WO2013146389A1 - Method for producing conductor film - Google Patents
Method for producing conductor film Download PDFInfo
- Publication number
- WO2013146389A1 WO2013146389A1 PCT/JP2013/057534 JP2013057534W WO2013146389A1 WO 2013146389 A1 WO2013146389 A1 WO 2013146389A1 JP 2013057534 W JP2013057534 W JP 2013057534W WO 2013146389 A1 WO2013146389 A1 WO 2013146389A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- fine particles
- copper
- conductor film
- conductive ink
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/24—Electrically-conducting paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/30—Inkjet printing inks
- C09D11/32—Inkjet printing inks characterised by colouring agents
- C09D11/322—Pigment inks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/30—Inkjet printing inks
- C09D11/36—Inkjet printing inks based on non-aqueous solvents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/52—Electrically conductive inks
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
- H05K1/097—Inks comprising nanoparticles and specially adapted for being sintered at low temperature
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/10—Using electric, magnetic and electromagnetic fields; Using laser light
- H05K2203/107—Using laser light
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/12—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
- H05K3/1283—After-treatment of the printed patterns, e.g. sintering or curing methods
Definitions
- the present invention relates to a method for producing a conductor film.
- a conductive ink made of a dispersion in which metal fine particles such as silver and copper are dispersed is printed on the substrate by an inkjet printing method.
- a method of forming a conductor by heating is known.
- conductive ink containing copper as a main component is more advantageous than silver fine particles in terms of cost and is widely used.
- a conductor In the method of forming the conductor, it is necessary to heat at a high temperature in order to promote the sintering of the metal particles and to obtain a conductor having sufficient chemical resistance and weather resistance and having a small volume resistivity.
- a conductor is also formed by printing using a polymer film such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate) as a substrate. In this case, the heat resistance of the substrate From this point, it is necessary to perform heating at a low temperature of 200 ° C. or lower.
- Patent Document 1 discloses a method of heating by light irradiation using a pulse light source.
- Patent Document 2 discloses a method of heating the surface using a laser or the like.
- the present invention has been made to solve such problems. Even when a base material having low heat resistance such as PET or PEN is used, the conductor film does not affect the base material and has a small volume resistivity. A method of manufacturing the same is provided.
- the present invention provides the following method for producing a conductor film.
- the conductor film manufacturing method according to any one of (1) to (3), wherein the conductor film includes boron, sodium, and carbon.
- the conductive ink is A conductive ink in which an alkylamine having an alkyl group having a boiling point of 250 ° C. or lower and a carbon number of 7 or more and copper hydride fine particles or copper fine particles having a primary particle diameter of 5 to 80 nm are dispersed in a water-insoluble organic solvent, The method for producing a conductor film according to any one of (1) to (4), wherein the surface tension is 25 to 40 dyn / cm and the viscosity at 20 ° C. is 8 to 40 mPa ⁇ s.
- a coating film formed of conductive hydride containing copper hydride fine particles or copper fine particles having an average primary particle diameter of 5 to 100 nm or less is heated at 100 to 200 ° C. Since the conductive film can be formed by heating only the fired film portion at a high temperature by laser irradiation, even when using a base material with low heat resistance such as PET or PEN, the volume resistance is not affected. A conductor film having a low rate can be obtained.
- the present invention relates to a method for producing a conductor film, comprising a step of preparing a base material, a step of forming a conductive ink coating film on the base material, and heating the coating film at 100 to 200 ° C. A step of forming a fired film, and a step of heating the fired film at 300 to 500 ° C. by laser irradiation. Each step in the production method of the present invention will be described.
- the method of applying the conductor ink includes methods such as inkjet printing, screen printing, roll coating, air knife coating, blade coating, bar coating, gravure coating, die coating, spray coating, and slide coating. It is done. Of these, inkjet printing is particularly preferred.
- the coating pattern at this time can be applied to the entire surface of the substrate, or can be applied in a pattern or pattern.
- the particle size of the copper hydride fine particles or copper fine particles, the dispersant, the solvent, and other types of blends can be appropriately selected.
- the viscosity of the dispersion and the concentration of the copper hydride fine particles or the solid content of the copper fine particles can be appropriately selected.
- a desired pattern can be drawn on the substrate by changing the relative position between the nozzle, which is a discharge port for the conductive ink, and the substrate.
- the thickness and width of the coating can be adjusted.
- the diameter of the ink discharge hole is set to 0.5 to 100 ⁇ m, and the diameter of the conductive ink adhered on the substrate is set to 1 to 100 ⁇ m. It is preferable to do.
- base material glass such as alkali-free glass, quartz glass, crystallized transparent glass, Pyrex (registered trademark) glass, sapphire glass, Al 2 O 3 , MgO, BeO, ZrO 2 , Y 2 O 3 , CaO, Inorganic materials such as GGG (Gadolinium Gallium Garnet), acrylic resins such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polypropylene, polycarbonate, polymethyl methacrylate, chlorides such as polyvinyl chloride, vinyl chloride copolymers Organic materials such as vinyl resin, epoxy resin, polyarylate, polysulfone, polyethersulfone, polyimide, fluororesin, phenoxy resin, polyolefin resin, nylon, styrene resin, ABS resin, etc.
- GGG Gadolinium Gallium Garnet
- acrylic resins such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyprop
- Inorganic particles A substrate, a silicon wafer, a metal plate, or the like formed of a composite material in which is dispersed can be used. These materials can be appropriately selected depending on the application. For electronic member applications, PET and PEN are particularly preferred because they are easy to mold and have excellent chemical properties such as chemical resistance.
- the size is not limited, and the shape may be any shape such as a disk shape, a card shape, or a sheet shape, and the surface of the base material does not need to be a flat surface, and may have an unevenness or a curved surface. .
- An underlayer may be provided on the base material for the purpose of improving the flatness of the surface of the base material, improving the adhesive force, and preventing alteration of the metallic copper-containing film.
- the underlayer include an underlayer formed of a surface modifier such as a polymer material, thermosetting or light / electron beam curable resin, or a coupling material.
- the base layer is preferably one that improves the adhesion between the base material and the conductor film, or one having lyophilicity or liquid repellency, specifically, thermosetting or photo / electron beam curable resin,
- a layer formed using a surface modifier such as a coupling agent, colloidal silica, or the like is preferable if necessary.
- the conductive ink used in the present invention contains copper hydride fine particles or copper fine particles, and a conductive ink produced using a copper hydride fine particle dispersion or a copper fine particle dispersion obtained by a production method described later can be used.
- the dispersion containing the copper hydride fine particles of the embodiment is preferably obtained by a method of reducing a copper (II) salt with a hydride-based reducing agent in the presence of an alkylamine (B) in a solvent (A).
- the solvent (A) is preferably a solvent having an SP value of 8 to 12.
- the SP value is 8 to 12, the compatibility between the solvent (A) and water is low, and the mixing of water into the reaction system can be suppressed. Thereby, it can suppress that the hydride type
- the SP value of the solvent (A) is more preferably 8.5 to 9.5.
- Examples of the solvent (A) include cyclohexane (SP value 8.2), isobutyl acetate (SP value 8.3), isopropyl acetate (SP value 8.4), butyl acetate (SP value 8.5), and tetrachloride.
- the alkylamine (B) is preferably an alkylamine having an alkyl group having 7 or more carbon atoms and a boiling point of 250 ° C. or less. If the carbon number of the alkyl group in the alkylamine (B) is 7 or more, the dispersibility of the produced copper hydride fine particles will be good. In the present invention, since the reaction field is an organic phase, it is not necessary to use an alkylamine having a large carbon number for the purpose of protection from water.
- the number of carbon atoms of the alkyl group in the alkylamine (B) is preferably 11 or less from the viewpoint of suppressing the boiling point from becoming too high.
- the conductor film having a low volume resistivity is released when the alkylamine (B) is desorbed from the surface of the fine particles and volatilized when the conductor film is formed using the conductive ink. Can be formed.
- the boiling point of the alkylamine (B) is preferably 250 ° C. or less, and more preferably 200 ° C. or less, from the viewpoint of desorption and volatility during heating.
- the boiling point of the alkylamine (B) is usually preferably 150 ° C. or higher from the viewpoint that the alkyl group has 7 or more carbon atoms.
- the alkyl group of the alkylamine (B) is preferably a linear alkyl group from the viewpoint of dispersion stability of the obtained copper hydride fine particles.
- the alkyl group of the alkylamine (B) may be a branched alkyl group.
- alkylamine (B) examples include n-heptylamine (alkyl group having 7 carbon atoms and a boiling point of 157 ° C.), n-octylamine (alkyl group having 8 carbon atoms and a boiling point of 176 ° C.), n-nonylamine (carbon of the alkyl group). (9, boiling point: 201 ° C.), 1-aminodecane (alkyl group having 10 carbon atoms, boiling point: 220 ° C.), 1-aminoundecane (alkyl group having 11 carbon atoms, boiling point: 242 ° C.), n-heptylamine, n- Octylamine is more preferred.
- An alkylamine (B) may be used individually by 1 type, and may use 2 or more types together.
- the addition amount of the alkylamine (B) is 0.2 ⁇ 10 ⁇ with respect to 1 g of the solvent (A) because the dispersibility of the copper hydride fine particles in the obtained copper hydride fine particle dispersion becomes good. 3 mol or more is preferable, 0.25 ⁇ 10 ⁇ 3 mol or more is more preferable, and 0.3 ⁇ 10 ⁇ 3 mol or more is particularly preferable. Moreover, when the addition amount of the alkylamine (B) is excessive, the alkylamine (B) that cannot be coordinated to the copper (II) salt remains at the time of forming the conductor film, and increases the volume resistivity of the conductor film. There is a fear.
- the amount of the alkylamine (B) is preferably 0.75 ⁇ 10 ⁇ 3 mol or less, more preferably 0.7 ⁇ 10 ⁇ 3 mol or less, and 0.6 ⁇ 1 g of the solvent (A). 10-3 mol or less is particularly preferred.
- hydrogenated copper hydride fine particles having an average primary particle diameter of 5 to 100 nm, preferably 5 to 80 nm, more preferably 5 to 70 nm, and particularly preferably 5 to 35 nm are dispersed in the solvent (A).
- a copper fine particle dispersion is obtained.
- the average primary particle diameter of the copper hydride fine particles can be adjusted by the addition amount of the alkylamine (B) and the addition amount of the hydride reducing agent. By increasing the addition amount of the alkylamine (B), the average primary particle diameter of the copper hydride fine particles tends to decrease.
- an average primary particle diameter of a copper hydride microparticle can become small by reducing the addition amount of a hydride type
- an average primary particle diameter can be calculated
- the concentration of the copper hydride fine particles as a solid content in the obtained copper hydride fine particle dispersion is preferably 1 to 6% by mass, more preferably 2.5 to 4.5% by mass, based on 100% by mass of the entire dispersion. . If the solid content concentration of the copper hydride fine particle dispersion is less than 1% by mass, the concentration process takes time, and the productivity may be reduced. If the solid content concentration of the copper hydride fine particle dispersion exceeds 6% by mass, the dispersion stability of the copper hydride fine particles in the dispersion may be deteriorated.
- the copper fine particle dispersion can be produced by heat-treating the copper hydride fine particle dispersion obtained by the copper hydride fine particle dispersion production method at a temperature of 60 ° C. or higher in an inert atmosphere.
- the heating temperature is preferably from 80 to 100 ° C. from the viewpoint of the heat treatment time (it takes time when the temperature is low) and the dispersed particle diameter of the obtained copper fine particles (aggregates when the temperature is too high).
- copper fine particles having an average primary particle diameter of 5 to 100 nm, preferably 5 to 80 nm, more preferably 5 to 70 nm, and particularly preferably 5 to 35 nm are dispersed in the solvent (A).
- a fine particle dispersion is obtained.
- the average primary particle diameter of the copper fine particles can be adjusted in the same manner as in the case of producing the above-described copper hydride fine particle dispersion.
- the concentration of the copper fine particles as a solid content in the obtained copper fine particle dispersion is preferably 1 to 6% by mass, more preferably 2.5 to 4.5% by mass, based on 100% by mass of the entire dispersion. If the solid content concentration of the copper fine particle dispersion is less than 1% by mass, the concentration process takes time, and the productivity may be reduced. When the solid content concentration of the copper hydride fine particle dispersion exceeds 6% by mass, the dispersion stability of the copper fine particles in the dispersion may be deteriorated.
- the copper hydride fine particle dispersion obtained by the production method described above or the solvent (A) of the copper fine particle dispersion is replaced with the solvent (C), and the solid content concentration and viscosity are adjusted. Is obtained.
- the solvent (C) a water-insoluble organic solvent is used.
- Water-insoluble means that the amount dissolved in 100 g of water at room temperature (20 ° C.) is 0.5 g or less.
- the solvent (C) is preferably an organic solvent having a small polarity from the viewpoint of affinity with the alkylamine (B). Further, the solvent (C) is preferably one that does not cause thermal decomposition by heating when forming the conductor film.
- Examples of the solvent (C) include decane (insoluble in water), dodecane (insoluble in water), tetradecane (insoluble in water), decene (insoluble in water), dodecene (insoluble in water), tetradecene.
- a solvent (C) may be used individually by 1 type, and may use 2 or more types together.
- a known solvent substitution method can be employed as a method for substituting the solvent (A) of the copper hydride fine particle dispersion or the copper fine particle dispersion with the solvent (C). For example, while concentrating the solvent (A) under reduced pressure, The method of adding (C) is mentioned.
- the conductive ink used in the present invention may contain a silane coupling agent and other additives in addition to the above-described copper hydride fine particles or copper fine particles, alkylamine and solvent.
- examples of other additives include antifoaming agents, wetting and dispersing agents, leveling agents, anti-drying agents, rheology control agents, and adhesion imparting agents.
- the solid content concentration of the conductive ink (100% by mass) used in the present invention varies depending on the required viscosity, but is preferably 15 to 70% by mass, more preferably 20 to 60% by mass. When the solid content concentration of the conductive ink is 15% by mass or more within the above range, a conductor film having a sufficient thickness can be easily formed. When the solid content concentration of the conductive ink is 70% by mass or less of the above range, the ink characteristics such as viscosity and surface tension can be easily controlled, and the formation of the conductor film is facilitated.
- the copper hydride fine particle dispersion or the conductive ink obtained from the copper fine particle dispersion contains a reducing agent and an alkylamine because of its production method, but these components remain in the produced conductor film. However, there is no problem because there is little residue. If the component derived from the reducing agent and the carbon derived from the alkylamine are present in the conductor film, a material for producing the conductor film can be estimated. For example, when NaBH 4 is used as the reducing agent, boron, sodium, and carbon are contained in the conductor film.
- the viscosity of the conductive ink used in the present invention at 20 ° C. is preferably 5 to 60 mPa ⁇ s, more preferably 8 to 40 mPa ⁇ s. If the viscosity of the conductive ink is 5 mPa ⁇ s or more, the ink can be accurately discharged even when ink jet printing is used. If the viscosity of the conductive ink is 60 mPa ⁇ s or less, it can be applied to almost all available inkjet heads.
- the surface tension of the conductive ink used in the present invention is preferably 20 to 45 dyn / cm, and more preferably 25 to 40 dyn / cm. If the surface tension of the conductive ink is 20 dyn / cm or more, the ink can be ejected with high accuracy. If the surface tension of the conductive ink is 45 dyn / cm or less in the above range, it can be applied to almost all available inkjet heads.
- the viscosity of the conductive ink is a value measured with a B-type viscometer (manufactured by Toki Sangyo Co., Ltd., apparatus name: TVB35L).
- the surface tension is a value measured by a surface tension meter (manufactured by Kyowa Interface Science Co., Ltd., device name: DY-500).
- the conductive ink used in the present invention includes a water-insoluble organic solvent, an alkylamine having a boiling point of 250 ° C. or lower and an alkyl group having 7 or more carbon atoms, copper hydride fine particles having a primary particle diameter of 5 to 80 nm, or copper It is particularly preferable that the conductive ink has fine particles dispersed therein, the viscosity at 20 ° C. is 8 to 40 mPa ⁇ s, and the surface tension is 25 to 40 dyn / cm.
- the coating film is heated at 100 to 200 ° C. to form a fired film.
- the fired film means a film obtained by decomposing and / or vaporizing a compound contained in a coating film such as a protective agent or a solvent by the heating.
- the heating method include a method using oven, hot plate heating, IR heating, flash lamp heating, laser heating, ⁇ -wave plasma heating and the like.
- the heating is preferably performed in an inert atmosphere such as a nitrogen atmosphere from the viewpoint of easily suppressing the oxidation of the conductor film to be formed.
- the heating temperature can be appropriately set according to the type of the substrate, but is preferably 100 to 200 ° C. which does not affect the plastic substrate such as PET or PEN. Further, using the above-described copper hydride fine particles or conductive ink containing copper fine particles, heating is performed in a nitrogen atmosphere or in vacuum in order to set the light absorption rate of the fired film to 40% or more at a wavelength of 300 to 1000 nm. It is preferable.
- the light absorption rate of the laser light irradiated in the laser irradiation process by the fired film is preferably 40% or more.
- the light absorption rate of the fired film is more preferably 40% or more at a wavelength of 300 to 1000 nm. This is because laser irradiation energy, which will be described later, is absorbed by the fired film and can be heated to a temperature of 300 ° C. or higher in a short time. If the light absorptance is less than 40%, most of the laser irradiation energy is reflected, so the temperature cannot be raised in a short time. If the light absorptance is 5% or less, it is difficult to raise the temperature by laser irradiation. .
- the light absorption rate of the fired film can be determined as follows. Using a UV-visible spectrophotometer (for example, Hitachi High-Technologies Corporation, device name: U-4100 type), the light transmittance and light reflectance at a wavelength of 300 to 1000 nm of the fired film are measured, and the light absorption rate is calculated. .
- a UV-visible spectrophotometer for example, Hitachi High-Technologies Corporation, device name: U-4100 type
- the heating time can be appropriately set according to the heating temperature.
- the solvent (C), the acid liberated from the copper (II) salt, the alkylamine (B) desorbed from the fine particle surface, etc. are volatilized to absorb light. What is necessary is just a time during which a fired film having a rate within the above-mentioned range can be formed, and about 10 minutes to 48 hours is appropriate.
- Laser heating process The entire region or a partial region of the fired film formed by the heating is irradiated with laser light to be heated to 300 to 500 ° C. (hereinafter also referred to as a laser heating step).
- the laser light oscillated by a laser oscillator is collected by a lens, and the pattern is drawn on the base material by moving the laser mounting portion or the base material while irradiating the fired film with the laser light by appropriately setting the irradiation diameter.
- the laser light is absorbed by the fired film, and the generated heat decomposes and / or vaporizes the organic compound such as the dispersant, while reducing the copper hydride fine particles and fusing adjacent copper fine particles.
- the volume resistivity of the irradiated part can be reduced.
- the obtained conductor film contains copper fine particles connected to each other. It is considered that the copper fine particles adhere to each other even at the interface with the base material due to physical and chemical effects.
- the heating method by laser light irradiation has an advantage that only the fired film can be heated, and a conductor film can be formed without causing thermal damage to the substrate. That is, with local and short-time heating by laser irradiation, the temperature rise of the copper fine particles is extremely fast, so the temperature rise around the copper fine particles due to heat transfer is slight, and the substrate is relatively heat resistant. Even if the polymer film is not formed, the conductive film can be formed without melting the entire polymer film.
- the wavelength of the laser beam can be arbitrarily selected within the range where the light absorption rate by the fired film is 40% or more depending on the type and blending amount of the dispersant, additive and solvent to be used. In view of the ease of the above, 350 to 900 nm is preferable.
- Typical lasers include semiconductor lasers such as GaN, GaAsAl, and InGaAsP, excimer lasers such as ArF, KrF, and XeCl, dye lasers such as rhodamine, gases such as He—Ne, He—Cd, CO 2 , and Ar ions. Examples thereof include solid lasers such as lasers, free electron lasers, ruby lasers, and Nd: YAG lasers.
- higher harmonics such as second harmonic and third harmonic of these lasers may be used, and laser light having any wavelength in the ultraviolet region, visible light region, or infrared region can be used.
- continuous wave irradiation or pulse wave irradiation may be used.
- a semiconductor laser is preferable because it is suitable for irradiation with a continuous laser beam having an infrared wavelength.
- Each condition relating to the applied energy such as the laser beam irradiation diameter, scanning speed, and output can be set as appropriate within a range where oxidation of the formed conductor film, ablation of the fired film, and peening do not occur.
- the laser irradiation diameter (beam diameter) can be appropriately set according to the pattern or pattern to be drawn, but is preferably 10 ⁇ m to 10 mm.
- the scanning speed can be appropriately set according to other parameters, required accuracy, manufacturing capability, and the like.
- the atmosphere for laser irradiation is preferably an inert gas atmosphere in order to suppress oxidation of the formed conductor film. Specifically, it is preferable to irradiate a continuous wave laser beam having an infrared wavelength in an atmosphere containing nitrogen gas at a scanning speed of 1 to 500 mm / second in an output range of 1 to 140 W. At this time, in order to sufficiently sinter the copper fine particles and sufficiently reduce the volume resistivity, the laser irradiation conditions are set so that the temperature of the portion irradiated with the laser light is 300 to 500 ° C., more preferably 300 to 400 ° C. adjust.
- the heating time may be set according to the heating temperature so that the copper fine particles are densely sintered and the volume resistivity is sufficiently reduced to form the conductor film.
- the laser beam output is more preferably 5 to 100 W, and further preferably 5 to 50 W.
- the scanning speed is more preferably 0.3 to 20 mm / second. Since the fired film is heated at a high temperature of 300 to 500 ° C. by such a laser heating process, a conductor film having a volume resistivity of 10 ⁇ ⁇ cm or less can be formed.
- the volume resistivity can be determined as follows.
- the surface resistance value of the conductor film is measured using a four-point probe resistance meter (for example, Mitsubishi Oil Chemical Co., Ltd., apparatus name: Loresta GP MCP-T610).
- the volume resistivity is obtained by multiplying the measured surface resistance value by the thickness of the conductor film.
- the laser heating process described above minimizes the thermal effect on the base material, and even when a plastic such as PET, PEN or the like, which is a low heat resistant base material, is used, only the fired film can be heated at a high temperature. Moreover, since it heats at 300 degreeC or more by laser irradiation, the conductor film which reduced the volume resistivity sufficiently can be formed.
- the thickness of the conductor film to be manufactured is preferably 0.3 to 2.0 ⁇ m.
- Examples 1 and 2 are examples, and example 3 is a comparative example.
- Each method of identification of fine particles, measurement of the average particle diameter of fine particles, measurement of the thickness of the conductor film, and measurement of the volume resistivity of the conductor film in Examples and Comparative Examples is shown below.
- the volume resistivity was obtained by multiplying the measured surface resistance value by the thickness of the conductor film.
- Measurement of light absorption rate Using a UV-visible spectrophotometer (manufactured by Hitachi High-Technologies Corporation, apparatus name: U-4100 type), the light transmittance and light reflectance at a wavelength of 300 to 1000 nm of the fired film were measured, and the light absorption rate was calculated.
- the obtained copper hydride fine particle dispersion was concentrated under reduced pressure, and ⁇ -terpineol was added to adjust the viscosity to obtain a conductive ink.
- the obtained conductive ink had a solid content of copper hydride fine particles of 30% by mass.
- Example 1 A PET film was used as the substrate. Using the above conductive ink, a wiring pattern was printed on a PET substrate so as to have a length of 5 cm and a width of 5 mm by an industrial ink jet printer (manufactured by Fuji Film Graphic System Co., Ltd., device name: DMP2813). The PET substrate after printing was heated at 150 ° C. for 1 hour in a nitrogen atmosphere to obtain a PET substrate on which a fired film was formed. The obtained fired film had a thickness of 0.5 ⁇ m and a volume resistivity of 20 ⁇ ⁇ cm. The light absorption rate of the obtained fired film is shown in FIG. As can be seen from FIG.
- the light absorptance at wavelengths of 300 nm to 1000 nm is 40% or more.
- a semiconductor laser manufactured by Hamamatsu Photonics, apparatus name: L10402-72, wavelength: 808 nm, beam diameter: 1.75 ⁇ 5
- irradiation output 5 W
- laser irradiation was performed at a scanning speed of 1 mm / second.
- the volume resistivity of the conductor film after laser irradiation was 7 ⁇ ⁇ cm.
- Example 2 Using the above conductive ink, a wiring pattern was printed on a PET substrate so as to have a length of 5 cm and a width of 5 mm by an industrial ink jet printer (manufactured by Fuji Film Graphic System Co., Ltd., device name: DMP2813).
- the printed PET substrate was heated in vacuum at 100 ° C. for 1 hour to obtain a PET substrate on which a fired film was formed.
- the obtained fired film had a thickness of 0.6 ⁇ m and a volume resistivity of 55 ⁇ ⁇ cm.
- the light absorption rate of the obtained fired film was the same as in FIG. From FIG. 1, the light absorptance at a wavelength of 300 to 1000 nm was 40% or more.
- a semiconductor laser manufactured by Hamamatsu Photonics, apparatus name: L10402-72, wavelength: 808 nm, beam diameter: 1.75 ⁇ 5. 58 mm, irradiation output: 5 W
- laser irradiation was performed at a scanning speed of 1 mm / second.
- the volume resistivity of the conductor film after laser irradiation was 5 ⁇ ⁇ cm.
- Example 3 Using the above conductive ink, a wiring pattern was printed on a PET substrate so as to have a length of 5 cm and a width of 5 mm by an industrial ink jet printer (manufactured by Fuji Film Graphic System Co., Ltd., device name: DMP2813).
- the PET substrate after printing was heated at 120 ° C. for 1 hour in an atmosphere in which 3% by volume of hydrogen was mixed with nitrogen to obtain a PET substrate on which a fired film was formed.
- the obtained fired film had a thickness of 0.5 ⁇ m and a volume resistivity of 15 ⁇ ⁇ cm.
- the light absorption rate of the obtained fired film is shown in FIG. The light absorption rate at a wavelength of 600 to 1000 nm was 40% or less.
- the fired film obtained above was used in a nitrogen atmosphere using a semiconductor laser (manufactured by Hamamatsu Photonics, apparatus name: L10402-72, wavelength: 808 nm, beam diameter: 1.75 ⁇ 5.58 mm, irradiation output: 5 W). Laser irradiation was performed at a scanning speed of 1 mm / second. The volume resistivity of the conductor film after laser irradiation was 15 ⁇ ⁇ cm.
- the light absorption rate at a wavelength of 300 to 1000 nm of the fired film is 40% or more.
- the temperature becomes 300 ° C. or more. It can be seen that the volume resistivity could be reduced.
- the light absorption rate at a wavelength of 600 to 1000 nm of the fired film is 40% or less, and the fired film is not heated even when irradiated with laser light having a wavelength of 808 nm, and the volume resistivity cannot be sufficiently reduced. I understand that.
- the manufacturing method of the base material with a conductor of this invention even when using base materials with low heat resistance, such as PET and PEN, a conductive film with a small volume resistivity can be manufactured, and this conductive film was formed.
- the base material is suitably used as a highly reliable wiring board.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Dispersion Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Conductive Materials (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Manufacturing Of Electric Cables (AREA)
- Paints Or Removers (AREA)
Abstract
Provided is a method by which a conductor film having a low volume resistivity is produced without thermally affecting the base even in cases where a base having a low heat resistance, such as PET and PEN, is used. A method for producing a conductor film, which comprises: a step of preparing a base; a step of forming a coating film of a conductive ink on the base, said conductive ink containing fine copper hydride particles or fine copper particles; a step of forming a fired film by heating the coating film at 100-200°C; and a step of heating the fired film at 300-500°C by irradiation of laser light.
Description
本発明は、導体膜の製造方法に関する。
The present invention relates to a method for producing a conductor film.
例えば、プリント配線等の回路パターンを有する導体付き基材の製造方法としては、銀、銅等の金属微粒子を分散させた分散液からなる導電インクを、基材上にインクジェット印刷法により印刷し、加熱して導体を形成する方法が知られている。特に、銅を主成分とする導電インクは、コストの点で、銀微粒子よりも有利であり広く用いられるようになっている。
For example, as a method for producing a substrate with a conductor having a circuit pattern such as a printed wiring, a conductive ink made of a dispersion in which metal fine particles such as silver and copper are dispersed is printed on the substrate by an inkjet printing method, A method of forming a conductor by heating is known. In particular, conductive ink containing copper as a main component is more advantageous than silver fine particles in terms of cost and is widely used.
導体を形成する方法においては、金属粒子どうしの焼結を促進し、耐薬品性や耐候性が充分で、体積抵抗率の小さい導体を得るために、高温で加熱することが必要である。一方で、基材としてPET(ポリエチレンテレフタラート)、PEN(ポリエチレンナフタレート)などの高分子フィルムを用いて印刷により導体を形成することも行われており、この場合には、基材の耐熱性の点から、加熱は200℃以下の低温で行う必要がある。
In the method of forming the conductor, it is necessary to heat at a high temperature in order to promote the sintering of the metal particles and to obtain a conductor having sufficient chemical resistance and weather resistance and having a small volume resistivity. On the other hand, a conductor is also formed by printing using a polymer film such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate) as a substrate. In this case, the heat resistance of the substrate From this point, it is necessary to perform heating at a low temperature of 200 ° C. or lower.
このような焼結を促進する加熱方法として、特許文献1には、パルス光源を用いた光照射により加熱する方法が開示されている。特許文献2には、レーザー等を用いて表面を加熱する方法が開示されている。
As a heating method for promoting such sintering, Patent Document 1 discloses a method of heating by light irradiation using a pulse light source. Patent Document 2 discloses a method of heating the surface using a laser or the like.
しかし、特許文献1、2の方法では、材料である銀、銅、鉄、亜鉛、チタン等のナノ粒子の特性とパルス照射、レーザー照射の条件やその組合せが最適化されておらず、これらの方法で水素化銅微粒子または銅微粒子を含有する導電インクの加熱を行う場合には、加熱温度を制御することが困難であり、銅微粒子間で十分な融着が進まず、得られる導体の体積抵抗率の低減が不充分であるという問題があった。
However, in the methods of Patent Documents 1 and 2, the characteristics of nanoparticles, such as silver, copper, iron, zinc, and titanium, and the conditions of pulse irradiation and laser irradiation and the combination thereof are not optimized. When heating the conductive ink containing copper hydride fine particles or copper fine particles by the method, it is difficult to control the heating temperature, and sufficient fusion between the copper fine particles does not proceed, and the volume of the obtained conductor There was a problem that the resistivity was not sufficiently reduced.
本発明はこのような問題を解決すべくなされたものであり、PET、PEN等の耐熱性が低い基材を使用する場合でも、基材に熱影響を与えず、体積抵抗率の小さい導体膜を製造する方法を提供する。
The present invention has been made to solve such problems. Even when a base material having low heat resistance such as PET or PEN is used, the conductor film does not affect the base material and has a small volume resistivity. A method of manufacturing the same is provided.
本発明は、以下の導体膜の製造方法を提供する。
(1)基材を準備する工程と、
前記基材上に、平均一次粒子径が5~100nmの、水素化銅微粒子または銅微粒子を含む導電インクの塗膜を形成する工程と、
前記塗膜を100~200℃で加熱して焼成膜を形成する工程と、
前記焼成膜をレーザー光の照射により300~500℃で加熱する工程とを備えることを特徴とする導体膜の製造方法。
(2)前記焼成膜の光吸収率は、波長300~1000nmにおいて40~100%である(1)記載の導体膜の製造方法。
(3)前記導体膜は、銅微粒子を連接して含む(1)または(2)記載の導体膜の製造方法。
(4)前記導体膜は、ホウ素、ナトリウムおよび炭素を含む(1)~(3)のいずれか1つに記載の導体膜の製造方法。
(5)前記導電インクは、
非水溶性の有機溶媒に、沸点が250℃以下で炭素数7以上のアルキル基を有するアルキルアミンと、一次粒子径が5~80nmの水素化銅微粒子または銅微粒子が分散した導電インクであり、表面張力が25~40dyn/cm、20℃での粘度が8~40mPa・sである(1)~(4)のいずれか1つに記載の導体膜の製造方法。 The present invention provides the following method for producing a conductor film.
(1) preparing a substrate;
Forming a conductive ink coating film containing copper hydride fine particles or copper fine particles having an average primary particle diameter of 5 to 100 nm on the substrate;
Heating the coating film at 100 to 200 ° C. to form a fired film;
And a step of heating the fired film at 300 to 500 ° C. by laser light irradiation.
(2) The method for producing a conductor film according to (1), wherein the light absorption rate of the fired film is 40 to 100% at a wavelength of 300 to 1000 nm.
(3) The method for producing a conductor film according to (1) or (2), wherein the conductor film includes copper fine particles connected to each other.
(4) The conductor film manufacturing method according to any one of (1) to (3), wherein the conductor film includes boron, sodium, and carbon.
(5) The conductive ink is
A conductive ink in which an alkylamine having an alkyl group having a boiling point of 250 ° C. or lower and a carbon number of 7 or more and copper hydride fine particles or copper fine particles having a primary particle diameter of 5 to 80 nm are dispersed in a water-insoluble organic solvent, The method for producing a conductor film according to any one of (1) to (4), wherein the surface tension is 25 to 40 dyn / cm and the viscosity at 20 ° C. is 8 to 40 mPa · s.
(1)基材を準備する工程と、
前記基材上に、平均一次粒子径が5~100nmの、水素化銅微粒子または銅微粒子を含む導電インクの塗膜を形成する工程と、
前記塗膜を100~200℃で加熱して焼成膜を形成する工程と、
前記焼成膜をレーザー光の照射により300~500℃で加熱する工程とを備えることを特徴とする導体膜の製造方法。
(2)前記焼成膜の光吸収率は、波長300~1000nmにおいて40~100%である(1)記載の導体膜の製造方法。
(3)前記導体膜は、銅微粒子を連接して含む(1)または(2)記載の導体膜の製造方法。
(4)前記導体膜は、ホウ素、ナトリウムおよび炭素を含む(1)~(3)のいずれか1つに記載の導体膜の製造方法。
(5)前記導電インクは、
非水溶性の有機溶媒に、沸点が250℃以下で炭素数7以上のアルキル基を有するアルキルアミンと、一次粒子径が5~80nmの水素化銅微粒子または銅微粒子が分散した導電インクであり、表面張力が25~40dyn/cm、20℃での粘度が8~40mPa・sである(1)~(4)のいずれか1つに記載の導体膜の製造方法。 The present invention provides the following method for producing a conductor film.
(1) preparing a substrate;
Forming a conductive ink coating film containing copper hydride fine particles or copper fine particles having an average primary particle diameter of 5 to 100 nm on the substrate;
Heating the coating film at 100 to 200 ° C. to form a fired film;
And a step of heating the fired film at 300 to 500 ° C. by laser light irradiation.
(2) The method for producing a conductor film according to (1), wherein the light absorption rate of the fired film is 40 to 100% at a wavelength of 300 to 1000 nm.
(3) The method for producing a conductor film according to (1) or (2), wherein the conductor film includes copper fine particles connected to each other.
(4) The conductor film manufacturing method according to any one of (1) to (3), wherein the conductor film includes boron, sodium, and carbon.
(5) The conductive ink is
A conductive ink in which an alkylamine having an alkyl group having a boiling point of 250 ° C. or lower and a carbon number of 7 or more and copper hydride fine particles or copper fine particles having a primary particle diameter of 5 to 80 nm are dispersed in a water-insoluble organic solvent, The method for producing a conductor film according to any one of (1) to (4), wherein the surface tension is 25 to 40 dyn / cm and the viscosity at 20 ° C. is 8 to 40 mPa · s.
本発明の導体膜の製造方法によれば、平均一次粒子径が5~100nm以下の、水素化銅微粒子または銅微粒子を含む導電インクにより形成した塗膜を100~200℃で加熱して形成された焼成膜部分のみを、レーザー照射により高温で加熱して導体膜を形成できるので、PET、PEN等の耐熱性が低い基材を使用する場合でも、基材に熱影響を与えず、体積抵抗率の小さい導体膜が得られる。
According to the method for producing a conductor film of the present invention, a coating film formed of conductive hydride containing copper hydride fine particles or copper fine particles having an average primary particle diameter of 5 to 100 nm or less is heated at 100 to 200 ° C. Since the conductive film can be formed by heating only the fired film portion at a high temperature by laser irradiation, even when using a base material with low heat resistance such as PET or PEN, the volume resistance is not affected. A conductor film having a low rate can be obtained.
<導体膜の製造方法>
本発明は、導体膜の製造方法に関するものであり、基材を準備する工程と、前記基材上に導電インクの塗膜を形成する工程と、前記塗膜を100~200℃で加熱して焼成膜を形成する工程と、前記焼成膜をレーザー照射により300~500℃で加熱する工程とを備える。本発明の製造法における、各工程について説明する。 <Method for producing conductor film>
The present invention relates to a method for producing a conductor film, comprising a step of preparing a base material, a step of forming a conductive ink coating film on the base material, and heating the coating film at 100 to 200 ° C. A step of forming a fired film, and a step of heating the fired film at 300 to 500 ° C. by laser irradiation. Each step in the production method of the present invention will be described.
本発明は、導体膜の製造方法に関するものであり、基材を準備する工程と、前記基材上に導電インクの塗膜を形成する工程と、前記塗膜を100~200℃で加熱して焼成膜を形成する工程と、前記焼成膜をレーザー照射により300~500℃で加熱する工程とを備える。本発明の製造法における、各工程について説明する。 <Method for producing conductor film>
The present invention relates to a method for producing a conductor film, comprising a step of preparing a base material, a step of forming a conductive ink coating film on the base material, and heating the coating film at 100 to 200 ° C. A step of forming a fired film, and a step of heating the fired film at 300 to 500 ° C. by laser irradiation. Each step in the production method of the present invention will be described.
本実施形態において、導電インクの塗膜を形成する工程(以下、塗布工程ともいう。)について説明する。
本実施形態の塗布工程において、導体インクを塗布する方法としては、インクジェット印刷、スクリーン印刷、ロールコート、エアナイフコート、ブレードコート、バーコート、グラビアコート、ダイコート、スプレーコート、スライドコート等の方法が挙げられる。なかでも、インクジェット印刷が特に好ましい。 In the present embodiment, a process of forming a conductive ink coating film (hereinafter also referred to as a coating process) will be described.
In the coating process of the present embodiment, the method of applying the conductor ink includes methods such as inkjet printing, screen printing, roll coating, air knife coating, blade coating, bar coating, gravure coating, die coating, spray coating, and slide coating. It is done. Of these, inkjet printing is particularly preferred.
本実施形態の塗布工程において、導体インクを塗布する方法としては、インクジェット印刷、スクリーン印刷、ロールコート、エアナイフコート、ブレードコート、バーコート、グラビアコート、ダイコート、スプレーコート、スライドコート等の方法が挙げられる。なかでも、インクジェット印刷が特に好ましい。 In the present embodiment, a process of forming a conductive ink coating film (hereinafter also referred to as a coating process) will be described.
In the coating process of the present embodiment, the method of applying the conductor ink includes methods such as inkjet printing, screen printing, roll coating, air knife coating, blade coating, bar coating, gravure coating, die coating, spray coating, and slide coating. It is done. Of these, inkjet printing is particularly preferred.
このときの塗布パターンは、基材の全面に塗布することも、パターン状や模様状に塗布することもできる。塗布方法や使用目的、用途に応じて、水素化銅微粒子または銅微粒子の粒径や分散剤、溶媒およびその他配合物の種類を適宜選択できる。また、分散液の粘度や水素化銅微粒子または銅微粒子の固形分としての濃度についても同様に適宜選択できる。
The coating pattern at this time can be applied to the entire surface of the substrate, or can be applied in a pattern or pattern. Depending on the application method, purpose of use, and application, the particle size of the copper hydride fine particles or copper fine particles, the dispersant, the solvent, and other types of blends can be appropriately selected. Similarly, the viscosity of the dispersion and the concentration of the copper hydride fine particles or the solid content of the copper fine particles can be appropriately selected.
インクジェット印刷を用いる場合には、導電インクの吐出口であるノズルと、基材との相対的な位置を変化させること等により所望のパターンを基材上に描くことができ、形成する導電インクの塗膜の厚さや幅を調整できる。
When inkjet printing is used, a desired pattern can be drawn on the substrate by changing the relative position between the nozzle, which is a discharge port for the conductive ink, and the substrate. The thickness and width of the coating can be adjusted.
インクジェット印刷の場合、所望のパターンの導体膜の形成が容易な点から、インク吐出孔の孔径を0.5~100μmとし、基材上に付着した導電インクの直径が1~100μmとなるようにすることが好ましい。
In the case of inkjet printing, from the viewpoint of easy formation of a conductor film having a desired pattern, the diameter of the ink discharge hole is set to 0.5 to 100 μm, and the diameter of the conductive ink adhered on the substrate is set to 1 to 100 μm. It is preferable to do.
(基材)
基材としては、無アルカリガラス、石英ガラス、結晶化透明ガラス、パイレックス(登録商標)ガラス、サファイアガラスなどのガラス類、Al2O3、MgO、BeO、ZrO2、Y2O3、CaO、GGG(ガドリウム・ガリウム・ガーネット)等の無機材料、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、ポリプロピレン、ポリカーボネート、ポリメチルメタクリレート等のアクリル樹脂、ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂、エポキシ樹脂、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリイミド、フッ素樹脂、フェノキシ樹脂、ポリオレフィン系樹脂、ナイロン、スチレン系樹脂、ABS樹脂等の有機材料、その有機材料に直径数nmの無機粒子が分散された複合材料で形成される基板、シリコンウエハ、金属板等を使用できる。用途に応じてこれらの材料から適宜選択できる。電子部材用途においては、成形が容易であり、耐薬品性等の化学的特性に優れるPET、PENが特に好ましい。なお、その大きさについて制限はなく、形状も円盤状、カード状、シート状などいずれの形状であってもよく、基材の表面も平面である必要はなく、凹凸または曲面を有するものでもよい。 (Base material)
As the base material, glass such as alkali-free glass, quartz glass, crystallized transparent glass, Pyrex (registered trademark) glass, sapphire glass, Al 2 O 3 , MgO, BeO, ZrO 2 , Y 2 O 3 , CaO, Inorganic materials such as GGG (Gadolinium Gallium Garnet), acrylic resins such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polypropylene, polycarbonate, polymethyl methacrylate, chlorides such as polyvinyl chloride, vinyl chloride copolymers Organic materials such as vinyl resin, epoxy resin, polyarylate, polysulfone, polyethersulfone, polyimide, fluororesin, phenoxy resin, polyolefin resin, nylon, styrene resin, ABS resin, etc. Inorganic particles A substrate, a silicon wafer, a metal plate, or the like formed of a composite material in which is dispersed can be used. These materials can be appropriately selected depending on the application. For electronic member applications, PET and PEN are particularly preferred because they are easy to mold and have excellent chemical properties such as chemical resistance. The size is not limited, and the shape may be any shape such as a disk shape, a card shape, or a sheet shape, and the surface of the base material does not need to be a flat surface, and may have an unevenness or a curved surface. .
基材としては、無アルカリガラス、石英ガラス、結晶化透明ガラス、パイレックス(登録商標)ガラス、サファイアガラスなどのガラス類、Al2O3、MgO、BeO、ZrO2、Y2O3、CaO、GGG(ガドリウム・ガリウム・ガーネット)等の無機材料、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、ポリプロピレン、ポリカーボネート、ポリメチルメタクリレート等のアクリル樹脂、ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂、エポキシ樹脂、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリイミド、フッ素樹脂、フェノキシ樹脂、ポリオレフィン系樹脂、ナイロン、スチレン系樹脂、ABS樹脂等の有機材料、その有機材料に直径数nmの無機粒子が分散された複合材料で形成される基板、シリコンウエハ、金属板等を使用できる。用途に応じてこれらの材料から適宜選択できる。電子部材用途においては、成形が容易であり、耐薬品性等の化学的特性に優れるPET、PENが特に好ましい。なお、その大きさについて制限はなく、形状も円盤状、カード状、シート状などいずれの形状であってもよく、基材の表面も平面である必要はなく、凹凸または曲面を有するものでもよい。 (Base material)
As the base material, glass such as alkali-free glass, quartz glass, crystallized transparent glass, Pyrex (registered trademark) glass, sapphire glass, Al 2 O 3 , MgO, BeO, ZrO 2 , Y 2 O 3 , CaO, Inorganic materials such as GGG (Gadolinium Gallium Garnet), acrylic resins such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polypropylene, polycarbonate, polymethyl methacrylate, chlorides such as polyvinyl chloride, vinyl chloride copolymers Organic materials such as vinyl resin, epoxy resin, polyarylate, polysulfone, polyethersulfone, polyimide, fluororesin, phenoxy resin, polyolefin resin, nylon, styrene resin, ABS resin, etc. Inorganic particles A substrate, a silicon wafer, a metal plate, or the like formed of a composite material in which is dispersed can be used. These materials can be appropriately selected depending on the application. For electronic member applications, PET and PEN are particularly preferred because they are easy to mold and have excellent chemical properties such as chemical resistance. The size is not limited, and the shape may be any shape such as a disk shape, a card shape, or a sheet shape, and the surface of the base material does not need to be a flat surface, and may have an unevenness or a curved surface. .
前記基材上には、前記基材表面の平面性の改善、接着力の向上および金属銅含有膜の変質防止などの目的で、下地層が設けられていてもよい。該下地層としては、例えば、高分子材料、熱硬化性または光・電子線硬化樹脂、カップリング材などの表面改質剤により形成された下地層等が挙げられる。該下地層は、基材と導体膜の密着性を向上させるものや、親液性、撥液性を持つものが好ましく、具体的には、熱硬化性または光・電子線硬化性樹脂に、必要に応じてカップリング剤等の表面改質剤およびコロイダルシリカ等を用いて形成した層が好ましい。
An underlayer may be provided on the base material for the purpose of improving the flatness of the surface of the base material, improving the adhesive force, and preventing alteration of the metallic copper-containing film. Examples of the underlayer include an underlayer formed of a surface modifier such as a polymer material, thermosetting or light / electron beam curable resin, or a coupling material. The base layer is preferably one that improves the adhesion between the base material and the conductor film, or one having lyophilicity or liquid repellency, specifically, thermosetting or photo / electron beam curable resin, A layer formed using a surface modifier such as a coupling agent, colloidal silica, or the like is preferable if necessary.
(導電インク)
本発明に用いる導電インクは、水素化銅微粒子または銅微粒子を含有し、後述する製造方法により得られる水素化銅微粒子分散液または銅微粒子分散液を用いて製造された導電インクを使用できる。 (Conductive ink)
The conductive ink used in the present invention contains copper hydride fine particles or copper fine particles, and a conductive ink produced using a copper hydride fine particle dispersion or a copper fine particle dispersion obtained by a production method described later can be used.
本発明に用いる導電インクは、水素化銅微粒子または銅微粒子を含有し、後述する製造方法により得られる水素化銅微粒子分散液または銅微粒子分散液を用いて製造された導電インクを使用できる。 (Conductive ink)
The conductive ink used in the present invention contains copper hydride fine particles or copper fine particles, and a conductive ink produced using a copper hydride fine particle dispersion or a copper fine particle dispersion obtained by a production method described later can be used.
<水素化銅微粒子分散液の製造方法>
実施形態の水素化銅微粒子を含有する分散液は、溶媒(A)中でアルキルアミン(B)の存在下、ヒドリド系還元剤により銅(II)塩を還元する方法により得ることが好ましい。 <Method for producing copper hydride fine particle dispersion>
The dispersion containing the copper hydride fine particles of the embodiment is preferably obtained by a method of reducing a copper (II) salt with a hydride-based reducing agent in the presence of an alkylamine (B) in a solvent (A).
実施形態の水素化銅微粒子を含有する分散液は、溶媒(A)中でアルキルアミン(B)の存在下、ヒドリド系還元剤により銅(II)塩を還元する方法により得ることが好ましい。 <Method for producing copper hydride fine particle dispersion>
The dispersion containing the copper hydride fine particles of the embodiment is preferably obtained by a method of reducing a copper (II) salt with a hydride-based reducing agent in the presence of an alkylamine (B) in a solvent (A).
溶媒(A)は、SP値が8~12の溶媒が好ましい。SP値が8~12であれば、溶媒(A)と水との相溶性が低く、反応系中に水が混入することを抑制できる。これにより、溶媒(A)中に溶解したヒドリド系還元剤が水と反応して不活性化することを抑制できる。
溶媒(A)のSP値は、8.5~9.5がより好ましい。 The solvent (A) is preferably a solvent having an SP value of 8 to 12. When the SP value is 8 to 12, the compatibility between the solvent (A) and water is low, and the mixing of water into the reaction system can be suppressed. Thereby, it can suppress that the hydride type | system | group reducing agent melt | dissolved in the solvent (A) reacts with water and inactivates.
The SP value of the solvent (A) is more preferably 8.5 to 9.5.
溶媒(A)のSP値は、8.5~9.5がより好ましい。 The solvent (A) is preferably a solvent having an SP value of 8 to 12. When the SP value is 8 to 12, the compatibility between the solvent (A) and water is low, and the mixing of water into the reaction system can be suppressed. Thereby, it can suppress that the hydride type | system | group reducing agent melt | dissolved in the solvent (A) reacts with water and inactivates.
The SP value of the solvent (A) is more preferably 8.5 to 9.5.
溶媒(A)としては、例えば、シクロヘキサン(SP値8.2)、酢酸イソブチル(SP値8.3)、酢酸イソプロピル(SP値8.4)、酢酸ブチル(SP値8.5)、四塩化炭素(SP値8.6)、エチルベンゼン(SP値8.8)、キシレン(SP値8.8)、トルエン(SP値8.9)、酢酸エチル(SP値9.1)、テトラヒドロフラン(SP値9.1)、ベンゼン(SP値9.2)、クロロホルム(SP値9.3)、塩化メチレン(SP値9.7)、二硫化炭素(SP値10.0)、酢酸(SP値10.1)、ピリジン(SP値10.7)、ジメチルホルムアミド(SP値12.0)等が挙げられる。
Examples of the solvent (A) include cyclohexane (SP value 8.2), isobutyl acetate (SP value 8.3), isopropyl acetate (SP value 8.4), butyl acetate (SP value 8.5), and tetrachloride. Carbon (SP value 8.6), ethylbenzene (SP value 8.8), xylene (SP value 8.8), toluene (SP value 8.9), ethyl acetate (SP value 9.1), tetrahydrofuran (SP value) 9.1), benzene (SP value 9.2), chloroform (SP value 9.3), methylene chloride (SP value 9.7), carbon disulfide (SP value 10.0), acetic acid (SP value 10. 1), pyridine (SP value 10.7), dimethylformamide (SP value 12.0) and the like.
アルキルアミン(B)は、炭素数7以上のアルキル基を有し、かつ沸点が250℃以下のアルキルアミンが好ましい。
アルキルアミン(B)におけるアルキル基の炭素数が7以上であれば、生成する水素化銅微粒子の分散性が良好となる。なお、本発明では反応場が有機相であるため、水からの保護を目的として、炭素数の大きいアルキルアミンを使用する必要がない。アルキルアミン(B)におけるアルキル基の炭素数は、沸点が高くなりすぎることを抑制する点から、11以下が好ましい。 The alkylamine (B) is preferably an alkylamine having an alkyl group having 7 or more carbon atoms and a boiling point of 250 ° C. or less.
If the carbon number of the alkyl group in the alkylamine (B) is 7 or more, the dispersibility of the produced copper hydride fine particles will be good. In the present invention, since the reaction field is an organic phase, it is not necessary to use an alkylamine having a large carbon number for the purpose of protection from water. The number of carbon atoms of the alkyl group in the alkylamine (B) is preferably 11 or less from the viewpoint of suppressing the boiling point from becoming too high.
アルキルアミン(B)におけるアルキル基の炭素数が7以上であれば、生成する水素化銅微粒子の分散性が良好となる。なお、本発明では反応場が有機相であるため、水からの保護を目的として、炭素数の大きいアルキルアミンを使用する必要がない。アルキルアミン(B)におけるアルキル基の炭素数は、沸点が高くなりすぎることを抑制する点から、11以下が好ましい。 The alkylamine (B) is preferably an alkylamine having an alkyl group having 7 or more carbon atoms and a boiling point of 250 ° C. or less.
If the carbon number of the alkyl group in the alkylamine (B) is 7 or more, the dispersibility of the produced copper hydride fine particles will be good. In the present invention, since the reaction field is an organic phase, it is not necessary to use an alkylamine having a large carbon number for the purpose of protection from water. The number of carbon atoms of the alkyl group in the alkylamine (B) is preferably 11 or less from the viewpoint of suppressing the boiling point from becoming too high.
アルキルアミン(B)の沸点が250℃以下であれば、導電インクを用いて導体膜を形成する際に、アルキルアミン(B)が微粒子表面から脱離し、揮発して体積抵抗率の低い導体膜を形成できる。アルキルアミン(B)の沸点は、加熱時の脱離性および揮発性の点から、250℃以下が好ましく、200℃以下がより好ましい。また、アルキルアミン(B)の沸点は、アルキル基の炭素数を7以上とする点から、通常は150℃以上が好ましい。
アルキルアミン(B)のアルキル基は、得られる水素化銅微粒子の分散安定性の点から、直鎖アルキル基が好ましい。ただし、アルキルアミン(B)のアルキル基は、分岐アルキル基であってもよい。 When the boiling point of the alkylamine (B) is 250 ° C. or less, the conductor film having a low volume resistivity is released when the alkylamine (B) is desorbed from the surface of the fine particles and volatilized when the conductor film is formed using the conductive ink. Can be formed. The boiling point of the alkylamine (B) is preferably 250 ° C. or less, and more preferably 200 ° C. or less, from the viewpoint of desorption and volatility during heating. Moreover, the boiling point of the alkylamine (B) is usually preferably 150 ° C. or higher from the viewpoint that the alkyl group has 7 or more carbon atoms.
The alkyl group of the alkylamine (B) is preferably a linear alkyl group from the viewpoint of dispersion stability of the obtained copper hydride fine particles. However, the alkyl group of the alkylamine (B) may be a branched alkyl group.
アルキルアミン(B)のアルキル基は、得られる水素化銅微粒子の分散安定性の点から、直鎖アルキル基が好ましい。ただし、アルキルアミン(B)のアルキル基は、分岐アルキル基であってもよい。 When the boiling point of the alkylamine (B) is 250 ° C. or less, the conductor film having a low volume resistivity is released when the alkylamine (B) is desorbed from the surface of the fine particles and volatilized when the conductor film is formed using the conductive ink. Can be formed. The boiling point of the alkylamine (B) is preferably 250 ° C. or less, and more preferably 200 ° C. or less, from the viewpoint of desorption and volatility during heating. Moreover, the boiling point of the alkylamine (B) is usually preferably 150 ° C. or higher from the viewpoint that the alkyl group has 7 or more carbon atoms.
The alkyl group of the alkylamine (B) is preferably a linear alkyl group from the viewpoint of dispersion stability of the obtained copper hydride fine particles. However, the alkyl group of the alkylamine (B) may be a branched alkyl group.
アルキルアミン(B)としては、n-ヘプチルアミン(アルキル基の炭素数7、沸点157℃)、n-オクチルアミン(アルキル基の炭素数8、沸点176℃)、n-ノニルアミン(アルキル基の炭素数9、沸点201℃)、1-アミノデカン(アルキル基の炭素数10、沸点220℃)、1-アミノウンデカン(アルキル基の炭素数11、沸点242℃)が好ましく、n-ヘプチルアミン、n-オクチルアミンがより好ましい。
アルキルアミン(B)は、1種を単独で使用してもよく、2種以上を併用してもよい。 Examples of the alkylamine (B) include n-heptylamine (alkyl group having 7 carbon atoms and a boiling point of 157 ° C.), n-octylamine (alkyl group having 8 carbon atoms and a boiling point of 176 ° C.), n-nonylamine (carbon of the alkyl group). (9, boiling point: 201 ° C.), 1-aminodecane (alkyl group having 10 carbon atoms, boiling point: 220 ° C.), 1-aminoundecane (alkyl group having 11 carbon atoms, boiling point: 242 ° C.), n-heptylamine, n- Octylamine is more preferred.
An alkylamine (B) may be used individually by 1 type, and may use 2 or more types together.
アルキルアミン(B)は、1種を単独で使用してもよく、2種以上を併用してもよい。 Examples of the alkylamine (B) include n-heptylamine (alkyl group having 7 carbon atoms and a boiling point of 157 ° C.), n-octylamine (alkyl group having 8 carbon atoms and a boiling point of 176 ° C.), n-nonylamine (carbon of the alkyl group). (9, boiling point: 201 ° C.), 1-aminodecane (alkyl group having 10 carbon atoms, boiling point: 220 ° C.), 1-aminoundecane (alkyl group having 11 carbon atoms, boiling point: 242 ° C.), n-heptylamine, n- Octylamine is more preferred.
An alkylamine (B) may be used individually by 1 type, and may use 2 or more types together.
アルキルアミン(B)の添加量は、得られる水素化銅微粒子分散液中の水素化銅微粒子の分散性が良好になる点から、溶媒(A)の1gに対して、0.2×10-3モル以上が好ましく、0.25×10-3モル以上がより好ましく、0.3×10-3モル以上が特に好ましい。また、アルキルアミン(B)の添加量が過剰であると、銅(II)塩に配位しきれなかったアルキルアミン(B)が導体膜形成時に残留し、導体膜の体積抵抗率を上昇させるおそれがある。よって、アルキルアミン(B)の量は、溶媒(A)の1gに対して、0.75×10-3モル以下が好ましく、0.7×10-3モル以下がより好ましく、0.6×10-3モル以下が特に好ましい。
The addition amount of the alkylamine (B) is 0.2 × 10 − with respect to 1 g of the solvent (A) because the dispersibility of the copper hydride fine particles in the obtained copper hydride fine particle dispersion becomes good. 3 mol or more is preferable, 0.25 × 10 −3 mol or more is more preferable, and 0.3 × 10 −3 mol or more is particularly preferable. Moreover, when the addition amount of the alkylamine (B) is excessive, the alkylamine (B) that cannot be coordinated to the copper (II) salt remains at the time of forming the conductor film, and increases the volume resistivity of the conductor film. There is a fear. Therefore, the amount of the alkylamine (B) is preferably 0.75 × 10 −3 mol or less, more preferably 0.7 × 10 −3 mol or less, and 0.6 ×× 1 g of the solvent (A). 10-3 mol or less is particularly preferred.
こうして平均一次粒子径が5~100nm、好ましくは5~80nm、より好ましくは5~70nm、特に好ましくは5~35nmの水素化銅微粒子(一次粒子)が、溶媒(A)に分散された水素化銅微粒子分散液が得られる。水素化銅微粒子の平均一次粒子径は、アルキルアミン(B)の添加量、およびヒドリド系還元剤の添加量により調節できる。アルキルアミン(B)の添加量を多くすることで、水素化銅微粒子の平均一次粒子径が小さくなる傾向がある。また、ヒドリド系還元剤の添加量を少なくすることで、水素化銅微粒子の平均一次粒子径が小さくなる傾向がある。
本明細書において、平均一次粒子径は、以下のように求めることができる。無作為に抽出した100個の微粒子の粒子径を、透過型電子顕微鏡(例えば、日立製作所社製、装置名:H-9000)または走査型電子顕微鏡(例えば、日立製作所社製、装置名:S-800)を使用して測定し、それらの値を平均して平均粒子径を求める。 In this way, hydrogenated copper hydride fine particles (primary particles) having an average primary particle diameter of 5 to 100 nm, preferably 5 to 80 nm, more preferably 5 to 70 nm, and particularly preferably 5 to 35 nm are dispersed in the solvent (A). A copper fine particle dispersion is obtained. The average primary particle diameter of the copper hydride fine particles can be adjusted by the addition amount of the alkylamine (B) and the addition amount of the hydride reducing agent. By increasing the addition amount of the alkylamine (B), the average primary particle diameter of the copper hydride fine particles tends to decrease. Moreover, there exists a tendency for the average primary particle diameter of a copper hydride microparticle to become small by reducing the addition amount of a hydride type | system | group reducing agent.
In this specification, an average primary particle diameter can be calculated | required as follows. The particle size of 100 randomly extracted fine particles was measured using a transmission electron microscope (for example, Hitachi, Ltd., device name: H-9000) or a scanning electron microscope (for example, Hitachi, Ltd., device name: S). -800) and average the values to determine the average particle size.
本明細書において、平均一次粒子径は、以下のように求めることができる。無作為に抽出した100個の微粒子の粒子径を、透過型電子顕微鏡(例えば、日立製作所社製、装置名:H-9000)または走査型電子顕微鏡(例えば、日立製作所社製、装置名:S-800)を使用して測定し、それらの値を平均して平均粒子径を求める。 In this way, hydrogenated copper hydride fine particles (primary particles) having an average primary particle diameter of 5 to 100 nm, preferably 5 to 80 nm, more preferably 5 to 70 nm, and particularly preferably 5 to 35 nm are dispersed in the solvent (A). A copper fine particle dispersion is obtained. The average primary particle diameter of the copper hydride fine particles can be adjusted by the addition amount of the alkylamine (B) and the addition amount of the hydride reducing agent. By increasing the addition amount of the alkylamine (B), the average primary particle diameter of the copper hydride fine particles tends to decrease. Moreover, there exists a tendency for the average primary particle diameter of a copper hydride microparticle to become small by reducing the addition amount of a hydride type | system | group reducing agent.
In this specification, an average primary particle diameter can be calculated | required as follows. The particle size of 100 randomly extracted fine particles was measured using a transmission electron microscope (for example, Hitachi, Ltd., device name: H-9000) or a scanning electron microscope (for example, Hitachi, Ltd., device name: S). -800) and average the values to determine the average particle size.
得られる水素化銅微粒子分散液における固形分としての水素化銅微粒子の濃度は、分散液全体を100質量%として、1~6質量%が好ましく、2.5~4.5質量%がより好ましい。水素化銅微粒子分散液の前記固形分濃度が1質量%未満であると、濃縮工程に時間がかかり、生産性が低下するおそれがある。水素化銅微粒子分散液の固形分濃度が6質量%を超えると、分散液中の水素化銅微粒子の分散安定性が悪化するおそれがある。
The concentration of the copper hydride fine particles as a solid content in the obtained copper hydride fine particle dispersion is preferably 1 to 6% by mass, more preferably 2.5 to 4.5% by mass, based on 100% by mass of the entire dispersion. . If the solid content concentration of the copper hydride fine particle dispersion is less than 1% by mass, the concentration process takes time, and the productivity may be reduced. If the solid content concentration of the copper hydride fine particle dispersion exceeds 6% by mass, the dispersion stability of the copper hydride fine particles in the dispersion may be deteriorated.
<銅微粒子分散液の製造方法>
銅微粒子分散液は、前記水素化銅微粒子分散液の製造方法で得られた水素化銅微粒子分散液を不活性雰囲気中で60℃以上の温度で加熱処理することで製造できる。
加熱温度は、加熱処理時間(温度が低いと時間がかかる)と得られる銅微粒子の分散粒径(温度が高すぎると凝集してしまう)の観点から、80~100℃が好ましい。 <Method for producing copper fine particle dispersion>
The copper fine particle dispersion can be produced by heat-treating the copper hydride fine particle dispersion obtained by the copper hydride fine particle dispersion production method at a temperature of 60 ° C. or higher in an inert atmosphere.
The heating temperature is preferably from 80 to 100 ° C. from the viewpoint of the heat treatment time (it takes time when the temperature is low) and the dispersed particle diameter of the obtained copper fine particles (aggregates when the temperature is too high).
銅微粒子分散液は、前記水素化銅微粒子分散液の製造方法で得られた水素化銅微粒子分散液を不活性雰囲気中で60℃以上の温度で加熱処理することで製造できる。
加熱温度は、加熱処理時間(温度が低いと時間がかかる)と得られる銅微粒子の分散粒径(温度が高すぎると凝集してしまう)の観点から、80~100℃が好ましい。 <Method for producing copper fine particle dispersion>
The copper fine particle dispersion can be produced by heat-treating the copper hydride fine particle dispersion obtained by the copper hydride fine particle dispersion production method at a temperature of 60 ° C. or higher in an inert atmosphere.
The heating temperature is preferably from 80 to 100 ° C. from the viewpoint of the heat treatment time (it takes time when the temperature is low) and the dispersed particle diameter of the obtained copper fine particles (aggregates when the temperature is too high).
このように、平均一次粒子径が5~100nm、好ましくは5~80nm、より好ましくは5~70nm、特に好ましくは5~35nmの銅微粒子(一次粒子)が、溶媒(A)に分散された銅微粒子分散液が得られる。銅微粒子の平均一次粒子径は上記した水素化銅微粒子分散液を製造する場合と同様に調節できる。
Thus, copper fine particles (primary particles) having an average primary particle diameter of 5 to 100 nm, preferably 5 to 80 nm, more preferably 5 to 70 nm, and particularly preferably 5 to 35 nm are dispersed in the solvent (A). A fine particle dispersion is obtained. The average primary particle diameter of the copper fine particles can be adjusted in the same manner as in the case of producing the above-described copper hydride fine particle dispersion.
得られる銅微粒子分散液における固形分としての銅微粒子の濃度は、分散液全体を100質量%として、1~6質量%が好ましく、2.5~4.5質量%がより好ましい。銅微粒子分散液の前記固形分濃度が1質量%未満であると、濃縮工程に時間がかかり、生産性が低下するおそれがある。水素化銅微粒子分散液の固形分濃度が6質量%を超えると、分散液中の銅微粒子の分散安定性が悪化するおそれがある。
The concentration of the copper fine particles as a solid content in the obtained copper fine particle dispersion is preferably 1 to 6% by mass, more preferably 2.5 to 4.5% by mass, based on 100% by mass of the entire dispersion. If the solid content concentration of the copper fine particle dispersion is less than 1% by mass, the concentration process takes time, and the productivity may be reduced. When the solid content concentration of the copper hydride fine particle dispersion exceeds 6% by mass, the dispersion stability of the copper fine particles in the dispersion may be deteriorated.
本発明に用いる導電インクは、前記した製造方法により得られる水素化銅微粒子分散液または銅微粒子分散液の溶媒(A)を溶媒(C)に置換し、固形分濃度、粘度を調整すること等により得られる。
In the conductive ink used in the present invention, the copper hydride fine particle dispersion obtained by the production method described above or the solvent (A) of the copper fine particle dispersion is replaced with the solvent (C), and the solid content concentration and viscosity are adjusted. Is obtained.
溶媒(C)としては、非水溶性の有機溶媒を使用する。非水溶性とは、室温(20℃)における水100gへの溶解量が0.5g以下であることを意味する。溶媒(C)は、アルキルアミン(B)との親和性の点から、極性の小さい有機溶媒が好ましい。また、溶媒(C)は、導体膜を形成する際の加熱によって熱分解を起こさないものが好ましい。
溶媒(C)としては、例えば、デカン(水に不溶。)、ドデカン(水に不溶。)、テトラデカン(水に不溶。)、デセン(水に不溶。)、ドデセン(水に不溶。)、テトラデセン(水に不溶。)、ジペンテン(水100gへの溶解量0.001g(20℃)。)、α-テルピネオール(水100gへの溶解量0.5g(20℃)。)、メシチレン(水に不溶。)等が挙げられる。なかでも、インクの乾燥性の制御、塗布性の制御が容易である点から、α-テルピネオール、デカン、ドデカン、テトラデカンが好ましい。
溶媒(C)は、1種を単独で使用してもよく、2種以上を併用してもよい。 As the solvent (C), a water-insoluble organic solvent is used. Water-insoluble means that the amount dissolved in 100 g of water at room temperature (20 ° C.) is 0.5 g or less. The solvent (C) is preferably an organic solvent having a small polarity from the viewpoint of affinity with the alkylamine (B). Further, the solvent (C) is preferably one that does not cause thermal decomposition by heating when forming the conductor film.
Examples of the solvent (C) include decane (insoluble in water), dodecane (insoluble in water), tetradecane (insoluble in water), decene (insoluble in water), dodecene (insoluble in water), tetradecene. (Insoluble in water), dipentene (dissolved in 100 g of water 0.001 g (20 ° C.)), α-terpineol (dissolved in 100 g of water 0.5 g (20 ° C.)), mesitylene (insoluble in water) Etc.). Of these, α-terpineol, decane, dodecane, and tetradecane are preferable because the drying property of the ink and the coating property are easily controlled.
A solvent (C) may be used individually by 1 type, and may use 2 or more types together.
溶媒(C)としては、例えば、デカン(水に不溶。)、ドデカン(水に不溶。)、テトラデカン(水に不溶。)、デセン(水に不溶。)、ドデセン(水に不溶。)、テトラデセン(水に不溶。)、ジペンテン(水100gへの溶解量0.001g(20℃)。)、α-テルピネオール(水100gへの溶解量0.5g(20℃)。)、メシチレン(水に不溶。)等が挙げられる。なかでも、インクの乾燥性の制御、塗布性の制御が容易である点から、α-テルピネオール、デカン、ドデカン、テトラデカンが好ましい。
溶媒(C)は、1種を単独で使用してもよく、2種以上を併用してもよい。 As the solvent (C), a water-insoluble organic solvent is used. Water-insoluble means that the amount dissolved in 100 g of water at room temperature (20 ° C.) is 0.5 g or less. The solvent (C) is preferably an organic solvent having a small polarity from the viewpoint of affinity with the alkylamine (B). Further, the solvent (C) is preferably one that does not cause thermal decomposition by heating when forming the conductor film.
Examples of the solvent (C) include decane (insoluble in water), dodecane (insoluble in water), tetradecane (insoluble in water), decene (insoluble in water), dodecene (insoluble in water), tetradecene. (Insoluble in water), dipentene (dissolved in 100 g of water 0.001 g (20 ° C.)), α-terpineol (dissolved in 100 g of water 0.5 g (20 ° C.)), mesitylene (insoluble in water) Etc.). Of these, α-terpineol, decane, dodecane, and tetradecane are preferable because the drying property of the ink and the coating property are easily controlled.
A solvent (C) may be used individually by 1 type, and may use 2 or more types together.
水素化銅微粒子分散液または銅微粒子分散液の溶媒(A)を溶媒(C)に置換する方法としては、公知の溶媒置換方法を採用でき、例えば、溶媒(A)を減圧濃縮しつつ、溶媒(C)を添加する方法が挙げられる。
As a method for substituting the solvent (A) of the copper hydride fine particle dispersion or the copper fine particle dispersion with the solvent (C), a known solvent substitution method can be employed. For example, while concentrating the solvent (A) under reduced pressure, The method of adding (C) is mentioned.
本発明に用いる導電インクは、前記した水素化銅微粒子または銅微粒子、アルキルアミンおよび溶媒以外に、シランカップリング剤やその他の添加剤を含有していてもよい。その他の添加剤としては、消泡剤、湿潤分散剤、レベリング剤、乾き防止剤、レオロジーコントロール剤、密着性付与剤が挙げられる。
The conductive ink used in the present invention may contain a silane coupling agent and other additives in addition to the above-described copper hydride fine particles or copper fine particles, alkylamine and solvent. Examples of other additives include antifoaming agents, wetting and dispersing agents, leveling agents, anti-drying agents, rheology control agents, and adhesion imparting agents.
本発明に用いる導電インク(100質量%)の固形分濃度は、要求される粘度によっても異なるが、15~70質量%が好ましく、20~60質量%がより好ましい。導電インクの固形分濃度が前記範囲の15質量%以上であれば、充分な厚さを有する導体膜を形成しやすい。導電インクの固形分濃度が前記範囲の70質量%以下であれば、粘度、表面張力等のインク特性の制御が容易であり、導体膜の形成が容易になる。
The solid content concentration of the conductive ink (100% by mass) used in the present invention varies depending on the required viscosity, but is preferably 15 to 70% by mass, more preferably 20 to 60% by mass. When the solid content concentration of the conductive ink is 15% by mass or more within the above range, a conductor film having a sufficient thickness can be easily formed. When the solid content concentration of the conductive ink is 70% by mass or less of the above range, the ink characteristics such as viscosity and surface tension can be easily controlled, and the formation of the conductor film is facilitated.
なお、上記した水素化銅微粒子分散液または銅微粒子分散液から得られる導電インクは、その製造方法のため還元剤およびアルキルアミンが含まれるが、製造される導体膜中にこれらの成分が残留しても残留分が少ないため差支えない。還元剤由来の成分やアルキルアミン由来の炭素が導体膜中に存在していれば導体膜の製造のための材料を推定できる。例えば、還元剤としてNaBH4を使用した場合には、導体膜中に、ホウ素、ナトリウムおよび炭素が含まれることになる。
Note that the copper hydride fine particle dispersion or the conductive ink obtained from the copper fine particle dispersion contains a reducing agent and an alkylamine because of its production method, but these components remain in the produced conductor film. However, there is no problem because there is little residue. If the component derived from the reducing agent and the carbon derived from the alkylamine are present in the conductor film, a material for producing the conductor film can be estimated. For example, when NaBH 4 is used as the reducing agent, boron, sodium, and carbon are contained in the conductor film.
本発明に用いる導電インクの20℃での粘度は、5~60mPa・sが好ましく、8~40mPa・sがより好ましい。導電インクの粘度が5mPa・s以上であれば、インクジェット印刷を用いる場合にも精度良くインクを吐出できる。導電インクの粘度が60mPa・s以下であれば、入手しうるほとんどのインクジェットヘッドに適用可能となる。
The viscosity of the conductive ink used in the present invention at 20 ° C. is preferably 5 to 60 mPa · s, more preferably 8 to 40 mPa · s. If the viscosity of the conductive ink is 5 mPa · s or more, the ink can be accurately discharged even when ink jet printing is used. If the viscosity of the conductive ink is 60 mPa · s or less, it can be applied to almost all available inkjet heads.
本発明に用いる導電インクの表面張力は、20~45dyn/cmが好ましく、25~40dyn/cmがより好ましい。導電インクの表面張力が20dyn/cm以上であれば、精度良くインクを吐出できる。導電インクの表面張力が前記範囲の45dyn/cm以下であれば、入手しうるほとんどのインクジェットヘッドに適用可能となる。
なお、本明細書において、導電インクの粘度は、B型粘度計(東機産業社製、装置名:TVB35L)で測定した値である。表面張力は表面張力計(協和界面科学社製、装置名:DY-500)により測定した値である。 The surface tension of the conductive ink used in the present invention is preferably 20 to 45 dyn / cm, and more preferably 25 to 40 dyn / cm. If the surface tension of the conductive ink is 20 dyn / cm or more, the ink can be ejected with high accuracy. If the surface tension of the conductive ink is 45 dyn / cm or less in the above range, it can be applied to almost all available inkjet heads.
In the present specification, the viscosity of the conductive ink is a value measured with a B-type viscometer (manufactured by Toki Sangyo Co., Ltd., apparatus name: TVB35L). The surface tension is a value measured by a surface tension meter (manufactured by Kyowa Interface Science Co., Ltd., device name: DY-500).
なお、本明細書において、導電インクの粘度は、B型粘度計(東機産業社製、装置名:TVB35L)で測定した値である。表面張力は表面張力計(協和界面科学社製、装置名:DY-500)により測定した値である。 The surface tension of the conductive ink used in the present invention is preferably 20 to 45 dyn / cm, and more preferably 25 to 40 dyn / cm. If the surface tension of the conductive ink is 20 dyn / cm or more, the ink can be ejected with high accuracy. If the surface tension of the conductive ink is 45 dyn / cm or less in the above range, it can be applied to almost all available inkjet heads.
In the present specification, the viscosity of the conductive ink is a value measured with a B-type viscometer (manufactured by Toki Sangyo Co., Ltd., apparatus name: TVB35L). The surface tension is a value measured by a surface tension meter (manufactured by Kyowa Interface Science Co., Ltd., device name: DY-500).
本発明に用いる導電インクとしては、非水溶性の有機溶媒に、沸点が250℃以下で炭素数7以上のアルキル基を有するアルキルアミンと、一次粒子径が5~80nmの水素化銅微粒子または銅微粒子が分散した導電インクであり、20℃での粘度は8~40mPa・s、表面張力は25~40dyn/cmであることが特に好ましい。
The conductive ink used in the present invention includes a water-insoluble organic solvent, an alkylamine having a boiling point of 250 ° C. or lower and an alkyl group having 7 or more carbon atoms, copper hydride fine particles having a primary particle diameter of 5 to 80 nm, or copper It is particularly preferable that the conductive ink has fine particles dispersed therein, the viscosity at 20 ° C. is 8 to 40 mPa · s, and the surface tension is 25 to 40 dyn / cm.
塗布工程の後、塗膜を100~200℃で加熱して焼成膜を形成する。ここで焼成膜は、該加熱により保護剤や溶媒等の塗膜に含まれる化合物を分解および/または気化させた膜を意味する。加熱方法としては、オーブン、ホットプレートによる加熱、IR加熱、フラッシュランプ加熱、レーザー加熱、μ波プラズマ加熱等を用いた方法が挙げられる。該加熱は、形成する導体膜の酸化を抑制しやすい点から、窒素雰囲気等の不活性雰囲気下で行うことが好ましい。
After the coating process, the coating film is heated at 100 to 200 ° C. to form a fired film. Here, the fired film means a film obtained by decomposing and / or vaporizing a compound contained in a coating film such as a protective agent or a solvent by the heating. Examples of the heating method include a method using oven, hot plate heating, IR heating, flash lamp heating, laser heating, μ-wave plasma heating and the like. The heating is preferably performed in an inert atmosphere such as a nitrogen atmosphere from the viewpoint of easily suppressing the oxidation of the conductor film to be formed.
加熱温度は基材の種類などに応じて適宜設定できるが、PETやPEN等のプラスチック基材に影響を与えない100~200℃が好ましい。また、前記した水素化銅微粒子または銅微粒子を含有する導電インクを用いて、焼成膜の光吸収率を300~1000nmの波長で40%以上とするために、窒素雰囲気下または真空下で加熱することが好ましい。
The heating temperature can be appropriately set according to the type of the substrate, but is preferably 100 to 200 ° C. which does not affect the plastic substrate such as PET or PEN. Further, using the above-described copper hydride fine particles or conductive ink containing copper fine particles, heating is performed in a nitrogen atmosphere or in vacuum in order to set the light absorption rate of the fired film to 40% or more at a wavelength of 300 to 1000 nm. It is preferable.
焼成膜による、レーザー照射過程において照射されるレーザー光の光吸収率は40%以上が好ましい。焼成膜の光吸収率は、300~1000nmの波長で40%以上がより好ましい。後述するレーザーの照射エネルギーが焼成膜に吸収され、短時間で300℃以上の温度に昇温し加熱できるためである。光吸収率が40%未満であるとレーザーの照射エネルギーの大半が反射されてしまうために短時間で昇温ができず、光吸収率が5%以下であるとレーザー照射による昇温が難しくなる。
本明細書において、焼成膜の光吸収率は以下のように求めることができる。紫外可視分光光度計(例えば、日立ハイテクノロジーズ社製、装置名:U-4100型)を用いて焼成膜の波長300~1000nmにおける光透過率および光反射率を測定し、光吸収率を算出する。 The light absorption rate of the laser light irradiated in the laser irradiation process by the fired film is preferably 40% or more. The light absorption rate of the fired film is more preferably 40% or more at a wavelength of 300 to 1000 nm. This is because laser irradiation energy, which will be described later, is absorbed by the fired film and can be heated to a temperature of 300 ° C. or higher in a short time. If the light absorptance is less than 40%, most of the laser irradiation energy is reflected, so the temperature cannot be raised in a short time. If the light absorptance is 5% or less, it is difficult to raise the temperature by laser irradiation. .
In the present specification, the light absorption rate of the fired film can be determined as follows. Using a UV-visible spectrophotometer (for example, Hitachi High-Technologies Corporation, device name: U-4100 type), the light transmittance and light reflectance at a wavelength of 300 to 1000 nm of the fired film are measured, and the light absorption rate is calculated. .
本明細書において、焼成膜の光吸収率は以下のように求めることができる。紫外可視分光光度計(例えば、日立ハイテクノロジーズ社製、装置名:U-4100型)を用いて焼成膜の波長300~1000nmにおける光透過率および光反射率を測定し、光吸収率を算出する。 The light absorption rate of the laser light irradiated in the laser irradiation process by the fired film is preferably 40% or more. The light absorption rate of the fired film is more preferably 40% or more at a wavelength of 300 to 1000 nm. This is because laser irradiation energy, which will be described later, is absorbed by the fired film and can be heated to a temperature of 300 ° C. or higher in a short time. If the light absorptance is less than 40%, most of the laser irradiation energy is reflected, so the temperature cannot be raised in a short time. If the light absorptance is 5% or less, it is difficult to raise the temperature by laser irradiation. .
In the present specification, the light absorption rate of the fired film can be determined as follows. Using a UV-visible spectrophotometer (for example, Hitachi High-Technologies Corporation, device name: U-4100 type), the light transmittance and light reflectance at a wavelength of 300 to 1000 nm of the fired film are measured, and the light absorption rate is calculated. .
加熱時間は、加熱温度に応じて適宜設定できる。前記した水素化銅微粒子または銅微粒子を含む導電インクを用いる場合、溶媒(C)、銅(II)塩から遊離した酸、微粒子表面から脱離したアルキルアミン(B)等を揮発させて光吸収率が上記した範囲となる焼成膜を形成できる時間とすればよく、10分~48時間程度が適当である。
The heating time can be appropriately set according to the heating temperature. When using the above-described copper hydride fine particles or conductive ink containing copper fine particles, the solvent (C), the acid liberated from the copper (II) salt, the alkylamine (B) desorbed from the fine particle surface, etc. are volatilized to absorb light. What is necessary is just a time during which a fired film having a rate within the above-mentioned range can be formed, and about 10 minutes to 48 hours is appropriate.
(レーザー加熱工程)
該加熱で形成した焼成膜の全領域または一部領域に、レーザー光を照射して300~500℃となるように加熱する(以下、レーザー加熱工程ともいう。)。レーザー発振器で発振したレーザー光をレンズ集光し、照射径を適宜設定して焼成膜にレーザー光を照射しながら、レーザー搭載部または基材を移動させて基材上にパターンを描く。レーザー光は焼成膜に吸収され、発生する熱で分散剤等の有機化合物が分解および/または気化するとともに水素化銅微粒子の還元および隣接する銅微粒子の融着が起き、結果、焼成膜のレーザー照射部の体積抵抗率が低減できる。また、これにより、得られる導体膜は、銅微粒子を連接して含むことになる。銅微粒子は基材との界面においても物理的、化学的効果によって接着すると考えられる。レーザー光照射による加熱方法は、焼成膜のみを加熱できるという利点を有し、基材に熱ダメージを与えることなく導体膜を形成できる。すなわち、レーザー照射による局所的かつ短時間の加熱では、銅微粒子の温度上昇が極めて高速であるため、熱伝達による銅微粒子の周囲の温度上昇はわずかであり、仮に基材が比較的耐熱性のない高分子フィルムにより形成されていたとしても、高分子フィルム全体が溶けることなく導電膜を形成できる。 (Laser heating process)
The entire region or a partial region of the fired film formed by the heating is irradiated with laser light to be heated to 300 to 500 ° C. (hereinafter also referred to as a laser heating step). The laser light oscillated by a laser oscillator is collected by a lens, and the pattern is drawn on the base material by moving the laser mounting portion or the base material while irradiating the fired film with the laser light by appropriately setting the irradiation diameter. The laser light is absorbed by the fired film, and the generated heat decomposes and / or vaporizes the organic compound such as the dispersant, while reducing the copper hydride fine particles and fusing adjacent copper fine particles. The volume resistivity of the irradiated part can be reduced. Moreover, by this, the obtained conductor film contains copper fine particles connected to each other. It is considered that the copper fine particles adhere to each other even at the interface with the base material due to physical and chemical effects. The heating method by laser light irradiation has an advantage that only the fired film can be heated, and a conductor film can be formed without causing thermal damage to the substrate. That is, with local and short-time heating by laser irradiation, the temperature rise of the copper fine particles is extremely fast, so the temperature rise around the copper fine particles due to heat transfer is slight, and the substrate is relatively heat resistant. Even if the polymer film is not formed, the conductive film can be formed without melting the entire polymer film.
該加熱で形成した焼成膜の全領域または一部領域に、レーザー光を照射して300~500℃となるように加熱する(以下、レーザー加熱工程ともいう。)。レーザー発振器で発振したレーザー光をレンズ集光し、照射径を適宜設定して焼成膜にレーザー光を照射しながら、レーザー搭載部または基材を移動させて基材上にパターンを描く。レーザー光は焼成膜に吸収され、発生する熱で分散剤等の有機化合物が分解および/または気化するとともに水素化銅微粒子の還元および隣接する銅微粒子の融着が起き、結果、焼成膜のレーザー照射部の体積抵抗率が低減できる。また、これにより、得られる導体膜は、銅微粒子を連接して含むことになる。銅微粒子は基材との界面においても物理的、化学的効果によって接着すると考えられる。レーザー光照射による加熱方法は、焼成膜のみを加熱できるという利点を有し、基材に熱ダメージを与えることなく導体膜を形成できる。すなわち、レーザー照射による局所的かつ短時間の加熱では、銅微粒子の温度上昇が極めて高速であるため、熱伝達による銅微粒子の周囲の温度上昇はわずかであり、仮に基材が比較的耐熱性のない高分子フィルムにより形成されていたとしても、高分子フィルム全体が溶けることなく導電膜を形成できる。 (Laser heating process)
The entire region or a partial region of the fired film formed by the heating is irradiated with laser light to be heated to 300 to 500 ° C. (hereinafter also referred to as a laser heating step). The laser light oscillated by a laser oscillator is collected by a lens, and the pattern is drawn on the base material by moving the laser mounting portion or the base material while irradiating the fired film with the laser light by appropriately setting the irradiation diameter. The laser light is absorbed by the fired film, and the generated heat decomposes and / or vaporizes the organic compound such as the dispersant, while reducing the copper hydride fine particles and fusing adjacent copper fine particles. The volume resistivity of the irradiated part can be reduced. Moreover, by this, the obtained conductor film contains copper fine particles connected to each other. It is considered that the copper fine particles adhere to each other even at the interface with the base material due to physical and chemical effects. The heating method by laser light irradiation has an advantage that only the fired film can be heated, and a conductor film can be formed without causing thermal damage to the substrate. That is, with local and short-time heating by laser irradiation, the temperature rise of the copper fine particles is extremely fast, so the temperature rise around the copper fine particles due to heat transfer is slight, and the substrate is relatively heat resistant. Even if the polymer film is not formed, the conductive film can be formed without melting the entire polymer film.
レーザー光の波長は、使用する分散剤、添加剤および溶媒などの種類や配合量等に応じ、焼成膜による光吸収率が40%以上となる範囲で任意に選択できるが、コストおよび装置のメンテナンスの容易な点から、350~900nmが好ましい。代表的なレーザーとしては、GaN、GaAsAl、InGaAsP系などの半導体レーザー、ArF、KrF、XeClなどのエキシマレーザー、ローダミンなどの色素レーザー、He-Ne、He-Cd、CO2、Arイオンなどの気体レーザー、自由電子レーザー、ルビーレーザー、Nd:YAGレーザーなどの固体レーザーなどが挙げられる。また、これらのレーザーの第二高調波、第三高調波などの高次高調波を利用してもよく、紫外域、可視光域、赤外域のいずれの波長のレーザー光を使用できる。さらに、連続波の照射でも、パルス波の照射でもよい。一般的に半導体レーザーは赤外域波長の連続レーザー光の照射に適するため好ましい。
The wavelength of the laser beam can be arbitrarily selected within the range where the light absorption rate by the fired film is 40% or more depending on the type and blending amount of the dispersant, additive and solvent to be used. In view of the ease of the above, 350 to 900 nm is preferable. Typical lasers include semiconductor lasers such as GaN, GaAsAl, and InGaAsP, excimer lasers such as ArF, KrF, and XeCl, dye lasers such as rhodamine, gases such as He—Ne, He—Cd, CO 2 , and Ar ions. Examples thereof include solid lasers such as lasers, free electron lasers, ruby lasers, and Nd: YAG lasers. Further, higher harmonics such as second harmonic and third harmonic of these lasers may be used, and laser light having any wavelength in the ultraviolet region, visible light region, or infrared region can be used. Further, continuous wave irradiation or pulse wave irradiation may be used. In general, a semiconductor laser is preferable because it is suitable for irradiation with a continuous laser beam having an infrared wavelength.
レーザー光の照射径、走査速度、出力等の印加エネルギーに係る各条件は、形成される導体膜の酸化や焼成膜のアブレーション、ピーニングが起こらない範囲で適宜設定できる。レーザーの照射径(ビーム径)は描画するパターンや模様にあわせて適宜設定できるが、10μm~10mmが好適である。走査速度は、その他のパラメータや必要精度、製造能力等に応じて適宜設定できる。
Each condition relating to the applied energy such as the laser beam irradiation diameter, scanning speed, and output can be set as appropriate within a range where oxidation of the formed conductor film, ablation of the fired film, and peening do not occur. The laser irradiation diameter (beam diameter) can be appropriately set according to the pattern or pattern to be drawn, but is preferably 10 μm to 10 mm. The scanning speed can be appropriately set according to other parameters, required accuracy, manufacturing capability, and the like.
レーザー照射を行う雰囲気は、形成される導体膜の酸化を抑制するため、不活性ガス雰囲気が好ましい。具体的には、窒素ガス含有雰囲気下において、赤外域の波長の連続波レーザー光を、1~500mm/秒の走査速度で、1~140Wの出力範囲で照射することが好ましい。このとき、銅微粒子を緻密に焼結させ体積抵抗率を充分に低減させるために、レーザー光を照射した部分の温度が300~500℃、より好ましくは300~400℃となるようレーザー照射条件を調整する。
The atmosphere for laser irradiation is preferably an inert gas atmosphere in order to suppress oxidation of the formed conductor film. Specifically, it is preferable to irradiate a continuous wave laser beam having an infrared wavelength in an atmosphere containing nitrogen gas at a scanning speed of 1 to 500 mm / second in an output range of 1 to 140 W. At this time, in order to sufficiently sinter the copper fine particles and sufficiently reduce the volume resistivity, the laser irradiation conditions are set so that the temperature of the portion irradiated with the laser light is 300 to 500 ° C., more preferably 300 to 400 ° C. adjust.
加熱時間は、加熱温度に応じて、銅微粒子を緻密に焼結させ体積抵抗率を充分に低減させて導体膜が形成できる時間を設定すればよい。
焼成膜を前記した温度で加熱するためには、レーザー光の出力は5~100Wがより好ましく、5~50Wがさらに好ましい。走査速度は0.3~20mm/秒がより好ましい。このようなレーザー加熱工程により焼成膜が300~500℃の高温で加熱されるため体積抵抗率10Ω・cm以下の導体膜を形成できる。
本明細書において、体積抵抗率は以下のように求めることができる。四探針式抵抗計(例えば、三菱油化社製、装置名:ロレスタGP MCP-T610)を使用して、導体膜の表面抵抗値を測定する。測定される表面抵抗値に導体膜の厚さを乗じて、体積抵抗率を求める。 The heating time may be set according to the heating temperature so that the copper fine particles are densely sintered and the volume resistivity is sufficiently reduced to form the conductor film.
In order to heat the fired film at the above-described temperature, the laser beam output is more preferably 5 to 100 W, and further preferably 5 to 50 W. The scanning speed is more preferably 0.3 to 20 mm / second. Since the fired film is heated at a high temperature of 300 to 500 ° C. by such a laser heating process, a conductor film having a volume resistivity of 10 Ω · cm or less can be formed.
In this specification, the volume resistivity can be determined as follows. The surface resistance value of the conductor film is measured using a four-point probe resistance meter (for example, Mitsubishi Oil Chemical Co., Ltd., apparatus name: Loresta GP MCP-T610). The volume resistivity is obtained by multiplying the measured surface resistance value by the thickness of the conductor film.
焼成膜を前記した温度で加熱するためには、レーザー光の出力は5~100Wがより好ましく、5~50Wがさらに好ましい。走査速度は0.3~20mm/秒がより好ましい。このようなレーザー加熱工程により焼成膜が300~500℃の高温で加熱されるため体積抵抗率10Ω・cm以下の導体膜を形成できる。
本明細書において、体積抵抗率は以下のように求めることができる。四探針式抵抗計(例えば、三菱油化社製、装置名:ロレスタGP MCP-T610)を使用して、導体膜の表面抵抗値を測定する。測定される表面抵抗値に導体膜の厚さを乗じて、体積抵抗率を求める。 The heating time may be set according to the heating temperature so that the copper fine particles are densely sintered and the volume resistivity is sufficiently reduced to form the conductor film.
In order to heat the fired film at the above-described temperature, the laser beam output is more preferably 5 to 100 W, and further preferably 5 to 50 W. The scanning speed is more preferably 0.3 to 20 mm / second. Since the fired film is heated at a high temperature of 300 to 500 ° C. by such a laser heating process, a conductor film having a volume resistivity of 10 Ω · cm or less can be formed.
In this specification, the volume resistivity can be determined as follows. The surface resistance value of the conductor film is measured using a four-point probe resistance meter (for example, Mitsubishi Oil Chemical Co., Ltd., apparatus name: Loresta GP MCP-T610). The volume resistivity is obtained by multiplying the measured surface resistance value by the thickness of the conductor film.
上記したレーザー加熱工程により、基材への熱影響を最小限とし、特に低耐熱性基材であるPET、PEN等のプラスチックを用いた場合にも、焼成膜のみを高温で加熱できる。また、レーザー照射により300℃以上で加熱するため、充分に体積抵抗率を低減させた導体膜を形成できる。
The laser heating process described above minimizes the thermal effect on the base material, and even when a plastic such as PET, PEN or the like, which is a low heat resistant base material, is used, only the fired film can be heated at a high temperature. Moreover, since it heats at 300 degreeC or more by laser irradiation, the conductor film which reduced the volume resistivity sufficiently can be formed.
本実施形態において、製造される導体膜の厚さは、0.3~2.0μmが好ましい。
In the present embodiment, the thickness of the conductor film to be manufactured is preferably 0.3 to 2.0 μm.
以下、実施例によって本発明を詳細に説明するが、本発明は以下の実施例に限定されない。例1、2は実施例であり、例3は比較例である。実施例および比較例における微粒子の同定、微粒子の平均粒子径の測定、導体膜の厚さの測定、導体膜の体積抵抗率の測定の各方法を、それぞれ以下に示す。
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples. Examples 1 and 2 are examples, and example 3 is a comparative example. Each method of identification of fine particles, measurement of the average particle diameter of fine particles, measurement of the thickness of the conductor film, and measurement of the volume resistivity of the conductor film in Examples and Comparative Examples is shown below.
[微粒子の同定]
微粒子の同定は、X線回折装置(リガク機器社製、装置名:RINT2500)を使用して行った。 [Identification of fine particles]
The identification of the fine particles was performed using an X-ray diffraction apparatus (manufactured by Rigaku Instruments Co., Ltd., apparatus name: RINT2500).
微粒子の同定は、X線回折装置(リガク機器社製、装置名:RINT2500)を使用して行った。 [Identification of fine particles]
The identification of the fine particles was performed using an X-ray diffraction apparatus (manufactured by Rigaku Instruments Co., Ltd., apparatus name: RINT2500).
[微粒子の平均粒子径]
無作為に抽出した100個の微粒子の粒子径を、透過型電子顕微鏡(日立製作所社製、装置名:H-9000)または走査型電子顕微鏡(日立製作所社製、装置名:S-800)を使用して測定し、それらの値を平均して平均粒子径を求めた。
[導体膜の厚さ]
接触式膜厚測定装置(Veeco社製、装置名:DEKTAK150)を使用して測定した。
[導体膜の体積抵抗率]
四探針式抵抗計(三菱油化社製、装置名:ロレスタGP MCP-T610)を使用して、導体膜の表面抵抗値を測定した。測定された表面抵抗値に導体膜の厚さを乗じて、体積抵抗率を求めた。
[光吸収率の測定]
紫外可視分光光度計(日立ハイテクノロジーズ社製、装置名:U-4100型)を用いて焼成膜の波長300~1000nmにおける光透過率および光反射率を測定し、光吸収率を算出した。 [Average particle size of fine particles]
Using a transmission electron microscope (manufactured by Hitachi, Ltd., device name: H-9000) or a scanning electron microscope (manufactured by Hitachi, Ltd., device name: S-800) The average particle size was determined by averaging the values.
[Thickness of conductor film]
It measured using the contact-type film thickness measuring apparatus (the product made by Veeco, apparatus name: DEKTAK150).
[Volume resistivity of conductor film]
Using a four-probe resistance meter (Mitsubishi Yuka Co., Ltd., apparatus name: Loresta GP MCP-T610), the surface resistance value of the conductor film was measured. The volume resistivity was obtained by multiplying the measured surface resistance value by the thickness of the conductor film.
[Measurement of light absorption rate]
Using a UV-visible spectrophotometer (manufactured by Hitachi High-Technologies Corporation, apparatus name: U-4100 type), the light transmittance and light reflectance at a wavelength of 300 to 1000 nm of the fired film were measured, and the light absorption rate was calculated.
無作為に抽出した100個の微粒子の粒子径を、透過型電子顕微鏡(日立製作所社製、装置名:H-9000)または走査型電子顕微鏡(日立製作所社製、装置名:S-800)を使用して測定し、それらの値を平均して平均粒子径を求めた。
[導体膜の厚さ]
接触式膜厚測定装置(Veeco社製、装置名:DEKTAK150)を使用して測定した。
[導体膜の体積抵抗率]
四探針式抵抗計(三菱油化社製、装置名:ロレスタGP MCP-T610)を使用して、導体膜の表面抵抗値を測定した。測定された表面抵抗値に導体膜の厚さを乗じて、体積抵抗率を求めた。
[光吸収率の測定]
紫外可視分光光度計(日立ハイテクノロジーズ社製、装置名:U-4100型)を用いて焼成膜の波長300~1000nmにおける光透過率および光反射率を測定し、光吸収率を算出した。 [Average particle size of fine particles]
Using a transmission electron microscope (manufactured by Hitachi, Ltd., device name: H-9000) or a scanning electron microscope (manufactured by Hitachi, Ltd., device name: S-800) The average particle size was determined by averaging the values.
[Thickness of conductor film]
It measured using the contact-type film thickness measuring apparatus (the product made by Veeco, apparatus name: DEKTAK150).
[Volume resistivity of conductor film]
Using a four-probe resistance meter (Mitsubishi Yuka Co., Ltd., apparatus name: Loresta GP MCP-T610), the surface resistance value of the conductor film was measured. The volume resistivity was obtained by multiplying the measured surface resistance value by the thickness of the conductor film.
[Measurement of light absorption rate]
Using a UV-visible spectrophotometer (manufactured by Hitachi High-Technologies Corporation, apparatus name: U-4100 type), the light transmittance and light reflectance at a wavelength of 300 to 1000 nm of the fired film were measured, and the light absorption rate was calculated.
(導電インクの製造)
ガラス容器に、トルエン300gと、銅(II)塩としてギ酸銅(II)四水和物30g、およびアルキルアミンとしてn-ヘプチルアミン(沸点157℃)15gを加えて撹拌した。次いで、ヒドリド系還元剤であるNaBH4の4.5gを添加し、撹拌することによって、微粒子がトルエン中に分散した黒色の分散液を得た。
得られた分散液中の微粒子を回収し、X線回折で同定を行ったところ、水素化銅微粒子であることが確認された。水素化銅微粒子(一次粒子)の平均一次粒子径は10nmであった。また、得られた水素化銅微粒子分散液の固形分濃度は4質量%であった。 (Manufacture of conductive ink)
To a glass container, 300 g of toluene, 30 g of copper (II) formate tetrahydrate as a copper (II) salt, and 15 g of n-heptylamine (boiling point 157 ° C.) as an alkylamine were added and stirred. Next, 4.5 g of NaBH 4 which is a hydride reducing agent was added and stirred to obtain a black dispersion liquid in which fine particles were dispersed in toluene.
The fine particles in the obtained dispersion were collected and identified by X-ray diffraction. As a result, it was confirmed to be copper hydride fine particles. The average primary particle diameter of the copper hydride fine particles (primary particles) was 10 nm. Further, the solid content concentration of the obtained copper hydride fine particle dispersion was 4% by mass.
ガラス容器に、トルエン300gと、銅(II)塩としてギ酸銅(II)四水和物30g、およびアルキルアミンとしてn-ヘプチルアミン(沸点157℃)15gを加えて撹拌した。次いで、ヒドリド系還元剤であるNaBH4の4.5gを添加し、撹拌することによって、微粒子がトルエン中に分散した黒色の分散液を得た。
得られた分散液中の微粒子を回収し、X線回折で同定を行ったところ、水素化銅微粒子であることが確認された。水素化銅微粒子(一次粒子)の平均一次粒子径は10nmであった。また、得られた水素化銅微粒子分散液の固形分濃度は4質量%であった。 (Manufacture of conductive ink)
To a glass container, 300 g of toluene, 30 g of copper (II) formate tetrahydrate as a copper (II) salt, and 15 g of n-heptylamine (boiling point 157 ° C.) as an alkylamine were added and stirred. Next, 4.5 g of NaBH 4 which is a hydride reducing agent was added and stirred to obtain a black dispersion liquid in which fine particles were dispersed in toluene.
The fine particles in the obtained dispersion were collected and identified by X-ray diffraction. As a result, it was confirmed to be copper hydride fine particles. The average primary particle diameter of the copper hydride fine particles (primary particles) was 10 nm. Further, the solid content concentration of the obtained copper hydride fine particle dispersion was 4% by mass.
次いで、得られた水素化銅微粒子分散液を減圧濃縮し、α-テルピネオールを添加して粘度を調節し、導電インクを得た。得られた導電インクの水素化銅微粒子固形分濃度は30質量%であった。
Next, the obtained copper hydride fine particle dispersion was concentrated under reduced pressure, and α-terpineol was added to adjust the viscosity to obtain a conductive ink. The obtained conductive ink had a solid content of copper hydride fine particles of 30% by mass.
[例1]
基材としてPETフィルムを用いた。上記の導電インクを使用し、産業用インクジェットプリンタ(富士フィルムグラフィックシステム社製、装置名:DMP2813)により、PET基材上に長さ5cm、幅5mmとなるよう配線パターンを印刷した。印刷後のPET基材を、窒素雰囲気下、150℃で1時間加熱し、焼成膜の形成されたPET基材を得た。得られた焼成膜の厚さは0.5μm、体積抵抗率は20μΩ・cmであった。
得られた焼成膜の光吸収率を図1に示す。図1より、波長300nm~1000nmにおける光吸収率は40%以上であることが分かる。
前記で得られた焼成膜上を300℃以上で加熱するために、窒素雰囲気下で、半導体レーザー(浜松ホトニクス社製、装置名:L10402-72、波長:808nm、ビーム径:1.75×5.58mm、照射出力:5W)を用い、走査速度1mm/秒でレーザー照射を行った。レーザー照射後の導体膜の体積抵抗率は7μΩ・cmであった。 [Example 1]
A PET film was used as the substrate. Using the above conductive ink, a wiring pattern was printed on a PET substrate so as to have a length of 5 cm and a width of 5 mm by an industrial ink jet printer (manufactured by Fuji Film Graphic System Co., Ltd., device name: DMP2813). The PET substrate after printing was heated at 150 ° C. for 1 hour in a nitrogen atmosphere to obtain a PET substrate on which a fired film was formed. The obtained fired film had a thickness of 0.5 μm and a volume resistivity of 20 μΩ · cm.
The light absorption rate of the obtained fired film is shown in FIG. As can be seen from FIG. 1, the light absorptance at wavelengths of 300 nm to 1000 nm is 40% or more.
In order to heat the above-obtained fired film at 300 ° C. or higher, a semiconductor laser (manufactured by Hamamatsu Photonics, apparatus name: L10402-72, wavelength: 808 nm, beam diameter: 1.75 × 5) is heated in a nitrogen atmosphere. .58 mm, irradiation output: 5 W), and laser irradiation was performed at a scanning speed of 1 mm / second. The volume resistivity of the conductor film after laser irradiation was 7 μΩ · cm.
基材としてPETフィルムを用いた。上記の導電インクを使用し、産業用インクジェットプリンタ(富士フィルムグラフィックシステム社製、装置名:DMP2813)により、PET基材上に長さ5cm、幅5mmとなるよう配線パターンを印刷した。印刷後のPET基材を、窒素雰囲気下、150℃で1時間加熱し、焼成膜の形成されたPET基材を得た。得られた焼成膜の厚さは0.5μm、体積抵抗率は20μΩ・cmであった。
得られた焼成膜の光吸収率を図1に示す。図1より、波長300nm~1000nmにおける光吸収率は40%以上であることが分かる。
前記で得られた焼成膜上を300℃以上で加熱するために、窒素雰囲気下で、半導体レーザー(浜松ホトニクス社製、装置名:L10402-72、波長:808nm、ビーム径:1.75×5.58mm、照射出力:5W)を用い、走査速度1mm/秒でレーザー照射を行った。レーザー照射後の導体膜の体積抵抗率は7μΩ・cmであった。 [Example 1]
A PET film was used as the substrate. Using the above conductive ink, a wiring pattern was printed on a PET substrate so as to have a length of 5 cm and a width of 5 mm by an industrial ink jet printer (manufactured by Fuji Film Graphic System Co., Ltd., device name: DMP2813). The PET substrate after printing was heated at 150 ° C. for 1 hour in a nitrogen atmosphere to obtain a PET substrate on which a fired film was formed. The obtained fired film had a thickness of 0.5 μm and a volume resistivity of 20 μΩ · cm.
The light absorption rate of the obtained fired film is shown in FIG. As can be seen from FIG. 1, the light absorptance at wavelengths of 300 nm to 1000 nm is 40% or more.
In order to heat the above-obtained fired film at 300 ° C. or higher, a semiconductor laser (manufactured by Hamamatsu Photonics, apparatus name: L10402-72, wavelength: 808 nm, beam diameter: 1.75 × 5) is heated in a nitrogen atmosphere. .58 mm, irradiation output: 5 W), and laser irradiation was performed at a scanning speed of 1 mm / second. The volume resistivity of the conductor film after laser irradiation was 7 μΩ · cm.
[例2]
上記の導電インクを使用し、産業用インクジェットプリンタ(富士フィルムグラフィックシステム社製、装置名:DMP2813)により、PET基材上に長さ5cm、幅5mmとなるよう配線パターンを印刷した。印刷後のPET基材を、真空中、100℃で1時間加熱し、焼成膜の形成されたPET基材を得た。得られた焼成膜の厚さは0.6μm、体積抵抗率は55μΩ・cmであった。
得られた焼成膜の光吸収率は図1と同じであった。図1より、波長300~1000nmにおける光吸収率は40%以上であった。前記で得られた焼成膜を300℃以上で加熱するために、窒素雰囲気下で、半導体レーザー(浜松ホトニクス社製、装置名:L10402-72、波長:808nm、ビーム径:1.75×5.58mm、照射出力:5W)を用い、走査速度1mm/秒でレーザー照射を行った。レーザー照射後の導体膜の体積抵抗率は5μΩ・cmであった。 [Example 2]
Using the above conductive ink, a wiring pattern was printed on a PET substrate so as to have a length of 5 cm and a width of 5 mm by an industrial ink jet printer (manufactured by Fuji Film Graphic System Co., Ltd., device name: DMP2813). The printed PET substrate was heated in vacuum at 100 ° C. for 1 hour to obtain a PET substrate on which a fired film was formed. The obtained fired film had a thickness of 0.6 μm and a volume resistivity of 55 μΩ · cm.
The light absorption rate of the obtained fired film was the same as in FIG. From FIG. 1, the light absorptance at a wavelength of 300 to 1000 nm was 40% or more. In order to heat the fired film obtained above at 300 ° C. or higher, in a nitrogen atmosphere, a semiconductor laser (manufactured by Hamamatsu Photonics, apparatus name: L10402-72, wavelength: 808 nm, beam diameter: 1.75 × 5. 58 mm, irradiation output: 5 W), and laser irradiation was performed at a scanning speed of 1 mm / second. The volume resistivity of the conductor film after laser irradiation was 5 μΩ · cm.
上記の導電インクを使用し、産業用インクジェットプリンタ(富士フィルムグラフィックシステム社製、装置名:DMP2813)により、PET基材上に長さ5cm、幅5mmとなるよう配線パターンを印刷した。印刷後のPET基材を、真空中、100℃で1時間加熱し、焼成膜の形成されたPET基材を得た。得られた焼成膜の厚さは0.6μm、体積抵抗率は55μΩ・cmであった。
得られた焼成膜の光吸収率は図1と同じであった。図1より、波長300~1000nmにおける光吸収率は40%以上であった。前記で得られた焼成膜を300℃以上で加熱するために、窒素雰囲気下で、半導体レーザー(浜松ホトニクス社製、装置名:L10402-72、波長:808nm、ビーム径:1.75×5.58mm、照射出力:5W)を用い、走査速度1mm/秒でレーザー照射を行った。レーザー照射後の導体膜の体積抵抗率は5μΩ・cmであった。 [Example 2]
Using the above conductive ink, a wiring pattern was printed on a PET substrate so as to have a length of 5 cm and a width of 5 mm by an industrial ink jet printer (manufactured by Fuji Film Graphic System Co., Ltd., device name: DMP2813). The printed PET substrate was heated in vacuum at 100 ° C. for 1 hour to obtain a PET substrate on which a fired film was formed. The obtained fired film had a thickness of 0.6 μm and a volume resistivity of 55 μΩ · cm.
The light absorption rate of the obtained fired film was the same as in FIG. From FIG. 1, the light absorptance at a wavelength of 300 to 1000 nm was 40% or more. In order to heat the fired film obtained above at 300 ° C. or higher, in a nitrogen atmosphere, a semiconductor laser (manufactured by Hamamatsu Photonics, apparatus name: L10402-72, wavelength: 808 nm, beam diameter: 1.75 × 5. 58 mm, irradiation output: 5 W), and laser irradiation was performed at a scanning speed of 1 mm / second. The volume resistivity of the conductor film after laser irradiation was 5 μΩ · cm.
[例3]
上記の導電インクを使用し、産業用インクジェットプリンタ(富士フィルムグラフィックシステム社製、装置名:DMP2813)により、PET基材上に長さ5cm、幅5mmとなるよう配線パターンを印刷した。印刷後のPET基材を、窒素に3容量%の水素を混合した雰囲気下、120℃で1時間加熱し、焼成膜の形成されたPET基材を得た。得られた焼成膜の厚さは0.5μm、体積抵抗率は15μΩ・cmであった。
得られた焼成膜の光吸収率を図2に示す。波長600~1000nmにおける光吸収率は40%以下であった。前記で得られた焼成膜を窒素雰囲気下で、半導体レーザー(浜松ホトニクス社製、装置名:L10402-72、波長:808nm、ビーム径:1.75×5.58mm、照射出力:5W)を用い、走査速度1mm/秒でレーザー照射を行った。レーザー照射後の導体膜の体積抵抗率は15μΩ・cmであった。 [Example 3]
Using the above conductive ink, a wiring pattern was printed on a PET substrate so as to have a length of 5 cm and a width of 5 mm by an industrial ink jet printer (manufactured by Fuji Film Graphic System Co., Ltd., device name: DMP2813). The PET substrate after printing was heated at 120 ° C. for 1 hour in an atmosphere in which 3% by volume of hydrogen was mixed with nitrogen to obtain a PET substrate on which a fired film was formed. The obtained fired film had a thickness of 0.5 μm and a volume resistivity of 15 μΩ · cm.
The light absorption rate of the obtained fired film is shown in FIG. The light absorption rate at a wavelength of 600 to 1000 nm was 40% or less. The fired film obtained above was used in a nitrogen atmosphere using a semiconductor laser (manufactured by Hamamatsu Photonics, apparatus name: L10402-72, wavelength: 808 nm, beam diameter: 1.75 × 5.58 mm, irradiation output: 5 W). Laser irradiation was performed at a scanning speed of 1 mm / second. The volume resistivity of the conductor film after laser irradiation was 15 μΩ · cm.
上記の導電インクを使用し、産業用インクジェットプリンタ(富士フィルムグラフィックシステム社製、装置名:DMP2813)により、PET基材上に長さ5cm、幅5mmとなるよう配線パターンを印刷した。印刷後のPET基材を、窒素に3容量%の水素を混合した雰囲気下、120℃で1時間加熱し、焼成膜の形成されたPET基材を得た。得られた焼成膜の厚さは0.5μm、体積抵抗率は15μΩ・cmであった。
得られた焼成膜の光吸収率を図2に示す。波長600~1000nmにおける光吸収率は40%以下であった。前記で得られた焼成膜を窒素雰囲気下で、半導体レーザー(浜松ホトニクス社製、装置名:L10402-72、波長:808nm、ビーム径:1.75×5.58mm、照射出力:5W)を用い、走査速度1mm/秒でレーザー照射を行った。レーザー照射後の導体膜の体積抵抗率は15μΩ・cmであった。 [Example 3]
Using the above conductive ink, a wiring pattern was printed on a PET substrate so as to have a length of 5 cm and a width of 5 mm by an industrial ink jet printer (manufactured by Fuji Film Graphic System Co., Ltd., device name: DMP2813). The PET substrate after printing was heated at 120 ° C. for 1 hour in an atmosphere in which 3% by volume of hydrogen was mixed with nitrogen to obtain a PET substrate on which a fired film was formed. The obtained fired film had a thickness of 0.5 μm and a volume resistivity of 15 μΩ · cm.
The light absorption rate of the obtained fired film is shown in FIG. The light absorption rate at a wavelength of 600 to 1000 nm was 40% or less. The fired film obtained above was used in a nitrogen atmosphere using a semiconductor laser (manufactured by Hamamatsu Photonics, apparatus name: L10402-72, wavelength: 808 nm, beam diameter: 1.75 × 5.58 mm, irradiation output: 5 W). Laser irradiation was performed at a scanning speed of 1 mm / second. The volume resistivity of the conductor film after laser irradiation was 15 μΩ · cm.
例1、例2では、焼成膜の波長300~1000nmにおける光吸収率は40%以上であり、この焼成膜に波長808nmのレーザー光を照射して加熱することで温度は300℃以上となり、充分に体積抵抗率が低減できたことが分かる。一方、例3では、焼成膜の波長600~1000nmにおける光吸収率は40%以下であり、波長808nmのレーザー光を照射しても焼成膜は加熱されず、体積抵抗率が充分低減できていないことが分かる。
In Examples 1 and 2, the light absorption rate at a wavelength of 300 to 1000 nm of the fired film is 40% or more. By heating the fired film with a laser beam having a wavelength of 808 nm, the temperature becomes 300 ° C. or more. It can be seen that the volume resistivity could be reduced. On the other hand, in Example 3, the light absorption rate at a wavelength of 600 to 1000 nm of the fired film is 40% or less, and the fired film is not heated even when irradiated with laser light having a wavelength of 808 nm, and the volume resistivity cannot be sufficiently reduced. I understand that.
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
本出願は、2012年3月28日出願の日本特許出願2012-074697に基づくものであり、その内容はここに参照として取り込まれる。 Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2012-074697 filed on Mar. 28, 2012, the contents of which are incorporated herein by reference.
本出願は、2012年3月28日出願の日本特許出願2012-074697に基づくものであり、その内容はここに参照として取り込まれる。 Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2012-074697 filed on Mar. 28, 2012, the contents of which are incorporated herein by reference.
また、本発明の導体付き基材の製造方法によれば、PET、PEN等の耐熱性が低い基材を使用する場合でも体積抵抗率の小さい導体膜を製造でき、この導体膜が形成された基材は、信頼性の高い配線基板として好適に用いられる。
Moreover, according to the manufacturing method of the base material with a conductor of this invention, even when using base materials with low heat resistance, such as PET and PEN, a conductive film with a small volume resistivity can be manufactured, and this conductive film was formed. The base material is suitably used as a highly reliable wiring board.
Claims (5)
- 基材を準備する工程と、
前記基材上に、平均一次粒子径が5~100nmの、水素化銅微粒子または銅微粒子を含む導電インクの塗膜を形成する工程と、
前記塗膜を100~200℃で加熱して焼成膜を形成する工程と、
前記焼成膜をレーザー光の照射により300~500℃で加熱する工程とを備えることを特徴とする導体膜の製造方法。 Preparing a substrate;
Forming a conductive ink coating film containing copper hydride fine particles or copper fine particles having an average primary particle diameter of 5 to 100 nm on the substrate;
Heating the coating film at 100 to 200 ° C. to form a fired film;
And a step of heating the fired film at 300 to 500 ° C. by laser light irradiation. - 前記焼成膜の光吸収率は、波長300~1000nmにおいて40~100%である請求項1記載の導体膜の製造方法。 The method for producing a conductor film according to claim 1, wherein the light absorption rate of the fired film is 40 to 100% at a wavelength of 300 to 1000 nm.
- 前記導体膜は、銅微粒子を連接して含む請求項1または2記載の導体膜の製造方法。 3. The method of manufacturing a conductor film according to claim 1, wherein the conductor film includes copper fine particles connected to each other.
- 前記導体膜は、ホウ素、ナトリウムおよび炭素を含む請求項1~3のいずれか1項記載の導体膜の製造方法。 The method of manufacturing a conductor film according to any one of claims 1 to 3, wherein the conductor film contains boron, sodium, and carbon.
- 前記導電インクは、
非水溶性の有機溶媒に、沸点が250℃以下で炭素数7以上のアルキル基を有するアルキルアミンと、一次粒子径が5~80nmの水素化銅微粒子または銅微粒子が分散した導電インクであり、表面張力が25~40dyn/cm、20℃での粘度が8~40mPa・sである請求項1~4のいずれか1項記載の導体膜の製造方法。 The conductive ink is
A conductive ink in which an alkylamine having an alkyl group having a boiling point of 250 ° C. or lower and a carbon number of 7 or more and copper hydride fine particles or copper fine particles having a primary particle diameter of 5 to 80 nm are dispersed in a water-insoluble organic solvent, 5. The method for producing a conductor film according to claim 1, wherein the surface tension is 25 to 40 dyn / cm and the viscosity at 20 ° C. is 8 to 40 mPa · s.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012074697A JP2015111492A (en) | 2012-03-28 | 2012-03-28 | Method of producing conductor film |
JP2012-074697 | 2012-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013146389A1 true WO2013146389A1 (en) | 2013-10-03 |
Family
ID=49259650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/057534 WO2013146389A1 (en) | 2012-03-28 | 2013-03-15 | Method for producing conductor film |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2015111492A (en) |
TW (1) | TW201344712A (en) |
WO (1) | WO2013146389A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105702380A (en) * | 2014-11-27 | 2016-06-22 | 比亚迪股份有限公司 | Method for forming conductive layer by employing ink composition |
JP2017041651A (en) * | 2016-11-15 | 2017-02-23 | エス・オー・シー株式会社 | Method of manufacturing circuit board and circuit board |
US10546710B2 (en) | 2015-04-07 | 2020-01-28 | Soc Corporation | Fuse production method, fuse, circuit board production method and circuit board |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019167156A1 (en) * | 2018-02-28 | 2019-09-06 | 株式会社Fuji | Wiring forming apparatus and wiring forming method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010528428A (en) * | 2007-05-18 | 2010-08-19 | アプライド・ナノテック・ホールディングス・インコーポレーテッド | Metal ink |
-
2012
- 2012-03-28 JP JP2012074697A patent/JP2015111492A/en active Pending
-
2013
- 2013-03-15 WO PCT/JP2013/057534 patent/WO2013146389A1/en active Application Filing
- 2013-03-26 TW TW102110771A patent/TW201344712A/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010528428A (en) * | 2007-05-18 | 2010-08-19 | アプライド・ナノテック・ホールディングス・インコーポレーテッド | Metal ink |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105702380A (en) * | 2014-11-27 | 2016-06-22 | 比亚迪股份有限公司 | Method for forming conductive layer by employing ink composition |
CN105702380B (en) * | 2014-11-27 | 2017-08-22 | 比亚迪股份有限公司 | The method of ink application composition formation conductive layer |
US10546710B2 (en) | 2015-04-07 | 2020-01-28 | Soc Corporation | Fuse production method, fuse, circuit board production method and circuit board |
JP2017041651A (en) * | 2016-11-15 | 2017-02-23 | エス・オー・シー株式会社 | Method of manufacturing circuit board and circuit board |
Also Published As
Publication number | Publication date |
---|---|
JP2015111492A (en) | 2015-06-18 |
TW201344712A (en) | 2013-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6328702B2 (en) | Method for reducing a thin film on a low-temperature substrate | |
TWI640581B (en) | Additives and modifiers for solvent-and water-based metallic conductive inks | |
Farraj et al. | Plasma-induced decomposition of copper complex ink for the formation of highly conductive copper tracks on heat-sensitive substrates | |
Shen et al. | Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity | |
US8668848B2 (en) | Metal nanoparticle compositions for reflective features | |
TWI613678B (en) | Method for producing dispersion containing silver nanoparticles and dispersion containing silver nanoparticles and use thereof | |
Lai et al. | Synthesis and characterization of silver nanoparticles and silver inks: review on the past and recent technology roadmaps | |
EP2803431A1 (en) | Method for producing silver nanoparticles, silver nanoparticles, and silver coating composition | |
TW201544557A (en) | Method of forming a conductor from a metallic ink | |
CN101801674A (en) | metallic ink | |
JP2005537386A (en) | Low viscosity precursor composition and method for depositing conductive electronic features | |
WO2006076613A2 (en) | Metal nanoparticle compositions | |
WO2013146389A1 (en) | Method for producing conductor film | |
CN109563363B (en) | Formulation and process for producing highly conductive copper patterns | |
KR20090025894A (en) | Conductive ink compositions incorporating nano glass frit and nano metal for enhanced adhesion with glass and ceramic substrates used in displays | |
WO2012053456A1 (en) | Process for manufacturing copper hydride fine particle dispersion, electroconductive ink, and process for manufaturing substrate equipped with conductor | |
KR100658492B1 (en) | Conductive inks and their methods for forming thin layers | |
KR20160117905A (en) | Composition for forming copper nanowire network by light sintering, method for preparing copper nanowire network, and transparent electrode including the same | |
WO2013141174A1 (en) | Conductive ink, base material including conductor, and production method for base material including conductor | |
RU2388774C2 (en) | Conductive ink and method of making said ink | |
WO2013141172A1 (en) | Conductive ink and production method for base material including conductor | |
JP2019052298A (en) | Molecular organic reactive inks for conductive metal printing using photoinitiators | |
CN104053308B (en) | The preparation method of lead of touch screen conducting wire | |
JP2019160689A (en) | Dispersion, product containing coating film, method for producing structure with conductive pattern, and structure with conductive pattern | |
JP2016160456A (en) | Copper-containing particle, conductor forming composition, method for producing conductor, conductor and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13768581 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13768581 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |