Nothing Special   »   [go: up one dir, main page]

WO2013147035A1 - ホットスタンプ用テーラードブランクおよびホットスタンプ部材ならびにそれらの製造方法 - Google Patents

ホットスタンプ用テーラードブランクおよびホットスタンプ部材ならびにそれらの製造方法 Download PDF

Info

Publication number
WO2013147035A1
WO2013147035A1 PCT/JP2013/059287 JP2013059287W WO2013147035A1 WO 2013147035 A1 WO2013147035 A1 WO 2013147035A1 JP 2013059287 W JP2013059287 W JP 2013059287W WO 2013147035 A1 WO2013147035 A1 WO 2013147035A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
weld metal
hot stamping
plated steel
welding
Prior art date
Application number
PCT/JP2013/059287
Other languages
English (en)
French (fr)
Inventor
康信 宮崎
恭章 内藤
川崎 薫
吉永 貴裕
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012074222A external-priority patent/JP5316664B2/ja
Priority claimed from JP2012093812A external-priority patent/JP5316670B1/ja
Priority to KR1020147027219A priority Critical patent/KR101636639B1/ko
Priority to RU2014139827/02A priority patent/RU2594766C9/ru
Priority to US14/385,559 priority patent/US9901969B2/en
Priority to EP13769761.1A priority patent/EP2832887A4/en
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to IN7785DEN2014 priority patent/IN2014DN07785A/en
Priority to MX2014011514A priority patent/MX2014011514A/es
Priority to CN201380016621.2A priority patent/CN104204257B/zh
Priority to BR112014023783A priority patent/BR112014023783B1/pt
Priority to CA2866466A priority patent/CA2866466C/en
Publication of WO2013147035A1 publication Critical patent/WO2013147035A1/ja
Priority to ZA2014/06690A priority patent/ZA201406690B/en
Priority to US15/863,286 priority patent/US10807138B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0053Seam welding
    • B23K15/006Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/211Bonding by welding with interposition of special material to facilitate connection of the parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/32Wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material

Definitions

  • the present invention is a tailored blank in which a plurality of steel plates are welded, and is a hot stamp tailored blank used for hot stamping (also referred to as hot stamping or die quenching, but here referred to as hot stamping), and its It relates to a manufacturing method.
  • the present invention also relates to a hot stamp member obtained by applying a hot stamp to a hot stamp tailored blank and a method for manufacturing the same.
  • Hot stamping has attracted attention as one of the methods for solving these problems.
  • Hot stamping is a technique in which a steel sheet is heated to a high temperature and pressed in a high temperature range.
  • the steel sheet is pressed in a temperature range of 3 or more points of Ar, the steel sheet is rapidly cooled by heat removal by a die (press mold), and the martensitic transformation and bainite transformation are performed in the steel sheet structure under the press pressure.
  • This is a technique that can produce a press-worked product having high strength and excellent shape freezing property by causing the phase transformation of.
  • tailored blanks are applied to press materials such as automobile members as means for improving the yield and productivity of press products.
  • the tailored blank is a press material in which end surfaces of a plurality of steel plates are joined by laser welding or the like according to the purpose.
  • a zinc-based plated steel sheet is used for many members that require corrosion resistance, such as automobile members.
  • the blank is heated to 700-1000 ° C. This temperature is close to or higher than the boiling point of zinc. Therefore, when hot stamping is performed on a zinc-based plated steel sheet, a part of the surface plating layer may melt or evaporate when heating for hot stamping is performed. Therefore, from the viewpoint of suppressing melting and evaporation of the plating layer, it is possible to use a steel plate with a high boiling point compared to zinc-based plating, a so-called aluminum-plated steel plate, as a blank for hot stamping. desirable.
  • Patent Document 1 discloses that welding is performed after removing a plating layer of a portion to be welded.
  • Patent Document 1 According to the method disclosed in Patent Document 1, it is possible to suppress the movement and concentration of aluminum from the plating film into the weld metal, and it is possible to suppress adverse effects caused by this.
  • the steel sheet obtained by the method disclosed in Patent Document 1 does not have a plating layer in the welded portion, the problem is that the weld metal is decarburized or oxidized during hot stamping, and is obtained by hot stamping. There is a problem that the member is inferior in corrosion resistance.
  • a process for removing the plating layer in the welded portion is newly required, the productivity is lowered and the cost is increased.
  • the present invention has been made in view of such conventional technology, and an object thereof is to provide a tailored blank for hot stamping and a method for manufacturing the same, which can ensure sufficient joint strength after hot stamping. To do. Moreover, it aims at providing the hot stamp member using such a tailored blank for hot stamps, and its manufacturing method.
  • the present inventors have studied to omit the step of removing the plating layer at the welded portion as proposed in Patent Document 1. That is, in order to put into practical use a tailored blank for hot stamping, which is butt-welded as it is without removing a plating layer to be welded in an aluminum-plated steel sheet, which is considered difficult to implement in Patent Document 1, an extensive study was conducted. . As a result, the present inventors do not prevent the migration and concentration of aluminum from the plating film into the weld metal as proposed in Patent Document 1, but rather the aluminum from the plating film into the weld metal. It has been newly found that an aluminum layer can be formed on the surface of the weld metal by promoting the movement and concentration of.
  • the present inventors should ensure sufficient joint strength in the hot stamp member after hot stamping even if quenching in the hot stamping process is insufficient or tempering in the hot stamping process occurs. Study was carried out. As a result, instead of increasing the strength of the weld metal by quenching in the hot stamping process, the idea was newly invented to increase the strength of the weld metal in the previous process of hot stamping. Then, the present inventors control the movement and concentration of aluminum from the plating film into the weld metal to an appropriate range, and set the Ac 3 point of the weld metal to a predetermined temperature or lower, thereby preventing the hot stamping.
  • quenching can occur in the cooling process of the butt welding process, which is a process, and the strength of the weld metal can be increased. That is, it has been newly found that even if quenching does not occur in the hot stamping process and tempering in the hot stamping process occurs, sufficient joint strength can be secured in the hot stamping member after hot stamping. Furthermore, the present inventors can further enhance the quenching in the cooling process of the butt welding process, which is a pre-process of hot stamping, by increasing the hardenability of the weld metal, and the Ac 1 point of the weld metal is set to a predetermined value.
  • the present inventors can make the contact between the vicinity of the welded portion of the tailored blank for hot stamping and the mold more reliable by defining the shape of the weld metal. It was found that quenching in the vicinity of the welded part of the tailored blank for hot stamping by heat removal can be performed more reliably. Furthermore, the present inventors have found that it is possible to improve the toughness of the weld metal by increasing the oxygen content of the weld metal.
  • the present invention has been made based on the above-described new findings, and the gist thereof is as follows.
  • the hot stamped tailored blank according to one aspect of the present invention is a hot stamped tailored blank having a welded portion formed by butt welding a first aluminum-plated steel plate and a second aluminum-plated steel plate.
  • the average Al concentration of the weld metal in the weld zone is 0.3 mass% or more and 1.5 mass% or less, and in the following formula (1), Ac 3 points of the weld metal defined in units of ° C. However, it is 1250 degrees C or less, Furthermore, it has the aluminum layer formed in the case of the said butt welding on the surface of the said welding part.
  • C, Ni, Si, V, Mo, W, Mn, Cr, Cu, P, Al, As, and Ti in the formula represent the content in mass% of each element in the weld metal, and contain The element which is not done is calculated by setting its content to zero.
  • ⁇ t M defined in unit seconds in the following formula (2) may be 0.5 seconds or more.
  • the tailored blank for hot stamping according to the above (1) or (2) may further have an Ac 1 point of the weld metal defined in units of ° C in the following formula (3) of 860 ° C or less. Good.
  • C, Si, Ni, V, Al, W, Cu, B, S, P, Mn, Cr, and Mo in the formula are the contents (mass%) of each element in the weld metal, The element not contained is calculated by setting the content to 0.
  • the maximum height of the weld metal is the thickness of the first aluminum-plated steel sheet.
  • t2 which is the thickness of the second aluminum-plated steel sheet are equal to or less than 300 ⁇ m on the basis of an extension line of the surface of the first aluminum-plated steel sheet; and t1 and t2 In the case of being different, it may be 300 ⁇ m or less based on the extension line of the thicker surface of the first aluminum plated steel plate and the second aluminum plated steel plate.
  • the oxygen content of the weld metal is a plating base of the first aluminum-plated steel sheet. It may be 50 ppm or more higher than the average oxygen content of the second steel plate which is the plating base material of the steel plate and the second aluminum-plated steel plate.
  • the manufacturing method of the tailored blank for hot stamps which concerns on 1 aspect of this invention is a manufacturing method of the tailored blank for hot stamps which performs butt welding using the 1st aluminum plating steel plate and the 2nd aluminum plating steel plate.
  • the average Al concentration of the weld metal in the weld zone is 0.3 mass% or more and 1.5 mass% or less, and Ac 3 point (° C.) of the weld metal defined by the following formula (1) is 1250.
  • C, Ni, Si, V, Mo, W, Mn, Cr, Cu, P, Al, As, and Ti in the formula represent the content in mass% of each element in the weld metal. Moreover, the element which is not contained is calculated by setting the content to 0.
  • ⁇ t M defined in unit seconds by the following equation (2) is 0.5 seconds or more.
  • the welding conditions may be determined as follows.
  • C, Si, Al, Mn, Cu, Ni, Mo, and Cr in the formula represent the contents in mass% of each element in the weld metal, and the elements not contained represent the contents.
  • a numerical value defined as follows according to the fN.
  • an Ac 1 point defined by the following equation (3) in unit ° C is 860.
  • the welding conditions may be determined so as to be equal to or lower than ° C.
  • C, Si, Ni, V, Al, W, Cu, B, S, P, Mn, Cr, and Mo in the formula are the contents (mass%) of each element in the weld metal, The element not contained is calculated by setting the content to 0.
  • the thickness of the thinnest portion of the weld metal is further determined.
  • the thickness of the first aluminum-plated steel sheet is t
  • the unit thickness is t1
  • the thickness of the second aluminum-plated steel sheet is t2 in the unit mm.
  • t1 and t2 are equal, the welding is performed so that it is 80% or more of t1, and when t1 and t2 are different, the welding is performed such that 80% or more of t1 and t2 is smaller. Conditions may be determined.
  • a thickness t1 of the first aluminum-plated steel plate When the thickness t2 of the second aluminum-plated steel plate is equal, the maximum height of the weld metal with respect to the extension line of the surface of the first aluminum-plated steel plate is 300 ⁇ m or less, and the t1 and the When t2 is different, the maximum height of the weld metal on the basis of the extension line of the thicker surface of the first aluminum plated steel plate and the second aluminum plated steel plate is 300 ⁇ m or less.
  • the welding conditions may be determined.
  • the oxygen content of the weld metal is the first aluminum. You may determine the said welding conditions so that it may become 50 ppm or more higher than the average oxygen content of the steel plate which is a plating base material of a plated steel plate and a said 2nd aluminum plating steel plate.
  • the butt welding may be any one of laser welding, electron beam welding, and plasma welding. Good.
  • the butt welding may be laser welding performed while supplying a filler wire.
  • a hot stamp member according to one aspect of the present invention is a hot stamp member obtained by subjecting a hot stamp tailored blank according to any one of (1) to (6) to a hot stamp.
  • the product of the hardness of the weld metal and the thickness of the thinnest portion of the weld metal is the product of the hardness of the first aluminum-plated steel plate and the plate thickness of the first aluminum-plated steel plate, or the first It is larger than either of the product of the hardness of the aluminum plated steel plate 2 and the thickness of the aluminum plated steel plate.
  • a method for manufacturing a hot stamp member according to an aspect of the present invention includes a hot stamping process for applying a hot stamp to the tailored blank for hot stamping according to any one of (1) to (6) above. ,
  • the product of the hardness of the weld metal and the thickness of the thinnest portion of the weld metal after the hot stamping process, the hardness of the first aluminum-plated steel sheet and the thickness of the first aluminum-plated steel sheet It is made larger than either the product or the product of the hardness of the second aluminum-plated steel sheet and the thickness of the aluminum-plated steel sheet.
  • the present invention it is possible to provide a tailored blank for hot stamping having high joint strength after hot stamping even if the galvanized steel plate is butt welded as it is without removing the plating layer to be welded. . Further, according to the present invention, even if a tailored blank for hot stamping obtained by butt welding an aluminum plated steel sheet as it is without removing the plating layer of the welded portion, a high joint after hot stamping is used. A hot stamp member having strength can be provided. Moreover, since the surface of the weld bead of the hot stamp tailored blank and the hot stamp member is covered with aluminum, the problem that the weld metal is decarburized or oxidized during hot stamping and the corrosion resistance after hot stamping is poor. Can be solved.
  • a tailored blank for hot stamping according to an embodiment of the present invention (hereinafter sometimes referred to as a tailored blank according to the present embodiment), a manufacturing method thereof, and a hot stamping member according to an embodiment of the present invention (hereinafter referred to as a tailored blank). And may be referred to as a hot stamp member according to the present embodiment) and a manufacturing method thereof will be described below.
  • Tailored blank for hot stamping (Al average concentration of weld metal: 0.3% to 1.5% by mass)
  • the tailored blank according to the present embodiment is obtained by joining a plurality of aluminum-plated steel plates by butt welding, and has a welded portion including a weld metal in a butt welded portion.
  • the tailored blank according to the present embodiment after suppressing decarburization and oxidation of the weld metal at the time of hot stamping, to ensure the joint strength after hot stamping, and further to ensure the corrosion resistance after hot stamping As will be described later, it is important to control the movement of aluminum from the plating film into the weld metal within an appropriate range. For that purpose, it is important to make the Al average concentration of the weld metal 0.3 mass% or more and 1.5% or less.
  • the Al average concentration of the weld metal is set to 0.3% by mass or more.
  • a tailored blank for hot stamping in which an aluminum-plated steel sheet is butt welded without removing the plating layer to be welded, aluminum migration and concentration from the plating film into the weld metal are moderately suppressed.
  • quenching can occur in the cooling process of the butt welding process, which is a pre-process of hot stamping.
  • the strength of the weld metal can be increased in advance before the hot stamping process. That is, even if quenching does not occur in the hot stamping process, and even if tempering occurs in the hot stamping process, sufficient joint strength can be ensured after hot stamping (hot stamping member).
  • the average Al concentration of the weld metal is 1.5% by mass or less.
  • quenching occurs in the cooling process of the butt welding process, which is a pre-process of hot stamping, and a quenching process such as a martensite structure or a structure composed of martensite and bainite. It becomes possible to obtain a tissue containing.
  • the element symbols (C, Ni, Si, V, Mo, W, Mn, Cr, Cu, P, Al, As, Ti) in the formula indicate the content (mass%) of each element in the weld metal. To express. Moreover, the element which does not contain is calculated as content 0.
  • the three- point expression of Ac is a well-known expression from literature (Leslie. WC., Written by Naruyasu Koda / translated “Leslie Steel Materials Science” Maruzen (1985), p. 273). The lower the Ac 3 point, the more advantageous it is to cause quenching in the cooling process of the butt welding process, which is the pre-process of hot stamping, so the lower limit of Ac 3 point is not particularly specified.
  • ⁇ t M of weld metal 0.5 seconds or more
  • ⁇ t M is a hardenability index representing a critical cooling time (second) in which the weld metal structure becomes 100% martensite by cooling. This value indicates that baking becomes easier as the value increases.
  • ⁇ t M defined by equation (2) is 0.5 seconds or more. More preferably, ⁇ t M is 1.0 second or more. ⁇ t M, since the higher the hardenability increases large as possible, the upper limit of ⁇ t M does not need to be particularly limited.
  • each element symbol (C, Si, Al, Mn, Cu, Ni, Mo, Cr) is the content (mass%) of the element in the weld metal, and the elements that do not contain the content.
  • the weld metal preferably has an Ac 1 point defined by the following formula (3) of 860 ° C. or lower.
  • each element symbol (C, Si, Ni, V, Al, W, Cu, B, S, P, Mn, Cr, Mo) is the content (mass%) of the element in the weld metal.
  • the element not contained is calculated by setting the content to 0. Since the lower Ac 1 point is more advantageous for causing quenching in the hot stamping process, the lower limit of Ac 1 point is not particularly specified.
  • the weld bead surface In butt welding performed by butting the end surfaces of steel plates (aluminum-plated steel plates) that have been shear-cut, the weld bead surface is usually recessed with respect to the steel plate surface (in a thin state) due to the cutting accuracy of the end surfaces. Welded with.
  • the thickness of the thinnest portion of the weld metal of the tailored blank according to this embodiment is 80% or more of the plate thickness of the galvanized steel plate (the thinner plate thickness if the plate thickness is different). It is preferable that By doing in this way, the intensity
  • the thickness of the thinnest portion of the weld metal is 90% or more of the thickness of the galvanized aluminized steel sheet (if the thickness is different, the thinner thickness).
  • the thickness of the thinnest part of the weld metal in this embodiment refers to the thickness of the thinnest part among the parts in which the plate
  • a thin portion of the meat may be compensated by using a filler material such as a filler wire.
  • the surface of the butt welded aluminum plated steel sheet is 300 ⁇ m or less.
  • the oxygen content of the weld metal of the tailored blank according to the present embodiment be 50 ppm or more higher than the average oxygen content of the steel plate that is the plating base of the butt welded aluminum plated steel plate.
  • a metal cored wire may be used for welding. When a metal cored wire is used, the oxygen content changes according to the supply amount of the metal cored wire, and therefore a supply amount corresponding to the target oxygen amount may be applied.
  • the upper limit of the difference between the oxygen content of the weld metal and the average oxygen content of the steel sheet that is the plating base of the butt welded aluminum plated steel sheet is not particularly limited, but from the viewpoint of suppressing the formation of coarse oxides Is preferably 300 ppm or less.
  • the aluminum plating steel plate used for the tailored blank according to the present embodiment is not particularly limited.
  • an aluminum-plated steel sheet used for butt welding to obtain a tailored blank according to this embodiment the same kind of steel sheet may be used, but for the purpose of providing different characteristics for each part, strength, etc. Steel plates having different characteristics may be used.
  • the tensile strength before hot stamping is 270 to 590 MPa.
  • Aluminum plating to be butt welded used for the tailored blank according to this embodiment The thickness range of the steel plate is, for example, 0.8 to 4.0 mm. Preferably, it is 0.8 to 2.0 mm.
  • the aluminum-plated layer of the aluminum-plated steel sheet prevents the corrosion of the steel sheet and generates scale (iron oxide) generated when the surface of the steel sheet heated to high temperature is oxidized when hot stamping the steel sheet.
  • the aluminum plating layer has a boiling point higher than that of a plating coating with an organic material or a plating coating with another metal material (for example, Zn), so that it can be processed at a high temperature when forming by a hot stamp method. . Therefore, it is advantageous from the viewpoint of burning the weld metal in the hot stamping process. From these viewpoints, the aluminum plating layer is preferably formed on both surfaces of the steel sheet. This aluminum plating layer may be formed on the surface of the steel sheet by, for example, a hot dipping method.
  • Al As a component of a plating layer, what contains Al as a main component should just be contained.
  • Components other than Al are not particularly limited. For example, it may contain 3 to 15% by mass of Si. By setting the Si content to 3% by mass or more, it is possible to control the alloy layer generated during the coating of the hot dipped metal. On the other hand, when the Si content is 15% or less, good workability and corrosion resistance can be secured for the plating layer.
  • Al average concentration of the weld metal is 0.3 wt% to 1.5 wt% or less
  • the weld metal defined by the above equation (1) Ac 3 Welding is performed by adjusting the conditions so that the point (° C.) is 1250 ° C. or less (welding condition determining step: S1).
  • welding condition determining step: S1 quenching occurs in the cooling process of the butt welding process, which is a pre-process of hot stamping, and the strength of the weld metal can be increased in advance. Therefore, even if quenching does not occur in the hot stamping process, Even if tempering in the process occurs, sufficient joint strength can be secured after hot stamping.
  • the aluminum layer derived from the aluminum plating layer of the aluminum plating steel plate to be welded is formed on the weld metal surface (welding process: S2).
  • the Al average concentration of the weld metal is calculated by calculating the amount of Al taken into the weld metal from the plating layer using the weld bead width of the front and back surfaces of the aluminum plated steel sheet, the thickness of the plating layer, the groove interval, etc.
  • the amount of Al taken from the steel plate as the base material or the filler metal
  • the amount of Al taken in from the filler material can be estimated and calculated from these values and the cross-sectional area of the weld metal. That is, it can be predicted from the chemical composition of the aluminum-plated steel sheet, the coating amount, the plate thickness, the groove interval, the chemical composition of the filler metal, and the like.
  • the Al average concentration of the weld metal can be controlled by determining the welding conditions in consideration of the above.
  • a double-sided aluminum-plated steel sheet with an adhesion amount of 40/40 gr / m 2 is 0.2 mm or 0.02 mm.
  • a steel plate having a thickness of 0.8 to 2.0 mm can be used.
  • a steel sheet with a thickness of 1.4 to 4.0 mm can be used.
  • the thickness of the aluminum-plated steel sheet is preferably 3.0 mm or less.
  • the filler material can be used in the form of powder or in the form of a wire, but from the viewpoint of yield, it is suitable to supply the filler in the form of a wire, that is, a filler wire.
  • Ac 3 point (° C.) of the weld metal defined by the above formula (1), ⁇ t M (second) defined by the above formula (2), and the above formula It is also possible to predict the 1 point (° C) of the weld metal defined in (3).
  • Ac 3 points (° C) can be easily achieved by setting the temperature to 1250 ° C. or lower, ⁇ t M (second) to 0.5 seconds or higher, and Ac 1 point (° C.) to 860 ° C. or lower.
  • the weld bead shape is estimated from the plate thickness of the aluminum-plated steel sheet to be welded, the groove interval, and the welding heat input.
  • the melting width of the plating layer is obtained from the estimated width of the weld bead on the front and back surfaces of the steel sheet, and the amount of Al dissolved from the plating layer into the weld metal forming the weld bead is estimated based on the melting width and the plating thickness.
  • the amount of welding metal is calculated
  • the estimated component of the weld metal is examined, and it is determined whether the component meets the above conditions (Al average concentration, Ac 3 points, etc.). If not, it is determined whether the above conditions can be met by changing the composition of the filler wire. (Iii) If the above conditions can be met by changing the composition of the filler wire, the filler wire is changed to that wire.
  • the groove interval is changed to increase the amount of deposited metal. Then, the component of the weld metal after the groove interval change is estimated in the procedure (i) above, and it is determined whether or not the weld metal meets the above conditions.
  • the filler wire component and the supply amount are adjusted is described by focusing on the weld metal component, but the relationship between the hardness of the base steel plate and the hardness of the weld metal is also described later after hot stamping.
  • the thickness of the thinnest portion of the weld metal of the tailored blank according to this embodiment is 80 of the plate thickness of the galvanized steel plate (the thinner plate thickness if the plate thickness is different). % Or more is preferable. Therefore, it is preferable from the viewpoint of improving joint strength to increase the thickness of the weld metal using a filler material.
  • the extension line of the surface of the butt-welded aluminum-plated steel sheet (the thicker surface when the thickness is different) is used as a reference.
  • the maximum height of the surface of the weld metal is preferably 300 ⁇ m or less. From the viewpoint of enhancing the hardenability of the weld metal, it is advantageous to supply carbon (C) or an element that enhances the hardenability into the weld metal with a filler material.
  • a cored wire in which carbon powder or metal powder is filled in a steel shell as a filler material because it does not contain flux, a metal cored
  • a so-called wire Since the metal cored wire is filled with carbon powder or metal powder, it becomes easy to supply C or the like to the weld metal by using this. If welding is performed using a cored wire containing carbon powder and the C content of the weld metal is made higher than the C content of the base material, the hardness of the weld metal can be made higher than the hardness of the base material.
  • a hot stamp member having such a weld metal is preferable because the joint portion does not break preferentially even when the member is subjected to a large deformation due to a collision or the like, so that a sufficient joint strength can be secured.
  • metal cored wire metal powder having a large specific surface area such as iron powder is used. Since oxygen is adsorbed on the surface of the metal powder, the amount of oxygen in the weld metal can be increased by welding using a metal cored wire.
  • the oxygen content of the weld metal is preferably 50 ppm or more higher than the average oxygen content of the steel sheet that is the plating base of the butt welded aluminum-plated steel sheet.
  • the oxygen content of the weld metal reduces the martensite block size of the weld metal and improves the toughness of the weld metal. Since the oxygen content varies depending on the supply amount of the metal cored wire, adjusting the supply amount of the metal cored wire according to the target oxygen amount, the butt welded aluminum content of the weld metal is adjusted. It is possible to make it 50 ppm or more higher than the average oxygen content of the steel sheet that is the plating base of the plated steel sheet.
  • a welding method it is preferable to use a welding method in which the penetration width of the steel sheet is small and the cooling rate after welding is fast.
  • a welding method capable of such welding for example, a welding method using a heat source having high energy density and capable of concentrating heating in a narrow area is suitable, such as laser welding, plasma welding, and electron beam welding. .
  • laser welding is most suitable.
  • the laser welding method is not particularly limited to the type of the laser oscillator, and may be welded with a laser output corresponding to the steel plate thickness used. At that time, as described above, a filler wire can be supplied and welded.
  • FIG. 2 shows an example of a method for manufacturing the above-described hot stamp tailored blank.
  • Hot stamp material hardness of weld metal after hot stamping
  • the hot stamp member according to the present embodiment can be obtained by applying a hot stamp to the hot stamp tailored plank according to the present embodiment.
  • a hot stamp member When a hot stamp member is incorporated in an automobile as a structural member, it must exhibit good deformability, energy absorption characteristics, and yield strength without breaking with a weld bead even when it is subjected to large deformation due to a collision. Don't be.
  • it is necessary that the strength of the welded portion of the hot stamp member is greater than any strength of the aluminized steel sheet after hot stamping that has been butt welded.
  • the product of the hardness Hv (WM) of the weld metal after hot stamping and the thickness t (WM) of the thinnest portion of the weld metal is butt welded in the hot stamp member.
  • the hardness of the steel sheet is an average value of three points of the Vickers hardness of the cross section measured in the same manner.
  • the above min ⁇ indicates a function that returns the minimum value among the arguments.
  • the manufacturing conditions for manufacturing a hot stamped tailored blank that provides a hot stamp member that satisfies the above-described conditions are that hot stamping is performed on the prototyped hot stamped tailored blank and the obtained hot stamp member is repeatedly verified. Can be determined empirically. Furthermore, the hardness Hv (BM) of the steel plate after hot stamping and the hardness Hv (WM) of the weld metal can be predicted to estimate whether the tailored blank satisfies the above conditions. For example, first, the C amount of the weld metal is estimated from various conditions such as the chemical composition of the steel sheet to be butt welded, the plate thickness and welding conditions, and the filler wire chemical composition when a filler wire is used.
  • the hardness Hv (M) when the weld metal is martensite is calculated from the following formula (4) based on the estimated C amount. Then subtract 100 from the calculated hardness. Thereby, the lower limit of the hardness of the weld metal can be estimated.
  • 100 is a numerical value obtained empirically.
  • Aluminum is mixed into the weld metal from the plated layer of the aluminum-plated steel sheet, and as a result, the Ac 1 point and Ac 3 point of the weld metal rise. Therefore, depending on the heating conditions of the hot stamping process and the average concentration of Al in the weld metal, the weld metal is not completely transformed into austenite in the hot stamping process, but is simply tempered without becoming a two-phase region or at all austenite transformed. Or just become.
  • the hardness softening degree
  • Hv (M) -100 although it softens most when it is simply tempered without austenite transformation.
  • Hv (M) the lower limit of the hardness of the weld metal is obtained by Hv (M) -100.
  • Hv (M) the value of Hv (M) calculated from Formula (2) and the element content (mass%) of the steel plate, ⁇ 1650 ⁇ (C + f (B)) + 10 ⁇
  • Si + 80 ⁇ (Mn + Cr + V + 2 ⁇ Mo + 2 ⁇ Nb + Cu / 2 + Ni / 4) + Ni / 4 ⁇ whichever is lower is adopted as the estimated value of Hv (BM).
  • f (B) 0.
  • a combination of steel plates constituting a tailored blank by determining whether the above-mentioned conditions are satisfied from the estimated value of hardness obtained as described above, the plate thickness of the steel plate to be butt welded, and the minimum thickness of the weld metal Can be predicted.
  • Method for Manufacturing Hot Stamp Member includes a hot stamp process (S3) for applying a hot stamp to the tailored blank according to the present embodiment described above, and welding is performed after the hot stamp process.
  • the product of the hardness of the metal and the thickness of the thinnest portion of the weld metal is made larger than the product of the hardness and the plate thickness of any one of the aluminum plated steel plates to be welded.
  • Hot stamping conditions may be determined by a conventional method. That is, when quenching is performed in the hot stamping process, it is common to perform hot stamping after heating the target aluminum plated steel sheet to a temperature of Ac 3 or higher (for example, about 900 ° C.).
  • the heating temperature may be Ac 1 point to Ac 3 point.
  • a direct water-cooled mold that cools the steel sheet by ejecting cooling water from the mold as a mold for hot stamping.
  • FIG. 3 shows an example of a method for manufacturing the hot stamp member described above.
  • steel plate 1 (steel type HS) having a tensile strength of 1470 MPa by hot stamping and steel plate 2 having tensile strengths of 270 MPa, 440 MPa, and 590 MPa before hot stamping.
  • Step types 270, 440, and 590 were prepared.
  • the plate thickness of the steel plate was in the range of 1.0 mm to 1.8 mm.
  • the amount of aluminum plating on the outer surface of the above steel plate without aluminum plating is 20 gr / m 2 only on one side, 20 gr / m 2 per side on both sides, and per side on both sides.
  • the average concentration of aluminum (Al) in the weld metal was determined by analyzing the weld metal collected after grinding and removing the concentrated layer of Al on the surface. Moreover, in order to confirm the quality of the welded part after laser welding, cross-sectional observation and bead thickness measurement of the welded part were performed. Subsequent to laser welding, hot stamping was performed on the obtained tailored blank (blank material). Hot stamping was performed by heating the blank material to 900 ° C. by furnace heating and sandwiching it with a mold to finish it into a flat plate. In order to confirm the quenching condition by hot stamping, the hardness of the base metal part and the weld bead part after hot stamping was measured.
  • the results of tests 1 to 15 could be evaluated as follows. When hot-stamping is performed after butt welding a steel plate for hot stamping with no plating and a steel plate of type 270 without plating, the average aluminum concentration of the weld metal is low, and no aluminum layer is observed on the surface of the weld bead. A thick oxide film was formed. This oxide film was partially peeled off when touched. Therefore, even if it applied as it was, it did not become the state from which the adhesiveness of a coating film was acquired (No. 1). A similar test was performed on a steel plate having 20 gr / m 2 plated only on one side.
  • the average aluminum concentration of the weld metal was low, the aluminum layer on the surface of the weld bead was unclear, and a thick oxide film was formed on the surface of the weld bead in the hot stamping process. (No. 2). Therefore, as a result of performing a test in which the plating adhesion amount and the plate thickness of the steel sheet were variously selected and the aluminum average concentration of the weld metal was separately determined, if the aluminum average concentration of the weld metal was 0.3% by mass or more, hot It was confirmed that the formation of a thick oxide film can be avoided in the stamping process (No. 3 to 5, 9, 11, 12, 14).
  • an Al concentrated layer was formed by plating aluminum so as to cover the surface of the weld bead.
  • This Al-concentrated layer combined with the selective oxidation of aluminum dissolved in the weld metal, formed a dense oxide film on the surface of the weld bead during hot stamping and thought to suppress the formation of a thick oxide film. It is done.
  • the average aluminum concentration of the weld metal was too high, the hardenability of the weld metal was lost, and a weld metal fracture occurred in a tensile test after hot stamping (No. 7).
  • No. 9 and 10 are examples of adjusting the thickness of the weld metal by supplying a solid wire (YGW12) having a diameter of 0.9 mm during welding in order to ensure the thickness of the weld metal. Two feeding speeds were used, 1 and 2 times the welding speed. At a feed rate of 1 time, a good joint that would break the base metal was obtained (No. 9), but when the feed speed was doubled, the bead increased and the base metal around the weld bead was not baked. It fractured at a lower strength than the strength (No. 10).
  • YGW12 solid wire
  • a steel plate (steel grade HS) having a tensile strength of 1470 MPa by hot stamping and a steel plate (steel grade 590) having a tensile strength before hot stamping of 590 MPa
  • the plate thickness of the steel plate used was in the range of 1.0 mm to 1.8 mm.
  • these steel plates have an aluminum plating adhesion amount of 40 gr / m 2 per side on both sides and 80 gr per side on both sides in addition to the steel plate without aluminum plating.
  • a steel plate plated with aluminum so as to be / m 2 .
  • These steel plates were butted in a state of being shear-cut, and after adjusting the gap interval between the steel plates, welding was performed with a fiber laser while supplying a filler material during welding.
  • the laser used a condensing optical system with a focal length of 300 mm and a condensing spot diameter of 0.6 mm, and the defocusing distance was 18 mm.
  • the shield during welding uses a shield nozzle (inner diameter 6 mm) coaxial with the laser beam, the standoff (distance between the nozzle tip and the steel plate surface) is set to 10 mm, and the Ar gas flow rate is 30 liters / min. I went there.
  • the welding speed and the machining point output were fixed at 4 m / min and 4.5 kW, and the supply rate of the filler metal was adjusted according to the plate thickness and the gap interval, so as to be about the same as the plate thickness.
  • the groove gap between the steel plates was changed from 0.1 mm to 0.4 mm, and a wire having a diameter of 1.2 mm was supplied as a filler metal and welded to adjust the components of the weld metal.
  • filler materials in addition to four types of filler wires, namely SX-1LD, a metal cored wire manufactured by Nippon Steel & Sumikin Welding Co., Ltd., solid wire YGW12, and the prototyped solid wire Filler-A (C: 0) .45%, Si: 0.8%, Mn: 1.5%, P: 0.015%, S: 0.011%) and the prototype metal cored wire Filler-B (C: 0.6%, Si: 0.8%, Mn: 6.0%, P: 0.01%, S: 0.009%) were used. After the laser welding, the average aluminum concentration of the weld metal was determined by analyzing the weld metal collected after grinding and removing the concentrated layer of Al on the surface.
  • the obtained tailored blank (blank material) was hot stamped.
  • Hot stamping was performed by heating the blank material to 900 ° C. by furnace heating and sandwiching it with a mold to finish it into a flat plate. After the hot stamping, the hardness of the base material portion and the weld bead portion on the low strength side after the hot stamping was measured in order to confirm the quenched state by the hot stamping.
  • the results of the tests 101 to 121 could be evaluated as follows. When the amount of plating is large or the steel plate is thin, the average aluminum concentration of the weld metal becomes too high. When the average aluminum concentration of the weld metal was 1.5% by mass or more, the hardenability of the weld metal was lost and the weld metal was broken in the tensile test (No. 101). Even when the average aluminum concentration is suppressed to less than 1.5% by mass, if the gap interval is narrow, the increase in the amount of C in the weld metal due to the flux cored wire is small, and the Ac 3 point is increased. There is a case.
  • the gap interval of the steel plate was increased, and flux cored wire SX-1LD with a large amount of C and Mn was supplied and welded.
  • the amount of C in the weld metal was increased and the average concentration of Al could be lowered, so that the metal was hardened and the hardness of the weld metal was higher than the hardness of the base metal, and hot stamping.
  • the weld metal had sufficient toughness, so that the crack was broken due to the base material. (No. 103 to 106, 109, 113, 114, 116, 117, 120).
  • the hardness of the weld metal was higher than that of the base metal.
  • oxygen was brought into the weld metal, and the toughness of the weld metal became sufficient, and even in an impact test, the crack was displaced to the base material and fractured (No. 119).
  • plasma welding is used instead of laser welding, and when SX-1LD is supplied and welding is performed, the weld bead width becomes as wide as 2 mm or more, so a large amount of Al from the steel plate plating layer enters the weld metal.
  • the estimated value of Ac 3 exceeded 1250 ° C.
  • the hardness of the weld metal was lower than that of the base metal, and it was confirmed that the weld metal fractured in the tensile test after hot stamping (No. 112).
  • the thickness of the steel plate was increased to 1.8 mm, the amount of plating was 40 gr / m 2 , and SX-1LD was supplied and welded.
  • the present invention it is possible to provide a tailored blank for hot stamping having high joint strength after hot stamping even if the galvanized steel plate is butt welded as it is without removing the plating layer to be welded. . Further, according to the present invention, even if a hot stamped tailored blank obtained by butt welding an aluminum-plated steel sheet as it is without removing the plating layer to be welded is used, a high joint strength after hot stamping is used. A hot stamp member having the following can be provided. In addition, since the surface of the weld bead after welding is covered with aluminum, the problem of decarburization and oxidation of the weld metal during hot stamping and the problem that the member obtained by hot stamping is inferior in corrosion resistance are solved. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Laser Beam Processing (AREA)
  • Arc Welding In General (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Coating With Molten Metal (AREA)

Abstract

 このホットスタンプ用テーラードブランクは、第1のアルミニウムめっき鋼板と第2のアルミニウムめっき鋼板とが突合せ溶接されて形成された溶接部を有するホットスタンプ用テーラードブランクであって、前記溶接部における溶接金属のAl平均濃度が0.3質量%以上1.5質量%以下、前記溶接金属のAc点が、1250℃以下であり、さらに、前記溶接部の表面に前記突合せ溶接の際に形成されたアルミニウム層を有する。

Description

ホットスタンプ用テーラードブランクおよびホットスタンプ部材ならびにそれらの製造方法
 本発明は、複数の鋼板が溶接されたテーラードブランクであって、ホットスタンプ(ホットプレスやダイクエンチともいわれるが、ここでは、ホットスタンプと記載する。)に供されるホットスタンプ用テーラードブランク、およびその製造方法に関する。また、本発明は、ホットスタンプ用テーラードブランクにホットスタンプを施すことにより得られるホットスタンプ部材およびその製造方法に関する。
 本願は、2012年03月28日に、日本に出願された特願2012-074222号と、2012年04月17日に、日本に出願された特願2012-093812号とに基づき優先権を主張し、その内容をここに援用する。
 近年、地球環境保護の視点からCOガス排出量削減を目的とした自動車車体軽量化に関する要求が高まり、それに対して自動車部材に高強度鋼板を適用する検討が積極的に行われている。さらに、要求される鋼材強度も益々高まっている。
 しかし、鋼板を高強度化するとプレス時に必要なプレス力が高くなり、設備の大型化を伴って設備コストが上がる。さらに、鋼板を高強度化する場合、鋼板の高強度化に伴う成形の難しさに起因する、金型の修正コスト、金型の磨耗対策費、及び形状凍結性向上のためのリストライキングによる生産性の低下などが問題となり、コストが増加すると指摘されている。
 これらの問題を解決する方法の一つとしてホットスタンプが注目されている。ホットスタンプとは、鋼板を高温に加熱し、高温域でプレス加工する技術である。特に鋼板をAr点以上の温度域でプレス加工し、金型(プレス金型)による抜熱で鋼板を急速に冷却し、プレス圧が掛かった状態で鋼板組織においてマルテンサイト変態やベイナイト変態などの相変態を起こさせることにより、高強度でかつ形状凍結性に優れたプレス加工品を製造することができる技術である。
 一方、プレス品の歩留りおよび生産性を向上させる手段として、テーラードブランクが、自動車用部材等のプレス素材に適用されている。
 テーラードブランクとは、目的に応じて、複数の鋼板の端面をレーザ溶接などによって接合したプレス用素材である。このようなテーラードブランクを用いることにより、一つの部品の中で板厚や強度を自由に変化させることが可能になる。そのため、部品の機能性が向上し、また、部品点数の削減も可能となる。
 ところで、自動車用部材など耐食性を必要とする部材の多くには、亜鉛系のめっき鋼板が用いられる。しかしながら、ブランク(プレス素材)をホットスタンプする場合、ブランクは700~1000℃に加熱される。この温度は、亜鉛の沸点に近いか沸点よりも高い。そのため亜鉛系のめっき鋼板にホットスタンプを行うと、ホットスタンプのための加熱を行う際に表面のめっき層の一部が溶融したり蒸発したりする場合がある。そのため、めっき層の溶融や蒸発を抑制する観点からは、ホットスタンプ用のブランクには、亜鉛系のめっきに比べて沸点が高いAl系めっきがなされた鋼板、いわゆるアルミニウムめっき鋼板を使用することが望ましい。 
 しかし、アルミニウムめっき鋼板に突き合せ溶接を行った場合、めっき被膜であるアルミニウムが溶接金属中に移動して偏析し、金属間領域を形成して破壊の起点となり、接合部の変形能が低下することが、特許文献1において指摘されている。
 そして、斯かる課題を解決する手段として、溶接される部分のめっき層を除去してから溶接を行うことが特許文献1に開示されている。
日本国特表2009-534529号公報
 特許文献1に開示された方法によれば、めっき被膜から溶接金属中へのアルミニウムの移動及び濃化を抑制することができ、このことに起因する弊害を抑制することが可能となる。しかし、特許文献1に開示された方法により得られた鋼板は、溶接部にめっき層が存在しないため、ホットスタンプの際に溶接金属の脱炭や酸化が生じるという問題や、ホットスタンプにより得られた部材が耐食性に劣るという問題がある。また、溶接される部分のめっき層を除去する工程が新たに必要となるため、生産性の低下やコストの上昇を招く。
 本発明は、斯かる従来技術に鑑みてなされたものであり、ホットスタンプ後において十分な継手強度を確保することを可能とする、ホットスタンプ用テーラードブランクおよびその製造方法を提供することを目的とする。また、このようなホットスタンプ用テーラードブランクを用いたホットスタンプ部材およびその製造方法を提供することを目的とする。
 本発明者らは、特許文献1に提案されているような溶接される部分のめっき層を除去する工程を省略するための検討を行った。すなわち、特許文献1において実施困難とされている、アルミニウムめっき鋼板において溶接される部分のめっき層を除去せずにそのまま突合せ溶接した、ホットスタンプ用テーラードブランクを実用化するため、鋭意検討を行った。
 その結果、本発明者らは、特許文献1に提案されているようにめっき被膜から溶接金属中へのアルミニウムの移動及び濃化を防止するのではなく、むしろめっき被膜から溶接金属中へのアルミニウムの移動及び濃化を促進させることにより、溶接金属の表面にアルミニウム層を形成させることができることを新たに知見した。また、これにより、ホットスタンプの際に溶接金属の脱炭や酸化が生じるという問題や、ホットスタンプにより得られた部材が耐食性に劣るという問題を解決しうることを新たに知見した。
 その一方で、めっき被膜から溶接金属中へのアルミニウムの移動及び濃化を過度に促進すると、ホットスタンプ後のアルミニウムめっき鋼板において十分な継手強度を確保することが困難になるという新たな課題も見出された。
 これは、特許文献1に記載されているような金属間領域の形成によるものではなく、溶接時にめっき被膜から溶接金属中へアルミニウムが移動し、濃化することで溶接金属のAc点が高温となり、ホットスタンプ工程において溶接金属に焼きを入れて強度を高めることが困難となることや、場合によっては焼き戻しによる強度の低下が生じるためであることが分かった。
 そこで、本発明者らは、ホットスタンプ工程における焼入れが十分でなくても、また、ホットスタンプ工程における焼き戻しが生じたとしても、ホットスタンプ後のホットスタンプ部材において十分な継手強度を確保すべく検討を行った。その結果、ホットスタンプ工程における焼入れによって溶接金属の高強度化を図るのではなく、ホットスタンプの前工程において溶接金属の強度を予め高めておくことを新たに着想した。
 そして、本発明者らは、めっき被膜から溶接金属中へのアルミニウムの移動及び濃化を適切な範囲に制御するとともに溶接金属のAc点を所定の温度以下とすることにより、ホットスタンプの前工程である突合せ溶接工程の冷却過程において焼入れを生じさせることができ、溶接金属の強度を高めることが可能となることを知見した。すなわち、ホットスタンプ工程における焼入れが生じなくとも、また、ホットスタンプ工程における焼き戻しが生じたとしても、ホットスタンプ後のホットスタンプ部材において十分な継手強度を確保できることを新たに知見した。
 さらに、本発明者らは、溶接金属の焼入れ性を高めることにより、ホットスタンプの前工程である突合せ溶接工程の冷却過程における焼入れをより促進させることができること、溶接金属のAc点を所定の温度以下とすることにより、ホットスタンプ工程における焼入れをも活用することが可能になること、及び、溶接金属の最小厚さを所定の値以上とすることにより、ホットスタンプ後においてより高い継手強度を確保しうることを知見した。
 さらに、本発明者らは、溶接金属の形状を規定することにより、ホットスタンプ用テーラードブランクの溶接部近傍と金型との接触をより確実なものとすることができ、これにより、金型の抜熱によるホットスタンプ用テーラードブランクの溶接部近傍の焼入れをより確実に行えることを知見した。
 さらに、本発明者らは、溶接金属の酸素含有量を高めることにより、溶接金属の靭性を向上させることが可能であることを知見した。
 本発明は、上述した新たな知見に基づいてなされたものであり、その要旨は以下のとおりである。
 (1)すなわち、本発明の一態様に係るホットスタンプ用テーラードブランクは、第1のアルミニウムめっき鋼板と第2のアルミニウムめっき鋼板とが突合せ溶接されて形成された溶接部を有するホットスタンプ用テーラードブランクであって、前記溶接部における溶接金属のAl平均濃度が0.3質量%以上1.5質量%以下、かつ、下式(1)において、単位℃で定義される前記溶接金属のAc点が、1250℃以下であり、さらに、前記溶接部の表面に前記突合せ溶接の際に形成されたアルミニウム層を有する。
Figure JPOXMLDOC01-appb-M000007
 ここで、式中のC、Ni、Si、V、Mo、W、Mn、Cr、Cu、P、Al、As、Tiは前記溶接金属中の各元素の質量%での含有量を表し、含有されていない元素は、その含有量を0として計算する。
 (2)上記(1)に記載のホットスタンプ用テーラードブランクは、さらに、下式(2)において単位秒で定義されるΔtが0.5秒以上であってもよい。
Figure JPOXMLDOC01-appb-M000008
 ここで、式中のC、Si、Al、Mn、Cu、Ni、Mo、Crは、前記溶接金属中の各元素の質量%での含有量を表し、含有されていない元素はその含有量を0として計算され、式中のΔHは、前記溶接金属中のNの質量%での含有量を用いて、fN=(0.02-N)/0.02とした時に、Bの質量%での含有量と、前記fNとに応じて以下のように定義される数値である。
          B≦0.0001のとき、ΔH=0、
   0.0001<B≦0.0002のとき、ΔH=0.03×fN、
   0.0002<B≦0.0003のとき、ΔH=0.06×fN、
   0.0003<Bのとき、ΔH=0.09×fNである。
 (3)上記(1)または(2)に記載のホットスタンプ用テーラードブランクは、さらに、下式(3)において単位℃で定義される前記溶接金属のAc点が860℃以下であってもよい。
Figure JPOXMLDOC01-appb-M000009
 ここで、式中のC、Si、Ni、V、Al、W、Cu、B、S、P、Mn、Cr、Moは、前記溶接金属中の各元素の含有量(質量%)であり、含有していない元素は含有量を0として計算する。
 (4)上記(1)~(3)のいずれか一項に記載のホットスタンプ用テーラードブランクは、前記溶接金属の最も薄い部分の厚さを、単位mmで、t、前記第1のアルミニウムめっき鋼板の板厚を、単位mmで、t1、前記第2のアルミニウムめっき鋼板の板厚を、単位mmで、t2としたとき、前記tが、前記t1と前記t2とが等しい場合には、前記t1の80%以上であり;前記t1と前記t2とが異なる場合には、前記t1及び前記t2のうち小さい方の80%以上であってもよい。
 (5)上記(1)~(4)のいずれか一項に記載のホットスタンプ用テーラードブランクは、前記溶接金属の最大高さが、前記第1のアルミニウムめっき鋼板の前記板厚である前記t1と前記第2のアルミニウムめっき鋼板の前記板厚である前記t2とが等しい場合には、前記第1のアルミニウムめっき鋼板の表面の延長線を基準として300μm以下であり;前記t1と前記t2とが異なる場合には、前記第1のアルミニウムめっき鋼板と前記第2のアルミニウムめっき鋼板との厚い方の表面の延長線を基準として、300μm以下であってもよい。
 (6)上記(1)~(5)のいずれか一項に記載のホットスタンプ用テーラードブランクは、前記溶接金属の酸素含有量が、前記第1のアルミニウムめっき鋼板のめっき基材である第1の鋼板および前記第2のアルミニウムめっき鋼板のめっき基材である第2の鋼板の平均酸素含有量よりも50ppm以上高くてもよい。
 (7)本発明の一態様に係るホットスタンプ用テーラードブランクの製造方法は、第1のアルミニウムめっき鋼板と第2のアルミニウムめっき鋼板とを用いて突合せ溶接を行う、ホットスタンプ用テーラードブランクの製造方法であって、溶接部における溶接金属のAl平均濃度が0.3質量%以上1.5質量%以下、かつ、下式(1)で定義される前記溶接金属のAc点(℃)が1250℃以下となるように、溶接条件を決定する溶接条件決定工程と、前記溶接条件で溶接を行って、前記第1のアルミニウムめっき鋼板および前記第2のアルミニウムめっき鋼板のアルミニウムめっき層に由来するアルミニウム層を前記溶接部の前記溶接金属の表面に形成する溶接工程と、を有する。
Figure JPOXMLDOC01-appb-M000010
 ここで、式中のC、Ni、Si、V、Mo、W、Mn、Cr、Cu、P、Al、As、Tiは前記溶接金属中の各元素の質量%での含有量を表す。また、含有されていない元素は、その含有量を0として計算する。
 (8)上記(7)に記載のホットスタンプ用テーラードブランクの製造方法では、前記溶接条件決定工程において、さらに、下式(2)によって単位秒で定義されるΔtが0.5秒以上となるように前記溶接条件を決定してもよい。
Figure JPOXMLDOC01-appb-M000011
ここで、式中のC、Si、Al、Mn、Cu、Ni、Mo、Crは、前記溶接金属中の各元素の質量%での含有量を表し、含有されていない元素はその含有量を0として計算する。また、式中のΔHは、前記溶接金属中のNの質量%での含有量を用いて、fN=(0.02-N)/0.02とした時に、Bの質量%での含有量と、前記fNとに応じて以下のように定義される数値である。
          B≦0.0001のとき、ΔH=0、
   0.0001<B≦0.0002のとき、ΔH=0.03×fN、
   0.0002<B≦0.0003のとき、ΔH=0.06×fN、
   0.0003<Bのとき、ΔH=0.09×fNである。
 (9)上記(7)または(8)に記載のホットスタンプ用テーラードブランクの製造方法では、さらに、前記溶接条件決定工程において、下式(3)によって単位℃で定義されるAc点が860℃以下となるように前記溶接条件を決定してもよい。
Figure JPOXMLDOC01-appb-M000012
 ここで、式中のC、Si、Ni、V、Al、W、Cu、B、S、P、Mn、Cr、Moは、前記溶接金属中の各元素の含有量(質量%)であり、含有していない元素は含有量を0として計算する。
 (10)上記(7)~(9)のいずれか一項に記載のホットスタンプ用テーラードブランクの製造方法では、さらに、前記溶接条件決定工程において、前記溶接金属の最も薄い部分の厚さを、単位mmで、t、前記第1のアルミニウムめっき鋼板の板厚を、単位mmで、t1、前記第2のアルミニウムめっき鋼板の板厚を、単位mmで、t2としたとき、前記tが、前記t1と前記t2とが等しい場合には、前記t1の80%以上となり、前記t1と前記t2とが異なる場合には、前記t1及び前記t2のうち小さい方の80%以上となるように前記溶接条件を決定してもよい。
 (11)上記(7)~(10)のいずれか一項に記載のホットスタンプ用テーラードブランクの製造方法では、さらに、前記溶接条件決定工程において、前記第1のアルミニウムめっき鋼板の板厚t1と前記第2のアルミニウムめっき鋼板の板厚t2とが等しい場合には、前記第1のアルミニウムめっき鋼板の表面の延長線を基準とした前記溶接金属の最大高さが300μm以下となり、前記t1と前記t2とが異なる場合には、前記第1のアルミニウムめっき鋼板と前記第2のアルミニウムめっき鋼板との厚い方の表面の延長線を基準とした前記溶接金属の最大高さが300μm以下となるように前記溶接条件を決定してもよい。
 (12)上記(7)~(11)のいずれか一項に記載のホットスタンプ用テーラードブランクの製造方法では、前記溶接条件決定工程において、前記溶接金属の酸素含有量が、前記第1のアルミニウムめっき鋼板および前記第2のアルミニウムめっき鋼板のめっき基材である鋼板の平均酸素含有量よりも50ppm以上高くなるように、前記溶接条件を決定してもよい。
 (13)上記(7)~(12)のいずれか一項に記載のホットスタンプ用テーラードブランクの製造方法では、前記突合せ溶接が、レーザ溶接、電子ビーム溶接またはプラズマ溶接のいずれかであってもよい。
 (14)上記(7)~(13)のいずれか一項に記載のホットスタンプ用テーラードブランクの製造方法では、前記突合せ溶接が、フィラーワイヤを供給しながら行うレーザ溶接であってもよい。
 (15)本発明の一態様に係るホットスタンプ部材は、上記(1)~(6)のいずれか一項に記載のホットスタンプ用テーラードブランクにホットスタンプを施すことにより得られたホットスタンプ部材であって、前記溶接金属の硬さと前記溶接金属の最も薄い部分の厚さとの積が、前記第1のアルミニウムめっき鋼板の硬さと前記第1のアルミニウムめっき鋼板の板厚との積、または前記第2のアルミニウムめっき鋼板の硬さと前記アルミニウムめっき鋼板の板厚との積のいずれかよりも大きい。
 (16)本発明の一態様に係るホットスタンプ部材の製造方法は、上記(1)~(6)のいずれか一項に記載のホットスタンプ用テーラードブランクにホットスタンプを施すホットスタンプ工程を有し、前記ホットスタンプ工程後における、前記溶接金属の硬さと前記溶接金属の最も薄い部分の厚さとの積を、前記第1のアルミニウムめっき鋼板の硬さと前記第1のアルミニウムめっき鋼板の板厚との積、または前記第2のアルミニウムめっき鋼板の硬さと前記アルミニウムめっき鋼板の板厚との積のいずれかよりも大きくする。
 本発明によれば、溶接される部分のめっき層を除去せずに、アルミニウムめっき鋼板をそのまま突合せ溶接しても、ホットスタンプ後において高い継手強度を有するホットスタンプ用テーラードブランクを提供することができる。
 また、本発明によれば、溶接される部分のめっき層を除去せずに、アルミニウムめっき鋼板をそのまま突合せ溶接して得られたホットスタンプ用テーラードブランクを用いたとしても、ホットスタンプ後において高い継手強度を有するホットスタンプ部材を提供することができる。
 また、上記ホットスタンプ用テーラードブランク及びホットスタンプ部材の溶接ビードの表面はアルミニウムで覆われるため、ホットスタンプの際に溶接金属の脱炭や酸化が生じるという問題やホットスタンプ後の耐食性に劣るという問題を解決することができる。
アルミニウムめっき鋼板に突合せレーザ溶接を行って形成した溶接部の断面の一例を示すための写真である 本実施形態に係るテーラードブランクの製造方法の一例を示すフローチャートである。 本実施形態に係るホットスタンプ部材の製造方法の一例を示すフローチャートである。
 本発明の一実施形態に係るホットスタンプ用テーラードブランク(以下、本実施形態に係るテーラードブランクと言う場合がある。)及びその製造方法、並びに、本発明の一実施形態に係るホットスタンプ部材(以下、本実施形態に係るホットスタンプ部材と言う場合がある。)及びその製造方法について以下に説明する。
1.ホットスタンプ用テーラードブランク
(溶接金属のAl平均濃度:0.3質量%以上1.5質量%以下)
 本実施形態に係るテーラードブランクは、複数のアルミニウムめっき鋼板が突合せ溶接によって接合されたものであり、突合せ溶接された部分には、溶接金属を含む溶接部を有する。
 本実施形態に係るテーラードブランクにおいて、ホットスタンプの際の溶接金属の脱炭や酸化を抑制した上でホットスタンプ後の継手強度を確保し、さらには、ホットスタンプ後の耐食性を確保するためには、後述するように、めっき被膜から溶接金属中へのアルミニウムの移動を適切な範囲に制御することが重要である。そのためには、溶接金属のAl平均濃度を0.3質量%以上、1.5%以下にすることが重要である。
 本発明者らは、アルミニウムめっき鋼板を、溶接される部分のめっき層を除去せずに、そのまま突合せ溶接したホットスタンプ用テーラードブランクにおいて、めっき被膜から溶接金属中へのアルミニウムを移動及び濃化させて溶接金属のAl平均濃度を一定以上とすることにより、溶接金属の表面にアルミニウム層を形成させることができることを知見した。すなわち、図1に示すように、溶接金属(溶接ビード)の表面が、突合せ溶接の際に形成されたアルミニウム層によって覆われることを見出した。また、溶接金属の表面がアルミニウム層に覆われることで、ホットスタンプの際に溶接金属の脱炭や酸化が生じるという問題や、ホットスタンプにより得られた部材(ホットスタンプ部材)が耐食性に劣るという問題を解決できることを新たに知見した。この理由は必ずしも明確ではないが、突合せ溶接の際、熱影響部において溶融しためっき金属(アルミニウム)が、溶接ビード溶融池の湯流れに引き込まれ、鋼より低融点のめっき金属が、溶融池の凝固の後も溶接ビードの表面に広がって溶接ビードを覆ったからであると考えられる。
 溶接金属のAl平均濃度が0.3質量%未満では、めっき被膜から溶接金属中へのアルミニウムの移動及び濃化が不足し、溶接金属の表面にアルミニウム層を十分に形成させることができない。そのため、ホットスタンプの際に溶接金属の脱炭や酸化が生じるという問題やホットスタンプにより得られた部材が耐食性に劣るという問題を解決できない。したがって、本実施形態において、溶接金属のAl平均濃度は0.3質量%以上とする。
 一方、アルミニウムめっき鋼板を、溶接される部分のめっき層を除去せずに、そのまま突合せ溶接したホットスタンプ用テーラードブランクにおいて、めっき被膜から溶接金属中へのアルミニウムの移動及び濃化を適度に抑制することにより、ホットスタンプの前工程である突合せ溶接工程の冷却過程において焼入れを生じさせることができる。この場合ホットスタンプ工程前に、溶接金属の強度を予め高めることが可能となる。すなわち、ホットスタンプ工程における焼入れが生じなくとも、また、ホットスタンプ工程における焼き戻しが生じたとしても、ホットスタンプ後(ホットスタンプ部材)において十分な継手強度を確保できる。一方、めっき被膜から溶接金属中へのアルミニウムの移動及び濃化が過度に進行した場合、溶接金属のAl平均濃度が高くなりすぎる。Alは、フェライトフォーマーであるので、溶接金属のAl平均濃度が高くなりすぎると、ホットスタンプの前工程である突合せ溶接工程の冷却過程においてオーステナイト相が生じなくなり、溶接工程の冷却過程において十分な焼入れが生じない。そのため、溶接金属の高強度化を図ることができず、ホットスタンプ後において十分な継手強度を確保することができなくなる。めっき被膜から溶接金属中へのアルミニウムの移動及び濃化を適度に抑制することにより、ホットスタンプ後において十分な継手強度を確保することができる。
 溶接金属のAl平均濃度が1.5質量%超では、上述した理由により、ホットスタンプ後において十分な継手強度を確保することができない。したがって、溶接金属のAl平均濃度は1.5質量%以下とする。溶接金属のAl平均濃度を1.5質量%以下とすることにより、ホットスタンプの前工程である突合せ溶接工程の冷却過程において焼入れを生じさせ、マルテンサイト組織またはマルテンサイトおよびベイナイトからなる組織といった焼きが入った組織を得ることが可能となる。
(溶接金属のAc点:1250℃以下)
 本発明者らは、溶接金属のAl平均濃度が1.5質量%以下であっても、溶接金属の化学組成において、CやMnなどの含有量が少なく、Siの含有量が多い場合などには、ホットスタンプの前工程である突合せ溶接工程の冷却過程において焼入れを生じさせて溶接金属の強度を予め高めることが困難となる、すなわち、ホットスタンプ後において十分な継手強度を確保することが困難となることを見出した。この点に関し、本発明者らは鋭意検討を行った。その結果、下記式(1)で定義されるAc点(℃)を1250℃以下とすることにより、ホットスタンプの前工程である突合せ溶接工程の冷却過程において焼入れを生じさせ、溶接金属の強度を予め高めることが可能となることを確認した。すなわち、Ac点を1250℃以下にすることで、ホットスタンプ工程における焼入れが生じなくとも、また、ホットスタンプ工程における焼き戻しが生じたとしても、ホットスタンプ後において十分な継手強度を確保しうることを実験的に確認した。
 式(1)で定義される溶接金属のAc点が1250℃超の場合、ホットスタンプの前工程である突合せ溶接工程の冷却過程において焼入れを生じさせることが困難となるので、ホットスタンプ後において十分な継手強度を確保することが困難となる。したがって、式(1)で定義される溶接金属のAc点は1250℃以下とする。
Figure JPOXMLDOC01-appb-M000013
 ここで、式中の元素記号(C、Ni、Si、V、Mo、W、Mn、Cr、Cu、P、Al、As、Ti)は溶接金属中の各元素の含有量(質量%)を表す。また、含有していない元素は含有量を0として計算する。
 なお、このAc点の式は、文献(Leslie.W.C.著、幸田成康/監訳「レスリー鉄鋼材料学」丸善(1985)発行、p.273)によりよく知られた式である。
 Ac点が低ければ低いほどホットスタンプの前工程である突合せ溶接工程の冷却過程において焼入れを生じさせるのに有利であるので、Ac点の下限は特に規定しない。
(溶接金属のΔt:0.5秒以上)
 上述したように、ホットスタンプ後において十分な継手強度を確保するには、ホットスタンプの前工程である突合せ溶接工程の冷却過程において焼入れを生じさせ、溶接金属の強度を予め高めることが重要である。そのためには、上記Ac点の制御に加えて、溶接金属の焼入れ性を高くすることが好ましい。
 下記式(2)で定義されるΔtは、溶接金属の組織が、冷却によって100%マルテンサイトになる臨界の冷却時間(秒)を表す焼入れ性の指標である。この値は、その値が大きいほど焼きが入りやすいことを示している。この式(2)は、例えば、文献(糟谷、橋場:新日鉄技報第、385号、p.48-55(2006))に示されている。
 式(2)で定義されるΔtを0.5秒以上とすることにより、ホットスタンプの前工程である突合せ溶接工程の冷却過程において焼入れを生じさせ、溶接金属の強度を予め高めることができる。また、溶接金属の強度を高めることで、ホットスタンプ後において十分な継手強度を確保することが容易となる。したがって、本実施形態に係るテーラードブランクでは、式(2)で定義される溶接金属のΔtを0.5秒以上とすることが好ましい。Δtを1.0秒以上とすることがさらに好ましい。Δtは、大きければ大きいほど焼入れ性が高まるので、Δtの上限は特に限定する必要はない。
Figure JPOXMLDOC01-appb-M000014
 ここで、各元素記号(C、Si、Al、Mn、Cu、Ni、Mo、Cr)は、溶接金属中のその元素の含有量(質量%)であり、含有していない元素は含有量を0として計算する。また、式中のΔHは、溶接金属中のNの含有量(質量%)を用いて、fN=(0.02-N)/0.02とした時に、Bの含有量(質量%)に応じて以下のように定義される数値である。
          B≦0.0001のとき、ΔH=0、
   0.0001<B≦0.0002のとき、ΔH=0.03×fN、
   0.0002<B≦0.0003のとき、ΔH=0.06×fN、
   0.0003<Bのとき、ΔH=0.09×fN。
(溶接金属のAc点:860℃以下)
 上述したように、めっき被膜から溶接金属中へのアルミニウムの移動及び濃化を促進すると、溶接金属のAc点が高温となるため、溶接金属のAc点をホットスタンプ工程の際の加熱温度以下とすることが困難となる。しかしながら、溶接金属のAc点をホットスタンプ工程の際の加熱温度以下とすることは可能である。Ac点をホットスタンプ工程の際の加熱温度以下にすることで、ホットスタンプ工程における焼入れによって溶接金属の高強度化を図ることが可能となる。そのため、ホットスタンプ後においてより強い継手強度を確保することが可能となる。したがって、前記溶接金属は、下式(3)で定義されるAc点が860℃以下であることが好ましい。
Figure JPOXMLDOC01-appb-M000015
 ここで、各元素記号(C、Si、Ni、V、Al、W、Cu、B、S、P、Mn、Cr、Mo)は、溶接金属中のその元素の含有量(質量%)であり、含有していない元素は含有量を0として計算する。
 Ac点が低ければ低いほどホットスタンプの工程において焼入れを生じさせるのに有利であるので、Ac点の下限は特に規定しない。
(溶接金属の形状)
 シャー切断されたままの鋼板(アルミニウムめっき鋼板)の端面を突き合わせて行う突合せ溶接では、端面の切断精度の関係で、通常は溶接ビード表面が鋼板表面に対して窪んだ状態(肉やせした状態)で溶接される。この場合、本実施形態に係るテーラードブランクの溶接金属の最も薄い部分の厚さを、突合せ溶接されたアルミニウムめっき鋼板の板厚(板厚が異なる場合には薄い方の板厚)の80%以上とすることが好ましい。このようにすることで、溶接継手部の強度を高めることができる。溶接金属の最も薄い部分の厚さは、突合せ溶接されたアルミニウムめっき鋼板の板厚(板厚が異なる場合には薄い方の板厚)の90%以上とすることがさらに好ましい。なお、本実施形態における溶接金属の最も薄い部分の厚さとは、鋼板における板厚方向が全て溶接金属からなる部位のうちで、最も薄い部分の厚さを指す。
 溶接金属の厚さを厚くするには、例えばフィラーワイヤ等の溶加材を用いて肉やせ分を補えばよい。しかしながら、継手強度向上等を目的にフィラーワイヤ等の溶加材を用いて鋼板の端面の突合せ溶接を行って溶接金属の厚さを厚くする場合には、突合せ溶接されたアルミニウムめっき鋼板の表面(板厚が異なる場合には厚い方の表面)の延長線を基準とした溶接金属の表面の最大高さを300μm以下とすることが好ましい。このようにすることで、ホットスタンプ時におけるホットスタンプ用テーラードブランクの溶接部近傍と金型との接触をより確実にできる。従って、金型の抜熱によるホットスタンプ用テーラードブランクの溶接部近傍の焼入れをより確実に行うことができる。
(溶接金属の酸素含有量)
 本実施形態に係るテーラードブランクの溶接金属の酸素含有量は、突合せ溶接されたアルミニウムめっき鋼板のめっき基材である鋼板の平均酸素含有量よりも50ppm以上高くすることが好ましい。このようにすることで、詳細なメカニズムは不明であるが、溶接金属のマルテンサイトのブロックサイズが小さくなり、溶接金属の靭性が向上する。溶接金属の酸素含有量を高めるには、例えば、メタルコアドワイヤを用いて溶接すればよい。メタルコアドワイヤを用いた場合、酸素含有量はメタルコアドワイヤの供給量に応じて変化するので、目的とする酸素量に応じた供給量を適用すればよい。溶接金属の酸素含有量と、突合せ溶接されたアルミニウムめっき鋼板のめっき基材である鋼板の平均酸素含有量との差の上限は、特に限定しないが、粗大な酸化物の形成を抑制する観点からは、300ppm以下とすることが好ましい。
(アルミニウムめっき鋼板)
 本実施形態に係るテーラードブランクに用いられるアルミニウムめっき鋼板は、特に限定されるものではない。例えば、本実施形態に係るテーラードブランクを得るために突合せ溶接に供されるアルミニウムめっき鋼板としては、同種の鋼板を用いてもよいが、部位毎に異なる特性を具備させることを目的として、強度等の特性が異なる鋼板を用いてもよい。
 ホットスタンプの焼入れ作用により機械特性の向上を図る部位に適用する場合には、例えば、質量%で、C:0.15~0.25%、Si:0.1~0.35%、Mn:0.8~1.8%、Cr:0.01~0.5%、B:0.1%以下(0%を含む)を含有し、残部Feおよび不純物からなる化学組成を有する鋼板や、この化学組成をベースに、さらに、Ti、Nb、Moの1種または2種以上をさらに含有する化学組成を有する鋼板をめっき基材として有するアルミニウムめっき鋼板を用いてもよい。
 本実施形態に係るテーラードブランクに用いられる、突合せ溶接されるアルミニウムめっき鋼板の強度は、ホットスタンプ後の強度の観点からは特に規定する必要はない。しかしながら、突合せ溶接を施す前のブランキング等の加工性を考慮すると、ホットスタンプ前の引張強度が270~590MPaであることが好ましい
 本実施形態に係るテーラードブランクに用いられる、突合せ溶接されるアルミニウムめっき鋼板の板厚の範囲としては、例えば0.8~4.0mmである。好ましくは、0.8~2.0mmである。
 アルミニウムめっき鋼板のアルミめっき層は、鋼板の腐食を防止するとともに、鋼板をホットスタンプする際に、高温に加熱された鋼板の表面が酸化することにより発生するスケール(鉄の酸化物)の生成を防止する。アルミめっき層は、有機系材料によるめっき被覆や他の金属系材料(例えばZn系)によるめっき被覆よりも沸点などが高いため、ホットスタンプ方法により成形する際に高い温度での加工が可能となる。そのため、ホットスタンプ工程において溶接金属に焼きを入れる観点からは有利である。これらの観点から、アルミめっき層は鋼板の両面に形成されていることが好ましい。
 このアルミめっき層は、例えば溶融めっき法により鋼板の表面に形成すればよい。めっき層の成分としては、Alを主体として含有するものであればよい。Al以外の成分は、特に限定しない。例えば、Siを3~15質量%含有するものでもよい。Si含有量を3質量%以上とすることにより、溶融めっき金属の被覆の際に生成される合金層を制御することができる。一方、Si含有量を15%以下とすることにより、めっき層について良好な加工性と耐食性とを確保することができる。
2.ホットスタンプ用テーラードブランクの製造方法
(溶接金属の化学組成の調整方法)
 上述したように、アルミニウムめっき鋼板を、溶接される部分のめっき層を除去せずに、そのまま突合せ溶接したホットスタンプ用テーラードブランクは、突合せ溶接時にめっき被膜から溶接金属中へのアルミニウムが移動して濃化することで溶接金属のAc点が高温となる。これによりホットスタンプ工程において溶接金属に焼きを入れて強度を高めることが困難となったり、焼き戻しによる強度の低下が生じたりする場合がある。
 このため、本実施形態に係るテーラードブランクの製造方法では、溶接金属のAl平均濃度が0.3質量%以上1.5質量%以下、上述の式(1)で定義される溶接金属のAc点(℃)が1250℃以下となるように条件を調整して溶接を行う(溶接条件決定工程:S1)。この場合、ホットスタンプの前工程である突合せ溶接工程の冷却過程において焼入れを生じさせ、溶接金属の強度を予め高めることが可能となるので、ホットスタンプ工程における焼入れが生じなくとも、また、ホットスタンプ工程における焼き戻しが生じたとしても、ホットスタンプ後において十分な継手強度が確保できる。
 さらに、本実施形態に係るテーラードブランクの製造方法では、溶接されるアルミニウムめっき鋼板のアルミニウムめっき層に由来するアルミニウム層を、溶接金属表面に形成する(溶接工程:S2)。
 ここで、溶接金属のAl平均濃度は、アルミニウムめっき鋼板の表裏の溶接ビード幅、めっき層の厚さ、開先間隔等を用いて、めっき層から溶接金属に取り込まれるAl量を算出し、めっき基材である鋼板から取り込まれるAl量や溶加材を用いる場合には溶加材から取り込まれるAl量を推定し、これらの値と溶接金属の断面積とから算出することができる。すなわち、アルミニウムめっき鋼板の化学組成、めっき付着量、板厚、開先間隔、溶加材の化学組成等から予測することができる。そのため、上記を考慮して溶接条件を決定することで、溶接金属のAl平均濃度を制御することができる。
 例えば、溶加材を用いずに溶接金属のAl平均濃度を1.5質量%以下とするには、付着量40/40gr/mの両面アルミニウムめっき鋼板を開先間隔0.2mmや0.4mmで突合せ溶接する場合は、板厚が0.8~2.0mmの鋼板を用いることができる。また、付着量80/80gr/mの両面アルミニウムめっき鋼板を開先間隔0.2mmや0.4mmで突合せ溶接する場合は、板厚が1.4~4.0mmの鋼板を用いることができる。付着量80/80gr/mの両面アルミニウムめっき鋼板を開先間隔0.2mmや0.4mmで突合せ溶接する場合は、アルミニウムめっき鋼板の板厚を3.0mm以下とすることが好ましい。
 めっきの付着量が多い場合には、鋼板の板厚にもよるが、溶接金属のAl平均濃度を1.5質量%以下とすることが困難な場合がある。そのような場合には、鋼板の突合せ部分に間隔を形成し、溶接の際にフィラーワイヤなどの溶加材を用いてその間隔を溶接金属で充填するようにして、Alを希釈すればよい。これにより、溶接金属の量が増加し、溶接金属のAl濃度を1.5質量%以下とすることができる。溶加材は、粉末の形態のものでもワイヤの形態でも使用できるが、歩留まりの観点からは、ワイヤの形態すなわちフィラーワイヤとして供給するのが適している。
 Al平均濃度の制御と同様の手法により、上述の式(1)で定義される溶接金属のAc点(℃)、上述の式(2)で定義されるΔt(秒)及び上述の式(3)で定義される溶接金属のAc点(℃)も予測することができる。これらの予測に基づいて、アルミニウムめっき鋼板の化学組成、めっき付着量、板厚、開先間隔、溶加材の化学組成等を調整した溶接条件で溶接を行うことにより、Ac点(℃)を1250℃以下としたり、Δt(秒)を0.5秒以上としたり、Ac点(℃)を860℃以下としたりすることを容易に実現できる。
 具体的には、次のような手順で溶加材成分および溶加材供給量を推定し、推定した成分と供給量とを用いて実験的に確認するとよい。
 (i)まず、溶接するアルミニウムめっき鋼板の板厚と開先間隔と溶接入熱量とから、溶接ビード形状を推定する。推定した鋼板表裏面における溶接ビードの幅からめっき層の溶融幅を求め、その溶融幅とめっき厚さとに基づいて、溶接ビードを形成する溶接金属中にめっき層から溶け込むAl量を推定する。そして、推定した溶接ビード形状から溶着金属量を求め、溶接するアルミニウムめっき鋼板の成分(化学成分)、用いるフィラーワイヤの組成及び溶接金属中に溶け込むAl量から、溶接金属の成分を推定する。
 (ii)次に、推定した溶接金属の成分を調べ、成分が上記条件(Al平均濃度、Ac点など)に適合するかを判定する。適合しない場合は、フィラーワイヤの組成を変更することで上記条件に適合させられるかどうかを判定する。
 (iii)フィラーワイヤの組成の変更により、上記条件に適合させることができる場合は、フィラーワイヤをそのワイヤに変更する。フィラーワイヤの組成を変更しても適合させられない場合は、開先間隔を変更して、溶着金属量を増加させる。そして、上記(i)の手順で開先間隔変更後の溶接金属の成分を推定して、溶接金属が上記条件に適合するかどうかを判定する。
 以上では、溶接金属の成分に着目して、フィラーワイヤの成分や供給量を調整する場合について説明したが、母材鋼板の硬さと溶接金属の硬さとの関係についても、後述するホットスタンプ後の鋼板の硬さHv(BM)及び溶接金属の硬さHv(WM)の予測方法を用いて、母材鋼板の硬さと溶接金属の硬さとの関係が後述する条件を満たすかどうか推定することに調整できる。
 このように、溶加材を使用することで、Alの希釈のみではなく、その化学組成や供給量等を調整することにより、Ac点(℃)、Δt(秒)またはAc点(℃)を調整することが可能である。さらには、溶加材の使用により、溶接金属の肉厚を厚くして継手強度を向上させることや、その形状を制御することも可能である。上述したように、本実施形態に係るテーラードブランクの溶接金属の最も薄い部分の厚さは、突合せ溶接されたアルミニウムめっき鋼板の板厚(板厚が異なる場合には薄い方の板厚)の80%以上とすることが好ましい。そのため、溶加材を用いて、溶接金属の肉厚を厚くすることは、継手強度向上の観点から好ましい。しかしながら、ホットスタンプ用テーラードブランクの溶接部近傍の焼入れをより確実に行う点から、突合せ溶接されたアルミニウムめっき鋼板の表面(板厚が異なる場合には厚い方の表面)の延長線を基準とした溶接金属の表面の最大高さを300μm以下とすることが好ましい。
 溶接金属の焼入性を高める観点からは、溶加材により炭素(C)や焼入性を高める元素を溶接金属中に供給することが有利である。しかしながら、Cや合金元素の含有量の高いソリッドワイヤは製造が困難なことから、溶加材として、鋼製の外皮の中に炭素粉末や金属粉末を充填したコアドワイヤ(フラックスを含有しないからメタルコアドワイヤともいわれる)を用いるのが簡便であり好ましい。メタルコアドワイヤは、炭素粉末や金属粉末が充填されているので、これを用いることにより溶接金属へCなどを供給することが容易となる。炭素粉末を含むコアドワイヤを用いて溶接し、溶接金属のC含有量を母材のC含有量より多くすれば、溶接金属の硬さを母材の硬さよりも高くすることができる。そのような溶接金属を有するホットスタンプ部材は、その部材が衝突などによって大変形を受けた際にも、継手部が優先的に破断しないので、さらに十分な継手強度を確保することができ、好ましい。
 メタルコアドワイヤでは、鉄粉など比表面積が大きい金属粉体を用いる。この金属粉体表面には酸素が吸着していることから、メタルコアドワイヤを用いて溶接することにより溶接金属中の酸素量を高めることが可能である。上述したように、溶接金属の酸素含有量は、突合せ溶接されたアルミニウムめっき鋼板のめっき基材である鋼板の平均酸素含有量よりも50ppm以上高くすることが好ましい。詳細なメカニズムは不明であるが、溶接金属の酸素含有量を高くすることで、溶接金属のマルテンサイトのブロックサイズが小さくなり、溶接金属の靭性が向上する。酸素含有量はメタルコアドワイヤの供給量に応じて変化するから、目的とする酸素量に応じてメタルコアドワイヤの供給量を調整することにより、溶接金属の酸素含有量を、突合せ溶接されたアルミニウムめっき鋼板のめっき基材である鋼板の平均酸素含有量よりも50ppm以上高くすることが可能である。
(溶接方法)
上述したように、アルミニウムめっき鋼板の溶接される部分のめっき層を除去せずに、そのまま突合せ溶接したホットスタンプ用テーラードブランクは、溶接時にめっき被膜から溶接金属中へアルミニウムが移動して濃化することで溶接金属のAc点が高温となり、ホットスタンプ工程において溶接金属に焼きを入れて強度を高めることが困難となる。しかしながら、ホットスタンプの前工程である突合せ溶接工程の冷却過程において焼入れを生じさせ、溶接金属の強度を予め高めておくことで、ホットスタンプ工程における焼入れが生じなくとも、また、ホットスタンプ工程における焼き戻しが生じたとしても、ホットスタンプ後において十分な継手強度が確保できる。このため、溶接方法としては、鋼板の溶け込み幅が小さく、溶接後の冷却速度の速い溶接方法を用いることが好ましい。そのような溶接が可能な溶接方法としては、例えば、レーザ溶接、プラズマ溶接、電子ビーム溶接のような、エネルギー密度が高く、狭い領域を集中して加熱できる熱源を用いた溶接方法が適している。中でも、レーザ溶接が最も適している。レーザ溶接方法は、レーザ発振器の種類などには特に限定されず、用いられる鋼板板厚に応じたレーザ出力で溶接すればよい。その際、前述のように、フィラーワイヤを供給して溶接することもできる。
 なお、図2に、上述したホットスタンプ用テーラードブランクの製造方法の一例を示す。
3.ホットスタンプ部材
(ホットスタンプ後の溶接金属の硬さ)
 本実施形態に係るホットスタンプ部材は、本実施形態に係るホットスタンプ用テーラードプランクにホットスタンプを施すことにより得られる。ホットスタンプ部材は、構造部材として自動車に組み込まれた場合に、衝突によって大変形を受けた際にも、溶接ビードで破断することなく、良好な変形能、エネルギー吸収特性及び耐力を発揮しなければならない。
 そのためには、ホットスタンプ部材の溶接部の強度が、突合せ溶接されたホットスタンプ後のアルミニウムめっき鋼板のいずれかの強度よりも大きいことが必要である。
 すなわち、上記を満足するためには、ホットスタンプ部材において、ホットスタンプ後の溶接金属の硬さHv(WM)と溶接金属の最も薄い部分の厚さt(WM)との積が、突合せ溶接されたホットスタンプ後のアルミニウムめっき鋼板の一方についての硬さHv1(BM)と板厚t1(BM)との積、または他方についての硬さHv2(BM)と板厚t2(BM)との積のいずれかよりも大きいこと、すなわち、
  Hv(WM)×t(WM)>min{Hv1(BM)×t1(BM),Hv2(BM)×t2(BM)}
を満足することが必要である。
 ここで、溶接金属の硬さは、中心部のビード断面において板厚方向に5点測定した場合におけるビッカース硬さの最大値と最小値とを除いた中3点の測定値を平均したものであり、鋼板の硬さは、同様に測定した断面のビッカース硬さの中3点の平均値である。また、上記のmin{ }は引数のうち最小の値を返す関数を示している。
 めっき被膜から溶接金属中へのアルミニウムが移動及び濃化することにより溶接金属のAc点が上昇すると、溶接金属はホットスタンプの際の加熱においてオーステナイト変態せずに、焼き戻されて軟化する場合がある。こうした場合でも、溶接する鋼板の組み合わせや溶接条件等を選択することによりHv(WM)×t(WM)>min{Hv1(BM)×t1(BM),Hv2(BM)×t2(BM)}を満たすようにすることは可能である。そのようにすることで、ホットスタンプ部材が自動車の構造部材として十分な機能を発揮する。
 上述した条件を満たすホットスタンプ部材が得られるホットスタンプ用テーラードブランクを製造の製造条件は、試作したホットスタンプ用テーラードブランクにホットスタンプを施し、得られたホットスタンプ部材を検証することを繰り返すことで経験的に求めることができる。さらには、ホットスタンプ後の鋼板の硬さHv(BM)と溶接金属の硬さHv(WM)とを予測して、テーラードブランクが上記の条件を満たすかどうかを推定することもできる。
 例えば、まず、突合せ溶接する鋼板の化学組成、板厚及び溶接条件、並びに、フィラーワイヤを用いる場合はフィラーワイヤの化学組成といった各種条件から、溶接金属のC量を推定する。次いで、推定されたC量によって、溶接金属がマルテンサイトである時の硬さHv(M)を下式(4)より計算する。次いで、計算された硬さから100を引く。これにより溶接金属の硬さの下限を推定することができる。
Figure JPOXMLDOC01-appb-M000016
 ここで、100は、経験的に求められた数値である。溶接金属には、アルミニウムめっき鋼板のめっき層からアルミニウムが混入し、これにより、溶接金属のAc点およびAc点が上昇する。従って、ホットスタンプ工程の加熱条件や溶接金属のAl平均濃度によっては、ホットスタンプ工程において溶接金属が完全にオーステナイトに変態せず、2相域となったり、全くオーステナイト変態せずに単に焼き戻されるだけになったりする。ここで、オーステナイト変態せずに単に焼き戻されるだけの場合に最も軟化するのであるが、その硬さ(軟化度合)はせいぜいHv(M)-100程度になることが経験的に確認された。そのため、溶接金属の硬さの下限は、Hv(M)-100によって求められる。
 また、ホットスタンプ後の鋼板については、式(2)から計算されるHv(M)の値、および、鋼板の元素含有量(質量%)を用いて{1650×(C+f(B))+10×Si+80×(Mn+Cr+V+2×Mo+2×Nb+Cu/2+Ni/4)+Ni/4}により計算される値のうち、いずれか低い方をHv(BM)の推定値として採用する。
 ここで、f(B)は、Bの含有量によって決まる値であり、B含有量≧0.0004質量%の場合は、f(B)=0.03とし、B含有量<0.0004質量%の場合は、f(B)=0とする。
 以上のようにして得られた硬さの推定値と、突合せ溶接する鋼板の板厚および溶接金属の最小厚とから、上述した条件を満たすかどうか判定して、テーラードブランクを構成する鋼板の組み合わせの可能性を予測することができる。
4.ホットスタンプ部材の製造方法
 本実施形態に係るホットスタンプ部材の製造方法は、上述した本実施形態に係るテーラードブランクにホットスタンプを施すホットスタンプ工程(S3)を有し、ホットスタンプ工程後において、溶接金属の硬さと前記溶接金属の最も薄い部分の厚さとの積を、溶接されるアルミニウムめっき鋼板いずれか一方の硬さと板厚との積のよりも大きくする。ホットスタンプの条件は常法によればよい。すなわち、ホットスタンプ工程において焼入れを行う場合には、対象となるアルミニウムめっき鋼板をAc点以上(例えば、900℃程度)の温度に加熱したのちにホットスタンプを行うのが一般的である。焼入れ後の組織を複合組織にする場合には、加熱温度をAc点~Ac点としてもよい。
 ホットスタンプ用テーラードブランクへの焼入れをより確実に行う観点からは、ホットスタンプを施す際の金型として、金型から冷却水を噴出して鋼板を冷却する直水冷金型を用いることが好ましい。
 図3に、上述したホットスタンプ部材の製造方法の一例を示す。
 ホットスタンプ後に部分的に強度の異なるテーラードブランクを得るために、ホットスタンプにより引張強度が1470MPa級となる鋼板1(鋼種HS)と、ホットスタンプ前の引張強度が270MPa、440MPa、590MPaとなる鋼板2(鋼種270、440、590)とを準備した。鋼板の板厚は、1.0mmから1.8mmの範囲とした。
 溶接金属のアルミニウム平均濃度を作り分けるために、アルミめっきの無い上記の鋼板の外表面に、アルミめっき付着量が、片面のみ20gr/m、両面に片面当たり20gr/m、両面に片面当たり40gr/m、および両面に片面当たり80gr/mの鋼板を試作した。
 これらの鋼板を、シャー切断したままの状態で突合せて、ファイバレーザにより溶接した。レーザの集光スポット径は0.6mmとした。溶接時のシールドは、レーザ光と同軸のシールドノズル(内径6mm)を用い、スタンドオフ(ノズル先端と鋼板表面との距離)を10mmに設定して、Arガス流量が20リットル/minとなる条件で行った。溶接速度は4m/minにて一定させ、板厚に応じてレーザ出力を2kWから4kWの範囲で調整した。
 レーザ溶接後、表面のAlの濃化層を研削除去した後に採取した溶接金属を用いて溶接金属のアルミニウム(Al)平均濃度を分析して求めた。また、レーザ溶接後の溶接部の品質確認のために、溶接部の断面観察とビード厚計測とを実施した。
 レーザ溶接に次いで、得られたテーラードブランク(ブランク材)に対して、ホットスタンプを行った。ホットスタンプは、ブランク材を炉加熱により900℃にまで加熱して、金型で挟み込むことにより行い、平板に仕上げた。
 ホットスタンプによる焼入れ状態の確認のため、ホットスタンプ後の母材部および溶接ビード部の硬さ測定を実施した。また、部分的に強度を作り分けたホットスタンプ後の部材性能評価として、ホットスタンプ時の溶接ビード表面の酸化状況の観察及び溶接ビードと直交して負荷をかける引張試験を行った。なお、引張試験は、JIS2241:2011に準拠して行った。
 なお、引張試験の結果、溶接金属で破断せず、母材で破断した場合に十分な継手強度が得られたと判断した。ただし、破断位置が母材部であっても本来の母材強度よりも大幅に低い強度で破断した場合には十分な継手強度が得られていないと判断した。
使用した鋼板と、溶接後及びホットスタンプ後に各種の測定を行った結果とを表1、2に示す。
 実施したNo.1~15の試験の結果は次のように評価できた。
 めっきのないホットスタンプ用鋼板とめっきのない鋼種270の鋼板とを突合せ溶接した後、ホットスタンプした場合、溶接金属のアルミニウム平均濃度が低く、溶接ビード表面にアルミニウム層は観察されず、溶接ビードには厚い酸化膜が形成された。この酸化膜は、触ると部分的に剥がれ落ちる状態であった。そのため、そのまま塗装しても、塗膜の密着性が得られる状態とはならなかった(No.1)。また、片面にのみ20gr/mのめっきを付着させた鋼板でも同様の試験を行った。その結果、やはり、溶接金属のアルミニウム平均濃度が低く、溶接ビード表面のアルミニウム層は不明確であり、ホットスタンプ工程において溶接ビード表面には厚い酸化膜が形成された。(No.2)。
 そこで、めっき付着量や鋼板の板厚を種々選択し、溶接金属のアルミニウム平均濃度を作り分けた試験を行った結果、溶接金属のアルミニウム平均濃度が、0.3質量%以上であれば、ホットスタンプ工程において、厚い酸化膜の形成を避けることができることが確認された(No.3~5、9、11、12、14)。これらの鋼板では、めっきのアルミニウムにより、溶接ビード表面を覆うようにAl濃化層が形成されていた。このAl濃化層が、溶接金属中に溶解したアルミニウムの選択酸化と相俟って、ホットスタンプ中に溶接ビード表面に緻密な酸化膜を形成し、厚い酸化膜の形成を抑制したものと考えられる。
 一方、溶接金属のアルミニウム平均濃度が高くなりすぎると、溶接金属の焼入れ性が失われ、ホットスタンプ後の引張試験で溶接金属破断となった(No.7)。めっき付着量が多くなったり、鋼板板厚が薄くなったりして、溶接金属のAl平均濃度が高くなっていくと、ホットスタンプ工程での加熱温度では、金属組織を完全にオーステナイトにできず、十分に焼きが入らなくなる。また、上述した式(1)で定義されるAc点が1250℃を上回ると、レーザ溶接後の冷却過程でもオーステナイト相が生じなくなり、焼きが入らなくなった。このため、溶接金属の硬さと溶接金属の最も薄い部分の厚さとの積が、低強度側母材の硬さと板厚との積よりも小さくなり、ホットスタンプ後の引張試験で溶接金属破断となることが確認できた(No.6、7、13)。
 また、溶接金属の厚さが母材鋼板の板厚に比べて小さくなり過ぎると、溶接継手部の強度が低下してホットスタンプ後の引張試験で溶接金属破断した(No.13)。
 また、No.9及び10は、溶接金属の厚さを確保するために、直径0.9mmのソリッドワイヤ(YGW12)を溶接中に供給して溶接金属の厚さを調整した例である。送給速度は、溶接速度の1倍と2倍との2種類とした。送給速度1倍では、母材破断となる良好な継手が得られたが(No.9)、2倍にするとビードが高くなり、溶接ビード周囲の母材に焼きが入らなくなり、母材の強度に比べて低強度で破断した(No.10)。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 ホットスタンプ後に部分的に強度の異なるテーラードブランクを得るために、ホットスタンプにより引張強度が1470MPa級となる鋼板(鋼種HS)と、ホットスタンプ前の引張強度が590MPa級となる鋼板(鋼種590)とをレーザ溶接またはプラズマ溶接によって接合した。用いた鋼板の板厚は、1.0mmから1.8mmの範囲とした。
 その際、これらの鋼板は、溶接金属のアルミニウム平均濃度を作り分けるために、アルミめっきの無い鋼板の外に、アルミめっき付着量が、両面に片面当たり40gr/m、および両面に片面当たり80gr/mとなるようにアルミめっきされた鋼板とした。
 これらの鋼板を、シャー切断したままの状態で突合せ、鋼板間の開先間隔を調整した後、溶接時には溶加材を供給しながら、ファイバレーザにより溶接した。
 レーザは焦点距離300mm、集光スポット径が0.6mmとなる集光光学系を使用し、焦点はずし距離は18mmとした。溶接時のシールドは、レーザ光と同軸のシールドノズル(内径6mm)を用い、スタンドオフ(ノズル先端と鋼板表面との距離)を10mmに設定して、Arガス流量が30リットル/minとなる条件で行った。溶接速度および加工点出力は、4m/minおよび4.5kWで一定させ、板厚および開先の間隔に応じて溶加材の供給速度を調整し、板厚と同等程度にした。
 突合せ溶接時には、鋼板間の開先隙間を0.1mmから0.4mmに変え、溶加材として直径が1.2mmのワイヤを供給して溶接し、溶接金属の成分を調整した。
 溶加材として、4種類のフィラーワイヤ、すなわち、日鐵住金溶接工業(株)製メタルコアドワイヤのSX-1LDの他、ソリッドワイヤのYGW12、今回試作したソリッドワイヤのFiller-A(C:0.45%、Si:0.8%、Mn:1.5%、P:0.015%、S:0.011%)および、試作メタルコアドワイヤのFiller-B(C:0.6%、Si:0.8%、Mn:6.0%、P:0.01%、S:0.009%)を用いた。
 レーザ溶接後、表面のAlの濃化層を研削除去した後に採取した溶接金属を用いて溶接金属のアルミニウム平均濃度を分析して求めた。また、レーザ溶接後の溶接部の品質確認のために、溶接部の断面観察とビード厚計測を実施した。
 溶接後に、得られたテーラードブランク(ブランク材)を、ホットスタンプした。ホットスタンプは、炉加熱によりブランク材を900℃にまで加熱して金型で挟み込むことにより行い、平板に仕上げた。ホットスタンプ後、ホットスタンプによる焼入れ状態確認のため、ホットスタンプ後の低強度側の母材部および溶接ビード部の硬さ測定を実施した。また、部分的に強度を作り分けたホットスタンプ後の部材性能評価として、溶接ビードと直交した負荷をかける引張試験、および、溶接部の靱性を調査するために、シャルピー衝撃試験を行った。衝撃試験におけるノッチ試験片のノッチ位置は溶接金属中央とした。なお、引張試験は、JIS2241:2011に、シャルピー衝撃試験は、JISZ2242:2005に準拠して行った。
 使用した鋼板、溶接後及びホットスタンプ後に行った各種測定結果を表3、4に示す。
 実施したNo.101~121の試験の結果は次のように評価できた。
 めっき付着量が多かったり、鋼板の板厚が薄かったりすると、溶接金属のアルミニウム平均濃度が高くなりすぎる。溶接金属のアルミニウム平均濃度が1.5質量%以上となった場合、溶接金属の焼入れ性が失われ、引張試験において溶接金属破断した(No.101)。
 アルミニウム平均濃度が1.5質量%未満に抑えられた場合であっても、開先の間隔が狭いと、フラックスコアドワイヤによる溶接金属中のC量の増加が少なく、Ac点が高くなる場合がある。そのため、ホットスタンプ工程での加熱温度では、完全にオーステナイトにできず、十分に焼きが入らなくなる場合がある。Ac点がさらに高くなるとレーザ溶接においても焼きが入らなくなることが明らかとなった。試験によると、上述した式(1)で定義されるAc点が1250℃を上回ると、レーザ溶接後の冷却過程でも溶接金属がオーステナイトに変態せず、焼きが入らなくなった。このため、溶接金属の硬さが、母材の硬さに比べて低くなり、ホットスタンプ後の引張試験で溶接金属破断となることを確認した。また、衝撃試験でも溶接金属をき裂が伝播し、破断することを確認した(No.102、112、115、118)。
 そこで、鋼板の開先間隔を大きくとり、C量とMn量とが多いフラックスコアドワイヤSX-1LDを供給して、溶接した。その結果、溶接金属中のC量が増加し、かつ、Alの平均濃度を下げることができたため、焼きが入り、溶接金属の硬さは、母材の硬さに比べて高くなり、ホットスタンプ後の引張試験で低強度側の母材で破断となることを確認できた。また、衝撃試験においても溶接金属の靱性が十分であるために、き裂が母材に逸れて破断した。(No.103~106、109、113、114、116、117、120)。
 しかし、溶接金属の厚さが母材鋼板の板厚に比べて薄くなり過ぎると、溶接継手部の強度が低下してホットスタンプ後の引張試験で溶接金属破断した(No.107)。それを防ぐために、SX-1LDの供給量を増やしすぎると、溶接金属の厚さが厚くなり過ぎ、ホットスタンプ時に溶接部付近で鋼板と金型との接触が不良となり、低強度側の母材の焼きが入らなくなり、母材の強度に比べて低強度で破断する継手となった。(No.108)
 次にソリッドワイヤのYGW12、試作ソリッドワイヤでC量とMn量との多いFiller-A、SX-1LDよりC量とMn量とを増加させた試作メタルコアドワイヤのFiller-Bの効果について調査した。
 YGW12を供給して溶接したところ、Δtの値が0.5秒未満となり、ホットスタンプ時に十分な焼きが入らなかった。そのため、溶接金属の硬さが、母材の硬さに比べて低くなり、ホットスタンプ後の引張試験で溶接金属破断となった(No.110)。
 試作ソリッドワイヤのFiller-Aを供給して溶接したところ、溶接金属中のC量を増加させ、かつ、Alの平均濃度を下げることができた。そのため、焼きが入り、溶接金属の硬さは母材の硬さに比べて高くなった。その結果、ホットスタンプ後の引張試験で低強度側の母材で破断となった。ただし、ソリッドワイヤでは、溶接金属中の酸素量は母材平均値より40ppm程度にしかならず、溶接金属の靱性が低くなったため、衝撃試験では、溶接金属をき裂が伝播し、破断してしまった(No.111)。
 試作メタルコアドワイヤのFiller-Bで溶接したところ、溶接金属中にAl量が多く入る条件である(鋼板の開先間隔が小さく、鋼板の板厚が薄く、めっき厚も厚い)にもかかわらず、焼きが入り、溶接金属の硬さは、母材の硬さに比べて高くなった。その結果、ホットスタンプ後の引張試験で低強度側の母材で破断となることを確認できた。また、メタルコアドワイヤであるため、酸素が溶接金属に持ち込まれ、溶接金属の靱性が十分となり、衝撃試験でもき裂が母材に逸れて破断した(No.119)。
 溶接方法としてレーザ溶接の代わりにプラズマ溶接を用い、SX-1LDを供給して溶接したところ、溶接ビード幅が2mm以上と広くなるために、鋼板めっき層からのAl量が溶接金属中へ多量に供給され、十分な開先隙間を取っているにもかかわらず、Ac点の推定値が1250℃を上回った。その結果、レーザ溶接後の冷却過程でもオーステナイトに変態することが無くなり、焼きが入らなくなった。このため、溶接金属の硬さは、母材の硬さに比べて低くなり、ホットスタンプ後の引張試験で溶接金属破断となることを確認した(No.112)。しかし、同じプラズマ溶接でも、溶接金属のアルミニウム平均濃度を下げるため、鋼板の板厚を1.8mmと厚くし、めっき付着量を40gr/mにして、SX-1LDを供給して溶接したところ、Ac点の推定値は1250℃を下回り、レーザ溶接後の冷却過程で焼きが入った。また、ワイヤにより板厚方向の溶接金属の厚さを母材の板厚以上にすることができるため、「溶接金属の板厚×硬さ」の値は、確実に「母材の板厚×硬さ」以上の値となり、ホットスタンプ後のホットスタンプ部材において、引張試験で母材破断となることを確認した。さらに、メタルコアドワイヤ使用のため、衝撃試験でも、き裂が母材に逸れて破断することを確認した(No.121)。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 本発明によれば、溶接される部分のめっき層を除去せずに、アルミニウムめっき鋼板をそのまま突合せ溶接しても、ホットスタンプ後において高い継手強度を有するホットスタンプ用テーラードブランクを提供することができる。
 また、本発明によれば、溶接される部分のめっき層を除去せずにアルミニウムめっき鋼板をそのまま突合せ溶接して得られたホットスタンプ用テーラードブランクを用いたとしても、ホットスタンプ後において高い継手強度を有するホットスタンプ部材を提供することができる。また、溶接後の溶接ビードの表面はアルミニウムで覆われるため、ホットスタンプの際に溶接金属の脱炭や酸化が生じるという問題やホットスタンプにより得られた部材が耐食性に劣るという問題を解決することができる。

Claims (16)

  1.  第1のアルミニウムめっき鋼板と第2のアルミニウムめっき鋼板とが突合せ溶接されて形成された溶接部を有するホットスタンプ用テーラードブランクであって、
     前記溶接部における溶接金属のAl平均濃度が0.3質量%以上1.5質量%以下、かつ、下式(1)において、単位℃で定義される前記溶接金属のAc点が、1250℃以下であり、
     さらに、前記溶接部の表面に前記突合せ溶接の際に形成されたアルミニウム層を有する
    ことを特徴とする、ホットスタンプ用テーラードブランク。
    Figure JPOXMLDOC01-appb-M000001
     ここで、式中のC、Ni、Si、V、Mo、W、Mn、Cr、Cu、P、Al、As、Tiは前記溶接金属中の各元素の質量%での含有量を表し、含有されていない元素は、その含有量を0として計算する。
  2.  さらに、下式(2)において単位秒で定義されるΔtが0.5秒以上である、請求項1に記載のホットスタンプ用テーラードブランク。
    Figure JPOXMLDOC01-appb-M000002
     ここで、式中のC、Si、Al、Mn、Cu、Ni、Mo、Crは、前記溶接金属中の各元素の質量%での含有量を表し、含有されていない元素はその含有量を0として計算され、式中のΔHは、前記溶接金属中のNの質量%での含有量を用いて、fN=(0.02-N)/0.02とした時に、Bの質量%での含有量と、前記fNとに応じて以下のように定義される数値である。
              B≦0.0001のとき、ΔH=0、
       0.0001<B≦0.0002のとき、ΔH=0.03×fN、
       0.0002<B≦0.0003のとき、ΔH=0.06×fN、
       0.0003<Bのとき、ΔH=0.09×fNである。
  3.  さらに、下式(3)において単位℃で定義される前記溶接金属のAc点が860℃以下であることを特徴とする請求項1または2に記載のホットスタンプ用テーラードブランク。
    Figure JPOXMLDOC01-appb-M000003
     ここで、式中のC、Si、Ni、V、Al、W、Cu、B、S、P、Mn、Cr、Moは、前記溶接金属中の各元素の含有量(質量%)であり、含有していない元素は含有量を0として計算する。
  4.  前記溶接金属の最も薄い部分の厚さを、単位mmで、t、前記第1のアルミニウムめっき鋼板の板厚を、単位mmで、t1、前記第2のアルミニウムめっき鋼板の板厚を、単位mmで、t2としたとき、
     前記tが、
     前記t1と前記t2とが等しい場合には、前記t1の80%以上であり;
     前記t1と前記t2とが異なる場合には、前記t1及び前記t2のうち小さい方の80%以上である;
    ことを特徴とする請求項1~3のいずれかに記載のホットスタンプ用テーラードブランク。
  5.  前記溶接金属の最大高さが、
     前記第1のアルミニウムめっき鋼板の前記板厚である前記t1と前記第2のアルミニウムめっき鋼板の前記板厚である前記t2とが等しい場合には、前記第1のアルミニウムめっき鋼板の表面の延長線を基準として300μm以下であり;
     前記t1と前記t2とが異なる場合には、前記第1のアルミニウムめっき鋼板と前記第2のアルミニウムめっき鋼板との厚い方の表面の延長線を基準として、300μm以下である;
    ことを特徴とする請求項1~4のいずれかに記載のホットスタンプ用テーラードブランク。
  6.  前記溶接金属の酸素含有量が、前記第1のアルミニウムめっき鋼板のめっき基材である第1の鋼板および前記第2のアルミニウムめっき鋼板のめっき基材である第2の鋼板の平均酸素含有量よりも50ppm以上高いことを特徴とする請求項1~5のいずれかに記載のホットスタンプ用テーラードブランク。
  7.  第1のアルミニウムめっき鋼板と第2のアルミニウムめっき鋼板とを用いて突合せ溶接を行う、ホットスタンプ用テーラードブランクの製造方法であって、
     溶接部における溶接金属のAl平均濃度が0.3質量%以上1.5質量%以下、かつ、下式(1)で定義される前記溶接金属のAc点(℃)が1250℃以下となるように、溶接条件を決定する溶接条件決定工程と、
     前記溶接条件で溶接を行って、前記第1のアルミニウムめっき鋼板および前記第2のアルミニウムめっき鋼板のアルミニウムめっき層に由来するアルミニウム層を前記溶接部の前記溶接金属の表面に形成する溶接工程と、
    を有することを特徴とするホットスタンプ用テーラードブランクの製造方法。
    Figure JPOXMLDOC01-appb-M000004
     ここで、式中のC、Ni、Si、V、Mo、W、Mn、Cr、Cu、P、Al、As、Tiは前記溶接金属中の各元素の質量%での含有量を表す。また、含有されていない元素は、その含有量を0として計算する。
  8.  前記溶接条件決定工程において、さらに、下式(2)によって単位秒で定義されるΔtが0.5秒以上となるように前記溶接条件を決定することを特徴とする請求項7に記載のホットスタンプ用テーラードブランクの製造方法。
    Figure JPOXMLDOC01-appb-M000005
     ここで、式中のC、Si、Al、Mn、Cu、Ni、Mo、Crは、前記溶接金属中の各元素の質量%での含有量を表し、含有されていない元素はその含有量を0として計算する。また、式中のΔHは、前記溶接金属中のNの質量%での含有量を用いて、fN=(0.02-N)/0.02とした時に、Bの質量%での含有量と、前記fNとに応じて以下のように定義される数値である。
              B≦0.0001のとき、ΔH=0、
       0.0001<B≦0.0002のとき、ΔH=0.03×fN、
       0.0002<B≦0.0003のとき、ΔH=0.06×fN、
       0.0003<Bのとき、ΔH=0.09×fNである。
  9.  さらに、前記溶接条件決定工程において、下式(3)によって単位℃で定義されるAc点が860℃以下となるように前記溶接条件を決定することを特徴とする請求項7または8に記載のホットスタンプ用テーラードブランクの製造方法。
    Figure JPOXMLDOC01-appb-M000006
     ここで、式中のC、Si、Ni、V、Al、W、Cu、B、S、P、Mn、Cr、Moは、前記溶接金属中の各元素の含有量(質量%)であり、含有していない元素は含有量を0として計算する。
  10.  さらに、前記溶接条件決定工程において、前記溶接金属の最も薄い部分の厚さを、単位mmで、t、前記第1のアルミニウムめっき鋼板の板厚を、単位mmで、t1、前記第2のアルミニウムめっき鋼板の板厚を、単位mmで、t2としたとき、
     前記tが、前記t1と前記t2とが等しい場合には、前記t1の80%以上となり、前記t1と前記t2とが異なる場合には、前記t1及び前記t2のうち小さい方の80%以上となるように前記溶接条件を決定することを特徴とする請求項7~9のいずれか一項に記載のホットスタンプ用テーラードブランクの製造方法。
  11.  さらに、前記溶接条件決定工程において、
     前記第1のアルミニウムめっき鋼板の板厚t1と前記第2のアルミニウムめっき鋼板の板厚t2とが等しい場合には、前記第1のアルミニウムめっき鋼板の表面の延長線を基準とした前記溶接金属の最大高さが300μm以下となり、前記t1と前記t2とが異なる場合には、前記第1のアルミニウムめっき鋼板と前記第2のアルミニウムめっき鋼板との厚い方の表面の延長線を基準とした前記溶接金属の最大高さが300μm以下となるように前記溶接条件を決定することを特徴とする請求項7~10のいずれか一項に記載のホットスタンプ用テーラードブランクの製造方法。
  12.  前記溶接条件決定工程において、前記溶接金属の酸素含有量が、前記第1のアルミニウムめっき鋼板および前記第2のアルミニウムめっき鋼板のめっき基材である鋼板の平均酸素含有量よりも50ppm以上高くなるように、前記溶接条件を決定することを特徴とする請求項7~11のいずれかに記載のホットスタンプ用テーラードブランクの製造方法。
  13.  前記突合せ溶接が、レーザ溶接、電子ビーム溶接またはプラズマ溶接のいずれかであることを特徴とする請求項7~12のいずれかに記載のホットスタンプ用テーラードブランクの製造方法。
  14.  前記突合せ溶接が、フィラーワイヤを供給しながら行う前記レーザ溶接である、請求項7~13のいずれかに記載のホットスタンプ用テーラードブランクの製造方法。
  15.  請求項1~6のいずれか一項に記載のホットスタンプ用テーラードブランクにホットスタンプを施すことにより得られたホットスタンプ部材であって、
     前記溶接金属の硬さと前記溶接金属の最も薄い部分の厚さとの積が、前記第1のアルミニウムめっき鋼板の硬さと前記第1のアルミニウムめっき鋼板の板厚との積、または前記第2のアルミニウムめっき鋼板の硬さと前記アルミニウムめっき鋼板の板厚との積のいずれかよりも大きい
    ことを特徴とするホットスタンプ部材。
  16.  請求項1~6のいずれか一項に記載のホットスタンプ用テーラードブランクにホットスタンプを施すホットスタンプ工程を有し、
     前記ホットスタンプ工程後における、前記溶接金属の硬さと前記溶接金属の最も薄い部分の厚さとの積を、前記第1のアルミニウムめっき鋼板の硬さと前記第1のアルミニウムめっき鋼板の板厚との積、または前記第2のアルミニウムめっき鋼板の硬さと前記アルミニウムめっき鋼板の板厚との積のいずれかよりも大きくする
    ことを特徴とするホットスタンプ部材の製造方法。
PCT/JP2013/059287 2012-03-28 2013-03-28 ホットスタンプ用テーラードブランクおよびホットスタンプ部材ならびにそれらの製造方法 WO2013147035A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CA2866466A CA2866466C (en) 2012-03-28 2013-03-28 Tailored blank for hot stamping, hot stamped member, and methods for manufacturing same
BR112014023783A BR112014023783B1 (pt) 2012-03-28 2013-03-28 chapa feita sob medida para estampagem a quente, seu método de produção e membro estampado a quente
RU2014139827/02A RU2594766C9 (ru) 2012-03-28 2013-03-28 Листовая сварная заготовка для горячей штамповки, горячештампованный элемент и способ для его производства
US14/385,559 US9901969B2 (en) 2012-03-28 2013-03-28 Tailored blank for hot stamping, hot stamped member, and methods for manufacturing same
EP13769761.1A EP2832887A4 (en) 2012-03-28 2013-03-28 CUSTOMIZED COATING FOR HOT COATING, HOT-PUTTED ELEMENT AND METHOD FOR THE PRODUCTION THEREOF
KR1020147027219A KR101636639B1 (ko) 2012-03-28 2013-03-28 핫 스탬프용 테일러드 블랭크 및 핫 스탬프 부재 및 그들의 제조 방법
IN7785DEN2014 IN2014DN07785A (ja) 2012-03-28 2013-03-28
MX2014011514A MX2014011514A (es) 2012-03-28 2013-03-28 Preforma a la medida para estampado en caliente, miembro estampado en caliente y metodos para fabricar los mismos.
CN201380016621.2A CN104204257B (zh) 2012-03-28 2013-03-28 热锻压用拼焊板和热锻压构件以及它们的制造方法
ZA2014/06690A ZA201406690B (en) 2012-03-28 2014-09-11 Tailored blank for hot stamping, hot stamped member, and methods for manufacturing same
US15/863,286 US10807138B2 (en) 2012-03-28 2018-01-05 Tailored blank for hot stamping, hot stamped member, and methods for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-074222 2012-03-28
JP2012074222A JP5316664B2 (ja) 2012-03-28 2012-03-28 ホットスタンプ用のテーラードブランク
JP2012-093812 2012-04-17
JP2012093812A JP5316670B1 (ja) 2012-04-17 2012-04-17 ホットスタンプ用のテーラードブランクとその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/385,559 A-371-Of-International US9901969B2 (en) 2012-03-28 2013-03-28 Tailored blank for hot stamping, hot stamped member, and methods for manufacturing same
US15/863,286 Division US10807138B2 (en) 2012-03-28 2018-01-05 Tailored blank for hot stamping, hot stamped member, and methods for manufacturing same

Publications (1)

Publication Number Publication Date
WO2013147035A1 true WO2013147035A1 (ja) 2013-10-03

Family

ID=49260280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059287 WO2013147035A1 (ja) 2012-03-28 2013-03-28 ホットスタンプ用テーラードブランクおよびホットスタンプ部材ならびにそれらの製造方法

Country Status (12)

Country Link
US (2) US9901969B2 (ja)
EP (1) EP2832887A4 (ja)
KR (1) KR101636639B1 (ja)
CN (1) CN104204257B (ja)
BR (1) BR112014023783B1 (ja)
CA (1) CA2866466C (ja)
IN (1) IN2014DN07785A (ja)
MX (1) MX2014011514A (ja)
RU (1) RU2594766C9 (ja)
TW (1) TWI527655B (ja)
WO (1) WO2013147035A1 (ja)
ZA (1) ZA201406690B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106164184A (zh) * 2014-03-31 2016-11-23 安赛乐米塔尔公司 以高生产率生产经压制硬化并涂覆的钢部件的方法
WO2019244524A1 (ja) 2018-06-22 2019-12-26 日本製鉄株式会社 鋼板、テーラードブランク、熱間プレス成形品、鋼管、中空状焼入れ成形品、鋼板の製造方法、テーラードブランクの製造方法、熱間プレス成形品の製造方法、鋼管の製造方法、および中空状焼入れ成形品の製造方法
JP2021514856A (ja) * 2018-02-27 2021-06-17 アルセロールミタル プレス硬化したレーザー溶接鋼部品の製造方法及びプレス硬化したレーザー溶接鋼部品
JP2022515425A (ja) * 2018-12-24 2022-02-18 アルセロールミタル 溶接鋼ブランク及び関連する溶接鋼ブランクを生産するための方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014481A1 (fr) 2011-07-26 2013-01-31 Arcelormittal Investigación Y Desarrollo Sl Pièce d'acier soudée préalablement mise en forme à chaud à très haute résistance mécanique et procédé de fabrication
MX2014011514A (es) * 2012-03-28 2015-01-16 Nippon Steel & Sumitomo Metal Corp Preforma a la medida para estampado en caliente, miembro estampado en caliente y metodos para fabricar los mismos.
KR101448473B1 (ko) * 2012-12-03 2014-10-10 현대하이스코 주식회사 테일러 웰디드 블랭크, 그 제조방법 및 이를 이용한 핫스탬핑 부품
MX2017011320A (es) 2015-03-05 2018-01-23 Jfe Steel Corp Miembro termo-prensado y metodo de fabricacion para el mismo.
DE102015115915A1 (de) * 2015-09-21 2017-03-23 Wisco Tailored Blanks Gmbh Laserschweißverfahren zur Herstellung eines Blechhalbzeugs aus härtbarem Stahl mit einer Beschichtung auf Aluminium- oder Aluminium-Silizium-Basis
BR112018010532B1 (pt) 2015-12-18 2021-01-12 Autotech Engineering, S.L. método para unir um primeiro e um segundo bloco bruto e método para formar um produto
CN106334875A (zh) 2016-10-27 2017-01-18 宝山钢铁股份有限公司 一种带铝或者铝合金镀层的钢制焊接部件及其制造方法
MX2019011409A (es) * 2017-03-30 2019-11-28 Nippon Steel Corp Metodo de fabricacion de junta de soldadura y junta de soldadura.
JP6828622B2 (ja) * 2017-07-06 2021-02-10 日本製鉄株式会社 熱間プレス用鋼板とその製造方法、ならびに熱間プレス成形部材およびその製造方法
JP6885232B2 (ja) * 2017-07-06 2021-06-09 日本製鉄株式会社 熱間プレス用めっき鋼板とその製造方法、ならびに熱間プレス成形部材およびその製造方法
EP3441178A1 (en) * 2017-08-09 2019-02-13 Autotech Engineering A.I.E. A method for joining two blanks
DE102017120611B4 (de) * 2017-09-07 2020-06-25 Wisco Tailored Blanks Gmbh Verfahren und Vorrichtung zum Schmelzschweißen eines oder mehrerer Stahlbleche aus presshärtbarem Stahl
WO2019102255A1 (en) 2017-11-24 2019-05-31 Arcelormittal Method of producing a welded steel blank with the provision of a filler wire having a defined carbon content, associated welded blank, method of producing a welded part with hot press-formed and cooled steel part and associated part
DE102018107291A1 (de) * 2018-03-27 2019-10-02 Voestalpine Automotive Components Linz Gmbh Verfahren zum Schweißen beschichteter Stahlbleche
KR20200040565A (ko) * 2018-10-10 2020-04-20 현대자동차주식회사 동시성형 핫스탬핑 방법 및 핫스탬핑 제품
CN111215751B (zh) * 2019-03-29 2022-06-28 宝山钢铁股份有限公司 一种带铝或者铝合金镀层的钢制差强焊接部件及其制造方法
DE102019119012A1 (de) * 2019-07-12 2021-01-14 Salzgitter Europlatinen GmbH Verfahren zum Herstellen einer beschichteten maßgeschneiderten Platine (Tailored Welded Blank) mittels Laserstrahlschweißen oder Laser-Metallschutzgas-Hybridschweißen, eines pressgehärteten Bauteils hieraus und Zusatzdraht sowie dessen Verwendung hierfür
CN110587135B (zh) * 2019-08-14 2021-09-24 上海宝钢阿赛洛激光拼焊有限公司 激光拼焊板焊缝防冲压开裂的焊接方法
CN111496380B (zh) * 2020-04-28 2022-05-20 凌云吉恩斯科技有限公司 一种薄铝硅镀层钢板的拼焊制造方法及门环的制造方法
KR102273869B1 (ko) * 2020-06-02 2021-07-06 현대제철 주식회사 알루미늄계 도금 블랭크, 이의 제조방법 및 알루미늄계 도금 블랭크 제조장치
KR102308832B1 (ko) 2020-10-29 2021-10-05 현대제철 주식회사 알루미늄계 도금 블랭크 및 이의 제조방법
WO2022096921A1 (en) * 2020-11-06 2022-05-12 Arcelormittal Rear underfloor structure for a motor vehicle
KR102440343B1 (ko) * 2021-06-30 2022-09-05 현대제철 주식회사 알루미늄계 도금 블랭크 및 이의 제조방법
KR20230021319A (ko) * 2021-08-05 2023-02-14 주식회사 포스코 테일러 웰디드 블랭크, 열간성형부재 및 이들의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210023A (ja) * 2006-02-13 2007-08-23 Nippon Steel Corp 溶接部脆化割れ特性に優れた高強度溶接鋼管
JP2009045628A (ja) * 2007-08-14 2009-03-05 Jfe Steel Kk 鋼板のレーザ溶接方法
JP2009149917A (ja) * 2006-11-30 2009-07-09 Nippon Steel Corp 低温靱性に優れた高強度ラインパイプ用溶接鋼管及びその製造方法
JP2009534529A (ja) 2006-04-19 2009-09-24 アルセロールミタル・フランス 被覆積層板から非常に高い機械的特性を有する溶接部品を製造する方法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2963129A (en) * 1954-12-09 1960-12-06 Babcock & Wilcox Co Dissimilar metal welded joint with protective overlay
JPS5542104A (en) 1978-09-18 1980-03-25 Nisshin Steel Co Ltd Production of aluminum plated or aluminum alloy plated steel pipe
US4459062A (en) * 1981-09-11 1984-07-10 Monsanto Company Clad metal joint closure
JPS62116720A (ja) * 1985-11-13 1987-05-28 Nippon Steel Corp 耐熱特性に優れた電縫鋼管の製造法
JP2967239B2 (ja) * 1991-02-14 1999-10-25 日本ステンレス工材株式会社 電着箔製造用ドラムのアウタースキンの製造法
DE59407600D1 (de) * 1994-01-29 1999-02-18 Asea Brown Boveri Verfahren zum Verbinden von Metallteilen mittels Lichtbogen-Schmelzschweissen
JPH11277221A (ja) 1998-03-30 1999-10-12 Nippon Steel Corp アルミニウム系めっき鋼板のはんだ付方法
JP3223172B2 (ja) 1999-02-25 2001-10-29 本田技研工業株式会社 アルミメッキ鋼板からなるレーザー溶接体の溶接方法
US6336583B1 (en) * 1999-03-23 2002-01-08 Exxonmobil Upstream Research Company Welding process and welded joints
KR200188569Y1 (ko) * 2000-02-02 2000-07-15 한국기계연구원 레이저 용접용 클램프 장치
JP2002194518A (ja) * 2000-12-26 2002-07-10 Sumitomo Metal Ind Ltd 溶接性に優れた溶融亜鉛めっき鋼板およびその製造方法
JP2002371378A (ja) * 2001-04-10 2002-12-26 Nippon Steel Corp スポット溶接性に優れたアルミ系めっき鋼板
GB2399539B (en) * 2003-03-18 2005-09-07 Intelligent Engineering Method for connecting structural sandwich plate members
JP2004334919A (ja) 2003-04-30 2004-11-25 Matsushita Electric Ind Co Ltd 記録媒体およびその製造方法
JP4453473B2 (ja) 2003-10-10 2010-04-21 パナソニック株式会社 鉛フリーはんだ合金と、それを用いたはんだ材料及びはんだ接合部
CN100546757C (zh) 2005-04-01 2009-10-07 旭化成电子材料株式会社 导电性填料和焊料
EP1767659A1 (fr) 2005-09-21 2007-03-28 ARCELOR France Procédé de fabrication d'une pièce en acier de microstructure multi-phasée
JP5098217B2 (ja) * 2005-09-28 2012-12-12 新日鐵住金株式会社 溶接部の耐食性および耐亜鉛脆化割れ性に優れた亜鉛めっき鋼板の溶接継手並びにその製造方法
JP4867319B2 (ja) 2005-12-05 2012-02-01 住友金属工業株式会社 熱間プレス用テーラードブランク材ならびに熱間プレス部材およびその製造方法
PL2086755T3 (pl) * 2006-10-30 2018-05-30 Arcelormittal Powlekane taśmy stalowe, sposoby wytwarzania takich powlekanych taśm, sposoby zastosowania takich powlekanych taśm, półfabrykaty do wytłaczania przygotowane z powlekanych taśm, wyroby wytłaczane przygotowane z powlekanych taśm, wyroby zawierające takie wyroby wytłaczane
WO2008069289A1 (ja) * 2006-11-30 2008-06-12 Nippon Steel Corporation 低温靭性に優れた高強度ラインパイプ用溶接鋼管及びその製造方法
WO2008110670A1 (fr) 2007-03-14 2008-09-18 Arcelormittal France Acier pour formage a chaud ou trempe sous outil a ductilite amelioree
PL2270257T3 (pl) * 2008-04-22 2019-03-29 Nippon Steel & Sumitomo Metal Corporation Blacha stalowa cienka powlekana galwanicznie i sposób wytłaczania na gorąco blachy stalowej cienkiej powlekanej galwanicznie
MX2011000056A (es) * 2008-07-11 2011-04-27 Nippon Steel Corp Lamina de acero chapada con aluminio para prensado en caliente con calentamiento rapido, proceso para producir la misma, y metodo para prensar en caliente la misma con calentamento rapido.
US7874471B2 (en) * 2008-12-23 2011-01-25 Exxonmobil Research And Engineering Company Butt weld and method of making using fusion and friction stir welding
WO2011068201A1 (ja) * 2009-12-04 2011-06-09 新日本製鐵株式会社 突合せ溶接継手及びその製造方法
US8992109B2 (en) * 2009-12-04 2015-03-31 Nippon Steel & Sumitomo Metal Corporation Butt-welded joint of welded structure, and method for manufacturing the same
KR101171450B1 (ko) * 2009-12-29 2012-08-06 주식회사 포스코 도금 강재의 열간 프레스 성형방법 및 이를 이용한 열간 프레스 성형품
WO2013014481A1 (fr) * 2011-07-26 2013-01-31 Arcelormittal Investigación Y Desarrollo Sl Pièce d'acier soudée préalablement mise en forme à chaud à très haute résistance mécanique et procédé de fabrication
DE102011113675A1 (de) * 2011-09-20 2013-03-21 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Verstärkungsstruktur zum Verstärken einer Seitenwandstruktur für ein Kraftfahrzeug im Bereich eines Türausschnittes
MX2014011514A (es) * 2012-03-28 2015-01-16 Nippon Steel & Sumitomo Metal Corp Preforma a la medida para estampado en caliente, miembro estampado en caliente y metodos para fabricar los mismos.
EP2866966A4 (en) * 2012-06-29 2016-07-13 Shiloh Ind Inc WELDED ROHLING AND METHOD
CN103264209A (zh) * 2013-04-26 2013-08-28 中国化学工程第三建设有限公司 不锈钢焊件的组合焊接方法
US10480862B2 (en) * 2013-05-23 2019-11-19 Crc-Evans Pipeline International, Inc. Systems and methods for use in welding pipe segments of a pipeline
EP2883646B1 (en) * 2013-12-12 2016-11-02 Autotech Engineering, A.I.E. Methods for joining two blanks and blanks and products obtained
DE102014001979A1 (de) * 2014-02-17 2015-08-20 Wisco Tailored Blanks Gmbh Verfahren zum Laserschweißen eines oder mehrerer Werkstücke aus härtbarem Stahl im Stumpfstoß
WO2015162445A1 (fr) * 2014-04-25 2015-10-29 Arcelormittal Investigación Y Desarrollo Sl Procede et dispositif de preparation de toles d'acier aluminiees destinees a etre soudees puis durcies sous presse; flan soude correspondant
ES2627220T3 (es) * 2014-05-09 2017-07-27 Gestamp Hardtech Ab Métodos para la unión de dos formatos y los formatos y los productos obtenidos
WO2016041064A1 (en) * 2014-09-17 2016-03-24 Magna International Inc. Method of laser welding coated steel sheets with addition of alloying elements
US10052721B2 (en) * 2014-09-17 2018-08-21 Magna International Inc. Method of laser welding coated steel sheets with addition of alloying elements
DE102015101141A1 (de) * 2015-01-27 2016-07-28 Wisco Lasertechnik Gmbh Verfahren zur Herstellung von Blechrohlingen, insbesondere von Hybridblechrohlingen
DE102015115915A1 (de) * 2015-09-21 2017-03-23 Wisco Tailored Blanks Gmbh Laserschweißverfahren zur Herstellung eines Blechhalbzeugs aus härtbarem Stahl mit einer Beschichtung auf Aluminium- oder Aluminium-Silizium-Basis
JP6334500B2 (ja) * 2015-11-19 2018-05-30 株式会社ジーテクト アルミニウムめっき鋼板の溶接方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210023A (ja) * 2006-02-13 2007-08-23 Nippon Steel Corp 溶接部脆化割れ特性に優れた高強度溶接鋼管
JP2009534529A (ja) 2006-04-19 2009-09-24 アルセロールミタル・フランス 被覆積層板から非常に高い機械的特性を有する溶接部品を製造する方法
JP2009149917A (ja) * 2006-11-30 2009-07-09 Nippon Steel Corp 低温靱性に優れた高強度ラインパイプ用溶接鋼管及びその製造方法
JP2009045628A (ja) * 2007-08-14 2009-03-05 Jfe Steel Kk 鋼板のレーザ溶接方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KASUYA; HASHIBA, NIPPON STEEL TECHNICAL, vol. 385, 2006, pages 48 - 55
See also references of EP2832887A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10669607B2 (en) 2014-03-31 2020-06-02 Arcelormittal Method of producing press-hardened and coated steel parts at a high productivity rate
CN106164184A (zh) * 2014-03-31 2016-11-23 安赛乐米塔尔公司 以高生产率生产经压制硬化并涂覆的钢部件的方法
US11466339B2 (en) 2014-03-31 2022-10-11 Arcelormittal Method of producing press-hardened and coated steel parts at a high productivity rate
US10619224B2 (en) 2014-03-31 2020-04-14 Arcelormittal Method of producing press-hardened and coated steel parts at a high productivity rate
US10640842B2 (en) 2014-03-31 2020-05-05 Arcelormittal Method of producing press-hardened and coated steel parts at a high productivity rate
US10648055B2 (en) 2014-03-31 2020-05-12 Arcelormittal Method of producing press-hardened and coated steel parts at a high productivity rate
JP2017518438A (ja) * 2014-03-31 2017-07-06 アルセロールミタル 高い生産率でのプレス焼き入れおよび被覆鋼部品の製造方法
JP2021514856A (ja) * 2018-02-27 2021-06-17 アルセロールミタル プレス硬化したレーザー溶接鋼部品の製造方法及びプレス硬化したレーザー溶接鋼部品
JP7191983B2 (ja) 2018-02-27 2022-12-19 アルセロールミタル プレス硬化したレーザー溶接鋼部品の製造方法及びプレス硬化したレーザー溶接鋼部品
JP7543381B2 (ja) 2018-02-27 2024-09-02 アルセロールミタル プレス硬化したレーザー溶接鋼部品の製造方法及びプレス硬化したレーザー溶接鋼部品
WO2019244524A1 (ja) 2018-06-22 2019-12-26 日本製鉄株式会社 鋼板、テーラードブランク、熱間プレス成形品、鋼管、中空状焼入れ成形品、鋼板の製造方法、テーラードブランクの製造方法、熱間プレス成形品の製造方法、鋼管の製造方法、および中空状焼入れ成形品の製造方法
JP2022515425A (ja) * 2018-12-24 2022-02-18 アルセロールミタル 溶接鋼ブランク及び関連する溶接鋼ブランクを生産するための方法
JP7337934B2 (ja) 2018-12-24 2023-09-04 アルセロールミタル 溶接鋼ブランク及び関連する溶接鋼ブランクを生産するための方法
JP7576671B2 (ja) 2018-12-24 2024-10-31 アルセロールミタル 溶接鋼ブランク及び関連する溶接鋼ブランクを生産するための方法

Also Published As

Publication number Publication date
EP2832887A1 (en) 2015-02-04
US20150043962A1 (en) 2015-02-12
MX2014011514A (es) 2015-01-16
CN104204257A (zh) 2014-12-10
CN104204257B (zh) 2016-07-27
RU2014139827A (ru) 2016-05-20
US9901969B2 (en) 2018-02-27
RU2594766C2 (ru) 2016-08-20
RU2594766C9 (ru) 2016-12-20
ZA201406690B (en) 2016-02-24
CA2866466A1 (en) 2013-10-03
CA2866466C (en) 2016-10-25
BR112014023783B1 (pt) 2019-09-10
US20180126437A1 (en) 2018-05-10
IN2014DN07785A (ja) 2015-05-15
KR20140131557A (ko) 2014-11-13
KR101636639B1 (ko) 2016-07-05
EP2832887A4 (en) 2016-05-04
TW201343313A (zh) 2013-11-01
US10807138B2 (en) 2020-10-20
TWI527655B (zh) 2016-04-01

Similar Documents

Publication Publication Date Title
WO2013147035A1 (ja) ホットスタンプ用テーラードブランクおよびホットスタンプ部材ならびにそれらの製造方法
US20240116141A1 (en) Hot-Formed Previously Welded Steel Part with very High Mechanical Resistance and Production Method
JP5316670B1 (ja) ホットスタンプ用のテーラードブランクとその製造方法
JP5316664B2 (ja) ホットスタンプ用のテーラードブランク
KR20200069362A (ko) 규정된 탄소 함량을 갖는 필러 와이어의 제공에 의해 용접된 강 블랭크를 제조하기 위한 방법, 연관된 용접된 블랭크, 고온 프레스 성형되고 냉각된 강 부품으로 용접된 부품을 제조하는 방법 및 연관된 강 부품
JP6852273B2 (ja) テーラードブランク成形材の製造方法
US11168378B2 (en) Hot-pressed member and manufacturing method therefor
CN111801192B (zh) 涂层钢板的焊接预处理方法
JP7024798B2 (ja) 鋼板、テーラードブランク、熱間プレス成形品、鋼管、中空状焼入れ成形品、鋼板の製造方法、テーラードブランクの製造方法、熱間プレス成形品の製造方法、鋼管の製造方法、および中空状焼入れ成形品の製造方法
JP2023169155A (ja) 溶接鋼ブランク及び関連する溶接鋼ブランクを生産するための方法
JP2019118946A (ja) 鋼板、突合せ溶接部材、熱間プレス成形品、鋼管、中空状焼入れ成形品、および鋼板の製造方法
WO2020152789A1 (ja) 鋼板、突合せ溶接部材、熱間プレス成形品、鋼管、中空状焼入れ成形品、および鋼板の製造方法
JP6671846B2 (ja) テーラードブランク熱間プレス部材
JP7099330B2 (ja) 鋼板、テーラードブランク、熱間プレス成形品、鋼管状のテーラードブランク、中空状熱間プレス成形品、及び鋼板の製造方法
KR20220104211A (ko) 사전-코팅된 강판으로 제조된 용접된 강 부품의 용접 금속 구역의 기계적 강도를 증가시키기 위한 추가 코팅을 포함하는 사전-코팅된 강판
JP6601598B1 (ja) 鋼板、テーラードブランク、熱間プレス成形品の製造方法、鋼管、及び中空状焼入れ成形品の製造方法
JP7518463B1 (ja) テーラードブランク、プレス成形品、テーラードブランクの製造方法、及びプレス成形品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2866466

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14385559

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013769761

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/011514

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20147027219

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201405873

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014023783

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2014139827

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112014023783

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140925