WO2013161703A1 - Procédé de production d'un catalyseur moulé et procédé de production d'un diène ou d'un aldéhyde insaturé et/ou d'un acide carboxylique insaturé l'utilisant - Google Patents
Procédé de production d'un catalyseur moulé et procédé de production d'un diène ou d'un aldéhyde insaturé et/ou d'un acide carboxylique insaturé l'utilisant Download PDFInfo
- Publication number
- WO2013161703A1 WO2013161703A1 PCT/JP2013/061624 JP2013061624W WO2013161703A1 WO 2013161703 A1 WO2013161703 A1 WO 2013161703A1 JP 2013061624 W JP2013061624 W JP 2013061624W WO 2013161703 A1 WO2013161703 A1 WO 2013161703A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- producing
- molded
- reaction
- molded catalyst
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 143
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 47
- 150000001732 carboxylic acid derivatives Chemical class 0.000 title claims 4
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 title claims 4
- 150000001993 dienes Chemical class 0.000 title description 2
- 239000000843 powder Substances 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims abstract description 33
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 29
- 230000001133 acceleration Effects 0.000 claims abstract description 28
- 238000005839 oxidative dehydrogenation reaction Methods 0.000 claims abstract description 17
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 15
- 239000011733 molybdenum Substances 0.000 claims abstract description 15
- 238000005469 granulation Methods 0.000 claims abstract description 10
- 230000003179 granulation Effects 0.000 claims abstract description 10
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 9
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 9
- 230000003197 catalytic effect Effects 0.000 claims abstract description 8
- 238000000465 moulding Methods 0.000 claims description 38
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 36
- 238000006243 chemical reaction Methods 0.000 claims description 27
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 26
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 24
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 claims description 20
- 239000007789 gas Substances 0.000 claims description 14
- 229910052760 oxygen Inorganic materials 0.000 claims description 14
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 12
- 229910001882 dioxygen Inorganic materials 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 229910052742 iron Inorganic materials 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 238000005096 rolling process Methods 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 230000003647 oxidation Effects 0.000 claims description 10
- 229910052797 bismuth Inorganic materials 0.000 claims description 8
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 8
- 229910017052 cobalt Inorganic materials 0.000 claims description 8
- 239000010941 cobalt Substances 0.000 claims description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 8
- 239000002131 composite material Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical group [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical group [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052792 caesium Inorganic materials 0.000 claims description 3
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Chemical group 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical group [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 239000011591 potassium Substances 0.000 claims description 3
- 229910052701 rubidium Inorganic materials 0.000 claims description 3
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims description 3
- 238000007493 shaping process Methods 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910052714 tellurium Inorganic materials 0.000 claims description 3
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052716 thallium Inorganic materials 0.000 claims description 3
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 239000011135 tin Chemical group 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical group [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 229930195735 unsaturated hydrocarbon Natural products 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011701 zinc Chemical group 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims 1
- 238000006356 dehydrogenation reaction Methods 0.000 claims 1
- 239000002994 raw material Substances 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- 239000007864 aqueous solution Substances 0.000 description 12
- 239000003570 air Substances 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 8
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 8
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 7
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 150000001299 aldehydes Chemical class 0.000 description 6
- 150000001735 carboxylic acids Chemical class 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 6
- 235000011187 glycerol Nutrition 0.000 description 6
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 description 5
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- -1 oxides Chemical class 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000012378 ammonium molybdate tetrahydrate Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- FIXLYHHVMHXSCP-UHFFFAOYSA-H azane;dihydroxy(dioxo)molybdenum;trioxomolybdenum;tetrahydrate Chemical compound N.N.N.N.N.N.O.O.O.O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O[Mo](O)(=O)=O.O[Mo](O)(=O)=O.O[Mo](O)(=O)=O FIXLYHHVMHXSCP-UHFFFAOYSA-H 0.000 description 2
- FBXVOTBTGXARNA-UHFFFAOYSA-N bismuth;trinitrate;pentahydrate Chemical compound O.O.O.O.O.[Bi+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FBXVOTBTGXARNA-UHFFFAOYSA-N 0.000 description 2
- NLSCHDZTHVNDCP-UHFFFAOYSA-N caesium nitrate Chemical compound [Cs+].[O-][N+]([O-])=O NLSCHDZTHVNDCP-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- SZQUEWJRBJDHSM-UHFFFAOYSA-N iron(3+);trinitrate;nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O SZQUEWJRBJDHSM-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- AOPCKOPZYFFEDA-UHFFFAOYSA-N nickel(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O AOPCKOPZYFFEDA-UHFFFAOYSA-N 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- BYUANIDVEAKBHT-UHFFFAOYSA-N [Mo].[Bi] Chemical compound [Mo].[Bi] BYUANIDVEAKBHT-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000013064 chemical raw material Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 150000004072 triols Chemical class 0.000 description 1
- 238000007039 two-step reaction Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
- B01J37/0221—Coating of particles
- B01J37/0223—Coating of particles by rotation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/883—Molybdenum and nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/28—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/31—Chromium, molybdenum or tungsten combined with bismuth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8876—Arsenic, antimony or bismuth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/34—Mechanical properties
- B01J35/38—Abrasion or attrition resistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/51—Spheres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0045—Drying a slurry, e.g. spray drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/038—Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C11/00—Aliphatic unsaturated hydrocarbons
- C07C11/12—Alkadienes
- C07C11/16—Alkadienes with four carbon atoms
- C07C11/167—1, 3-Butadiene
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/27—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
- C07C45/32—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
- C07C45/33—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
- C07C45/34—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
- C07C45/35—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C47/00—Compounds having —CHO groups
- C07C47/20—Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
- C07C47/21—Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C47/22—Acryaldehyde; Methacryaldehyde
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/42—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
- C07C5/48—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/23—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
- C07C51/235—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/25—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
- C07C51/252—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/02—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
- C07C2523/04—Alkali metals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/24—Chromium, molybdenum or tungsten
- C07C2523/28—Molybdenum
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/74—Iron group metals
- C07C2523/745—Iron
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/74—Iron group metals
- C07C2523/75—Cobalt
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/74—Iron group metals
- C07C2523/755—Nickel
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
- C07C2523/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/85—Chromium, molybdenum or tungsten
- C07C2523/88—Molybdenum
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
- C07C2523/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/85—Chromium, molybdenum or tungsten
- C07C2523/88—Molybdenum
- C07C2523/883—Molybdenum and nickel
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
- C07C2523/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/85—Chromium, molybdenum or tungsten
- C07C2523/88—Molybdenum
- C07C2523/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
Definitions
- the present invention relates to a method for producing a molded catalyst used for the production of dienes or unsaturated aldehydes and / or unsaturated carboxylic acids.
- Unsaturated carboxylic acids such as acrylic acid and methacrylic acid used as raw materials for various chemicals can be produced by a two-step reaction using an unsaturated aldehyde as an intermediate product.
- Acrylic acid and methacrylic acid are both steadily increasing in demand, and therefore the catalyst used for production is being improved energetically.
- butadiene an important chemical raw material used as a raw material for synthetic rubber and the like, has been rapidly increasing in demand as a raw material for energy-saving automobile tires in recent years due to increasing global automobile demand and environmental awareness. Yes.
- the production amount of the C4 fraction is decreasing, the shortage of butadiene production continues, and it is expected that the shortage of butadiene supply will accelerate further in the future. For this reason, industrialization of a new butadiene production method is strongly desired.
- a method for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid by a selective oxidation reaction of an unsaturated hydrocarbon in a fixed bed reactor using a composite metal oxide catalyst containing molybdenum as an essential component is well known. Further, a method for producing butadiene from n-butene in a fixed bed reactor using a composite metal oxide catalyst containing molybdenum as an essential component is also well known.
- the shape of the catalyst used in the fixed bed reactor is selected according to the application, but there are ring shape, cylinder shape, tablet shape, honeycomb shape, three-leaf type, four-leaf type, and even a spherical catalyst shape. Well used.
- spherical catalysts are widely used because of the ease of filling the reaction tube with the catalyst and removing the used catalyst from the reaction tube.
- the method of supporting and molding a catalytically active component on an inert carrier is widely used industrially for the purpose of reducing the heat storage of the catalyst layer, etc. in use. In particular, it is used as an effective method when an objective product is selectively produced by an oxidation reaction or oxidative dehydrogenation reaction of an organic compound.
- Patent Document 1 discloses a method for producing acrolein and / or acrylic acid from propylene
- Patent Document 2 discloses methacrolein and / or methacryl from isobutylene and / or tertiary butyl alcohol.
- a method for producing a catalyst for producing an acid is disclosed.
- Patent Documents 1 and 2 a production method by a rolling granulation method is disclosed as a method for producing a spherical shaped catalyst.
- a spherical carrier necessary for obtaining a desired catalyst particle size is put into a rolling granulator, and a liquid serving as a binder and a catalytically active component and / or precursor thereof are used as a carrier while rotating a molding machine.
- a spherical shaped catalyst is produced by sprinkling.
- Patent Document 3 and Patent Document 4 describe a method of oxidative dehydrogenation in the presence of a composite metal oxide catalyst mainly composed of molybdenum, bismuth, iron and cobalt.
- a composite metal oxide catalyst mainly composed of molybdenum, bismuth, iron and cobalt.
- Patent Document 5 describes a coated molded catalyst produced by mixing a pore-forming agent, and describes production on an industrial scale.
- Patent Document 5 does not clearly show the effect on the conversion rate of butene and the selectivity of butadiene by the production of the coating molded catalyst by mixing the pore forming agent. Further, in the method for producing a coated molded catalyst cited in Patent Document 5, the relative centrifugal acceleration is extremely low as compared with the method of this patent, which is a problem in terms of practical mechanical strength. It is an object of the present invention to provide a method for producing a shaped catalyst having sufficient mechanical strength and catalyst performance.
- the present inventors have demonstrated that a catalyst produced by giving a specific relative centrifugal acceleration by adjusting the diameter (rotation radius) and rotation speed of a rolling granulator in the production process of a molded catalyst has high catalyst performance.
- the present invention has been completed. That is, the present invention (1) Fixed bed oxidation reaction or fixed bed oxidation dehydration in which a catalyst powder containing a composite metal oxide containing molybdenum as an essential component is supported on an inert carrier by a rolling granulation method at a relative centrifugal acceleration of 1 to 35G.
- the method of manufacturing molded catalyst according to the composite metal oxide has a composition represented by the following formula (1) (1) Mo a Bi b Ni c Co d Fe f X g Y h O x formula (1)
- Mo, Bi, Ni, Co, Fe and O represent molybdenum, bismuth, nickel, cobalt, iron and oxygen, respectively
- X is tungsten, antimony, tin, zinc, chromium, manganese, magnesium
- Y represents at least one element selected from the group consisting of potassium, rubidium, calcium, barium, thallium and cesium
- b, c, d, f, g, h and x represent the number of atoms of molybdenum, bismuth, nickel, cobalt, iron, X, Y
- the produced molded catalyst is converted into n-butene by oxidative dehydrogenation.
- Unsaturated aldehyde and / or unsaturated which is oxidized to the corresponding unsaturated aldehyde and / or unsaturated carboxylic acid by gas phase catalytic oxidation reaction using the molded catalyst obtained by the production method described in (6)
- the present invention relates to a method for producing carboxylic acid.
- a molded catalyst having sufficient mechanical strength and catalyst performance can be produced.
- the composite metal oxide contained in the catalyst powder in the molded catalyst obtained in the present invention contains molybdenum as an essential element, other constituent elements and the constituent ratio thereof are not particularly limited, but preferably the following general formula (1 ) Mo a Bi b Ni c Co d Fe f X g Y h O x formula (1) (Wherein Mo, Bi, Ni, Co, Fe and O represent molybdenum, bismuth, nickel, cobalt, iron and oxygen, respectively, X is tungsten, antimony, tin, zinc, chromium, manganese, magnesium, silicon, aluminum Represents at least one element selected from the group consisting of cerium, tellurium, boron, germanium, zirconium and titanium, and Y represents at least one element selected from the group consisting of potassium, rubidium, calcium, barium, thallium and cesium , A, b, c, d, f, g, h and x represent the number of atoms of molybden
- the powder containing the catalytically active component is prepared by a known method such as a coprecipitation method or a spray drying method.
- nitrates, ammonium salts, hydroxides, oxides, acetates, and the like of various metal elements such as molybdenum, bismuth, nickel, cobalt, iron, X, and Y can be used, and are not particularly limited.
- Liquids or slurries containing different types of catalytically active components can be prepared by changing the type and / or amount of metal salt supplied to water, and powder containing the catalytically active components can be obtained by spray drying or the like.
- the powder thus obtained can be calcined at 200 to 600 ° C., preferably 300 to 500 ° C., preferably in air or a nitrogen stream, to obtain a catalytically active component (hereinafter referred to as pre-calcined powder).
- the pre-fired powder thus obtained can be used as a catalyst as it is, but in the present invention, it is molded in consideration of production efficiency and workability.
- the shape of the molded product is not particularly limited as long as the catalyst component can be coated, but it is preferably spherical from the viewpoint of production and actual use.
- pre-baked powders of differently prepared granules with different component compositions may be mixed and molded in any proportion.
- a method may be employed in which the operation of supporting different kinds of pre-fired powder on an inert carrier is repeated to form the pre-fired powder into a multilayer.
- a molding aid such as crystalline cellulose and / or a strength improver such as a ceramic whisker.
- the amount of the molding aid and / or strength improver used is preferably 30% by weight or less with respect to the pre-fired powder.
- the molding aid and / or the strength improver may be mixed in advance with the above pre-fired powder before molding, or may be added at the same time as or before or after the pre-fired powder is added to the molding machine. That is, if the molded catalyst finally used in the reaction is within the range of desired catalyst physical properties and / or catalyst composition, the above-mentioned molded product shape and molding method can be employed.
- a method in which the catalyst powder is coated and molded on the support by adding a pre-baked powder and, if necessary, a molding aid and a strength improver is preferable.
- binders that can be used include water, ethanol, methanol, propanol, polyhydric alcohol, polymer binder polyvinyl alcohol, silica sol aqueous solution of inorganic binder, etc.
- ethanol, methanol, propanol, polyhydric alcohol Alcohols are preferred, diols such as ethylene glycol and triols such as glycerin are more preferred, and aqueous solutions having a glycerin concentration of 5% by weight or more are particularly preferred.
- the amount of these binders used is usually 2 to 60 parts by weight based on 100 parts by weight of the pre-fired powder, but 10 to 50 parts by weight is preferable in the case of an aqueous glycerin solution.
- the binder may be added to the tumbling granulator at the same time as the pre-fired powder, or may be added alternately with the pre-fired powder.
- the size of the inert carrier is usually about 2 to 20 mm, on which the pre-fired powder is supported.
- the loading ratio is determined in consideration of the catalyst use conditions such as space velocity and feed hydrocarbon concentration. Usually, it is preferably supported so as to be 10 to 80% by weight.
- the relative centrifugal acceleration applied when rolling granulation is usually 1G to 35G, preferably 1.2G to 30G, more preferably 1.5G to 20G.
- the relative centrifugal acceleration is a numerical value representing the magnitude of the centrifugal force per unit weight when the carrier is put in a rolling granulator and rotated by the device, as a ratio with the gravitational acceleration. Is represented by the following formula (3). This increases in proportion to the absolute value of the distance from the center of rotation of the device and the square of the rotational speed.
- RCF 1118 ⁇ r ⁇ N 2 ⁇ 10 ⁇ 8 formula (3)
- RCF represents a relative centrifugal acceleration (G)
- r represents a distance (cm) from the center of rotation
- N represents a rotation speed (rpm).
- G relative centrifugal acceleration
- rpm rotation speed
- the relative centrifugal acceleration can be adjusted by increasing the rotational speed.
- the radius of rotation is not particularly limited, in practice, it is easy to use a commercially available device, and it is usually preferably about 0.1 to 2 m.
- the rotational speed is determined so as to be in the relative centrifugal acceleration range according to the formula (3) according to the size of the molding machine to be used.
- the input amount of the inert carrier to the molding machine is appropriately set according to the size of the molding machine, a desired production rate, etc., but it is preferably carried out in the range of 0.1 to 100 kg.
- Patent Document 5 also suggests that a coated molded catalyst containing molybdenum is produced by a rolling granulation method. However, the rotational speed at the time of rolling granulation is extremely slow compared with the method of the present invention. Therefore, the relative centrifugal acceleration is extremely low as compared with the method of the present invention.
- the molded catalyst that has undergone the tumbling granulation process can be charged into the reactor as it is, but in order to avoid high temperatures due to the burning of binders remaining in the catalyst during heating, and to ensure operational safety and health From the standpoint of securing practical strength, it is preferable to calcine again before using the molded catalyst that has undergone the rolling granulation step for the reaction.
- the firing temperature at the time of firing again is 450 to 650 ° C., the firing time is 3 to 30 hours, preferably 4 to 15 hours, and is appropriately set according to the reaction conditions to be used.
- the firing atmosphere may be either an air atmosphere or a nitrogen atmosphere, but industrially an air atmosphere is preferred.
- the catalyst of the present invention thus obtained has high mechanical strength.
- the friability is preferably 3% by weight or less, more preferably 1.5% by weight or less, and still more preferably 0.5% by weight or less.
- the catalyst of the present invention thus obtained is a step of producing acrolein and acrylic acid by vapor-phase catalytic oxidation of propylene with molecular oxygen or a molecular oxygen-containing gas, or a solid acid catalyst such as isobutylene or the catalyst of the present invention.
- a step of producing methacrolein and methacrylic acid by vapor-phase catalytic oxidation of tertiary butyl alcohol, which is known to easily convert to isobutylene and water, with molecular oxygen or a molecular oxygen-containing gas, or n-butene Can be used in a process for producing butadiene by gas phase catalytic oxidative dehydrogenation reaction with molecular oxygen or a molecular oxygen-containing gas.
- the flow method of the raw material gas may be a normal single-flow method or a recycling method, and can be carried out under generally used conditions and is not particularly limited.
- propylene as a starting material is 1 to 10% by volume at room temperature, preferably 4 to 9% by volume, molecular oxygen is 3 to 20% by volume, preferably 4 to 18% by volume, water vapor is 0 to 60% by volume, Preferably, 4 to 50% by volume, and a gas mixture of 20 to 80% by volume, preferably 30 to 60% by volume of an inert gas such as carbon dioxide and nitrogen, is charged on the catalyst of the present invention to 250 to 250%.
- the reaction can be carried out at 450 ° C. under normal pressure to 10 atm and a space velocity of 300 to 5000 h ⁇ 1 .
- n-butene as a starting material is 1 to 16% by volume, preferably 3 to 12% by volume, and molecular oxygen is 1 to 20% by volume, preferably 5% at room temperature.
- the reaction can be carried out by introducing the catalyst of the present invention filled in a tube at a space velocity of 300 to 5000 h ⁇ 1 at 250 to 450 ° C. and a pressure of normal pressure to 10 atm.
- the target compound in the case of an oxidation reaction in which the raw material compound is propylene, the target compound is (acrolein + acrylic acid).
- the target compound in the oxidation reaction in which the raw material compound is isobutylene and / or tertiary butyl alcohol is (methacrolein + methacrylic acid).
- the target compound in the case of an oxidative dehydrogenation reaction using n-butene as the starting compound, the target compound is butadiene.
- Example 1 Manufacture of catalyst While heating and stirring 3000 parts by weight of distilled water, 423.8 parts by weight of ammonium molybdate tetrahydrate and 3.0 parts by weight of potassium nitrate were dissolved to obtain an aqueous solution (A1). Separately, 302.7 parts by weight of cobalt nitrate hexahydrate, 162.9 parts by weight of nickel nitrate hexahydrate, and 145.4 parts by weight of ferric nitrate nonahydrate were dissolved in 1000 parts by weight of distilled water to prepare an aqueous solution.
- Aqueous solution (C1) was prepared by dissolving 164.9 parts by weight of bismuth nitrate pentahydrate in 200 parts by weight of distilled water acidified by adding (B1) and 42 parts by weight of concentrated nitric acid. (B1) and (C1) are mixed with the above aqueous solution (A1) successively with vigorous stirring, and the resulting suspension is dried using a spray drier and calcined at 440 ° C. for 6 hours to obtain a pre-calcined powder (D1) Got.
- the powder obtained by mixing 100 parts by weight of the pre-fired powder with 5 parts by weight of crystalline cellulose is defined by the above formula (2) as an inert carrier (spherical substance having a diameter of 4.5 mm mainly composed of alumina and silica).
- the weight of the carrier used for molding and the weight of the pre-fired powder were adjusted so that the loading ratio accounted for 50% by weight.
- a 20 wt% aqueous glycerin solution was used as a binder and supported and molded into a spherical shape with a diameter of 5.2 mm to obtain a molded catalyst (E1).
- a cylindrical molding machine having a diameter of 23 cm was used for support molding, and the number of rotations of the bottom plate was 150 rpm. The relative centrifugal acceleration at this time was 2.9G.
- the molded catalyst (F1) was obtained by calcining the molded catalyst (E1) at an calcination temperature of 510 ° C. for 4 hours in an air atmosphere.
- Example 2 A molded catalyst (F2) was produced in the same manner as in Example 1 except that the number of rotations of the bottom plate during molding was 210 rpm and the relative centrifugal acceleration was 5.7 G. Table 1 shows the oxidation reaction test results and strength measurement results of the molded catalyst F2.
- Example 3 A molded catalyst (F3) was produced in the same manner as in Example 1 except that the number of rotations of the bottom plate during molding was 260 rpm and the relative centrifugal acceleration was 8.7 G. Table 1 shows the oxidation reaction test results and strength measurement results of the molded catalyst (F3).
- Example 4 A molded catalyst (F4) was produced in the same manner as in Example 1 except that the number of rotations of the bottom plate during molding was 430 rpm and the relative centrifugal acceleration was 24 G. Table 1 shows the oxidation reaction test results and strength measurement results of the molded catalyst (F4).
- Comparative Example 1 A molded catalyst (V1) was produced in the same manner as in Example 1 except that the number of revolutions of the bottom plate during molding was 75 rpm and the relative centrifugal acceleration was 0.72 G. Table 1 shows the oxidation reaction test results and strength measurement results of the molded catalyst (V1).
- Example 5 Manufacture of catalyst While heating and stirring 12,000 parts by weight of distilled water, 3000 parts by weight of ammonium molybdate tetrahydrate and 55.2 parts by weight of cesium nitrate were dissolved to obtain an aqueous solution (A2). Separately, 2782 parts by weight of cobalt nitrate hexahydrate, 1144 parts by weight of ferric nitrate nonahydrate, and 412 parts by weight of nickel nitrate hexahydrate were dissolved in 2300 parts by weight of distilled water to prepare an aqueous solution (B2).
- An aqueous solution (C2) was prepared by dissolving 1167 parts by weight of bismuth nitrate pentahydrate in 1215 parts by weight of distilled water made acidic by adding 397 parts by weight of concentrated nitric acid.
- B2) and (C2) were sequentially mixed with the aqueous solution (A2) while vigorously stirring the aqueous solution (A2), the resulting suspension was dried using a spray dryer, and the resulting powder was 460 ° C.
- the powder obtained by mixing 100 parts by weight of the pre-fired powder with 5 parts by weight of crystalline cellulose is defined by the above formula (2) as an inert carrier (spherical substance having a diameter of 4.5 mm mainly composed of alumina and silica).
- the weight of the carrier used for molding and the weight of the pre-fired powder were adjusted so that the loading ratio accounted for 50% by weight.
- a molded catalyst (E5) was obtained by being supported and molded into a spherical shape having a diameter of 5.2 mm.
- a cylindrical molding machine having a diameter of 23 cm was used for support molding, and the number of rotations of the bottom plate was 260 rpm.
- the relative centrifugal acceleration at this time was 8.7G.
- the molded catalyst (E5) was calcined in an air atmosphere at a calcining temperature of 500 ° C. for 4 hours to obtain a molded catalyst (F5).
- Example 6 A molded catalyst (F6) was produced in the same manner as in Example 5 except that the number of rotations of the bottom plate during molding was 430 rpm and the relative centrifugal acceleration was 23.8 G. Table 1 shows the oxidation reaction test results and strength measurement results of the molded catalyst (F6).
- Example 7 Manufacture of catalyst
- a molded catalyst (F7) was produced with a rotational speed of the bottom plate at the time of molding of 260 rpm and a relative centrifugal acceleration of 8.7 G.
- Table 1 shows the results of the oxidative dehydrogenation reaction test and strength measurement of the molded catalyst (F7) carried out by the method described below.
- a gas in which the supply amounts of 1-butene, air, water, and nitrogen are set so that the raw material molar ratio is 1-butene: oxygen: nitrogen: water 1: 2.1: 10.4: 2.5
- the catalyst was introduced into the oxidation reactor at a space velocity of 1440 h ⁇ 1 , the reactor outlet pressure was set to 0 kPaG, and the catalyst performance was evaluated 15 hours after the start of the reaction.
- Example 8 A molded catalyst (F8) was produced in the same manner as in Example 7, except that the number of rotations of the bottom plate during molding was 430 rpm and the relative centrifugal acceleration was 23.8 G. Table 1 shows the results of the oxidative dehydrogenation reaction test and the strength measurement performed in the same manner as in Example 7 using the molded catalyst (F8).
- Comparative Example 2 A molded catalyst (V2) was produced in the same manner as in Example 7, except that the number of rotations of the bottom plate during molding was 550 rpm and the relative centrifugal acceleration was 38.9 G. Table 1 shows the results of the oxidative dehydrogenation reaction test and the strength measurement performed in the same manner as in Example 7 using the molded catalyst (V2).
- Comparative Example 3 A molded catalyst (V3) was produced in the same manner as in Example 7, except that the number of rotations of the bottom plate during molding was 60 rpm and the relative centrifugal acceleration was 0.46 G. Table 1 shows the results of the oxidative dehydrogenation reaction test and the strength measurement performed in the same manner as in Example 7 using the molded catalyst (V3).
- the shaped catalyst produced by the method of the present invention is a catalyst for producing acrolein and / or acrylic acid from propylene, methacrolein and / or methacrylic acid from isobutylene and / or tertiary butyl alcohol, or butadiene from n-butene. Useful as.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13782624.4A EP2842626A4 (fr) | 2012-04-23 | 2013-04-19 | Procédé de production d'un catalyseur moulé et procédé de production d'un diène ou d'un aldéhyde insaturé et/ou d'un acide carboxylique insaturé l'utilisant |
JP2014512523A JP5970542B2 (ja) | 2012-04-23 | 2013-04-19 | 成型触媒の製造方法および該成型触媒を用いるジエンまたは不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 |
US14/396,478 US9573127B2 (en) | 2012-04-23 | 2013-04-19 | Process for producing shaped catalyst and process for producing diene or unsaturated aldehyde and/or unsaturated carboxylic acid using the shaped catalyst |
SG11201406832UA SG11201406832UA (en) | 2012-04-23 | 2013-04-19 | Method for producing molded catalyst and method for producing diene or unsaturated aldehyde and/or unsaturated carboxylic acid using said molded catalyst |
KR1020147029775A KR101745555B1 (ko) | 2012-04-23 | 2013-04-19 | 성형 촉매의 제조 방법 및 당해 성형 촉매를 이용하는 디엔 또는 불포화 알데히드 및/또는 불포화 카본산의 제조 방법 |
CN201380021431.XA CN104245127B (zh) | 2012-04-23 | 2013-04-19 | 成形催化剂的制造方法及使用该成形催化剂的二烯或不饱和醛和/或不饱和羧酸的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-098259 | 2012-04-23 | ||
JP2012098259 | 2012-04-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013161703A1 true WO2013161703A1 (fr) | 2013-10-31 |
Family
ID=49483022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/061624 WO2013161703A1 (fr) | 2012-04-23 | 2013-04-19 | Procédé de production d'un catalyseur moulé et procédé de production d'un diène ou d'un aldéhyde insaturé et/ou d'un acide carboxylique insaturé l'utilisant |
Country Status (9)
Country | Link |
---|---|
US (1) | US9573127B2 (fr) |
EP (1) | EP2842626A4 (fr) |
JP (2) | JP6034372B2 (fr) |
KR (1) | KR101745555B1 (fr) |
CN (1) | CN104245127B (fr) |
SA (1) | SA113340492B1 (fr) |
SG (1) | SG11201406832UA (fr) |
TW (2) | TWI574731B (fr) |
WO (1) | WO2013161703A1 (fr) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015053269A1 (fr) * | 2013-10-10 | 2015-04-16 | 日本化薬株式会社 | Procédé de production d'acide carboxylique insaturé, et catalyseur supporté |
CN105916579A (zh) * | 2014-12-16 | 2016-08-31 | Lg化学株式会社 | 制备丁二烯的方法 |
KR20160127095A (ko) * | 2014-02-28 | 2016-11-02 | 바스프 에스이 | 안장형 지지체를 갖는 산화 촉매 |
WO2017047710A1 (fr) * | 2015-09-16 | 2017-03-23 | 日本化薬株式会社 | Catalyseur pour production de dioléfine conjuguée et son procédé de production |
JP2017124384A (ja) * | 2016-01-15 | 2017-07-20 | 三菱ケミカル株式会社 | 複合酸化物触媒の製造方法 |
WO2020013064A1 (fr) * | 2018-07-09 | 2020-01-16 | 日本化薬株式会社 | Catalyseur et procédé de production d'un composé l'utilisant |
JP2020535002A (ja) * | 2017-11-28 | 2020-12-03 | エルジー・ケム・リミテッド | ブテンの酸化的脱水素化反応用触媒およびその製造方法 |
JP2021000610A (ja) * | 2019-06-24 | 2021-01-07 | 日本化薬株式会社 | 触媒およびその製造方法 |
US20240066556A1 (en) * | 2022-08-31 | 2024-02-29 | Huaneng Chongqing Luohuang Power Generation Co., Ltd | Device for separating and recovering flat-plate catalyst powder and method for determining wear ratio |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104245128B (zh) | 2012-04-23 | 2016-12-28 | 日本化药株式会社 | 丁二烯的制造用催化剂、该催化剂的制造方法及使用该催化剂的丁二烯的制造方法 |
SG11201406832UA (en) | 2012-04-23 | 2014-11-27 | Nippon Kayaku Kk | Method for producing molded catalyst and method for producing diene or unsaturated aldehyde and/or unsaturated carboxylic acid using said molded catalyst |
KR20170126865A (ko) * | 2015-03-03 | 2017-11-20 | 닛뽄 가야쿠 가부시키가이샤 | 공액 디올레핀 제조용 촉매와, 그의 제조 방법 |
CA3005637A1 (fr) | 2015-11-16 | 2017-05-26 | HHeLI, LLC | Materiaux oxydes metalliques acidifies fonctionnalises en surface synthetises pour applications en stockage d'energie, en catalyse, en photovoltaique et aux capteurs |
JP6579010B2 (ja) * | 2016-03-23 | 2019-09-25 | 三菱ケミカル株式会社 | 複合酸化物触媒および共役ジエンの製造方法 |
US10700349B2 (en) | 2016-11-15 | 2020-06-30 | HHeLI, LLC | Surface-functionalized, acidified metal oxide material in an acidified electrolyte system or an acidified electrode system |
WO2018191289A1 (fr) | 2017-04-10 | 2018-10-18 | HHeLI, LLC | Batterie dotée de nouveaux éléments |
CN117012944A (zh) | 2017-05-17 | 2023-11-07 | 氢氦锂有限公司 | 阴极活性材料和阴极 |
EP3625839B1 (fr) | 2017-05-17 | 2024-06-12 | Hheli, Llc | Batterie à cathode acidifiée et anode au lithium |
US10978731B2 (en) | 2017-06-21 | 2021-04-13 | HHeLI, LLC | Ultra high capacity performance battery cell |
US11165090B2 (en) | 2017-09-22 | 2021-11-02 | HHeLI, LLC | Construction of ultra high capacity performance battery cells |
CN112867932A (zh) | 2018-09-10 | 2021-05-28 | 氢氦锂有限公司 | 超高容量性能电池单元的使用方法 |
CN110560079B (zh) * | 2019-07-31 | 2022-01-25 | 浙江新和成股份有限公司 | 用于制备丙烯酸或丙烯醛的催化剂及其制备方法 |
CN113939364B (zh) * | 2020-01-10 | 2022-09-20 | 日本化药株式会社 | 催化剂、使用该催化剂的化合物的制造方法和化合物 |
WO2023100856A1 (fr) | 2021-11-30 | 2023-06-08 | 日本化薬株式会社 | Catalyseur et procédé de production de composé l'utilisant |
EP4442362A1 (fr) | 2021-11-30 | 2024-10-09 | Nippon Kayaku Kabushiki Kaisha | Catalyseur et procédé de production de composé l'utilisant |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS493498B1 (fr) | 1969-10-17 | 1974-01-26 | ||
JPS58188823A (ja) | 1982-04-27 | 1983-11-04 | Japan Synthetic Rubber Co Ltd | 1,3−ブタジエンの製造法 |
JP3775872B2 (ja) | 1996-12-03 | 2006-05-17 | 日本化薬株式会社 | アクロレイン及びアクリル酸の製造方法 |
JP2011518659A (ja) | 2008-04-09 | 2011-06-30 | ビーエーエスエフ ソシエタス・ヨーロピア | モリブデン、ビスマスおよび鉄を含有する多金属酸化物を含むシェル触媒 |
JP2012045516A (ja) * | 2010-08-30 | 2012-03-08 | Nippon Shokubai Co Ltd | 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒の製造方法およびその触媒、ならびに該触媒を用いたアクロレインおよび/またはアクリル酸の製造方法 |
JP5130562B2 (ja) | 2007-11-06 | 2013-01-30 | 日本化薬株式会社 | メタクロレイン及び/又はメタクリル酸の製造方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA903079A (en) | 1972-06-20 | Fukuoka Akira | Method for heating pressing plates of continuous flat press | |
EP0015093A1 (fr) * | 1979-02-21 | 1980-09-03 | Imperial Chemical Industries Plc | Procédé et dispositif pour enrober des particules solides |
JPS56163756A (en) | 1980-05-23 | 1981-12-16 | Nitto Chem Ind Co Ltd | Regenerating method of metal oxide catalyst containing antimony |
CH666828A5 (de) * | 1985-12-30 | 1988-08-31 | Aeromatic Ag | Vorrichtung zum herstellen und/oder bearbeiten von granulaten. |
DE3930534A1 (de) * | 1989-09-13 | 1991-03-21 | Degussa | Verfahren zur herstellung von acrolein durch katalytische gasphasenoxidation von propen |
JP4185217B2 (ja) | 1999-05-25 | 2008-11-26 | 株式会社日本触媒 | 複合酸化物触媒、並びに(メタ)アクロレインおよび(メタ)アクリル酸の製造方法 |
JP2001029788A (ja) | 1999-07-21 | 2001-02-06 | Mitsubishi Rayon Co Ltd | モリブデン−ビスマス−鉄含有金属酸化物流動層触媒の製法 |
JP4318367B2 (ja) | 2000-02-16 | 2009-08-19 | 株式会社日本触媒 | アクロレインおよびアクリル酸の製造方法 |
JP3892244B2 (ja) | 2001-03-21 | 2007-03-14 | 株式会社日本触媒 | 不飽和アルデヒドおよび不飽和カルボン酸製造用触媒の製造方法 |
EP1598110A1 (fr) | 2004-04-22 | 2005-11-23 | Rohm and Haas Company | Catalyseurs d'oxydation struturé |
RU2471554C2 (ru) * | 2008-06-02 | 2013-01-10 | Ниппон Каяку Кабусики Кайся | Катализатор и способ получения ненасыщенного альдегида и ненасыщенной карбоновой кислоты |
JP5638746B2 (ja) * | 2008-08-20 | 2014-12-10 | 堺化学工業株式会社 | 有機物を熱分解するための触媒と方法と、そのような触媒を製造する方法 |
CA2763317C (fr) | 2009-05-29 | 2016-12-20 | Mitsubishi Chemical Corporation | Procede de production de diene conjugue |
JP2011178719A (ja) | 2010-03-01 | 2011-09-15 | Mitsui Chemicals Inc | ブタジエンの製造方法 |
JP5682130B2 (ja) | 2010-04-02 | 2015-03-11 | 三菱化学株式会社 | 共役ジエンの製造方法 |
JP5678476B2 (ja) * | 2010-05-26 | 2015-03-04 | 三菱レイヨン株式会社 | 不飽和アルデヒド及び不飽和カルボン酸の製造方法 |
US9205414B2 (en) | 2010-09-17 | 2015-12-08 | Nippon Shokubai Co., Ltd. | Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, and process for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the catalyst |
SG11201406832UA (en) | 2012-04-23 | 2014-11-27 | Nippon Kayaku Kk | Method for producing molded catalyst and method for producing diene or unsaturated aldehyde and/or unsaturated carboxylic acid using said molded catalyst |
CN104245128B (zh) | 2012-04-23 | 2016-12-28 | 日本化药株式会社 | 丁二烯的制造用催化剂、该催化剂的制造方法及使用该催化剂的丁二烯的制造方法 |
US9751822B2 (en) * | 2013-10-10 | 2017-09-05 | Nippon Kayaku Kabushiki Kaisha | Method for producing unsaturated carboxylic acid and supported catalyst |
-
2013
- 2013-04-19 SG SG11201406832UA patent/SG11201406832UA/en unknown
- 2013-04-19 KR KR1020147029775A patent/KR101745555B1/ko active IP Right Grant
- 2013-04-19 EP EP13782624.4A patent/EP2842626A4/fr not_active Withdrawn
- 2013-04-19 US US14/396,478 patent/US9573127B2/en active Active
- 2013-04-19 CN CN201380021431.XA patent/CN104245127B/zh active Active
- 2013-04-19 JP JP2014512522A patent/JP6034372B2/ja active Active
- 2013-04-19 WO PCT/JP2013/061624 patent/WO2013161703A1/fr active Application Filing
- 2013-04-19 JP JP2014512523A patent/JP5970542B2/ja active Active
- 2013-04-22 SA SA113340492A patent/SA113340492B1/ar unknown
- 2013-04-23 TW TW102114335A patent/TWI574731B/zh not_active IP Right Cessation
- 2013-04-23 TW TW102114342A patent/TWI569872B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS493498B1 (fr) | 1969-10-17 | 1974-01-26 | ||
JPS58188823A (ja) | 1982-04-27 | 1983-11-04 | Japan Synthetic Rubber Co Ltd | 1,3−ブタジエンの製造法 |
JP3775872B2 (ja) | 1996-12-03 | 2006-05-17 | 日本化薬株式会社 | アクロレイン及びアクリル酸の製造方法 |
JP5130562B2 (ja) | 2007-11-06 | 2013-01-30 | 日本化薬株式会社 | メタクロレイン及び/又はメタクリル酸の製造方法 |
JP2011518659A (ja) | 2008-04-09 | 2011-06-30 | ビーエーエスエフ ソシエタス・ヨーロピア | モリブデン、ビスマスおよび鉄を含有する多金属酸化物を含むシェル触媒 |
JP2012045516A (ja) * | 2010-08-30 | 2012-03-08 | Nippon Shokubai Co Ltd | 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒の製造方法およびその触媒、ならびに該触媒を用いたアクロレインおよび/またはアクリル酸の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2842626A4 |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015053269A1 (fr) * | 2013-10-10 | 2015-04-16 | 日本化薬株式会社 | Procédé de production d'acide carboxylique insaturé, et catalyseur supporté |
US9751822B2 (en) | 2013-10-10 | 2017-09-05 | Nippon Kayaku Kabushiki Kaisha | Method for producing unsaturated carboxylic acid and supported catalyst |
KR102358652B1 (ko) * | 2014-02-28 | 2022-02-07 | 바스프 에스이 | 안장형 지지체를 갖는 산화 촉매 |
KR20160127095A (ko) * | 2014-02-28 | 2016-11-02 | 바스프 에스이 | 안장형 지지체를 갖는 산화 촉매 |
CN105916579A (zh) * | 2014-12-16 | 2016-08-31 | Lg化学株式会社 | 制备丁二烯的方法 |
JP2017502926A (ja) * | 2014-12-16 | 2017-01-26 | エルジー・ケム・リミテッド | ブタジエンの製造方法 |
US9751819B2 (en) | 2014-12-16 | 2017-09-05 | Lg Chem, Ltd. | Method of preparing butadiene |
EP3059219A4 (fr) * | 2014-12-16 | 2017-11-01 | LG Chem, Ltd. | Procédé de production de butadiène |
WO2017047710A1 (fr) * | 2015-09-16 | 2017-03-23 | 日本化薬株式会社 | Catalyseur pour production de dioléfine conjuguée et son procédé de production |
JPWO2017047710A1 (ja) * | 2015-09-16 | 2018-07-05 | 日本化薬株式会社 | 共役ジオレフィン製造用触媒と、その製造方法 |
JP2017124384A (ja) * | 2016-01-15 | 2017-07-20 | 三菱ケミカル株式会社 | 複合酸化物触媒の製造方法 |
JP2020535002A (ja) * | 2017-11-28 | 2020-12-03 | エルジー・ケム・リミテッド | ブテンの酸化的脱水素化反応用触媒およびその製造方法 |
US11648536B2 (en) | 2017-11-28 | 2023-05-16 | Lg Chem, Ltd. | Catalyst for oxidative dehydrogenation of butene and method for producing the same |
US12076709B2 (en) | 2017-11-28 | 2024-09-03 | Lg Chem, Ltd. | Method for producing a catalyst for oxidative dehydrogenation of butene |
CN112399886A (zh) * | 2018-07-09 | 2021-02-23 | 日本化药株式会社 | 催化剂和使用了该催化剂的化合物的制造方法 |
JPWO2020013064A1 (ja) * | 2018-07-09 | 2021-08-05 | 日本化薬株式会社 | 触媒及びそれを用いた化合物の製造方法 |
WO2020013064A1 (fr) * | 2018-07-09 | 2020-01-16 | 日本化薬株式会社 | Catalyseur et procédé de production d'un composé l'utilisant |
JP7224351B2 (ja) | 2018-07-09 | 2023-02-17 | 日本化薬株式会社 | 触媒及びそれを用いた化合物の製造方法 |
JP2021000610A (ja) * | 2019-06-24 | 2021-01-07 | 日本化薬株式会社 | 触媒およびその製造方法 |
JP7191482B2 (ja) | 2019-06-24 | 2022-12-19 | 日本化薬株式会社 | 触媒およびその製造方法 |
US20240066556A1 (en) * | 2022-08-31 | 2024-02-29 | Huaneng Chongqing Luohuang Power Generation Co., Ltd | Device for separating and recovering flat-plate catalyst powder and method for determining wear ratio |
Also Published As
Publication number | Publication date |
---|---|
EP2842626A1 (fr) | 2015-03-04 |
CN104245127B (zh) | 2016-03-30 |
KR101745555B1 (ko) | 2017-06-09 |
CN104245127A (zh) | 2014-12-24 |
EP2842626A4 (fr) | 2015-10-28 |
JPWO2013161702A1 (ja) | 2015-12-24 |
TWI574731B (zh) | 2017-03-21 |
SA113340492B1 (ar) | 2016-03-03 |
TW201412396A (zh) | 2014-04-01 |
SG11201406832UA (en) | 2014-11-27 |
US20150126774A1 (en) | 2015-05-07 |
US9573127B2 (en) | 2017-02-21 |
TW201406455A (zh) | 2014-02-16 |
JPWO2013161703A1 (ja) | 2015-12-24 |
JP5970542B2 (ja) | 2016-08-17 |
JP6034372B2 (ja) | 2016-11-30 |
TWI569872B (zh) | 2017-02-11 |
KR20150008864A (ko) | 2015-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5970542B2 (ja) | 成型触媒の製造方法および該成型触媒を用いるジエンまたは不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 | |
JP5845337B2 (ja) | 固定床多管式反応器を用いてのアクリル酸の製造方法 | |
JP6294883B2 (ja) | 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 | |
WO2013161702A1 (fr) | Catalyseur pour la production de butadiène, procédé de production dudit catalyseur, et procédé de production de butadiène l'utilisant | |
JP2018111720A (ja) | 不飽和カルボン酸の製造方法、及び担持触媒 | |
CN107405609B (zh) | 用于制造不饱和醛和/或不饱和羧酸的催化剂及其制造方法以及不饱和醛和/或不饱和羧酸的制造方法 | |
JP5951121B2 (ja) | 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、その製造方法及び不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 | |
KR102122285B1 (ko) | 불포화 알데히드 및/또는 불포화 카본산 제조용 촉매, 당해 촉매의 제조 방법 및, 당해 촉매를 이용한 불포화 알데히드 및/또는 불포화 카본산의 제조 방법 | |
JP5680373B2 (ja) | 触媒及びアクリル酸の製造方法 | |
JP5845338B2 (ja) | 固定床多管式反応器を用いてのアクロレインおよびアクリル酸の製造方法 | |
JP6504774B2 (ja) | アクリル酸製造用の触媒および該触媒を用いたアクリル酸の製造方法 | |
JP2015120133A (ja) | アクリル酸製造用の触媒および該触媒を用いたアクリル酸の製造方法 | |
WO2016147324A1 (fr) | Catalyseur pour la production d'aldéhyde insaturé et/ou d'acide carboxylique insaturé, son procédé de production, et procédé de production d'aldéhyde insaturé et/ou d'acide carboxylique insaturé | |
JP6238354B2 (ja) | 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒およびその製造方法ならびに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 | |
JP6033027B2 (ja) | 不飽和アルデヒドおよび不飽和カルボン酸製造用触媒の製造方法とその触媒、ならびに不飽和アルデヒドおよび不飽和カルボン酸の製造方法 | |
JP2023141551A (ja) | 触媒、及びそれを用いた不飽和アルデヒド及び/又は不飽和カルボン酸の製造方法 | |
JP2011102247A (ja) | アクロレインおよび/またはアクリル酸の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380021431.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13782624 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014512523 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013782624 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147029775 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14396478 Country of ref document: US |