansion of the active material in the electrode plate group cannot be effectively suppressed, and the active material cannot be effectively prevented from falling off, which may lead to deterioration of the cycle life of the battery. On the other hand, if the H3 is too small, the stress at both ends of the electrode plate becomes too small, and the growth of the grid of the electrode plate cannot be effectively suppressed, so that the battery capacity becomes unstable. The cycle life is also deteriorated. Therefore, in view of the above two points, the ratio H3 / H4 is preferably 5% or more and 25% or less, and more preferably 10% or more and 20% or less.
- the electrode plate may be a positive electrode plate or a negative electrode plate, but is preferably a positive electrode plate. This is due to the following reason. That is, in a lead storage battery, gas is generated at the positive electrode, the grid of the positive electrode plate is easy to grow (lattice bone is easy to stretch), short circuit is easily generated, and the battery capacity depends on the positive electrode. This is because, when the protrusion is formed on the plate, the effect can be exhibited more than the negative plate.
- the protrusions of each of the two protruding end portions may be formed on the same side of the electrode plate or may be formed on different sides of the electrode plate, but the former is preferable. This is due to the following reason. That is, the gap formed in the state where the two protrusions are formed on the same side of the electrode plate is larger than the gap formed in the state where the two protrusions are formed on different sides of the electrode plate, and more sulfuric acid is added.
- the electrode plate in such a state can increase the charging efficiency of the battery, and also has a significant suppression effect on the end of the battery life in a very short time. Therefore, a better effect can be obtained with respect to the obtained electrode plate group and the performance of the battery using the electrode plate group.
- the protrusions may be formed by designing process conditions in the method for manufacturing the electrode plate, or by designing the configuration of the active material layer.
- the main steps are as shown in FIGS. 4A and 4B, and the following steps are performed: (1) From lead or lead alloy using a reciprocating punching die.
- the lead tape 27 is repeatedly punched to form a plurality of slits along the length direction of the lead tape, and at the same time, the slits are spread in a direction perpendicular to the surface of the lead tape so that the plurality of line portions intersect.
- Spanned grid was cut into plates having the ears 9, comprising namely a cutting step of obtaining an electrode plate 2a of the unformed, the.
- the unformed electrode plate 2a is cured, dried and formed to obtain an electrode plate.
- Chemical conversion may be performed after preparing the electrode plate group using the unformed positive electrode plate and the negative electrode plate and disposed in the battery case of the lead storage battery, or may be performed before preparation of the electrode plate group, The former is preferred.
- thicknesses refer to thicknesses of the respective parts after the battery becomes a finished product and when the finished battery product is not used.
- the projections of the two projecting end portions according to the present invention are formed simultaneously with the cutting step, that is, can be formed by designing the process conditions of the cutting step.
- the protrusion can be formed by cutting with a rotary cut method in the cutting step, or can be formed by cutting with a punching method in the cutting step.
- FIG. 5 is a schematic diagram showing a case where cutting is performed by a rotary cut method in the cutting step.
- the rotary cutting device used in the rotary cutting method includes a rotary cutting tool 5 and a support roller 4, and the rotary cutting tool 5 has a blade 5 a formed on the roller 3 and the roller 3 at regular intervals. It consists of.
- both the rotary cutting tool 5 and the support roller 4 rotate around their respective circle centers as shown by the arrows in FIG.
- the electrode plate base material filled with the lead paste 24a is subjected to the cutting force of the blade 5a of the rotary cutting tool 5 and the supporting force of the support roller 4, thereby cutting the lead plate 2 into the electrode plate 2a.
- the lead plate 2 is transported along the direction of the apparatus at a constant speed, and the rotary cutting tool 5 rotates at a speed suitable for it above the lead plate 2, so that the rotating blade 5a becomes the lead plate. 2 is cut at a certain distance, thereby obtaining the electrode plate 2a, and at the same time, protrusions 6 formed by the blade pushing away the active material at the time of cutting are formed at both ends of the electrode plate 2a.
- FIG. 5 shows a case where cutting is performed using a single rotary cutting device in the rotary cutting method, but in practice, a plurality of rotary cutting devices may be used at the same time. It is appropriately selected depending on the balance between the conveying speed and the rotational speed of the rotary cutting tool 5 and the required dimensions of the electrode plate.
- FIG. 6 is a schematic diagram showing a case where cutting is performed using a plurality of the rotary cut devices shown in FIG. 5 in the rotary cut method at the same time. Since the thickness of the projection 6 is related to the angle of the blade 5a, the thickness H1 of the projection finally formed at both ends of the electrode plate in the present invention is also related to the angle ⁇ of the blade 5a.
- the blade angle ⁇ is preferably 45 ° or greater and 75 ° or less, and more preferably 50 ° or greater and 70 ° or less.
- the features of the rotary cut method are as follows. That is, the controllability of the forward speed of the lead plate is good, the rotational speed of the rotary cutting tool is synchronized with the lead plate speed, it is easy to adjust, and an electrode plate having a large width dimension (for example, 64 mm to 140 mm) is easy to produce.
- the thickness of the electrode plate and the protrusion can be controlled by controlling the processing speed and the gap between the rotary cut tool and the support roller.
- FIG. 7 is a perspective view schematically showing a case where cutting is performed by a punching method in the cutting step.
- FIG. 8 is a front view corresponding to FIG.
- the punching die used when cutting the electrode plate by the punching method is composed of an upper die and a lower die, the upper die is a movable die 7 and the lower die is a fixed die 8.
- the movable mold 7 moves up and down, and the lead plate 2 passing between the movable mold 7 and the fixed mold 8 is subjected to the shearing force of the movable mold 7 and the supporting force of the fixed mold 8 to lead.
- the plate 2 is cut into the electrode plate 2a.
- the movable mold 7 is formed by performing punching and cutting downward at regular intervals above the lead plate 2 to obtain the electrode plate 2a and at the same time punching the movable mold 7 during cutting. Protrusions 6 are formed at both ends of the electrode plate.
- the punching method requires that the lead plate advance speed and the upper die punching cutting speed be synchronized. Therefore, the production controllability is slightly inferior and the width dimension is small (for example, 29 mm to 44.5mm) Suitable for production of electrode plates, but production speed is fast.
- the punching method normally, in the punching method, the protrusions are formed on different sides of both ends of the electrode plate. As described above, the effect that can be realized in such a state is inferior to the effect that can be realized in a state where the protrusion is formed on the same side of both end portions of the electrode plate.
- the punching method has the following disadvantages as compared with the rotary cutting method. That is, the punching stress is large, and particularly the cutting force (punching force) at both ends of the electrode plate is large, so that the active material at both ends of the electrode plate and the lattice loosen after cutting and the active material falls off. As a result, the cycle life may be reduced.
- the density of the active material layer i.e. lead paste density is preferably no greater than 4.15 g / cm 3 or more 5.0g / cm 3, 4.25g / cm 3 or more 4.8 g / cm 3 The following is more preferable.
- the lead paste density in such a range is higher than the normal lead paste density.
- the lead paste compositions of the two are different, and the density of the lead paste used for forming the protrusions is also different. That is, since the lead paste compositions of the positive electrode plate and the negative electrode plate are different, even if the lead paste densities of the two are the same and the cutting method is the same, the degree of protrusion obtained after cutting is different. Moreover, since the lead paste of the negative electrode plate needs to have a large change in the ratio of the composition components depending on the characteristics actually required, even if the lead paste density is the same, it can be obtained if the ratio of the composition components is different. The degree of protrusion is different.
- the electrode plate is a positive electrode plate
- a lead paste density of the positive electrode plate is preferably from 4.15 g / cm 3 or more 4.45g / cm 3, 4.25g / cm 3 or more More preferably, it is 4.35 g / cm 3 or less.
- the present invention provides a method for producing the electrode plate according to the present invention, wherein the method cuts the electrode plate by a rotary cut method in the cutting step of the electrode plate, and uses the blade of the rotary cut tool used in the rotary cut method.
- the angle is preferably 45 ° or greater and 75 ° or less, and more preferably 50 ° or greater and 70 ° or less.
- the density of the active material in order to ensure the strength of the active material at both ends and to keep the protrusions formed at both ends of the electrode plate when cutting the electrode plate, the density of the active material is increased, it is preferred that the density or lead paste density below 4.15 g / cm 3 or more 5.0 g / cm 3, and more preferably to 4.25 g / cm 3 or more 4.8 g / cm 3 or less. Therefore, it is preferable that the electrode plate is a positive electrode plate, a lead paste density of the positive electrode plate is preferably from 4.15 g / cm 3 or more 4.45g / cm 3, 4.25g / cm 3 or more More preferably, it is 4.35 g / cm 3 or less.
- the present invention further provides an electrode plate group, wherein the electrode plate group is formed by alternately arranging a plurality of positive electrode plates and a plurality of negative electrode plates via separators, and at least the positive electrode plate is the electrode plate of the present invention. It is. In particular, from the viewpoint of improving charge / discharge efficiency and cost reduction, it is preferable that the outermost sides of the electrode plate group are both negative electrode plates. That is, in this case, the number of the negative electrode plates is one more than that of the positive electrode plates. Furthermore, in this way, the active material of the positive electrode plate has a relatively large space, the chemical reaction of the positive electrode plate is more intense than the chemical reaction of the negative electrode plate, and the volume change of the active material before and after the reaction is large. The plate is sandwiched between the negative electrode plates, and the discharges on both sides thereof become uniform, thereby reducing the warpage of the positive electrode plate and the falling off of the active material.
- the present invention further provides a lead storage battery, wherein the lead storage battery includes the electrode plate group.
- the lead storage battery of the present invention may be a vent type lead storage battery or a control valve type lead storage battery, but is preferably a control valve type lead storage battery.
- the lead-acid battery of the present invention is characterized by including the electrode plate group, and other known structures and manufacturing methods can be used, and there is no particular limitation.
- the lead storage battery can be assembled by the following method. That is, a plurality of positive electrode plates and a plurality of negative electrode plates are alternately overlapped with each other via a separator structure to obtain an electrode plate group. Then, the positive electrode ears having the same polarity in each electrode plate group are welded with a metal plate such as lead, aluminum or copper material by fusion welding or cast welding to obtain a positive electrode strap, and the same polarity in each electrode plate group The negative electrode ear portion is welded with a metal plate such as lead, aluminum, or copper by fusion welding or cast welding to obtain a negative electrode strap.
- Each electrode plate group is accommodated in a plurality of cell chambers partitioned by partition walls in the battery case.
- each electrode plate group is connected in series, that is, a plurality of cells are connected in series.
- the positive electrode strap and the negative electrode strap at the last both ends become a positive electrode end and a negative electrode end, respectively.
- the positive terminal is connected to a positive terminal, and the negative terminal is connected to a negative terminal.
- the electrolytic solution is sulfuric acid having a concentration of 1.1 to 1.4 g / ml, and may contain an additive such as silicon dioxide.
- Example 1- Production of positive electrode plate Positive electrode lead paste as a positive electrode active material by kneading raw material lead powder (a mixture of lead and lead oxide), water and dilute sulfuric acid in a weight ratio of about 100: 12: 14 Got.
- a lead tape containing a Pb alloy containing about 0.07 mass% Ca and about 1.3 mass% Sn obtained by casting was extruded to a thickness of 1.3 mm.
- the lead tape 27 is repeatedly punched with a reciprocating punching die, and a plurality of slits are formed along the length direction of the lead tape.
- the slit was widened in a direction perpendicular to the surface of the lead tape, thereby forming a mesh sheet having a mesh 25 constituted by a plurality of linear portions intersecting each other.
- the mesh sheet was shaped with a pair of shaping rollers to obtain an expanded lattice.
- the lead plate 24 was formed by filling the mesh 25 with the lead paste 24a as the positive electrode active material along the length direction of the lattice on the expanded lattice. Then, the lead plate 2 was cut by a rotary cut method to obtain a positive electrode plate having positive electrode ears 9. At this time, the rotary angle of the used rotary cutting tool was 45 °, and protrusions were formed on both end portions on the same side of the positive electrode plate. Curing, drying, and chemical conversion were performed on the positive electrode plate formed by cutting in this way to obtain a positive electrode plate in which the positive electrode active material layer was held on the grid of the positive electrode plate. The chemical conversion may be performed before the electrode plate group is assembled, or may be performed after the electrode plate group is assembled and disposed in the battery case of the lead storage battery.
- the thickness ratio H1 / H2 of the obtained protrusion was 3%
- the width ratio H3 / H4 was 15%
- the density of the obtained lead paste was 4.3 g / cm 3 .
- a negative electrode lead paste as a negative electrode active material was obtained by kneading raw material lead powder, water and dilute sulfuric acid at a weight ratio of about 100: 10: 4.
- a negative electrode plate expanded grid as a negative electrode current collector is prepared by a reciprocating type expansion method similar to the positive electrode plate. did.
- the negative electrode lead paste was filled in the expanded lattice of the negative electrode plate, the expanded lattice (that is, the lead plate) filled with the lead paste was cut by a rotary cut method to obtain a negative electrode plate having a negative electrode ear.
- the blade angle of the used rotary cut tool was 40 °.
- an unformed negative electrode plate was obtained. Curing, drying, and chemical conversion were performed on the unformed negative electrode plate to obtain a negative electrode plate in which the negative electrode active material layer was held on the lattice of the negative electrode plate.
- the chemical conversion may be performed before the electrode plate group is assembled, or may be performed after the electrode plate group is assembled and disposed in the battery case of the lead storage battery.
- the obtained negative electrode plate has a flat surface and a uniform thickness, and no protrusion is formed at the end of the negative electrode plate. Therefore, the thickness ratio H1 / H2 of the end is 0, and the width ratio. H3 / H4 was 0.
- the lead paste density of the obtained negative electrode plate was 4.8 g / cm 3 .
- each electrode plate group obtained as described above positive electrode ears having the same polarity were welded to obtain positive electrode straps, and negative electrode ears having the same polarity were welded to obtain negative electrode straps.
- Six electrode plate groups were accommodated in six cell chambers partitioned by partition walls in the battery case. Two negative electrode groups adjacent to each other were connected in series by welding the negative electrode strap of one electrode plate group to the positive electrode strap of the adjacent electrode plate group. In this manner, each electrode plate group was connected in series. That is, each cell was connected in series.
- the positive electrode strap of one electrode plate group is connected to the positive electrode terminal and the negative electrode strap of the other electrode plate group is connected to the negative electrode. Connected to the terminal. Thereafter, a battery lid was attached to the opening of the battery case. Then, sulfuric acid having a concentration of 1.242 g / ml was injected into each cell from a liquid mouth provided on the battery lid as an electrolytic solution, and chemical conversion was performed in the battery case. After the formation, a lead storage battery was obtained by fixing a valve for releasing the gas and pressure generated inside the battery to the liquid mouth part. The battery has a capacity of 65 Ah and a rated voltage of 12V.
- the cycle life measurement method is as follows.
- the degree of the electrolyte reaction effect is specifically indicated by the discharge capacity of the battery, and the good or bad of the electrolyte reaction effect can be expressed by measuring the discharge capacity of the battery.
- the battery capacity is measured as follows.
- the measurement method of charging efficiency (charging time) is as follows.
- the battery was charged at a constant voltage of 13.7 V at 25 ° C., and when the charging current became 0.003 times or less of the rated capacity, it was determined that the battery was fully charged, and charging was terminated.
- the time from the start of charging to the end of charging was defined as the charging time (the unit is time, simply written as h). In general, the charging efficiency is better when the charging time is shorter.
- Examples 2 to 4 The blade angle of the rotary cutting tool used in the step of cutting the positive electrode plate was increased to 50 ° to 60 °, and the thickness ratio H1 / H2 of the protrusions obtained was increased to 4% to 6%.
- an electrode plate group and a lead storage battery were produced by the same arrangement and manufacturing method as in Example 1.
- Example 5 In the cutting process of the positive electrode plate and the negative electrode plate, a punching method was used for both. Except that, an electrode plate group and a lead storage battery were produced by the same arrangement and manufacturing method as in Example 4.
- Examples 6 to 8- The blade angle of the rotary cutting tool used in the cutting process of the positive electrode plate was increased to 65 ° to 75 °, and the thickness ratio H1 / H2 of the protrusions obtained was increased to 7% to 9%.
- an electrode plate group and a lead storage battery were produced by the same arrangement and manufacturing method as in Example 1.
- Example 1 Reduce the blade angle of the rotary cutting tool used in the cutting process of the positive electrode plate and the negative electrode plate to 40 °, or use the punching method in the cutting process of the positive electrode plate and the negative electrode plate, and do not form the protrusions. That is, the ratio H1 / H2 and the ratio H3 / H4 in the positive electrode plate and the negative electrode plate were all 0, and the lead paste density of the positive electrode plate was 4.2 g / cm 3 . Other than that, an electrode plate group and a lead storage battery were produced by the same arrangement and manufacturing method as in Example 1.
- Example 2 The blade angle of the rotary cutting tool used in the cutting process of the positive electrode plate was reduced to 40 °, and the thickness ratio H1 / H2 of the obtained protrusion was reduced to 1%.
- an electrode plate group and a lead storage battery were produced by the same arrangement and manufacturing method as in Example 1.
- Example 5 and Example 4 have the same ratio H1 / H2 and ratio H3 / H4 of the protrusions formed on the positive electrode plate and the negative electrode plate, respectively, and only the cutting method used is different. From the results obtained in Example 4 and Example 5, the protrusions are formed by the punching method in the electrode plate cutting process, and the thickness and width of the obtained protrusions are set within a certain range. As a result, the cycle life, capacity, and charging efficiency of the battery can be improved, but it can be seen that the improvement in the effect is slightly inferior to the case where the protrusion is formed by the rotary cut method under the same conditions.
- Examples 9 to 14- The blade angle of the rotary cutting tool used in the cutting process of the positive electrode plate is kept at 60 °, the thickness ratio H1 / H2 of the obtained protrusion is kept at 6%, and the lead paste density of the positive electrode plate is 4.15 g / cm 3.
- the width ratio H3 / H4 of the obtained protrusions was changed within the range of 5% to 25%, while changing within the range of ⁇ 4.45 g / cm 3 .
- an electrode plate group and a lead storage battery were produced by the same arrangement and manufacturing method as in Example 1.
- Example 15- The blade angle of the rotary cutting tool used in the cutting process of the positive electrode plate is set to 60 °, the thickness ratio H1 / H2 of the obtained protrusion is set to 6%, and the lead paste density of the positive electrode plate is set to 4.3 g / cm 3.
- the width ratio H3 / H4 of the protrusions to be made was 15%.
- the blade angle of the rotary cutting tool used in the cutting process is set to 60 °
- the thickness ratio H1 / H2 of the obtained protrusion is set to 6%
- the lead paste density of the negative electrode plate is 5.0 g. / to cm 3
- a width ratio H3 / H4 of projections obtained was 15%.
- an electrode plate group and a lead storage battery were produced by the same arrangement and manufacturing method as in Example 1.
- Example 15 The arrangement of the positive electrode plate of Example 15 is exactly the same as that of Example 4, except for the arrangement of the negative electrode plate. Comparing Example 15 with the results obtained in Example 4, by forming appropriate protrusions on both the positive electrode plate and the negative electrode plate, compared to the case of forming protrusions only on the positive electrode plate or the negative electrode plate, It can be seen that the cycle life, capacity and charging efficiency of the battery can be further improved.
- Example 16- In the cutting process of the positive electrode plate, a punching method is adopted, the thickness ratio H1 / H2 of the protrusions formed at both ends of the positive electrode plate is 2.5%, and the lead paste density of the positive electrode plate is 4.3 g / cm 3. The width ratio H3 / H4 of the resulting protrusion was 5%. Moreover, although the punching method was used also in the negative electrode plate, no protrusion was formed. Other than that, an electrode plate group and a lead storage battery were produced by the same arrangement and manufacturing method as in Example 1.
- Example 16 From the results obtained in Example 16, by forming protrusions by a punching method in the cutting process of the electrode plate, and setting the thickness and width of the protrusions to be within a certain range, It can be seen that cycle life, capacity and charging efficiency can be improved.
- a lead storage battery having a good cycle life, capacity and charging efficiency can be effectively produced at low cost by simple adjustment of the process.
- the present invention provides a battery electrode plate having a simple process, low cost, good capacity, cycle life, and charging efficiency, and a lead-acid battery having the electrode plate. It can be applied to power sources for electric bicycles, electric motorcycles, electric scooters, moped electric motorcycles, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
電池用極板及びその製造方法、該極板を有する極板群並びに鉛蓄電池を提供する。極板は、集電体と、該集電体に保持される活物質層とを備え、集電体はエキスパンド法によって作製されたエキスパンド格子であり、極板は、突起を有する2つの突起状の端部と、この2つの端部間に位置する平坦な中間部分とからなり、端部の厚さは中間部分の厚さより大きく、中間部分の厚さをH2とし、端部の厚さと中間部分の厚さとの差をH1とするとき、H2に対するH1の比H1/H2は3%~9%である。本発明においては、端部が突起を形成されて突起を有する突起状の端部になるように極板を設計し、且つ極板の端部の厚さを極板の他の部分の厚さより大きくすることによって、正極板と負極板との間のピッチを適度に大きくしたことにより、電池のサイクル寿命、容量及び充電効率が大幅に向上している。
Description
本発明は、電池用極板及びその製造方法に関し、具体的には、プロセスが簡単で、低コストで、且つ良好な容量とサイクル寿命と充電効率とを兼ね備えた電池用極板及びその製造方法、該極板を有する極板群並びに鉛蓄電池に関する。
鉛蓄電池は、車両の始動用電源及びバックアップ用電源のほか、主電源としての用途、即ち例えば電気自動車、電動自転車、電動オートバイ、電動スクーター、原付電動二輪車、ゴルフカート等の動力用電源や太陽エネルギー用電池等、独立して充放電する機器用の電源としての用途に広く用いられている。これらの用途において、鉛蓄電池には、始動時の電流が大きく、車両走行時の放電電流が小さく、放電時間が長いといった動作上の特徴がある。それとともに、鉛蓄電池には、メンテナンスを少なくすることが求められており、特にそのサイクル寿命を長くすることが求められている。電池の長寿命化については、極板群に加わる圧力を高くするとともにセパレータで正極活物質を圧迫し、それによって正極活物質の膨張を抑制し、正極活物質の脱落を防ぐということが通常行われている。しかしながら、電池の大型化に伴い、たとえ電槽を補強するために材質を変えたり電槽の肉厚を大きくしたりしても、極板群に適切な圧力を加えて維持することが困難になっている。また、鉛蓄電池は、その使用期間が長くなるにしたがい正極集電体の酸化によって腐食が発生するので、正極集電体の断面積が低減し、正極板の導電性の低下を招いてしまい、その結果、電池がハイレート放電を行うときの電圧特性が低下してしまう。このような正極集電体の腐食がさらに進めば、最終的には正極集電体自身が破断してしまう。よって、電池容量が急低下し、寿命が尽きてしまう。
鉛蓄電池の使用中に充放電を繰り返すと、電池性能は次第に低下する。電池性能が低下すると、電池の内圧が上昇することによって、正極板と負極板との間に大きな圧力が加わる場合がある。このとき、電極群は圧縮又は変形を起こしやすい。即ち、電極群には、電池の内圧が上昇すると圧しつぶされやすいという傾向がある。
一方、電子機器の小型化及び軽量化の急速な発展に伴い、電源としての鉛蓄電池には、体積を小さくすること及び充放電容量を高くすることも求められている。電池の正負極板間の距離を短くすることは、容量を変えずに体積を低減する有効な手段である。しかし、正負極板が近づきすぎると、内部短絡の危険性が生じてしまう。正極板が負極板と短絡を起こすと、電池内部の温度が上昇するが、極板群には、このときにも安全性を確保する機能が求められる。しかも、電池の電力特性及び充放電容量を維持するという観点から、極板群のイオン透過性並びに電解液の吸収及び保持性能も確保する必要がある。
どのようにして鉛蓄電池の総合的な性能、例えばサイクル寿命、容量及び充放電効率を向上させるかという点に関して、従来、格子合金や鉛ペーストの調製方法等については既に考慮されてきた。しかも、極板の構造及び性能が鉛蓄電池の体積、電力特性、充放電容量及びサイクル寿命に大きく影響することから、極板の性能及び構造についてもさまざまな検討が行われてきた。
中国実用新案第CN201820837U号公報には、極板両面塗布用同反り度ペースト遮断板が開示されており、それが解決しようとする課題は次の通りである。即ち、従来のペースト遮断板は、下端の作業面が平面であり、ペースト吐出の際、鉛ペーストによる一定の圧力で極板が下方へくぼんでペースト遮断板と極板中央部との距離が増大し、中央部のペースト塗布量が相対的に多くなっていた。そして、両面塗布後における硬化前の極板は、往々にして中央部が厚く両端部が薄くなっており、硬化後に極板が著しく湾曲し、極板の品質に影響していた。上記の極板両面塗布用同反り度ペースト遮断板は、ペースト遮断板と、ペースト遮断板内に設けられ、極板にペースト塗布を行うためのペースト流出口とを備え、上記ペースト流出口がペースト遮断板を上下に貫通している極板両面塗布用同反り度ペースト遮断板であって、ペースト遮断板下端の作業面は外向きに突出した円弧形であることを特徴とする。そして、外向きに突出した円弧形の作業面は、極板の変形量を補い極板のペースト塗布厚さを実質的に同じにして製品の品質を向上できるように、下向きにくぼんだ極板と釣り合っている。
中国実用新案第CN201906687U号公報には、コータにおいて極板厚さを制御する偏心調節装置が開示されている。該偏心調節装置は、実働中に極板厚さをランダムに検出することができ、変動が発生した場合には、コータを通過する極板の厚さが一定になるように、コータを停止させることなく動的に調節することができる。
特開昭57-21068号公報には、密閉形鉛蓄電池用正極の製造法が開示されている。該密閉形鉛蓄電池用正極の製造法は、鉛ペースト密度がわずか3.0~3.4g/cm3(通常の鉛ペースト密度は3.7~4.1g/cm3)の活物質鉛ペーストを格子に充填し、乾燥することを特徴としている。該方法が解決しようとする課題とは、正極板のペースト密度を低くすることにより正極板の多孔度を大きくし、それによって密閉形鉛蓄電池の急放電特性を改善することである。しかし、鉛ペースト密度を小さくすることにより寿命が短くなることを抑制するために、鉛ペーストにポリ四フッ化エチレンの水性ディスパージョンを添加している。
特開昭58-223259号公報には、鉛蓄電池極板の製造法が開示されている。該鉛蓄電池極板の製造法は、鉛又は鉛合金よりなる帯状のエキスパンド格子板に活物質鉛ペーストを充填した後、その長手方向に一定の間隔をおいて若干の巾をもつ切断部を加圧、圧縮し、この切断部の中心を切断して個々の極板とした後、乾燥することを特徴としている。該文献の図4に示す通り、該製造法によって得られる極板の両端部の厚さは中間部より薄い。該製造法が解決しようとする課題とは、切断部における活物質の保持力が弱く、活物質が脱落しやすいという従来の欠点を克服することである。
特開2007-258088号公報には、一端側に集電用の耳部を有する格子体に活物質を充填してなる鉛蓄電池用極板が開示されている。該鉛蓄電池用極板において、前記格子体は、前記一端側から他端側に向かって徐々に厚さが厚くなるように形成され、前記活物質層は、前記格子体の一端側から他端側に向かって徐々に厚さが薄くなるように形成され、それによって、前記格子体の厚さと該格子体を覆う活物質層の厚さとの和である極板の厚さが前記格子体の一端側から他端側までほぼ等しくなっている。前記鉛蓄電池用極板は、格子体を覆う耳部付近の活物質層の厚さが薄くなりすぎて格子体の一部が露出してしまうことを防止でき、それによって電池性能の低下を防ぐことができる。
特開2003-86175号公報には、厚さのバラツキがなく、表面に凹凸のない表面平滑な鉛蓄電池用充填極板が開示されている。基板に活物質鉛ペーストを充填するとともに乾燥工程を行って得られた充填極板にロールプレスのローラ間隙間を通過させることで、充填極板の厚さを押さえて均一な厚さとし、充填極板両面の付着物や突起を平らにする。前記鉛蓄電池用充填極板は、短絡等の不具合をより良好に防ぐことができる。
これらのことから、これまで従来技術においては、鉛蓄電池用極板の表面を平坦にし、厚さを均一にすることが鉛蓄電池の性能にとって有利であり、しかもこのようにすることが電池の組立て及び充電における化成にも有利であると考えられてきたことが分かる。そして、従来、極板の設計についても考慮がなされ、いくつかの方法が発見されている。例えば、前述の通り、正極板の鉛ペースト密度を低くすることにより正極板の多孔度を大きくし、それによって密閉形鉛蓄電池の急放電特性を改善しているが、鉛ペースト密度を低くすると、電池の寿命が短くなってしまう。或いは、極板の両端部の厚さを中間部より薄くすることで、端部における活物質保持力が弱く活物質が脱落しやすいという欠点を克服している。
しかしながら、極板表面が平坦で極板厚さが一定であると、より多くの硫酸を保持して化学反応をより多く行わせることができないので、容量をより高くしていくことが困難で、且つ設計した初期容量にすることができない可能性がある。しかも、極板表面が平坦で極板厚さが一定であると、正極板と負極板との間のピッチが小さくなりすぎ、短絡のおそれがあり、サイクル寿命に影響してしまう。また、極板が平坦すぎてセパレータと極板とが密着しすぎることにより、正極板で充電末期において発生する酸素ガスをすぐに負極へ拡散させることができず、酸素ガスの再結合に影響し、充電効率が低下してしまう。
よって、従来、極板の性能や構造についてはさまざまな検討がなされてきたが、如何にして極板の形状及び構造の設計により鉛蓄電池に良好なサイクル寿命と容量特性と充電効率とを兼ね備えさせるかという点については考慮されてこなかった。よって、この点について検討する必要に迫られていた。
本発明は、プロセスが簡単で、低コストで、且つ良好な容量とサイクル寿命と充電効率とを兼ね備えた電池用極板及びその製造方法、該極板を有する極板群並びに鉛蓄電池を提供することを目的とする。
本発明は、端部が突起を形成されて突起を有する突起状の端部になるように極板を設計し、且つ極板の端部の厚さを極板の他の部分の厚さより大きくすることによって、上記の技術的課題を解決した。
即ち、本発明は、集電体と、該集電体に保持される活物質層とを備え、前記集電体がエキスパンド法によって作製されたエキスパンド格子である電池用極板であって、前記極板は、突起を有する2つの突起状の端部と、該2つの端部間に位置する平坦な中間部分とからなり、前記端部の厚さは、前記中間部分の厚さより大きく、前記中間部分の厚さをH2とし、前記端部の厚さと前記中間部分の厚さとの差をH1とするとき、H2に対するH1の比H1/H2は3%~9%である電池用極板を提供する。
本発明の電池用極板において、前記比H1/H2は4%~8%であることが好ましい。
本発明の電池用極板において、前記端部の幅は前記極板全体の幅の5%~25%であることが好ましく、10%~20%であることがより好ましい。
本発明の電池用極板において、前記2つの突起状の端部のそれぞれが有する突起は、前記極板の同じ側に形成されていてもよく、前記極板の異なる側に形成されていてもよい。
本発明の電池用極板において、前記突起は前記極板の切断工程においてロータリーカット方式で切断されて形成されたものであることが好ましく、使用するロータリーカットバイトの刃角は45°~75°であることが好ましく、50°~70°であることがより好ましい。また、前記突起は、前記極板の切断工程において押抜き方式で切断されて形成されたものであってもよい。
本発明の電池用極板において、前記極板の活物質層の密度即ち鉛ペースト密度は4.15g/cm3~5.0g/cm3であることが好ましい。
また、本発明の電池用極板は正極板であることが好ましく、前記正極板の活物質層の密度即ち鉛ペースト密度は4.15g/cm3~4.45g/cm3であることが好ましい。
本発明は、前記極板を製造するための方法であって、前記極板の切断工程においては、ロータリーカット方式で切断を行い、該ロータリーカット方式において使用するロータリーカットバイトの刃角は45°~75°である方法をさらに提供し、該刃角は50°~70°であることが好ましい。
本発明の前記方法において、前記極板の活物質層の密度即ち鉛ペースト密度は4.15g/cm3~5.0g/cm3であることが好ましい。
本発明の前記方法において、前記極板は正極板であることが好ましく、前記正極板の活物質層の密度即ち鉛ペースト密度は4.15g/cm3~4.45g/cm3であることが好ましい。
本発明は、極板群であって、複数の正極板と複数の負極板とがセパレータを介して交互に並べられてなり、少なくとも前記正極板が本発明の前記電池用極板である極板群をさらに提供する。
本発明は、鉛蓄電池であって、本発明の前記極板群を備える鉛蓄電池をさらに提供する。
本発明によれば、端部が突起を形成されて突起を有する突起状の端部になるように極板を設計し、且つ極板の端部の厚さを極板の他の部分の厚さより大きくすることによって、正極板と負極板との間のピッチを適度に大きくし、それにより短絡発生の可能性を大幅に低減したことで、サイクル寿命が向上している。また、正極板と負極板との間の隙間には、より多くの電解液を保持させて、化学反応をより多く行わせることができ、それによって容量が向上するとともに、充電末期において正極板から発生する酸素ガスをすぐに負極板へ拡散させることができ、酸素ガスの再結合に有利で、充電効率が高くなる。
以下、図面を参照しながら本発明について説明を行う。説明の簡略化のため、図面において、実質的に同じ機能を有する構成要素については同じ符号で示す。また、本発明は以下の実施形態に限定されない。
本発明は電池用極板を提供し、該電池用極板は、集電体と、該集電体に保持される活物質層とを備え、前記集電体はエキスパンド法によって作製されたエキスパンド格子であって、前記極板は突起を有する2つの突起状の端部と、該2つの端部間に位置する平坦な中間部分とからなり、前記端部の厚さは前記中間部分の厚さより大きく、前記中間部分の厚さをH2とし、前記端部の厚さと前記中間部分の厚さとの差をH1とするとき、H2に対するH1の比H1/H2は3%~9%であることが好ましい。前記端部の厚さとは、突起状の端部の最大厚さを指す。
本発明によれば、端部が突起を形成されて突起を有する突起状の端部になるように極板を設計し、且つ極板の端部の厚さを極板の他の部分の厚さより大きくすることによって、正極板と負極板との間のピッチを適度に大きくしたことにより、良好な容量とサイクル寿命と充電効率とを兼ね備えた電池用極板を提供することができる。具体的には、まず、反応スペースを大きくすることができ、より多くの硫酸を保持することができ、反応をより長期にわたって行わせることで、容量を上げることができる。次に、極板の両端部が厚いので、両端部の格子切断箇所の格子骨が極板表面から遠く、セパレータを突き破ることによる短絡を起こしにくくなるとともに、両端部の強度も大きくなり、極板の格子の成長(格子の骨が伸びること)を抑制する作用をもたらすことができ、それによってサイクル寿命を向上させることができる。さらに、両端部が厚いので、極板の中間部分とセパレータとの間に一定の隙間を設けることができ、充電時の酸素ガスの送り出しに有利であり、酸素ガスをすぐに拡散させられないことや酸素ガスのロスによる充電効率の低下を抑制することによって、充電効率を高めることができる。電池が正常に充電するとき、電気量のうち一部は硫酸鉛の反応に用いられ、一部は水の分解に用いられるが、酸素ガスをすぐに負極へ運ぶことができない場合には、酸素ガスが溜まりやすく、結果として次の二つのことが生じる。即ち、一つには、酸素ガスが溜まることによって硫酸鉛の反応が阻害され、化成の効率に影響してしまう。また、二つには、酸素ガスが溜まることによって、酸素ガスを負極へすぐに拡散させることができず、酸素ガスが流失し、水分損失が生じてしまう。上記二つのことはともに充電効率を低下させてしまう。ここで、充電効率とは、硫酸鉛反応の行いやすさ及び酸素ガス循環の効率のことを指す。
図1は、本発明に係る電池用極板の実施形態1の模式図である。図1に示す通り、前記極板の中間部分の厚さをH2とし、前記極板の端部の厚さと中間部分の厚さとの差をH1とし、前記極板の端部の幅をH3とし、前記極板全体の幅をH4とする。
図1において、前記2つの突起状の端部のそれぞれが有する突起は、前記極板の同じ側に形成されたものであり、後述の切断工程においてロータリーカット方式で切断されることによって形成されることが好ましい。
図2は本発明に係る電池用極板の実施形態2の模式図である。図2に示す通り、2つの突起状の端部のそれぞれが有する突起の形状は、図1に示す突起の形状と異なる上に、2つの突起状の端部のそれぞれが有する突起は前記極板の異なる側に形成されている。該突起は、後述の切断工程において押抜き方式で切断されることによって形成されたものであることが好ましい。
図3(a)は本発明の実施形態1に係る電池用極板の斜視図である。図3(b)は図3(a)に示す電池用極板の正面図である。図3(c)は図3(a)に示す電池用極板の横断面図である。
図3(a)、(b)及び(c)に示す通り、前記極板は突起を有する2つの突起状の端部と、該2つの端部間に位置する平坦な中間部分とからなり、前記端部の厚さは前記中間部分の厚さより大きい。2つの突起状の端部が有する突起は、集電体及び/又は該集電体に保持される活物質層によって形成することができるが、プロセスの簡略化やコスト抑制の点から、前記突起は活物質層のみからなるものであることが好ましい。
前記突起の厚さとは即ち前記の厚さの差H1であり、該H1が一定の範囲にあれば、セパレータと極板との間に適切な隙間が設けられ、それによって充電効率を効果的に高め、短絡を防ぎ、容量を上げることができる。H1が大きすぎると、両端部の活物質が過度に突出し、かえって短絡のリスクが大きくなってしまうとともに、極板間の隙間も過度に大きくなり、電池の水分損失を早め、逆効果になってしまう。一方、H1が小さすぎると、両端部と中間部分との厚さの差がはっきりせず、充電効率を効果的に高めることができない上に、極板の格子の成長を抑制する効果もあまり得られなくなってしまう。よって、上記の2つの点に鑑み、H2に対するH1の比H1/H2は3%以上9%以下であることが好ましい。さらに、比H1/H2が3%~9%である場合は、比H1/H2が0である場合と比べて電池容量を約10%~20%高めることができるが、より良好に効果を発揮させるという点から、比H1/H2は4%以上8%以下であることがより好ましい。
なお、前記突起の形状は特に限定されず、突起状の端部を形成できさえすればよく、例えばドーム形状、山形状等であってもよい。前記突起の厚さとは、突起の頂点における最大厚さを指す。
前記突起の幅とは即ち前記極板の端部の幅H3のことであり、該H3が大きすぎると、生産が困難である上に、セパレータと極板との間の隙間が大きすぎるので、極板群における活物質の膨張を効果的に抑制したり、活物質の脱落を効果的に防止したりすることができず、それによって電池のサイクル寿命の悪化を招いてしまうおそれがある。また、該H3が小さすぎると、極板の両端部の応力が小さくなりすぎ、極板の格子の成長を効果的に抑制することができないので、電池の容量が不安定になってしまう上に、サイクル寿命も悪化してしまう。よって、上記の2つの点を鑑み、比H3/H4は5%以上25%以下であることが好ましく、10%以上20%以下であることがより好ましい。
前記極板は、正極板であっても負極板であってもよいが、正極板であることが好ましい。これは以下の理由による。即ち、鉛蓄電池においては正極にガスが発生すること、正極板の格子は成長しやすく(格子骨が伸びやすく)、短絡が発生しやすいこと、そして、電池容量は正極に左右されるので、正極板に前記突起を形成すると、負極板に比べてその効果をより発揮させられること、という理由である。
前記2つの突起状の端部のそれぞれが有する突起は、前記極板の同じ側に形成してもよく、前記極板の異なる側に形成してもよいが、前者が好ましい。これは次の理由による。即ち、2つの前記突起を極板の同じ側に形成した状態において形成される隙間は、2つの前記突起を極板の異なる側に形成した状態において形成される隙間より大きく、より多くの硫酸を保持でき、電池の容量を上げることができる上に、このような状態の極板は電池の充電効率を高めることができるとともに、電池寿命がごく短期で尽きてしまうことについても著しい抑制効果を有するので、得られる極板群及び該極板群を用いた電池の性能についてより良好な効果が得られるからである。
前記突起は、前記極板の製造方法におけるプロセス条件の設計によって形成してもよく、活物質層の構成の設計によって形成してもよい。
極板の製造方法において、主なステップは図4(a)及び図4(b)に示す通りであり、下記の工程、即ち、(1)レシプロ式押抜き型を用いて鉛又は鉛合金からなる鉛テープ27に押抜きを繰り返し行い、複数のスリットを鉛テープの長さ方向に沿って形成すると同時に、該スリットを鉛テープ表面と垂直な方向に広げることによって、複数の線条部が交差して構成される網目25を有する網状シートを形成するエキスパンド工程と、(2)前記網状シートを整形型の1対のローラで整形し、エキスパンド格子を得る整形工程と、(3)前記エキスパンド格子上で格子の長さ方向に沿って網目25へ活物質としての鉛ペースト24aを充填して鉛プレート2を形成する鉛ペースト充填工程と、(4)前記鉛ペースト24aが充填されたエキスパンド格子を切断し、耳部9を有する極板にし、即ち未化成の極板2aを得る切断工程と、を備える。
その後、未化成の極板2aに対して硬化、乾燥及び化成を行い、極板を得る。化成は、未化成の正極板及び負極板を用いて極板群を作製するとともに鉛蓄電池の電槽内へ配設した後に行ってもよく、極板群の作製前に行ってもよいが、前者が好ましい。
なお、前記全ての「厚さ」とは、電池が完成品になった後且つ該電池完成品の未使用時における各部分が有する厚さを指す。
本発明に係る前記2つの突起状の端部がそれぞれ有する突起は、前記切断工程を行うと同時に形成されるものであり、即ち、前記切断工程のプロセス条件の設計によって形成することができる。具体的に、前記突起は、前記切断工程においてロータリーカット方式で切断を行うことにより形成することもでき、前記切断工程において押抜き方式で切断を行うことにより形成することもできる。
図5は、前記切断工程においてロータリーカット方式で切断を行った場合を示す模式図である。図5に示す通り、ロータリーカット方式において用いるロータリーカット装置は、ロータリーカットバイト5と支持ローラ4とを備え、ロータリーカットバイト5は、ローラ3と該ローラ3に一定の間隔で形成された刃5aとからなる。切断工程において、ロータリーカットバイト5及び支持ローラ4の両者は、図5の矢印に示す通り、それぞれの円心を軸として回転し、その両者の間を通過する鉛プレート2(即ち、エキスパンド格子に鉛ペースト24aを充填してなる極板母材)にロータリーカットバイト5の刃5aの切断力及び支持ローラ4の支持力を受けさせることで、該鉛プレート2を切断して極板2aにする。具体的には、鉛プレート2が一定の速度で装置の方向に沿って運ばれ、ロータリーカットバイト5が鉛プレート2の上方においてそれに合った速度で回転することにより、回転する刃5aが鉛プレート2を一定の距離で切断し、それによって極板2aを得ると同時に、刃が切断時に活物質を押しのけることで形成される突起6が該極板2aの両端部に形成される。図5には、ロータリーカット方式において1つのロータリーカット装置を用いて切断を行う場合を示したが、実際には複数のロータリーカット装置を同時に用いてもよく、ロータリーカット装置の数量はエキスパンド格子の運搬速度とロータリーカットバイト5の回転速度との釣り合いや必要な極板の寸法等によって適宜選択される。図6は、ロータリーカット方式において図5に示すロータリーカット装置を同時に複数用いて切断を行う場合を示す模式図である。前記突起6の厚さは刃5aの角度と関係があるので、本発明において最終的に極板の両端部に形成される突起の厚さH1も刃5aの角度αと関係がある。よって、突起の厚さH1が本発明における必要な範囲に収まるように刃角αを制御する必要がある。刃角αは45°以上75°以下であることが好ましく、50°以上70°以下であることがより好ましい。
前記ロータリーカット方式の特長は以下の点にある。即ち、鉛プレートの前進速度の制御性が良好で、ロータリーカットバイトの回転速度が鉛プレート速度と同期し、調節しやすく、幅寸法の大きな(例えば64mm~140mm)極板を生産しやすい。しかも、加工速度やロータリーカットバイトと支持ローラとの間の隙間を制御することで、極板及び前記突起の厚さを制御することができる。
図7は、前記切断工程において押抜き方式で切断を行う場合を模式的に示す斜視図である。図8は、図7に対応する正面図である。
押抜き方式で極板を切断する場合に用いる押抜き型は、上型と下型とからなり、上型は可動型7であり、下型は固定型8である。切断工程において、可動型7は上下に移動し、可動型7と固定型8との間を通過する鉛プレート2に可動型7のせん断力及び固定型8の支持力を受けさせることで、鉛プレート2を切断して極板2aにする。具体的に、可動型7は、鉛プレート2の上方において一定時間ごとに下方へ押抜き切断を行うことで、極板2aを得ると同時に、切断時に可動型7が押し抜くことで形成される突起6が該極板の両端部に形成される。
ロータリーカット方式に比べ、前記押抜き方式には鉛プレートの前進速度と上型の押抜き切断速度とを同期させることが求められるので、生産調節性はやや劣り、幅寸法の小さな(例えば29mm~44.5mm)極板の生産向きであるが、生産速度は速い。
図8に示す通り、通常、押抜き方式においては前記極板の両端部の異なる側に前記突起が形成される。上記の通り、このような状態において実現できる効果は、前記極板の両端部の同じ側に前記突起が形成される状態において実現できる効果よりも劣る。しかも、ロータリーカット方式に比べて、押抜き方式にはさらに以下の不利な点が存在する。即ち、押抜き応力が大きく、特に極板両端への切断力(押抜き力)が大きいので、切断後に極板両端部の活物質と格子との接触がゆるんで該活物質が脱落してしまい、それによってサイクル寿命の低下を招いてしまうおそれがあるという点である。
よって、本発明においては、ロータリーカット方式及び押抜き方式の二者のうち、ロータリーカット方式を用いることがより好ましい。
また、本発明において、極板切断時に極板の両端部に形成される突起を保つには、両端部の活物質の強度を上げることで、即ち活物質の密度を上げることでそれを実現することができる。これにより、極板切断後に、両端部が厚い状態を保つことができる。この点から、前記活物質層の密度、即ち鉛ペースト密度は、4.15g/cm3以上5.0g/cm3以下であることが好ましく、4.25g/cm3以上4.8g/cm3以下であることがより好ましい。このような範囲の鉛ペースト密度は、通常の鉛ペースト密度より高い。しかし、正極板及び負極板の二者について言えば、この二者のそれぞれの鉛ペースト組成は異なるものであり、前記突起の形成に用いる鉛ペースト密度も異なるものである。つまり、正極板及び負極板の二者の鉛ペースト組成は異なるので、それら二者の鉛ペースト密度が同じで切断方法が同じであったとしても、切断後に得られる突起の程度は異なる。しかも、負極板の鉛ペーストは実際に求められる特性によってその組成成分の比率を大きく変える必要があるので、その鉛ペースト密度が同じであったとしても、その組成成分の比率が異なれば、得られる突起の程度は異なる。よって、前記極板は正極板であることが好ましく、該正極板の鉛ペースト密度は、4.15g/cm3以上4.45g/cm3以下であることが好ましく、4.25g/cm3以上4.35g/cm3以下であることがより好ましい。
本発明は、本発明の前記極板を製造するための方法を提供し、該方法は、前記極板の切断工程においてロータリーカット方式で切断を行い、該ロータリーカット方式において用いるロータリーカットバイトの刃角は45°以上75°以下であることが好ましく、50°以上70°以下であることがより好ましい。
また、本発明の前記方法において、両端部の活物質の強度を確保して極板切断時に極板の両端部に形成される突起を保つために、活物質の密度を高め、活物質層の密度即ち鉛ペースト密度を4.15g/cm3以上5.0g/cm3以下にすることが好ましく、4.25g/cm3以上4.8g/cm3以下にすることがより好ましい。よって、前記極板は正極板であることが好ましく、該正極板の鉛ペースト密度は、4.15g/cm3以上4.45g/cm3以下であることが好ましく、4.25g/cm3以上4.35g/cm3以下であることがより好ましい。
本発明は、極板群をさらに提供し、該極板群は、複数の正極板と複数の負極板とがセパレータを介して交互に並べられてなり、少なくとも正極板が本発明の前記極板である。特に、充放電効率の向上及びコスト抑制の観点から、前記極板群の最も外側がともに負極板であることが好ましい。即ち、この場合には、負極板が正極板より1枚多くなる。さらに、このようにすると、正極板の活物質は空間的に比較的ゆとりがあり、且つ正極板の化学反応は負極板の化学反応より激しく、反応前後の活物質の体積変化が大きいので、正極板が負極板の間に挟まれるようになり、その両側の放電が均一になって、それにより正極板の反りや活物質の脱落を低減することができる。
本発明は、鉛蓄電池をさらに提供し、該鉛蓄電池は前記極板群を備えることを特徴とする。本発明の鉛蓄電池は、ベント形鉛蓄電池であっても制御弁式鉛蓄電池であってもよいが、制御弁式鉛蓄電池であることが好ましい。
本発明の鉛蓄電池は、前記極板群を備えることを特徴とし、他の構造や製造方法には従来の公知のものを用いることができ、特に制限はない。
例えば、前記鉛蓄電池は以下の方法によって組み立てることができる。即ち、複数の前記正極板と複数の前記負極板とをそれぞれセパレータ構造体を介して交互に重ね合わせることにより、極板群を得る。それから、それぞれの極板群において同極性である正極耳部を融接又は鋳込み溶接により鉛、アルミ又は銅材等の金属板で溶接し、正極ストラップを得るとともに、それぞれの極板群において同極性である負極耳部を融接又は鋳込み溶接により鉛、アルミ又は銅材等の金属板で溶接し、負極ストラップを得る。電槽における隔壁によって区画された複数のセル室に、各極板群をそれぞれ収容する。一の極板群の負極ストラップを、隣接するセル(単電池)の極板群の正極ストラップと、鉛、アルミ又は銅材等の金属板で溶接した後、前記隣接するセルの極板群の負極ストラップを、さらに次の隣接するセルにおける極板群の正極ストラップと、鉛、アルミ又は銅材等の金属板で溶接する。このように直列に接続していくと、各極板群が直列に接続され、つまり複数のセルが直列に接続されることになる。最後の両端の正極ストラップ及び負極ストラップは、それぞれ正極端及び負極端になる。前記正極端は正極端子と接続し、前記負極端は負極端子と接続する。
その後、電池蓋を電槽の開口部に取り付ける。それから、電池蓋に設けられた液口部から各セルへ電解液を注入した後、電槽内で化成を行う。通常、電解液は濃度1.1~1.4g/mlの硫酸であり、二酸化ケイ素等の添加物を含んでいてもよい。化成後、電池内部で発生するガスや圧力を逃がすための弁を液口部に固定することで、鉛蓄電池を得る。
以下、実施例に基づいて本発明を具体的に説明するが、これらの実施例は本発明の例示に過ぎず、本発明はこれらの実施例に限定されない。
-実施例1-
(1)正極板の作製
原料の鉛粉(鉛と酸化鉛との混合物)と水と希硫酸とを約100:12:14の重量比で混練することにより、正極活物質としての正極鉛ペーストを得た。
(1)正極板の作製
原料の鉛粉(鉛と酸化鉛との混合物)と水と希硫酸とを約100:12:14の重量比で混練することにより、正極活物質としての正極鉛ペーストを得た。
また、鋳造によって得られた約0.07質量%のCaと約1.3質量%のSnとを含むPb合金を含む鉛テープを1.3mm厚さに押出成形した。図4(a)及び図4(b)に示す通り、まず、エキスパンド工程を行い、レシプロ式押抜き型で鉛テープ27に押抜きを繰り返し行い、複数のスリットを鉛テープの長さ方向に沿って形成すると同時に、該スリットを鉛テープ表面と垂直な方向に広げることによって、複数の線条部が交差して構成される網目25を有する網状シートを形成した。それから、前記網状シートを整形型の1対のローラで整形し、エキスパンド格子を得た。それから、前記エキスパンド格子上で格子の長さ方向に沿って網目25へ正極活物質としての鉛ペースト24aを充填して鉛プレート2を形成した。それから、ロータリーカット方式で鉛プレート2を切断し、正極耳部9を有する正極板にした。このとき、使用したロータリーカットバイトの刃角は45°であり、該正極板の同じ側の両端部に突起を形成した。このように切断して形成した正極板に対して硬化、乾燥及び化成を行い、正極板の格子に正極活物質層が保持されている正極板を得た。前記化成は、極板群を組み立てる前に行ってもよく、極板群を組み立てて鉛蓄電池の電槽内へ配設した後に行ってもよい。
得られた正極板の各構成要素のパラメータについては、以下の表1に示す値を参照のこと。このうち、得られた突起の厚さ比H1/H2は3%、幅比H3/H4は15%、得られた鉛ペーストの密度は4.3g/cm3であった。
(2)負極板の作製
原料の鉛粉と水と希硫酸とを約100:10:4の重量比で混練することにより、負極活物質としての負極鉛ペーストを得た。約0.07質量%のCaと約0.25質量%のSnとを含むPb合金を用いて、前記正極板と類似のレシプロ式エキスパンド法により、負極集電体としての負極板エキスパンド格子を作製した。前記負極鉛ペーストを負極板のエキスパンド格子に充填した後、前記鉛ペーストを充填したエキスパンド格子(即ち、鉛プレート)をロータリーカット方式で切断して負極耳部を有する負極板にした。このとき、使用したロータリーカットバイトの刃角は40°であった。このようにして、未化成の負極板を得た。未化成の負極板に対して硬化、乾燥及び化成を行うことで、負極板の格子に負極活物質層が保持されている負極板を得た。前記化成は、極板群を組み立てる前に行ってもよく、極板群を組み立てて鉛蓄電池の電槽内へ配設した後に行ってもよい。
原料の鉛粉と水と希硫酸とを約100:10:4の重量比で混練することにより、負極活物質としての負極鉛ペーストを得た。約0.07質量%のCaと約0.25質量%のSnとを含むPb合金を用いて、前記正極板と類似のレシプロ式エキスパンド法により、負極集電体としての負極板エキスパンド格子を作製した。前記負極鉛ペーストを負極板のエキスパンド格子に充填した後、前記鉛ペーストを充填したエキスパンド格子(即ち、鉛プレート)をロータリーカット方式で切断して負極耳部を有する負極板にした。このとき、使用したロータリーカットバイトの刃角は40°であった。このようにして、未化成の負極板を得た。未化成の負極板に対して硬化、乾燥及び化成を行うことで、負極板の格子に負極活物質層が保持されている負極板を得た。前記化成は、極板群を組み立てる前に行ってもよく、極板群を組み立てて鉛蓄電池の電槽内へ配設した後に行ってもよい。
得られた負極板の各構成要素のパラメータについては、以下の表1に示す値を参照のこと。このうち、得られた負極板は表面が平坦で厚さが均一であり、該負極板の端部には突起が形成されていないので、端部の厚さ比H1/H2は0、幅比H3/H4は0であった。得られた負極板の鉛ペースト密度は4.8g/cm3であった。
(3)鉛蓄電池の作製
複数の前記正極板と複数の前記負極板とをそれぞれ前記セパレータ構造体を介して交互に重ね合わせることにより、極板群を得た。
複数の前記正極板と複数の前記負極板とをそれぞれ前記セパレータ構造体を介して交互に重ね合わせることにより、極板群を得た。
上記のようにして得られたそれぞれの極板群において、同極性である正極耳部をそれぞれ溶接して正極ストラップを得るとともに、同極性である負極耳部をそれぞれ溶接して負極ストラップを得た。電槽における隔壁によって区画された6つのセル室に、6つの極板群をそれぞれ収容した。一の極板群の負極ストラップを、隣接する極板群の正極ストラップと溶接することで、互いに隣接する2つの極板群を直列に接続した。このようにしていき、各極板群を順に直列接続した。つまり、各セルを直列に接続した。
前記直列接続した複数の極板群において、最後の両端に位置する2つの極板群のうち、一方の極板群の正極ストラップを正極端子と接続し、他方の極板群の負極ストラップを負極端子と接続した。その後、電池蓋を電槽の開口部に取り付けた。それから、電池蓋に設けられた液口部から各セルへ、電解液として濃度1.242g/mlの硫酸を注入するとともに、電槽内で化成を行った。化成後、電池内部で発生するガスや圧力を逃がすための弁を液口部に固定することで、鉛蓄電池を得た。該電池の容量は65Ahであり、定格電圧は12Vである。
(4)鉛蓄電池の性能についての評価
(A)上記のようにして得られた鉛蓄電池についてサイクル寿命特性を測定した。得られた結果を以下の表1に示す。
(A)上記のようにして得られた鉛蓄電池についてサイクル寿命特性を測定した。得られた結果を以下の表1に示す。
サイクル寿命の測定方法は以下の通りである。
作製後30日以内の新品の電池に対して電圧、内部抵抗及び重さを測定した後、環境温度25±2℃の条件において16.25A(アンペア)で放電終止電圧の10.5Vになるまで放電した後、該電池を充電して満充電状態にした。充電は、14.7Vの定電圧で、最大充電電流26A以下という条件で行った。このような1回の充電ステップが終了した後、これを1回目のサイクルとした。上記の条件でさらに放電及び充電を行い、上記のサイクルを繰り返して、電池の放電容量が1回目のサイクルにおける放電容量の50%まで降下した時点で試験を終了し、行った充放電サイクルのサイクル数を求め、該サイクル数をサイクル寿命とした。
(B)上記のようにして得られた鉛蓄電池について容量(電解液反応効果)を測定した。得られた結果を以下の表1に示す。
電解液反応効果の程度は電池の放電容量によって具体的に示され、電池の放電容量を測定することにより電解液反応効果の良し悪しを表現することができる。電池の容量の測定方法は以下の通りである。
作製後30日以内の新品の電池に対して電圧、内部抵抗及び重さを測定した後、環境温度25±2℃の条件において16.25A(アンペア)で放電終止電圧の10.5Vになるまで放電した後、放電時間を記録し(単位は時間、単にhと記す)、それによって電池の容量を求めた。
(C)上記のようにして得られた鉛蓄電池について充電効率(充電時間)を測定した。得られた結果を以下の表1に示す。
充電効率(充電時間)の測定方法は以下の通りである。
25℃で13.7Vの定電圧充電を行い、充電電流が定格容量の0.003倍以下になった時点で、満充電状態になったと判定し、充電を終了した。充電開始から充電終了までの時間を充電時間とした(単位は時間、単にhと記す)。一般的に、充電時間の短いもののほうが充電効率は良い。
-実施例2~4-
正極板の切断工程において使用するロータリーカットバイトの刃角を50°~60°に増やし、得られる突起の厚さ比H1/H2を4%~6%に高めた。それ以外は全て実施例1と同じ配設及び製造方法により極板群及び鉛蓄電池を作製した。
正極板の切断工程において使用するロータリーカットバイトの刃角を50°~60°に増やし、得られる突起の厚さ比H1/H2を4%~6%に高めた。それ以外は全て実施例1と同じ配設及び製造方法により極板群及び鉛蓄電池を作製した。
-実施例5-
正極板及び負極板の切断工程において、ともに押抜き方式を用いた。それ以外は全て実施例4と同じ配設及び製造方法により極板群及び鉛蓄電池を作製した。
正極板及び負極板の切断工程において、ともに押抜き方式を用いた。それ以外は全て実施例4と同じ配設及び製造方法により極板群及び鉛蓄電池を作製した。
-実施例6~8-
正極板の切断工程において使用するロータリーカットバイトの刃角を65°~75°に増やし、得られる突起の厚さ比H1/H2を7%~9%に高めた。それ以外は全て実施例1と同じ配設及び製造方法により極板群及び鉛蓄電池を作製した。
正極板の切断工程において使用するロータリーカットバイトの刃角を65°~75°に増やし、得られる突起の厚さ比H1/H2を7%~9%に高めた。それ以外は全て実施例1と同じ配設及び製造方法により極板群及び鉛蓄電池を作製した。
-比較例1-
正極板及び負極板の切断工程において使用するロータリーカットバイトの刃角を40°に減らすか、或いは正極板及び負極板の切断工程においてともに押抜き方式を用い、しかも、ともに前記突起を形成せず、即ち正極板及び負極板における比H1/H2と比H3/H4とを全て0にし、正極板の鉛ペースト密度は4.2g/cm3にした。それ以外は全て実施例1と同じ配設及び製造方法により極板群及び鉛蓄電池を作製した。
正極板及び負極板の切断工程において使用するロータリーカットバイトの刃角を40°に減らすか、或いは正極板及び負極板の切断工程においてともに押抜き方式を用い、しかも、ともに前記突起を形成せず、即ち正極板及び負極板における比H1/H2と比H3/H4とを全て0にし、正極板の鉛ペースト密度は4.2g/cm3にした。それ以外は全て実施例1と同じ配設及び製造方法により極板群及び鉛蓄電池を作製した。
-比較例2-
正極板の切断工程において使用するロータリーカットバイトの刃角を40°に減らし、得られる突起の厚さ比H1/H2を1%に低減した。それ以外は全て実施例1と同じ配設及び製造方法により極板群及び鉛蓄電池を作製した。
正極板の切断工程において使用するロータリーカットバイトの刃角を40°に減らし、得られる突起の厚さ比H1/H2を1%に低減した。それ以外は全て実施例1と同じ配設及び製造方法により極板群及び鉛蓄電池を作製した。
-比較例3-
正極板の切断工程において使用するロータリーカットバイトの刃角を80°に増やし、得られる突起の厚さ比H1/H2を10%に高めた。それ以外は全て実施例1と同じ配設及び製造方法により極板群及び鉛蓄電池を作製した。
正極板の切断工程において使用するロータリーカットバイトの刃角を80°に増やし、得られる突起の厚さ比H1/H2を10%に高めた。それ以外は全て実施例1と同じ配設及び製造方法により極板群及び鉛蓄電池を作製した。
上記の各実施例及び比較例において得られた極板の各構成要素及び鉛蓄電池に対する評価結果については、以下の表1、2に示す値を参照のこと。
実施例1~4及び実施例6~8において得られた結果から、刃角及び前記突起の厚さ比を一定の範囲内になるように設定することにより、即ち刃角を45°~75°の範囲内、比H1/H2を3%~9%の範囲内にすることにより、電池のサイクル寿命、容量及び充電効率が大幅に向上するということが分かる。特に、刃角を50°~70°の範囲内、比H1/H2を4%~8%の範囲内にすることで、さらに高い効果が得られるということが分かる。
実施例5と実施例4とは、それぞれ正極板及び負極板に形成される突起の比H1/H2及び比H3/H4が同じで、用いる切断方式のみが異なる。実施例4及び実施例5において得られた結果から、極板の切断工程において押抜き方式で突起を形成するとともに、得られる突起の厚さ及び幅が一定の範囲内になるように設定することによっても、電池のサイクル寿命、容量及び充電効率を改善することができるが、同等の条件においてロータリーカット方式で突起を形成した場合に比べると効果の改善幅はやや劣るということが分かる。
比較例1において得られた結果から、比H1/H2が0且つ比H3/H4が0であるとき、前記突起は形成されておらず、極板の両端部と中間部分とには厚さの差がないということが分かる。この場合において得られた電池のサイクル寿命、容量及び充電効率は、参照値とすることができる。
なお、理論上、極板の切断過程において極板の端部には必ず微小な突起が形成されることになるが、鉛ペースト密度が低い場合又はロータリーカットバイトの刃角が小さすぎる場合には、前記微小突起の強度が弱くなり、電池完成品を作製する後工程において、例えば極板積層工程等で押圧力や重力を受けることにより前記微小突起は圧しつぶされて平らになるので、電池完成品作製後の比H1/H2及び比H3/H4はともに0になる。
比較例2において得られた結果から、比H1/H2が1%しかない場合、前記突起の厚さが小さくなり、極板の両端部と中間部分との厚さの差があまり大きくならないが、電池のサイクル寿命、容量及び充電効率については全てある程度改善されるということが分かる。
比較例3において得られた結果から、前記突起の比H1/H2が9%を上回り10%である場合、前記突起の厚さH1が大きすぎて極板とセパレータとのピッチが大きくなりすぎてしまい、極板の水分損失を招いて酸素ガスが失われ、液枯れを起こしてしまうので、電池のサイクル寿命、容量及び充電効率については基本的に比較例1と同等になる。
-実施例9~14-
正極板の切断工程において使用するロータリーカットバイトの刃角を60°に保ち、得られる突起の厚さ比H1/H2を6%に保つとともに、正極板の鉛ペースト密度を4.15g/cm3~4.45g/cm3の範囲内で変化させ、得られる突起の幅比H3/H4を5%~25%の範囲内で変化させた。それ以外は全て実施例1と同じ配設及び製造方法により極板群及び鉛蓄電池を作製した。
正極板の切断工程において使用するロータリーカットバイトの刃角を60°に保ち、得られる突起の厚さ比H1/H2を6%に保つとともに、正極板の鉛ペースト密度を4.15g/cm3~4.45g/cm3の範囲内で変化させ、得られる突起の幅比H3/H4を5%~25%の範囲内で変化させた。それ以外は全て実施例1と同じ配設及び製造方法により極板群及び鉛蓄電池を作製した。
実施例9~14において得られた結果から、正極板の活物質層の密度即ち鉛ペースト密度と、得られる突起の幅比とを一定の範囲内になるように設定することで、電池のサイクル寿命、容量及び充電効率について明らかな改善効果が得られることが分かった。
-実施例15-
正極板の切断工程において使用するロータリーカットバイトの刃角を60°にし、得られる突起の厚さ比H1/H2を6%にし、正極板の鉛ペースト密度を4.3g/cm3にし、得られる突起の幅比H3/H4を15%にした。それとともに、負極板においても、切断工程において使用するロータリーカットバイトの刃角を60°にし、得られる突起の厚さ比H1/H2を6%にし、且つ負極板の鉛ペースト密度を5.0g/cm3にし、得られる突起の幅比H3/H4を15%にした。それ以外は全て実施例1と同じ配設及び製造方法により極板群及び鉛蓄電池を作製した。
正極板の切断工程において使用するロータリーカットバイトの刃角を60°にし、得られる突起の厚さ比H1/H2を6%にし、正極板の鉛ペースト密度を4.3g/cm3にし、得られる突起の幅比H3/H4を15%にした。それとともに、負極板においても、切断工程において使用するロータリーカットバイトの刃角を60°にし、得られる突起の厚さ比H1/H2を6%にし、且つ負極板の鉛ペースト密度を5.0g/cm3にし、得られる突起の幅比H3/H4を15%にした。それ以外は全て実施例1と同じ配設及び製造方法により極板群及び鉛蓄電池を作製した。
実施例15の正極板の配設は実施例4と全く同じで、負極板の配設のみが異なる。実施例15を、実施例4において得られた結果と比較すると、正極板及び負極板の両方に適切な突起を形成することで、正極板又は負極板のみに突起を形成する場合と比べて、電池のサイクル寿命、容量及び充電効率をさらに改善できるということが分かる。
-実施例16-
正極板の切断工程において押抜き方式を採用し、正極板の両端部に形成される突起の厚さ比H1/H2を2.5%にし、正極板の鉛ペースト密度を4.3g/cm3にし、得られる突起の幅比H3/H4を5%にした。また、負極板においても押抜き方式を用いたが、突起は形成しなかった。それ以外は全て実施例1と同じ配設及び製造方法により極板群及び鉛蓄電池を作製した。
正極板の切断工程において押抜き方式を採用し、正極板の両端部に形成される突起の厚さ比H1/H2を2.5%にし、正極板の鉛ペースト密度を4.3g/cm3にし、得られる突起の幅比H3/H4を5%にした。また、負極板においても押抜き方式を用いたが、突起は形成しなかった。それ以外は全て実施例1と同じ配設及び製造方法により極板群及び鉛蓄電池を作製した。
実施例16において得られた結果から、極板の切断工程において押抜き方式で突起を形成し、得られる突起の厚さ及び幅を一定の範囲内になるように設定することによっても、電池のサイクル寿命、容量及び充電効率を改善することができるということが分かる。
上記の通り、本発明はプロセスの簡単な調整によって、良好なサイクル寿命と容量と充電効率とを兼ね備えた鉛蓄電池を低コストで効果的に作製することができる。
本発明は、プロセスが簡単で、低コストで、且つ良好な容量とサイクル寿命と充電効率とを兼ね備えた電池用極板及び該極板を有する鉛蓄電池を提供し、該電池は、電気自動車、電動自転車、電動オートバイ、電動スクーター、原付電動二輪車等の動力用電源に適用可能である。
Claims (20)
- 集電体と、
該集電体に保持される活物質層と、
を備え、
前記集電体がエキスパンド法によって作製されたエキスパンド格子である電池用極板であって、
前記電池用極板は、突起を有する2つの突起状の端部と、該2つの端部間に位置する平坦な中間部分とからなり、
前記端部の厚さは、前記中間部分の厚さより大きく、
前記中間部分の厚さをH2とし、前記端部の厚さと前記中間部分の厚さとの差をH1とするとき、H2に対するH1の比H1/H2は3%~9%であることを特徴とする電池用極板。 - 前記比H1/H2は4%~8%であることを特徴とする、請求項1に記載の電池用極板。
- 前記端部の幅は前記電池用極板全体の幅の5%~25%であることを特徴とする、請求項1に記載の電池用極板。
- 前記端部の幅は前記電池用極板全体の幅の10%~20%であることを特徴とする、請求項3に記載の電池用極板。
- 前記2つの突起状の端部のそれぞれが有する突起は、前記電池用極板の同じ側に形成されていることを特徴とする、請求項1に記載の電池用極板。
- 前記2つの突起状の端部のそれぞれが有する突起は、前記電池用極板の異なる側に形成されていることを特徴とする、請求項1に記載の電池用極板。
- 前記突起は前記電池用極板の切断工程においてロータリーカット方式で切断されて形成されたものであることを特徴とする、請求項1に記載の電池用極板。
- 前記ロータリーカット方式において使用するロータリーカットバイトの刃角は45°~75°であることを特徴とする、請求項7に記載の電池用極板。
- 前記ロータリーカット方式において使用するロータリーカットバイトの刃角は50°~70°であることを特徴とする、請求項8に記載の電池用極板。
- 前記突起は、前記電池用極板の切断工程において押抜き方式で切断されて形成されたものであることを特徴とする、請求項1に記載の電池用極板。
- 前記電池用極板の活物質層の密度は4.15g/cm3~5.0g/cm3であることを特徴とする、請求項1に記載の電池用極板。
- 前記電池用極板は正極板であることを特徴とする、請求項1に記載の電池用極板。
- 前記正極板の活物質層の密度は4.15g/cm3~4.45g/cm3であることを特徴とする、請求項12に記載の電池用極板。
- 請求項1~6のいずれか1項に記載の電池用極板を製造するための方法であって、
前記電池用極板の切断工程においては、ロータリーカット方式で切断を行い、
該ロータリーカット方式において使用するロータリーカットバイトの刃角は45°~75°であることを特徴とする製造方法。 - 前記刃角は50°~70°であることを特徴とする、請求項14に記載の製造方法。
- 前記電池用極板の活物質層の密度即ち鉛ペースト密度は4.15g/cm3~5.0g/cm3であることを特徴とする、請求項14に記載の製造方法。
- 前記電池用極板は正極板であることを特徴とする、請求項14に記載の製造方法。
- 前記正極板の活物質層の密度即ち鉛ペースト密度は4.15g/cm3~4.45g/cm3であることを特徴とする、請求項17に記載の製造方法。
- 極板群であって、
複数の正極板と複数の負極板とがセパレータを介して交互に並べられてなり、
少なくとも前記正極板が請求項1~11のいずれか1項に記載の電池用極板であることを特徴とする極板群。 - 鉛蓄電池であって、
請求項19に記載の極板群を備えることを特徴とする鉛蓄電池。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN7723DEN2014 IN2014DN07723A (ja) | 2012-02-29 | 2013-01-23 | |
JP2013514482A JP5325358B1 (ja) | 2012-02-29 | 2013-01-23 | 電池用極板及びその製造方法、該極板を有する極板群並びに鉛蓄電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210051092.7 | 2012-02-29 | ||
CN201210051092.7A CN102593430B (zh) | 2012-02-29 | 2012-02-29 | 电池用极板及其制造方法、具有该极板的极板组和铅蓄电池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013128793A1 true WO2013128793A1 (ja) | 2013-09-06 |
Family
ID=46481795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/000323 WO2013128793A1 (ja) | 2012-02-29 | 2013-01-23 | 電池用極板及びその製造方法、該極板を有する極板群並びに鉛蓄電池 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5325358B1 (ja) |
CN (1) | CN102593430B (ja) |
IN (1) | IN2014DN07723A (ja) |
WO (1) | WO2013128793A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015045313A1 (ja) * | 2013-09-30 | 2015-04-02 | パナソニックIpマネジメント株式会社 | 鉛蓄電池 |
CN109546240A (zh) * | 2018-11-29 | 2019-03-29 | 陈明 | 一种铅酸蓄电池组修复仪 |
WO2022267503A1 (zh) * | 2021-06-26 | 2022-12-29 | 宁德时代新能源科技股份有限公司 | 电化学装置、电子装置 |
US11652199B2 (en) | 2018-10-16 | 2023-05-16 | Lg Energy Solution, Ltd. | Ultrathin foil transferring and processing method capable of reducing curling of ultrathin foil and preventing folding thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020137258A1 (ja) * | 2018-12-28 | 2020-07-02 | パナソニックIpマネジメント株式会社 | 電池 |
CN112259710B (zh) * | 2020-10-21 | 2023-04-07 | 中国船舶重工集团衡远科技有限公司 | 连续板栅涂覆分切系统 |
CN114566724B (zh) * | 2022-01-27 | 2023-09-15 | 淄博火炬能源有限责任公司 | 铅酸电池正极活性物质修复方法 |
CN117352665B (zh) * | 2023-12-05 | 2024-02-27 | 时代广汽动力电池有限公司 | 一种锂电池极片绝缘层减薄工艺 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10188952A (ja) * | 1996-12-27 | 1998-07-21 | Fuji Film Selltec Kk | 電池用電極とこれを用いた電池 |
JPH10255818A (ja) * | 1997-03-14 | 1998-09-25 | Nitto Denko Corp | 捲回型電池 |
JP2001015146A (ja) * | 1999-06-30 | 2001-01-19 | Matsushita Electric Ind Co Ltd | 電 池 |
JP2002124249A (ja) * | 2000-10-17 | 2002-04-26 | Matsushita Electric Ind Co Ltd | 電池用電極板とその製造方法及び電池 |
JP2006012835A (ja) * | 2004-06-23 | 2006-01-12 | Samsung Sdi Co Ltd | 二次電池 |
JP2006040878A (ja) * | 2004-07-28 | 2006-02-09 | Samsung Sdi Co Ltd | リチウムイオン二次電池 |
JP2006128106A (ja) * | 2004-10-28 | 2006-05-18 | Samsung Sdi Co Ltd | 二次電池 |
JP2008078109A (ja) * | 2006-08-25 | 2008-04-03 | Toyota Motor Corp | 蓄電装置用電極及び蓄電装置 |
JP2009038016A (ja) * | 2007-07-09 | 2009-02-19 | Panasonic Corp | 非水電解質二次電池用電極板およびそれを用いた非水電解質二次電池 |
JP2010103089A (ja) * | 2008-09-26 | 2010-05-06 | Nissan Motor Co Ltd | 双極型二次電池、双極型二次電池の製造方法、双極型電極、双極型電極の製造方法、組電池 |
JP2012181922A (ja) * | 2011-02-28 | 2012-09-20 | Hitachi Vehicle Energy Ltd | 塗布型電極群を用いた電池 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5098144B2 (ja) * | 2005-10-05 | 2012-12-12 | ソニー株式会社 | 負極および電池 |
CN201160094Y (zh) * | 2008-01-10 | 2008-12-03 | 周雨方 | 一种蓄电池的极板 |
CN201758154U (zh) * | 2010-08-12 | 2011-03-09 | 肇庆理士电源技术有限公司 | 一种涂板装置 |
CN202495519U (zh) * | 2012-02-29 | 2012-10-17 | 松下蓄电池(沈阳)有限公司 | 电池用极板、具有该极板的极板组和铅蓄电池 |
-
2012
- 2012-02-29 CN CN201210051092.7A patent/CN102593430B/zh active Active
-
2013
- 2013-01-23 WO PCT/JP2013/000323 patent/WO2013128793A1/ja active Application Filing
- 2013-01-23 JP JP2013514482A patent/JP5325358B1/ja not_active Expired - Fee Related
- 2013-01-23 IN IN7723DEN2014 patent/IN2014DN07723A/en unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10188952A (ja) * | 1996-12-27 | 1998-07-21 | Fuji Film Selltec Kk | 電池用電極とこれを用いた電池 |
JPH10255818A (ja) * | 1997-03-14 | 1998-09-25 | Nitto Denko Corp | 捲回型電池 |
JP2001015146A (ja) * | 1999-06-30 | 2001-01-19 | Matsushita Electric Ind Co Ltd | 電 池 |
JP2002124249A (ja) * | 2000-10-17 | 2002-04-26 | Matsushita Electric Ind Co Ltd | 電池用電極板とその製造方法及び電池 |
JP2006012835A (ja) * | 2004-06-23 | 2006-01-12 | Samsung Sdi Co Ltd | 二次電池 |
JP2006040878A (ja) * | 2004-07-28 | 2006-02-09 | Samsung Sdi Co Ltd | リチウムイオン二次電池 |
JP2006128106A (ja) * | 2004-10-28 | 2006-05-18 | Samsung Sdi Co Ltd | 二次電池 |
JP2008078109A (ja) * | 2006-08-25 | 2008-04-03 | Toyota Motor Corp | 蓄電装置用電極及び蓄電装置 |
JP2009038016A (ja) * | 2007-07-09 | 2009-02-19 | Panasonic Corp | 非水電解質二次電池用電極板およびそれを用いた非水電解質二次電池 |
JP2010103089A (ja) * | 2008-09-26 | 2010-05-06 | Nissan Motor Co Ltd | 双極型二次電池、双極型二次電池の製造方法、双極型電極、双極型電極の製造方法、組電池 |
JP2012181922A (ja) * | 2011-02-28 | 2012-09-20 | Hitachi Vehicle Energy Ltd | 塗布型電極群を用いた電池 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015045313A1 (ja) * | 2013-09-30 | 2015-04-02 | パナソニックIpマネジメント株式会社 | 鉛蓄電池 |
US11652199B2 (en) | 2018-10-16 | 2023-05-16 | Lg Energy Solution, Ltd. | Ultrathin foil transferring and processing method capable of reducing curling of ultrathin foil and preventing folding thereof |
CN109546240A (zh) * | 2018-11-29 | 2019-03-29 | 陈明 | 一种铅酸蓄电池组修复仪 |
WO2022267503A1 (zh) * | 2021-06-26 | 2022-12-29 | 宁德时代新能源科技股份有限公司 | 电化学装置、电子装置 |
Also Published As
Publication number | Publication date |
---|---|
CN102593430A (zh) | 2012-07-18 |
IN2014DN07723A (ja) | 2015-05-15 |
CN102593430B (zh) | 2014-01-29 |
JP5325358B1 (ja) | 2013-10-23 |
JPWO2013128793A1 (ja) | 2015-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5325358B1 (ja) | 電池用極板及びその製造方法、該極板を有する極板群並びに鉛蓄電池 | |
JP5106712B2 (ja) | 鉛蓄電池及び電動車両 | |
JP4900627B2 (ja) | 鉛蓄電池用格子板、極板及びこの極板を備えた鉛蓄電池 | |
US20080241647A1 (en) | Cylindrical lithium secondary battery | |
WO2013018486A1 (ja) | 非水電解質二次電池用活物質及びその製造方法並びにそれを用いた負極 | |
WO2015045313A1 (ja) | 鉛蓄電池 | |
JP4997948B2 (ja) | 鉛蓄電池 | |
KR20210129096A (ko) | 고용량 유지율의 리튬 이온 전지 및 그 제조 방법과 충방전 방식 | |
CN107112543B (zh) | 铅蓄电池用正极格栅及其制造方法以及铅蓄电池 | |
WO2012124525A1 (ja) | 非水電解質二次電池及びその製造方法 | |
KR20140142576A (ko) | 이차전지용 전극의 제조 방법 및 이로부터 제조된 전극을 포함하는 이차전지 | |
JP5230845B2 (ja) | 鉛蓄電池用の極板群、鉛蓄電池、及び鉛蓄電池用の極板群の製造方法 | |
JP5016306B2 (ja) | 鉛蓄電池 | |
CN102903966B (zh) | 密封式铅蓄电池 | |
JP6551012B2 (ja) | 鉛蓄電池用負極および鉛蓄電池 | |
JP2011048911A (ja) | 鉛蓄電池用格子基板及びこの格子基板を用いた鉛蓄電池 | |
EP3035433B1 (en) | Lead-acid battery | |
JP2002093409A (ja) | 制御弁式鉛蓄電池 | |
JP4655657B2 (ja) | 捲回形鉛蓄電池 | |
CN202495519U (zh) | 电池用极板、具有该极板的极板组和铅蓄电池 | |
CN203491336U (zh) | 铅蓄电池 | |
JP2007305370A (ja) | 鉛蓄電池 | |
JP3637603B2 (ja) | 鉛蓄電池 | |
JP2014197456A (ja) | 鉛蓄電池用正極格子体の製造方法及び鉛蓄電池 | |
WO2023195233A1 (ja) | 亜鉛電池用負極及び亜鉛電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013514482 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13754606 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13754606 Country of ref document: EP Kind code of ref document: A1 |