WO2013154153A1 - Rotation transmission element, motive power on/off-type transmission device, gear shifter, and transmission system - Google Patents
Rotation transmission element, motive power on/off-type transmission device, gear shifter, and transmission system Download PDFInfo
- Publication number
- WO2013154153A1 WO2013154153A1 PCT/JP2013/060922 JP2013060922W WO2013154153A1 WO 2013154153 A1 WO2013154153 A1 WO 2013154153A1 JP 2013060922 W JP2013060922 W JP 2013060922W WO 2013154153 A1 WO2013154153 A1 WO 2013154153A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission
- clutch
- transmission shaft
- way clutch
- shaft
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D21/00—Systems comprising a plurality of actuated clutches
- F16D21/02—Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
- F16D21/04—Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways with a shaft carrying a number of rotatable transmission members, e.g. gears, each of which can be connected to the shaft by a clutching member or members between the shaft and the hub of the transmission member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D41/00—Freewheels or freewheel clutches
- F16D41/06—Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
- F16D41/064—Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls
- F16D41/066—Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls all members having the same size and only one of the two surfaces being cylindrical
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/02—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
- F16H3/08—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
- F16H3/083—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with radially acting and axially controlled clutching members, e.g. sliding keys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/44—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
- F16H3/62—Gearings having three or more central gears
- F16H3/66—Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/02—Toothed gearings for conveying rotary motion without gears having orbital motion
- F16H1/04—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
- F16H1/06—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/02—Toothed gearings for conveying rotary motion without gears having orbital motion
- F16H1/04—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
- F16H1/12—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
- F16H1/14—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising conical gears only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2200/00—Transmissions for multiple ratios
- F16H2200/003—Transmissions for multiple ratios characterised by the number of forward speeds
- F16H2200/0034—Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising two forward speeds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2200/00—Transmissions for multiple ratios
- F16H2200/20—Transmissions using gears with orbital motion
- F16H2200/2002—Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
- F16H2200/2007—Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with two sets of orbital gears
Definitions
- the present invention relates to a power transmission technology, and more specifically, a rotary transmission element that is a main component of a power on / off transmission or transmission, and a power on / off transmission configured using the rotary transmission element.
- the present invention relates to a device and a transmission.
- Patent Documents 1 to 3 show specific examples in this technical field.
- a device using a one-way clutch (one-way clutch) disclosed in Patent Document 4 is also provided.
- CVT Continuously variable transmission
- the CVT with high theoretical efficiency always maintains an ideal gear ratio, so that there is little power loss and the transmission system can be reduced in size, so that the weight can be reduced.
- this does not transmit power by meshing the gears, but transmits power by contact pressure between the pulley and the belt, so that it is not suitable for shifting large machinery that generates large torque.
- a lubrication environment that can be cleaned is required. Therefore, dedicated oil is required for lubrication.
- Transmissions and transmissions have high accuracy, high transmission efficiency, simplicity of configuration, ease of manufacture, small number of parts, light weight, cost reduction, continuously variable gear ratio, and shock mitigation when turning on / off and shifting. It is desirable to satisfy these conditions, but the product characteristics (excellence or inferiority) are determined depending on how much such conditions are satisfied.
- the transmission system of the prior art has the disadvantages (a) to (c) described above and cannot satisfy such conditions completely.
- the conventional one-way clutch requires a large switching operation force when switching from the clutch engagement state to the clutch disengagement state. This is because the torque of the one-way clutch acts strongly in the clutch engagement state. Because it is. Furthermore, when the rotation input side in the high-speed rotation state is transmitted to the rotation output side in the stop state or the low-speed state, a large impact occurs due to the difference in speed between the two, and this impact causes the component There was a drawback of causing breakage.
- the problems to be solved by the present invention include high accuracy of the power transmission system, high transmission efficiency, simplicity of configuration, ease of manufacture, small number of parts, weight reduction, cost reduction, continuously variable speed ratio, on / off and It is an object of the present invention to provide a rotary transmission element, a power on / off type transmission device, a transmission device, and a transmission system that can satisfy impact relaxation at the time of shifting.
- the basic first problem solving means of the present invention is: A transmission wheel, a transmission shaft, The transmission rod and the transmission shaft may be rotated in the same direction only in one direction, or rotation may not be transmitted between the transmission wheel and the transmission shaft, and may be interposed between the inner periphery of the transmission wheel and the outer periphery of the transmission shaft.
- the one-way clutch has a clutch mounting portion on one of its inner periphery and outer periphery, and has a clutch engagement portion on the other of its inner periphery and outer periphery,
- the transmission wheel and the transmission shaft are combined such that the transmission shaft is disposed on the axial center side and the transmission wheel is relatively disposed on the outer peripheral side,
- a clutch mounting portion of the one-way clutch is fixed to either the inner periphery of the transmission wheel or the outer periphery of the transmission shaft, and the one-way clutch is fixed to either the inner periphery of the transmission wheel or the outer periphery of the transmission shaft.
- a clutch mounting portion on the outer periphery of the one-way clutch there is a clutch mounting portion on the outer periphery of the one-way clutch, a clutch engaging portion on the inner periphery of the one-way clutch, and the one-way clutch is connected to the inner side of the transmission wheel.
- the transmission area portion fixed to the periphery and corresponding to the clutch engaging portion of the one-way clutch may be provided on the outer periphery of the transmission shaft, or the clutch mounting portion is provided on the inner periphery of the one-way clutch.
- a clutch engaging portion on an outer periphery of the one-way clutch, the one-way clutch is fixed to an outer periphery of the transmission shaft, and a transmission area portion corresponding to the clutch engaging portion of the one-way clutch is on an inner periphery of the transmission wheel. It is good also as a form provided.
- the second problem solving means of the present invention is: A transmission wheel for transferring rotational power through the outer periphery, a transmission shaft which is a shaft center member for rotation, The transmission wheel and the transmission shaft rotate in the same direction and only in one direction, or rotation is not transmitted between the transmission wheel and the transmission shaft, and between the inner periphery of the transmission wheel and the outer periphery of the transmission shaft.
- the one-way clutch has an inner periphery corresponding to the outer periphery of the transmission shaft, an outer periphery corresponding to the inner periphery of the transmission wheel, and the inner periphery of the one-way clutch has a circumferential direction with respect to the transmission shaft.
- a clutch mounting portion that allows relative movement in the axial direction with the transmission shaft while restraining relative movement
- a clutch engagement portion that clutches the transmission wheel
- a transmission area portion that achieves clutch engagement with the one-way clutch corresponding to the clutch engagement portion of the one-way clutch is provided on the inner periphery of the transmission wheel
- the transmission shaft corresponds to be freely engageable with a clutch mounting portion of the one-way clutch through the outer periphery thereof, and the outer periphery of the transmission shaft is restrained from relative movement in the circumferential direction with respect to the one-way clutch.
- a clutch guide that allows relative movement in the axial direction with the one-way clutch The transmission shaft is disposed on the axial side and the transmission wheel is relatively disposed on the outer peripheral side, and the transmission shaft and the transmission wheel are combined with each other;
- the one-way clutch is fitted on the outer periphery of the transmission shaft, and the clutch guide portion on the outer periphery of the transmission shaft and the clutch mounting portion on the inner periphery of the one-way clutch are relatively fitted, and by this fitting,
- the one-way clutch is slidable in the axial direction while restraining rotation in the circumferential direction on the outer periphery of the transmission shaft, When the transmission area portion in the inner periphery of the transmission wheel and the clutch engagement portion of the one-way clutch coincide with each other, the transmission wheel and the transmission shaft are clutch-engaged by the one-way clutch,
- the clutch engagement between the transmission wheel and the transmission shaft is released when the one-way clutch is outside the inner periphery of the transmission shaft and the transmission area portion and the clutch
- the third problem solving means of the present invention is: A transmission wheel for transferring rotational power through the outer periphery, a transmission shaft which is a shaft center member for rotation, The transmission wheel and the transmission shaft are rotated in the same direction and only in one direction, or rotation is not transmitted between the transmission wheel and the transmission shaft, and is interposed between the inner periphery of the transmission wheel and the outer periphery of the transmission shaft.
- the one-way clutch engages or disengages the clutch between the inner periphery of the transmission wheel and the outer periphery of the transmission shaft
- On the outer periphery of the transmission shaft a tubular sub-transmission shaft that is operated to move in the axial direction is provided
- the one-way clutch has a clutch mounting portion on one of its inner periphery and outer periphery, and has a clutch engagement portion on the other of its inner periphery and outer periphery
- the transmission shaft corresponds to the auxiliary transmission shaft so as to be freely fitted through the outer periphery thereof, and the axial relative movement with the auxiliary transmission shaft is restricted while restraining the relative movement in the circumferential direction with the auxiliary transmission shaft.
- a movement guide male part that allows The sub-transmission shaft corresponds to the sub-transmission shaft so that it can be freely fitted through the inner periphery of the sub-transmission shaft, and the inner periphery of the sub-transmission shaft restrains relative movement in the circumferential direction with respect to the transmission shaft.
- a movement guide female part that allows relative movement of The transmission shaft and the transmission wheel are relatively arranged such that the transmission shaft is on the axial center side and the transmission wheel is on the outer peripheral side, and combined with each other,
- a clutch mounting portion of the one-way clutch is fixed to one of the inner periphery of the transmission wheel and the outer periphery of the sub-transmission shaft, and one of the inner periphery of the transmission wheel and the outer periphery of the sub-transmission shaft is connected to the one end.
- a transmission area portion that achieves the clutch engagement corresponding to the clutch engagement portion of the directional clutch is provided, When the transmission area portion and the one-way clutch coincide with each other, the transmission wheel and the transmission shaft are in a clutch engagement state by the one-way clutch, and the transmission area portion and the one-way clutch are
- the present invention is to provide a rotary transmission element characterized in that the clutch engagement by the one-way clutch is released between the transmission wheel and the transmission shaft when they do not coincide with each other.
- the one-way clutch has the clutch mounting portion on the outer periphery
- the one-way clutch has the clutch engagement portion on the inner periphery
- the one-way clutch is located inside the transmission wheel.
- a transmission area portion fixed to the periphery and corresponding to the clutch engagement portion of the one-way clutch to achieve the clutch engagement may be provided on the outer periphery of the auxiliary transmission shaft, or the one-way clutch
- the transmission area part which achieves the clutch engagement can be made into the form provided in the inner periphery of the said transmission wheel.
- the fourth problem solving means of the present invention is: A transmission wheel for transferring rotational power through the outer periphery, a transmission shaft which is a shaft center member for rotation, The transmission wheel and the transmission shaft are rotated in the same direction only in one direction, or the rotation between the transmission wheel and the transmission shaft is not transmitted, and the inner periphery of the transmission wheel and the outer periphery of the transmission shaft A one-way clutch having a double structure having a clutch engaging part inside and outside, A tubular operating member for moving and operating the one-way clutch in the axial direction; At least a part of the inner periphery of the transmission wheel is provided with a transmission area part that achieves clutch engagement corresponding to the outer clutch engaging part.
- At least a part of the outer periphery of the transmission shaft is provided.
- a transmission area portion that achieves clutch engagement corresponding to the inner clutch engagement portion is provided,
- the transmission shaft is on the axial center side, the transmission wheel is relatively disposed on the outer peripheral side, and the transmission shaft and the transmission wheel are combined with each other,
- the one-way clutch is fitted via a clutch engagement portion inside the one-way clutch, and the operation members are fitted on both ends of the one-way clutch, respectively.
- Another object of the present invention is to provide a rotary transmission element characterized by the above.
- one transmission wheel and one transmission shaft may be adapted to be engaged with each other by two one-way clutches.
- the fifth problem solving means of the present invention is: Two rotational transmission elements including a transmission wheel for transferring rotational power through the outer periphery and a transmission shaft rotatably provided at the axial center of the transmission wheel;
- the corresponding transmission wheels of the respective rotary transmission elements are connected to each other by means of any one of a direct connection means not via a transmission linkage member and an indirect linkage means via a transmission linkage member,
- At least one of the two rotational transmission elements is due to the first to fourth problem solving means,
- the transmission wheel of the rotation transmission element and the transmission shaft are clutch-engaged by a one-way clutch, rotation is transmitted from one rotation transmission element side to the other rotation transmission element side, and the transmission wheel of the rotation transmission element
- a power on / off transmission device characterized in that when the clutch engagement with the transmission shaft is released, the rotation from one rotation transmission element side to the other rotation transmission element side is not transmitted. There is.
- the sixth problem solving means of the present invention is: An output rotational transmission element and an input rotational transmission element, wherein the output rotational transmission element delivers rotational power through the outer periphery, and a plurality of adjacent transmission wheels and axial portions of the plurality of transmission wheels
- the input rotation transmission element also passes the rotational power through the outer periphery, and a plurality of transmission wheels adjacent to each other and the plurality of transmission wheels
- a transmission shaft provided at the shaft center and rotatably supported;
- At least one of the output rotation transmission element and the input rotation transmission element is a rotation transmission element according to first to fourth problem solving means, and is additionally provided in the rotation transmission element.
- Each transmission wheel and the transmission shaft are clutch-engaged by the one-way clutch, or the clutch engagement is released,
- the direct transmission means not via the transmission linkage member and the indirect linkage means via the transmission linkage member in which the transmission wheels on the output rotary transmission element side and the transmission wheels on the input rotary transmission element side correspond to each other.
- Connected freely by any connecting means When the transmission shaft and one of the transmission wheels are clutch-engaged by a one-way clutch, rotation is transmitted from the input rotation transmission element side to the output rotation transmission element side, and the one-way clutch It is an object of the present invention to provide a transmission apparatus characterized in that the clutch is engaged with the transmission shaft so that the transmission is changed by changing from one transmission wheel to the other transmission wheel.
- a forward rotation transmission system and a reverse rotation transmission system are provided between the output rotation transmission element and the input rotation transmission element, and the transmission system for the forward and reverse rotations is identical. It can be set as the form switched by the axial direction operation means provided with the direction clutch. In this case, it is preferable that intermittent means for connecting or disconnecting adjacent transmission wheels of the rotary transmission element is provided, and that the transmission system for transmitting rotation includes a planetary gear transmission mechanism. preferable.
- the seventh problem solving means of the present invention is: A transmission device according to first to fifth problem solving means, a rotational driving system provided on a rotational power input side of the transmission device, and a rotational operation system provided on a rotational power output side of the transmission device.
- a rotational driving system provided on a rotational power input side of the transmission device
- a rotational operation system provided on a rotational power output side of the transmission device.
- Another object of the present invention is to provide a transmission system characterized in that the one-way clutch is switched so that the clutch engagement of the one-way clutch is not performed with a difference in rotational speed.
- the seventh problem-solving means when the one-way clutch is switched while the clutch engagement of the one-way clutch is not performed, the rotation speed or the rotation speed of the measurement object of the rotation driving system, and the rotation operation The rotational speed or the rotational speed of the measurement object of the system can be detected, respectively, and a relative rotational speed difference can be given to the transmission wheel and the transmission shaft of the rotational transmission element based on the detection result.
- the rotational transmission element, the power on / off transmission device, and the transmission according to the present invention can achieve the following effects (1) to (5) by having the above-described configuration.
- the rotational transmission element according to the present invention engages or disengages the transmission wheel and the transmission shaft by relatively moving the transmission area portion and the one-way clutch in the axial direction.
- a transmission device and a transmission device configured using elements can perform a power on / off operation or a shift operation by shifting elements other than the transmission wheel in the axial direction. In this way, it is possible to perform power transmission and gear shifting operations by moving only the transmission shaft in the axial direction without connecting or disconnecting the transmission wheels corresponding to transmission freely.
- the power on / off type transmission device can select, for example, a gear transmission system with good transmission efficiency, and therefore this is compared with a conventional continuously variable transmission using a friction transmission system. As a result, the transmission efficiency is increased, which has the advantage of reducing the power loss particularly during gear shifting.
- the main components of the transmission system of the rotary transmission element, power on / off transmission device and transmission according to the present invention are the transmission shaft, the transmission wheel and the one-way clutch, and do not require any special parts. Therefore, it can be manufactured stably with high quality, and therefore a rotary transmission element, a power on / off transmission device, and a transmission can be provided with high accuracy.
- the rotational transmission element according to the present invention includes a transmission shaft, a transmission wheel, an operation member, and a one-way clutch, the number of parts is extremely small and lightweight. Since the transmission shaft has only a simple transmission area portion, the structure is simple and the manufacture is easy. Therefore, this rotary transmission element can satisfy the simplicity of construction, the ease of manufacture, the reduction in the number of parts and the weight reduction, and hence the price of the product can be reduced. The same effect can also be obtained by the power on / off type transmission device and the transmission device of the present invention using the.
- the power on / off transmission and transmission according to the present invention have the same effect as described above because the rotational transmission element is a constituent element, and parts other than the rotational transmission element are Since conductive parts can be used, the structure is simple and easy to manufacture, and the number of parts, weight reduction, and cost reduction can be achieved.
- the transmission system according to the present invention the transmission of the present invention, the rotation driving system, and the rotation operating system are combined. Therefore, when the clutch is switched by the transmission, the transmission wheel and the transmission shaft of the rotation transmission element are used. The clutch switching is performed with a relative rotational speed difference, that is, the clutch engagement of the one-way clutch is not performed.
- Clutch switching performed in a state where clutch engagement is not performed can be performed smoothly with almost no operation force required. Also, when switching the rotation input side in the high-speed rotation state to the rotation output side in the stop state or the low-speed state, switching is performed in a state where the clutch engagement is not established, so that an impact at the time of switching may occur. Therefore, the clutch can be switched smoothly, and therefore, the parts are not damaged at the time of switching.
- the rotational speed or the rotational speed of the measurement object of the rotational driving system and the rotational speed or the rotational speed of the measurement object of the rotational operation system are detected, and the rotation is performed based on the detection result. Since a relative rotational speed difference is provided between the transmission wheel and the transmission shaft in the transmission element, rational and stable clutch switching without any trouble can be performed more accurately.
- FIG. 1 is a cross-sectional view including a schematic block circuit diagram of one embodiment of a transmission system according to the present invention, in which a transmission of the transmission system is in a reduction clutch engagement state. It is sectional drawing of the clutch neutral state of the transmission of the transmission system of FIG. It is sectional drawing of the speed-up clutch engagement state of the transmission of the transmission system of FIG. It is a block diagram of the control process of the motor
- each component (part) of the rotary transmission element, the power on / off transmission device, and the transmission device according to the present invention is mainly composed of a metal such as carbon alloy steel.
- Such flexible parts are made of rubber, synthetic resin or the like.
- Rotational transmission element 111 is shown in various embodiments in FIG. 1A, 1B, and 1F show a rotation transmission element 111 that can be used for a gear transmission system, and FIG. 1C shows a rotation transmission element that can be used for a belt transmission system. 111 shows a rotation transmission element 111 that can be used in the timing belt transmission system. Further, FIG. 1 (E) shows a rotary transmission element 111 that can be used in a chain transmission system.
- the transmission wheel 121 includes a transmission wheel 121 for transferring rotational power through the outer periphery, and a transmission shaft 141 that is a rotating shaft member.
- the transmission wheel 121 is a spur gear. More specifically, the transmission wheel 121 is a spur gear such as a large gear (pinion) or a small gear (pinion), and a large number of teeth parallel to the axis of the transmission wheel 121 are on the outer periphery of the gear.
- the transmission shaft 141 is processed as described later.
- the one-way clutch 131 in FIG. 1A is also referred to as a free wheel. As is well known, the one-way clutch 131 is for transmitting a rotational force only in one direction.
- the one-way clutch 131 is attached to the inner periphery of the transmission wheel 121 by one or a plurality of appropriate means such as press fitting means, shrink fitting means, cold fitting means, key fastening means, screw fastening means, and welding means. ing.
- An example of this one-way clutch 131 is shown in FIG. 4, and this will be briefly described below.
- the main configuration of the one-way clutch 131 shown in FIGS. 4A and 4B is the same as that disclosed in Japanese Patent Application Laid-Open No. 2007-255604.
- 4A and 4B includes an outer ring 132Y, a roller 133, and a spring member 134.
- the outer ring 132Y is attached to the inner periphery of the transmission wheel 121.
- the roller 133 is disposed between the outer ring 132Y and the transmission shaft 141.
- a cam surface 132a is provided on the inner peripheral surface of the outer ring 132Y.
- the spring member 134 presses the roller 133 in the clutch engagement direction. Therefore, when the transmission shaft 141 rotates in the clockwise direction (forward direction) in FIG.
- the one-way clutch 131 shown in FIGS. 4A and 4B is attached to the inner periphery of the transmission wheel 121 via the clutch mounting portion CW on the outer periphery thereof, and the clutch engagement on the inner periphery thereof.
- the clutch engages with the outer periphery of the transmission shaft 141 (a transmission area 142 described later) via the joint CC.
- the one-way clutch 131 shown in FIGS. 4 (A) and 4 (B) is referred to as an inner peripheral engagement type because the clutch is engaged through the inner periphery thereof.
- the main configuration of the one-way clutch 131 shown in FIGS. 4C and 4D is the same as that disclosed in Japanese Patent Laid-Open No. 2009-156466.
- the one-way clutch 131 shown in FIGS. 4C and 4D also has the same basic configuration as that shown in FIGS.
- a plurality of holding spaces 132b having cam surfaces 132a are formed at equal intervals on the inner peripheral surface of the outer ring 132Y.
- a needle-type roller 133 is interposed in each holding space 132b, and this roller 133 is pushed in a predetermined direction by a spring member 134 in the holding space 132b.
- the one-way clutch 131 in FIGS. 4C and 4D also has a clutch engagement portion CC with the transmission shaft 141 on the inner periphery thereof, and a clutch mounting portion CW on the outer periphery thereof. Therefore, this one-way clutch 131 is also an inner periphery engagement type.
- the transmission shaft 141 in FIG. 1 (A) can be freely engaged with the one-way clutch 131 in FIG. 4 (A) (B) or 4 (C) (D).
- the transmission area portion 142 and the non-transmission area portion 143 are provided adjacent to each other in the axial direction on the outer periphery thereof.
- the transmission area part 142 is an area where the one-way clutch 131 of the transmission wheel 121 engages with the clutch when rotating in one specific direction, and the non-transmission area part 143 is in either the forward or reverse rotation direction with respect to the one-way clutch 131. Is a region where clutch engagement is not performed.
- the outer periphery of the transmission area 142 is inscribed so as to engage with the inner periphery of the one-way clutch 131 (clutch engagement portion CC), and the outer periphery of the non-transmission area 143 is a one-way clutch. There is a slight gap between the inner periphery of 131 and therefore it is not in contact with the inner periphery of the one-way clutch 131 (clutch engagement portion CC).
- the inner diameter of the one-way clutch 131 is “D”
- the outer diameter of the transmission area 142 is “d1”
- the outer diameter of the non-transmission area 143 is “d2”
- the relationship [D ⁇ d1> d2] is established. is doing.
- D is slightly smaller than D.
- the outer diameter of the transmission area 142 of the transmission shaft 141 is larger than the outer diameter of the non-transmission area 143.
- a slope circumferential surface 144 for step relief is provided by a tapered surface or an arc surface for reducing the step of the area 142, 143. Is formed.
- the transmission wheel 121 is held and fitted on the outer periphery of the transmission shaft 141. ing. Since the transmission wheel 121 and the transmission shaft 141 combined in this manner are not restrained against movement in the axial direction, the relative movement in the axial direction of both can be freely performed. That is, the transmission rod 121 is shifted from the position corresponding to the transmission area portion 142 of the transmission shaft 141 to the non-transmission area portion 143 side of the transmission shaft 141, or conversely, corresponds to the non-transmission area portion 143 of the transmission shaft 141.
- the one-way clutch 131 on the transmission wheel 121 side that can transmit rotation in a specific direction is connected to the transmission shaft 141 via the clutch engagement portion CC.
- the specific direction in this case is one of a clockwise direction (forward rotation direction) and a counterclockwise direction (reverse rotation direction).
- the transmission wheel 121 is composed of a bevel gear.
- the other configuration of the rotational transmission element 111 in FIG. 1B is substantially the same as the configuration of the rotational transmission element 111 in FIG. 1B, the function of the one-way clutch 131 with respect to the transmission shaft 141 is substantially the same as that of the rotation transmission element 111 of FIG.
- the transmission wheel 121 is composed of a pulley of a flat belt.
- the transmission wheel 121 may be a flat belt pulley with a flange or a V belt pulley depending on the type of belt.
- a predetermined belt is hung on the outer periphery of the transmission wheel 121.
- the other configuration of the rotational transmission element 111 in FIG. 1C is substantially the same as the configuration of the rotational transmission element 111 in FIG.
- the function of the one-way clutch 131 with respect to the transmission shaft 141 is substantially the same as that of the rotational transmission element 111 in FIG.
- the transmission wheel 121 is composed of a timing belt wheel (timing pulley), and in the transmission system in which the rotational transmission element 111 is used, there is a timing belt on the outer periphery of the transmission wheel 121. It is hung.
- 1D is substantially the same as the configuration of the rotational transmission element 111 in FIG. 1A, and the function of the one-way clutch 131 with respect to the transmission shaft 141 is also illustrated in FIG. It is substantially the same as that of the rotational transmission element 111 of 1 (A).
- the transmission wheel 121 is composed of a sprocket (also referred to as a sprocket gear or a chain wheel).
- a sprocket also referred to as a sprocket gear or a chain wheel
- a chain is hung on the outer periphery of the transmission wheel 121.
- the other configuration of the rotational transmission element 111 and the function of the one-way clutch 131 are substantially the same as those of the rotational transmission element 111 of FIG.
- the transmission wheel 121 of the rotary transmission element 111 in FIG. 1 (F) is composed of a spur gear similar to that in FIG. 1 (A), but the one-way clutch 131 has the configuration shown in FIGS. 4 (E) and (F). Based on this, some configurations differ from the previous examples as follows.
- the one-way clutch 131 in FIGS. 4E and 4F is an outer peripheral engagement type, and the configuration of the inner peripheral outer periphery is opposite to that of the inner peripheral engagement type.
- 4E and 4F includes an inner ring 132X, a roller 133, and a spring member 134.
- the inner ring 132X is mounted on the outer periphery of the transmission shaft 141, and the roller 133 is disposed between the inner ring 132X and the outer periphery of the one-way clutch 131 (that is, the inner periphery of the transmission wheel 121).
- a cam surface 132a is provided on the outer peripheral surface of the inner ring 132X.
- the spring member 134 presses the roller 133 in the clutch engagement direction.
- 4E and 4F has a clutch mounting portion CW for the transmission shaft 141 on the inner periphery thereof, and a clutch engagement portion for the transmission wheel 121 on the outer periphery thereof.
- CC clutch engagement portion
- the transmission shaft 141 in FIG. 1 (F) is a spline shaft
- the inner periphery (clutch engagement portion CC) of the one-way clutch 131 in FIGS. (E) and (F) corresponds to the spline shaft.
- Spline grooves are formed.
- 4E and 4F is mounted on the outer periphery of the transmission shaft 141 via a clutch mounting portion CW, and the inner periphery of the transmission wheel 121 (transmission described later) via the clutch engagement portion CC.
- the area 122) is engaged with the clutch.
- the transmission shaft 141 of FIG. 1 (F) in which the one-way clutch 131 of FIGS. 4 (E) and 4 (F) is used is a spline shaft. Therefore, the outer periphery of the transmission shaft 141 is formed with irregularities over the entire circumference at equal intervals. On the other hand, the inner periphery (clutch mounting portion CW) of the one-way clutch 131 in FIGS. Concavities and convexities are formed.
- the transmission shaft 141 in FIG. 1 (F) is combined with the one-way clutch 131 in FIGS.
- the one-way clutch 131 and the transmission shaft 141 are spline-coupled, they relatively move in the axial direction but are relatively constrained in the circumferential direction and rotate integrally.
- the outer periphery of the one-way clutch 131 corresponds to the inner periphery (transmission area portion 122) of the transmission wheel 121 so that the clutch can be freely engaged.
- two tubular operation members 151 are slidably fitted on the transmission shaft 141 of FIG. These two operation members 151 have an inner diameter corresponding to the outer periphery of the transmission shaft 141 and have an outer diameter capable of entering the inner periphery of the transmission wheel 121.
- These operation members 151 are for moving the one-way clutch 131 in the axial direction, and are located at positions adjacent to both ends of the one-way clutch 131 on the outer periphery of the transmission shaft 141.
- the one-way clutch 131 is moved by both operation members 151 to engage or disengage the clutch (clutch disengagement).
- the one-way clutch 131 of the outer peripheral engagement type shown in FIGS. 4E and 4F can also be applied to the rotary transmission element 111 shown in FIGS. 1B to 1F using a transmission wheel 121 other than a spur gear. it can.
- a transmission wheel 121 other than a spur gear.
- two or more transmission wheels 121 may be combined with one transmission shaft 141.
- the plurality of transmission wheels 121 and one transmission shaft 141 are provided so as to be capable of clutch engagement via the one-way clutch 131, respectively.
- the transmission area 111 (122, 142) is on the transmission wheel 121 side or the transmission shaft 141 side, as described above.
- the transmission shaft 141 has a transmission area portion 142 and a non-transmission area portion 143.
- Some other rotational transmission elements 111 do not have the non-transmission area 143. An embodiment of such a rotary transmission element 111 is described below with reference to FIG.
- the transmission shaft 141 has narrow diameter portions 145 on both sides of the center of the transmission area portion 142, and a plurality of bearings 146 are provided on the outer periphery of these small diameter portions 145. It has been. These bearings 146 are held on the small-diameter portion 145 by a spacer ring 147a fitted into the small-diameter portion 145 of the transmission shaft 141 and an end plug 148 screwed into the end of the small-diameter portion 145. In the illustrated transmission shaft 141, a bearing 146 adjacent to the one-way clutch 131 forms a non-transmission area portion 143.
- the outer ring (bearing outer periphery) of the bearing 146 has a small diameter portion. Since it only rotates freely on 145, no power is transmitted between the one-way clutch 131 and the transmission shaft 141. There may be only one bearing 146 on both sides of the transmission area 142.
- a tubular or cylindrical rotary ring 149 is rotatably fitted on the outer periphery of the transmission shaft narrow diameter portion 145 instead of the bearing 146.
- a stopper ring 147b for retaining the rotation ring 149 is fitted on the outer periphery of the small diameter portion 145 next to the rotation ring 149.
- the key groove formed on the inner peripheral surface of the stopper ring 147b and the key groove formed on the outer peripheral surface of the narrow diameter portion of the transmission shaft 141 coincide with each other, and the key 150 is inserted across these key grooves.
- the stopper ring 147b is thereby fixed to the transmission shaft 141.
- the rotating ring 149 adjacent to the transmission area 142 constitutes a non-transmission area 143. Even if the one-way clutch 131 is on the rotary ring 149 and these are engaged with the clutch, the rotary ring 149 freely rotates on the small-diameter portion 145, so that the power is transmitted between the one-way clutch 131 and the transmission shaft 141. There is no transmission.
- the outer peripheral engagement type one-way clutch 131 shown in FIGS. 4E and 4F is fixed to the outer periphery of the transmission shaft 141.
- the outer peripheral engagement type one-way clutch 131 has a clutch engagement portion CC on its inner periphery and a clutch mounting portion CW on its outer periphery. Therefore, in the example of FIG. 2C, the one-way clutch 131 is fixed to the outer periphery of the transmission shaft 141 via the clutch mounting portion CW, and the inner periphery of the transmission wheel 121 is the clutch engaging portion CC of the one-way clutch 131. And a corresponding transmission area 122.
- the shape and structure of the transmission area 142 of the transmission shaft 141 in FIG. 2C are substantially the same as those in FIG. 1A and the like, but the transmission shaft 141 includes the transmission area 142 and the non-transmission area.
- the part 143 is not required.
- the rotation transmission element 111 in FIG. 2C in which the outer periphery engagement type one-way clutch 131 is used is, for example, the rotation in FIG. 1A in which the inner periphery engagement type one-way clutch 131 is used.
- the structure of the one-way clutch is different from that of the transmission element 111, but the rotation transmission element 111 in FIG. 2 (C) transmits power transmitted between the transmission wheel 121 and the transmission shaft 141 to another rotation. It is hardly different from the transmission element. 2C, the one-way clutch 131 on the outer periphery of the transmission shaft is fitted into the inner periphery of the transmission wheel 121, and the transmission area portion 122 and the clutch engagement portion CC are engaged with the clutch.
- the configuration of the transmission shaft 141 is practically the same as that of FIG.
- the rotational transmission element 111 also has the same power transmission function and clutch function between the transmission wheel 121 and the transmission shaft 141 as those in FIG.
- the outer diameter of the outer periphery of the transmission shaft 141 is constant, which is different from that in FIG.
- the constant outer diameter of the transmission shaft 141 may not be the entire shaft length. For example, only the clutch mounting portion and the adjacent portions on both sides thereof may have a constant outer diameter.
- FIG. 2 (E) uses the one-way clutch 131 in FIG. 4 (G), and accordingly, a part of the configuration is different from the other examples. Therefore, the one-way clutch 131 in FIG. 4G will be described, and then the rotational transmission element 111 in FIG. 2E will be described in detail.
- the one-way clutch 131 shown in FIG. 4G has a double clutch structure in which an inner peripheral engagement type one-way clutch 131M and an outer peripheral engagement type one-way clutch 131N are overlapped and integrated.
- the inner periphery engagement type one-way clutch 131M can be, for example, the one shown in FIGS. 4A, 4B, or 4C
- FIG. 131N can be the one shown in FIGS. 4E and 4F, for example.
- These two clutches are combined together by appropriate fitting and fixing means with the outer periphery of the one-way clutch 131M and the inner periphery of the one-way clutch 131N overlapped in the radial direction.
- the outer periphery (outer diameter) of the relatively small one-way clutch 131M and the inner periphery (inner diameter) of the relatively large one-way clutch 131N correspond to each other so that they can be assembled in size.
- These two one-way clutches 131M and 131N are integrated by any one or a plurality of means selected from press fitting means, shrink fitting means, cold fitting means, key fastening means, screw fastening means, and welding means. can do.
- the inner periphery of the one-way clutch 131M corresponds to the outer periphery of the transmission shaft 141 (the portion where the transmission area 142 is provided) and the clutch can be freely engaged.
- the transmission wheel 121 corresponds to the inner periphery of the transmission wheel 121 (the portion where the transmission area 122 is provided) so that the clutch can be freely engaged. Accordingly, the transmission areas 142 and 122 and the clutch engaging portions CC exist on the inner periphery of the one-way clutch 131M and the outer periphery of the one-way clutch 131N. These two one-way clutches 131M and 131N have the same rotation direction when engaging the clutch and the rotation direction when releasing the clutch engagement (disengaging the clutch).
- the one-way clutch 131N when the clutch is engaged when the one-way clutch 131M rotates in the clockwise direction, the one-way clutch 131N is also engaged when the one-way clutch 131N rotates in the clockwise direction, and the one-way clutch 131M rotates in the counterclockwise direction.
- the clutch engagement is released when the clutch is engaged, the clutch engagement is released when the one-way clutch 131N also rotates in the clockwise direction.
- the transmission wheel 121 and the transmission shaft 141 are held by fitting the transmission wheel 121 on the outer periphery of the transmission shaft 141.
- the one-way clutch 131 of the double clutch structure (one-way clutch 131M, 131N) is incorporated in these corresponding to both the transmission wheel 121 and the transmission shaft 141.
- the one-way clutch 131 of the double clutch structure is connected to the transmission wheel 121 and the transmission shaft 141 so that the outer periphery of the transmission shaft 141 can move along the axial direction or enter the inner periphery of the transmission wheel 121.
- Two operating members 151 are fitted on the outer periphery of the transmission shaft 141 so as to be movable in the axial direction and the circumferential direction adjacent to the both sides of the one-way clutch 131. Since these two operating members 151 have an outer diameter smaller than the inner diameter of the transmission wheel 121, they can enter the inner periphery of the transmission wheel 121.
- the one-way clutch 131 of the double clutch structure can be operated so as to move along the axial direction of the transmission shaft 141 via the operation member 151.
- the clutch engaging portions CC of the one-way clutches 131M and 131N coincide with the transmission area portion 122 on the inner periphery of the transmission wheel and the transmission area 142 on the outer periphery of the transmission shaft, respectively, the one-way clutch 131M and the transmission shaft 141, Since the one-way clutch 131N and the transmission wheel 121 are in the clutch engagement state, power can be transmitted between the transmission wheel 121 and the transmission shaft 141.
- Each transmission shaft 141 in FIGS. 2A to 2E can be used for any of the rotary transmission elements 111 described in FIGS.
- two or more transmission wheels 121 may be combined with one transmission shaft 141.
- the plurality of transmission wheels 121 and one transmission shaft 141 respectively correspond to each other so that the clutch can be freely engaged via the one-way clutch 131 as described above.
- a rotation transmission element 111 according to an embodiment other than the above is shown in FIG.
- the rotational transmission element 111 in FIG. 3A is composed of a combination of a transmission wheel 121, a one-way clutch 131, and a transmission shaft 141, as in the above-described embodiment, but has a cylindrical auxiliary transmission shaft 161. It is different from the embodiments already described. On the outer periphery of the auxiliary transmission shaft 161, there is a transmission area portion 162 corresponding to a clutch engagement portion CC described later.
- the transmission shaft 141 and the sub-transmission shaft 161 are assembled and combined so as to be movable in the axial direction so that the transmission shaft 141 is on the inner side and the sub-transmission shaft 161 is on the outer side. .
- the transmission shaft 141 and the sub-transmission shaft 161 are combined by spline fitting in order to allow only relative movement in the axial direction while restricting relative movement in the circumferential direction. That is, a spline movement guide male portion 152 is formed on the outer periphery of the transmission shaft 141, and a spline movement guide female portion 163 is formed on the inner periphery of the sub-transmission shaft 161. It has been.
- An operation connecting portion 164 necessary for operating the auxiliary transmission shaft 161 is further provided on the outer periphery of the auxiliary transmission shaft 161. Since the one-way clutch 131 of the rotational transmission element 111 in FIG.
- 3A is an inner peripheral engagement type, a clutch engagement portion CC is provided on the inner periphery thereof, and a clutch mounting portion CW is provided on the outer periphery thereof.
- the one-way clutch 131 is fixed to the inner periphery of the transmission wheel 121 via a clutch mounting portion CW, for example, similarly to that of FIG.
- a transmission area portion 162 corresponding to the clutch engaging portion CC that is the inner periphery of the one-way clutch 131 is on the outer periphery of the sub-transmission shaft 161.
- the auxiliary transmission shaft 161 When the transmission wheel 121 and the transmission shaft 141 are brought into the clutch engagement state in the rotary transmission element 111 of FIG. 3A, the auxiliary transmission shaft 161 is moved to the left in FIG. The area 162 is caused to enter the transmission wheel 121 (the clutch engaging portion CC of the one-way clutch 131) to engage the clutch.
- the transmission shaft 141 and the sub-transmission shaft 161 always rotate integrally forward and reverse by spline fitting, and the transmission wheel 121 and the sub-transmission shaft 161 are clutch-engaged by the one-way clutch 131, so that the transmission wheel 121 and the transmission shaft 141 are engaged.
- the sub-transmission shaft 161 are integrally rotated in the forward or reverse direction.
- the power on the transmission shaft 141 side is transmitted to the transmission wheel 121, or the power on the transmission wheel 121 side is transmitted to the transmission shaft 141. Or can be communicated to.
- the sub-transmission shaft 161 is moved to the right and the transmission area portion 162 at the left end thereof is disengaged from the inner periphery of the transmission wheel 121 (the clutch engagement portion CC of the one-way clutch 131), the clutch engagement described above is performed. The state is released, and power is not transmitted between the transmission wheel 121 and the transmission shaft 141.
- the rotational transmission element 111 of FIG. 3 (B) is different from the rotational transmission element of FIG. 3 (A) in that the outer peripheral engagement type one-way clutch 131 is fixed to the outer periphery of the auxiliary transmission shaft 161. This is almost the same as FIG. 3B, when the transmission wheel 121 and the transmission shaft 141 are brought into the clutch engagement state, the auxiliary transmission shaft 161 is moved to the left in FIG. The one-way clutch 131 is caused to enter the inner periphery (transmission area portion 122) of the transmission wheel 121. When the clutch coupling portion CC of the one-way clutch 131 and the transmission area portion 122 of the transmission wheel 121 coincide with each other, clutch engagement is performed.
- the transmission shaft 141 and the sub-transmission shaft 161 are rotated in the forward and reverse directions by spline fitting, and the transmission wheel 121 and the sub-transmission shaft 161 are clutch-engaged, so that the transmission wheel 121 and the transmission shaft 141 are engaged.
- the sub-transmission shaft 161 integrally rotate in the forward or reverse direction. Accordingly, similarly, the power on the transmission shaft 141 side can be transmitted to the transmission wheel 121, or the power on the transmission wheel 121 side can be transmitted to the transmission shaft 141.
- FIG. 3 (C) is a modification of the rotary transmission element of FIG. 3 (A).
- two transmission wheels 121 ⁇ / b> L and 121 ⁇ / b> R having different outer diameters and a sub transmission shaft 161 are provided on the outer periphery of the transmission shaft 141. That is, the two transmission wheels 121L and 121R are on the outer periphery of both ends of the transmission shaft 141, and the auxiliary transmission shaft 161 is interposed between the two transmission wheels 121L and 121R.
- the inner periphery engagement type one-way clutch 131 is fixed to the inner periphery of both transmission wheels 121L and 121R.
- Two transmission area portions 162L and 162R corresponding to the clutch coupling portion CC of the two one-way clutch 131 are on the outer periphery of both ends of the sub-transmission shaft 161.
- the auxiliary transmission shaft 161 is moved to the left in the figure, and the transmission area portion 162L at the left end thereof is moved to the transmission wheel 121L (the clutch engaging portion CC of the one-way clutch 131). ),
- the transmission area 162R at the right end of the sub-transmission shaft 161 escapes from the transmission wheel 121R (the clutch engagement portion CC of the one-way clutch 131).
- the power on the transmission shaft 141 side can be transmitted to the transmission wheel 121R, or the power on the transmission wheel 121R side can be transmitted to the transmission shaft 141, but the power on the transmission shaft 141 side can be transmitted to the transmission wheel 121R. Or the power on the transmission wheel 121R side cannot be transmitted to the transmission shaft 141.
- the rotary transmission element 111 in FIG. 3C has two systems of power transmission between the transmission wheel 121L and the transmission shaft 141 or power transmission between the transmission wheel 121R and the transmission shaft 141. Since power transmission can be selected alternatively, transmission system switching can be selected.
- the rotational transmission element 111 in FIG. 3D is a modification of the rotational transmission element in FIG. Also in this case, similarly, two transmission wheels 121L and 121R having different outer diameters and the sub transmission shaft 161 are provided on the outer periphery of the transmission shaft 141.
- the outer peripheral engagement type one-way clutch 131 is fixed to the outer periphery of both ends of the transmission shaft 141, and the two transmission area portions 122L and 122R corresponding to the clutch coupling portion CC are on the inner periphery of the two transmission wheels 121L and 121R. .
- the auxiliary transmission shaft 161 is moved to the left in FIG.
- the auxiliary transmission shaft 161 is moved.
- the one-way clutch 131 at the right end of the lane escapes from the transmission wheel 121R (transmission area portion 122R).
- clutch engagement is established on the left side of the transmission shaft 141, and clutch engagement is not established on the right side of the transmission shaft 141. Therefore, although the power on the transmission shaft 141 side can be transmitted to the transmission wheel 121L and the power on the transmission wheel 121L side can be transmitted to the transmission shaft 141, the power on the transmission shaft 141 side can be transmitted to the transmission wheel 121R.
- the power on the transmission wheel 121R side cannot be transmitted to the transmission shaft 141.
- the sub-transmission shaft 161 is moved to the right in FIG. 3D and the one-way clutch 131 at the right end thereof enters the transmission wheel 121R (transmission area portion 122R)
- the right side of the transmission shaft 141 is similarly applied.
- clutch engagement is established, and clutch engagement is not established on the left side of the transmission shaft 141. Therefore, although the power on the transmission shaft 141 side can be transmitted to the transmission wheel 121R and the power on the transmission wheel 121R side can be transmitted to the transmission shaft 141, the power on the transmission shaft 141 side can be transmitted to the transmission wheel 121R.
- the power on the transmission wheel 121R side cannot be transmitted to the transmission shaft 141.
- the rotational transmission element 111 in FIG. 3D selects two types of power transmission, that is, power transmission between the transmission wheel 121L and the transmission shaft 141 and power transmission between the transmission wheel 121R and the transmission shaft 141. It is possible to select one, and it is possible to select transmission system switching.
- each transmission wheel 121 shown in FIGS. 1B to 1E can be used.
- the rotation transmission element 111 may be provided with two one-way clutches 131 adjacent to each other in the axial direction. These two one-way clutches 131 are fixed to the outer periphery of the transmission shaft 141 or are fixed to the inner periphery of the transmission wheel 121. Further, these two one-way clutches 131 may have the same clutch engagement direction (meshing direction) or the opposite direction.
- FIGS. 1 (A) to (E) Several forms of the power on / off transmission device including the rotary transmission element 111 of FIGS. 1 (A) to (E) are shown in FIGS.
- the housing 211 is provided with a plurality of shaft support portions 212, 213, 214, 215, 216, of which three shaft support portions 212, 213, 214 are on the same axis, and the other two shaft support portions 215, 216 is also on the same other axis.
- the transmission shaft 141 is supported by the three shaft support portions 212, 213, and 214 so as to be rotatable and slidable in the axial direction.
- the transmission wheel 121 is disposed on the axis between the shaft support portions 212 and 213 and is rotatably supported by two bearings 218.
- the transmission shaft 141 is supported by shaft support portions 212 and 214 via a bush 217 so as to be slidable and rotatable in the axial direction.
- another one transmission shaft 221 is provided in the housing 211, and a transmission wheel 222 made of a spur gear (pinion) is attached to the outer periphery of the transmission shaft 221. It has been.
- the transmission shaft 221 is rotatably supported by two shaft support portions 215 and 216 via bearings 218.
- the transmission shafts 141 and 221 are arranged parallel to each other with a space therebetween, and the transmission wheels 121 and 222 mesh with each other.
- one of the transmission shafts 141 and 221 is set to the input side and the other is set to the output side, and from one transmission shaft 141 to the other transmission shaft 221, or Rotational power can be transmitted unilaterally or reversibly from the other transmission shaft 221 to one transmission shaft 141.
- the transmission shaft 141 is on the input side and the transmission shaft 221 is on the output side, the transmission wheels 121 and 222 are as shown in FIGS. Are constantly engaged.
- the one-way clutch 131 of the transmission wheel 121 and the transmission area portion 142 of the transmission shaft 141 are in a clutch engaged state as shown in FIG. 5A or in a clutch disengaged state as shown in FIG. There is. 5A, the rotational power of the input side transmission shaft 141 is transmitted to the output side transmission shaft 221 via the one-way clutch 131, the transmission wheel 121, and the transmission wheel 222.
- the operation of interrupting or terminating the power transmission is performed by moving the input side transmission shaft 141 in the axial direction manually or mechanically.
- the transmission area portion 142 of the transmission shaft 141 is disengaged from the one-way clutch 131 of the transmission wheel 121, as shown in FIG.
- the non-transmission area portion 143 of the transmission shaft 141 enters the one-way clutch 131. Accordingly, the one-way clutch 131 and the non-transmission area portion 143 of the transmission shaft 141 are in a non-engagement state of the clutch, so that power is not transmitted to the output-side transmission shaft 221 side.
- FIG. 6 uses the rotary transmission element 111 of FIG. 1 (B).
- the two transmission shafts 141 and 221 are arranged in an orthogonal state, and therefore the two transmission wheels 121 and 222 are constituted by bevel gears meshing with each other.
- the other configuration of FIG. 6 is substantially the same as that of FIG.
- FIG. 7 shows a belt transmission type power on / off type transmission device, which uses the rotary transmission element 111 of FIG. 1 (C).
- the two transmission wheels 121 and 222 are in the form of a flat pulley, and a flat belt 225a is stretched between them.
- the two transmission shafts 141 and 221 are arranged in parallel and are rotatably supported by bearings.
- the other structure of the apparatus of FIG. 7 is substantially the same as FIG.
- the transmission wheels 121 and 222 may be V pulleys.
- the belt 225a is a V belt.
- FIG. 8 shows a timing belt transmission type power on / off type transmission device, which uses the rotary transmission element 111 of FIG. 1 (D). Accordingly, the two transmission wheels 121 and 222 are timing belt wheels (timing pulleys), and the timing belt 225b is wound around the transmission wheels 121 and 222.
- the other configuration of FIG. 8 is substantially the same as that of FIG.
- FIG. 9 shows a chain (roller chain) power on / off type transmission device using the rotary transmission element 111 of FIG. 1 (E). Accordingly, the two transmission wheels 121 and 222 are formed of sprockets (sprocket gears), and a chain (roller chain) 225 c is wound around these transmission wheels 121 and 222.
- the other configuration of FIG. 9 is substantially the same as that of FIG.
- the power on / off type transmission device one arbitrarily selected from the rotary transmission elements 111 of FIGS. 1 (F), 2 (A) to 2 (E), and FIGS. 3 (A) and 3 (B) may be used. it can.
- FIG. 10 to FIG. 15 each show a transmission including the rotational transmission element 111 of FIG. 1 (A), and the respective devices will be described in sequence below.
- the housing 211 has a plurality of shaft support portions 212, 213, 214, 215, and 216 as in FIG. 5, and each of the three bearing portions 212, 213, and 214.
- the two shaft supports 214, 215 are on the same axis.
- 10 (A) and 10 (B) two large and small transmission wheels 121L and 121R made of spur gears are provided, and one-way clutches 131X and 131Y are respectively provided at the axial centers of these two transmission wheels 121L and 121R. It is attached.
- the input-side transmission shaft 141 passes through the shaft support portions 212, 213, and 214, and both ends thereof are supported by the shaft support portions 212 and 214 through the bearing bush 217 so as to be slidable and rotatable in the axial direction. ing.
- the transmission wheel 121 ⁇ / b> R on the input side transmission shaft 141 is rotatably supported by the shaft support portions 212 and 213 by a bearing 218.
- the transmission wheel 121L on the input side transmission shaft 141 is also rotatably supported by the shaft support portions 213 and 214 by the bearing 218.
- the other transmission shaft 221 has transmission wheels 222L and 222R composed of two large and small spur gears on the outer periphery thereof.
- the transmission shaft 221 is also rotatably supported by shaft support portions 215 and 216 via bearings 218, as in FIG.
- These transmission shafts 141 and 221 are arranged in parallel and spaced apart such that both transmission wheels 121L and 222L mesh with each other and both transmission wheels 121R and 222R mesh with each other.
- This transmission may transmit rotational power unilaterally or reversibly from one transmission shaft 141 to the other transmission shaft 221 or vice versa.
- the transmission shaft 141 is the input side
- the transmission shaft 221 is the output side.
- Both the transmission wheels 121L and 222L and the transmission wheels 121R and 222R mesh with each other constantly.
- the input side transmission shaft 141 of FIG. 10 (A) is moved a predetermined distance in the direction of the arrow in FIG.
- the one-way clutch 131X of the transmission wheel 121R is displaced from the transmission area 142 of the transmission shaft 141 to the non-transmission area 143, and the clutch is disengaged, and the one-way clutch 131Y of the transmission wheel 121L is transmitted.
- the shaft 141 is displaced from the non-transmission area portion 143 to the transmission area portion 142 to be engaged with the clutch.
- 11 (A) to 11 (C) also use the rotational transmission element 111 of FIG. 1 (A) and have the same basic configuration as the device of FIG. 10, but the number of gears is increased by one step compared to the device of FIG. Has been. That is, on the outer periphery of the transmission shaft 141, three transmission wheels 121L, 121S, and 121R whose outer diameters are sequentially increased are provided side by side, and the one-way clutches 131Y, 131Z, and 131X are provided inside the transmission wheels 121L, 121S, and 121R. Are attached to each. In order to support each transmission rod 121L, 121S, 121R, the shaft support portion 213 includes two portions 213a, 231b.
- transmission shaft 221 On the outer periphery of the transmission shaft 221, there are three transmission wheels 222L, 222S, 222R corresponding to the transmission rods 121L, 121S, 121R, the outer diameters of which are sequentially reduced.
- the transmission shafts 141 and 221 are arranged in parallel at intervals so that the transmission wheels 121L and 222L mesh with each other, the transmission wheels 121S and 222S mesh with each other, and the transmission wheels 121R and 222R mesh with each other.
- 11A to 11C are the same as those in FIGS. 10A and 10B.
- FIG. 11A shows a clutch engagement state in which the one-way clutch 131Y and the transmission shaft transmission area portion 142 coincide with each other.
- the transmission wheel 121L and the transmission wheel 222L are engaged to transmit power.
- the transmission wheels 121S and 222S and the transmission wheels 121R and 222R are disengaged to block power transmission.
- the rotational power of the input side transmission shaft 141 is transmitted to the output transmission shaft 221 in accordance with the gear ratio of the two transmission wheels 121L and 222L.
- the one-way clutch 131Z and the transmission shaft transmission area 142 coincide with each other, and only the transmission wheel 121S and the transmission wheel 222S mesh with each other according to the gear ratio of the transmission wheels 121S and 222S.
- the rotational power of the input side transmission shaft 141 is transmitted to the output transmission shaft 221.
- the rotational power of the input side transmission shaft 141 is transmitted to the output transmission shaft 221 in accordance with the gear ratio of the transmission wheels 121R and 222R meshing with each other.
- the transmission of FIG. 12 is a modification of the transmission of FIG.
- two one-way clutches 131YL and 131YR are provided between the left transmission wheel 121L corresponding to the input side transmission shaft 141 and the input side transmission shaft 141, and the left transmission wheel corresponding to the output side transmission shaft 221.
- 11 is different from the apparatus of FIG. 11 in that a one-way clutch 231 is interposed between 222L and the transmission shaft 221 and a transmission connecting portion 153 is provided at the right end of the input-side transmission shaft 141.
- the output-side one-way clutch 231 engages the two members 221 and 222L in a normal one-way meshing manner.
- the transmission connecting portion 153 is, for example, a spline cylinder corresponding to the spline shaft, and is connected to or disconnected from the drive-side spline shaft (not shown) by lever operation, so that the power of the input-side transmission shaft 141 can be disconnected. You can select on / off.
- the power from the input side transmission shaft 141 is transmitted to the transmission wheel 222L via the one-way clutch 131YL and the transmission wheel 121L, but the one-way clutch 231 does not transmit this rotation to the output side transmission shaft 221.
- the transmission wheel 222L simply rotates without being involved in power transmission.
- the one-way clutch 131YR is not involved in power transmission.
- the one-way clutch 131YR When the input side transmission shaft 141 is rotated in reverse, the rotational power of the input side transmission shaft 141 is transmitted to the transmission wheel 222L via the one-way clutch 131YR and the transmission wheel 121L. In this case, the one-way clutch 231 outputs this rotation. Since it is transmitted to the side transmission shaft 221, the output side transmission shaft 221 rotates in the reverse direction. At this time, the one-way clutch 131YL is not involved in power transmission.
- the transmission of FIG. 12 can transmit not only forward rotation of the input side transmission shaft 141 but also reverse rotation to the output side transmission shaft 221.
- the transmission shown in FIG. 13 is a modification of the transmission shown in FIGS.
- the input side transmission shaft 141 is configured by a combination of the spline shaft 141S and the spline cylinder 141P. These members 141 ⁇ / b> S and 141 ⁇ / b> P slide relative to each other in the axial direction by spline fitting to expand and contract the transmission shaft 141.
- the input-side transmission shaft 141 also has an engagement portion 154 at one end thereof, and the distal end portion of the operation lever 155 that protrudes outside the housing 211 is engaged with the engagement portion 154.
- the tip of the operation lever 155 with a roller does not hinder the rotation of the input side transmission shaft 141.
- the operation lever 155 can swing in the left-right direction in FIG. 13 with the base end portion outside the housing 211 as a fulcrum.
- the apparatus of FIG. 12 has a function of transmitting forward / reverse rotation of the input-side transmission shaft 141 to the output-side transmission shaft 221.
- the other shaft member 141P rotates simultaneously with the one shaft member 141S.
- the shaft member 141P is moved in the axial direction via the operation lever 155.
- the transmission area 142 of the input side transmission shaft 141 corresponds to the one-way clutch 131X or 131Y.
- FIG. 14 is a modification of the transmission shown in FIG.
- a flanged cylindrical spring seat 156 and a pair of ring-shaped clutch members 157L and 157R are provided between the two transmission wheels 121L and 121R on the input side transmission shaft 141 side.
- clutch return springs 158L and 158R for biasing the clutch members 157L and 157R in a direction facing each other (a direction away from the transmission wheels 121L and 121R) are provided.
- an operation lever type clutch operating member 159 that enters the housing 211 from the outside of the housing 211 through the guide hole is provided.
- the clutch actuating member 159 has a spherical tip disposed in the V-shaped space.
- the clutch actuating member 159 is given a force in a direction to escape from the space between the clutch members 157L and 157R by a return spring 160 disposed between the clutch actuating member 159 and the housing wall surface.
- the transmission of FIG. 14 is the same as the transmission shown in FIG. 10 in the speed change operation by the movement of the input side transmission shaft 141 in the axial direction.
- the transmission of FIG. 14 can obtain smoothness at the time of shifting by the clutch members 157L and 157R.
- the clutch switching can be performed more smoothly as the rotational speeds of the transmission wheels 121 ⁇ / b> L and 121 ⁇ / b> R are closer. This is done by interposing the tip of the clutch actuating member 159 between the clutch members 157L, 157R.
- clutch member 157L, 157R will be pushed in by clutch operation member 159, and will press-contact with transmission wheel 121L, 121R. This is the same state as clutch engagement. Therefore, the clutch members 157L and 157R rotate synchronously by this pressure contact (clutch engagement), and the rotational speeds of the transmission wheels 121L and 121R are approximated. As a result, the shift by the moving operation of the input side transmission shaft 141 is smoothly performed. After the shifting process is completed, the clutch actuating member 159 and the clutch members 157L, 157R are returned to their original positions by the return springs 158L, 158R, 160, respectively.
- the 15 includes a planetary gear mechanism.
- two internal gears 171 and 181 having different gear diameters are provided side by side in the axial direction on the inner wall surface of the housing 211.
- the input-side transmission shaft 141 and the output-side transmission shaft 221 are both aligned on the same axis at the center of the housing 211, and are rotatably supported by bearings 218 on shaft support portions 212 and 215 provided in the housing 211. ing.
- the input side transmission shaft 1 is supported so as to be movable in the axial direction.
- the output side transmission shaft 221 has a multiaxial plate part 223 at its inner end, and a plurality of support shafts 224a, 224b, 224c protrude from the plate surface.
- Two sets of planetary gears are rotatably attached to the plurality of support shafts 224a, 224b, and 224c.
- a group of planetary gears 172a, 172b, and 172c corresponding to the internal gear 171 mesh with the internal gear 171, respectively.
- Another group of planetary gears 182a, 182b, 182c corresponding to the internal gear 181 are also meshed with the internal gear 181.
- the planetary gears 172a, 172b, and 172c mesh with the sun gear 173 located at the center thereof, and the planetary gears 182a, 182b, and 182c mesh with the sun gear 183 located at the center thereof.
- the internal gear 171, the planetary gears 172 a, 172 b and 172 c and the sun gear 173 constitute one planetary gear mechanism, and the internal gear 181, the planetary gears 182 a, 182 b and 182 c and the sun gear 183 are the other planet.
- a gear mechanism is configured. These two planetary gear mechanisms have different gear ratios. Both the planetary gear and the sun gear correspond to transmission wheels.
- the input side transmission shaft 141 of the transmission shown in FIG. 15 is in the form of a spline-type telescopic expansion and contraction in the axial direction by the operation lever 155 engaged with the engaging portion 154, as described in the form of FIG. Can move.
- a one-way clutch is fixed to the inner circumference of the sun gears (transmission wheels) 173 and 183 or the outer circumference of the transmission shaft 141 to constitute an inner circumference engagement type or an outer circumference engagement type one-way clutch.
- inner periphery engagement type one-way clutches 131 ⁇ / b> X and 131 ⁇ / b> Y are used and fixed to the inner periphery of the sun gears 173 and 183.
- a transmission area 142 is formed on the outer periphery of the distal end of the transmission shaft 141.
- 15 may also increase the number of shift stages, or may reverse the direction of rotation of the output side transmission shaft 221 in the forward and reverse directions.
- the transmission shown in FIG. 16 uses the rotational transmission element 111 shown in FIG. 3C and the transmission shaft 221 including the two transmission wheels 222L and 222R.
- the transmission wheel 121L and the transmission wheel 222L are engaged with each other, and the transmission wheel 121R.
- the operation lever 155 is used to operate the auxiliary transmission shaft 161 in the axial direction.
- Other configurations are substantially the same as those of the previous embodiment.
- the auxiliary transmission shaft 161 is moved in the axial direction via the operation lever 154 so that the transmission area portion 162 of the auxiliary transmission shaft 161 is aligned with the one-way clutch 131 in the transmission wheel 121L.
- the transmission is switched by matching with the one-way clutch 131 in the transmission wheel 121R.
- the transmission system extending from the input side transmission shaft 141 to the output side transmission shaft 221 can be shifted.
- the transmission of FIG. 16 can easily perform a shift operation by moving only the auxiliary transmission shaft 161 with less burden without moving the transmission shaft 141 or the transmission wheel.
- the input side transmission shaft 141 and the output side transmission shaft 221 be equipped with encoders for measuring the rotational speed.
- the rotation of the input / output shaft is detected by the encoder, and based on this, the optimum meshing state between the transmission wheels can be achieved.
- the movement of the transmission shaft and the sub-transmission shaft for the speed change operation may be either manual operation or mechanical automatic operation.
- FIG. 17 to FIG. 19 show a multi-transmission system configured by combining a transmission TRA, a rotational drive system RMS, and a rotational operation system ROM.
- This transmission system has a rotation control system RCS for smoothly performing clutch switching.
- the transmission TRA shown in FIGS. 17 to 19 has substantially the same structure as the transmission shown in FIGS. 10A and 10B, detailed description thereof will be omitted.
- the transmission wheels 121L, 222L, 121R, and 222R of the transmission TRA of FIGS. 17 to 19 are larger gears and smaller gears (pinions) than those of FIGS. It can be seen that is swapped on the left and right.
- the transmission TRA is also provided with one-way clutches 226X and 226Y on the inner peripheral surfaces of the transmission wheels 222L and 222R, respectively, and these one-way clutches 226X and 226Y can be meshed with the outer peripheral surface of the transmission shaft 221. It corresponds to.
- the 17 to FIG. 19 is composed of a motor 301 of other appropriate forms such as a motor.
- the prime mover 301 includes a brushless motor, and the output shaft 302 of the prime mover 301 is coupled to the transmission shaft 141 of the transmission TRA via an appropriate joint 303 such as a coupling or a coupler.
- the joint 303 may be either a detachable type or a non-detachable type.
- the transmission shaft 141 performs a thrust movement when the clutch is switched. Accordingly, the joint 303 is of a configuration that allows the thrust movement of the transmission shaft 141.
- the transmission shaft 141 is splined to the joint 303. Therefore, the transmission shaft 141 and the output shaft 302 are coupled so as to allow thrust movement while transmitting rotation through the joint 303.
- the rotation control system RCS in FIGS. 17 to 19 includes a computer 401, an inverter circuit 404, and two measuring devices 405 and 406 for detecting the rotational speed and detecting the rotational speed.
- the computer 401 includes a control circuit 402 for a prime mover, and a necessary program 403 is recorded and saved.
- the inverter circuit 404 includes a semiconductor circuit (inverter) that drives the motor (brushless motor) 301 at an arbitrary frequency and an arbitrary voltage, and a peripheral circuit (driver) for driving the motor.
- the two measuring instruments 405 and 406 can be a mechanical pulse generator, an optical non-contact pulse generator, an electromagnetic non-contact pulse generator, or a combination of an electromagnetic rotation detector and a digital tachometer. There may be.
- the two measuring devices 405 and 406 are encoders (rotary encoders). This rotary encoder may be either an incremental method or an absolute method.
- the measuring device 405 for detecting the rotational speed of the prime mover 301 has a rotational shaft (not shown) connected to a rotor shaft (not shown) of the prime mover 301, whereby the rotating part of the measuring device 405 is connected to the rotor of the prime mover 301. And rotate together.
- the other measuring device 406 for detecting the number of rotations of the transmission shaft 221 has its rotating shaft 407 connected to the end of the transmission shaft 221 via a joint, whereby the rotating portion of the measuring device 406 is integrated with the transmission shaft 221. It starts to rotate.
- the measuring device 405 detects the rotational speed of the prime mover 301 and inputs the detection signal (measurement signal) to the arithmetic processing system of the computer 401, and the other measuring device 406 detects the rotational speed of the transmission shaft 221 and A detection signal (measurement signal) is input to the arithmetic processing system of the computer 401.
- the computer 401 receives the measurement signals from these measuring devices 405 and 406, performs arithmetic processing for motor rotation control, and outputs a control signal, which is performed based on the settings of the program 403.
- the computer 401 inputs a prime mover control signal to the inverter circuit 404.
- the inverter circuit 404 rotates the prime mover 301 at a low speed or a high speed by changing the phase and frequency of the drive current.
- the frequency amplitude is reduced while decreasing the voltage
- the frequency amplitude is increased while the voltage is increased.
- This transmission system also changes the one-way clutches 131X and 131Y from the clutch engaged state to the clutch disengaged state or vice versa by the axial movement of the transmission shaft 141 of the transmission TRA.
- the prime mover 301 is controlled at the time of clutch switching, which will be described later.
- the rotation control system RCS In order to manually perform the thrust movement of the transmission shaft 141, the rotation control system RCS is brought into an operating state when an operator pushes the prime mover control switch. Instead, the rotation control system RCS enters an operating state by detecting and switching the thrust movement of the transmission shaft 141 with a sensor or the like. Further, instead of them, the rotation control system RCS may be in an operating state at a predetermined timing in the automatic control state.
- the transmission system performs the required clutch switching by moving the transmission shaft 141 of the transmission TRA in the axial direction, but the clutch switching in the transmission system of FIGS. 17 to 19 is different from that of the other embodiments.
- the differences are as follows. That is, in the transmission system of the embodiment of FIG. 17 to FIG.
- one of the one-way clutches 131X and 131Y of the rotational transmission element 111 of the transmission TRA is Or, “when the clutch is switched from the clutch disengaged state to the clutch engaged state”, the rotational speed difference relative to “the transmission wheel 121R and the transmission shaft 141” or “the transmission wheel 121L and the transmission shaft 141” of the rotational transmission element 111.
- the clutch engagement of the one-way clutch 131X, 131Y is not established, torque in the rotational direction is not generated in the one-way clutch 131X, 131Y.
- the prime mover 301 and the transmission shaft 141 belong to the driving side, and both the transmission wheels 121R and 222R and the transmission shaft 221 Belongs to the driven side.
- the prime mover 301 and the transmission shaft 141 belong to the driving side, and both the transmission wheels 121L and 222L
- the transmission shaft 221 belongs to the driven side.
- the prime mover 301 and the transmission shaft 141 are integrally rotated, and both the transmission wheels 121R and 222R and the transmission shaft 221 are integrally rotated.
- the rotational speed SV1 of the transmission shaft 141 and the rotational speed SV2 of the transmission shaft 221 are Are equal to each other, there is no relative speed difference between the driving side and the driven side. This is because there is no movement between the two transmission shafts 141 and 221 when viewed from the relative relationship between the driving side (transmission shaft 141 side) and the driven side (transmission shaft 221 side). 121R is in a stopped state.
- the transmission wheel 121R that stops if left alone is forcibly pulled in the rotation direction via the one-way clutch 131X. Will be.
- the transmission wheel 121R that rotates by receiving the power transmission from the transmission shaft 141 tends to rotate due to inertia, but does not rotate so as to exceed the rotational speed (rotational speed) of the transmission shaft 141.
- the transmission wheel 121R that rotates in a driven manner is pulled in the rolling direction by the transmission shaft 141 every time the rotation speed decreases. Since this occurs continuously, the transmission wheel 121R rotates synchronously with the transmission shaft 141.
- the transmission wheel 121R rotates by itself, and if it rotates in the same direction as the transmission shaft 141 at a speed equal to or higher than that of the transmission shaft 141, the rotation of the transmission shaft 141 is transmitted to the transmission wheel 121R. There is no.
- the transmission system when the transmission area 142 of the transmission shaft 141 is between the right transmission wheel 121R and the left transmission wheel 121L, the transmission system is in a neutral state where power is not transmitted. In this neutral state, the one-way clutches 131X and 131Y are both in the clutch disengaged state. When the transmission system is in such a neutral state, power transmission from the driving side to the driven side is not performed. If the one-way clutch 131X, 131Y is in the middle of clutch switching or the transmission system is in an idling state while the transmission system is in a paused or stopped state, the transmission system becomes neutral in FIG.
- each component on the prime mover side receives power transmission from the prime mover 301 and rotates.
- each component on the driven side may rotate due to inertia or idling. Therefore, when the clutch is engaged from the neutral state, the rotation speed detection (rotation speed detection) is basically the same as described above, and the transmission system control is based on the detection, except when the transmission system is stopped or stopped. (Control of transmission TRA) is performed.
- the prime mover 301 and the transmission shaft 141 are integrally rotated, and the transmission wheels 121L and 222L and the transmission shaft 221 are integrally rotated.
- the rotational speed SV1 of the transmission shaft 141 and the rotational speed SV2 of the transmission shaft 221 are Even when they are equal to each other, the transmission shaft 141 can be regarded as being in a stopped state. Also in this case, since the one-way clutch 131Y is not engaged, torque that transmits rotation from the transmission shaft 141 to the transmission wheel 121R is not generated in the one-way clutch 131Y.
- [SV1 ⁇ SV2] reduces the accuracy and stability of that kind.
- [SV1 / SV2] is set within the range of [90/100] to “99/100”, thereby satisfying [SV1 ⁇ SV2]. It is done. For example, [SV1 ⁇ SV2] is satisfied by setting [SV1 / SV2] to [95/100].
- FIG. 20 shows steps that are only an example of this transmission system.
- the operation of the transmission system according to the steps of FIG. 20 is as follows.
- the transmission system of FIG. 17 to FIG. 19 When the transmission system of FIG. 17 to FIG. 19 is in the initial state, in principle, it is in a neutral state as shown in FIG.
- the transmission area 141 of the transmission shaft 141 When transmitting the rotational power of the prime mover 301 to the transmission shaft 221 at a predetermined reduction ratio, the transmission area 141 of the transmission shaft 141 is moved into the one-way clutch 131X by thrusting the transmission shaft 141 to the right in FIG. It is inserted in.
- the prime mover 301 When the prime mover 301 is rotated, power is transmitted to the transmission shaft 221 through the path of the output shaft 302 of the prime mover 301, the joint 303, the transmission shaft 141, the one-way clutch 131X, the transmission wheel 121R, the transmission wheel 222R, and the one-way clutch 226X. Thereby, a required output is taken out from the transmission shaft 221 for output.
- the output shaft 302 and the transmission shaft 141 of the prime mover 301 rotate in a direction in which the one-way clutch 131X is engaged.
- the transmission wheel 222R rotates in the direction in which the one-way clutch 226X is engaged.
- the one-way clutch 226X is set to engage when the transmission wheel 222R actively rotates forward with respect to the transmission shaft 221 but does not engage when the transmission wheel 222R rotates in the reverse direction.
- the transmission wheel 222R actively rotates forward, whereas the transmission shaft 221 only passively rotates in response to power transmission from the transmission wheel 222R. This means that the meshing of the one-way clutch 226X is established by the active forward rotation of the transmission wheel 222R.
- the meshing of the one-way clutch 226X is not established when the transmission wheel 222R is in a passive posture and the transmission shaft 221 actively rotates forward.
- the one-way clutch 226X is engaged because the transmission wheel 222R actively rotates forward.
- the transmission shaft 221 also rotates forward.
- the one-way clutch 226Y is also set so that the one-way clutch 226L meshes when the transmission wheel 222R rotates forward and does not mesh when the transmission wheel 222L rotates reversely.
- the one-way clutch 226Y does not mesh because the transmission wheel 222L does not actively rotate forward but the transmission shaft 221 actively rotates forward. Therefore, the transmission wheel 222L is in a state like a play car.
- the one-way clutch 226X when the one-way clutch 226X is engaged and the transmission shaft 221 is rotating, the one-way clutch 226Y that is not engaged keeps the transmission wheel 222L in the state of a play wheel.
- the transmission wheel 121L corresponding to the transmission wheel 222L is also in a play car state.
- an unnecessary load is hardly applied to the transmission shaft 221 during actual rotation, which suppresses energy loss and transmission efficiency. It is desirable to increase
- one measuring device 405 actually measures the rotational speed SV1 of the prime mover 301
- the other measuring device 406 actually measures the rotational speed SV2 of the transmission shaft 221.
- the measuring devices 405 and 406 composed of rotary encoders count pulses generated according to the number of rotations for each measurement object, and use them as a measurement signal for the number of rotations SV1 and a measurement signal for the number of rotations SV2.
- Steps 1 to 9 shown in FIG. 20 are executed when clutch switching based on a series of operations, operations, controls, and processes is a star.
- step 1 after “START” in FIG. 20, a measurement signal of actual measurement value SV1 and a measurement signal of actual measurement value SV2 are input from measuring instruments 405 and 406 to computer 401.
- the computer 401 performs predetermined arithmetic processing in step 2.
- a calculated value obtained by multiplying SV2 by “n” is used.
- [SV1: SV2] is adjusted to [1: 1].
- the computer 401 performs, for example, [SV1 ⁇ 0.95] in order to set [SV1 ⁇ SV2].
- the computer 401 obtains a control signal S1 for reducing the rotational speed of the prime mover 301 by 5%.
- the control signal S1 is a signal for controlling the voltage for driving the motor (motor).
- this control signal S 1 is also input to the inverter circuit 404.
- the illustrated inverter circuit 404 includes a semiconductor circuit that is driven at an arbitrary frequency and voltage.
- the inverter circuit 404 receiving the control signal S1 generates a control signal S2 based on the control signal S1 in step 4 of FIG.
- This inverter circuit 404 generates a control signal S2 so that the prime mover 301 is controlled at an appropriate frequency and an appropriate voltage and the prime mover rotational speed becomes [SV1 ⁇ 0.95], and this is input to the prime mover 301.
- the prime mover 301 is decelerated in step 5 of FIG.
- the current rotational speed of the prime mover 301 is constantly input via the measuring device 405.
- the computer 401 also stores the initial SV1 input in step 1 above.
- step 6 of FIG. 20 it is checked whether [SV1 ⁇ SV2] is established, that is, whether the current rotational speed of the motor 301 is [SV1 ⁇ 0.95].
- steps 2 to 6 are repeatedly performed until the confirmation result becomes “YES”. Steps 1 to 6 are repeated as indicated by the dotted line in FIG.
- step 7 clutch switching is executed as shown in step 7.
- the one-way clutch 131X in the clutch engaged state shifts to the clutch disengaged state, and in particular, this is performed in a state where the condition [SV1 ⁇ SV2] is satisfied.
- this clutch switching is performed with [SV1 ⁇ SV2]
- it can be performed smoothly, easily and quickly for the reasons already described.
- step 8 the completion of the clutch switching is confirmed.
- the one-way clutch 131X is switched by moving the transmission shaft 141 in the axial direction.
- This movement in the axial direction is controlled or grasped by detecting the movement amount, movement direction, movement time, and stop position with a sensor, and inputting the detection information (detection signal) to the computer 401 to perform arithmetic processing.
- the detection information detection signal
- the transmission system is in a neutral state and the transmission shaft 141 and the like are in an idling state Yes.
- step 9 a plurality of options “selection 1” to “selection 3” are prepared.
- “Selection 1” is “Reproduction of initial SV1”. The reproduction of this initial SV1 is to restore the rotational speed (rotational speed) of the transmission shaft 141 to the original state by restoring the rotational speed (rotational speed) of the prime mover 301 to the state before the deceleration.
- “Selection 3” is “End”. This end is to stop the prime mover 301, that is, to stop the transmission system.
- “Selection 2” is “Restart”. This restart is selected when the one-way clutch 131X is brought into the clutch engagement state again in the neutral transmission system, or is selected when the one-way clutch 131Y is put into the clutch engagement state.
- a series of processes including the clutch disengagement of the one-way clutch 131X in the clutch engagement, the neutralization of the transmission system, and the clutch engagement of the one-way clutch 131Y is performed by continuing the steps 1 to 8 after the above steps 1 to 8, and thereafter
- the initial SV1 reproduction step may be continued.
- Each step order in this case is Step 1, Step 2, Step 3, Step 4, Step 5, Step 6, Step 7, Step 8, and an initial SV1 reproduction step.
- the steps may be combined in the same manner.
- electrical control means is employed as means for carrying out [SV1 ⁇ SV2].
- this is mechanically applied to rotating parts such as the transmission shaft 141.
- [SV1 ⁇ SV2] may be performed by applying a brake. Specifically, a brake element is pressed against the transmission shaft 141 to apply friction braking, thereby decelerating the rotation system to be controlled. The braking time at that time is appropriately set according to the situation.
- the transmission shown in FIG. 10 is used, but the transmission shown in FIGS. 11 to 16 may be used.
- the power transmission shaft 141 with the measuring device 405 is provided on the transmission shaft 141 or the shaft corresponding thereto, and the measuring device 406 is attached to the transmission shaft 221 or the shaft corresponding thereto.
- the prime mover 301 and the two measuring devices 405 and 406 are combined with the rotation control system RCS.
- the power on / off type transmission device illustrated in FIGS. 5 to 9 may be used.
- the prime mover 301 is attached to the transmission shaft 141 or the transmission shaft 221 of the power on / off transmission device of FIGS. Even in this transmission system, when rotational speed reduction is performed, the required clutch switching operation for clutch engagement and clutch disengagement can be performed smoothly, easily and quickly.
- the rotary transmission element, power on / off type transmission device, and transmission device according to the present invention are all highly accurate, high transmission efficiency, simple configuration, ease of manufacture, small number of parts, light weight, cost reduction, and continuously variable gear ratio. Therefore, industrial applicability is high.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transmission Devices (AREA)
- Structure Of Transmissions (AREA)
Abstract
A rotation transmission element (111) capable of providing such effects as high precision, high transmission efficiency, simple configuration, ease of fabrication, low part count, reduced weight, lower cost, continuous variability of gear ratios, and mitigation of shock during turning on/off or gear shifting, wherein, when a transfer area part (142) on either the inner circumference of a transmission ring (121) or the outer circumference of a transmission shaft (141) and an overrunning clutch (131) on the other of the inner circumference of the transmission ring (121) or the outer circumference of the transmission shaft (141) coincide with each other, the transmission ring (121) and the transmission shaft (141) are in a state of clutch engagement via the overrunning clutch (131), and when the transfer area part (142) and the overrunning clutch (131) do not coincide, clutch engagement between the transmission ring (121) and the transmission shaft (141) by the overrunning clutch (131) is released.
Description
本発明は動力伝動技術に関し、更に詳細に述べると、動力入切式伝動装置又は変速装置の主要な構成要素である回転伝動素子及びこの回転伝動素子を利用して構成された動力入切式伝動装置及び変速装置に関するものである。
The present invention relates to a power transmission technology, and more specifically, a rotary transmission element that is a main component of a power on / off transmission or transmission, and a power on / off transmission configured using the rotary transmission element. The present invention relates to a device and a transmission.
動力伝動装置、特に変速装置に関しては、今まで多くの技術が開発され、産業の発展に寄与しているが、特に、摩擦式クラッチを利用した変速装置、トルクコンバータを利用した変速装置、無段変速装置(CVT)は、現在でも高い技術水準を維持している。
Many technologies have been developed so far for power transmission devices, especially transmissions, which have contributed to the development of the industry. In particular, transmissions using friction clutches, transmissions using torque converters, continuously variable transmissions, etc. The transmission (CVT) still maintains a high technical level.
特許文献1乃至3に開示された技術は、この技術分野の具体例を示す。この技術分野では、更に、特許文献4に開示されている一方向クラッチ(ワンウェイクラッチ)を利用した装置も提供されている。
The techniques disclosed in Patent Documents 1 to 3 show specific examples in this technical field. In this technical field, a device using a one-way clutch (one-way clutch) disclosed in Patent Document 4 is also provided.
しかし、これらの従来技術による装置は、以下の(a)乃至(d)のような欠点がある。
(a)摩擦クラッチを利用する装置
互いに噛み合った複数の歯車を有する変速装置を例として述べると、この形態の装置は、変速比率の異なる複数の歯車を用い、入力軸の回転数を複数の比で出力軸に伝達すると、歯車の噛み合わせの切り替え時に、原動機から入力軸への動力伝達を一時遮断する必要がある。従って、この形態の変速装置は、原動機側の回転の影響を緩和させるため、いったんクラッチを外して回転比の小さい噛み合わせ状態にし、その後、所定の歯車噛み合わせ状態にして再びクラッチを接続しなければならない。
(b)トルクコンバータを利用する装置
トルクコンバータは、ポンプインペラ、タービンライナ、ステータの3つのエレメントが粘性流体(例えば、専用オイル)で満たされたケーシングの内外にわたって組み立てられ、これらの3つのエレメントの稼働による粘性流体の流れを利用して原動機の出力を駆動軸側に伝えている。このトルクコンバータは、その出力軸に歯車変速装置が接続されても変速比変更時のショックが粘性流体で吸収されるので、変速がスムーズに行える。しかし、このトルクコンバータは、粘性液体の飛散防止、温度上昇防止、騒音防止などの対策が必要になるため、大型で重量が大きく、コストが高くなる。その上、流体用の複数の調整バルブの相互干渉、動作不安定、圧力変動の発生の可能性を低減するための技術的配慮が必要となるので、高度の油圧制御技術が要求される。
(c)無段変速装置(CVT)
理論上の効率がよいCVTは、理想的な変速比が常に保たれるので、パワーロスが少なく、伝動系統も小型化ですむので、軽量化することができる。しかし、これは、歯車の噛み合わせで動力伝達するのでなく、プーリとベルトとの接触圧で動力伝達するため、大きなトルクが発生する大型機械類の変速には適さない。また、常にプーリとベルトとの摩擦が発生するために、清浄化できる潤滑環境が必要になる。従って、潤滑に専用のオイルが必要になる。 However, these prior art devices have the following disadvantages (a) to (d).
(A) Device Using Friction Clutch As an example of a transmission having a plurality of gears meshed with each other, the device of this embodiment uses a plurality of gears having different gear ratios, and the number of rotations of the input shaft is set to a plurality of ratios. When transmitting to the output shaft, it is necessary to temporarily cut off the power transmission from the prime mover to the input shaft when switching the meshing of the gears. Therefore, in order to alleviate the influence of the rotation on the prime mover, the transmission of this form must be disengaged once and brought into a meshing state with a small rotation ratio, and then brought into a predetermined gear meshing state and reconnected to the clutch. I must.
(B) Apparatus using a torque converter A torque converter is assembled over the inside and outside of a casing in which three elements of a pump impeller, a turbine liner, and a stator are filled with a viscous fluid (for example, dedicated oil). The output of the prime mover is transmitted to the drive shaft side using the flow of viscous fluid due to operation. In this torque converter, even when a gear transmission is connected to the output shaft, the shock at the time of changing the gear ratio is absorbed by the viscous fluid, so that the gear shifting can be performed smoothly. However, this torque converter needs measures such as prevention of scattering of viscous liquid, prevention of temperature rise, and noise prevention, and therefore, it is large, heavy, and expensive. In addition, technical considerations are necessary to reduce the possibility of the occurrence of mutual interference, unstable operation, and pressure fluctuations of a plurality of control valves for fluids, so that advanced hydraulic control technology is required.
(C) Continuously variable transmission (CVT)
The CVT with high theoretical efficiency always maintains an ideal gear ratio, so that there is little power loss and the transmission system can be reduced in size, so that the weight can be reduced. However, this does not transmit power by meshing the gears, but transmits power by contact pressure between the pulley and the belt, so that it is not suitable for shifting large machinery that generates large torque. In addition, since friction between the pulley and the belt always occurs, a lubrication environment that can be cleaned is required. Therefore, dedicated oil is required for lubrication.
(a)摩擦クラッチを利用する装置
互いに噛み合った複数の歯車を有する変速装置を例として述べると、この形態の装置は、変速比率の異なる複数の歯車を用い、入力軸の回転数を複数の比で出力軸に伝達すると、歯車の噛み合わせの切り替え時に、原動機から入力軸への動力伝達を一時遮断する必要がある。従って、この形態の変速装置は、原動機側の回転の影響を緩和させるため、いったんクラッチを外して回転比の小さい噛み合わせ状態にし、その後、所定の歯車噛み合わせ状態にして再びクラッチを接続しなければならない。
(b)トルクコンバータを利用する装置
トルクコンバータは、ポンプインペラ、タービンライナ、ステータの3つのエレメントが粘性流体(例えば、専用オイル)で満たされたケーシングの内外にわたって組み立てられ、これらの3つのエレメントの稼働による粘性流体の流れを利用して原動機の出力を駆動軸側に伝えている。このトルクコンバータは、その出力軸に歯車変速装置が接続されても変速比変更時のショックが粘性流体で吸収されるので、変速がスムーズに行える。しかし、このトルクコンバータは、粘性液体の飛散防止、温度上昇防止、騒音防止などの対策が必要になるため、大型で重量が大きく、コストが高くなる。その上、流体用の複数の調整バルブの相互干渉、動作不安定、圧力変動の発生の可能性を低減するための技術的配慮が必要となるので、高度の油圧制御技術が要求される。
(c)無段変速装置(CVT)
理論上の効率がよいCVTは、理想的な変速比が常に保たれるので、パワーロスが少なく、伝動系統も小型化ですむので、軽量化することができる。しかし、これは、歯車の噛み合わせで動力伝達するのでなく、プーリとベルトとの接触圧で動力伝達するため、大きなトルクが発生する大型機械類の変速には適さない。また、常にプーリとベルトとの摩擦が発生するために、清浄化できる潤滑環境が必要になる。従って、潤滑に専用のオイルが必要になる。 However, these prior art devices have the following disadvantages (a) to (d).
(A) Device Using Friction Clutch As an example of a transmission having a plurality of gears meshed with each other, the device of this embodiment uses a plurality of gears having different gear ratios, and the number of rotations of the input shaft is set to a plurality of ratios. When transmitting to the output shaft, it is necessary to temporarily cut off the power transmission from the prime mover to the input shaft when switching the meshing of the gears. Therefore, in order to alleviate the influence of the rotation on the prime mover, the transmission of this form must be disengaged once and brought into a meshing state with a small rotation ratio, and then brought into a predetermined gear meshing state and reconnected to the clutch. I must.
(B) Apparatus using a torque converter A torque converter is assembled over the inside and outside of a casing in which three elements of a pump impeller, a turbine liner, and a stator are filled with a viscous fluid (for example, dedicated oil). The output of the prime mover is transmitted to the drive shaft side using the flow of viscous fluid due to operation. In this torque converter, even when a gear transmission is connected to the output shaft, the shock at the time of changing the gear ratio is absorbed by the viscous fluid, so that the gear shifting can be performed smoothly. However, this torque converter needs measures such as prevention of scattering of viscous liquid, prevention of temperature rise, and noise prevention, and therefore, it is large, heavy, and expensive. In addition, technical considerations are necessary to reduce the possibility of the occurrence of mutual interference, unstable operation, and pressure fluctuations of a plurality of control valves for fluids, so that advanced hydraulic control technology is required.
(C) Continuously variable transmission (CVT)
The CVT with high theoretical efficiency always maintains an ideal gear ratio, so that there is little power loss and the transmission system can be reduced in size, so that the weight can be reduced. However, this does not transmit power by meshing the gears, but transmits power by contact pressure between the pulley and the belt, so that it is not suitable for shifting large machinery that generates large torque. In addition, since friction between the pulley and the belt always occurs, a lubrication environment that can be cleaned is required. Therefore, dedicated oil is required for lubrication.
変速装置や伝動装置は、高精度、高伝動効率、構成の簡潔性、製作容易性、少部品数、軽量性、コストダウン、変速比の連続可変性、入切や変速の際の衝撃緩和の如き条件を満たすことが望ましいが、このような条件をどの程度満足させるかによって製品の特性(優劣)が決定される。しかし、従来技術の伝動系統系は、上記の(a)乃至(c)の如き欠点があってこのような条件を完全に満足させることができなかった。
Transmissions and transmissions have high accuracy, high transmission efficiency, simplicity of configuration, ease of manufacture, small number of parts, light weight, cost reduction, continuously variable gear ratio, and shock mitigation when turning on / off and shifting. It is desirable to satisfy these conditions, but the product characteristics (excellence or inferiority) are determined depending on how much such conditions are satisfied. However, the transmission system of the prior art has the disadvantages (a) to (c) described above and cannot satisfy such conditions completely.
また、従来技術の一方向クラッチは、クラッチ係合状態からクラッチ離脱状態に切り替えする際に、大きな切り替え操作力を必要とするが、それは、クラッチ係合状態で一方向クラッチのトルクが強力に作用しているからである。更に、高速回転状態にある回転入力側を停止状態ないし低速状態にある回転出力側に伝達する際に、双方の速度差に起因して大きな衝撃が発生し、この際の衝撃が原因で部品の破損を生じること欠点があった。
In addition, the conventional one-way clutch requires a large switching operation force when switching from the clutch engagement state to the clutch disengagement state. This is because the torque of the one-way clutch acts strongly in the clutch engagement state. Because it is. Furthermore, when the rotation input side in the high-speed rotation state is transmitted to the rotation output side in the stop state or the low-speed state, a large impact occurs due to the difference in speed between the two, and this impact causes the component There was a drawback of causing breakage.
本発明が解決しようとする課題は、動力伝導系統の高精度、高伝動効率、構成の簡潔性、製作容易性、少部品数、軽量化、コストダウン、変速比の連続可変性、入切や変速の際の衝撃緩和を満足させることができる回転伝動素子、動力入切式伝動装置、変速装置及び変速システムを提供することにある。
The problems to be solved by the present invention include high accuracy of the power transmission system, high transmission efficiency, simplicity of configuration, ease of manufacture, small number of parts, weight reduction, cost reduction, continuously variable speed ratio, on / off and It is an object of the present invention to provide a rotary transmission element, a power on / off type transmission device, a transmission device, and a transmission system that can satisfy impact relaxation at the time of shifting.
本発明の基本的な第1の課題解決手段は、
外周を通して回転動力を受け渡しするため伝動輪と、伝動軸と、
前記伝動綸と伝動軸とを一方向にのみ同方向に回転し又は前記伝動輪と伝動軸との間で回転が伝達しないようにし、伝動輪の内周と伝動軸の外周に介在することができる一方向クラッチとを備え、
前記一方向クラッチは、その内周と外周とのいずれか一方にはクラッチ装着部があり、その内周と外周とのいずれか他方にはクラッチ係合部があり、
前記伝動輪と伝動軸とは、前記伝動軸が軸心部側で、前記伝動輪が外周側に相対的に配置されて組み合わされており、
前記伝動輪内周と伝動軸外周とのいずれか一方には、前記一方向クラッチのクラッチ装着部が固定され、前記伝動輪内周と伝動軸外周とのいずれか他方には、前記一方向クラッチのクラッチ係合部に対応してクラッチ係合を達成する伝達エリア部が設けられ、
前記一方向クラッチは、前記伝達エリア部とクラッチ係合部とが相互に一致しているときには、前記伝動輪と伝動軸とを接続するクラッチ係合状態となり、前記伝達エリア部とクラッチ係合部とが不一致であるときには、前記伝動輪と伝動軸との接続を解除する状態になる
を特徴とする回転伝動素子を提供することにある。 The basic first problem solving means of the present invention is:
A transmission wheel, a transmission shaft,
The transmission rod and the transmission shaft may be rotated in the same direction only in one direction, or rotation may not be transmitted between the transmission wheel and the transmission shaft, and may be interposed between the inner periphery of the transmission wheel and the outer periphery of the transmission shaft. With a one-way clutch that can
The one-way clutch has a clutch mounting portion on one of its inner periphery and outer periphery, and has a clutch engagement portion on the other of its inner periphery and outer periphery,
The transmission wheel and the transmission shaft are combined such that the transmission shaft is disposed on the axial center side and the transmission wheel is relatively disposed on the outer peripheral side,
A clutch mounting portion of the one-way clutch is fixed to either the inner periphery of the transmission wheel or the outer periphery of the transmission shaft, and the one-way clutch is fixed to either the inner periphery of the transmission wheel or the outer periphery of the transmission shaft. A transmission area portion that achieves clutch engagement corresponding to the clutch engagement portion of
When the transmission area portion and the clutch engagement portion coincide with each other, the one-way clutch enters a clutch engagement state that connects the transmission wheel and the transmission shaft, and the transmission area portion and the clutch engagement portion Is a state in which the connection between the transmission wheel and the transmission shaft is released, the rotation transmission element is provided.
外周を通して回転動力を受け渡しするため伝動輪と、伝動軸と、
前記伝動綸と伝動軸とを一方向にのみ同方向に回転し又は前記伝動輪と伝動軸との間で回転が伝達しないようにし、伝動輪の内周と伝動軸の外周に介在することができる一方向クラッチとを備え、
前記一方向クラッチは、その内周と外周とのいずれか一方にはクラッチ装着部があり、その内周と外周とのいずれか他方にはクラッチ係合部があり、
前記伝動輪と伝動軸とは、前記伝動軸が軸心部側で、前記伝動輪が外周側に相対的に配置されて組み合わされており、
前記伝動輪内周と伝動軸外周とのいずれか一方には、前記一方向クラッチのクラッチ装着部が固定され、前記伝動輪内周と伝動軸外周とのいずれか他方には、前記一方向クラッチのクラッチ係合部に対応してクラッチ係合を達成する伝達エリア部が設けられ、
前記一方向クラッチは、前記伝達エリア部とクラッチ係合部とが相互に一致しているときには、前記伝動輪と伝動軸とを接続するクラッチ係合状態となり、前記伝達エリア部とクラッチ係合部とが不一致であるときには、前記伝動輪と伝動軸との接続を解除する状態になる
を特徴とする回転伝動素子を提供することにある。 The basic first problem solving means of the present invention is:
A transmission wheel, a transmission shaft,
The transmission rod and the transmission shaft may be rotated in the same direction only in one direction, or rotation may not be transmitted between the transmission wheel and the transmission shaft, and may be interposed between the inner periphery of the transmission wheel and the outer periphery of the transmission shaft. With a one-way clutch that can
The one-way clutch has a clutch mounting portion on one of its inner periphery and outer periphery, and has a clutch engagement portion on the other of its inner periphery and outer periphery,
The transmission wheel and the transmission shaft are combined such that the transmission shaft is disposed on the axial center side and the transmission wheel is relatively disposed on the outer peripheral side,
A clutch mounting portion of the one-way clutch is fixed to either the inner periphery of the transmission wheel or the outer periphery of the transmission shaft, and the one-way clutch is fixed to either the inner periphery of the transmission wheel or the outer periphery of the transmission shaft. A transmission area portion that achieves clutch engagement corresponding to the clutch engagement portion of
When the transmission area portion and the clutch engagement portion coincide with each other, the one-way clutch enters a clutch engagement state that connects the transmission wheel and the transmission shaft, and the transmission area portion and the clutch engagement portion Is a state in which the connection between the transmission wheel and the transmission shaft is released, the rotation transmission element is provided.
本発明のこの基本的な課題解決手段において、前記一方向クラッチの外周にクラッチ装着部があり、前記一方向クラッチの内周にクラッチ係合部があり、前記一方向クラッチが前記伝動輪の内周に固定され、前記一方向クラッチのクラッチ係合部と対応する前記伝達エリア部が伝動軸の外周に設けられている形態としてもよいし、前記一方向クラッチの内周にクラッチ装着部があり、前記一方向クラッチの外周にクラッチ係合部があり、前記一方向クラッチが伝動軸の外周に固定され、前記一方向クラッチのクラッチ係合部と対応する伝達エリア部が伝動輪の内周に設けられている形態としてもよい。
In this basic problem solving means of the present invention, there is a clutch mounting portion on the outer periphery of the one-way clutch, a clutch engaging portion on the inner periphery of the one-way clutch, and the one-way clutch is connected to the inner side of the transmission wheel. The transmission area portion fixed to the periphery and corresponding to the clutch engaging portion of the one-way clutch may be provided on the outer periphery of the transmission shaft, or the clutch mounting portion is provided on the inner periphery of the one-way clutch. A clutch engaging portion on an outer periphery of the one-way clutch, the one-way clutch is fixed to an outer periphery of the transmission shaft, and a transmission area portion corresponding to the clutch engaging portion of the one-way clutch is on an inner periphery of the transmission wheel. It is good also as a form provided.
In this basic problem solving means of the present invention, there is a clutch mounting portion on the outer periphery of the one-way clutch, a clutch engaging portion on the inner periphery of the one-way clutch, and the one-way clutch is connected to the inner side of the transmission wheel. The transmission area portion fixed to the periphery and corresponding to the clutch engaging portion of the one-way clutch may be provided on the outer periphery of the transmission shaft, or the clutch mounting portion is provided on the inner periphery of the one-way clutch. A clutch engaging portion on an outer periphery of the one-way clutch, the one-way clutch is fixed to an outer periphery of the transmission shaft, and a transmission area portion corresponding to the clutch engaging portion of the one-way clutch is on an inner periphery of the transmission wheel. It is good also as a form provided.
本発明の第2の課題解決手段は、
外周を通して回転動力を受け渡しするための伝動輪と、回転用の軸心部材である伝動軸と、
前記伝動輪と伝動軸とを一方向にのみ同方向同回転し、又は伝動輪と伝動軸との間を回転が伝達しないようにし、前記伝動輪の内周と伝動軸の外周との間に介在することができる一方向クラッチとを備え、
前記一方向クラッチは、その内周が前記伝動軸の外周と対応し、その外周が前記伝動輪の内周と対応し、前記一方向クラッチの内周には、前記伝動軸との周方向の相対移動を拘束しつつ前記伝動軸との軸方向の相対移動を許すクラッチ装着部があり、前記一方向クラッチの外周には、前記伝動輪とクラッチ接続するクラッチ係合部があり、
前記伝動輪の内周には、前記一方向クラッチのクラッチ係合部と対応して前記一方向クラッチとのクラッチ係合を達成する伝達エリア部が設けられ、
前記伝動軸は、その外周を通して前記一方向クラッチのクラッチ装着部と嵌め合い自在に対応しており、かつ、前記伝動軸の外周には、前記一方向クラッチとの周方向の相対的移動を拘束しつつ前記一方向クラッチとの軸方向の相対的移動を許すクラッチ案内部が設けられ、
前記伝動軸が軸心部側で前記伝動輪が外周側に相対的に配置されて、前記伝動軸と伝動輪とが互いに組み合わされ、
前記伝動軸に外周に前記一方向クラッチが嵌め込まれ、前記伝動軸の外周のクラッチ案内部と前記一方向クラッチ内周のクラッチ装着部とは、相対的に嵌め合っており、この嵌め合いにより、前記伝動軸の外周上で前記一方向クラッチが周方向の回転を拘束しつつ軸方向にスライド自在になっており、
前記伝動輪の内周内の前記伝達エリア部と前記一方向クラッチのクラッチ係合部とが相互に一致しているときには前記伝動輪と伝動軸とが前記一方向クラッチによってクラッチ係合され、前記一方向クラアッチが前記伝動軸の内周外にあって前記伝達エリア部とクラッチ係合部とが相互に不一致であるときには前記伝動輪と伝動軸とのクラッチ係合が解除されている
を特徴とする回転伝動素子を提供することにある。 The second problem solving means of the present invention is:
A transmission wheel for transferring rotational power through the outer periphery, a transmission shaft which is a shaft center member for rotation,
The transmission wheel and the transmission shaft rotate in the same direction and only in one direction, or rotation is not transmitted between the transmission wheel and the transmission shaft, and between the inner periphery of the transmission wheel and the outer periphery of the transmission shaft. With a one-way clutch that can intervene,
The one-way clutch has an inner periphery corresponding to the outer periphery of the transmission shaft, an outer periphery corresponding to the inner periphery of the transmission wheel, and the inner periphery of the one-way clutch has a circumferential direction with respect to the transmission shaft. There is a clutch mounting portion that allows relative movement in the axial direction with the transmission shaft while restraining relative movement, and on the outer periphery of the one-way clutch, there is a clutch engagement portion that clutches the transmission wheel,
A transmission area portion that achieves clutch engagement with the one-way clutch corresponding to the clutch engagement portion of the one-way clutch is provided on the inner periphery of the transmission wheel,
The transmission shaft corresponds to be freely engageable with a clutch mounting portion of the one-way clutch through the outer periphery thereof, and the outer periphery of the transmission shaft is restrained from relative movement in the circumferential direction with respect to the one-way clutch. A clutch guide that allows relative movement in the axial direction with the one-way clutch,
The transmission shaft is disposed on the axial side and the transmission wheel is relatively disposed on the outer peripheral side, and the transmission shaft and the transmission wheel are combined with each other;
The one-way clutch is fitted on the outer periphery of the transmission shaft, and the clutch guide portion on the outer periphery of the transmission shaft and the clutch mounting portion on the inner periphery of the one-way clutch are relatively fitted, and by this fitting, The one-way clutch is slidable in the axial direction while restraining rotation in the circumferential direction on the outer periphery of the transmission shaft,
When the transmission area portion in the inner periphery of the transmission wheel and the clutch engagement portion of the one-way clutch coincide with each other, the transmission wheel and the transmission shaft are clutch-engaged by the one-way clutch, The clutch engagement between the transmission wheel and the transmission shaft is released when the one-way clutch is outside the inner periphery of the transmission shaft and the transmission area portion and the clutch engagement portion are inconsistent with each other. An object of the present invention is to provide a rotating power transmission element.
外周を通して回転動力を受け渡しするための伝動輪と、回転用の軸心部材である伝動軸と、
前記伝動輪と伝動軸とを一方向にのみ同方向同回転し、又は伝動輪と伝動軸との間を回転が伝達しないようにし、前記伝動輪の内周と伝動軸の外周との間に介在することができる一方向クラッチとを備え、
前記一方向クラッチは、その内周が前記伝動軸の外周と対応し、その外周が前記伝動輪の内周と対応し、前記一方向クラッチの内周には、前記伝動軸との周方向の相対移動を拘束しつつ前記伝動軸との軸方向の相対移動を許すクラッチ装着部があり、前記一方向クラッチの外周には、前記伝動輪とクラッチ接続するクラッチ係合部があり、
前記伝動輪の内周には、前記一方向クラッチのクラッチ係合部と対応して前記一方向クラッチとのクラッチ係合を達成する伝達エリア部が設けられ、
前記伝動軸は、その外周を通して前記一方向クラッチのクラッチ装着部と嵌め合い自在に対応しており、かつ、前記伝動軸の外周には、前記一方向クラッチとの周方向の相対的移動を拘束しつつ前記一方向クラッチとの軸方向の相対的移動を許すクラッチ案内部が設けられ、
前記伝動軸が軸心部側で前記伝動輪が外周側に相対的に配置されて、前記伝動軸と伝動輪とが互いに組み合わされ、
前記伝動軸に外周に前記一方向クラッチが嵌め込まれ、前記伝動軸の外周のクラッチ案内部と前記一方向クラッチ内周のクラッチ装着部とは、相対的に嵌め合っており、この嵌め合いにより、前記伝動軸の外周上で前記一方向クラッチが周方向の回転を拘束しつつ軸方向にスライド自在になっており、
前記伝動輪の内周内の前記伝達エリア部と前記一方向クラッチのクラッチ係合部とが相互に一致しているときには前記伝動輪と伝動軸とが前記一方向クラッチによってクラッチ係合され、前記一方向クラアッチが前記伝動軸の内周外にあって前記伝達エリア部とクラッチ係合部とが相互に不一致であるときには前記伝動輪と伝動軸とのクラッチ係合が解除されている
を特徴とする回転伝動素子を提供することにある。 The second problem solving means of the present invention is:
A transmission wheel for transferring rotational power through the outer periphery, a transmission shaft which is a shaft center member for rotation,
The transmission wheel and the transmission shaft rotate in the same direction and only in one direction, or rotation is not transmitted between the transmission wheel and the transmission shaft, and between the inner periphery of the transmission wheel and the outer periphery of the transmission shaft. With a one-way clutch that can intervene,
The one-way clutch has an inner periphery corresponding to the outer periphery of the transmission shaft, an outer periphery corresponding to the inner periphery of the transmission wheel, and the inner periphery of the one-way clutch has a circumferential direction with respect to the transmission shaft. There is a clutch mounting portion that allows relative movement in the axial direction with the transmission shaft while restraining relative movement, and on the outer periphery of the one-way clutch, there is a clutch engagement portion that clutches the transmission wheel,
A transmission area portion that achieves clutch engagement with the one-way clutch corresponding to the clutch engagement portion of the one-way clutch is provided on the inner periphery of the transmission wheel,
The transmission shaft corresponds to be freely engageable with a clutch mounting portion of the one-way clutch through the outer periphery thereof, and the outer periphery of the transmission shaft is restrained from relative movement in the circumferential direction with respect to the one-way clutch. A clutch guide that allows relative movement in the axial direction with the one-way clutch,
The transmission shaft is disposed on the axial side and the transmission wheel is relatively disposed on the outer peripheral side, and the transmission shaft and the transmission wheel are combined with each other;
The one-way clutch is fitted on the outer periphery of the transmission shaft, and the clutch guide portion on the outer periphery of the transmission shaft and the clutch mounting portion on the inner periphery of the one-way clutch are relatively fitted, and by this fitting, The one-way clutch is slidable in the axial direction while restraining rotation in the circumferential direction on the outer periphery of the transmission shaft,
When the transmission area portion in the inner periphery of the transmission wheel and the clutch engagement portion of the one-way clutch coincide with each other, the transmission wheel and the transmission shaft are clutch-engaged by the one-way clutch, The clutch engagement between the transmission wheel and the transmission shaft is released when the one-way clutch is outside the inner periphery of the transmission shaft and the transmission area portion and the clutch engagement portion are inconsistent with each other. An object of the present invention is to provide a rotating power transmission element.
本発明の第3の課題解決手段は、
外周を通して回転動力を受け渡しするための伝動輪と、回転用の軸心部材である伝動軸と、
前記伝動輪と伝動軸とを一方向にのみ同方向同回転させ、又は前記伝動輪と伝動軸との間で回転が伝達しないようにし、前記伝動輪の内周と伝動軸の外周とに介在することができる一方向クラッチとを備え、
前記一方向クラッチは、前記伝動輪内周と伝動軸外周との間でクラッチ係合したりそのクラッチ係合を解除したりし、
前記伝動軸の外周には、その軸方向に移動操作する管状の副伝動軸が設けられ、
前記一方向クラッチは、その内周と外周とのいずれか一方にクラッチ装着部があり、その内周と外周との他方にクラッチ係合部があり、
前記伝動軸は、その外周を通して前記副伝動軸と嵌め合い自在に対応していて、前記副伝動軸との周方向の相対的移動を拘束しつつ前記副伝動軸との軸方向の相対的移動を許す移動案内雄部が設けられ、
前記副伝動軸は、その内周を通して前記副伝動軸と嵌め合い自在に対応してその内周には、前記伝動軸との周方向の相対的移動を拘束しつつ前記伝動軸との軸方向の相対移動を許す移動案内雌部が設けられ、
前記伝動軸と伝動輪とは、前記伝動軸が軸心部側で、前記伝動輪が外周側になるように相対的に配置されて互いに組み合わされ、
前記伝動輪内周と副伝動軸外周とのいずれか一方には、前記一方向クラッチのクラッチ装着部が固定され、前記伝動輪内周と副伝動軸外周とのいずれか他方には、前記一方向クラッチのクラッチ係合部と対応してそのクラッチ係合を達成する伝達エリア部が設けられ、
前記伝達エリア部と一方向クラッチとが相互に一致しているときには、前記伝動輪と伝動軸とが前記一方向クラッチによってクラッチ係合状態にあり、また前記伝達エリア部と前記一方向クラッチとが相互不一致であるときには、前記伝動輪と伝動軸との間で前記一方向クラッチによるクラッチ係合が解除状態となること
を特徴とする回転伝動素子を提供することにある。 The third problem solving means of the present invention is:
A transmission wheel for transferring rotational power through the outer periphery, a transmission shaft which is a shaft center member for rotation,
The transmission wheel and the transmission shaft are rotated in the same direction and only in one direction, or rotation is not transmitted between the transmission wheel and the transmission shaft, and is interposed between the inner periphery of the transmission wheel and the outer periphery of the transmission shaft. With a one-way clutch that can
The one-way clutch engages or disengages the clutch between the inner periphery of the transmission wheel and the outer periphery of the transmission shaft,
On the outer periphery of the transmission shaft, a tubular sub-transmission shaft that is operated to move in the axial direction is provided,
The one-way clutch has a clutch mounting portion on one of its inner periphery and outer periphery, and has a clutch engagement portion on the other of its inner periphery and outer periphery,
The transmission shaft corresponds to the auxiliary transmission shaft so as to be freely fitted through the outer periphery thereof, and the axial relative movement with the auxiliary transmission shaft is restricted while restraining the relative movement in the circumferential direction with the auxiliary transmission shaft. A movement guide male part that allows
The sub-transmission shaft corresponds to the sub-transmission shaft so that it can be freely fitted through the inner periphery of the sub-transmission shaft, and the inner periphery of the sub-transmission shaft restrains relative movement in the circumferential direction with respect to the transmission shaft. A movement guide female part that allows relative movement of
The transmission shaft and the transmission wheel are relatively arranged such that the transmission shaft is on the axial center side and the transmission wheel is on the outer peripheral side, and combined with each other,
A clutch mounting portion of the one-way clutch is fixed to one of the inner periphery of the transmission wheel and the outer periphery of the sub-transmission shaft, and one of the inner periphery of the transmission wheel and the outer periphery of the sub-transmission shaft is connected to the one end. A transmission area portion that achieves the clutch engagement corresponding to the clutch engagement portion of the directional clutch is provided,
When the transmission area portion and the one-way clutch coincide with each other, the transmission wheel and the transmission shaft are in a clutch engagement state by the one-way clutch, and the transmission area portion and the one-way clutch are The present invention is to provide a rotary transmission element characterized in that the clutch engagement by the one-way clutch is released between the transmission wheel and the transmission shaft when they do not coincide with each other.
外周を通して回転動力を受け渡しするための伝動輪と、回転用の軸心部材である伝動軸と、
前記伝動輪と伝動軸とを一方向にのみ同方向同回転させ、又は前記伝動輪と伝動軸との間で回転が伝達しないようにし、前記伝動輪の内周と伝動軸の外周とに介在することができる一方向クラッチとを備え、
前記一方向クラッチは、前記伝動輪内周と伝動軸外周との間でクラッチ係合したりそのクラッチ係合を解除したりし、
前記伝動軸の外周には、その軸方向に移動操作する管状の副伝動軸が設けられ、
前記一方向クラッチは、その内周と外周とのいずれか一方にクラッチ装着部があり、その内周と外周との他方にクラッチ係合部があり、
前記伝動軸は、その外周を通して前記副伝動軸と嵌め合い自在に対応していて、前記副伝動軸との周方向の相対的移動を拘束しつつ前記副伝動軸との軸方向の相対的移動を許す移動案内雄部が設けられ、
前記副伝動軸は、その内周を通して前記副伝動軸と嵌め合い自在に対応してその内周には、前記伝動軸との周方向の相対的移動を拘束しつつ前記伝動軸との軸方向の相対移動を許す移動案内雌部が設けられ、
前記伝動軸と伝動輪とは、前記伝動軸が軸心部側で、前記伝動輪が外周側になるように相対的に配置されて互いに組み合わされ、
前記伝動輪内周と副伝動軸外周とのいずれか一方には、前記一方向クラッチのクラッチ装着部が固定され、前記伝動輪内周と副伝動軸外周とのいずれか他方には、前記一方向クラッチのクラッチ係合部と対応してそのクラッチ係合を達成する伝達エリア部が設けられ、
前記伝達エリア部と一方向クラッチとが相互に一致しているときには、前記伝動輪と伝動軸とが前記一方向クラッチによってクラッチ係合状態にあり、また前記伝達エリア部と前記一方向クラッチとが相互不一致であるときには、前記伝動輪と伝動軸との間で前記一方向クラッチによるクラッチ係合が解除状態となること
を特徴とする回転伝動素子を提供することにある。 The third problem solving means of the present invention is:
A transmission wheel for transferring rotational power through the outer periphery, a transmission shaft which is a shaft center member for rotation,
The transmission wheel and the transmission shaft are rotated in the same direction and only in one direction, or rotation is not transmitted between the transmission wheel and the transmission shaft, and is interposed between the inner periphery of the transmission wheel and the outer periphery of the transmission shaft. With a one-way clutch that can
The one-way clutch engages or disengages the clutch between the inner periphery of the transmission wheel and the outer periphery of the transmission shaft,
On the outer periphery of the transmission shaft, a tubular sub-transmission shaft that is operated to move in the axial direction is provided,
The one-way clutch has a clutch mounting portion on one of its inner periphery and outer periphery, and has a clutch engagement portion on the other of its inner periphery and outer periphery,
The transmission shaft corresponds to the auxiliary transmission shaft so as to be freely fitted through the outer periphery thereof, and the axial relative movement with the auxiliary transmission shaft is restricted while restraining the relative movement in the circumferential direction with the auxiliary transmission shaft. A movement guide male part that allows
The sub-transmission shaft corresponds to the sub-transmission shaft so that it can be freely fitted through the inner periphery of the sub-transmission shaft, and the inner periphery of the sub-transmission shaft restrains relative movement in the circumferential direction with respect to the transmission shaft. A movement guide female part that allows relative movement of
The transmission shaft and the transmission wheel are relatively arranged such that the transmission shaft is on the axial center side and the transmission wheel is on the outer peripheral side, and combined with each other,
A clutch mounting portion of the one-way clutch is fixed to one of the inner periphery of the transmission wheel and the outer periphery of the sub-transmission shaft, and one of the inner periphery of the transmission wheel and the outer periphery of the sub-transmission shaft is connected to the one end. A transmission area portion that achieves the clutch engagement corresponding to the clutch engagement portion of the directional clutch is provided,
When the transmission area portion and the one-way clutch coincide with each other, the transmission wheel and the transmission shaft are in a clutch engagement state by the one-way clutch, and the transmission area portion and the one-way clutch are The present invention is to provide a rotary transmission element characterized in that the clutch engagement by the one-way clutch is released between the transmission wheel and the transmission shaft when they do not coincide with each other.
本発明の第3の課題解決手段において、前記一方向クラッチの外周に前記クラッチ装着部があり、前記一方向クラッチの内周にクラッチ係合部があって前記一方向クラッチが前記伝動輪の内周に固定され、前記一方向クラッチのクラッチ係合部と対応してそのクラッチ係合を達成する伝達エリア部が前記副伝動軸の外周に設けられている形態としてもよいし、前記一方向クラッチの内周にクラッチ装着部があり、前記一方向クラッチの外周にクラッチ係合部があって前記一方向クラッチが前記副伝動軸の外周に固定され、前記一方向クラッチのクラッチ係合部と対応してそのクラッチ係合を達成する伝達エリア部が前記伝動輪の内周に設けられている形態とすることができる。
In the third problem-solving means of the present invention, the one-way clutch has the clutch mounting portion on the outer periphery, the one-way clutch has the clutch engagement portion on the inner periphery, and the one-way clutch is located inside the transmission wheel. A transmission area portion fixed to the periphery and corresponding to the clutch engagement portion of the one-way clutch to achieve the clutch engagement may be provided on the outer periphery of the auxiliary transmission shaft, or the one-way clutch There is a clutch mounting part on the inner periphery of the one-way clutch, and there is a clutch engaging part on the outer periphery of the one-way clutch, and the one-way clutch is fixed to the outer periphery of the auxiliary transmission shaft, And the transmission area part which achieves the clutch engagement can be made into the form provided in the inner periphery of the said transmission wheel.
本発明の第4の課題解決手段は、
外周を通して回転動力を受け渡しするための伝動輪と、回転用の軸心部材である伝動軸と、
前記伝動輪と伝動軸とを一方向にのみ同方向に同回転させ、又は前記伝動輪と伝動軸との間の回転が伝達しないようにし、前記伝動輪の内周と伝動軸の外周との間に介在すし、内外にそれぞれクラッチ係合部を有する2重構造の一方向クラッチと、
前記一方向クラッチを軸方向に移動操作するための管状の操作部材を備え、
前記伝動輪の内周には、少なくともその一部に、外側のクラッチ係合部と対応してクラッチ係合を達成する伝達エリア部が設けられて
前記伝動軸の外周には、少なくともその一部に、内側のクラッチ係合部と対応してクラッチ係合を達成する伝達エリア部が設けられ、
前記伝動軸が軸心部側で、前記伝動輪が外周側に相対的に配置されて、前記伝動軸と伝動輪とが互いに組み合わされ、
前記伝動軸の外周には、前記一方向クラッチの内側のクラッチ係合部を介して前記一方向クラッチが嵌め込まれ、前記一方向クラッチの両端部に隣接して前記操作部材がそれぞれ嵌め込まれ、
前記伝動輪内周側の伝達エリア部と前記伝動軸外周側の伝達エリア部と前記一方向クラッチの内外のクラッチ係合部とが相互に一致しているときには、前記伝動輪と伝動軸とが前記一方向クラッチによってクラッチ係合状態になり、前記伝達エリア部とクラッチ係合部とが相互に不一致のときには、前記伝動輪と伝動軸とが前記一方向クラッチのクラッチ係合の解除状態になること
を特徴とする回転伝動素子を提供することにある。 The fourth problem solving means of the present invention is:
A transmission wheel for transferring rotational power through the outer periphery, a transmission shaft which is a shaft center member for rotation,
The transmission wheel and the transmission shaft are rotated in the same direction only in one direction, or the rotation between the transmission wheel and the transmission shaft is not transmitted, and the inner periphery of the transmission wheel and the outer periphery of the transmission shaft A one-way clutch having a double structure having a clutch engaging part inside and outside,
A tubular operating member for moving and operating the one-way clutch in the axial direction;
At least a part of the inner periphery of the transmission wheel is provided with a transmission area part that achieves clutch engagement corresponding to the outer clutch engaging part. At least a part of the outer periphery of the transmission shaft is provided. In addition, a transmission area portion that achieves clutch engagement corresponding to the inner clutch engagement portion is provided,
The transmission shaft is on the axial center side, the transmission wheel is relatively disposed on the outer peripheral side, and the transmission shaft and the transmission wheel are combined with each other,
On the outer periphery of the transmission shaft, the one-way clutch is fitted via a clutch engagement portion inside the one-way clutch, and the operation members are fitted on both ends of the one-way clutch, respectively.
When the transmission area portion on the inner peripheral side of the transmission wheel, the transmission area portion on the outer peripheral side of the transmission shaft, and the inner and outer clutch engagement portions of the one-way clutch coincide with each other, the transmission wheel and the transmission shaft are When the one-way clutch enters the clutch engagement state, and the transmission area portion and the clutch engagement portion do not match each other, the transmission wheel and the transmission shaft are released from the clutch engagement of the one-way clutch. Another object of the present invention is to provide a rotary transmission element characterized by the above.
外周を通して回転動力を受け渡しするための伝動輪と、回転用の軸心部材である伝動軸と、
前記伝動輪と伝動軸とを一方向にのみ同方向に同回転させ、又は前記伝動輪と伝動軸との間の回転が伝達しないようにし、前記伝動輪の内周と伝動軸の外周との間に介在すし、内外にそれぞれクラッチ係合部を有する2重構造の一方向クラッチと、
前記一方向クラッチを軸方向に移動操作するための管状の操作部材を備え、
前記伝動輪の内周には、少なくともその一部に、外側のクラッチ係合部と対応してクラッチ係合を達成する伝達エリア部が設けられて
前記伝動軸の外周には、少なくともその一部に、内側のクラッチ係合部と対応してクラッチ係合を達成する伝達エリア部が設けられ、
前記伝動軸が軸心部側で、前記伝動輪が外周側に相対的に配置されて、前記伝動軸と伝動輪とが互いに組み合わされ、
前記伝動軸の外周には、前記一方向クラッチの内側のクラッチ係合部を介して前記一方向クラッチが嵌め込まれ、前記一方向クラッチの両端部に隣接して前記操作部材がそれぞれ嵌め込まれ、
前記伝動輪内周側の伝達エリア部と前記伝動軸外周側の伝達エリア部と前記一方向クラッチの内外のクラッチ係合部とが相互に一致しているときには、前記伝動輪と伝動軸とが前記一方向クラッチによってクラッチ係合状態になり、前記伝達エリア部とクラッチ係合部とが相互に不一致のときには、前記伝動輪と伝動軸とが前記一方向クラッチのクラッチ係合の解除状態になること
を特徴とする回転伝動素子を提供することにある。 The fourth problem solving means of the present invention is:
A transmission wheel for transferring rotational power through the outer periphery, a transmission shaft which is a shaft center member for rotation,
The transmission wheel and the transmission shaft are rotated in the same direction only in one direction, or the rotation between the transmission wheel and the transmission shaft is not transmitted, and the inner periphery of the transmission wheel and the outer periphery of the transmission shaft A one-way clutch having a double structure having a clutch engaging part inside and outside,
A tubular operating member for moving and operating the one-way clutch in the axial direction;
At least a part of the inner periphery of the transmission wheel is provided with a transmission area part that achieves clutch engagement corresponding to the outer clutch engaging part. At least a part of the outer periphery of the transmission shaft is provided. In addition, a transmission area portion that achieves clutch engagement corresponding to the inner clutch engagement portion is provided,
The transmission shaft is on the axial center side, the transmission wheel is relatively disposed on the outer peripheral side, and the transmission shaft and the transmission wheel are combined with each other,
On the outer periphery of the transmission shaft, the one-way clutch is fitted via a clutch engagement portion inside the one-way clutch, and the operation members are fitted on both ends of the one-way clutch, respectively.
When the transmission area portion on the inner peripheral side of the transmission wheel, the transmission area portion on the outer peripheral side of the transmission shaft, and the inner and outer clutch engagement portions of the one-way clutch coincide with each other, the transmission wheel and the transmission shaft are When the one-way clutch enters the clutch engagement state, and the transmission area portion and the clutch engagement portion do not match each other, the transmission wheel and the transmission shaft are released from the clutch engagement of the one-way clutch. Another object of the present invention is to provide a rotary transmission element characterized by the above.
前記第1乃至第4の課題解決手段において、1つの伝動輪と1つの伝動軸とが2つの一方向クラッチによってクラッチ係合できるように対応してもよい。
In the first to fourth problem solving means, one transmission wheel and one transmission shaft may be adapted to be engaged with each other by two one-way clutches.
本発明の第5の課題解決手段は、
外周を通して回転動力を受け渡しするための伝動輪と前記伝動輪の軸心部に回転自在に設けられた伝動軸とを含む2つの回転伝動素子を備え、
それぞれの回転伝動素子の対応する伝動輪は、伝動連係部材を介さない直接連繋手段と伝動連係部材を介した間接連繋手段とのいずれかの連繋手段によって相互に伝動自在に連繋され、
前記2つの回転伝動素子の少なくとも1つが前記第1乃至第4の課題解決手段によるものであり、
前記回転伝動素子の伝動輪と伝動軸とが一方向クラッチによってクラッチ係合されると、一方の回転伝動素子側から他方の回転伝動素子側へ回転が伝達され、前記回転伝動素子の伝動輪と伝動軸とのクラッチ係合が解除されると、一方の回転伝動素子側から他方の回転伝動素子側への回転が伝達しなくなるものであること
を特徴とする動力入切式伝動装置を提供することにある。 The fifth problem solving means of the present invention is:
Two rotational transmission elements including a transmission wheel for transferring rotational power through the outer periphery and a transmission shaft rotatably provided at the axial center of the transmission wheel;
The corresponding transmission wheels of the respective rotary transmission elements are connected to each other by means of any one of a direct connection means not via a transmission linkage member and an indirect linkage means via a transmission linkage member,
At least one of the two rotational transmission elements is due to the first to fourth problem solving means,
When the transmission wheel of the rotation transmission element and the transmission shaft are clutch-engaged by a one-way clutch, rotation is transmitted from one rotation transmission element side to the other rotation transmission element side, and the transmission wheel of the rotation transmission element Provided is a power on / off transmission device characterized in that when the clutch engagement with the transmission shaft is released, the rotation from one rotation transmission element side to the other rotation transmission element side is not transmitted. There is.
外周を通して回転動力を受け渡しするための伝動輪と前記伝動輪の軸心部に回転自在に設けられた伝動軸とを含む2つの回転伝動素子を備え、
それぞれの回転伝動素子の対応する伝動輪は、伝動連係部材を介さない直接連繋手段と伝動連係部材を介した間接連繋手段とのいずれかの連繋手段によって相互に伝動自在に連繋され、
前記2つの回転伝動素子の少なくとも1つが前記第1乃至第4の課題解決手段によるものであり、
前記回転伝動素子の伝動輪と伝動軸とが一方向クラッチによってクラッチ係合されると、一方の回転伝動素子側から他方の回転伝動素子側へ回転が伝達され、前記回転伝動素子の伝動輪と伝動軸とのクラッチ係合が解除されると、一方の回転伝動素子側から他方の回転伝動素子側への回転が伝達しなくなるものであること
を特徴とする動力入切式伝動装置を提供することにある。 The fifth problem solving means of the present invention is:
Two rotational transmission elements including a transmission wheel for transferring rotational power through the outer periphery and a transmission shaft rotatably provided at the axial center of the transmission wheel;
The corresponding transmission wheels of the respective rotary transmission elements are connected to each other by means of any one of a direct connection means not via a transmission linkage member and an indirect linkage means via a transmission linkage member,
At least one of the two rotational transmission elements is due to the first to fourth problem solving means,
When the transmission wheel of the rotation transmission element and the transmission shaft are clutch-engaged by a one-way clutch, rotation is transmitted from one rotation transmission element side to the other rotation transmission element side, and the transmission wheel of the rotation transmission element Provided is a power on / off transmission device characterized in that when the clutch engagement with the transmission shaft is released, the rotation from one rotation transmission element side to the other rotation transmission element side is not transmitted. There is.
本発明の第6の課題解決手段は、
出力用回転伝動素子と入力用回転伝動素子とを備え、前記出力用回転伝動素子は、外周を通して回転動力を受け渡しするものであって隣接した複数の伝動輪と前記複数の伝動輪の軸心部に設けられ手回転自在に支持された伝動軸とを有し、前記入力用回転伝動素子も、外周を通して回転動力を受け渡しするものであって互いに隣接した複数の伝動輪と前記複数の伝動輪の軸心部に設けられて回転自在に支持された伝動軸とを有し、
前記出力用回転伝動素子と入力用回転伝動素子の少なくとも一方の回転伝動素子は、第1乃至第4の課題解決手段による回転伝動素子であって、前記回転伝動素子に付加的に設けられた伝動輪を有し、一方向クラッチによって各伝動輪と伝動軸とがクラッチ係合されたり、そのクラッチ係合が解除されたりし、
前記出力用回転伝動素子側の各伝動輪と入力用回転伝動素子側の各伝動輪とが相対応していて伝動連係部材を介さない直接連繋手段と伝動連係部材を介した間接連繋手段とのいずれかの連繋手段で伝動自在に連繋され、
前記伝動軸といずれか一方の伝動輪とが一方向クラッチによってしてクラッチ係合されると、前記入力用回転伝動素子側から前記出力用回転伝動素子側へ回転が伝達され、一方向クラッチによる前記伝動軸とのクラッチ係合が、一方の伝動輪から他方の伝動輪へと変更されることにより、変速されること
を特徴とする変速装置を提供することにある。 The sixth problem solving means of the present invention is:
An output rotational transmission element and an input rotational transmission element, wherein the output rotational transmission element delivers rotational power through the outer periphery, and a plurality of adjacent transmission wheels and axial portions of the plurality of transmission wheels The input rotation transmission element also passes the rotational power through the outer periphery, and a plurality of transmission wheels adjacent to each other and the plurality of transmission wheels A transmission shaft provided at the shaft center and rotatably supported;
At least one of the output rotation transmission element and the input rotation transmission element is a rotation transmission element according to first to fourth problem solving means, and is additionally provided in the rotation transmission element. Each transmission wheel and the transmission shaft are clutch-engaged by the one-way clutch, or the clutch engagement is released,
The direct transmission means not via the transmission linkage member and the indirect linkage means via the transmission linkage member in which the transmission wheels on the output rotary transmission element side and the transmission wheels on the input rotary transmission element side correspond to each other. Connected freely by any connecting means,
When the transmission shaft and one of the transmission wheels are clutch-engaged by a one-way clutch, rotation is transmitted from the input rotation transmission element side to the output rotation transmission element side, and the one-way clutch It is an object of the present invention to provide a transmission apparatus characterized in that the clutch is engaged with the transmission shaft so that the transmission is changed by changing from one transmission wheel to the other transmission wheel.
出力用回転伝動素子と入力用回転伝動素子とを備え、前記出力用回転伝動素子は、外周を通して回転動力を受け渡しするものであって隣接した複数の伝動輪と前記複数の伝動輪の軸心部に設けられ手回転自在に支持された伝動軸とを有し、前記入力用回転伝動素子も、外周を通して回転動力を受け渡しするものであって互いに隣接した複数の伝動輪と前記複数の伝動輪の軸心部に設けられて回転自在に支持された伝動軸とを有し、
前記出力用回転伝動素子と入力用回転伝動素子の少なくとも一方の回転伝動素子は、第1乃至第4の課題解決手段による回転伝動素子であって、前記回転伝動素子に付加的に設けられた伝動輪を有し、一方向クラッチによって各伝動輪と伝動軸とがクラッチ係合されたり、そのクラッチ係合が解除されたりし、
前記出力用回転伝動素子側の各伝動輪と入力用回転伝動素子側の各伝動輪とが相対応していて伝動連係部材を介さない直接連繋手段と伝動連係部材を介した間接連繋手段とのいずれかの連繋手段で伝動自在に連繋され、
前記伝動軸といずれか一方の伝動輪とが一方向クラッチによってしてクラッチ係合されると、前記入力用回転伝動素子側から前記出力用回転伝動素子側へ回転が伝達され、一方向クラッチによる前記伝動軸とのクラッチ係合が、一方の伝動輪から他方の伝動輪へと変更されることにより、変速されること
を特徴とする変速装置を提供することにある。 The sixth problem solving means of the present invention is:
An output rotational transmission element and an input rotational transmission element, wherein the output rotational transmission element delivers rotational power through the outer periphery, and a plurality of adjacent transmission wheels and axial portions of the plurality of transmission wheels The input rotation transmission element also passes the rotational power through the outer periphery, and a plurality of transmission wheels adjacent to each other and the plurality of transmission wheels A transmission shaft provided at the shaft center and rotatably supported;
At least one of the output rotation transmission element and the input rotation transmission element is a rotation transmission element according to first to fourth problem solving means, and is additionally provided in the rotation transmission element. Each transmission wheel and the transmission shaft are clutch-engaged by the one-way clutch, or the clutch engagement is released,
The direct transmission means not via the transmission linkage member and the indirect linkage means via the transmission linkage member in which the transmission wheels on the output rotary transmission element side and the transmission wheels on the input rotary transmission element side correspond to each other. Connected freely by any connecting means,
When the transmission shaft and one of the transmission wheels are clutch-engaged by a one-way clutch, rotation is transmitted from the input rotation transmission element side to the output rotation transmission element side, and the one-way clutch It is an object of the present invention to provide a transmission apparatus characterized in that the clutch is engaged with the transmission shaft so that the transmission is changed by changing from one transmission wheel to the other transmission wheel.
第6の課題解決手段において、出力用回転伝動素子と入力用回転伝動素子との間に正回転用の伝動系と逆回転用の伝動系とが設けられ、前記正逆回転の伝動系が一方向クラッチを備えた軸方向の操作手段で切り替えられる形態とすることができる。この場合、回転伝動素子の互いに隣接する伝動輪の間を接続したり切り離したりするための断続手段が設けられているのが好ましく、また回転を伝達する伝動系が遊星歯車伝動機構を含むのが好ましい。
In a sixth problem solving means, a forward rotation transmission system and a reverse rotation transmission system are provided between the output rotation transmission element and the input rotation transmission element, and the transmission system for the forward and reverse rotations is identical. It can be set as the form switched by the axial direction operation means provided with the direction clutch. In this case, it is preferable that intermittent means for connecting or disconnecting adjacent transmission wheels of the rotary transmission element is provided, and that the transmission system for transmitting rotation includes a planetary gear transmission mechanism. preferable.
本発明の第7の課題解決手段は、
第1乃至第5の課題解決手段による変速装置と、前記変速装置の回転動力入力側に設けられた回転原動系と、前記変速装置の回転動力出力側に設けられた回転作動系とを備えていて、前記回転原動系の回転動力が前記変速装置を経由して前記回転作動系に伝達されるように、前記回転原動系と変速装置と回転作動系とが組み合わされている伝動システムにおいて、
前記変速装置の回転伝動素子の一方向クラッチをクラッチ係合状態からクラッチ離脱状態に切り替える際又はクラッチ離脱状態からクラッチ係合状態に切り替える際に、前記回転伝動素子の伝動輪と伝動軸に相対的な回転速度差をもたせて前記一方向クラッチのクラッチ噛み合いが行われないように前記一方向クラッチを切り替えるようにしたこと
を特徴とする伝動システムを提供することにある。 The seventh problem solving means of the present invention is:
A transmission device according to first to fifth problem solving means, a rotational driving system provided on a rotational power input side of the transmission device, and a rotational operation system provided on a rotational power output side of the transmission device. In the transmission system in which the rotation driving system, the transmission, and the rotation operating system are combined so that the rotational power of the rotation driving system is transmitted to the rotation operating system via the transmission.
When the one-way clutch of the rotation transmission element of the transmission is switched from the clutch engagement state to the clutch disengagement state or when the clutch transmission state is switched from the clutch disengagement state to the clutch engagement state, relative to the transmission wheel and the transmission shaft of the rotation transmission element Another object of the present invention is to provide a transmission system characterized in that the one-way clutch is switched so that the clutch engagement of the one-way clutch is not performed with a difference in rotational speed.
第1乃至第5の課題解決手段による変速装置と、前記変速装置の回転動力入力側に設けられた回転原動系と、前記変速装置の回転動力出力側に設けられた回転作動系とを備えていて、前記回転原動系の回転動力が前記変速装置を経由して前記回転作動系に伝達されるように、前記回転原動系と変速装置と回転作動系とが組み合わされている伝動システムにおいて、
前記変速装置の回転伝動素子の一方向クラッチをクラッチ係合状態からクラッチ離脱状態に切り替える際又はクラッチ離脱状態からクラッチ係合状態に切り替える際に、前記回転伝動素子の伝動輪と伝動軸に相対的な回転速度差をもたせて前記一方向クラッチのクラッチ噛み合いが行われないように前記一方向クラッチを切り替えるようにしたこと
を特徴とする伝動システムを提供することにある。 The seventh problem solving means of the present invention is:
A transmission device according to first to fifth problem solving means, a rotational driving system provided on a rotational power input side of the transmission device, and a rotational operation system provided on a rotational power output side of the transmission device. In the transmission system in which the rotation driving system, the transmission, and the rotation operating system are combined so that the rotational power of the rotation driving system is transmitted to the rotation operating system via the transmission.
When the one-way clutch of the rotation transmission element of the transmission is switched from the clutch engagement state to the clutch disengagement state or when the clutch transmission state is switched from the clutch disengagement state to the clutch engagement state, relative to the transmission wheel and the transmission shaft of the rotation transmission element Another object of the present invention is to provide a transmission system characterized in that the one-way clutch is switched so that the clutch engagement of the one-way clutch is not performed with a difference in rotational speed.
第7の課題解決手段において、前記一方向クラッチのクラッチ噛み合いが行われないようにしつつ前記一方向クラッチを切り替える際に、前記回転原動系の測定対象物の回転速度又は回転数と、前記回転作動系の測定対象物の回転速度又は回転数とをそれぞれ検出し、その検出結果に基づいて前記回転伝動素子の伝動輪と伝動軸に相対的な回転速度差をもたせることができる。
In the seventh problem-solving means, when the one-way clutch is switched while the clutch engagement of the one-way clutch is not performed, the rotation speed or the rotation speed of the measurement object of the rotation driving system, and the rotation operation The rotational speed or the rotational speed of the measurement object of the system can be detected, respectively, and a relative rotational speed difference can be given to the transmission wheel and the transmission shaft of the rotational transmission element based on the detection result.
本発明に係る回転伝動素子、動力入切式伝動装置、変速装置は、上記の構成を有することによって次の(1)乃至(5)の効果を達成することができる。
(1)本発明に係る回転伝動素子は、伝達エリア部と一方向クラッチとを軸方向に相対的に移動することによって伝動輪と伝動軸とをクラッチの係合又は解除するので、この回転伝動素子を用いて構成される伝動装置や変速装置は、伝動輪以外のエレメントを軸方向にシフトさせることによって動力入切操作とか変速操作とかが行える。このように、伝動自在に対応する伝動輪相互を接続したり切り離したりするのでなく、伝動輪相互に接続したまま伝動軸のみを軸方向に移動させるだけ動力伝達、変速の操作を行うこができるので、操作をきわめて円滑に行うことができ、従って、動力の入切や変速の際の衝撃緩和を大幅に緩和することができる。
(2)本発明の回転伝動素子を多段変速装置に用いた場合、動力の入切や変速は、伝動輪を相互に接続したまま行われるので、各変速段毎に対となる伝動輪相互がすべて接続状態にあるため、各変速段にわたる伝動軸の軸方向への連続変位操作によって、変速の連続性を確保することができる。また、各段の変速比を細かな段階的な多段変速とすることによって、無段変速にほぼ同等の変速を実現することができ、従って変速比の連続可変性も得ることができる。
(3)本発明に係る動力入切式伝動装置は、例えば、伝動効率のよい歯車伝動方式を選択することができ、従って、これは摩擦伝動方式を用いた従来技術の無段変速装置に比して伝動効率が高くなり、これは、特に変速の際の動力損失が小さくなる利点がある。
(4)本発明に係る回転伝動素子、動力入切式伝動装置及び変速装置の伝動系統の主要部品は、伝動軸と伝動輪と一方向クラッチであって特殊な部品を必要とするものではないので、高品質で安定して製作することができ、従って回転伝動素子、動力入切式伝動装置、変速装置を高精度に提供することができる。
(5)本発明に係る回転伝動素子は、伝動軸、伝動輪、操作部材、一方向クラッチから構成されるので、部品数がきめて少なく、軽量である。伝動軸は、簡単な伝達エリア部を有するだけであるので、構成が簡潔で製作が容易である。従って、この回転伝動素子は、構成の簡潔性と製作の容易性と部品数の少部化と軽量化を満足することができ、従って製品の価格を低減することができ、またこの回転伝動素子を用いた本発明の動力入切式伝動装置や変速装置も同様の効果を得ることができる。
(6)本発明に係る動力入切式伝動装置や変速装置は、上記回転伝動素子を構成要素としているので、上記と同様の効果を有し、また、回転伝動素子以外の部品は、既成の伝導系部品を用いることができるので、構成が簡潔で、製作が容易であり、且つ少部品数、軽量化、コストダウンをはかることができる。
(7)本発明に係る伝動システムは、本発明の変速装置と回転原動系と回転作動系とが組み合わされるので、変速装置によるクラッチ切り替えの際には、回転伝動素子の伝動輪と伝動軸に相対的な回転速度差をもたせて、すなわち、一方向クラッチのクラッチ噛み合いが行われないようにして、クラッチ切り替えを行う。クラッチ噛み合いが行われない状態でなされるクラッチ切り替は、操作力をほとんど必要とすることなく円滑に行うことができる。また、高速回転状態にある回転入力側を停止状態又は低速状態にある回転出力側に切り替える際にも、クラッチ噛み合いが成立しない状態で切り替えが行われるために、切り替え時の衝撃が発生することがなく、円滑にクラッチ切り替えを行うことができ、従って切り替え時の部品破損も起ることがない。
(8)上述したクラッチ切り替えにおいて、回転原動系の測定対象物の回転速度又は回転数と、回転作動系の測定対象物の回転速度又は回転数とをそれぞれ検出し、その検出結果に基づいて回転伝動素子における伝動輪と伝動軸に相対的な回転速度差をもたせるので、トラブルをともなうことがない合理的で安定したクラッチ切り替えを一層的確に行うことができる。 The rotational transmission element, the power on / off transmission device, and the transmission according to the present invention can achieve the following effects (1) to (5) by having the above-described configuration.
(1) The rotational transmission element according to the present invention engages or disengages the transmission wheel and the transmission shaft by relatively moving the transmission area portion and the one-way clutch in the axial direction. A transmission device and a transmission device configured using elements can perform a power on / off operation or a shift operation by shifting elements other than the transmission wheel in the axial direction. In this way, it is possible to perform power transmission and gear shifting operations by moving only the transmission shaft in the axial direction without connecting or disconnecting the transmission wheels corresponding to transmission freely. Therefore, the operation can be performed very smoothly, and therefore, the impact mitigation at the time of turning on / off the power and shifting can be greatly relieved.
(2) When the rotary transmission element of the present invention is used in a multi-stage transmission, power on / off and shifting are performed while the transmission wheels are connected to each other. Since all are in the connected state, the continuity of the shift can be ensured by the continuous displacement operation in the axial direction of the transmission shaft across the respective shift stages. In addition, by making the gear ratio of each stage a fine stepwise multi-stage shift, it is possible to realize a gear shift that is almost equivalent to a continuously variable shift, and therefore, it is possible to obtain a continuously variable speed ratio.
(3) The power on / off type transmission device according to the present invention can select, for example, a gear transmission system with good transmission efficiency, and therefore this is compared with a conventional continuously variable transmission using a friction transmission system. As a result, the transmission efficiency is increased, which has the advantage of reducing the power loss particularly during gear shifting.
(4) The main components of the transmission system of the rotary transmission element, power on / off transmission device and transmission according to the present invention are the transmission shaft, the transmission wheel and the one-way clutch, and do not require any special parts. Therefore, it can be manufactured stably with high quality, and therefore a rotary transmission element, a power on / off transmission device, and a transmission can be provided with high accuracy.
(5) Since the rotational transmission element according to the present invention includes a transmission shaft, a transmission wheel, an operation member, and a one-way clutch, the number of parts is extremely small and lightweight. Since the transmission shaft has only a simple transmission area portion, the structure is simple and the manufacture is easy. Therefore, this rotary transmission element can satisfy the simplicity of construction, the ease of manufacture, the reduction in the number of parts and the weight reduction, and hence the price of the product can be reduced. The same effect can also be obtained by the power on / off type transmission device and the transmission device of the present invention using the.
(6) The power on / off transmission and transmission according to the present invention have the same effect as described above because the rotational transmission element is a constituent element, and parts other than the rotational transmission element are Since conductive parts can be used, the structure is simple and easy to manufacture, and the number of parts, weight reduction, and cost reduction can be achieved.
(7) In the transmission system according to the present invention, the transmission of the present invention, the rotation driving system, and the rotation operating system are combined. Therefore, when the clutch is switched by the transmission, the transmission wheel and the transmission shaft of the rotation transmission element are used. The clutch switching is performed with a relative rotational speed difference, that is, the clutch engagement of the one-way clutch is not performed. Clutch switching performed in a state where clutch engagement is not performed can be performed smoothly with almost no operation force required. Also, when switching the rotation input side in the high-speed rotation state to the rotation output side in the stop state or the low-speed state, switching is performed in a state where the clutch engagement is not established, so that an impact at the time of switching may occur. Therefore, the clutch can be switched smoothly, and therefore, the parts are not damaged at the time of switching.
(8) In the clutch switching described above, the rotational speed or the rotational speed of the measurement object of the rotational driving system and the rotational speed or the rotational speed of the measurement object of the rotational operation system are detected, and the rotation is performed based on the detection result. Since a relative rotational speed difference is provided between the transmission wheel and the transmission shaft in the transmission element, rational and stable clutch switching without any trouble can be performed more accurately.
(1)本発明に係る回転伝動素子は、伝達エリア部と一方向クラッチとを軸方向に相対的に移動することによって伝動輪と伝動軸とをクラッチの係合又は解除するので、この回転伝動素子を用いて構成される伝動装置や変速装置は、伝動輪以外のエレメントを軸方向にシフトさせることによって動力入切操作とか変速操作とかが行える。このように、伝動自在に対応する伝動輪相互を接続したり切り離したりするのでなく、伝動輪相互に接続したまま伝動軸のみを軸方向に移動させるだけ動力伝達、変速の操作を行うこができるので、操作をきわめて円滑に行うことができ、従って、動力の入切や変速の際の衝撃緩和を大幅に緩和することができる。
(2)本発明の回転伝動素子を多段変速装置に用いた場合、動力の入切や変速は、伝動輪を相互に接続したまま行われるので、各変速段毎に対となる伝動輪相互がすべて接続状態にあるため、各変速段にわたる伝動軸の軸方向への連続変位操作によって、変速の連続性を確保することができる。また、各段の変速比を細かな段階的な多段変速とすることによって、無段変速にほぼ同等の変速を実現することができ、従って変速比の連続可変性も得ることができる。
(3)本発明に係る動力入切式伝動装置は、例えば、伝動効率のよい歯車伝動方式を選択することができ、従って、これは摩擦伝動方式を用いた従来技術の無段変速装置に比して伝動効率が高くなり、これは、特に変速の際の動力損失が小さくなる利点がある。
(4)本発明に係る回転伝動素子、動力入切式伝動装置及び変速装置の伝動系統の主要部品は、伝動軸と伝動輪と一方向クラッチであって特殊な部品を必要とするものではないので、高品質で安定して製作することができ、従って回転伝動素子、動力入切式伝動装置、変速装置を高精度に提供することができる。
(5)本発明に係る回転伝動素子は、伝動軸、伝動輪、操作部材、一方向クラッチから構成されるので、部品数がきめて少なく、軽量である。伝動軸は、簡単な伝達エリア部を有するだけであるので、構成が簡潔で製作が容易である。従って、この回転伝動素子は、構成の簡潔性と製作の容易性と部品数の少部化と軽量化を満足することができ、従って製品の価格を低減することができ、またこの回転伝動素子を用いた本発明の動力入切式伝動装置や変速装置も同様の効果を得ることができる。
(6)本発明に係る動力入切式伝動装置や変速装置は、上記回転伝動素子を構成要素としているので、上記と同様の効果を有し、また、回転伝動素子以外の部品は、既成の伝導系部品を用いることができるので、構成が簡潔で、製作が容易であり、且つ少部品数、軽量化、コストダウンをはかることができる。
(7)本発明に係る伝動システムは、本発明の変速装置と回転原動系と回転作動系とが組み合わされるので、変速装置によるクラッチ切り替えの際には、回転伝動素子の伝動輪と伝動軸に相対的な回転速度差をもたせて、すなわち、一方向クラッチのクラッチ噛み合いが行われないようにして、クラッチ切り替えを行う。クラッチ噛み合いが行われない状態でなされるクラッチ切り替は、操作力をほとんど必要とすることなく円滑に行うことができる。また、高速回転状態にある回転入力側を停止状態又は低速状態にある回転出力側に切り替える際にも、クラッチ噛み合いが成立しない状態で切り替えが行われるために、切り替え時の衝撃が発生することがなく、円滑にクラッチ切り替えを行うことができ、従って切り替え時の部品破損も起ることがない。
(8)上述したクラッチ切り替えにおいて、回転原動系の測定対象物の回転速度又は回転数と、回転作動系の測定対象物の回転速度又は回転数とをそれぞれ検出し、その検出結果に基づいて回転伝動素子における伝動輪と伝動軸に相対的な回転速度差をもたせるので、トラブルをともなうことがない合理的で安定したクラッチ切り替えを一層的確に行うことができる。 The rotational transmission element, the power on / off transmission device, and the transmission according to the present invention can achieve the following effects (1) to (5) by having the above-described configuration.
(1) The rotational transmission element according to the present invention engages or disengages the transmission wheel and the transmission shaft by relatively moving the transmission area portion and the one-way clutch in the axial direction. A transmission device and a transmission device configured using elements can perform a power on / off operation or a shift operation by shifting elements other than the transmission wheel in the axial direction. In this way, it is possible to perform power transmission and gear shifting operations by moving only the transmission shaft in the axial direction without connecting or disconnecting the transmission wheels corresponding to transmission freely. Therefore, the operation can be performed very smoothly, and therefore, the impact mitigation at the time of turning on / off the power and shifting can be greatly relieved.
(2) When the rotary transmission element of the present invention is used in a multi-stage transmission, power on / off and shifting are performed while the transmission wheels are connected to each other. Since all are in the connected state, the continuity of the shift can be ensured by the continuous displacement operation in the axial direction of the transmission shaft across the respective shift stages. In addition, by making the gear ratio of each stage a fine stepwise multi-stage shift, it is possible to realize a gear shift that is almost equivalent to a continuously variable shift, and therefore, it is possible to obtain a continuously variable speed ratio.
(3) The power on / off type transmission device according to the present invention can select, for example, a gear transmission system with good transmission efficiency, and therefore this is compared with a conventional continuously variable transmission using a friction transmission system. As a result, the transmission efficiency is increased, which has the advantage of reducing the power loss particularly during gear shifting.
(4) The main components of the transmission system of the rotary transmission element, power on / off transmission device and transmission according to the present invention are the transmission shaft, the transmission wheel and the one-way clutch, and do not require any special parts. Therefore, it can be manufactured stably with high quality, and therefore a rotary transmission element, a power on / off transmission device, and a transmission can be provided with high accuracy.
(5) Since the rotational transmission element according to the present invention includes a transmission shaft, a transmission wheel, an operation member, and a one-way clutch, the number of parts is extremely small and lightweight. Since the transmission shaft has only a simple transmission area portion, the structure is simple and the manufacture is easy. Therefore, this rotary transmission element can satisfy the simplicity of construction, the ease of manufacture, the reduction in the number of parts and the weight reduction, and hence the price of the product can be reduced. The same effect can also be obtained by the power on / off type transmission device and the transmission device of the present invention using the.
(6) The power on / off transmission and transmission according to the present invention have the same effect as described above because the rotational transmission element is a constituent element, and parts other than the rotational transmission element are Since conductive parts can be used, the structure is simple and easy to manufacture, and the number of parts, weight reduction, and cost reduction can be achieved.
(7) In the transmission system according to the present invention, the transmission of the present invention, the rotation driving system, and the rotation operating system are combined. Therefore, when the clutch is switched by the transmission, the transmission wheel and the transmission shaft of the rotation transmission element are used. The clutch switching is performed with a relative rotational speed difference, that is, the clutch engagement of the one-way clutch is not performed. Clutch switching performed in a state where clutch engagement is not performed can be performed smoothly with almost no operation force required. Also, when switching the rotation input side in the high-speed rotation state to the rotation output side in the stop state or the low-speed state, switching is performed in a state where the clutch engagement is not established, so that an impact at the time of switching may occur. Therefore, the clutch can be switched smoothly, and therefore, the parts are not damaged at the time of switching.
(8) In the clutch switching described above, the rotational speed or the rotational speed of the measurement object of the rotational driving system and the rotational speed or the rotational speed of the measurement object of the rotational operation system are detected, and the rotation is performed based on the detection result. Since a relative rotational speed difference is provided between the transmission wheel and the transmission shaft in the transmission element, rational and stable clutch switching without any trouble can be performed more accurately.
本発明に係る回転伝動素子の実施形態を添付図面に基づいて最初に説明し、その後、動力入切式伝動装置及び変速装置の実施形態を順次添付図面に基づいて説明する。
Embodiments of a rotary transmission element according to the present invention will be described first with reference to the accompanying drawings, and then embodiments of the power on / off transmission and the transmission will be sequentially described with reference to the accompanying drawings.
本発明に係る回転伝動素子、動力入切式伝動装置及び変速装置の各構成要素(部品)は、典型的な例では、主に、炭素合金系鋼の如き金属から構成されているが、ベルト等の柔軟性の部品は、ゴム、合成樹脂などから構成されている。
In the typical example, each component (part) of the rotary transmission element, the power on / off transmission device, and the transmission device according to the present invention is mainly composed of a metal such as carbon alloy steel. Such flexible parts are made of rubber, synthetic resin or the like.
本発明に係る回転伝動素子111は、図1に種々の実施形態で示されている。図1中、図1(A)(B)(F)は、歯車伝動方式に用いることができる回転伝動素子111を示し、図1(C)は、ベルト伝動方式に用いることができる回転伝動素子111を示し、また、図1(D)は、タイミングベルト伝動方式に用いることができる回転伝動素子111を示している。更に、図1(E)は、チェーン伝動方式に用いることができる回転伝動素子111を示している。
Rotational transmission element 111 according to the present invention is shown in various embodiments in FIG. 1A, 1B, and 1F show a rotation transmission element 111 that can be used for a gear transmission system, and FIG. 1C shows a rotation transmission element that can be used for a belt transmission system. 111 shows a rotation transmission element 111 that can be used in the timing belt transmission system. Further, FIG. 1 (E) shows a rotary transmission element 111 that can be used in a chain transmission system.
図1(A)の回転伝動素子111は、外周を通して回転動力を受け渡しするための伝動輪121と、回転用の軸心部材である伝動軸141とを備えている。伝動輪121は、平歯車から成っている。更に詳細に述べると、伝動輪121は、大歯車(ギア)や小歯車(ピニオン)の如き平歯車からなり、その軸心線と平行な多数の歯が歯車の外周にある。伝動軸141は、後述するような加工が施されている。
1 (A) includes a transmission wheel 121 for transferring rotational power through the outer periphery, and a transmission shaft 141 that is a rotating shaft member. The transmission wheel 121 is a spur gear. More specifically, the transmission wheel 121 is a spur gear such as a large gear (pinion) or a small gear (pinion), and a large number of teeth parallel to the axis of the transmission wheel 121 are on the outer periphery of the gear. The transmission shaft 141 is processed as described later.
図1(A)の一方向クラッチ131は、フリーホイールとも称される。一方向クラッチ131は、周知のとおり、一方の方向のみに回転力を伝達するためのものである。この一方向クラッチ131は、例えば、圧入手段、焼き嵌め手段、冷やし嵌め手段、キー止め手段、ネジ止め手段、溶接手段の如き1つ又は複数の適宜の手段によって伝動輪121の内周に取り付けられている。この一方向クラッチ131の一例が図4に示されており、以下これについて簡単に説明する。
The one-way clutch 131 in FIG. 1A is also referred to as a free wheel. As is well known, the one-way clutch 131 is for transmitting a rotational force only in one direction. The one-way clutch 131 is attached to the inner periphery of the transmission wheel 121 by one or a plurality of appropriate means such as press fitting means, shrink fitting means, cold fitting means, key fastening means, screw fastening means, and welding means. ing. An example of this one-way clutch 131 is shown in FIG. 4, and this will be briefly described below.
図4(A)(B)に示された一方向クラッチ131の主たる構成は、特開2007-255604号公報に開示されているものと同じである。図4(A)(B)の一方向クラッチ131は、外輪132Yとローラ133とばね部材134とを備えている。外輪132Yは、伝動輪121の内周に装着される。ローラ133は、外輪132Yと伝動軸141との間に配置されている。外輪132Yの内周面にはカム面132aが設けられている。ばね部材134は、ローラ133をクラッチ噛み合い方向に押し付けている。従って、伝動軸141が図4の時計回り方向(正方向)に回転してローラ133がカム面132aに噛み込むと、図4(A)に示すように、伝動輪121と伝動軸141との相対回転が拘束される。従って、伝動軸141の出力回転(回転トルク)が一方向クラッチ131を介して伝動輪121に伝えられる。これに対し、伝動軸141が反時計回り方向(逆方向)に回転してローラ133がカム面132aの隙間がある側へ逃げると、図4(B)に示すように、ローラ133が空転して内外両輪132、133の相対回転が許容される。従って、伝動軸141の出力回転が伝動輪121に伝わらない。この説明から明らかなように、図4(A)(B)の一方向クラッチ131は、その内周に伝動軸141とのクラッチ係合部CCがあり、かつ、その外周にクラッチ装着部CWがある。図4(A)(B)の一方向クラッチ131は、上記のように、その外周にあるクラッチ装着部CWを介して伝動輪121の内周に装着され、かつ、その内周にあるクラッチ係合部CCを介して伝動軸141の外周(後述の伝達エリア部142)とクラッチ係合する。図4(A)(B)の一方向クラッチ131は、その内周を介してクラッチ係合するので、内周係合型と称する。
The main configuration of the one-way clutch 131 shown in FIGS. 4A and 4B is the same as that disclosed in Japanese Patent Application Laid-Open No. 2007-255604. 4A and 4B includes an outer ring 132Y, a roller 133, and a spring member 134. The outer ring 132Y is attached to the inner periphery of the transmission wheel 121. The roller 133 is disposed between the outer ring 132Y and the transmission shaft 141. A cam surface 132a is provided on the inner peripheral surface of the outer ring 132Y. The spring member 134 presses the roller 133 in the clutch engagement direction. Therefore, when the transmission shaft 141 rotates in the clockwise direction (forward direction) in FIG. 4 and the roller 133 engages with the cam surface 132a, as shown in FIG. 4A, the transmission wheel 121 and the transmission shaft 141 Relative rotation is constrained. Accordingly, the output rotation (rotational torque) of the transmission shaft 141 is transmitted to the transmission wheel 121 via the one-way clutch 131. In contrast, when the transmission shaft 141 rotates in the counterclockwise direction (reverse direction) and the roller 133 escapes to the side where there is a gap in the cam surface 132a, the roller 133 idles as shown in FIG. Thus, relative rotation of the inner and outer wheels 132 and 133 is allowed. Therefore, the output rotation of the transmission shaft 141 is not transmitted to the transmission wheel 121. As is clear from this description, the one-way clutch 131 in FIGS. 4A and 4B has a clutch engagement portion CC with the transmission shaft 141 on the inner periphery thereof, and a clutch mounting portion CW on the outer periphery thereof. is there. As described above, the one-way clutch 131 shown in FIGS. 4A and 4B is attached to the inner periphery of the transmission wheel 121 via the clutch mounting portion CW on the outer periphery thereof, and the clutch engagement on the inner periphery thereof. The clutch engages with the outer periphery of the transmission shaft 141 (a transmission area 142 described later) via the joint CC. The one-way clutch 131 shown in FIGS. 4 (A) and 4 (B) is referred to as an inner peripheral engagement type because the clutch is engaged through the inner periphery thereof.
図4(C)(D)に示された一方向クラッチ131の主たる構成は、特開2009-156466号公報に開示されているものと同じである。図4(C)(D)の一方向クラッチ131も、図4(A)(B)のと同じ基本的構成を有する。ただし図4(C)(D)の一方向クラッチ131は、カム面132aを有する複数の保持空間132bが外輪132Yの内周面に等間隔に分散して形成されている。各保持空間132b内にはニードル型のローラ133が介在され、このローラ133が保持空間132b内のばね部材134で所定方向に押し込まれている。図4(C)(D)の一方向クラッチ131も、伝動軸141が反時計回り方向に回転してローラ133がカム面132aに噛み込むと、図4(C)のように伝動輪121と伝動軸141との相対回転が拘束され、伝動軸141が時計回り方向に回転してローラ133がカム面132a隙間がある側へ逃げると、図4(D)のようにローラ133が空転して内外両輪132、133の相対回転が許容される。従って、図4(C)(D)の一方向クラッチ131は、同図(C)の状態では伝動軸141の回転トルクが一方向クラッチ131を介して伝動輪121に伝わり、同図(D)の状態では伝動軸141の回転トルクが伝動輪121に伝わらない。この図4(C)(D)の一方向クラッチ131も、その内周に伝動軸141のとのクラッチ係合部CCがあり、かつ、その外周にクラッチ装着部CWがある。従って、この一方向クラッチ131も、内周係合型である。
The main configuration of the one-way clutch 131 shown in FIGS. 4C and 4D is the same as that disclosed in Japanese Patent Laid-Open No. 2009-156466. The one-way clutch 131 shown in FIGS. 4C and 4D also has the same basic configuration as that shown in FIGS. However, in the one-way clutch 131 shown in FIGS. 4C and 4D, a plurality of holding spaces 132b having cam surfaces 132a are formed at equal intervals on the inner peripheral surface of the outer ring 132Y. A needle-type roller 133 is interposed in each holding space 132b, and this roller 133 is pushed in a predetermined direction by a spring member 134 in the holding space 132b. 4C and 4D, when the transmission shaft 141 rotates counterclockwise and the roller 133 engages with the cam surface 132a, the transmission wheel 121 and the one-way clutch 131, as shown in FIG. When the relative rotation with the transmission shaft 141 is constrained and the transmission shaft 141 rotates in the clockwise direction and the roller 133 escapes to the side with the gap on the cam surface 132a, the roller 133 is idled as shown in FIG. Relative rotation of the inner and outer wheels 132 and 133 is allowed. Accordingly, in the one-way clutch 131 shown in FIGS. 4C and 4D, the rotational torque of the transmission shaft 141 is transmitted to the transmission wheel 121 via the one-way clutch 131 in the state shown in FIG. In this state, the rotational torque of the transmission shaft 141 is not transmitted to the transmission wheel 121. The one-way clutch 131 in FIGS. 4C and 4D also has a clutch engagement portion CC with the transmission shaft 141 on the inner periphery thereof, and a clutch mounting portion CW on the outer periphery thereof. Therefore, this one-way clutch 131 is also an inner periphery engagement type.
再び、図1に戻って説明すると、図1(A)の伝動軸141は、図4(A)(B)又は図4(C)(D)の一方向クラッチ131とクラッチ係合自在に対応しており、その外周に伝達エリア部142と不伝達エリア部143とが軸方向に隣接して設けられる。伝達エリア部142は、伝動輪121の一方向クラッチ131によって特定一方向の回転時にクラッチ噛み合いを行う領域であり、不伝達エリア部143は、一方向クラッチ131に対して正逆回転いずれの方向にもクラッチ噛み合いを行われない領域である。具体例を述べると、伝達エリア部142の外周は、一方向クラッチ131の内周(クラッチ係合部CC)に対してクラッチ噛み合い可能に内接し、不伝達エリア部143の外周は、一方向クラッチ131の内周との間に微少の間隙を有し、従って、一方向クラッチ131の内周(クラッチ係合部CC)と接触していない。一方向クラッチ131の内径を「D」、伝達エリア部142の外径を「d1」、不伝達エリア部143の外径を「d2」とした場合、[D≒d1>d2]の関係が成立している。この場合、D≒d1は、実質的に[D=d1]と見なして支障ないが、一方向クラッチ131と伝達エリア部142との嵌め合いがきわめて微小な径の差で成立するので、d1は、Dよりわずかに小さいことを意味する。このような伝動軸141の伝達エリア部142の外径は、不伝達エリア部143の外径よりも大きい。更に、伝動軸141の伝達エリア部142と不伝達エリア部143との間には、これらのエリア部142、143の段差を緩和するためのテーパ面又は円弧面によって段差緩和用のスロープ周面部144が形成されている。
Returning to FIG. 1 again, the transmission shaft 141 in FIG. 1 (A) can be freely engaged with the one-way clutch 131 in FIG. 4 (A) (B) or 4 (C) (D). The transmission area portion 142 and the non-transmission area portion 143 are provided adjacent to each other in the axial direction on the outer periphery thereof. The transmission area part 142 is an area where the one-way clutch 131 of the transmission wheel 121 engages with the clutch when rotating in one specific direction, and the non-transmission area part 143 is in either the forward or reverse rotation direction with respect to the one-way clutch 131. Is a region where clutch engagement is not performed. Specifically, the outer periphery of the transmission area 142 is inscribed so as to engage with the inner periphery of the one-way clutch 131 (clutch engagement portion CC), and the outer periphery of the non-transmission area 143 is a one-way clutch. There is a slight gap between the inner periphery of 131 and therefore it is not in contact with the inner periphery of the one-way clutch 131 (clutch engagement portion CC). When the inner diameter of the one-way clutch 131 is “D”, the outer diameter of the transmission area 142 is “d1”, and the outer diameter of the non-transmission area 143 is “d2”, the relationship [D≈d1> d2] is established. is doing. In this case, D≈d1 is substantially regarded as [D = d1], but the fit between the one-way clutch 131 and the transmission area portion 142 is established with a very small difference in diameter. , D is slightly smaller than D. The outer diameter of the transmission area 142 of the transmission shaft 141 is larger than the outer diameter of the non-transmission area 143. Further, between the transmission area 142 and the non-transmission area 143 of the transmission shaft 141, a slope circumferential surface 144 for step relief is provided by a tapered surface or an arc surface for reducing the step of the area 142, 143. Is formed.
伝動輪121と内周係合型の一方向クラッチ131と伝動軸141とから成る図1(A)の回転伝動素子111において、伝動輪121は、伝動軸141の外周に保持して嵌合されている。このようして組み合わされた伝動輪121と伝動軸141とは、軸方向の移動に対して拘束されていないので、両者の軸方向の相対移動が自由に行える。即ち、伝動綸121は、伝動軸141の伝達エリア部142に対応する位置から伝動軸141の不伝達エリア部143側へとシフトさせたり、逆に、伝動軸141の不伝達エリア部143に対応する位置から伝動軸141の伝達エリア部142側へとシフトさせたりすることができる。伝動輪121が伝動軸141の伝達エリア部142に位置するときには、特定の方向の回転を伝達することができる伝動輪121側の一方向クラッチ131がクラッチ係合部CCを介して伝動軸141の伝達エリア部142と噛み合う。この場合の特定方向とは、時計回り方向(正回転方向)と反時計回り方向(逆回転方向)とのうちのいずれか一方である。クラッチが噛み合うと、伝動輪121と伝動軸141とが特定方向にのみ一体回転する。伝動輪121が伝動軸141の不伝達エリア部143に位置すると、伝動輪121の一方向クラッチ131による伝動軸141とのクラッチ噛み合いが正逆両方向とも行われない。従ってこの場合、伝動輪121と伝動軸141との相互間で動力の伝達は行われない。
In the rotational transmission element 111 of FIG. 1A composed of a transmission wheel 121, an inner peripheral engagement type one-way clutch 131 and a transmission shaft 141, the transmission wheel 121 is held and fitted on the outer periphery of the transmission shaft 141. ing. Since the transmission wheel 121 and the transmission shaft 141 combined in this manner are not restrained against movement in the axial direction, the relative movement in the axial direction of both can be freely performed. That is, the transmission rod 121 is shifted from the position corresponding to the transmission area portion 142 of the transmission shaft 141 to the non-transmission area portion 143 side of the transmission shaft 141, or conversely, corresponds to the non-transmission area portion 143 of the transmission shaft 141. It is possible to shift from the position to the transmission area 142 side of the transmission shaft 141. When the transmission wheel 121 is positioned in the transmission area 142 of the transmission shaft 141, the one-way clutch 131 on the transmission wheel 121 side that can transmit rotation in a specific direction is connected to the transmission shaft 141 via the clutch engagement portion CC. Engage with the transmission area 142. The specific direction in this case is one of a clockwise direction (forward rotation direction) and a counterclockwise direction (reverse rotation direction). When the clutch is engaged, the transmission wheel 121 and the transmission shaft 141 rotate integrally only in a specific direction. When the transmission wheel 121 is positioned in the non-transmission area portion 143 of the transmission shaft 141, the clutch engagement with the transmission shaft 141 by the one-way clutch 131 of the transmission wheel 121 is not performed in both the forward and reverse directions. Therefore, in this case, power is not transmitted between the transmission wheel 121 and the transmission shaft 141.
図1(B)の回転伝動素子111において、その伝動輪121は、傘歯車から成っている。図1(B)の回転伝動素子111の他の構成は、図1(A)の回転伝動素子111の構成と実質的に同じである。図1(B)の回転伝動素子111において、伝動軸141に対する一方向クラッチ131の機能は、図1(A)の回転伝動素子111のそれと実質的に同じである。
In the rotary transmission element 111 of FIG. 1 (B), the transmission wheel 121 is composed of a bevel gear. The other configuration of the rotational transmission element 111 in FIG. 1B is substantially the same as the configuration of the rotational transmission element 111 in FIG. 1B, the function of the one-way clutch 131 with respect to the transmission shaft 141 is substantially the same as that of the rotation transmission element 111 of FIG.
図1(C)の回転伝動素子111においては、その伝動輪121は、平ベルトのプーリから成っている。この伝動輪121には、ベルトの種類に応じてフランジ付きの平ベルト用プーリが用いられたり、Vベルト用のプーリが用いられたりする。図1(C)の回転伝動素子111が用いられた伝導系では、伝動輪121の外周に所定のベルトが掛けられる。図1(C)の回転伝動素子111の他の構成は、図1(A)の回転伝動素子111の構成と実質的に同じである。同様に、図1(C)の回転伝動素子111において、伝動軸141に対する一方向クラッチ131の機能は、図1(A)の回転伝動素子111のそれと実質的に同じである。
In the rotational transmission element 111 of FIG. 1 (C), the transmission wheel 121 is composed of a pulley of a flat belt. The transmission wheel 121 may be a flat belt pulley with a flange or a V belt pulley depending on the type of belt. In the transmission system using the rotary transmission element 111 of FIG. 1C, a predetermined belt is hung on the outer periphery of the transmission wheel 121. The other configuration of the rotational transmission element 111 in FIG. 1C is substantially the same as the configuration of the rotational transmission element 111 in FIG. Similarly, in the rotational transmission element 111 in FIG. 1C, the function of the one-way clutch 131 with respect to the transmission shaft 141 is substantially the same as that of the rotational transmission element 111 in FIG.
図1(D)の回転伝動素子111においては、その伝動輪121は、タイミングベルト車(タイミングプーリ)から成り、この回転伝動素子111が用いられる伝導系では、伝動輪121の外周にタイミングベルトが掛けられる。図1(D)の回転伝動素子111の他の構成は、図1(A)の回転伝動素子111の構成と実質的に同じであり、また伝動軸141に対する一方向クラッチ131の機能も、図1(A)の回転伝動素子111のそれと実質的に同じである。
In the rotational transmission element 111 of FIG. 1 (D), the transmission wheel 121 is composed of a timing belt wheel (timing pulley), and in the transmission system in which the rotational transmission element 111 is used, there is a timing belt on the outer periphery of the transmission wheel 121. It is hung. 1D is substantially the same as the configuration of the rotational transmission element 111 in FIG. 1A, and the function of the one-way clutch 131 with respect to the transmission shaft 141 is also illustrated in FIG. It is substantially the same as that of the rotational transmission element 111 of 1 (A).
図1(E)の回転伝動素子111においては、その伝動輪121は、スプロケット(スプロケットギアや鎖車ともいう)から成っている。この回転伝動素子111が用いられる伝導系では、伝動輪121の外周にチェーンが掛けられる。この回転伝動素子111の他の構成及び一方向クラッチ131の機能も、図1(A)の回転伝動素子111のそれと実質的に同じである。
In the rotational transmission element 111 of FIG. 1 (E), the transmission wheel 121 is composed of a sprocket (also referred to as a sprocket gear or a chain wheel). In the transmission system in which the rotational transmission element 111 is used, a chain is hung on the outer periphery of the transmission wheel 121. The other configuration of the rotational transmission element 111 and the function of the one-way clutch 131 are substantially the same as those of the rotational transmission element 111 of FIG.
図1(F)の回転伝動素子111の伝動輪121は、図1(A)と同様の平歯車から成っているが、その一方向クラッチ131には、図4(E)(F)の形態のものが用いられており、これに基づいて、一部の構成は、以下のように前例と異なる。
The transmission wheel 121 of the rotary transmission element 111 in FIG. 1 (F) is composed of a spur gear similar to that in FIG. 1 (A), but the one-way clutch 131 has the configuration shown in FIGS. 4 (E) and (F). Based on this, some configurations differ from the previous examples as follows.
図4(E)(F)の一方向クラッチ131は、外周係合型であり、内周係合型と比べ、内周外周の構成が逆となっている。図4(E)(F)の一方向クラッチ131は、内輪132Xとローラ133とばね部材134とを備えている。内輪132Xは、伝動軸141の外周に装着され、ローラ133は、この内輪132Xと一方向クラッチ131の外周(即ち伝動輪121の内周)との間に配置されている。内輪132Xの外周面にはカム面132aが設けられている。ばね部材134は、ローラ133をクラッチ噛み合い方向に押し付けている。従って、伝動軸141が反時計回り方向(逆方向)に回転してローラ133がカム面132aに噛み込むと、図4(E)のように伝動輪121と伝動軸141との相対回転が拘束され、伝動軸141の出力回転(回転トルク)が一方向クラッチ131を介して伝動輪121に伝えられる。一方、伝動軸141が時計回り方向(正方向)に回転してローラ133がカム面132aの隙間がある側へ逃げると、図4(F)のようにローラ133が空転して内外両輪132、133の相対回転が許容され、伝動軸141の出力回転が伝動輪121に伝わらない。この説明から明らかなように、図4(E)(F)の一方向クラッチ131には、その内周に伝動軸141に対するクラッチ装着部CWがあり、外周に伝動輪121とのクラッチ係合部CCがある。図1(F)の伝動軸141がスプライン軸である場合には、同図(E)(F)の一方向クラッチ131の内周(クラッチ係合部CC)には、そのスプライン軸と対応するスプライン溝(凹凸条)が形成される。図4(E)(F)の一方向クラッチ131は、あるクラッチ装着部CWを介して伝動軸141の外周に装着され、クラッチ係合部CCを介して伝動輪121の内周(後述の伝達エリア部122)とクラッチ係合する。
The one-way clutch 131 in FIGS. 4E and 4F is an outer peripheral engagement type, and the configuration of the inner peripheral outer periphery is opposite to that of the inner peripheral engagement type. 4E and 4F includes an inner ring 132X, a roller 133, and a spring member 134. The inner ring 132X is mounted on the outer periphery of the transmission shaft 141, and the roller 133 is disposed between the inner ring 132X and the outer periphery of the one-way clutch 131 (that is, the inner periphery of the transmission wheel 121). A cam surface 132a is provided on the outer peripheral surface of the inner ring 132X. The spring member 134 presses the roller 133 in the clutch engagement direction. Therefore, when the transmission shaft 141 rotates counterclockwise (reverse direction) and the roller 133 engages with the cam surface 132a, the relative rotation between the transmission wheel 121 and the transmission shaft 141 is restricted as shown in FIG. Then, the output rotation (rotational torque) of the transmission shaft 141 is transmitted to the transmission wheel 121 via the one-way clutch 131. On the other hand, when the transmission shaft 141 rotates in the clockwise direction (forward direction) and the roller 133 escapes to the side with the gap of the cam surface 132a, the roller 133 idles as shown in FIG. The relative rotation of 133 is allowed, and the output rotation of the transmission shaft 141 is not transmitted to the transmission wheel 121. As is clear from this description, the one-way clutch 131 in FIGS. 4E and 4F has a clutch mounting portion CW for the transmission shaft 141 on the inner periphery thereof, and a clutch engagement portion for the transmission wheel 121 on the outer periphery thereof. There is CC. When the transmission shaft 141 in FIG. 1 (F) is a spline shaft, the inner periphery (clutch engagement portion CC) of the one-way clutch 131 in FIGS. (E) and (F) corresponds to the spline shaft. Spline grooves (irregular stripes) are formed. The one-way clutch 131 in FIGS. 4E and 4F is mounted on the outer periphery of the transmission shaft 141 via a clutch mounting portion CW, and the inner periphery of the transmission wheel 121 (transmission described later) via the clutch engagement portion CC. The area 122) is engaged with the clutch.
図4(E)(F)の一方向クラッチ131が用いられる図1(F)の伝動軸141は、スプライン軸から成っている。従って、伝動軸141の外周には、その全周にわたり凹凸条が等間隔で形成され、一方、図4(E)(F)の一方向クラッチ131の内周(クラッチ装着部CW)には、凸凹条)が形成されている。図1(F)の伝動軸141は、一方向クラッチ131の軸心部を貫通する状態で図4(E)(F)の一方向クラッチ131と組み合わされる。この場合、一方向クラッチ131と伝動軸141とはスプライン結合しているので、軸方向には相対移動するが、周方向には相対的に拘束されて一体回転する。一方向クラッチ131の外周は、伝動輪121の内周(伝達エリア部122)とクラッチ係合自在に対応している。更に、図1(F)の伝動軸141には、管状の2つの操作部材151がスライド自在に嵌め込まれている。これらの2つの操作部材151は、伝動軸141の外周に対応した内径を有し、かつ、伝動輪121の内周に進入することができる外径を有する。これらの操作部材151は、一方向クラッチ131を軸方向に移動させるためのものであり、伝動軸141の外周において一方向クラッチ131の両端に隣接する位置にある。一方向クラッチ131をクラッチ係合したりクラッチ解除(クラッチ非係合)したりするために、この一方向クラッチ131は、両操作部材151によって移動される。
The transmission shaft 141 of FIG. 1 (F) in which the one-way clutch 131 of FIGS. 4 (E) and 4 (F) is used is a spline shaft. Therefore, the outer periphery of the transmission shaft 141 is formed with irregularities over the entire circumference at equal intervals. On the other hand, the inner periphery (clutch mounting portion CW) of the one-way clutch 131 in FIGS. Concavities and convexities are formed. The transmission shaft 141 in FIG. 1 (F) is combined with the one-way clutch 131 in FIGS. In this case, since the one-way clutch 131 and the transmission shaft 141 are spline-coupled, they relatively move in the axial direction but are relatively constrained in the circumferential direction and rotate integrally. The outer periphery of the one-way clutch 131 corresponds to the inner periphery (transmission area portion 122) of the transmission wheel 121 so that the clutch can be freely engaged. Further, two tubular operation members 151 are slidably fitted on the transmission shaft 141 of FIG. These two operation members 151 have an inner diameter corresponding to the outer periphery of the transmission shaft 141 and have an outer diameter capable of entering the inner periphery of the transmission wheel 121. These operation members 151 are for moving the one-way clutch 131 in the axial direction, and are located at positions adjacent to both ends of the one-way clutch 131 on the outer periphery of the transmission shaft 141. The one-way clutch 131 is moved by both operation members 151 to engage or disengage the clutch (clutch disengagement).
図4(E)(F)の外周係合型の一方向クラッチ131は、平歯車以外の伝動輪121を用いた図1(B)乃至(F)の回転伝動素子111にも適用することができる。図1(A)乃至(F)の回転伝動素子111は、更に、1つの伝動軸141に2つ以上の伝動輪121が組み合わされていてもよい。この場合、複数の伝動輪121と一つの伝動軸141とは、それぞれ一方向クラッチ131を介してクラッチ係合自在に対応するように設けられる。
The one-way clutch 131 of the outer peripheral engagement type shown in FIGS. 4E and 4F can also be applied to the rotary transmission element 111 shown in FIGS. 1B to 1F using a transmission wheel 121 other than a spur gear. it can. In the rotation transmission element 111 of FIGS. 1A to 1F, two or more transmission wheels 121 may be combined with one transmission shaft 141. In this case, the plurality of transmission wheels 121 and one transmission shaft 141 are provided so as to be capable of clutch engagement via the one-way clutch 131, respectively.
図1(A)乃至(F)の回転伝動素子111は、既に述べたように、伝達エリア部(122、142)が伝動輪121側にあったり、伝動軸141側にあったりする。図1(A)乃至(E)の回転伝動素子111では、伝動軸141が伝達エリア部142と不伝達エリア部143とを有している。これに以外の回転伝動素子111には不伝達エリア部143がないものもある。このような回転伝動素子111の実施形態は、図2を参照して以下に述べる
1 (A) to 1 (F), the transmission area 111 (122, 142) is on the transmission wheel 121 side or the transmission shaft 141 side, as described above. In the rotary transmission element 111 of FIGS. 1A to 1E, the transmission shaft 141 has a transmission area portion 142 and a non-transmission area portion 143. Some other rotational transmission elements 111 do not have the non-transmission area 143. An embodiment of such a rotary transmission element 111 is described below with reference to FIG.
図2(A)の回転伝動素子111において、伝動軸141は、伝達エリア部142の中央の両側で細径部145となっており、これらの細径部145の外周に複数のベアリング146が設けられている。これらのベアリング146は、伝動軸141の細径部145に嵌め込まれたスペーサリング147aと細径部145の端部にねじ込まれた端栓148とによって細径部145上に保持されている。この図示の伝動軸141においては、一方向クラッチ131に隣接するベアリング146が不伝達エリア部143を構成している。この伝動軸141においては、一方向クラッチ131がベアリング146上にあって、一方向クラッチ131とベアリング146とがクラッチ係合しているとしても、ベアリング146のアウタリング(ベアリング外周)が細径部145上を自由回転するだけであるので、一方向クラッチ131と伝動軸141との間で動力の伝達が行われない。伝達エリア部142の両隣のベアリング146は、それぞれ1つだけであってもよい。
In the rotational transmission element 111 of FIG. 2 (A), the transmission shaft 141 has narrow diameter portions 145 on both sides of the center of the transmission area portion 142, and a plurality of bearings 146 are provided on the outer periphery of these small diameter portions 145. It has been. These bearings 146 are held on the small-diameter portion 145 by a spacer ring 147a fitted into the small-diameter portion 145 of the transmission shaft 141 and an end plug 148 screwed into the end of the small-diameter portion 145. In the illustrated transmission shaft 141, a bearing 146 adjacent to the one-way clutch 131 forms a non-transmission area portion 143. In this transmission shaft 141, even if the one-way clutch 131 is on the bearing 146 and the one-way clutch 131 and the bearing 146 are engaged with each other, the outer ring (bearing outer periphery) of the bearing 146 has a small diameter portion. Since it only rotates freely on 145, no power is transmitted between the one-way clutch 131 and the transmission shaft 141. There may be only one bearing 146 on both sides of the transmission area 142.
図2(B)の回転伝動素子111の伝動軸141においては、ベアリング146に代えて、伝動軸細径部145の外周に管状又は筒状の回転リング149が回転自在に嵌め込まれている。細径部145の外周で回転リング149の隣には、回転リング149の抜け止め用ストッパリング147bが嵌め込まれている。これらのストッパリング147bの内周面に形成されたキー溝と伝動軸141の細径部の外周面に形成されたキー溝とが一致していてこれらのキー溝に跨ってキー150が差し込まれており、ストッパリング147bは、それよって伝動軸141に固定されている。図2(B)の伝動軸141では、伝達エリア部142に隣接する回転リング149が不伝達エリア部143を構成している。一方向クラッチ131が回転リング149上にあってこれらがクラッチ係合したとしても、回転リング149が細径部145上を自由回転するので、一方向クラッチ131と伝動軸141との間で動力の伝達は行われない。
2B, in the transmission shaft 141 of the rotary transmission element 111, a tubular or cylindrical rotary ring 149 is rotatably fitted on the outer periphery of the transmission shaft narrow diameter portion 145 instead of the bearing 146. A stopper ring 147b for retaining the rotation ring 149 is fitted on the outer periphery of the small diameter portion 145 next to the rotation ring 149. The key groove formed on the inner peripheral surface of the stopper ring 147b and the key groove formed on the outer peripheral surface of the narrow diameter portion of the transmission shaft 141 coincide with each other, and the key 150 is inserted across these key grooves. The stopper ring 147b is thereby fixed to the transmission shaft 141. In the transmission shaft 141 in FIG. 2B, the rotating ring 149 adjacent to the transmission area 142 constitutes a non-transmission area 143. Even if the one-way clutch 131 is on the rotary ring 149 and these are engaged with the clutch, the rotary ring 149 freely rotates on the small-diameter portion 145, so that the power is transmitted between the one-way clutch 131 and the transmission shaft 141. There is no transmission.
図2(C)の回転伝動素子111においては、図4(E)(F)の外周係合型の一方向クラッチ131が伝動軸141の外周に固定されている。外周係合型の一方向クラッチ131は、その内周にクラッチ係合部CCがあって、外周にクラッチ装着部CWがある。従って、図2(C)の例では、クラッチ装着部CWを介して一方向クラッチ131が伝動軸141の外周に固定され、伝動輪121の内周は、一方向クラッチ131のクラッチ係合部CCと対応する伝達エリア部122となっている。図2(C)の伝動軸141の伝達エリア部142の形状及び構造は、図1(A)などのそれと実質的に同じであるが、この伝動軸141は、伝達エリア部142及び不伝達エリア部143を必要としない。
2C, the outer peripheral engagement type one-way clutch 131 shown in FIGS. 4E and 4F is fixed to the outer periphery of the transmission shaft 141. In the rotary transmission element 111 shown in FIG. The outer peripheral engagement type one-way clutch 131 has a clutch engagement portion CC on its inner periphery and a clutch mounting portion CW on its outer periphery. Therefore, in the example of FIG. 2C, the one-way clutch 131 is fixed to the outer periphery of the transmission shaft 141 via the clutch mounting portion CW, and the inner periphery of the transmission wheel 121 is the clutch engaging portion CC of the one-way clutch 131. And a corresponding transmission area 122. The shape and structure of the transmission area 142 of the transmission shaft 141 in FIG. 2C are substantially the same as those in FIG. 1A and the like, but the transmission shaft 141 includes the transmission area 142 and the non-transmission area. The part 143 is not required.
外周係合型の一方向クラッチ131が用いられている図2(C)の回転伝動素子111は、例えば、内周係合型の一方向クラッチ131が用いられている図1(A)の回転伝動素子111とは、一方向クラッチの構造が異なっているが、図2(C)の回転伝動素子111は、伝動輪121と伝動軸141との間で行われる動力の伝達は、他の回転伝動素子とはほとんど異ならない。即ち、図2(C)の回転伝動素子111は、伝動軸の外周にある一方向クラッチ131が伝動輪121の内周に嵌り込んで、伝達エリア部122とクラッチ係合部CCとがクラッチ係合状態にあると、伝動輪121と伝動軸141との間で動力の伝達が行われる。一方、伝動軸141を図2(C)の状態から軸方向に右又は左に移動して伝動軸の外周にある一方向クラッチ131を伝動輪121の内周から脱出させて、伝達エリア部122とクラッチ係合部CCとのクラッチ係合の解除状態(クラッチ非係合状態)となると、伝動輪121と伝動軸141との間で動力の伝達が行われない。
The rotation transmission element 111 in FIG. 2C in which the outer periphery engagement type one-way clutch 131 is used is, for example, the rotation in FIG. 1A in which the inner periphery engagement type one-way clutch 131 is used. The structure of the one-way clutch is different from that of the transmission element 111, but the rotation transmission element 111 in FIG. 2 (C) transmits power transmitted between the transmission wheel 121 and the transmission shaft 141 to another rotation. It is hardly different from the transmission element. 2C, the one-way clutch 131 on the outer periphery of the transmission shaft is fitted into the inner periphery of the transmission wheel 121, and the transmission area portion 122 and the clutch engagement portion CC are engaged with the clutch. In the combined state, power is transmitted between the transmission wheel 121 and the transmission shaft 141. On the other hand, the transmission shaft 141 is moved to the right or left in the axial direction from the state of FIG. 2C to cause the one-way clutch 131 on the outer periphery of the transmission shaft to escape from the inner periphery of the transmission wheel 121, thereby transmitting the transmission area portion 122. When the clutch engagement state between the clutch engagement portion CC and the clutch engagement portion CC is released (clutch disengagement state), power is not transmitted between the transmission wheel 121 and the transmission shaft 141.
図2(D)の回転伝動素子111も、外周係合型の一方向クラッチ131が用いられている。従って、この回転伝動素子111は、伝動軸141の構成は、その一部を除き図2(C)のそれと実施的に同じである。この回転伝動素子111は、また、伝動輪121と伝動軸141との間の動力伝達機能やクラッチ機能も図2(C)のそれと変わらない。図2(D)の回転伝動素子111は、伝動軸141の外周の外径が一定であり、これは、図2(C)のそれと相違する。伝動軸141の一定外径は、軸全長でなくてもよく、例えば、クラッチ取付部とその両側の隣接部分のみが一定外径であってもよい。
2 (D) also uses a one-way clutch 131 of an outer peripheral engagement type. Therefore, in this rotary transmission element 111, the configuration of the transmission shaft 141 is practically the same as that of FIG. The rotational transmission element 111 also has the same power transmission function and clutch function between the transmission wheel 121 and the transmission shaft 141 as those in FIG. In the rotary transmission element 111 in FIG. 2D, the outer diameter of the outer periphery of the transmission shaft 141 is constant, which is different from that in FIG. The constant outer diameter of the transmission shaft 141 may not be the entire shaft length. For example, only the clutch mounting portion and the adjacent portions on both sides thereof may have a constant outer diameter.
図2(E)の回転伝動素子111は、図4(G)の一方向クラッチ131が用いられ、従ってこれに関連して一部の構成が他の例と異なっている。従って、図4(G)の一方向クラッチ131を説明し、その後、図2(E)の回転伝動素子111を詳細に説明する。
2 (E) uses the one-way clutch 131 in FIG. 4 (G), and accordingly, a part of the configuration is different from the other examples. Therefore, the one-way clutch 131 in FIG. 4G will be described, and then the rotational transmission element 111 in FIG. 2E will be described in detail.
図4(G)の一方向クラッチ131は、内周係合型の一方向クラッチ131Mと外周係合型の一方向クラッチ131Nとが同心状に重ね合わされて一体化された2重クラッチの構造を有する。内周係合型の一方向クラッチ131Mは、例えば、図4(A)(B)又は図4(C)(D)に示されたものとすることができ、外周係合型の一方向クラッチ131Nは、例えば、図4(E)(F)に示されたものとすることができる。この2つのクラッチは、一方向クラッチ131Mの外周と一方向クラッチ131Nの内周とを径方向に重ね合わせて適宜の嵌め合い固定手段によって一体に組み合わせられる。従って、相対的に小さい一方向クラッチ131Mの外周(外径)と相対的に大きい一方向クラッチ131Nの内周(内径)とは、寸法上において組み立て可能に対応している。これらの2つの一方向クラッチ131M、131Nは、圧入手段、焼き嵌め手段、冷やし嵌め手段、キー止め手段、ネジ止め手段、溶接手段のうちから選択されるいずれか1つ又は複数の手段で一体化することができる。この2重クラッチ構造の一方向クラッチ131は、一方向クラッチ131Mの内周が伝動軸141の外周(伝達エリア142のある部分)とクラッチ係合自在に対応し、一方向クラッチ131Nの外周は、伝動輪121の内周(伝達エリア122のある部分)とクラッチ係合自在に対応している。従って、各伝達エリア142、122や各クラッチ係合部CCは、一方向クラッチ131Mの内周や一方向クラッチ131Nの外周に存在する。これらの2つの一方向クラッチ131M、131Nは、クラッチ係合するときの回転方向やそのクラッチ係合を解除する(クラッチ非係合にする)ときの回転方向が共通である。例えば、一方向クラッチ131Mが時計回り方向へ回転するときにクラッチ係合する場合、一方向クラッチ131Nも時計回り方向へ回転するときにクラッチ係合し、一方向クラッチ131Mが反時計回り方向へ回転するときにクラッチ係合を解除する場合、一方向クラッチ131Nも時計回り方向へ回転するときにクラッチ係合を解除する。
The one-way clutch 131 shown in FIG. 4G has a double clutch structure in which an inner peripheral engagement type one-way clutch 131M and an outer peripheral engagement type one-way clutch 131N are overlapped and integrated. Have. The inner periphery engagement type one-way clutch 131M can be, for example, the one shown in FIGS. 4A, 4B, or 4C, and FIG. 131N can be the one shown in FIGS. 4E and 4F, for example. These two clutches are combined together by appropriate fitting and fixing means with the outer periphery of the one-way clutch 131M and the inner periphery of the one-way clutch 131N overlapped in the radial direction. Therefore, the outer periphery (outer diameter) of the relatively small one-way clutch 131M and the inner periphery (inner diameter) of the relatively large one-way clutch 131N correspond to each other so that they can be assembled in size. These two one- way clutches 131M and 131N are integrated by any one or a plurality of means selected from press fitting means, shrink fitting means, cold fitting means, key fastening means, screw fastening means, and welding means. can do. In the one-way clutch 131 of this double clutch structure, the inner periphery of the one-way clutch 131M corresponds to the outer periphery of the transmission shaft 141 (the portion where the transmission area 142 is provided) and the clutch can be freely engaged. It corresponds to the inner periphery of the transmission wheel 121 (the portion where the transmission area 122 is provided) so that the clutch can be freely engaged. Accordingly, the transmission areas 142 and 122 and the clutch engaging portions CC exist on the inner periphery of the one-way clutch 131M and the outer periphery of the one-way clutch 131N. These two one- way clutches 131M and 131N have the same rotation direction when engaging the clutch and the rotation direction when releasing the clutch engagement (disengaging the clutch). For example, when the clutch is engaged when the one-way clutch 131M rotates in the clockwise direction, the one-way clutch 131N is also engaged when the one-way clutch 131N rotates in the clockwise direction, and the one-way clutch 131M rotates in the counterclockwise direction. When the clutch engagement is released when the clutch is engaged, the clutch engagement is released when the one-way clutch 131N also rotates in the clockwise direction.
図2(E)の回転伝動素子111は、伝動輪121と伝動軸141と図4(G)の一方向クラッチ131とによって構成されている。伝動輪121と伝動軸141とは、伝動軸141の外周に伝動輪121が嵌合されて保持されている。2重クラッチ構造(一方向クラッチ131M、131N)の一方向クラッチ131は、伝動輪121と伝動軸141との双方に対応してこれらに組み込まれる。伝動軸141の外周を軸方向に沿って移動したり、伝動輪121の内周に進入したりすることができるように、2重クラッチ構造の一方向クラッチ131が伝動輪121や伝動軸141と組み合わされる。伝動軸141の外周には、一方向クラッチ131に両側に隣接して2つの操作部材151が軸方向及び周方向に移動自在なるように嵌め込まれている。これらの2つの操作部材151は、その外径が伝動輪121の内径より小さいので、伝動輪121の内周に進入することができる。
2 (E) includes a transmission wheel 121, a transmission shaft 141, and a one-way clutch 131 in FIG. 4 (G). The transmission wheel 121 and the transmission shaft 141 are held by fitting the transmission wheel 121 on the outer periphery of the transmission shaft 141. The one-way clutch 131 of the double clutch structure (one-way clutch 131M, 131N) is incorporated in these corresponding to both the transmission wheel 121 and the transmission shaft 141. The one-way clutch 131 of the double clutch structure is connected to the transmission wheel 121 and the transmission shaft 141 so that the outer periphery of the transmission shaft 141 can move along the axial direction or enter the inner periphery of the transmission wheel 121. Combined. Two operating members 151 are fitted on the outer periphery of the transmission shaft 141 so as to be movable in the axial direction and the circumferential direction adjacent to the both sides of the one-way clutch 131. Since these two operating members 151 have an outer diameter smaller than the inner diameter of the transmission wheel 121, they can enter the inner periphery of the transmission wheel 121.
図2(E)の回転伝動素子111において、2重クラッチ構造の一方向クラッチ131は、操作部材151を介して伝動軸141の軸方向に沿って移動するように操作することができる。この操作によって、一方向クラッチ131M、131Nのクラッチ係合部CCが伝動輪の内周にある伝達エリア部122や伝動軸外周の伝達エリア142とそれぞれ一致すると、一方向クラッチ131Mと伝動軸141、一方向クラッチ131Nと伝動輪121とがそれぞれクラッチ係合状態になるので、伝動輪121と伝動軸141との間で動力の伝達が可能になる。図2(E)の状態にある2重クラッチ構造の一方向クラッチ131を操作部材151によって伝動輪121の内周から脱出させると、一方向クラッチ131Nのクラッチ係合部CCが伝動輪の内周の伝達エリア部122から離脱するので、上記のクラッチ係合が解除されてクラッチ非係合状態になる。このとき、伝動輪121と伝動軸141との間では動力の伝達が行われない。
2E, the one-way clutch 131 of the double clutch structure can be operated so as to move along the axial direction of the transmission shaft 141 via the operation member 151. By this operation, when the clutch engaging portions CC of the one- way clutches 131M and 131N coincide with the transmission area portion 122 on the inner periphery of the transmission wheel and the transmission area 142 on the outer periphery of the transmission shaft, respectively, the one-way clutch 131M and the transmission shaft 141, Since the one-way clutch 131N and the transmission wheel 121 are in the clutch engagement state, power can be transmitted between the transmission wheel 121 and the transmission shaft 141. When the one-way clutch 131 in the double clutch structure in the state of FIG. 2 (E) is escaped from the inner periphery of the transmission wheel 121 by the operating member 151, the clutch engagement portion CC of the one-way clutch 131N becomes the inner periphery of the transmission wheel. Therefore, the clutch engagement is released and the clutch is disengaged. At this time, power is not transmitted between the transmission wheel 121 and the transmission shaft 141.
図2(A)乃至(E)の各伝動軸141は、図1(A)乃至(E)で説明したいずれの回転伝動素子111にも用いることができる。図2(A)乃至(E)の回転伝動素子111において、1つの伝動軸141に2つ以上の伝動輪121が組み合わされてもよい。この場合、複数の伝動輪121と1つの伝動軸141とは、既に述べたように、それぞれ一方向クラッチ131を介してクラッチ係合自在に対応する。
Each transmission shaft 141 in FIGS. 2A to 2E can be used for any of the rotary transmission elements 111 described in FIGS. In the rotational transmission element 111 of FIGS. 2A to 2E, two or more transmission wheels 121 may be combined with one transmission shaft 141. In this case, the plurality of transmission wheels 121 and one transmission shaft 141 respectively correspond to each other so that the clutch can be freely engaged via the one-way clutch 131 as described above.
上記以外の実施形態による回転伝動素子111が図3に示されている。
A rotation transmission element 111 according to an embodiment other than the above is shown in FIG.
図3(A)の回転伝動素子111は、既に述べた実施の形態と同様に、伝動輪121と一方向クラッチ131と伝動軸141との組み合わせから成っているが、筒状の副伝動軸161を備えていることが既に述べた実施の形態と異なる。この副伝動軸161の外周には、後述のクラッチ係合部CCと対応する伝達エリア部162がある。図3(A)において、伝動軸141と副伝動軸161とは、伝動軸141が内側で副伝動軸161が外側となるように軸方向に移動自在なるように嵌合して組み合わされている。更に具体的に述べると、周方向の相対移動を拘束しつつ軸方向の相対移動のみを許すため、伝動軸141と副伝動軸161とは、スプライン嵌合によって組み合わされている。即ち、伝動軸141の外周にはスプラインの移動案内雄部152が形成され、副伝動軸161の内周にはスプラインの移動案内雌部163が形成されて、これらが相互に係合して組み合わせられている。副伝動軸161の外周には、これを操作するのに必要な操作連繋部164が更に設けられている。図3(A)の回転伝動素子111の一方向クラッチ131は、内周係合型であるので、その内周にクラッチ係合部CCがありその外周にクラッチ装着部CWがある。一方向クラッチ131は、例えば図1(A)のそれと同様に、クラッチ装着部CWを介して伝動輪121の内周に固定されている。この一方向クラッチ131の内周であるクラッチ係合部CC対応する伝達エリア部162は、副伝動軸161の外周にある。
The rotational transmission element 111 in FIG. 3A is composed of a combination of a transmission wheel 121, a one-way clutch 131, and a transmission shaft 141, as in the above-described embodiment, but has a cylindrical auxiliary transmission shaft 161. It is different from the embodiments already described. On the outer periphery of the auxiliary transmission shaft 161, there is a transmission area portion 162 corresponding to a clutch engagement portion CC described later. In FIG. 3A, the transmission shaft 141 and the sub-transmission shaft 161 are assembled and combined so as to be movable in the axial direction so that the transmission shaft 141 is on the inner side and the sub-transmission shaft 161 is on the outer side. . More specifically, the transmission shaft 141 and the sub-transmission shaft 161 are combined by spline fitting in order to allow only relative movement in the axial direction while restricting relative movement in the circumferential direction. That is, a spline movement guide male portion 152 is formed on the outer periphery of the transmission shaft 141, and a spline movement guide female portion 163 is formed on the inner periphery of the sub-transmission shaft 161. It has been. An operation connecting portion 164 necessary for operating the auxiliary transmission shaft 161 is further provided on the outer periphery of the auxiliary transmission shaft 161. Since the one-way clutch 131 of the rotational transmission element 111 in FIG. 3A is an inner peripheral engagement type, a clutch engagement portion CC is provided on the inner periphery thereof, and a clutch mounting portion CW is provided on the outer periphery thereof. The one-way clutch 131 is fixed to the inner periphery of the transmission wheel 121 via a clutch mounting portion CW, for example, similarly to that of FIG. A transmission area portion 162 corresponding to the clutch engaging portion CC that is the inner periphery of the one-way clutch 131 is on the outer periphery of the sub-transmission shaft 161.
図3(A)の回転伝動素子111において伝動輪121と伝動軸141とをクラッチ係合状態にする場合には、副伝動軸161を同図の左方へ移動させてその左端部にある伝達エリア部162を伝動輪121(一方向クラッチ131のクラッチ係合部CC)内に進入させてクラッチ係合が行われる。伝動軸141と副伝動軸161とがスプライン嵌合により常に正逆一体回転し、伝動輪121と副伝動軸161とが一方向クラッチ131でクラッチ係合されるため、伝動輪121と伝動軸141と副伝動軸161との3つの部材が一体となって正回転又は逆回転する。このように、これらの3つ部材がスプライン嵌合やクラッチ係合によって周方向に一体動作すると、伝動軸141側の動力を伝動輪121に伝達したり、伝動輪121側の動力を伝動軸141に伝達したりすることができる。一方、副伝動軸161を右方へ移動させてその左端部の伝達エリア部162を伝動輪121の内周(一方向クラッチ131のクラッチ係合部CC)から脱出させると、上記のクラッチ係合状態が解除され、伝動輪121と伝動軸141との相互間で動力の伝達が行われない。
When the transmission wheel 121 and the transmission shaft 141 are brought into the clutch engagement state in the rotary transmission element 111 of FIG. 3A, the auxiliary transmission shaft 161 is moved to the left in FIG. The area 162 is caused to enter the transmission wheel 121 (the clutch engaging portion CC of the one-way clutch 131) to engage the clutch. The transmission shaft 141 and the sub-transmission shaft 161 always rotate integrally forward and reverse by spline fitting, and the transmission wheel 121 and the sub-transmission shaft 161 are clutch-engaged by the one-way clutch 131, so that the transmission wheel 121 and the transmission shaft 141 are engaged. And the sub-transmission shaft 161 are integrally rotated in the forward or reverse direction. As described above, when these three members integrally operate in the circumferential direction by spline fitting or clutch engagement, the power on the transmission shaft 141 side is transmitted to the transmission wheel 121, or the power on the transmission wheel 121 side is transmitted to the transmission shaft 141. Or can be communicated to. On the other hand, when the sub-transmission shaft 161 is moved to the right and the transmission area portion 162 at the left end thereof is disengaged from the inner periphery of the transmission wheel 121 (the clutch engagement portion CC of the one-way clutch 131), the clutch engagement described above is performed. The state is released, and power is not transmitted between the transmission wheel 121 and the transmission shaft 141.
図3(B)の回転伝動素子111は、副伝動軸161の外周に外周係合型一方向クラッチ131が固定されている点で図3(A)の回転伝動素子と異なり、その他の構成は、図3(A)とほぼ同じである。図3(B)の回転伝動素子111において、伝動輪121と伝動軸141とをクラッチ係合状態にする場合には、副伝動軸161を同図の左方へ移動させてその左端部にある一方向クラッチ131を伝動輪121の内周(伝達エリア部122)に進入させる。一方向クラッチ131のクラッチ結合部CCと伝動輪121の伝達エリア部122とが一致すると、クラッチ係合が行われる。この場合も、伝動軸141と副伝動軸161とがスプライン嵌合によって正逆一体に回転し、伝動輪121と副伝動軸161とがクラッチ係合されることにより、伝動輪121と伝動軸141と副伝動軸161との3つ部材が一体となって正回転又は逆回転する。従って、同様に、伝動軸141側の動力を伝動輪121に伝達したり、伝動輪121側の動力を伝動軸141に伝達したりすることができる。図3(B)の副伝動軸161を右方へ移動させてその左端部の一方向クラッチ131を伝動輪121の内周(伝達エリア部122)から脱出させると、同様に、クラッチ係合状態が解除されるので、伝動輪121と伝動軸141との相互間で動力の伝達が行われない。
The rotational transmission element 111 of FIG. 3 (B) is different from the rotational transmission element of FIG. 3 (A) in that the outer peripheral engagement type one-way clutch 131 is fixed to the outer periphery of the auxiliary transmission shaft 161. This is almost the same as FIG. 3B, when the transmission wheel 121 and the transmission shaft 141 are brought into the clutch engagement state, the auxiliary transmission shaft 161 is moved to the left in FIG. The one-way clutch 131 is caused to enter the inner periphery (transmission area portion 122) of the transmission wheel 121. When the clutch coupling portion CC of the one-way clutch 131 and the transmission area portion 122 of the transmission wheel 121 coincide with each other, clutch engagement is performed. Also in this case, the transmission shaft 141 and the sub-transmission shaft 161 are rotated in the forward and reverse directions by spline fitting, and the transmission wheel 121 and the sub-transmission shaft 161 are clutch-engaged, so that the transmission wheel 121 and the transmission shaft 141 are engaged. And the sub-transmission shaft 161 integrally rotate in the forward or reverse direction. Accordingly, similarly, the power on the transmission shaft 141 side can be transmitted to the transmission wheel 121, or the power on the transmission wheel 121 side can be transmitted to the transmission shaft 141. When the sub-transmission shaft 161 shown in FIG. 3B is moved to the right and the one-way clutch 131 at the left end thereof is disengaged from the inner periphery (transmission area portion 122) of the transmission wheel 121, the clutch is engaged as well. Therefore, power is not transmitted between the transmission wheel 121 and the transmission shaft 141.
図3(C)の回転伝動素子111は、同図(A)の回転伝動素子を変形したものである。この変形例では、外径が異なる2つの伝動輪121L、121Rと副伝動軸161とが伝動軸141の外周に設けられている。即ち、2つの伝動輪121L、121Rが伝動軸141の両端外周にあって、副伝動軸161が両伝動輪121L、121Rの間に介在されている。内周係合型の一方向クラッチ131は、両伝動輪121L、121Rの内周にそれぞれ固定されている。2つの一方向クラッチ131のクラッチ結合部CCと対応する2つの伝達エリア部162L、162Rは、副伝動軸161の両端外周にある。図3(C)の回転伝動素子111において、副伝動軸161を同図の左方へ移動させてその左端部にある伝達エリア部162Lを伝動輪121L(一方向クラッチ131のクラッチ係合部CC)内に進入させると、副伝動軸161の右端部にある伝達エリア部162Rが伝動輪121R(一方向クラッチ131のクラッチ係合部CC)から脱出する。この状態で伝動軸141の左方ではクラッチ係合が行われ、伝動軸141の右方ではクラッチ係合が行われない。従って、図3(C)の左方で伝動輪121Lと伝動軸141と副伝動軸16の一体回転(一方向回転)状態が成立し、また、図3(C)の右方では、伝動輪121Rと伝動軸141と副伝動軸161との一体回転状態が成立しない。この状態では、伝動軸141側の動力を伝動輪121Lに伝達したり、伝動輪121L側の動力を伝動軸141に伝達したりすることはできるが、伝動軸141側の動力を伝動輪121Rに伝達したり、伝動輪121R側の動力を伝動軸141に伝達することはできない。副伝動軸161を図3(C)の右方へ移動させてその右端部の伝達エリア部162Rを伝動輪121R(一方向クラッチ131のクラッチ係合部CC)内に進入させると、副伝動軸161の左端部にある伝達エリア部162Lが伝動輪121L(一方向クラッチ131のクラッチ係合部CC)から脱出し、この状態では、上記と逆に、伝動軸141の右方でクラッチ係合がお行われ、伝動軸141の左方ではクラッチ係合がお行われない。従って、伝動軸141側の動力を伝動輪121Rに伝達したり、伝動輪121R側の動力を伝動軸141に伝達したりすることができるが、伝動軸141側の動力を伝動輪121Rに伝達したり、伝動輪121R側の動力を伝動軸141に伝達したりすることができない。図3(C)の回転伝動素子111は、上記のように、伝動輪121Lと伝動軸141との間の動力伝達、又は、伝動輪121Rと伝動軸141との間の動力伝達という2系統の動力伝達を択一的に選択することができるので、伝動系の切り替え選択が行える。
3 (C) is a modification of the rotary transmission element of FIG. 3 (A). In this modification, two transmission wheels 121 </ b> L and 121 </ b> R having different outer diameters and a sub transmission shaft 161 are provided on the outer periphery of the transmission shaft 141. That is, the two transmission wheels 121L and 121R are on the outer periphery of both ends of the transmission shaft 141, and the auxiliary transmission shaft 161 is interposed between the two transmission wheels 121L and 121R. The inner periphery engagement type one-way clutch 131 is fixed to the inner periphery of both transmission wheels 121L and 121R. Two transmission area portions 162L and 162R corresponding to the clutch coupling portion CC of the two one-way clutch 131 are on the outer periphery of both ends of the sub-transmission shaft 161. In the rotational transmission element 111 of FIG. 3C, the auxiliary transmission shaft 161 is moved to the left in the figure, and the transmission area portion 162L at the left end thereof is moved to the transmission wheel 121L (the clutch engaging portion CC of the one-way clutch 131). ), The transmission area 162R at the right end of the sub-transmission shaft 161 escapes from the transmission wheel 121R (the clutch engagement portion CC of the one-way clutch 131). In this state, clutch engagement is performed on the left side of the transmission shaft 141, and clutch engagement is not performed on the right side of the transmission shaft 141. Accordingly, the transmission wheel 121L, the transmission shaft 141, and the auxiliary transmission shaft 16 are integrally rotated (one-way rotation) on the left side of FIG. 3C, and on the right side of FIG. The integral rotation state of 121R, the transmission shaft 141, and the auxiliary transmission shaft 161 is not established. In this state, the power on the transmission shaft 141 side can be transmitted to the transmission wheel 121L and the power on the transmission wheel 121L side can be transmitted to the transmission shaft 141, but the power on the transmission shaft 141 side can be transmitted to the transmission wheel 121R. It is not possible to transmit the power on the transmission wheel 121R side to the transmission shaft 141. When the sub-transmission shaft 161 is moved to the right in FIG. 3C and the transmission area portion 162R at the right end thereof enters the transmission wheel 121R (the clutch engagement portion CC of the one-way clutch 131), the sub-transmission shaft 161 is disengaged from the transmission wheel 121L (the clutch engaging portion CC of the one-way clutch 131), and in this state, the clutch is engaged on the right side of the transmission shaft 141, contrary to the above. The clutch engagement is not performed on the left side of the transmission shaft 141. Therefore, the power on the transmission shaft 141 side can be transmitted to the transmission wheel 121R, or the power on the transmission wheel 121R side can be transmitted to the transmission shaft 141, but the power on the transmission shaft 141 side can be transmitted to the transmission wheel 121R. Or the power on the transmission wheel 121R side cannot be transmitted to the transmission shaft 141. As described above, the rotary transmission element 111 in FIG. 3C has two systems of power transmission between the transmission wheel 121L and the transmission shaft 141 or power transmission between the transmission wheel 121R and the transmission shaft 141. Since power transmission can be selected alternatively, transmission system switching can be selected.
図3(D)の回転伝動素子111は、図3(B)の回転伝動素子を変形したものである。この場合も、同様に、外径が異なる2つの伝動輪121L、121Rと副伝動軸161とが伝動軸141の外周に設けられる。外周係合型一方向クラッチ131が伝動軸141の両端外周に固定されており、そのクラッチ結合部CCと対応する2つの伝達エリア部122L、122Rが、両伝動輪121L、121Rの内周にある。この回転伝動素子111において、副伝動軸161を図3の左方へ移動させてその左端部にある一方向クラッチ131を伝動輪121L(伝達エリア部122L)内に進入させると、副伝動軸161の右端部にある一方向クラッチ131が伝動輪121R(伝達エリア部122R)から脱出する。この状態では、伝動軸141の左方でクラッチ係合が成立し、伝動軸141の右方ではクラッチ係合が成立しない。従って、伝動軸141側の動力を伝動輪121Lに伝達したり伝動輪121L側の動力を伝動軸141に伝達したりすることはできるが、伝動軸141側の動力を伝動輪121Rに伝達したり伝動輪121R側の動力を伝動軸141に伝達したりすることはできない。副伝動軸161を図3(D)の右方へ移動させてその右端部の一方向クラッチ131を伝動輪121R(伝達エリア部122R)内に進入させると、同様に、伝動軸141の右方でクラッチ係合が成立し、伝動軸141の左方ではクラッチ係合が成立しない。従って、伝動軸141側の動力を伝動輪121Rに伝達したり伝動輪121R側の動力を伝動軸141に伝達したりすることはできるが、伝動軸141側の動力を伝動輪121Rに伝達したり伝動輪121R側の動力を伝動軸141に伝達したりすることはできない。図3(D)の回転伝動素子111も、同様に、伝動輪121Lと伝動軸141との間の動力伝達、伝動輪121Rと伝動軸141との間の動力伝達という2系統の動力伝達を択一的に選択することができ、伝動系の切り替え選択が行えることとなる。
The rotational transmission element 111 in FIG. 3D is a modification of the rotational transmission element in FIG. Also in this case, similarly, two transmission wheels 121L and 121R having different outer diameters and the sub transmission shaft 161 are provided on the outer periphery of the transmission shaft 141. The outer peripheral engagement type one-way clutch 131 is fixed to the outer periphery of both ends of the transmission shaft 141, and the two transmission area portions 122L and 122R corresponding to the clutch coupling portion CC are on the inner periphery of the two transmission wheels 121L and 121R. . In the rotary transmission element 111, when the auxiliary transmission shaft 161 is moved to the left in FIG. 3 and the one-way clutch 131 at the left end thereof enters the transmission wheel 121L (transmission area portion 122L), the auxiliary transmission shaft 161 is moved. The one-way clutch 131 at the right end of the lane escapes from the transmission wheel 121R (transmission area portion 122R). In this state, clutch engagement is established on the left side of the transmission shaft 141, and clutch engagement is not established on the right side of the transmission shaft 141. Therefore, although the power on the transmission shaft 141 side can be transmitted to the transmission wheel 121L and the power on the transmission wheel 121L side can be transmitted to the transmission shaft 141, the power on the transmission shaft 141 side can be transmitted to the transmission wheel 121R. The power on the transmission wheel 121R side cannot be transmitted to the transmission shaft 141. When the sub-transmission shaft 161 is moved to the right in FIG. 3D and the one-way clutch 131 at the right end thereof enters the transmission wheel 121R (transmission area portion 122R), the right side of the transmission shaft 141 is similarly applied. Thus, clutch engagement is established, and clutch engagement is not established on the left side of the transmission shaft 141. Therefore, although the power on the transmission shaft 141 side can be transmitted to the transmission wheel 121R and the power on the transmission wheel 121R side can be transmitted to the transmission shaft 141, the power on the transmission shaft 141 side can be transmitted to the transmission wheel 121R. The power on the transmission wheel 121R side cannot be transmitted to the transmission shaft 141. Similarly, the rotational transmission element 111 in FIG. 3D selects two types of power transmission, that is, power transmission between the transmission wheel 121L and the transmission shaft 141 and power transmission between the transmission wheel 121R and the transmission shaft 141. It is possible to select one, and it is possible to select transmission system switching.
図3(A)乃至(D)の回転伝動素子111の伝動輪121、121L、121Rは、伝動手段の態様に応じて平歯車以外のものを用いることができる。例えば、図1(B)乃至(E)で示された各伝動輪121を用いることができる。
As the transmission wheels 121, 121L, and 121R of the rotary transmission element 111 in FIGS. 3A to 3D, other than the spur gear can be used according to the mode of the transmission means. For example, each transmission wheel 121 shown in FIGS. 1B to 1E can be used.
回転伝動素子111は、2つの一方向クラッチ131が軸方向に隣接して設けられていてもよい。これらの2つの一方向クラッチ131は、伝動軸141の外周に固定され、又は伝動輪121の内周に固定される。また、これらの2つの一方向クラッチ131は、クラッチ係合方向(噛み合い方向)が同方向でもよいし、逆方向でもよい。
The rotation transmission element 111 may be provided with two one-way clutches 131 adjacent to each other in the axial direction. These two one-way clutches 131 are fixed to the outer periphery of the transmission shaft 141 or are fixed to the inner periphery of the transmission wheel 121. Further, these two one-way clutches 131 may have the same clutch engagement direction (meshing direction) or the opposite direction.
図1(A)乃至(E)の回転伝動素子111を含む動力入切伝動装置の幾つかの形態が図5乃至図9に示されている。
Several forms of the power on / off transmission device including the rotary transmission element 111 of FIGS. 1 (A) to (E) are shown in FIGS.
図5(A)(B)の動力入切式伝動装置は、図1(A)の回転伝動素子111を用いている。ハウジング211には、複数の軸支持部212、213、214、215、216が設けられ、そのうち3つの軸支持部212、213、214は同じ軸線上にあり、他の2つの軸支持部215、216も他の同じ軸線上にある。伝動軸141は、3つの軸支持部212、213、214に回転自在で且つ軸方向にスライド自在に支持されている。伝動輪121は、軸支持部212、213の間でその軸心線上に配置されており、かつ2つのベアリング218によって回転自在に支持されている。伝動軸141は、軸支持部212、214にブッシュ217を介して軸方向にスライド自在かつ回転自在に支持されている。
5A and 5B uses the rotary transmission element 111 of FIG. 1A. The housing 211 is provided with a plurality of shaft support portions 212, 213, 214, 215, 216, of which three shaft support portions 212, 213, 214 are on the same axis, and the other two shaft support portions 215, 216 is also on the same other axis. The transmission shaft 141 is supported by the three shaft support portions 212, 213, and 214 so as to be rotatable and slidable in the axial direction. The transmission wheel 121 is disposed on the axis between the shaft support portions 212 and 213 and is rotatably supported by two bearings 218. The transmission shaft 141 is supported by shaft support portions 212 and 214 via a bush 217 so as to be slidable and rotatable in the axial direction.
図5(A)(B)の動力入切式伝動装置において、他の一つの伝動軸221がハウジング211に設けられ、この伝動軸221の外周に平歯車(ピニオン)から成る伝動輪222が取り付けられている。この伝動軸221は、2つの軸支持部215、216にベアリング218を介して回転自在に支持されている。伝動軸141、221は、間隔をあけて互いに平行に配置されて伝動輪121と222とが互いに噛み合っている。
5A and 5B, another one transmission shaft 221 is provided in the housing 211, and a transmission wheel 222 made of a spur gear (pinion) is attached to the outer periphery of the transmission shaft 221. It has been. The transmission shaft 221 is rotatably supported by two shaft support portions 215 and 216 via bearings 218. The transmission shafts 141 and 221 are arranged parallel to each other with a space therebetween, and the transmission wheels 121 and 222 mesh with each other.
図5(A)(B)の動力入切式伝動装置において、両伝動軸141、221の一方を入力側、他方を出力側に設定し、一方の伝動軸141から他方の伝動軸221、又は、他方の伝動軸221から一方の伝動軸141に、回転動力を一方的又は可逆的に伝達することができる。
5 (A) and 5 (B), one of the transmission shafts 141 and 221 is set to the input side and the other is set to the output side, and from one transmission shaft 141 to the other transmission shaft 221, or Rotational power can be transmitted unilaterally or reversibly from the other transmission shaft 221 to one transmission shaft 141.
図5の動力入り切式伝動装置は、伝動軸141が入力側で、伝動軸221が出力側であると想定すると、両伝動輪121、222は、同図(A)(B)に示すように、定常的に噛み合っている。伝動輪121の一方向クラッチ131と伝動軸141の伝達エリア部142とは、同図(A)のようにクラッチ係合状態であったり、同図(B)のようにクラッチ非係合状態であったりする。従って、図5(A)のクラッチ係合状態では、入力側伝動軸141の回転動力は、一方向クラッチ131、伝動輪121、伝動輪222を経て出力側伝動軸221に伝達される。
5 assumes that the transmission shaft 141 is on the input side and the transmission shaft 221 is on the output side, the transmission wheels 121 and 222 are as shown in FIGS. Are constantly engaged. The one-way clutch 131 of the transmission wheel 121 and the transmission area portion 142 of the transmission shaft 141 are in a clutch engaged state as shown in FIG. 5A or in a clutch disengaged state as shown in FIG. There is. 5A, the rotational power of the input side transmission shaft 141 is transmitted to the output side transmission shaft 221 via the one-way clutch 131, the transmission wheel 121, and the transmission wheel 222.
図5の動力入切式伝動装置において、上記の動力伝達を中断したり終了したりする操作は、入力側伝動軸141を手動又は機械的に軸方向に移動させて行われる。図5(A)において入力側伝動軸141を矢印方向に移動すると、図5(B)に示すように、伝動軸141の伝達エリア部142が伝動輪121の一方向クラッチ131から離脱すると同時に、伝動軸141の不伝達エリア部143が一方向クラッチ131内に入り込む。従って、一方向クラッチ131と伝動軸141の不伝達エリア部143とは、クラッチ非噛み合いの状態となるので、出力側伝動軸221側には動力が伝達されない。入力側伝動軸141の動力を出力側伝動軸221に再び伝達するためには、図5(B)の入力側伝動軸141を矢印方向に移動し、伝動輪121の一方向クラッチ131と伝動軸141の伝達エリア部142とを図5(A)のクラッチ係合状態に戻す。
In the power on / off transmission device of FIG. 5, the operation of interrupting or terminating the power transmission is performed by moving the input side transmission shaft 141 in the axial direction manually or mechanically. When the input side transmission shaft 141 is moved in the direction of the arrow in FIG. 5A, the transmission area portion 142 of the transmission shaft 141 is disengaged from the one-way clutch 131 of the transmission wheel 121, as shown in FIG. The non-transmission area portion 143 of the transmission shaft 141 enters the one-way clutch 131. Accordingly, the one-way clutch 131 and the non-transmission area portion 143 of the transmission shaft 141 are in a non-engagement state of the clutch, so that power is not transmitted to the output-side transmission shaft 221 side. In order to transmit the power of the input side transmission shaft 141 to the output side transmission shaft 221 again, the input side transmission shaft 141 in FIG. 5B is moved in the direction of the arrow, and the one-way clutch 131 and the transmission shaft of the transmission wheel 121 are moved. 141 is returned to the clutch engagement state of FIG.
図6の動力入切式伝動装置は、図1(B)の回転伝動素子111が用いられている。この装置は、2つの伝動軸141、221が直交状態に配置され、従って、2つの伝動輪121、222は、相互に噛み合う傘歯車から成っている。図6のその他の構成は、図5と実質的に同じである。
6 uses the rotary transmission element 111 of FIG. 1 (B). In this device, the two transmission shafts 141 and 221 are arranged in an orthogonal state, and therefore the two transmission wheels 121 and 222 are constituted by bevel gears meshing with each other. The other configuration of FIG. 6 is substantially the same as that of FIG.
図6の動力入切式伝動装置は、同図(A)でクラッチ係合状態にあって動力は、図5(A)と同様の経路で出力側伝動軸221に伝達される。また、動力伝達を中断したり終了したりする際には、図5と同様に、入力側伝動軸141を図6(A)の矢印方向に移動し、入力側伝動軸141の動力を出力側伝動軸221側に再び伝達する際には、入力側伝動軸141を図6(B)の矢印方向に移動させる。
6 is in the clutch engagement state in FIG. 6A, and the power is transmitted to the output side transmission shaft 221 through the same path as in FIG. When the power transmission is interrupted or terminated, as in FIG. 5, the input side transmission shaft 141 is moved in the direction of the arrow in FIG. 6A, and the power of the input side transmission shaft 141 is transferred to the output side. When transmitting again to the transmission shaft 221 side, the input-side transmission shaft 141 is moved in the direction of the arrow in FIG.
図7は、ベルト伝動方式の動力入切式伝動装置を示し、この装置は、図1(C)の回転伝動素子111を用いている。2つの伝動輪121、222は、平プーリの形態であってこれらの間に平ベルト225aが掛け渡されている。2つの伝動軸141、221は、平行に配置され軸受によって回転自在に支持されている。図7の装置の他の構成は、図5と実質的に同じである。伝動輪121、222は、Vプーリでもよく、この場合、ベルト225aは、Vベルトである。
FIG. 7 shows a belt transmission type power on / off type transmission device, which uses the rotary transmission element 111 of FIG. 1 (C). The two transmission wheels 121 and 222 are in the form of a flat pulley, and a flat belt 225a is stretched between them. The two transmission shafts 141 and 221 are arranged in parallel and are rotatably supported by bearings. The other structure of the apparatus of FIG. 7 is substantially the same as FIG. The transmission wheels 121 and 222 may be V pulleys. In this case, the belt 225a is a V belt.
図8は、タイミングベルト伝動方式の動力入切式伝動装置を示し、この装置は、図1(D)の回転伝動素子111を用いている。従って、2つの伝動輪121、222は、タイミングベルト車(タイミングプーリ)であり、両伝動輪121、222にわたってタイミングベルト225bが掛け回されている。図8の他の構成は、図5のものと実質的に同じである。
FIG. 8 shows a timing belt transmission type power on / off type transmission device, which uses the rotary transmission element 111 of FIG. 1 (D). Accordingly, the two transmission wheels 121 and 222 are timing belt wheels (timing pulleys), and the timing belt 225b is wound around the transmission wheels 121 and 222. The other configuration of FIG. 8 is substantially the same as that of FIG.
図9は、チェーン(ローラチェーン)伝動方式の動力入切式伝動装置を示し、図1(E)の回転伝動素子111を用いている。従って、2つの伝動輪121、222は、スプロケット(スプロケットギア)から成り、これらの伝動輪121、222にわたってチェーン(ローラチェーン)225cが掛け回されている。図9のその他の構成は、図5のものと実質的に同じである。
FIG. 9 shows a chain (roller chain) power on / off type transmission device using the rotary transmission element 111 of FIG. 1 (E). Accordingly, the two transmission wheels 121 and 222 are formed of sprockets (sprocket gears), and a chain (roller chain) 225 c is wound around these transmission wheels 121 and 222. The other configuration of FIG. 9 is substantially the same as that of FIG.
動力入切式伝動装置は、図1(F)、図2(A)乃至(E)、図3(A)(B)の回転伝動素子111のうちから任意に選択されたものを用いることができる。
As the power on / off type transmission device, one arbitrarily selected from the rotary transmission elements 111 of FIGS. 1 (F), 2 (A) to 2 (E), and FIGS. 3 (A) and 3 (B) may be used. it can.
図10乃至図15は、図1(A)の回転伝動素子111を含む変速装置をそれぞれ示し、以下それぞれの装置を順次説明する。
FIG. 10 to FIG. 15 each show a transmission including the rotational transmission element 111 of FIG. 1 (A), and the respective devices will be described in sequence below.
図10(A)(B)の装置において、ハウジング211は、図5と同様に、複数の軸支持部212、213、214、215、216を有し、3つの各軸受部212、213、214は、同じ軸線上にあり、2つの軸支持部214、215は、他の同じ軸線上にある。図10(A)(B)において、平歯車から成る大小2つの伝動輪121L、121Rが設けられ、これらの2つの伝動輪121L、121Rの軸心部には、一方向クラッチ131X、131Yがそれぞれ取り付けられている。
10A and 10B, the housing 211 has a plurality of shaft support portions 212, 213, 214, 215, and 216 as in FIG. 5, and each of the three bearing portions 212, 213, and 214. Are on the same axis, and the two shaft supports 214, 215 are on the same axis. 10 (A) and 10 (B), two large and small transmission wheels 121L and 121R made of spur gears are provided, and one- way clutches 131X and 131Y are respectively provided at the axial centers of these two transmission wheels 121L and 121R. It is attached.
入力側伝動軸141は、各軸支持部212、213、214を貫通してその両端は、軸支持部212、214に軸受用のブッシュ217を介して軸方向にスライド自在かつ回転自在に支持されている。入力側伝動軸141上にある伝動輪121Rは、軸支持部212、213にベアリング218により回転自在に支持されている。入力側伝動軸141上にある伝動輪121Lも、同様に、軸支持部213、214にベアリング218により回転自在に支持されている。
The input-side transmission shaft 141 passes through the shaft support portions 212, 213, and 214, and both ends thereof are supported by the shaft support portions 212 and 214 through the bearing bush 217 so as to be slidable and rotatable in the axial direction. ing. The transmission wheel 121 </ b> R on the input side transmission shaft 141 is rotatably supported by the shaft support portions 212 and 213 by a bearing 218. Similarly, the transmission wheel 121L on the input side transmission shaft 141 is also rotatably supported by the shaft support portions 213 and 214 by the bearing 218.
図10(A)(B)の変速装置において、他の伝動軸221は、その外周に大小2つの平歯車から成る伝動輪222L、222Rを有する。この伝動軸221も、図5と同様に、軸支持部215、216にそれぞれベアリング218を介して回転自在に支持されている。これらの伝動軸141、221は、両伝動輪121Lと222Lが互いに噛み合い、両伝動輪121R、222Rが互いに噛み合うように平行に間隔をあけて配置されている。
10A and 10B, the other transmission shaft 221 has transmission wheels 222L and 222R composed of two large and small spur gears on the outer periphery thereof. The transmission shaft 221 is also rotatably supported by shaft support portions 215 and 216 via bearings 218, as in FIG. These transmission shafts 141 and 221 are arranged in parallel and spaced apart such that both transmission wheels 121L and 222L mesh with each other and both transmission wheels 121R and 222R mesh with each other.
この変速装置は、一方の伝動軸141から他方の伝動軸221へ、又は、その逆に回転動力を一方的又は可逆的に伝達してもよいが、図10(A)(B)の例では、伝動軸141が入力側で伝動軸221が出力側である。両伝動輪121Lと222L、伝動輪121Rと222Rは、定常的に噛み合っている。
This transmission may transmit rotational power unilaterally or reversibly from one transmission shaft 141 to the other transmission shaft 221 or vice versa. In the example of FIGS. The transmission shaft 141 is the input side, and the transmission shaft 221 is the output side. Both the transmission wheels 121L and 222L and the transmission wheels 121R and 222R mesh with each other constantly.
この変速装置が図10(A)の状態にあるとき、伝動輪121R側にある一方向クラッチ131Xと伝動軸141の伝達エリア部142とはクラッチ係合状態にあり、伝動輪121L側にある一方向クラッチ131Yと伝動軸141の不伝達エリア部142とはクラッチ離脱状態にある。従って、入力側伝動軸141の回転動力は、伝動輪121Rと222Rのギア比に応じて変速され出力側伝動軸221に伝達される。
When this transmission is in the state shown in FIG. 10A, the one-way clutch 131X on the transmission wheel 121R side and the transmission area 142 of the transmission shaft 141 are in the clutch engaged state, and the one-way clutch 131X on the transmission wheel 121L side. The direction clutch 131Y and the non-transmission area 142 of the transmission shaft 141 are in a clutch disengaged state. Therefore, the rotational power of the input side transmission shaft 141 is changed in accordance with the gear ratio between the transmission wheels 121R and 222R and transmitted to the output side transmission shaft 221.
図10(A)の状態にある変速装置を図10(B)の状態に切り替えるためには、図10(A)の入力側伝動軸141を同図の矢印方向へ所定距離移動する。この変速操作にともない、伝動輪121Rの一方向クラッチ131Xは、伝動軸141の伝達エリア部142から不伝達エリア部143に変位してクラッチ離脱状態となり、伝動輪121Lの一方向クラッチ131Yは、伝動軸141の不伝達エリア部143から伝達エリア部142に変位してクラッチ係合状態となる。従って、伝動輪121L、222Lのギア比に応じて入力側伝動軸141の回転動力が出力側伝動軸221に変速して伝達される。図10(B)の入力側伝動軸141を矢印方向へ移動させると、図10(A)の元の変速比の動力伝達状態に戻る。
In order to switch the transmission in the state of FIG. 10 (A) to the state of FIG. 10 (B), the input side transmission shaft 141 of FIG. 10 (A) is moved a predetermined distance in the direction of the arrow in FIG. As a result of this shifting operation, the one-way clutch 131X of the transmission wheel 121R is displaced from the transmission area 142 of the transmission shaft 141 to the non-transmission area 143, and the clutch is disengaged, and the one-way clutch 131Y of the transmission wheel 121L is transmitted. The shaft 141 is displaced from the non-transmission area portion 143 to the transmission area portion 142 to be engaged with the clutch. Therefore, the rotational power of the input side transmission shaft 141 is transmitted to the output side transmission shaft 221 while being changed according to the gear ratio of the transmission wheels 121L and 222L. When the input side transmission shaft 141 in FIG. 10 (B) is moved in the direction of the arrow, the power transmission state at the original gear ratio in FIG. 10 (A) is restored.
図11(A)乃至(C)の変速装置も図1(A)の回転伝動素子111を用いていて図10の装置と同じ基本構成を有するが、図10の装置よりも変速段数が一段増設されている。即ち、伝動軸141の外周には、外径が順次大きくなる3つの伝動輪121L、121S、121Rが並んで設けられ、各伝動輪121L、121S、121Rの内側に一方向クラッチ131Y、131Z、131Xがそれぞれ取り付けられている。各伝動綸121L、121S、121Rを支持するために、軸支持部213は、2つの部分213a、231bを含んでいる。
11 (A) to 11 (C) also use the rotational transmission element 111 of FIG. 1 (A) and have the same basic configuration as the device of FIG. 10, but the number of gears is increased by one step compared to the device of FIG. Has been. That is, on the outer periphery of the transmission shaft 141, three transmission wheels 121L, 121S, and 121R whose outer diameters are sequentially increased are provided side by side, and the one- way clutches 131Y, 131Z, and 131X are provided inside the transmission wheels 121L, 121S, and 121R. Are attached to each. In order to support each transmission rod 121L, 121S, 121R, the shaft support portion 213 includes two portions 213a, 231b.
伝動軸221の外周には、伝動綸121L、121S、121Rにそれぞれ対応して外径が順次小さくなる3つの伝動輪222L、222S、222Rを有する。伝動軸141、221は、伝動輪121Lと222Lが互いに噛み合い、伝動輪121Sと222Sが互いに噛み合い、伝動輪121Rと222Rが互いに噛み合うように平行に間隔をあけて配置されている。図11(A)乃至(C)の変速装置の他の構成は、図10(A)(B)と同じである。
On the outer periphery of the transmission shaft 221, there are three transmission wheels 222L, 222S, 222R corresponding to the transmission rods 121L, 121S, 121R, the outer diameters of which are sequentially reduced. The transmission shafts 141 and 221 are arranged in parallel at intervals so that the transmission wheels 121L and 222L mesh with each other, the transmission wheels 121S and 222S mesh with each other, and the transmission wheels 121R and 222R mesh with each other. 11A to 11C are the same as those in FIGS. 10A and 10B.
図11(A)乃至(C)の変速装置による変速は、伝動軸141を軸方向に移動して行われる。図11(A)は、一方向クラッチ131Yと伝動軸の伝達エリア部142とが一致するクラッチ係合状態を示し、この状態では、伝動輪121Lと伝動輪222Lとが噛み合いって動力を伝動するが、伝動輪121Sと222S及び伝動輪121Rと222Rの噛み合いが外れて動力伝達を遮断している。このようにして、図11(A)の状態では、両伝動輪121L、222Lのギア比に応じて、入力側伝動軸141の回転動力が出力伝動軸221に伝達される。図11(B)では、一方向クラッチ131Zと伝動軸の伝達エリア部142とが互いに一致して、伝動輪121Sと伝動輪222Sとのみが噛み合って伝動輪121S、222Sのギア比に応じて、入力側伝動軸141の回転動力が出力伝動軸221に伝達される。同様にして、図11(C)の状態では、相互に噛み合っている伝動輪121R、222Rのギア比に応じて、入力側伝動軸141の回転動力が出力伝動軸221に伝達される。
11A to 11C are shifted by moving the transmission shaft 141 in the axial direction. FIG. 11A shows a clutch engagement state in which the one-way clutch 131Y and the transmission shaft transmission area portion 142 coincide with each other. In this state, the transmission wheel 121L and the transmission wheel 222L are engaged to transmit power. However, the transmission wheels 121S and 222S and the transmission wheels 121R and 222R are disengaged to block power transmission. Thus, in the state of FIG. 11 (A), the rotational power of the input side transmission shaft 141 is transmitted to the output transmission shaft 221 in accordance with the gear ratio of the two transmission wheels 121L and 222L. In FIG. 11 (B), the one-way clutch 131Z and the transmission shaft transmission area 142 coincide with each other, and only the transmission wheel 121S and the transmission wheel 222S mesh with each other according to the gear ratio of the transmission wheels 121S and 222S. The rotational power of the input side transmission shaft 141 is transmitted to the output transmission shaft 221. Similarly, in the state of FIG. 11C, the rotational power of the input side transmission shaft 141 is transmitted to the output transmission shaft 221 in accordance with the gear ratio of the transmission wheels 121R and 222R meshing with each other.
図12の変速装置は、図11の変速装置を変形したものである。この変形例では、入力側伝動軸141に相応する左側伝動輪121Lと入力側伝動軸141との間に2つの一方向クラッチ131YL、131YRが設けられ、出力側伝動軸221に相応する左側伝動輪222Lと伝動軸221との間に一方向クラッチ231が介在され、入力側伝動軸141の右端に伝動用連結部153が設けられている点で図11の装置と異なる。出力側の一方向クラッチ231は、2つの部材221、222Lを通常の一方向噛み合い態様で係合している。伝動用連結部153は、例えばスプライン軸に対応するスプライン筒であり、レバー操作で駆動側のスプライン軸(図示せず)に接続したり、切り離したりすることによって、入力側伝動軸141の動力の入切の選択が行える。
The transmission of FIG. 12 is a modification of the transmission of FIG. In this modification, two one-way clutches 131YL and 131YR are provided between the left transmission wheel 121L corresponding to the input side transmission shaft 141 and the input side transmission shaft 141, and the left transmission wheel corresponding to the output side transmission shaft 221. 11 is different from the apparatus of FIG. 11 in that a one-way clutch 231 is interposed between 222L and the transmission shaft 221 and a transmission connecting portion 153 is provided at the right end of the input-side transmission shaft 141. The output-side one-way clutch 231 engages the two members 221 and 222L in a normal one-way meshing manner. The transmission connecting portion 153 is, for example, a spline cylinder corresponding to the spline shaft, and is connected to or disconnected from the drive-side spline shaft (not shown) by lever operation, so that the power of the input-side transmission shaft 141 can be disconnected. You can select on / off.
図12の変速装置は、通常では、入力側伝動軸141を正回転させる。この状態において、入力側伝動軸141の伝達エリア部142と一方向クラッチ131Xとを互いに一致させると、相互に噛み合う伝動輪121R、222Rのギア比に応じて入力側伝動軸141の回転動力が出力伝動軸221に変速して伝達される。同様に、入力側伝動軸141の伝達エリア部142と一方向クラッチ131Zとを一致させると、伝動輪121S、222Sのギア比に応じて、入力側伝動軸141の回転動力が出力伝動軸221に変速して伝達される。この場合、入力側伝動軸141からの動力は、一方向クラッチ131YL、伝動輪121Lを経て伝動輪222Lに伝達されるが、一方向クラッチ231は、この回転を出力側伝動軸221に伝えないので、伝動輪222Lは、動力伝達に関与することなく単に回転するだけである。一方向クラッチ131YRも、同様に、動力伝達に関与しない。
12 normally rotates the input side transmission shaft 141 in the forward direction. In this state, when the transmission area 142 of the input side transmission shaft 141 and the one-way clutch 131X are made to coincide with each other, the rotational power of the input side transmission shaft 141 is output according to the gear ratio of the transmission wheels 121R and 222R meshing with each other. The transmission is transmitted to the transmission shaft 221 with a shift. Similarly, when the transmission area 142 of the input side transmission shaft 141 and the one-way clutch 131Z are matched, the rotational power of the input side transmission shaft 141 is transferred to the output transmission shaft 221 in accordance with the gear ratio of the transmission wheels 121S and 222S. It is transmitted with a shift. In this case, the power from the input side transmission shaft 141 is transmitted to the transmission wheel 222L via the one-way clutch 131YL and the transmission wheel 121L, but the one-way clutch 231 does not transmit this rotation to the output side transmission shaft 221. The transmission wheel 222L simply rotates without being involved in power transmission. Similarly, the one-way clutch 131YR is not involved in power transmission.
入力側伝動軸141を逆回転すると、入力側伝動軸141の回転動力は、一方向クラッチ131YR、伝動輪121Lを経て伝動輪222Lに伝達され、この場合、一方向クラッチ231は、この回転を出力側伝動軸221に伝えるので、出力側伝動軸221が逆回転する。この際、一方向クラッチ131YLは、動力伝達に関与しない。
When the input side transmission shaft 141 is rotated in reverse, the rotational power of the input side transmission shaft 141 is transmitted to the transmission wheel 222L via the one-way clutch 131YR and the transmission wheel 121L. In this case, the one-way clutch 231 outputs this rotation. Since it is transmitted to the side transmission shaft 221, the output side transmission shaft 221 rotates in the reverse direction. At this time, the one-way clutch 131YL is not involved in power transmission.
上記から明らかなように、図12の変速装置は、入力側伝動軸141の正回転のみでなく、逆回転をも出力側伝動軸221に伝達することができる。
As is clear from the above, the transmission of FIG. 12 can transmit not only forward rotation of the input side transmission shaft 141 but also reverse rotation to the output side transmission shaft 221.
図13の変速装置は、図11乃至図12の変速装置を変形したものである。この変形例では、スプライン軸141Sとスプライン筒141Pとの組み合わせにより入力側伝動軸141が構成されている。これらの部材141S、141Pは、スプライン嵌合により軸方向に相互にスライドして伝動軸141を伸縮する。入力側伝動軸141は、また、その一端部に係合部154を有し、ハウジング211外に突出する操作レバー155の先端部がこの係合部154と係合している。操作レバー155のローラ付き先端部は、入力側伝動軸141の回転を阻害することがない。操作レバー155は、ハウジング211外にある基端部を支点にしてその先端部側を図13の左右方向に揺動することができる。
The transmission shown in FIG. 13 is a modification of the transmission shown in FIGS. In this modification, the input side transmission shaft 141 is configured by a combination of the spline shaft 141S and the spline cylinder 141P. These members 141 </ b> S and 141 </ b> P slide relative to each other in the axial direction by spline fitting to expand and contract the transmission shaft 141. The input-side transmission shaft 141 also has an engagement portion 154 at one end thereof, and the distal end portion of the operation lever 155 that protrudes outside the housing 211 is engaged with the engagement portion 154. The tip of the operation lever 155 with a roller does not hinder the rotation of the input side transmission shaft 141. The operation lever 155 can swing in the left-right direction in FIG. 13 with the base end portion outside the housing 211 as a fulcrum.
図13の変速装置は、入力側伝動軸141の正逆回転を出力側伝動軸221に伝達する機能を有する点で図12の装置と実質的に同じである。この場合、入力側伝動軸141は、一方の軸部材141Sと共に他方の軸部材141Pも同時に回転する。変速のためのクラッチ切り替えに際しては、軸部材141Pが操作レバー155を介して軸方向に移動される。軸部材141Pが軸方向に移動すると、入力側伝動軸141の伝達エリア部142は、一方向クラッチ131X又は131Yに対応する。
13 is substantially the same as the apparatus of FIG. 12 in that it has a function of transmitting forward / reverse rotation of the input-side transmission shaft 141 to the output-side transmission shaft 221. In this case, in the input side transmission shaft 141, the other shaft member 141P rotates simultaneously with the one shaft member 141S. When switching the clutch for shifting, the shaft member 141P is moved in the axial direction via the operation lever 155. When the shaft member 141P moves in the axial direction, the transmission area 142 of the input side transmission shaft 141 corresponds to the one-way clutch 131X or 131Y.
図14の変速装置は、図10の変速装置を変形したものである。入力側伝動軸141側の2つの伝動輪121L、121Rの間に、フランジ付の筒状ばね座156とリング状の1対のクラッチ部材157L、157Rが設けられている。ばね座156とクラッチ部材157L、157Rとの間には、クラッチ部材157L、157Rを相互に向き合う方向(各伝動輪121L、121Rから離れる方向)に付勢するクラッチ復帰用ばね158L、158Rが設けられている。クラッチ部材157L、157Rの間の断面V形の空間には、ハウジング211外からガイド孔を通してハウジング211内に入り込んだ操作レバー形態のクラッチ作動部材159が設けられている。このクラッチ作動部材159は、V形空間内に配置された球形先端部を有する。クラッチ作動部材159は、これとハウジング壁面との間に配置された復帰用ばね160によってクラッチ部材157L、157R間の空間から脱出する方向の力が付与されている。
14 is a modification of the transmission shown in FIG. Between the two transmission wheels 121L and 121R on the input side transmission shaft 141 side, a flanged cylindrical spring seat 156 and a pair of ring-shaped clutch members 157L and 157R are provided. Between the spring seat 156 and the clutch members 157L and 157R, clutch return springs 158L and 158R for biasing the clutch members 157L and 157R in a direction facing each other (a direction away from the transmission wheels 121L and 121R) are provided. ing. In a space having a V-shaped cross section between the clutch members 157L and 157R, an operation lever type clutch operating member 159 that enters the housing 211 from the outside of the housing 211 through the guide hole is provided. The clutch actuating member 159 has a spherical tip disposed in the V-shaped space. The clutch actuating member 159 is given a force in a direction to escape from the space between the clutch members 157L and 157R by a return spring 160 disposed between the clutch actuating member 159 and the housing wall surface.
図14の変速装置は、入力側伝動軸141の軸方向の移動による変速操作は、図10の変速装置と同じである。これに加えて、図14の変速装置は、クラッチ部材157L、157Rによって変速時の円滑性を得ることができる。入力側伝動軸141と出力側伝動軸221との間で変速を行う際、伝動輪121L、121Rの回転数が接近しているほど、クラッチ切り替えが円滑に行える。これは、クラッチ作動部材159の先端部をクラッチ部材157L、157Rの間に介入させて行われる。このようにすると、クラッチ部材157L、157Rは、クラッチ作動部材159によって押し込まれて伝動輪121L、121Rに圧接する。これは、クラッチ係合と同じ状態である。従って、クラッチ部材157L、157Rは、この圧接(クラッチ係合)によって同期回転し、伝動輪121L、121Rの回転数が近似する。その結果、入力側伝動軸141の移動操作による変速が円滑に行われる。変速処理を終えた後、復帰用ばね158L、158R、160によってクラッチ作動部材159及びクラッチ部材157L、157Rは、それぞれ元の位置に復帰する。
14 is the same as the transmission shown in FIG. 10 in the speed change operation by the movement of the input side transmission shaft 141 in the axial direction. In addition, the transmission of FIG. 14 can obtain smoothness at the time of shifting by the clutch members 157L and 157R. When shifting between the input side transmission shaft 141 and the output side transmission shaft 221, the clutch switching can be performed more smoothly as the rotational speeds of the transmission wheels 121 </ b> L and 121 </ b> R are closer. This is done by interposing the tip of the clutch actuating member 159 between the clutch members 157L, 157R. If it does in this way, clutch member 157L, 157R will be pushed in by clutch operation member 159, and will press-contact with transmission wheel 121L, 121R. This is the same state as clutch engagement. Therefore, the clutch members 157L and 157R rotate synchronously by this pressure contact (clutch engagement), and the rotational speeds of the transmission wheels 121L and 121R are approximated. As a result, the shift by the moving operation of the input side transmission shaft 141 is smoothly performed. After the shifting process is completed, the clutch actuating member 159 and the clutch members 157L, 157R are returned to their original positions by the return springs 158L, 158R, 160, respectively.
図15の変速装置は、遊星歯車機構を備えている。図15の変速装置において、ハウジング211の内壁面には、ギア径の異なる2つの内歯歯車171、181が軸方向に並べて設けられている。入力側伝動軸141、出力側伝動軸221は、いずれも、ハウジング211の中心で同じ軸線上に並んでおり、ハウジング211に設けられた軸支持部212、215にベアリング218によって回転自在に支持されている。入力側伝動軸1は、軸線方向に移動自在に支持されている。出力側伝動軸221は、その内端に多軸板部223を有し、その板面からは複数本の支持軸224a、224b、224cが突出している。この複数本の各支持軸224a、224b、224cには、2組の遊星歯車が回転自在に取り付けられている。内歯歯車171に対応する一群の遊星歯車172a、172b、172cは、それぞれ、内歯歯車171と噛み合っている。内歯歯車181に対応する他の一群の遊星歯車182a、182b、182cも、それぞれ、内歯歯車181と噛み合っている。遊星歯車172a、172b、172cには、これらの中心に位置する太陽歯車173が噛み合っており、遊星歯車182a、182b、182cにも、これらの中心に位置する太陽歯車183が噛み合っている。内歯歯車171と遊星歯車172a、172b、172cと太陽歯車173とが1つの遊星歯車機構を構成し、内歯歯車181と遊星歯車182a、182b、182cと太陽歯車183とが他の1つの遊星歯車機構を構成している。これらの2つの遊星歯車機構は、変速比が互いに異なっている。遊星歯車や太陽歯車は、いずれも、伝動輪に相当する。
15 includes a planetary gear mechanism. In the transmission of FIG. 15, two internal gears 171 and 181 having different gear diameters are provided side by side in the axial direction on the inner wall surface of the housing 211. The input-side transmission shaft 141 and the output-side transmission shaft 221 are both aligned on the same axis at the center of the housing 211, and are rotatably supported by bearings 218 on shaft support portions 212 and 215 provided in the housing 211. ing. The input side transmission shaft 1 is supported so as to be movable in the axial direction. The output side transmission shaft 221 has a multiaxial plate part 223 at its inner end, and a plurality of support shafts 224a, 224b, 224c protrude from the plate surface. Two sets of planetary gears are rotatably attached to the plurality of support shafts 224a, 224b, and 224c. A group of planetary gears 172a, 172b, and 172c corresponding to the internal gear 171 mesh with the internal gear 171, respectively. Another group of planetary gears 182a, 182b, 182c corresponding to the internal gear 181 are also meshed with the internal gear 181. The planetary gears 172a, 172b, and 172c mesh with the sun gear 173 located at the center thereof, and the planetary gears 182a, 182b, and 182c mesh with the sun gear 183 located at the center thereof. The internal gear 171, the planetary gears 172 a, 172 b and 172 c and the sun gear 173 constitute one planetary gear mechanism, and the internal gear 181, the planetary gears 182 a, 182 b and 182 c and the sun gear 183 are the other planet. A gear mechanism is configured. These two planetary gear mechanisms have different gear ratios. Both the planetary gear and the sun gear correspond to transmission wheels.
図15の変速装置の入力側伝動軸141は、図13の形態で述べたのと同様に、スプライン型入れ子の伸縮の形態であり、係合部154に係合する操作レバー155によって軸方向に移動することができる。太陽歯車(伝動輪)173、183の内周又は伝動軸141の外周に一方向クラッチが固定されて内周係合型又は外周係合型一方向クラッチを構成している。図15の実施形態では、内周係合型の一方向クラッチ131X、131Yが用いられ、これらが太陽歯車173、183の内周に固定されている。伝動軸141の先端外周には伝達エリア部142が形成されている。
The input side transmission shaft 141 of the transmission shown in FIG. 15 is in the form of a spline-type telescopic expansion and contraction in the axial direction by the operation lever 155 engaged with the engaging portion 154, as described in the form of FIG. Can move. A one-way clutch is fixed to the inner circumference of the sun gears (transmission wheels) 173 and 183 or the outer circumference of the transmission shaft 141 to constitute an inner circumference engagement type or an outer circumference engagement type one-way clutch. In the embodiment of FIG. 15, inner periphery engagement type one-way clutches 131 </ b> X and 131 </ b> Y are used and fixed to the inner periphery of the sun gears 173 and 183. A transmission area 142 is formed on the outer periphery of the distal end of the transmission shaft 141.
図15の変速装置において、入力側伝動軸141の伝達エリア部142を太陽歯車173の内周(一方向クラッチ131X)に進入させると、この太陽歯車173を含む遊星歯車機構を介して入力側伝動軸141の動力が出力側伝動軸221に伝達され、入力側伝動軸141の伝達エリア部142を太陽歯車183の内周(一方向クラッチ131Y)に進入させると、この太陽歯車183を含む遊星歯車機構を介して入力側伝動軸141の動力が出力側伝動軸221に伝達される。この変速のクラッチ切り替えは、同様に、操作レバー155によって出力側伝動軸221を軸方向に移動させることにより行われる。
In the transmission shown in FIG. 15, when the transmission area 142 of the input side transmission shaft 141 enters the inner periphery (one-way clutch 131X) of the sun gear 173, the input side transmission is transmitted via the planetary gear mechanism including the sun gear 173. When the power of the shaft 141 is transmitted to the output side transmission shaft 221 and the transmission area 142 of the input side transmission shaft 141 enters the inner periphery (one-way clutch 131Y) of the sun gear 183, the planetary gear including the sun gear 183 is obtained. The power of the input side transmission shaft 141 is transmitted to the output side transmission shaft 221 through the mechanism. Similarly, the shift clutch switching is performed by moving the output side transmission shaft 221 in the axial direction by the operation lever 155.
図15の変速装置でも、変速の段数を増やしてもよいし、出力側伝動軸221の回転方向を正逆反転させてもよい。
15 may also increase the number of shift stages, or may reverse the direction of rotation of the output side transmission shaft 221 in the forward and reverse directions.
図16の変速装置は、図3(C)の回転伝動素子111と2つの伝動輪222L、222Rを備えた伝動軸221とが用いられ、伝動輪121Lと伝動輪222Lとが噛み合い、伝動輪121Rと伝動輪222Rとが噛み合っている。操作レバー155は、副伝動軸161を軸方向に操作するのに用いられる。その他の構成は、前の実施の形態と実質的に同じである。
The transmission shown in FIG. 16 uses the rotational transmission element 111 shown in FIG. 3C and the transmission shaft 221 including the two transmission wheels 222L and 222R. The transmission wheel 121L and the transmission wheel 222L are engaged with each other, and the transmission wheel 121R. And the transmission wheel 222R mesh with each other. The operation lever 155 is used to operate the auxiliary transmission shaft 161 in the axial direction. Other configurations are substantially the same as those of the previous embodiment.
図16の変速装置において、操作レバー154を介して副伝動軸161を軸方向に移動して、副伝動軸161の伝達エリア部162を伝動輪121L内の一方向クラッチ131と一致させたり、また、伝動輪121R内一方向クラッチ131と一致させたりすることによって伝動切り替えが行われる。これによって入力側伝動軸141から出力側伝動軸221にわたる伝動系を変速することができる。図16の変速装置は、伝動軸141や伝動輪を移動することなく、負担少ない副伝動軸161のみの移動によって変速操作を簡易に行うことができる。
In the transmission of FIG. 16, the auxiliary transmission shaft 161 is moved in the axial direction via the operation lever 154 so that the transmission area portion 162 of the auxiliary transmission shaft 161 is aligned with the one-way clutch 131 in the transmission wheel 121L. The transmission is switched by matching with the one-way clutch 131 in the transmission wheel 121R. As a result, the transmission system extending from the input side transmission shaft 141 to the output side transmission shaft 221 can be shifted. The transmission of FIG. 16 can easily perform a shift operation by moving only the auxiliary transmission shaft 161 with less burden without moving the transmission shaft 141 or the transmission wheel.
以上に述べた動力入切式伝動装置や変速装置において、入力側伝動軸141及び出力側伝動軸221に回転数計測用のエンコーダを装備することが望ましい。この場合、入出力軸の回転がそれぞれエンコーダにより検出され、これに基づいて伝動輪相互の最適な噛み合い状態を達成することができる。また、変速操作のための伝動軸や副伝動軸の移動は、手動操作や機械的な自動操作のいずれであってもよい。
In the power on / off transmission and transmission described above, it is desirable that the input side transmission shaft 141 and the output side transmission shaft 221 be equipped with encoders for measuring the rotational speed. In this case, the rotation of the input / output shaft is detected by the encoder, and based on this, the optimum meshing state between the transmission wheels can be achieved. Further, the movement of the transmission shaft and the sub-transmission shaft for the speed change operation may be either manual operation or mechanical automatic operation.
図17乃至図19は、変速装置TRAと回転原動系RMSと回転作動系ROMとが組み合わされて構成された多伝動システムを示す。この伝動システムには、クラッチ切り替えを円滑に行わせるための回転制御系RCSを有する。
FIG. 17 to FIG. 19 show a multi-transmission system configured by combining a transmission TRA, a rotational drive system RMS, and a rotational operation system ROM. This transmission system has a rotation control system RCS for smoothly performing clutch switching.
図17乃至図19の変速装置TRAは、図10(A)(B)の変速装置とほぼ同様の構造を有するので、その詳細な説明は、省略する。ただし、図17乃至図19の変速装置TRAの各伝動輪121L、222L、121R、222Rは、図10(A)(B)のものと比べると、大歯車(ギア)と小歯車(ピニオン)とが左右で入れ替わっていることが解る。変速装置TRAは、また、各伝動輪222L、222Rの内周面にも一方向クラッチ226X、226Yがそれぞれ設けられていてこれらの一方向クラッチ226X、226Yが伝動軸221の外周面とクラッチ噛み合い自在に対応している。
Since the transmission TRA shown in FIGS. 17 to 19 has substantially the same structure as the transmission shown in FIGS. 10A and 10B, detailed description thereof will be omitted. However, the transmission wheels 121L, 222L, 121R, and 222R of the transmission TRA of FIGS. 17 to 19 are larger gears and smaller gears (pinions) than those of FIGS. It can be seen that is swapped on the left and right. The transmission TRA is also provided with one- way clutches 226X and 226Y on the inner peripheral surfaces of the transmission wheels 222L and 222R, respectively, and these one- way clutches 226X and 226Y can be meshed with the outer peripheral surface of the transmission shaft 221. It corresponds to.
図17乃至図19の回転原動系RMSは、モータその他の適宜の形態の原動機301から成っている。典型的には、原動機301は、ブラシレスモータから成っており、原動機301の出力軸302は、カップリング、カップラー等の適宜の継手303を介して変速装置TRAの伝動軸141に連結される。継手303は、脱着式、非脱着式のいずれであってもよい。伝動軸141は、クラッチ切り替えに際してスラスト移動する。従って、継手303は、伝動軸141のスラスト移動を許す形態のものが用いられる。例えば、内周面にスプライン溝が形成された筒状の形態であり、この筒状の継手303は、出力軸302の連結端部外周に取り付けられる。伝動軸141は、継手303にスプライン結合される。従って、伝動軸141と出力軸302とは、継手303を介して回転を伝達しつつスラスト移動を許すように連結される。
17 to FIG. 19 is composed of a motor 301 of other appropriate forms such as a motor. Typically, the prime mover 301 includes a brushless motor, and the output shaft 302 of the prime mover 301 is coupled to the transmission shaft 141 of the transmission TRA via an appropriate joint 303 such as a coupling or a coupler. The joint 303 may be either a detachable type or a non-detachable type. The transmission shaft 141 performs a thrust movement when the clutch is switched. Accordingly, the joint 303 is of a configuration that allows the thrust movement of the transmission shaft 141. For example, it is a cylindrical form in which spline grooves are formed on the inner peripheral surface, and this cylindrical joint 303 is attached to the outer periphery of the connecting end portion of the output shaft 302. The transmission shaft 141 is splined to the joint 303. Therefore, the transmission shaft 141 and the output shaft 302 are coupled so as to allow thrust movement while transmitting rotation through the joint 303.
図17乃至図19の回転制御系RCSは、コンピュータ401、インバータ回路404、回転速度検出用と回転数検出用との2つの測定器405、406を含んでいる。コンピュータ401は、原動機用の制御回路402を内蔵し、また所要のプログラム403が記録保存されている。インバータ回路404は、原動機(ブラシレスモータ)301を任意の周波数と任意の電圧とで駆動する半導体回路(インバータ)と、原動機駆動用の周辺回路(ドライバ)とを含んでいる。
The rotation control system RCS in FIGS. 17 to 19 includes a computer 401, an inverter circuit 404, and two measuring devices 405 and 406 for detecting the rotational speed and detecting the rotational speed. The computer 401 includes a control circuit 402 for a prime mover, and a necessary program 403 is recorded and saved. The inverter circuit 404 includes a semiconductor circuit (inverter) that drives the motor (brushless motor) 301 at an arbitrary frequency and an arbitrary voltage, and a peripheral circuit (driver) for driving the motor.
2つの測定器405、406は、機械式パルス発生器、光学式の非接触型パルス発生器、電磁式の非接触型パルス発生器のほか、電磁式回転検出器とデジタル回転計との組み合わせであってもよい。代表的な一例では、2つの測定器405、406は、エンコーダ(ロータリーエンコーダ)である。このロータリーエンコーダは、インクリメンタル方式又はアブソリュート方式のいずれでもよい。
The two measuring instruments 405 and 406 can be a mechanical pulse generator, an optical non-contact pulse generator, an electromagnetic non-contact pulse generator, or a combination of an electromagnetic rotation detector and a digital tachometer. There may be. In a typical example, the two measuring devices 405 and 406 are encoders (rotary encoders). This rotary encoder may be either an incremental method or an absolute method.
原動機301の回転数検出用の測定器405は、その回転軸(図示せず)が原動機301のロータ軸(図示せず)に連結され、これによって、測定器405の回転部が原動機301のロータと一体回転する。伝動軸221の回転数検出用の他方の測定器406は、その回転軸407が継手を介して伝動軸221の端部に連結され、これによって、測定器406の回転部が伝動軸221と一体回転するようになる。測定器405は、原動機301の回転数を検出してその検出信号(測定信号)をコンピュータ401の演算処理系に入力し、他方の測定器406は、伝動軸221の回転数を検出してその検出信号(測定信号)をコンピュータ401の演算処理系に入力する。コンピュータ401は、これらの測定器405、406からの測定信号を受けて原動機回転制御のための演算処理を行ない、制御信号を出力するが、これは、プログラム403の設定に基づいて行われる。コンピュータ401は、原動機制御信号をインバータ回路404に入力する。インバータ回路404は、駆動電流の位相と周波数とを変化させて原動機301を低速回転させたり高速回転させたりする。原動機301を低速回転させるときには電圧を下げながら周波数の振幅を小さくし、原動機301を高速回転させるときには電圧を上げながら周波数の振幅を大きくする。
The measuring device 405 for detecting the rotational speed of the prime mover 301 has a rotational shaft (not shown) connected to a rotor shaft (not shown) of the prime mover 301, whereby the rotating part of the measuring device 405 is connected to the rotor of the prime mover 301. And rotate together. The other measuring device 406 for detecting the number of rotations of the transmission shaft 221 has its rotating shaft 407 connected to the end of the transmission shaft 221 via a joint, whereby the rotating portion of the measuring device 406 is integrated with the transmission shaft 221. It starts to rotate. The measuring device 405 detects the rotational speed of the prime mover 301 and inputs the detection signal (measurement signal) to the arithmetic processing system of the computer 401, and the other measuring device 406 detects the rotational speed of the transmission shaft 221 and A detection signal (measurement signal) is input to the arithmetic processing system of the computer 401. The computer 401 receives the measurement signals from these measuring devices 405 and 406, performs arithmetic processing for motor rotation control, and outputs a control signal, which is performed based on the settings of the program 403. The computer 401 inputs a prime mover control signal to the inverter circuit 404. The inverter circuit 404 rotates the prime mover 301 at a low speed or a high speed by changing the phase and frequency of the drive current. When the prime mover 301 is rotated at a low speed, the frequency amplitude is reduced while decreasing the voltage, and when the prime mover 301 is rotated at a high speed, the frequency amplitude is increased while the voltage is increased.
この伝動システムも、変速装置TRAの伝動軸141を軸方向のスラスト移動操作によって一方向クラッチ131X、131Yをクラッチ係合状態からクラッチ離脱状態にしたり、又はその逆の状態に変化させたりする。このクラッチ切り替え時には原動機301が制御されるが、これに関しては後述する。伝動軸141のスラスト移動を手動で行うために、作業員が原動機制御スイッチを押すことによって回転制御系RCSが稼働状態になる。それに代えて、伝動軸141のスラスト移動をセンサなどで検出して切り替えることにより、回転制御系RCSが稼働状態になる。更に、それらに代えて、自動制御状態において回転制御系RCSが所定のタイミングで稼働状態になってもよい。
This transmission system also changes the one- way clutches 131X and 131Y from the clutch engaged state to the clutch disengaged state or vice versa by the axial movement of the transmission shaft 141 of the transmission TRA. The prime mover 301 is controlled at the time of clutch switching, which will be described later. In order to manually perform the thrust movement of the transmission shaft 141, the rotation control system RCS is brought into an operating state when an operator pushes the prime mover control switch. Instead, the rotation control system RCS enters an operating state by detecting and switching the thrust movement of the transmission shaft 141 with a sensor or the like. Further, instead of them, the rotation control system RCS may be in an operating state at a predetermined timing in the automatic control state.
上記のように、伝動システムは、変速装置TRAの伝動軸141を軸方向に移動させることによって所要のクラッチ切り替えを行うが、図17乃至図19の伝動システムでのクラッチ切り替えが他の実施形態と異なるのは、次の通りである。即ち、図17乃至図19の実施形態の伝動システムにおいては、変速装置TRAの回転伝動素子111の一方向クラッチ131X、131Yのいずれかを「クラッチ係合状態からクラッチ離脱状態にクラッチ切り替えるとき」、又は、「クラッチ離脱状態からクラッチ係合状態にクラッチ切り替えるとき」に、当該回転伝動素子111の「伝動輪121Rと伝動軸141」又は「伝動輪121Lと伝動軸141」に相対的な回転速度差をもたせて一方向クラッチ131X又は131Yのクラッチ噛み合いが成立しないようにし、その状態を保持しながらクラッチ切り替えを行う。この一方向クラッチ131X、131Yのクラッチ噛み合いを不成立にするとき、当該一方向クラッチ131X、131Yに回転方向のトルクを発生させない。これは、原動機301の回転数と伝動軸141の回転数とを同等にするか、又は、原動機301の回転数を伝動軸221の回転数よりも少なくして、一方向クラッチ131X、131Yに噛み合いトルクが発生しないようにすることによって達成される。伝動軸141の回転数をSV1、伝動軸221の回転数をSV2とした場合のクラッチ噛み合いの成否を以下に説明する。ここで両伝動輪121R、222Rの減速比を[1:n]([1/n])とし、両伝動輪121L、222Lの倍速比を[m:1]([m]倍)とすると、[伝動軸141の回転数:伝動軸221の回転数]を[1:1]に置換してから目的の減速処理を行う必要がある。その際の計算値として、減速伝動時の伝動軸221の回転数に「n」を乗じた値や、増速伝動時の伝動軸221の回転数を「m」で除した値が用いられ、あるいは、減速伝動時の伝動軸141の回転数を「n」で除した値や、増速伝動時の伝動軸141の回転数に「m」を乗じた値が用いられる。
As described above, the transmission system performs the required clutch switching by moving the transmission shaft 141 of the transmission TRA in the axial direction, but the clutch switching in the transmission system of FIGS. 17 to 19 is different from that of the other embodiments. The differences are as follows. That is, in the transmission system of the embodiment of FIG. 17 to FIG. 19, when the clutch is switched from the clutch engaged state to the clutch disengaged state, one of the one- way clutches 131X and 131Y of the rotational transmission element 111 of the transmission TRA is Or, “when the clutch is switched from the clutch disengaged state to the clutch engaged state”, the rotational speed difference relative to “the transmission wheel 121R and the transmission shaft 141” or “the transmission wheel 121L and the transmission shaft 141” of the rotational transmission element 111. To prevent the one-way clutch 131X or 131Y from being engaged, and the clutch is switched while maintaining this state. When the clutch engagement of the one-way clutch 131X, 131Y is not established, torque in the rotational direction is not generated in the one-way clutch 131X, 131Y. This is because the rotational speed of the prime mover 301 and the rotational speed of the transmission shaft 141 are made equal, or the rotational speed of the prime mover 301 is made smaller than the rotational speed of the transmission shaft 221 and meshed with the one-way clutch 131X, 131Y. This is achieved by preventing torque from being generated. The success or failure of clutch engagement when the rotational speed of the transmission shaft 141 is SV1 and the rotational speed of the transmission shaft 221 is SV2 will be described below. Here, if the reduction ratio of both transmission wheels 121R and 222R is [1: n] ([1 / n]) and the double speed ratio of both transmission wheels 121L and 222L is [m: 1] ([m] times), It is necessary to perform the target deceleration process after replacing [the rotational speed of the transmission shaft 141: the rotational speed of the transmission shaft 221] with [1: 1]. As a calculated value at that time, a value obtained by multiplying the rotation speed of the transmission shaft 221 at the time of deceleration transmission by “n” or a value obtained by dividing the rotation speed of the transmission shaft 221 at the time of speed increase transmission by “m” is used. Alternatively, a value obtained by dividing the number of rotations of the transmission shaft 141 during deceleration transmission by “n”, or a value obtained by multiplying the number of rotations of the transmission shaft 141 during acceleration transmission by “m” is used.
減速系にある一方向クラッチ131Xを基準にして主要伝動部品を原動側と従動側とにわけると、原動機301と伝動軸141とが原動側に属し、両伝動輪121R、222Rと伝動軸221とが従動側に属することとなる。同様に、増速系にある一方向クラッチ131Yを基準にして主要伝動部品を原動側と従動側とにわけると、原動機301と伝動軸141とが原動側に属し、両伝動輪121L、222Lと伝動軸221とが従動側に属することとなる。
When the main transmission parts are divided into the driving side and the driven side with reference to the one-way clutch 131X in the deceleration system, the prime mover 301 and the transmission shaft 141 belong to the driving side, and both the transmission wheels 121R and 222R and the transmission shaft 221 Belongs to the driven side. Similarly, when the main transmission parts are divided into the driving side and the driven side with reference to the one-way clutch 131Y in the speed increasing system, the prime mover 301 and the transmission shaft 141 belong to the driving side, and both the transmission wheels 121L and 222L The transmission shaft 221 belongs to the driven side.
原動機301と伝動軸141とが一体回転し、両伝動輪121R、222Rと伝動軸221とが一体回転している場合であって、伝動軸141の回転数SV1と伝動軸221の回転数SV2とが互いに等しいときは、上記した原動側と従動側には相対的な速度差がないことになる。これは上記原動側(伝動軸141側)と上記従動側(伝動軸221側)との相対関係でみると、これらの2つ伝動軸141、221間に動きがないので、両伝動軸141、121Rは停止状態にある。伝動軸141が停止状態にあると、一方向クラッチ131Xが噛み合い状態にならないので、この一方向クラッチ131Xには、伝動軸141から伝動輪121Rへと回転を伝達するようなトルクが発生しない。従って、[伝動軸141の回転数SV1=伝動軸221の回転数SV2]のときは、一方向クラッチ131Xのクラッチ噛み合いが成立しない。これは、また、上記原動側全体と上記従動側全体との関係でもいえることである。従って、[伝動軸141の回転数SV1=伝動軸221の回転数SV2]を[原動機301の回転数=伝動軸221の回転数]に置き換えても、一方向クラッチ131Xの噛み合いが不成立になることは同様である。
In this case, the prime mover 301 and the transmission shaft 141 are integrally rotated, and both the transmission wheels 121R and 222R and the transmission shaft 221 are integrally rotated. The rotational speed SV1 of the transmission shaft 141 and the rotational speed SV2 of the transmission shaft 221 are Are equal to each other, there is no relative speed difference between the driving side and the driven side. This is because there is no movement between the two transmission shafts 141 and 221 when viewed from the relative relationship between the driving side (transmission shaft 141 side) and the driven side (transmission shaft 221 side). 121R is in a stopped state. When the transmission shaft 141 is in the stopped state, the one-way clutch 131X is not engaged, so that torque that transmits rotation from the transmission shaft 141 to the transmission wheel 121R is not generated in the one-way clutch 131X. Therefore, when [the rotational speed SV1 of the transmission shaft 141 = the rotational speed SV2 of the transmission shaft 221], the clutch engagement of the one-way clutch 131X is not established. This is also true of the relationship between the entire driving side and the entire driven side. Therefore, even if [the rotational speed SV1 of the transmission shaft 141 = the rotational speed SV2 of the transmission shaft 221] is replaced with [the rotational speed of the prime mover 301 = the rotational speed of the transmission shaft 221], the meshing of the one-way clutch 131X is not established. Is the same.
伝動軸141の回転は、一方向クラッチ131Xを介して伝動輪121Rに伝わるので、放置すれば停止する伝動輪121Rは、伝動軸141が一方向クラッチ131Xを介して回転方向へ強制的に牽引されていることになる。このように伝動軸141からの動力伝達を受けて回転する伝動輪121Rは、慣性で回転する傾向はあるが、伝動軸141の回転数(回転速度)を上回るような回転状態にはならい。従動的に回転する伝動輪121Rは、回転速度が低下する毎に伝動軸141によって転方向へ牽引される。これが連続的に起こるため、伝動輪121Rは、伝動軸141と同期回転する。仮に、伝動輪121Rが自力回転するのであるならば、しかも、伝動軸141と同等以上の速度で伝動軸141と同じ方向へ回転するなら、伝動軸141の回転が伝動輪121Rに伝わるようなことがない。もちろん、伝動軸141と伝動輪121Rとの回転数が同じの場合は、この両者間にトルクが発生しないので、一方向クラッチ131Xのクラッチ噛み合いが成立しない。伝動輪121Rと伝動軸221の回転数とは互いに等しいので、[伝動軸141の回転数VS1=と伝動軸221の回転数SV2]であっても「クラッチ噛み合いが不成立」となる。一般的にいうと、伝動軸141、一方向クラッチ131X、伝動輪121Rに順次回転が伝達されて伝動軸141と伝動輪121Rとが同時回転しているときには、これらの部材141、121Rの回転数(回転速度)が同じとして取り扱われる。従って、本発明においても、クラッチ噛み合い以外の事項は一般のケースと同様に取り扱うこととなる。
Since the rotation of the transmission shaft 141 is transmitted to the transmission wheel 121R via the one-way clutch 131X, the transmission wheel 121R that stops if left alone is forcibly pulled in the rotation direction via the one-way clutch 131X. Will be. Thus, the transmission wheel 121R that rotates by receiving the power transmission from the transmission shaft 141 tends to rotate due to inertia, but does not rotate so as to exceed the rotational speed (rotational speed) of the transmission shaft 141. The transmission wheel 121R that rotates in a driven manner is pulled in the rolling direction by the transmission shaft 141 every time the rotation speed decreases. Since this occurs continuously, the transmission wheel 121R rotates synchronously with the transmission shaft 141. If the transmission wheel 121R rotates by itself, and if it rotates in the same direction as the transmission shaft 141 at a speed equal to or higher than that of the transmission shaft 141, the rotation of the transmission shaft 141 is transmitted to the transmission wheel 121R. There is no. Of course, when the rotational speeds of the transmission shaft 141 and the transmission wheel 121R are the same, no torque is generated between them, so that the clutch engagement of the one-way clutch 131X is not established. Since the rotational speeds of the transmission wheel 121R and the transmission shaft 221 are equal to each other, even if [the rotational speed VS1 of the transmission shaft 141 = the rotational speed SV2 of the transmission shaft 221], “clutch engagement is not established”. Generally speaking, when the rotation is sequentially transmitted to the transmission shaft 141, the one-way clutch 131X, and the transmission wheel 121R and the transmission shaft 141 and the transmission wheel 121R are rotating at the same time, the rotational speed of these members 141 and 121R. (Rotation speed) is treated as the same. Therefore, in the present invention, matters other than the clutch engagement are handled in the same manner as in a general case.
伝動軸141の回転数SV1が伝動軸221の回転数SV2を下回ると、両伝動軸141、221間には[SV2-SV1]の速度差が生じている。この場合のSV1やSV2に具体的数値「SV1=60rpm」と「SV2=70rpm」とを代入して検討する。この場合、[SV2-SV1=70rpm-60rpm=10rpm]から理解できるように、伝動軸141が停止していて伝動軸221が10rpmで回転していることになる。伝動軸221は、一方向クラッチ131Xの噛み合いが成立しない状態で10rpmで回転している。この場合、伝動軸141が停止していて一方向クラッチ131Xが噛み合い状態にならないので、当該一方向クラッチ131Xには、伝動軸141から伝動輪121Rへ回転を伝達するトルクが発生しない。従って、[伝動軸141の回転数SV1<伝動軸221の回転数SV2]のときも一方向クラッチ131Xのクラッチ噛み合いが成立しない。この場合、[伝動軸141の回転数SV1<伝動軸221の回転数SV2]を[原動機301の回転数<伝動軸221の回転数]に置き換えても、一方向クラッチ131Xの噛み合いが不成立になる。
When the rotational speed SV1 of the transmission shaft 141 falls below the rotational speed SV2 of the transmission shaft 221, a speed difference of [SV2−SV1] is generated between the transmission shafts 141 and 221. In this case, the specific numerical values “SV1 = 60 rpm” and “SV2 = 70 rpm” are substituted into SV1 and SV2 for examination. In this case, as can be understood from [SV2-SV1 = 70 rpm-60 rpm = 10 rpm], the transmission shaft 141 is stopped and the transmission shaft 221 is rotating at 10 rpm. The transmission shaft 221 rotates at 10 rpm in a state where the one-way clutch 131X is not engaged. In this case, since the transmission shaft 141 is stopped and the one-way clutch 131X is not engaged, torque that transmits rotation from the transmission shaft 141 to the transmission wheel 121R is not generated in the one-way clutch 131X. Therefore, even when [the rotational speed SV1 of the transmission shaft 141 <the rotational speed SV2 of the transmission shaft 221], the clutch engagement of the one-way clutch 131X is not established. In this case, even if [the rotational speed SV1 of the transmission shaft 141 <the rotational speed SV2 of the transmission shaft 221] is replaced with [the rotational speed of the prime mover 301 <the rotational speed of the transmission shaft 221], the meshing of the one-way clutch 131X is not established. .
伝動軸141の回転数SV1が伝動軸221の回転数SV2を上回ると、両伝動軸141、221間には[SV1-SV2]の速度差が生ずる。この場合のSV1、SV2に具体的数値「SV1=70rpm」と「SV2=60rpm」とを代入して検討すると、[SV1-SV2=70rpm-60rpm=10rpm]から理解できるように、伝動軸221が停止していて伝動軸141が10rpmで回転していることになる。伝動軸141は、一方向クラッチ131Xが噛み合う方向へ10rpmで回転している。この場合は、伝動軸141が一方向クラッチ131Xの噛み合う状態へ回転しているので、一方向クラッチ131Xにはトルク発生して噛み合い状態になる。従って、伝動軸141の回転が一方向クラッチ131Xを介して伝動輪121Rに伝達され、これにともなって伝動輪222Rや伝動軸221が所定方向へ回転する。従って、[伝動軸141の回転数SV1>伝動軸221の回転数SV2]のとき、一方向クラッチ131Xのクラッチ噛み合いが成立する。この場合において、[伝動軸141の回転数SV1>伝動軸221の回転数SV2]を[原動機301の回転数>伝動軸221の回転数]に置き換えても、一方向クラッチ131Xの噛み合いが成立することになる。
When the rotational speed SV1 of the transmission shaft 141 exceeds the rotational speed SV2 of the transmission shaft 221, a speed difference of [SV1-SV2] occurs between the transmission shafts 141 and 221. When substituting specific numerical values “SV1 = 70 rpm” and “SV2 = 60 rpm” into SV1 and SV2 in this case, as can be understood from [SV1−SV2 = 70 rpm−60 rpm = 10 rpm], the transmission shaft 221 is It is stopped and the transmission shaft 141 is rotating at 10 rpm. The transmission shaft 141 rotates at 10 rpm in the direction in which the one-way clutch 131X is engaged. In this case, since the transmission shaft 141 rotates to the meshing state of the one-way clutch 131X, torque is generated in the one-way clutch 131X and the meshing state is established. Accordingly, the rotation of the transmission shaft 141 is transmitted to the transmission wheel 121R via the one-way clutch 131X, and accordingly, the transmission wheel 222R and the transmission shaft 221 rotate in a predetermined direction. Therefore, when [the rotational speed SV1 of the transmission shaft 141> the rotational speed SV2 of the transmission shaft 221], the clutch engagement of the one-way clutch 131X is established. In this case, even if [the rotational speed SV1 of the transmission shaft 141> the rotational speed SV2 of the transmission shaft 221] is replaced with [the rotational speed of the prime mover 301> the rotational speed of the transmission shaft 221], the meshing of the one-way clutch 131X is established. It will be.
図18に示すように、伝動軸141の伝達エリア部142が右側伝動輪121Rと左側伝動輪121Lとの間にあると、伝動システムが動力を伝達しない中立状態にある。この中立状態では、一方向クラッチ131X、131Yは、いずれもクラッチ離脱状態にある。伝動システムがこのような中立状態にあると、上記原動側から上記従動側への動力伝達が行われない。伝動システムが休止又は停止状態にある状態で、一方向クラッチ131X、131Yがクラッチ切り替え途中にあるか、又は、伝動システムがアイドリング状態にあると、伝動システムが図18の中立状態になる。クラッチ切り替え地中で伝動システムが中立状態にあるときには、上記原動側の各部品は、原動機301からの動力伝達を受けて回転している。また、上記従動側の各部品も慣性とかアイドリング状態とかで回転していることがある。従って、中立状態からのクラッチ係合状態になる際には、伝動システムが休止又は停止している場合を除き、原則として上記と同様の回転数検出(回転速度検出)と、それに基づく伝動システム制御(変速装置TRAの制御)とが行われる。
As shown in FIG. 18, when the transmission area 142 of the transmission shaft 141 is between the right transmission wheel 121R and the left transmission wheel 121L, the transmission system is in a neutral state where power is not transmitted. In this neutral state, the one- way clutches 131X and 131Y are both in the clutch disengaged state. When the transmission system is in such a neutral state, power transmission from the driving side to the driven side is not performed. If the one-way clutch 131X, 131Y is in the middle of clutch switching or the transmission system is in an idling state while the transmission system is in a paused or stopped state, the transmission system becomes neutral in FIG. When the transmission system is in a neutral state in the clutch switching area, each component on the prime mover side receives power transmission from the prime mover 301 and rotates. In addition, each component on the driven side may rotate due to inertia or idling. Therefore, when the clutch is engaged from the neutral state, the rotation speed detection (rotation speed detection) is basically the same as described above, and the transmission system control is based on the detection, except when the transmission system is stopped or stopped. (Control of transmission TRA) is performed.
原動機301と伝動軸141とが一体回転し、伝動輪121L、222Lと伝動軸221とが一体回転している場合であって、伝動軸141の回転数SV1と伝動軸221の回転数SV2とが互いに等しいときも、伝動軸141は停止状態にあるとみなすことができる。この場合も、一方向クラッチ131Yが噛み合い状態にならないので、一方向クラッチ131Yには伝動軸141から伝動輪121Rへと回転を伝達するトルクが発生しない。従って[伝動軸141の回転数SV1=伝動軸221の回転数SV2]のときは、一方向クラッチ131Yのクラッチ噛み合いが成立しない。これは上記原動側全体と上記従動側全体との関係でも当てはまる。従って、「伝動軸141の回転数SV1=伝動軸221の回転数SV2]を[原動機301の回転数=伝動軸221の回転数]に置換したとしても、一方向クラッチ131Yの噛み合いが不成立になるということになる。
In this case, the prime mover 301 and the transmission shaft 141 are integrally rotated, and the transmission wheels 121L and 222L and the transmission shaft 221 are integrally rotated. The rotational speed SV1 of the transmission shaft 141 and the rotational speed SV2 of the transmission shaft 221 are Even when they are equal to each other, the transmission shaft 141 can be regarded as being in a stopped state. Also in this case, since the one-way clutch 131Y is not engaged, torque that transmits rotation from the transmission shaft 141 to the transmission wheel 121R is not generated in the one-way clutch 131Y. Therefore, when [the rotational speed SV1 of the transmission shaft 141 = the rotational speed SV2 of the transmission shaft 221], the clutch engagement of the one-way clutch 131Y is not established. This also applies to the relationship between the entire driving side and the entire driven side. Therefore, even if “the rotational speed SV1 of the transmission shaft 141 = the rotational speed SV2 of the transmission shaft 221” is replaced with [the rotational speed of the prime mover 301 = the rotational speed of the transmission shaft 221], the meshing of the one-way clutch 131Y is not established. It turns out that.
伝動軸141の回転数SV1が伝動軸221の回転数SV2を下回ると、伝動軸141、221間には[SV2-SV1]の速度差が生じている。例えば、[SV1<SV2]において両伝動軸141、221間に[10rpm]の回転数の差が生じているとすると、一方向クラッチ131Yの噛み合わない状態へ伝動軸221が10rpmで回転していて伝動軸141が停止しているのと同等となる。従って、[伝動軸141の回転数SV1<伝動軸221の回転数SV2]のとき、一方向クラッチ131Yのクラッチ噛み合いが成立しない。この場合において、[伝動軸141の回転数SV1<伝動軸221の回転数SV2]を[原動機301の回転数<伝動軸221の回転数]に置き換えても、一方向クラッチ131Yの噛み合いが不成立になるということになる。
When the rotational speed SV1 of the transmission shaft 141 is lower than the rotational speed SV2 of the transmission shaft 221, a speed difference of [SV2−SV1] is generated between the transmission shafts 141 and 221. For example, if there is a difference in rotational speed of [10 rpm] between the transmission shafts 141 and 221 in [SV1 <SV2], the transmission shaft 221 is rotating at 10 rpm so that the one-way clutch 131Y is not engaged. This is equivalent to the transmission shaft 141 being stopped. Therefore, when [the rotational speed SV1 of the transmission shaft 141 <the rotational speed SV2 of the transmission shaft 221], the clutch engagement of the one-way clutch 131Y is not established. In this case, even when [the rotational speed SV1 of the transmission shaft 141 <the rotational speed SV2 of the transmission shaft 221] is replaced with [the rotational speed of the prime mover 301 <the rotational speed of the transmission shaft 221], the meshing of the one-way clutch 131Y is not established. It will be.
伝動軸141の回転数SV1が伝動軸221の回転数SV2を上回ると、伝動軸141、221間には[SV1-SV2]の速度差が生じている。例えば、[SV1>SV2]において両伝動軸141、221間に[10rpm]の回転数の差が生じているとすると、一方向クラッチ131Yの噛み合う状態へ伝動軸141が10rpmで回転していて伝動軸221が停止しているのと同等となる。この場合、伝動軸141の回転が一方向クラッチ131Yを介して伝動輪121Lに伝達され、これに伴って伝動輪222Lや伝動軸221が所定方向へ回転する。従って、[伝動軸141の回転数SV1>伝動軸221の回転数SV2]のときには、一方向クラッチ131Yのクラッチ噛み合いが成立する。この場合に、[伝動軸141の回転数SV1>伝動軸221の回転数SV2]を[原動機301の回転数>伝動軸221の回転数]に置き換えても、一方向クラッチ131Yの噛み合いが成立するということになる。
When the rotational speed SV1 of the transmission shaft 141 exceeds the rotational speed SV2 of the transmission shaft 221, a speed difference of [SV1−SV2] is generated between the transmission shafts 141 and 221. For example, if there is a difference in rotational speed of [10 rpm] between the transmission shafts 141 and 221 in [SV1> SV2], the transmission shaft 141 rotates at 10 rpm to a state where the one-way clutch 131Y is engaged. This is equivalent to the shaft 221 being stopped. In this case, the rotation of the transmission shaft 141 is transmitted to the transmission wheel 121L via the one-way clutch 131Y, and accordingly the transmission wheel 222L and the transmission shaft 221 rotate in a predetermined direction. Therefore, when [the rotational speed SV1 of the transmission shaft 141> the rotational speed SV2 of the transmission shaft 221], the clutch engagement of the one-way clutch 131Y is established. In this case, even if [the rotational speed SV1 of the transmission shaft 141> the rotational speed SV2 of the transmission shaft 221] is replaced with [the rotational speed of the prime mover 301> the rotational speed of the transmission shaft 221], the one-way clutch 131Y is engaged. It turns out that.
従って、図17乃至図19の伝動システムは、以上の説明から明らかなように、次のことが解る。[SV1>SV2]においてのみ、2つの一方向クラッチ131X、131Yのクラッチ噛み合いが成立し、かつ、[SV1≦SV2]のときには、2つの一方向クラッチ131X、131Yのクラッチ噛み合いが成立しないのである。クラッチ噛み合いが成立しない状態でのクラッチを切り替えると、トルクに起因したスラスト荷重が大幅に軽減されるので、クラッチ切り替え抵抗がほとんど発生しない。従って、所要のクラッチ切り替え操作が円滑、容易、迅速に行える。また、一方向クラッチ131X、131Yを中立状態(クラッチ離脱状態)から伝動状態(クラッチ係合状態)に移行させる際も、[SV1≦SV2]を保持して行うことが望ましい。その理由は、このような相対速度関係を保持することにおyってクラッチ係合時にトルクが発生しないので、クラッチ係合時の衝撃が緩和されるからである。
Therefore, as is clear from the above description, the following can be understood from the transmission system shown in FIGS. Only when [SV1> SV2], the clutch engagement of the two one- way clutches 131X and 131Y is established, and when [SV1 ≦ SV2], the clutch engagement of the two one- way clutches 131X and 131Y is not established. When the clutch is switched in a state where the clutch engagement is not established, the thrust load due to the torque is greatly reduced, so that almost no clutch switching resistance is generated. Therefore, the required clutch switching operation can be performed smoothly, easily and quickly. In addition, when the one-way clutch 131X, 131Y is shifted from the neutral state (clutch disengagement state) to the transmission state (clutch engagement state), it is desirable to maintain [SV1 ≦ SV2]. The reason for this is that, since the torque is not generated at the time of clutch engagement by maintaining such a relative speed relationship, the impact at the time of clutch engagement is alleviated.
図17乃至図19の伝動システムのクラッチ操作では、伝動軸141の回転数SV1や伝動軸221の回転数SV2が[SV1=SV2]又は[SV1<SV2]となるように制御される。このうち、[SV1=SV2]は、伝動システムの動作の変動、回転数(回転速度)の検出誤差、不測の事態の発生などを考慮する際に、特段の高精度や最上の安定性などが要求されることもある。それに対し、[SV1<SV2]は、その種の精度や安定性が緩和される。[SV1<SV2]に基づく制御が採用される場合には、[SV1/SV2]が[90/100]~「99/100」の範囲内で設定されることによって[SV1<SV2]が満足させられる。例えば、[SV1/SV2]が[95/100]に設定されることで[SV1<SV2]が満足させられる。
17 to FIG. 19, in the clutch operation of the transmission system, the rotation speed SV1 of the transmission shaft 141 and the rotation speed SV2 of the transmission shaft 221 are controlled to be [SV1 = SV2] or [SV1 <SV2]. Of these, [SV1 = SV2] has special high precision and maximum stability when considering fluctuations in the operation of the transmission system, detection error of the rotation speed (rotation speed), occurrence of unexpected situations, etc. Sometimes required. On the other hand, [SV1 <SV2] reduces the accuracy and stability of that kind. When control based on [SV1 <SV2] is adopted, [SV1 / SV2] is set within the range of [90/100] to “99/100”, thereby satisfying [SV1 <SV2]. It is done. For example, [SV1 <SV2] is satisfied by setting [SV1 / SV2] to [95/100].
図20には、この伝動システムの一例にすぎないステップが示されている。図20のステップによる当該伝動システムの稼働は以下のとおりである。
FIG. 20 shows steps that are only an example of this transmission system. The operation of the transmission system according to the steps of FIG. 20 is as follows.
図17乃至図19の伝動システムが初期状態にあるとき、原則として、図18のような中立状態にある。原動機301の回転動力を所定の減速比で伝動軸221に伝える際には、伝動軸141を図17の右方へスラスト移動させることにより、伝動軸141の伝達エリア部142が一方向クラッチ131X内に嵌め込まれる。原動機301が回転状態になると、原動機301の出力軸302、継手303、伝動軸141、一方向クラッチ131X、伝動輪121R、伝動輪222R、一方向クラッチ226Xの経路で伝動軸221に動力が伝達され、それによって出力用の伝動軸221から所要の出力が取り出される。
When the transmission system of FIG. 17 to FIG. 19 is in the initial state, in principle, it is in a neutral state as shown in FIG. When transmitting the rotational power of the prime mover 301 to the transmission shaft 221 at a predetermined reduction ratio, the transmission area 141 of the transmission shaft 141 is moved into the one-way clutch 131X by thrusting the transmission shaft 141 to the right in FIG. It is inserted in. When the prime mover 301 is rotated, power is transmitted to the transmission shaft 221 through the path of the output shaft 302 of the prime mover 301, the joint 303, the transmission shaft 141, the one-way clutch 131X, the transmission wheel 121R, the transmission wheel 222R, and the one-way clutch 226X. Thereby, a required output is taken out from the transmission shaft 221 for output.
伝動システムが図17の状態にあるとき、原動機301の出力軸302及び伝動軸141は、一方向クラッチ131Xが噛み合う方向に回転する。同様に、一方向クラッチ226Xが噛み合う方向に伝動輪222Rが回転する。一方向クラッチ226Xは、伝動輪222Rが伝動軸221に対して能動的に正回転するときに噛み合うが、伝動輪222Rの逆回転時には噛み合わない設定される。伝動輪222Rは、能動的に正回転するのに対し、伝動軸221は伝動輪222Rから動力伝達を受けて受動的に正回転するだけである。これは、伝動輪222Rの能動的な正回転で一方向クラッチ226Xの噛み合いが成立することを意味する。換言すると、伝動輪222Rが受動的な態勢にあり、かつ、伝動軸221が能動的に正回転するときには、一方向クラッチ226Xの噛み合いが成立しない。上記のように伝動輪222Rが能動的に正回転するために一方向クラッチ226Xが噛み合う。伝動輪222Rが正回転するとき、伝動軸221も正回転する。一方向クラッチ226Yも、伝動輪222Rが正回転したときに一方向クラッチ226Lが噛み合い、伝動輪222Lが逆回転したときには噛み合わないように設定される。一方向クラッチ226Yは、伝動輪222Lが能動的に正回転するのでなく、伝動軸221が能動的に正回転しているので噛み合わない。従って、伝動輪222Lは遊び車のような状態にある。
When the transmission system is in the state shown in FIG. 17, the output shaft 302 and the transmission shaft 141 of the prime mover 301 rotate in a direction in which the one-way clutch 131X is engaged. Similarly, the transmission wheel 222R rotates in the direction in which the one-way clutch 226X is engaged. The one-way clutch 226X is set to engage when the transmission wheel 222R actively rotates forward with respect to the transmission shaft 221 but does not engage when the transmission wheel 222R rotates in the reverse direction. The transmission wheel 222R actively rotates forward, whereas the transmission shaft 221 only passively rotates in response to power transmission from the transmission wheel 222R. This means that the meshing of the one-way clutch 226X is established by the active forward rotation of the transmission wheel 222R. In other words, the meshing of the one-way clutch 226X is not established when the transmission wheel 222R is in a passive posture and the transmission shaft 221 actively rotates forward. As described above, the one-way clutch 226X is engaged because the transmission wheel 222R actively rotates forward. When the transmission wheel 222R rotates forward, the transmission shaft 221 also rotates forward. The one-way clutch 226Y is also set so that the one-way clutch 226L meshes when the transmission wheel 222R rotates forward and does not mesh when the transmission wheel 222L rotates reversely. The one-way clutch 226Y does not mesh because the transmission wheel 222L does not actively rotate forward but the transmission shaft 221 actively rotates forward. Therefore, the transmission wheel 222L is in a state like a play car.
上記のように一方向クラッチ226Xが噛み合い状態になって伝動軸221が回転しているとき、噛み合いの成立しない一方向クラッチ226Yは、伝動輪222Lを遊び車の状態を保持する。伝動輪222Lに対応する伝動輪121Lも遊び車の状態になる。伝動輪222Lや伝動輪121Lがこのような低負荷の遊び状態になるとき、実働回転中の伝動軸221に対して無用の負荷のかかることがほとんどなくなり、それがエネルギーロスを抑制したり伝動効率を高めたりする上で望ましい。
As described above, when the one-way clutch 226X is engaged and the transmission shaft 221 is rotating, the one-way clutch 226Y that is not engaged keeps the transmission wheel 222L in the state of a play wheel. The transmission wheel 121L corresponding to the transmission wheel 222L is also in a play car state. When the transmission wheel 222L and the transmission wheel 121L are in such a low-load play state, an unnecessary load is hardly applied to the transmission shaft 221 during actual rotation, which suppresses energy loss and transmission efficiency. It is desirable to increase
図17の状態にある伝動システムにおいて、一方向クラッチ131Xの噛み合いを解除する動作を図17及び図20を参照して述べると、次の通りである。
The operation of releasing the engagement of the one-way clutch 131X in the transmission system in the state of FIG. 17 is described as follows with reference to FIGS.
図17から明らかなように、一方の測定器405が原動機301の回転数SV1を実測、他方の測定器406が伝動軸221の回転数SV2を実測している。具体的には、ロータリーエンコーダから成る測定器405、406が、それぞれの測定対象物について回転数に応じて発生するパルスをカウントし、それを回転数SV1の測定信号や回転数SV2の測定信号としてコンピュータ401に入力する。一連の作業、操作、制御、処理に基づくクラッチ切り替えがスターとしたときに、図20に示すステップ1乃至ステップ9が実行される。
As is apparent from FIG. 17, one measuring device 405 actually measures the rotational speed SV1 of the prime mover 301, and the other measuring device 406 actually measures the rotational speed SV2 of the transmission shaft 221. Specifically, the measuring devices 405 and 406 composed of rotary encoders count pulses generated according to the number of rotations for each measurement object, and use them as a measurement signal for the number of rotations SV1 and a measurement signal for the number of rotations SV2. Input to computer 401. Steps 1 to 9 shown in FIG. 20 are executed when clutch switching based on a series of operations, operations, controls, and processes is a star.
図20の「スタート」後のステップ1では、測定器405、406からコンピュータ401に実測値SV1の測定信号や実測値SV2の測定信号が入力される。これを受けてコンピュータ401は、ステップ2で所定の演算処理を行う。その際には、伝動輪121R、222Rの減速比が1/nであることから、SV2に「n」を乗じた計算値が用いられる。これは、主要な演算処理を簡便にするための事前の数値合わせである。これによって[SV1:SV2]を[1:1]に整える。その後、コンピュータ401は、[SV1<SV2]とするために、たとえば[SV1×0.95]の演算処理を行う。この演算処理によって、コンピュータ401は、原動機301の回転数を5%減少するための制御信号S1を得る。制御信号S1は、原動機(モータ)駆動用の電圧を制御するための信号である。図20のステップ2では、また、この御信号S1がインバータ回路404に入力される。
In step 1 after “START” in FIG. 20, a measurement signal of actual measurement value SV1 and a measurement signal of actual measurement value SV2 are input from measuring instruments 405 and 406 to computer 401. In response to this, the computer 401 performs predetermined arithmetic processing in step 2. In this case, since the reduction ratio of the transmission wheels 121R and 222R is 1 / n, a calculated value obtained by multiplying SV2 by “n” is used. This is a prior numerical adjustment for simplifying the main arithmetic processing. As a result, [SV1: SV2] is adjusted to [1: 1]. Thereafter, the computer 401 performs, for example, [SV1 × 0.95] in order to set [SV1 <SV2]. By this arithmetic processing, the computer 401 obtains a control signal S1 for reducing the rotational speed of the prime mover 301 by 5%. The control signal S1 is a signal for controlling the voltage for driving the motor (motor). In step 2 of FIG. 20, this control signal S 1 is also input to the inverter circuit 404.
図示のインバータ回路404は、任意の周波数と電圧で駆動する半導体回路から成っている。制御信号S1を受けたインバータ回路404は、図20のステップ4で制御信号S1に基づく制御信号S2を発生する。このインバータ回路404は、原動機301が適切な周波数と適切な電圧とで制御されてその原動機回転数が[SV1×0.95]となるように制御信号S2をし、これを原動機301に入力する。制御信号S2を入力されて原動機301は、図20のステップ5で減速される。
The illustrated inverter circuit 404 includes a semiconductor circuit that is driven at an arbitrary frequency and voltage. The inverter circuit 404 receiving the control signal S1 generates a control signal S2 based on the control signal S1 in step 4 of FIG. This inverter circuit 404 generates a control signal S2 so that the prime mover 301 is controlled at an appropriate frequency and an appropriate voltage and the prime mover rotational speed becomes [SV1 × 0.95], and this is input to the prime mover 301. . When the control signal S2 is input, the prime mover 301 is decelerated in step 5 of FIG.
コンピュータ401は、測定器405を介して原動機301の現状回転数が定常的に入力されている。このコンピュータ401は、上記ステップ1で入力された初期のSV1も記憶している。この状況において、図20のステップ6では、[SV1<SV2]が成立したか否か、即ち、原動機301の現状回転数が[SV1×0.95]になったか否かの確認が行われる。この確認結果が「NO」である場合、確認結果が「YES」になるまでステップ2乃至6が繰り返し実施される。また、図20の点線で示すように、ステップ1乃至6が繰り返される。
In the computer 401, the current rotational speed of the prime mover 301 is constantly input via the measuring device 405. The computer 401 also stores the initial SV1 input in step 1 above. In this situation, in step 6 of FIG. 20, it is checked whether [SV1 <SV2] is established, that is, whether the current rotational speed of the motor 301 is [SV1 × 0.95]. When the confirmation result is “NO”, steps 2 to 6 are repeatedly performed until the confirmation result becomes “YES”. Steps 1 to 6 are repeated as indicated by the dotted line in FIG.
[SV1<SV2]の成否に関し、図20のステップ6でその確認結果が「YES」の場合は、ステップ7に示すように、クラッチ切り替えが実行される。この場合クラッチ係合状態にある一方向クラッチ131Xがクラッチ離脱状態にシフトするが、特に、それは、[SV1<SV2]の条件が満たされた状態で行われる。このクラッチ切り替えを[SV1<SV2]で行うときは、既にのべた理由により、それが円滑、容易、迅速に行える。ステップ8でこのクラッチ切り替えの完了が確認される。一方向クラッチ131Xの切り替えは、伝動軸141を軸方向に移動させることによって行われる。この軸方向の移動は、移動量、移動方向、移動時間、停止位置をセンサで検出し、その検出情報(検出信号)をコンピュータ401に入力して演算処理することにより、制御されたり、把握されたりすることができる。この例では、図17のクラッチ係合状態にあった一方向クラッチ131Xが、図18のクラッチ離脱状態にシフトされたので、伝動システムは中立状態にあって伝動軸141などがアイドリング状態を呈している。
As for the success or failure of [SV1 <SV2], if the confirmation result is “YES” in step 6 of FIG. 20, clutch switching is executed as shown in step 7. In this case, the one-way clutch 131X in the clutch engaged state shifts to the clutch disengaged state, and in particular, this is performed in a state where the condition [SV1 <SV2] is satisfied. When this clutch switching is performed with [SV1 <SV2], it can be performed smoothly, easily and quickly for the reasons already described. In step 8, the completion of the clutch switching is confirmed. The one-way clutch 131X is switched by moving the transmission shaft 141 in the axial direction. This movement in the axial direction is controlled or grasped by detecting the movement amount, movement direction, movement time, and stop position with a sensor, and inputting the detection information (detection signal) to the computer 401 to perform arithmetic processing. Can be. In this example, since the one-way clutch 131X that was in the clutch engagement state of FIG. 17 has been shifted to the clutch disengagement state of FIG. 18, the transmission system is in a neutral state and the transmission shaft 141 and the like are in an idling state Yes.
ステップ9では、「選択1」乃至「選択3」の複数の選択肢が用意されている。「選択1」は「初期SV1の再現」である。この初期SV1の再現は、原動機301の回転数(回転速度)を減速前の状態に復活させて伝動軸141の回転数(回転速度)を元の状態に戻すことである。「選択3」は「エンド」である。このエンドは、原動機301を停止させること、即ち、伝動システムを停止させることである。「選択2」は、「リスタート」である。このリスタートは、中立状態の伝動システムにおいて、一方向クラッチ131Xを再度クラッチ係合状態にする際に選択されたり、一方向クラッチ131Yをクラッチ係合状態する際に選択されたりする。このリスタートでも、既述のステップ1乃至9が実行される。クラッチ係合にある一方向クラッチ131Xのクラッチ離脱、伝動システム中立、一方向クラッチ131Yのクラッチ係合を連続して行うときや、逆に、クラッチ係合にある一方向クラッチ131Yのクラッチ離脱、伝動システム中立、一方向クラッチ131Xのクラッチ係合を連続して行うときにこのリスタートを用いることができる。
In step 9, a plurality of options “selection 1” to “selection 3” are prepared. “Selection 1” is “Reproduction of initial SV1”. The reproduction of this initial SV1 is to restore the rotational speed (rotational speed) of the transmission shaft 141 to the original state by restoring the rotational speed (rotational speed) of the prime mover 301 to the state before the deceleration. “Selection 3” is “End”. This end is to stop the prime mover 301, that is, to stop the transmission system. “Selection 2” is “Restart”. This restart is selected when the one-way clutch 131X is brought into the clutch engagement state again in the neutral transmission system, or is selected when the one-way clutch 131Y is put into the clutch engagement state. Even in this restart, the above-described steps 1 to 9 are executed. When the clutch disengagement of the one-way clutch 131X in the clutch engagement, the neutralization of the transmission system, and the clutch engagement of the one-way clutch 131Y are continuously performed, or conversely, the clutch disengagement and transmission of the one-way clutch 131Y in the clutch engagement. This restart can be used when the system neutral and the one-way clutch 131X are continuously engaged.
クラッチ係合にある一方向クラッチ131Xのクラッチ離脱、伝動システム中立、一方向クラッチ131Yのクラッチ係合を一連のプロセスは、上記ステップ1乃至8の後に、当該ステップ1~8を続け、更にその後に、初期SV1再現ステップを続けばよい。この場合の各ステップ順位は、ステップ1、ステップ2、ステップ3、ステップ4、ステップ5、ステップ6、ステップ7、ステップ8、初期SV1再現ステップとなる。クラッチ係合にある一方向クラッチ131Yのクラッチ離脱、伝動システム中立、一方向クラッチ131Xのクラッチ係合を一連のプロセスで行うときも、これと同様にステップを結合すればよい。このほか、ステップ9において一時停止のためのエンドを選択し、その後のリスタートで、減速又は増速のためのクラッチ切り替えを行うこともできる。
A series of processes including the clutch disengagement of the one-way clutch 131X in the clutch engagement, the neutralization of the transmission system, and the clutch engagement of the one-way clutch 131Y is performed by continuing the steps 1 to 8 after the above steps 1 to 8, and thereafter The initial SV1 reproduction step may be continued. Each step order in this case is Step 1, Step 2, Step 3, Step 4, Step 5, Step 6, Step 7, Step 8, and an initial SV1 reproduction step. Similarly, when the clutch disengagement of the one-way clutch 131Y in the clutch engagement, the neutralization of the transmission system, and the clutch engagement of the one-way clutch 131X are performed in a series of processes, the steps may be combined in the same manner. In addition, it is also possible to select an end for temporary stop in Step 9 and perform clutch switching for deceleration or acceleration at the subsequent restart.
伝動軸141の回転を増速して伝動軸221に伝えるときの一方向クラッチ131Xをクラッチ係合させる際のクラッチ切り替えにおいても、[SV1<SV2]を演算処理するときには、伝動輪121R、222Rの増速比がm倍であることから、SV2を「m」で除した計算値が用いられる。この場合も、前に述べたのと同じように、[SV1:SV2]を[1:1]に整える。
Even in the clutch switching when the one-way clutch 131X is engaged when the rotation of the transmission shaft 141 is increased and transmitted to the transmission shaft 221, when calculating [SV1 <SV2], the transmission wheels 121R, 222R Since the speed increasing ratio is m times, a calculated value obtained by dividing SV2 by “m” is used. In this case, [SV1: SV2] is adjusted to [1: 1] as described above.
図17乃至図20の伝動システムの場合、[SV1<SV2]を実施するための
手段として電気的な制御手段を採用したが、これについては、たとえば、伝動軸141など、回転部品に機械的なブレーキをかけて[SV1<SV2]を実施するようにしてもよい。具体的には、伝動軸141にブレーキ素子を押し付けて摩擦制動をかけ、それによって制御対象となる回転系を減速するというものである。その際の制動時間は、状況に応じて適切に設定される。 In the case of the transmission system shown in FIGS. 17 to 20, electrical control means is employed as means for carrying out [SV1 <SV2]. However, for example, this is mechanically applied to rotating parts such as thetransmission shaft 141. [SV1 <SV2] may be performed by applying a brake. Specifically, a brake element is pressed against the transmission shaft 141 to apply friction braking, thereby decelerating the rotation system to be controlled. The braking time at that time is appropriately set according to the situation.
手段として電気的な制御手段を採用したが、これについては、たとえば、伝動軸141など、回転部品に機械的なブレーキをかけて[SV1<SV2]を実施するようにしてもよい。具体的には、伝動軸141にブレーキ素子を押し付けて摩擦制動をかけ、それによって制御対象となる回転系を減速するというものである。その際の制動時間は、状況に応じて適切に設定される。 In the case of the transmission system shown in FIGS. 17 to 20, electrical control means is employed as means for carrying out [SV1 <SV2]. However, for example, this is mechanically applied to rotating parts such as the
図17乃至図20の伝動システムは、図10の変速装置が用いられたが、図11乃至図16の変速装置を用いてもよい。この場合も、伝動軸141又はそれに相応する軸には、測定器405付きの原動機301が設けられ、伝動軸221又はそれに相応する軸には測定器406が取り付けられる。また、この場合、原動機301、両測定器405、406が回転制御系RCSに組み合わされる。
In the transmission system shown in FIGS. 17 to 20, the transmission shown in FIG. 10 is used, but the transmission shown in FIGS. 11 to 16 may be used. Also in this case, the power transmission shaft 141 with the measuring device 405 is provided on the transmission shaft 141 or the shaft corresponding thereto, and the measuring device 406 is attached to the transmission shaft 221 or the shaft corresponding thereto. In this case, the prime mover 301 and the two measuring devices 405 and 406 are combined with the rotation control system RCS.
伝動システムは、図5乃至図9に例示された動力入切式伝動装置を用いてもよい。それは、図5乃至図9の動力入切式伝動装置の伝動軸141又は伝動軸221に原動機301が取り付けられる。この伝動システムでも、回転減速が行われる場合、クラッチ係合、クラッチ離脱の所要のクラッチ切り替え操作が円滑、容易、迅速に行える。
As the transmission system, the power on / off type transmission device illustrated in FIGS. 5 to 9 may be used. The prime mover 301 is attached to the transmission shaft 141 or the transmission shaft 221 of the power on / off transmission device of FIGS. Even in this transmission system, when rotational speed reduction is performed, the required clutch switching operation for clutch engagement and clutch disengagement can be performed smoothly, easily and quickly.
本発明に係る回転伝動素子、動力入切式伝動装置、変速装置は、いずれも高精度、高伝動効率、簡潔構成、製作易度、少部品数、軽量化、コストダウン、変速比の連続可変性、入切や変速の際の衝撃緩和などを満足させるものであるから、産業上の利用可能性が高いものである。
The rotary transmission element, power on / off type transmission device, and transmission device according to the present invention are all highly accurate, high transmission efficiency, simple configuration, ease of manufacture, small number of parts, light weight, cost reduction, and continuously variable gear ratio. Therefore, industrial applicability is high.
111 回転伝動素子
121 伝動輪
121L 伝動輪
121R 伝動輪
131 一方向クラッチ
131X 一方向クラッチ
131Y 一方向クラッチ
131Z 一方向クラッチ
141 伝動軸
142 伝達エリア部
143 不伝達エリア部
221 伝動軸
222L 伝動輪
222R 伝動輪
301 原動機
302 出力軸
401 コンピュータ
405 測定器
406 測定器
CC クラッチ継合部
CW クラッチ装着部
TRA 変速装置
RCS 回転制御系 111Rotating transmission element 121 Transmission wheel 121L Transmission wheel 121R Transmission wheel 131 One-way clutch 131X One-way clutch 131Y One-way clutch 131Z One-way clutch 141 Transmission shaft 142 Transmission area section 143 Non-transmission area section 221 Transmission shaft 222L Transmission wheel 222R Transmission wheel 301 prime mover 302 output shaft 401 computer 405 measuring instrument 406 measuring instrument CC clutch engaging part CW clutch attaching part TRA transmission RCS rotation control system
121 伝動輪
121L 伝動輪
121R 伝動輪
131 一方向クラッチ
131X 一方向クラッチ
131Y 一方向クラッチ
131Z 一方向クラッチ
141 伝動軸
142 伝達エリア部
143 不伝達エリア部
221 伝動軸
222L 伝動輪
222R 伝動輪
301 原動機
302 出力軸
401 コンピュータ
405 測定器
406 測定器
CC クラッチ継合部
CW クラッチ装着部
TRA 変速装置
RCS 回転制御系 111
Claims (16)
- 外周を通して回転動力を受け渡しするため伝動輪と、伝動軸と、
前記伝動綸と伝動軸とを一方向にのみ同方向に回転し又は前記伝動輪と伝動軸との間で回転が伝達しないようにし、伝動輪の内周と伝動軸の外周に介在することができる一方向クラッチとを備え、
前記一方向クラッチは、その内周と外周とのいずれか一方にはクラッチ装着部があり、その内周と外周とのいずれか他方にはクラッチ係合部があり、
前記伝動輪と伝動軸とは、前記伝動軸が軸心部側で、前記伝動輪が外周側に相対的に配置されて組み合わされており、
前記伝動輪内周と伝動軸外周とのいずれか一方には、前記一方向クラッチのクラッチ装着部が固定され、前記伝動輪内周と伝動軸外周とのいずれか他方には、前記一方向クラッチのクラッチ係合部に対応してクラッチ係合を達成する伝達エリア部が設けられ、
前記一方向クラッチは、前記伝達エリア部とクラッチ係合部とが相互に一致しているときには、前記伝動輪と伝動軸とを接続するクラッチ係合状態となり、前記伝達エリア部とクラッチ係合部とが不一致であるときには、前記伝動輪と伝動軸との接続を解除する状態になる
を特徴とする回転伝動素子。 A transmission wheel, a transmission shaft,
The transmission rod and the transmission shaft may be rotated in the same direction only in one direction, or rotation may not be transmitted between the transmission wheel and the transmission shaft, and may be interposed between the inner periphery of the transmission wheel and the outer periphery of the transmission shaft. With a one-way clutch that can
The one-way clutch has a clutch mounting portion on one of its inner periphery and outer periphery, and has a clutch engagement portion on the other of its inner periphery and outer periphery,
The transmission wheel and the transmission shaft are combined such that the transmission shaft is disposed on the axial center side and the transmission wheel is relatively disposed on the outer peripheral side,
A clutch mounting portion of the one-way clutch is fixed to either the inner periphery of the transmission wheel or the outer periphery of the transmission shaft, and the one-way clutch is fixed to either the inner periphery of the transmission wheel or the outer periphery of the transmission shaft. A transmission area portion that achieves clutch engagement corresponding to the clutch engagement portion of
When the transmission area portion and the clutch engagement portion coincide with each other, the one-way clutch enters a clutch engagement state that connects the transmission wheel and the transmission shaft, and the transmission area portion and the clutch engagement portion Is a state in which the connection between the transmission wheel and the transmission shaft is released. - 請求項1に記載の回転伝動素子であって、前記一方向クラッチの外周にクラッチ装着部があり、前記一方向クラッチの内周にクラッチ係合部があり、前記一方向クラッチが前記伝動輪の内周に固定され、前記一方向クラッチのクラッチ係合部と対応する前記伝達エリア部が伝動軸の外周に設けられている回転伝動素子。 The rotary transmission element according to claim 1, wherein a clutch mounting portion is provided on an outer periphery of the one-way clutch, a clutch engagement portion is provided on an inner periphery of the one-way clutch, and the one-way clutch is connected to the transmission wheel. A rotational transmission element fixed to an inner periphery, wherein the transmission area corresponding to the clutch engaging portion of the one-way clutch is provided on the outer periphery of the transmission shaft.
- 請求項1に記載の回転伝動素子であって、前記一方向クラッチの内周にクラッチ装着部があり、前記一方向クラッチの外周にクラッチ係合部があり、前記一方向クラッチが伝動軸の外周に固定され、前記一方向クラッチのクラッチ係合部と対応する伝達エリア部が伝動輪の内周に設けられている回転伝動素子。 The rotation transmission element according to claim 1, wherein a clutch mounting portion is provided on an inner periphery of the one-way clutch, a clutch engagement portion is provided on an outer periphery of the one-way clutch, and the one-way clutch is an outer periphery of a transmission shaft. And a transmission area portion corresponding to the clutch engagement portion of the one-way clutch is provided on the inner periphery of the transmission wheel.
- 外周を通して回転動力を受け渡しするための伝動輪と、回転用の軸心部材である伝動軸と、
前記伝動輪と伝動軸とを一方向にのみ同方向同回転し、又は伝動輪と伝動軸との間を回転が伝達しないようにし、前記伝動輪の内周と伝動軸の外周との間に介在することができる一方向クラッチとを備え、
前記一方向クラッチは、その内周が前記伝動軸の外周と対応し、その外周が前記伝動輪の内周と対応し、前記一方向クラッチの内周には、前記伝動軸との周方向の相対移動を拘束しつつ前記伝動軸との軸方向の相対移動を許すクラッチ装着部があり、前記一方向クラッチの外周には、前記伝動輪とクラッチ接続するクラッチ係合部があり、
前記伝動輪の内周には、前記一方向クラッチのクラッチ係合部と対応して前記一方向クラッチとのクラッチ係合を達成する伝達エリア部が設けられ、
前記伝動軸は、その外周を通して前記一方向クラッチのクラッチ装着部と嵌め合い自在に対応しており、かつ、前記伝動軸の外周には、前記一方向クラッチとの周方向の相対的移動を拘束しつつ前記一方向クラッチとの軸方向の相対的移動を許すクラッチ案内部が設けられ、
前記伝動軸が軸心部側で前記伝動輪が外周側に相対的に配置されて、前記伝動軸と伝動輪とが互いに組み合わされ、
前記伝動軸に外周に前記一方向クラッチが嵌め込まれ、前記伝動軸の外周のクラッチ案内部と前記一方向クラッチ内周のクラッチ装着部とは、相対的に嵌め合っており、この嵌め合いにより、前記伝動軸の外周上で前記一方向クラッチが周方向の回転を拘束しつつ軸方向にスライド自在になっており、
前記伝動輪の内周内の前記伝達エリア部と前記一方向クラッチのクラッチ係合部とが相互に一致しているときには前記伝動輪と伝動軸とが前記一方向クラッチによってクラッチ係合され、前記一方向クラアッチが前記伝動軸の内周外にあって前記伝達エリア部とクラッチ係合部とが相互に不一致であるときには前記伝動輪と伝動軸とのクラッチ係合が解除されている
を特徴とする回転伝動素子。 A transmission wheel for transferring rotational power through the outer periphery, a transmission shaft which is a shaft center member for rotation,
The transmission wheel and the transmission shaft rotate in the same direction and only in one direction, or rotation is not transmitted between the transmission wheel and the transmission shaft, and between the inner periphery of the transmission wheel and the outer periphery of the transmission shaft. With a one-way clutch that can intervene,
The one-way clutch has an inner periphery corresponding to the outer periphery of the transmission shaft, an outer periphery corresponding to the inner periphery of the transmission wheel, and the inner periphery of the one-way clutch has a circumferential direction with respect to the transmission shaft. There is a clutch mounting portion that allows relative movement in the axial direction with the transmission shaft while restraining relative movement, and on the outer periphery of the one-way clutch, there is a clutch engagement portion that clutches the transmission wheel,
A transmission area portion that achieves clutch engagement with the one-way clutch corresponding to the clutch engagement portion of the one-way clutch is provided on the inner periphery of the transmission wheel,
The transmission shaft corresponds to be freely engageable with a clutch mounting portion of the one-way clutch through the outer periphery thereof, and the outer periphery of the transmission shaft is restrained from relative movement in the circumferential direction with respect to the one-way clutch. A clutch guide that allows relative movement in the axial direction with the one-way clutch,
The transmission shaft is disposed on the axial side and the transmission wheel is relatively disposed on the outer peripheral side, and the transmission shaft and the transmission wheel are combined with each other;
The one-way clutch is fitted on the outer periphery of the transmission shaft, and the clutch guide portion on the outer periphery of the transmission shaft and the clutch mounting portion on the inner periphery of the one-way clutch are relatively fitted, and by this fitting, The one-way clutch is slidable in the axial direction while restraining rotation in the circumferential direction on the outer periphery of the transmission shaft,
When the transmission area portion in the inner periphery of the transmission wheel and the clutch engagement portion of the one-way clutch coincide with each other, the transmission wheel and the transmission shaft are clutch-engaged by the one-way clutch, The clutch engagement between the transmission wheel and the transmission shaft is released when the one-way clutch is outside the inner periphery of the transmission shaft and the transmission area portion and the clutch engagement portion are inconsistent with each other. Rotating transmission element. - 外周を通して回転動力を受け渡しするための伝動輪と、回転用の軸心部材である伝動軸と、
前記伝動輪と伝動軸とを一方向にのみ同方向同回転させ、又は前記伝動輪と伝動軸との間で回転が伝達しないようにし、前記伝動輪の内周と伝動軸の外周とに介在することができる一方向クラッチとを備え、
前記一方向クラッチは、前記伝動輪内周と伝動軸外周との間でクラッチ係合したりそのクラッチ係合を解除したりし、
前記伝動軸の外周には、その軸方向に移動操作する管状の副伝動軸が設けられ、
前記一方向クラッチは、その内周と外周とのいずれか一方にクラッチ装着部があり、その内周と外周との他方にクラッチ係合部があり、
前記伝動軸は、その外周を通して前記副伝動軸と嵌め合い自在に対応していて、前記副伝動軸との周方向の相対的移動を拘束しつつ前記副伝動軸との軸方向の相対的移動を許す移動案内雄部が設けられ、
前記副伝動軸は、その内周を通して前記副伝動軸と嵌め合い自在に対応してその内周には、前記伝動軸との周方向の相対的移動を拘束しつつ前記伝動軸との軸方向の相対移動を許す移動案内雌部が設けられ、
前記伝動軸と伝動輪とは、前記伝動軸が軸心部側で、前記伝動輪が外周側になるように相対的に配置されて互いに組み合わされ、
前記伝動輪内周と副伝動軸外周とのいずれか一方には、前記一方向クラッチのクラッチ装着部が固定され、前記伝動輪内周と副伝動軸外周とのいずれか他方には、前記一方向クラッチのクラッチ係合部と対応してそのクラッチ係合を達成する伝達エリア部が設けられ、
前記伝達エリア部と一方向クラッチとが相互に一致しているときには、前記伝動輪と伝動軸とが前記一方向クラッチによってクラッチ係合状態にあり、また前記伝達エリア部と前記一方向クラッチとが相互不一致であるときには、前記伝動輪と伝動軸との間で前記一方向クラッチによるクラッチ係合が解除状態となること
を特徴とする回転伝動素子。 A transmission wheel for transferring rotational power through the outer periphery, a transmission shaft which is a shaft center member for rotation,
The transmission wheel and the transmission shaft are rotated in the same direction and only in one direction, or rotation is not transmitted between the transmission wheel and the transmission shaft, and is interposed between the inner periphery of the transmission wheel and the outer periphery of the transmission shaft. With a one-way clutch that can
The one-way clutch engages or disengages the clutch between the inner periphery of the transmission wheel and the outer periphery of the transmission shaft,
On the outer periphery of the transmission shaft, a tubular sub-transmission shaft that is operated to move in the axial direction is provided,
The one-way clutch has a clutch mounting portion on one of its inner periphery and outer periphery, and has a clutch engagement portion on the other of its inner periphery and outer periphery,
The transmission shaft corresponds to the auxiliary transmission shaft so as to be freely fitted through the outer periphery thereof, and the axial relative movement with the auxiliary transmission shaft is restricted while restraining the relative movement in the circumferential direction with the auxiliary transmission shaft. A movement guide male part that allows
The sub-transmission shaft corresponds to the sub-transmission shaft so that it can be freely fitted through the inner periphery of the sub-transmission shaft, and the inner periphery of the sub-transmission shaft restrains relative movement in the circumferential direction with respect to the transmission shaft. A movement guide female part that allows relative movement of
The transmission shaft and the transmission wheel are relatively arranged such that the transmission shaft is on the axial center side and the transmission wheel is on the outer peripheral side, and combined with each other,
A clutch mounting portion of the one-way clutch is fixed to one of the inner periphery of the transmission wheel and the outer periphery of the sub-transmission shaft, and one of the inner periphery of the transmission wheel and the outer periphery of the sub-transmission shaft is connected to the one end. A transmission area portion that achieves the clutch engagement corresponding to the clutch engagement portion of the directional clutch is provided,
When the transmission area portion and the one-way clutch coincide with each other, the transmission wheel and the transmission shaft are in a clutch engagement state by the one-way clutch, and the transmission area portion and the one-way clutch are The rotational transmission element according to claim 1, wherein the clutch engagement by the one-way clutch is released between the transmission wheel and the transmission shaft when they do not coincide with each other. - 請求項5に記載の回転伝動素子であって、前記一方向クラッチの外周に前記クラッチ装着部があり、前記一方向クラッチの内周にクラッチ係合部があって前記一方向クラッチが前記伝動輪の内周に固定され、前記一方向クラッチのクラッチ係合部と対応してそのクラッチ係合を達成する伝達エリア部が前記副伝動軸の外周に設けられている回転伝動素子。 6. The rotary transmission element according to claim 5, wherein the clutch mounting portion is provided on an outer periphery of the one-way clutch, a clutch engagement portion is provided on an inner periphery of the one-way clutch, and the one-way clutch is connected to the transmission wheel. A rotation transmission element that is fixed to the inner periphery of the auxiliary transmission shaft and that has a transmission area corresponding to the clutch engagement portion of the one-way clutch to achieve the clutch engagement.
- 請求項5に記載の回転伝動素子であって、前記一方向クラッチの内周にクラッチ装着部があり、前記一方向クラッチの外周にクラッチ係合部があって前記一方向クラッチが前記副伝動軸の外周に固定され、前記一方向クラッチのクラッチ係合部と対応してそのクラッチ係合を達成する伝達エリア部が前記伝動輪の内周に設けられている回転伝動素子。 6. The rotary transmission element according to claim 5, wherein a clutch mounting portion is provided on an inner periphery of the one-way clutch, a clutch engagement portion is provided on an outer periphery of the one-way clutch, and the one-way clutch is the sub-transmission shaft. A rotation transmission element that is fixed to the outer periphery of the transmission wheel and that has a transmission area corresponding to the clutch engagement portion of the one-way clutch to achieve the clutch engagement is provided on the inner periphery of the transmission wheel.
- 外周を通して回転動力を受け渡しするための伝動輪と、回転用の軸心部材である伝動軸と、
前記伝動輪と伝動軸とを一方向にのみ同方向に同回転させ、又は前記伝動輪と伝動軸との間の回転が伝達しないようにし、前記伝動輪の内周と伝動軸の外周との間に介在すし、内外にそれぞれクラッチ係合部を有する2重構造の一方向クラッチと、
前記一方向クラッチを軸方向に移動操作するための管状の操作部材を備え、
前記伝動輪の内周には、少なくともその一部に、外側のクラッチ係合部と対応してクラッチ係合を達成する伝達エリア部が設けられて
前記伝動軸の外周には、少なくともその一部に、内側のクラッチ係合部と対応してクラッチ係合を達成する伝達エリア部が設けられ、
前記伝動軸が軸心部側で、前記伝動輪が外周側に相対的に配置されて、前記伝動軸と伝動輪とが互いに組み合わされ、
前記伝動軸の外周には、前記一方向クラッチの内側のクラッチ係合部を介して前記一方向クラッチが嵌め込まれ、前記一方向クラッチの両端部に隣接して前記操作部材がそれぞれ嵌め込まれ、
前記伝動輪内周側の伝達エリア部と前記伝動軸外周側の伝達エリア部と前記一方向クラッチの内外のクラッチ係合部とが相互に一致しているときには、前記伝動輪と伝動軸とが前記一方向クラッチによってクラッチ係合状態になり、前記伝達エリア部とクラッチ係合部とが相互に不一致のときには、前記伝動輪と伝動軸とが前記一方向クラッチのクラッチ係合の解除状態になること
を特徴とする回転伝動素子。 A transmission wheel for transferring rotational power through the outer periphery, a transmission shaft which is a shaft center member for rotation,
The transmission wheel and the transmission shaft are rotated in the same direction only in one direction, or the rotation between the transmission wheel and the transmission shaft is not transmitted, and the inner periphery of the transmission wheel and the outer periphery of the transmission shaft A one-way clutch having a double structure having a clutch engaging part inside and outside,
A tubular operating member for moving and operating the one-way clutch in the axial direction;
At least a part of the inner periphery of the transmission wheel is provided with a transmission area part that achieves clutch engagement corresponding to the outer clutch engaging part. At least a part of the outer periphery of the transmission shaft is provided. In addition, a transmission area portion that achieves clutch engagement corresponding to the inner clutch engagement portion is provided,
The transmission shaft is on the axial center side, the transmission wheel is relatively disposed on the outer peripheral side, and the transmission shaft and the transmission wheel are combined with each other,
On the outer periphery of the transmission shaft, the one-way clutch is fitted via a clutch engagement portion inside the one-way clutch, and the operation members are fitted on both ends of the one-way clutch, respectively.
When the transmission area portion on the inner peripheral side of the transmission wheel, the transmission area portion on the outer peripheral side of the transmission shaft, and the inner and outer clutch engagement portions of the one-way clutch coincide with each other, the transmission wheel and the transmission shaft are When the one-way clutch enters the clutch engagement state, and the transmission area portion and the clutch engagement portion do not match each other, the transmission wheel and the transmission shaft are released from the clutch engagement of the one-way clutch. A rotary transmission element characterized by the above. - 請求項1乃至8のいずれかに記載の回転伝動素子であって、1つの伝動輪と1つの伝動軸とが2つの一方向クラッチによってクラッチ係合できるように対応している回転伝動素子。 The rotation transmission element according to any one of claims 1 to 8, wherein one transmission wheel and one transmission shaft correspond to each other so that clutch engagement can be performed by two one-way clutches.
- 外周を通して回転動力を受け渡しするための伝動輪と前記伝動輪の軸心部に回転自在に設けられた伝動軸とを含む2つの回転伝動素子を備え、
それぞれの回転伝動素子の対応する伝動輪は、伝動連係部材を介さない直接連繋手段と伝動連係部材を介した間接連繋手段とのいずれかの連繋手段によって相互に伝動自在に連繋され、
前記2つの回転伝動素子の少なくとも1つが前記第1乃至第4の課題解決手段によるものであり、
前記回転伝動素子の伝動輪と伝動軸とが一方向クラッチによってクラッチ係合されると、一方の回転伝動素子側から他方の回転伝動素子側へ回転が伝達され、前記回転伝動素子の伝動輪と伝動軸とのクラッチ係合が解除されると、一方の回転伝動素子側から他方の回転伝動素子側への回転が伝達しなくなるものであること
を特徴とする動力入切式伝動装置。 Two rotational transmission elements including a transmission wheel for transferring rotational power through the outer periphery and a transmission shaft rotatably provided at the axial center of the transmission wheel;
The corresponding transmission wheels of the respective rotary transmission elements are connected to each other by means of any one of a direct connection means not via a transmission linkage member and an indirect linkage means via a transmission linkage member,
At least one of the two rotational transmission elements is due to the first to fourth problem solving means,
When the transmission wheel of the rotation transmission element and the transmission shaft are clutch-engaged by a one-way clutch, rotation is transmitted from one rotation transmission element side to the other rotation transmission element side, and the transmission wheel of the rotation transmission element A power on / off transmission device characterized in that when the clutch engagement with the transmission shaft is released, the rotation from one rotation transmission element side to the other rotation transmission element side is not transmitted. - 出力用回転伝動素子と入力用回転伝動素子とを備え、前記出力用回転伝動素子は、外周を通して回転動力を受け渡しするものであって隣接した複数の伝動輪と前記複数の伝動輪の軸心部に設けられ手回転自在に支持された伝動軸とを有し、前記入力用回転伝動素子も、外周を通して回転動力を受け渡しするものであって互いに隣接した複数の伝動輪と前記複数の伝動輪の軸心部に設けられて回転自在に支持された伝動軸とを有し、
前記出力用回転伝動素子と入力用回転伝動素子の少なくとも一方の回転伝動素子は、第1乃至第4の課題解決手段による回転伝動素子であって、前記回転伝動素子に付加的に設けられた伝動輪を有し、一方向クラッチによって各伝動輪と伝動軸とがクラッチ係合されたり、そのクラッチ係合が解除されたりし、
前記出力用回転伝動素子側の各伝動輪と入力用回転伝動素子側の各伝動輪とが相対応していて伝動連係部材を介さない直接連繋手段と伝動連係部材を介した間接連繋手段とのいずれかの連繋手段で伝動自在に連繋され、
前記伝動軸といずれか一方の伝動輪とが一方向クラッチによってしてクラッチ係合されると、前記入力用回転伝動素子側から前記出力用回転伝動素子側へ回転が伝達され、一方向クラッチによる前記伝動軸とのクラッチ係合が、一方の伝動輪から他方の伝動輪へと変更されることにより、変速されること
を特徴とする変速装置。 An output rotational transmission element and an input rotational transmission element, wherein the output rotational transmission element delivers rotational power through the outer periphery, and a plurality of adjacent transmission wheels and axial portions of the plurality of transmission wheels The input rotation transmission element also passes the rotational power through the outer periphery, and a plurality of transmission wheels adjacent to each other and the plurality of transmission wheels A transmission shaft provided at the shaft center and rotatably supported;
At least one of the output rotation transmission element and the input rotation transmission element is a rotation transmission element according to first to fourth problem solving means, and is additionally provided in the rotation transmission element. Each transmission wheel and the transmission shaft are clutch-engaged by the one-way clutch, or the clutch engagement is released,
The direct transmission means not via the transmission linkage member and the indirect linkage means via the transmission linkage member in which the transmission wheels on the output rotary transmission element side and the transmission wheels on the input rotary transmission element side correspond to each other. Connected freely by any connecting means,
When the transmission shaft and one of the transmission wheels are clutch-engaged by a one-way clutch, rotation is transmitted from the input rotation transmission element side to the output rotation transmission element side, and the one-way clutch The transmission is characterized in that the clutch engagement with the transmission shaft is changed from one transmission wheel to the other transmission wheel. - 請求項11に記載の変速装置であって、出力用回転伝動素子と入力用回転伝動素子との間に正回転用の伝動系と逆回転用の伝動系とが設けられ、前記正逆回転の伝動系が一方向クラッチを備えた軸方向の操作手段で切り替えられる変速装置。 12. The transmission according to claim 11, wherein a forward rotation transmission system and a reverse rotation transmission system are provided between the output rotation transmission element and the input rotation transmission element, and the forward and reverse rotation transmission elements are provided. A transmission in which a transmission system is switched by an axial operation means having a one-way clutch.
- 請求項11に記載の変速装置であって、回転伝動素子の互いに隣接する伝動輪の間を接続したり切り離したりするための断続手段が設けられている変速装置。 12. The transmission according to claim 11, further comprising an intermittent means for connecting or disconnecting adjacent transmission wheels of the rotary transmission element.
- 請求項10乃至13のいずれかに記載の変速装置であって、回転を伝達する伝動系が遊星歯車伝動機構を含む変速装置。 14. The transmission according to claim 10, wherein the transmission system for transmitting rotation includes a planetary gear transmission mechanism.
- 請求項10乃至14のいずれかに記載の変速装置と、前記変速装置の回転動力入力側に設けられた回転原動系と、前記変速装置の回転動力出力側に設けられた回転作動系とを備えていて、前記回転原動系の回転動力が前記変速装置を経由して前記回転作動系に伝達されるように、前記回転原動系と変速装置と回転作動系とが組み合わされている伝動システムにおいて、
前記変速装置の回転伝動素子の一方向クラッチをクラッチ係合状態からクラッチ離脱状態に切り替える際又はクラッチ離脱状態からクラッチ係合状態に切り替える際に、前記回転伝動素子の伝動輪と伝動軸に相対的な回転速度差をもたせて前記一方向クラッチのクラッチ噛み合いが行われないように前記一方向クラッチを切り替えるようにしたこと
を特徴とする伝動システム。 15. The transmission according to claim 10, a rotation driving system provided on a rotational power input side of the transmission, and a rotational operation system provided on a rotational power output side of the transmission. In the transmission system in which the rotation driving system, the transmission, and the rotation operating system are combined so that the rotational power of the rotation driving system is transmitted to the rotation operating system via the transmission.
When the one-way clutch of the rotation transmission element of the transmission is switched from the clutch engagement state to the clutch disengagement state or when the clutch transmission state is switched from the clutch disengagement state to the clutch engagement state, relative to the transmission wheel and the transmission shaft of the rotation transmission element The transmission system is characterized in that the one-way clutch is switched so that the clutch engagement of the one-way clutch is not performed with a difference in rotational speed. - 請求項15に記載の伝動システムであって、前記一方向クラッチのクラッチ噛み合いが行われないようにしつつ前記一方向クラッチを切り替える際に、前記回転原動系の測定対象物の回転速度又は回転数と、前記回転作動系の測定対象物の回転速度又は回転数とをそれぞれ検出し、その検出結果に基づいて前記回転伝動素子の伝動輪と伝動軸に相対的な回転速度差をもたせる伝動システム。 The transmission system according to claim 15, wherein when the one-way clutch is switched while the clutch engagement of the one-way clutch is not performed, the rotation speed or the number of rotations of the measurement object of the rotation driving system is A transmission system that detects the rotational speed or the rotational speed of the measurement object of the rotational operation system and provides a relative rotational speed difference between the transmission wheel and the transmission shaft of the rotational transmission element based on the detection result.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014510197A JP6165716B2 (en) | 2012-04-11 | 2013-04-11 | Rotation transmission element, power on / off transmission device, transmission and transmission system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-090296 | 2012-04-11 | ||
JP2012090296 | 2012-04-11 | ||
JP2012247623 | 2012-11-09 | ||
JP2012-247623 | 2012-11-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013154153A1 true WO2013154153A1 (en) | 2013-10-17 |
Family
ID=49327711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/060922 WO2013154153A1 (en) | 2012-04-11 | 2013-04-11 | Rotation transmission element, motive power on/off-type transmission device, gear shifter, and transmission system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6165716B2 (en) |
WO (1) | WO2013154153A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2538532A (en) * | 2015-05-19 | 2016-11-23 | R Abbott William | Gear change system incorporating simultaneous selection of multiple gears |
JP2020521087A (en) * | 2017-05-19 | 2020-07-16 | キム,ボク ソン | Motor multi-speed transmission |
CN112901768A (en) * | 2019-12-04 | 2021-06-04 | 重庆军工产业集团有限公司 | Large-load self-adaptive automatic speed change system capable of shifting gears rapidly |
CN113431871A (en) * | 2021-06-30 | 2021-09-24 | 厦门众力达机械有限公司 | One-way transmission gear structure |
EP4047239A1 (en) * | 2021-02-18 | 2022-08-24 | ArvinMeritor Technology, LLC | Axle assembly and shift mechanism for a shift collar |
EP4047240A1 (en) * | 2021-02-18 | 2022-08-24 | ArvinMeritor Technology, LLC | Axle assembly having a shift collar |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63152955U (en) * | 1987-03-30 | 1988-10-06 | ||
JP2550295B2 (en) * | 1994-05-17 | 1996-11-06 | 株式会社湘南エンジニアリング | Conductive coupling device and shaft member used in the device |
JPH10110791A (en) * | 1996-10-04 | 1998-04-28 | Kobe Steel Ltd | Two-stage shifting reduction gear |
JP2007118917A (en) * | 2005-09-29 | 2007-05-17 | Honda Motor Co Ltd | Vehicular electric-driven brake device |
JP2008309323A (en) * | 2007-06-14 | 2008-12-25 | Yutaka Tanaka | Transmission using special roller ratchet |
JP2009103248A (en) * | 2007-10-24 | 2009-05-14 | Toyota Motor Corp | Transmission |
WO2010134732A2 (en) * | 2009-05-19 | 2010-11-25 | Hyun Kyung Yul | Multistage automatic transmission |
-
2013
- 2013-04-11 WO PCT/JP2013/060922 patent/WO2013154153A1/en active Application Filing
- 2013-04-11 JP JP2014510197A patent/JP6165716B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63152955U (en) * | 1987-03-30 | 1988-10-06 | ||
JP2550295B2 (en) * | 1994-05-17 | 1996-11-06 | 株式会社湘南エンジニアリング | Conductive coupling device and shaft member used in the device |
JPH10110791A (en) * | 1996-10-04 | 1998-04-28 | Kobe Steel Ltd | Two-stage shifting reduction gear |
JP2007118917A (en) * | 2005-09-29 | 2007-05-17 | Honda Motor Co Ltd | Vehicular electric-driven brake device |
JP2008309323A (en) * | 2007-06-14 | 2008-12-25 | Yutaka Tanaka | Transmission using special roller ratchet |
JP2009103248A (en) * | 2007-10-24 | 2009-05-14 | Toyota Motor Corp | Transmission |
WO2010134732A2 (en) * | 2009-05-19 | 2010-11-25 | Hyun Kyung Yul | Multistage automatic transmission |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2538532A (en) * | 2015-05-19 | 2016-11-23 | R Abbott William | Gear change system incorporating simultaneous selection of multiple gears |
JP2020521087A (en) * | 2017-05-19 | 2020-07-16 | キム,ボク ソン | Motor multi-speed transmission |
JP7317316B2 (en) | 2017-05-19 | 2023-07-31 | キム,ボク ソン | Motor multi-speed transmission |
CN112901768A (en) * | 2019-12-04 | 2021-06-04 | 重庆军工产业集团有限公司 | Large-load self-adaptive automatic speed change system capable of shifting gears rapidly |
EP4047239A1 (en) * | 2021-02-18 | 2022-08-24 | ArvinMeritor Technology, LLC | Axle assembly and shift mechanism for a shift collar |
EP4047240A1 (en) * | 2021-02-18 | 2022-08-24 | ArvinMeritor Technology, LLC | Axle assembly having a shift collar |
US11614148B2 (en) | 2021-02-18 | 2023-03-28 | Arvinmeritor Technology, Llc | Axle assembly having a shift collar |
CN113431871A (en) * | 2021-06-30 | 2021-09-24 | 厦门众力达机械有限公司 | One-way transmission gear structure |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013154153A1 (en) | 2015-12-17 |
JP6165716B2 (en) | 2017-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6165716B2 (en) | Rotation transmission element, power on / off transmission device, transmission and transmission system | |
EP2096331B1 (en) | Transmission and gear changing method | |
WO2011037023A1 (en) | Drive device for vehicle, using electric motor | |
JP2014149022A (en) | Dog clutch control device for automatic transmission | |
CN107407378B (en) | Dual layshaft transmission with splines | |
US10557506B2 (en) | Dog clutch | |
US8617026B2 (en) | Face spline clutch | |
KR20180069853A (en) | Intermixing transmission mechanism | |
US11946511B2 (en) | Ramp-on-ramp overriding clutch arrangement | |
US20170314649A1 (en) | Vehicle power transmission system and manufacturing method for the same | |
JP2017096404A (en) | Control device of power transmission device for vehicle | |
US6960151B2 (en) | Toroidal continuously variable transmission | |
US11293531B2 (en) | Automatic transmission and control method of automatic transmission | |
JP5880843B2 (en) | Dog clutch for automatic transmission | |
JP7043874B2 (en) | Power transmission device | |
WO2023175742A1 (en) | Dog clutch | |
JP2010276083A (en) | Belt type continuously variable transmission | |
CN107869568B (en) | Belt type continuously variable transmission for vehicle | |
JP6517688B2 (en) | Power transmission | |
KR101499935B1 (en) | Continuously Variable Transmission | |
KR101651753B1 (en) | Power splitting type manual transmission with function for adjusting axial displacement | |
JP2015014323A (en) | Belt type stepless speed variator | |
JP2019120299A (en) | Controller of transmission | |
JPH037823B2 (en) | ||
JP2019120347A (en) | Controller of transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13775674 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014510197 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13775674 Country of ref document: EP Kind code of ref document: A1 |