WO2013141180A1 - 光選択吸収膜、集熱管、および太陽熱発電装置 - Google Patents
光選択吸収膜、集熱管、および太陽熱発電装置 Download PDFInfo
- Publication number
- WO2013141180A1 WO2013141180A1 PCT/JP2013/057557 JP2013057557W WO2013141180A1 WO 2013141180 A1 WO2013141180 A1 WO 2013141180A1 JP 2013057557 W JP2013057557 W JP 2013057557W WO 2013141180 A1 WO2013141180 A1 WO 2013141180A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- selective absorption
- absorption film
- light selective
- heat
- Prior art date
Links
- 230000031700 light absorption Effects 0.000 title abstract 3
- 230000005611 electricity Effects 0.000 title 1
- 239000004065 semiconductor Substances 0.000 claims abstract description 73
- 239000000758 substrate Substances 0.000 claims abstract description 53
- 229910052751 metal Inorganic materials 0.000 claims abstract description 44
- 239000002184 metal Substances 0.000 claims abstract description 44
- 238000010521 absorption reaction Methods 0.000 claims description 76
- 239000000470 constituent Substances 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052703 rhodium Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 244
- 238000011156 evaluation Methods 0.000 description 36
- 239000011651 chromium Substances 0.000 description 27
- 238000010248 power generation Methods 0.000 description 25
- 229910004298 SiO 2 Inorganic materials 0.000 description 22
- 238000004544 sputter deposition Methods 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 15
- 238000009826 distribution Methods 0.000 description 15
- 238000013461 design Methods 0.000 description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 239000011229 interlayer Substances 0.000 description 11
- 229910052814 silicon oxide Inorganic materials 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 10
- 239000002131 composite material Substances 0.000 description 9
- 239000010935 stainless steel Substances 0.000 description 9
- 229910001220 stainless steel Inorganic materials 0.000 description 9
- 239000000126 substance Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- 229910052786 argon Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- 230000005457 Black-body radiation Effects 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000011195 cermet Substances 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- -1 Ta 2 O 5 Inorganic materials 0.000 description 1
- 229910008484 TiSi Inorganic materials 0.000 description 1
- SJKRCWUQJZIWQB-UHFFFAOYSA-N azane;chromium Chemical compound N.[Cr] SJKRCWUQJZIWQB-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/06—Devices for producing mechanical power from solar energy with solar energy concentrating means
- F03G6/065—Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/06—Devices for producing mechanical power from solar energy with solar energy concentrating means
- F03G6/065—Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
- F03G6/067—Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/20—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
- F24S70/225—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/20—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
- F24S70/25—Coatings made of metallic material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S10/00—Solar heat collectors using working fluids
- F24S10/40—Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
- F24S10/45—Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
- F24S2023/84—Reflective elements inside solar collector casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
- F24S23/74—Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
- F24S23/77—Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
Definitions
- the present invention relates to a light selective absorption film, a heat collecting tube, and a solar power generation device, and in particular, a light selective absorption film suitably formed on the surface of a heat collection tube for a solar power generation device, a heat collecting tube having the light selective absorption film, And a solar thermal power generation apparatus.
- CSP Concentrating Solar Power
- a solar reflector such as a mirror
- heats a liquid such as oil
- the steam turbine is rotated to generate power.
- the principle of power generation is basically the same as that of traditional thermal power generation, but it is an environmentally friendly power generation system that uses solar heat instead of fuel combustion for heat generation.
- the CSP includes a parabolic trough type, a linear Fresnel type, a dish type, and a tower type.
- the parabolic trough type has a raindrop-shaped curved mirror serving as a solar reflector and a pipe-shaped heat collecting tube installed near the focal point of the curved mirror, and collects sunlight with the curved mirror.
- This is a power generation method in which a liquid such as oil that is condensed on a heat tube and flows in the heat collection tube is heated, thereby generating electric power.
- a tower type solar thermal power generation it is excellent in that it is easy to construct a large-scale facility because the solar reflector is easily arranged.
- the temperature of the liquid flowing through such a heat collecting tube is 400 ° C. or higher.
- the surface of the heat collection tube is provided with a light selective absorption film for the purpose of efficiently absorbing solar radiation energy and reducing heat radiation from the heat collection tube to the outside.
- the light selective absorption film for example, a film using gold, silver, or platinum for an infrared region reflection layer has been proposed (for example, see Patent Document 1).
- a barrier layer composed of a SiO x layer is required so as to sandwich the infrared region reflection layer.
- the light selective absorption film for example, a film having a dielectric layer and one or more chromium-based layers selected from the group consisting of chromium, chromium nitride, and chromium oxynitride has been proposed (for example, Patent Document 2).
- a light selective absorption film is mainly used in solar water heaters, and the emissivity is not necessarily low in the wavelength range of 4 to 5 ⁇ m, which corresponds to the operating temperature of the heat collecting tube in solar thermal power generation, around 400 ° C. Absent. That is, the reflectance in the above wavelength range is not necessarily high enough, and when applied to a solar heat collection heat collection tube, heat easily escapes from the heat collection tube to the outside.
- a light selective absorption film for example, a film having a TiSi layer, a TiO 2 layer, and a SiO 2 layer has been proposed (see, for example, Patent Document 3).
- a light selective absorption film tends to have a large number of layers, a complicated structure, and it is necessary to precisely control the film thickness of each layer.
- a film having a cermet layer of Mo and SiO 2 has been proposed (for example, see Patent Document 4).
- Mo is used, oxidation resistance at high temperatures is not sufficient, and it is not easy to stably form a cermet layer.
- those having a cermet layer having a graded composition of W and Al 2 O 3 is proposed (e.g., see Patent Document 5).
- a film forming method using an RF sputtering method is used in part, the film forming speed is not always fast and the productivity is not sufficient.
- the present invention has been made to solve the above-described problems, and an object thereof is to provide a light selective absorption film having a high solar energy absorption rate and a low emissivity at 400 ° C. or higher. Another object of the present invention is to provide a heat collecting tube having such a light selective absorption film and a solar thermal power generation apparatus.
- the light selective absorption film of the present invention is a light selective absorption film formed on a base material, and is laminated on the base material, and has two or more repeating structures of a metal layer and a semiconductor layer in order from the base material side.
- a first laminated portion having a first laminated portion, a second laminated portion laminated on the first laminated portion, and having one or more repeating structures of a dielectric layer and a semiconductor layer, and laminated on the second laminated portion.
- a third laminated portion made of a dielectric layer.
- the heat collection tube of the present invention is a heat collection tube having a heat collection tube main body and a light selective absorption film formed on the outer surface of the heat collection tube main body, wherein the light selective absorption film is the light selective absorption film of the present invention described above. It is characterized by being.
- the solar thermal power generation device of the present invention is a solar thermal power generation device including a heat collector having a heat collecting tube and a light collecting means for concentrating sunlight on the heat collecting tube, wherein the heat collecting tube is the above-described heat collecting tube of the present invention. It is a heat tube.
- the light selective absorption film of the present invention includes a first laminated portion having two or more repeating structures of a metal layer and a semiconductor layer in order from the substrate side, and a dielectric layer and a semiconductor laminated on the first laminated portion.
- the solar radiation energy absorption rate can be increased, and the emissivity at 400 ° C. or higher can be decreased.
- the power generation efficiency of solar thermal power generation can be improved by having such a light selective absorption film.
- FIG. 6 is a diagram showing the reflectance distribution and the absorptance distribution of the evaluation substrate of Example 1.
- FIG. 1 is an external view of a parabolic trough heat collector as an embodiment of a heat collector in a solar thermal power generation apparatus.
- the parabolic trough heat collector 1 has a parabolic reflector 2 that is a parabolic reflector as a condensing means.
- the parabolic reflector 2 is supported by a reflector support 3.
- a heat collecting tube 4 is provided at the focal portion of the parabolic reflector 2 so as to extend along the focal portion.
- the heat collecting tube 4 is fixed to the parabolic reflecting mirror 2 and the reflecting mirror support 3 by a heat collecting tube support 5.
- parabolic trough heat collector 1 In such a parabolic trough heat collector 1, sunlight is condensed on the heat collecting tube 4 by the parabolic reflecting mirror 2, and the heat collecting tube 4 is heated by the condensed sunlight. A heat medium such as oil flows inside the heat collecting tube 4, and the heat medium inside the heat collecting tube 4 is heated by heating the heat collecting tube 4.
- the parabolic trough heat collector 1 is connected to a steam turbine, and power is generated by rotating the steam turbine using the heat of the heat medium.
- FIG. 2 is a plan view showing an embodiment of the heat collecting tube 4 used in the parabolic trough type heat collector 1.
- FIG. 3 is a cross-sectional view of the heat collection tube 4 shown in FIG.
- the heat collection tube 4 has a heat collection tube main body 41 made of a steel tube or the like through which a heat medium flows, and a light selective absorption film 42 is provided on the outer surface thereof.
- a glass tube 43 is provided outside the heat collecting tube main body 41 at a predetermined interval so as to cover the heat collecting tube main body 41. Both ends of the heat collecting tube main body 41 and the glass tube 43 are fixed by the fixing brackets 44 so that a vacuum state is established therebetween.
- FIG. 4 is an external view of a linear Fresnel type heat collector as another embodiment of the heat collector in the solar thermal power generation apparatus.
- FIG. 5 is sectional drawing which shows the receiver of the linear Fresnel type heat collector shown in FIG.
- the linear Fresnel type heat collector 6 has, for example, a plurality of parallel plate-like first reflecting mirrors 7 serving as light collecting means, and a position between them in parallel with and higher than these.
- the receiver 8 is disposed in The receiver 8 is fixed by, for example, a receiver support 9.
- the receiver 8 houses the heat collecting tube 4, a second reflecting mirror 81 as a condensing means for collecting the reflected light of the first reflecting mirror 7 on the heat collecting tube 4, and the second reflecting mirror 81.
- 1 has a case portion 82 opened on the reflecting mirror 7 side, and a glass plate 83 disposed in the opening portion of the case portion 82.
- the heat collecting tube 4 of the linear Fresnel type heat collector 6 has, for example, a heat collecting tube main body 41 made of a steel tube or the like in which a heat medium flows, and a light selective absorption film 42 is provided on the outer surface thereof.
- FIG. 6 is a cross-sectional view showing an embodiment of the light selective absorption film 42.
- the heat collecting tube main body 41 used as a base material is shown collectively.
- the light selective absorption film 42 has a first laminated portion 421, a second laminated portion 422, and a third laminated portion 423 in this order from the heat collecting tube main body 41 side.
- the first laminated portion 421 has two or more repeating structures of a metal layer 421a and a semiconductor layer 421b in order from the heat collecting tube main body 41 side.
- the second laminated portion 422 has one or more repeating structures of a dielectric layer 422a and a semiconductor layer 422b in order from the heat collecting tube main body 41 side.
- the third stacked unit 423 includes a dielectric layer 423a.
- the first laminated portion 421 having two or more repeating structures of the metal layer 421a and the semiconductor layer 421b, and one or more repeating structures of the dielectric layer 422a and the semiconductor layer 422b.
- the solar energy absorption rate can be increased, and the emissivity at 400 ° C. or higher can be decreased. Therefore, by applying to the one where the temperature of the heat collecting tube 4 is 400 ° C. or higher, such as the parabolic trough type heat collector 1 and the linear Fresnel type heat collector 6 described above, the power generation efficiency of the solar thermal power generation apparatus having these is improved. It can be improved effectively.
- each layer is relatively simple, for example, it can be easily and stably formed as compared with a material having a cermet layer.
- the basic constituent elements of the semiconductor layer and the dielectric layer can be the same kind of element, and according to such a structure, the number of targets used can be reduced, for example, in the case of manufacturing by sputtering. Can be improved.
- each lamination part is explained.
- the first stacked portion 421 mainly has a role of improving wavelength selectivity. That is, it mainly has a function of absorbing light in the visible region and near infrared region and reflecting light in the infrared region.
- the number of repeating structures is at least 2 or more from the viewpoint of wavelength selectivity, that is, the reflectance is close to 0% in the visible region and the near infrared region, while the reflectance is rapidly increased from the near infrared region to the infrared region. is there.
- the number of repeating structures is preferably larger from the viewpoint of improving the wavelength selectivity. However, if the number is increased, the number of films increases, so that productivity is lowered and heat resistance is likely to be lowered. Therefore, the number of repeating structures is preferably 2 to 10, more preferably 2 to 8, and further preferably 2 to 6.
- the number of repetitive structures is counted assuming that the combination of the metal layer 421a and the semiconductor layer 421b is 1. That is, when the number of repeating structures is 2, the structure is “metal layer 421a / semiconductor layer 421b / metal layer 421a / semiconductor layer 421b”.
- the metal layer 421a mainly has a role of improving wavelength selectivity.
- the metal layer 421a is not necessarily limited as long as it is made of a metal material and has wavelength selectivity, that is, absorbs light in the visible region and near infrared region and reflects light in the infrared region. Is selected from Ag, Al, Au, Cr, Cu, Fe, Hf, In, La, Mo, Ni, Pd, Pt, Rh, Sn, Ta, Ti, Zr, or W, or one of these elements What consists of the alloy containing the above element is preferable. Among these, from the viewpoints of heat resistance, chemical stability, adhesion to the heat collecting tube main body 41 as a base material, availability, etc., those made of Cr alone or a Cr alloy are more preferable, and particularly from Cr alone. Is preferred.
- constituent elements of the plurality of metal layers 421a may be the same as or different from each other, but may be the same because, for example, the number of targets used in the case of manufacturing by a sputtering method can be reduced. preferable.
- the physical thickness of the metal layer 421a is preferably 60 to 200 nm for the metal layer 421a first laminated on the heat collecting tube body 41, and 5 to 10 nm for the other metal layers 421a.
- the physical film thicknesses may be the same or different.
- the physical film thickness of the metal layer 421a first laminated on the heat collecting tube body 41 is more preferably 65 to 200 nm, further preferably 70 to 130 nm, and the physical film thickness of the other metal layer 421a is more preferably 6 to 9 nm.
- the semiconductor layer 421b has a role of improving wavelength selectivity by the metal layer 421a.
- the semiconductor layer 421b is made of a semiconductor material and is not necessarily limited as long as the wavelength selectivity by the metal layer 421a can be improved.
- the semiconductor layer 421b is at least one selected from Si or Ge alone or these elements. It is preferable to consist of a compound containing an element. Among these, those made of Si alone or Si compounds are more preferred, and those made of Si alone are particularly preferred. According to what consists of Si simple substance, while being excellent in heat resistance, a high absorption factor is obtained as an absorption layer in a visible region, and a low emissivity is obtained as a transparent layer in an infrared region.
- constituent elements of the plurality of semiconductor layers 421b may be the same as or different from each other, but may be the same because, for example, the number of targets used in the case of manufacturing by a sputtering method can be reduced. preferable.
- the physical film thickness of the semiconductor layer 421b is preferably 5 to 20 nm. Note that the physical film thickness of the semiconductor layer 421b may be the same as or different from each other, but it is preferable that both be in the above range. When the physical film thickness of the semiconductor layer 421b is within the above range, the wavelength selectivity by the metal layer 421a can be effectively improved. As for the physical film thickness of the semiconductor layer 421b, the physical film thickness of the semiconductor layer 421b closest to the heat collecting tube main body 41 is more preferably 7 to 18 nm, and the physical film thickness of the other semiconductor layer 421b is 9 to 15 nm. It is more preferable that
- a dielectric layer (not shown) can be provided in addition to the metal layer 421a and the semiconductor layer 421b from the viewpoint of improving heat resistance.
- the dielectric layer can be provided without particular limitation as long as it is between the metal layer 421a and the semiconductor layer 421b, and may be provided only between a part or all of them.
- such a dielectric layer is referred to as an interlayer dielectric layer.
- the interlayer dielectric layer is not necessarily limited as long as it is made of a dielectric material, but one kind selected from Al, Ce, Hf, In, La, Nb, Sb, Si, Sn, Ta, Ti, Zn, and Zr
- An oxide of the above elements or a composite oxide containing one or more elements selected from these elements is preferable.
- an oxide of Si or Ge, or a composite oxide containing one or more elements selected from Si and Ge is preferable, and an oxide of Si or a composite oxide containing Si is particularly preferable.
- an oxide of Si or a composite oxide containing Si is particularly preferable.
- those made of an oxide of Si are more preferable.
- the constituent elements of the interlayer dielectric layer may be the same or different from each other.
- the number of targets used in the case of manufacturing by sputtering can be reduced. Therefore, they are preferably identical to each other.
- the constituent elements other than oxygen of the interlayer dielectric layer are preferably the same as the constituent elements of the semiconductor layer 421b of the first stacked portion 421.
- the physical film thickness of the interlayer dielectric layer is preferably 1 to 30 nm.
- the physical thicknesses of the interlayer dielectric layers may be the same or different from each other, but it is preferable that both are within the above range.
- the heat resistance can be effectively improved.
- the physical film thickness of the interlayer dielectric layer is more preferably 2 to 20 nm, and further preferably 3 to 10 nm.
- the second stacked unit 422 and the third stacked unit 423 have a role of improving wavelength selectivity by optical interference.
- the second stacked portion 422 has one or more repeating structures of a dielectric layer 422a and a semiconductor layer 422b.
- the number of repeating structures in the second stacked unit 422 is at least one.
- the number of repeating structures is preferably larger from the viewpoint of improving the wavelength selectivity. However, if the number is increased, the number of films increases, so that productivity is lowered and heat resistance is likely to be lowered. Therefore, the number of repeating structures is preferably 1 to 10, more preferably 1 to 6, and further preferably 1 to 4.
- the number of repetitive structures here is also counted as 1 for the combination of the dielectric layer 422a and the semiconductor layer 422b. That is, when the number of repeating structures is 1, the structure is “dielectric layer 422a / semiconductor layer 422b”.
- the dielectric layer 422a has a function of improving wavelength selectivity by optical interference together with the semiconductor layer 422b.
- the dielectric layer 422a is not necessarily limited as long as it is made of a dielectric material, but is selected from Al, Ce, Ge, Hf, In, La, Nb, Sb, Si, Sn, Ta, Ti, Zn, and Zr. An oxide of one or more elements or a composite oxide containing one or more elements selected from these elements is preferable.
- an oxide of Si or Ge, or a composite oxide containing one or more elements selected from Si and Ge is preferable, and an oxide of Si or a composite oxide containing Si is more preferable.
- those made of an oxide of Si are preferable.
- the material composed of an oxide of Si in particular, it has excellent heat resistance and physicochemical stability, and as a low refractive index substance, a high absorption rate can be obtained by optical interference.
- the constituent elements of the dielectric layer 422a may be the same or different from each other, but the number of targets used when manufacturing by sputtering, for example, can be reduced. Therefore, they are preferably identical to each other. From the same viewpoint, the constituent elements other than oxygen of the dielectric layer 422a are preferably the same as the constituent elements of the semiconductor layer 421b of the first stacked portion 421.
- the physical film thickness of the dielectric layer 422a is preferably 10 to 30 nm.
- the physical thicknesses of the dielectric layers 422a may be the same or different from each other, but it is preferable that both are within the above range.
- the wavelength selectivity can be effectively improved.
- the physical film thickness of the dielectric layer 422a is more preferably 15 to 25 nm.
- the semiconductor layer 422b has a function of improving wavelength selectivity by optical interference together with the dielectric layer 422a.
- the semiconductor layer 422b is not necessarily limited as long as it is made of a semiconductor material, but is preferably made of Si or Ge alone or a compound containing one or more elements selected from these elements. Among these, those made of Si alone or Si compounds are more preferred, and those made of Si alone are particularly preferred. According to what consists of Si simple substance, while being excellent in heat resistance, a high absorption factor is obtained as an absorption layer in a visible region, and a low emissivity is obtained as a transparent layer in an infrared region.
- the constituent elements of the semiconductor layer 422b may be the same as or different from each other, but for example, the number of targets used when manufacturing by a sputtering method can be reduced. It is preferable that they are the same. From the same viewpoint, the constituent elements of the semiconductor layer 422b are the same as the constituent elements other than oxygen of the constituent element of the semiconductor layer 421b of the first stacked unit 421 and the dielectric layer 422a of the second stacked unit 422. It is preferable.
- the physical film thickness of the semiconductor layer 422b is preferably 2 to 9 nm. Note that when there are a plurality of semiconductor layers 422b, the physical film thicknesses of the semiconductor layers 422b may be the same or different from each other, but it is preferable that both be within the above range. When the physical film thickness of the semiconductor layer 422b is within the above range, the wavelength selectivity can be effectively improved.
- the physical film thickness of the semiconductor layer 422b is more preferably 3 to 7 nm.
- the third stacked unit 423 includes a dielectric layer 423a.
- the dielectric layer 423a has a function of improving wavelength selectivity by optical interference together with the dielectric layer 422a and the semiconductor layer 422b of the second stacked portion 422, and also has an antireflection function.
- the dielectric layer 423a is not necessarily limited as long as it is made of a dielectric material, but is selected from Al, Ce, Ge, Hf, In, La, Nb, Sb, Si, Sn, Ta, Ti, Zn, and Zr. An oxide of one or more elements or a composite oxide containing one or more elements selected from these elements is preferable.
- an oxide of Si or Ge, or a composite oxide containing one or more elements selected from Si and Ge is preferable, and an oxide of Si or a composite oxide containing Si is more preferable.
- those made of an oxide of Si are preferable.
- the silicon oxide it has excellent heat resistance and physicochemical stability, and as a low-refractive index substance, it has a good antireflection function in the visible region due to optical interference, resulting in a high absorption rate. Is obtained.
- the constituent elements other than oxygen in the dielectric layer 423a can reduce the number of targets used in the case where the dielectric layer 423a is manufactured, for example, by sputtering. Therefore, the constituent elements of the semiconductor layer 421b of the first stacked unit 421 and the second stacked unit It is preferable that the constituent elements other than oxygen of the dielectric layer 422a of 422 and the constituent elements of the semiconductor layer 422b of the second stacked portion 422 be the same.
- the physical film thickness of the dielectric layer 423a is preferably 40 to 150 nm from the viewpoint of effectively obtaining the above functions.
- the physical film thickness of the dielectric layer 423a is more preferably 50 to 130 nm, and further preferably 60 to 110 nm.
- the constituent elements of all the semiconductor layers are the same as each other, the constituent elements of all the dielectric layers are the same as each other, and the constituent elements of the semiconductor layer and the oxygen other than the oxygen of the dielectric layer
- the constituent elements are preferably the same as each other. According to such a thing, when forming by sputtering method, for example, it is sufficient to use only two kinds of targets, that is, a target for forming a metal layer and a target for forming a semiconductor layer and a dielectric layer. , Especially productivity can be improved.
- examples of the semiconductor layer include the semiconductor layer 421b of the first stacked unit 421 and the semiconductor layer 422b of the second stacked unit 422.
- examples of the dielectric layer include an interlayer dielectric layer and a second stacked unit 422. And the dielectric layer 423a of the third stacked portion 423.
- the physical film thickness of the light selective absorption film 42 is preferably 200 to 300 nm.
- the solar energy absorption rate can be increased, and the emissivity at 400 ° C. or higher can be decreased. Moreover, it can be excellent in heat resistance and productivity.
- the reflectance is preferably 6% or less, and more preferably 3% or less over the entire wavelength range of 400 to 900 nm. Further, for example, the reflectance is preferably 70% or more over the entire wavelength range of 20000 to 25000 nm, more preferably 80% or more, and particularly preferably 90% or more. Further, such a light selective absorption film 42 is preferable because, for example, the solar radiation energy absorption rate ⁇ can be 0.9 or more and the emissivity ⁇ can be 0.2 or less.
- Such a light selective absorption film 42 can be suitably formed by a dry method such as sputtering, electron beam evaporation, or vacuum evaporation.
- a dry method such as sputtering, electron beam evaporation, or vacuum evaporation.
- the sputtering method is preferable.
- examples of the metal layer include the metal layer 421a of the first stacked portion 421.
- Examples of the target used for forming the metal layer include Ag, Al, Au, Cr, Cu, Fe, Hf, In, La, Mo, Ni, Pd, Pt, Rh, Sn, Ta, Ti, Zr, or Examples thereof include a metal target made of W or an alloy containing one or more elements selected from these elements.
- a metal target made of W or an alloy containing one or more elements selected from these elements.
- the metal target which becomes is more preferable, and the metal target which consists of Cr simple substance is especially preferable.
- the metal layer can be formed by sputtering using such a metal target in a non-oxidizing atmosphere such as an argon gas atmosphere.
- Examples of the target used for forming the semiconductor layer and the dielectric layer include a target from a simple substance of Si or Ge, or a compound containing one or more elements selected from these elements. Among these, a target made of Si alone or a Si compound is more preferred, and a target made of Si alone is particularly preferred.
- the semiconductor layer is preferably formed by sputtering using such a target in a non-oxidizing atmosphere such as an argon gas atmosphere.
- the dielectric layer is preferably formed by sputtering using such a target in an oxidizing atmosphere containing, for example, argon gas and oxygen.
- the solar thermal power generation device is not necessarily limited to one using a parabolic trough type heat collector or a linear Fresnel type heat collector, As long as the above-described light selective absorption film is applied, other types of solar power generation apparatuses may be used. Further, as the light selective absorption film, those used for the heat collecting tube of the solar thermal power generation device can be cited as typical ones. If it exists, it may be used for other purposes.
- Example 1 First, a stainless steel (JIS standard SUS321) substrate whose surface was polished so that the arithmetic average surface roughness Ra was about 0.4 ⁇ m was prepared.
- the dimensions of the stainless steel substrate were 50 mm long ⁇ 50 mm wide ⁇ 5 mm thick.
- a light selective absorption film 42 having a laminated structure as shown in FIG. 6 was formed by sputtering to obtain an evaluation substrate.
- the light selective absorption film 42 is formed in order of a Cr layer (a metal layer 421a of the first stacked unit 421, a physical film thickness of 106.25 nm) / Si layer (a semiconductor layer of the first stacked unit 421) from the stainless steel substrate side.
- a DC magnetron sputtering apparatus manufactured by Nippon Vacuum Optics
- a commercially available Cr target (purity: 99.99%) is used for forming the Cr layer
- a commercially available Si target (purity: 99.999%) is used for forming the Si layer and the SiO 2 layer. did.
- argon gas was used in the film forming atmosphere.
- the sputtering pressure was 1 ⁇ 10 ⁇ 1 Pa, and the film formation temperature (substrate temperature) was room temperature.
- MF power manufactured by AE was used as a power source, and power was periodically applied. The frequency at this time was 100 kHz.
- a mixed gas of argon gas and oxygen gas was used as the film forming atmosphere.
- the mixing ratio of argon gas and oxygen gas was 70:30 in volume%.
- the sputtering pressure was 2 ⁇ 10 ⁇ 1 Pa, and the film formation temperature (substrate temperature) was room temperature.
- MF power manufactured by AE was used as a power source, and power was periodically applied. The frequency at this time was 100 kHz.
- the solar energy absorption rate ⁇ and the emissivity ⁇ at 450 ° C. were determined for the evaluation substrate thus obtained.
- the solar radiation energy absorption rate ⁇ was obtained from AM1.5 (ASTM G173-03 Reference Spectra) and the measured reflectance of the evaluation substrate.
- the emissivity ⁇ at 450 ° C. was obtained from Planck's formula. As a result, the solar radiation energy absorption rate ⁇ was 0.90 (design value: 0.91), and the emissivity ⁇ was 0.16 (design value: 0.09).
- FIG. 7 shows the reflectance distribution and the absorptance distribution of the evaluation substrate.
- the reflectance distribution and the absorptance distribution indicate actual measurement values and design values (simulation results).
- the standard spectrum of ASTM G173-03 and the black body radiation spectrum at 450 ° C. are also shown.
- the transmittance can be lowered in a wavelength region (visible region and near infrared region) lower than the wavelength region of the 450 ° C. blackbody radiation spectrum. It can be seen that the transmittance can be increased in the wavelength region (infrared region) of the black body radiation spectrum at 450 ° C., and that the transmittance can rise sufficiently from the near infrared region to the infrared region. Moreover, according to the evaluation substrate having a predetermined configuration, it is recognized that an actual measurement value close to the design value can be obtained.
- the maximum reflectivity at 900 nm is 5.5% (design value: 3.0%), and the average over the entire wavelength range of 400 to 900 nm.
- the reflectance is actually measured: 1.2% (design value: 0.8%).
- the average reflectance in the entire wavelength range of 2000 to 20000 nm is actually measured: 91% (design value: 93%).
- Example 2 Similarly to Example 1, a light selective absorption film 42 having a laminated structure as shown in FIG. 6 was formed on a stainless steel substrate by a sputtering method to obtain an evaluation substrate.
- the light selective absorption film 42 is composed of a Cr layer (a metal layer 421a of the first laminated portion 421, a physical film thickness of 104.62 nm) / SiO 2 layer (a dielectric layer, a physical film not shown) in order from the stainless steel substrate side.
- Example 2 For film formation, the same sputtering apparatus and target as used in Example 1 were used. The film forming conditions for each layer were the same as described in Example 1. The evaluation substrate thus obtained was evaluated in the same manner as in Example 1. As a result, the solar radiation energy absorption rate ⁇ was 0.90 (design value: 0.91), and the emissivity ⁇ was 0.11 (design value: 0.08).
- the transmittance can be lowered in the wavelength region (visible region and near infrared region) lower than the wavelength region of the black body radiation spectrum at 450 ° C., and the black body radiation at 450 ° C. can be achieved. It was confirmed that the transmittance can be increased in the spectral wavelength region (infrared region) and that the transmittance can be sufficiently increased from the near infrared region to the infrared region. In addition, according to the evaluation substrate having a predetermined configuration, it was confirmed that an actual measurement value close to the design value was obtained.
- the maximum reflectivity at 900 nm was 2.5% (design value: 2.4%), and the wavelength range of 400 to 900 nm.
- the average reflectance in the whole is actually measured: 1.3% (design value: 0.8%).
- the average reflectance in the entire wavelength range of 2000 to 20000 nm is an actual measurement value: 92% (design value: 91%).
- the light selective absorption film As the light selective absorption film, an evaluation substrate provided with an alternating layered structure of Cr layers and SiO 2 layers and having no Si layer was provided. That is, the light selective absorption film is, in order from the stainless steel substrate side, Cr layer (physical film thickness 91.79 nm) / SiO 2 layer (physical film thickness 88.69 nm) / Cr layer (physical film thickness 5.92 nm) / SiO 2. Two layers (physical film thickness 77.22 nm) were used. The light selective absorption film is such that the optical characteristics can be obtained as close as possible to the light selective absorption film of Example 1 was adjusting the thickness of each layer of the Cr layer and the SiO 2 layer.
- FIG. 8 shows the reflectance distribution of the evaluation substrate of Comparative Example 1.
- FIG. 8 also shows the reflectance distribution of the evaluation substrate of Example 1 for comparison.
- the reflectance in the visible region is partially higher than that of the evaluation substrate of Example 1 that has a Si layer.
- the evaluation substrate of Comparative Example 1 has a maximum reflectance of 3.3% at 440 nm in the wavelength region of 400 to 900 nm.
- the light selective absorption film is, in order from the stainless steel substrate side, Cr layer (physical film thickness 128.35 nm) / Si layer (physical film thickness 17.14 nm) / SiO 2 layer (physical film thickness 22.61 nm) / Si. Layer (physical film thickness 6.41 nm) / SiO 2 layer (physical film thickness 82.19 nm).
- the light selective absorption film is such that the optical characteristics can be obtained as close as possible to the light selective absorption film of Example 1, Cr layer, Si layer, and to adjust the thickness of each layer of the SiO 2 layer.
- FIG. 9 shows the reflectance distribution of the evaluation substrate of Comparative Example 2.
- FIG. 9 also shows the reflectance distribution of the evaluation substrate of Example 1 for comparison.
- the evaluation substrate of Comparative Example 2 in which the number of repeating structures of the Cr layer and the Si layer is 1, compared with the evaluation substrate of Example 1 in which the number of repeating structures is 2.
- the reflectance in the visible range is generally high.
- the evaluation substrate of Comparative Example 2 has a maximum reflectance of 5.9% at 440 nm in the wavelength region of 400 to 900 nm.
- An evaluation substrate having a layered structure similar to that of the evaluation substrate of Example 1 was basically provided except that a repeating structure of SiO 2 layer and Si layer (corresponding to the second layered portion) was not provided. That is, the light selective absorption film is, in order from the stainless steel substrate side, Cr layer (physical film thickness 143.32 nm) / Si layer (physical film thickness 17.5 nm) / Cr layer (physical film thickness 9.16 nm) / Si layer. (Physical film thickness 14.34 nm) / SiO 2 layer (physical film thickness 81.42 nm).
- the light selective absorption film is such that the optical characteristics can be obtained as close as possible to the light selective absorption film of Example 1, Cr layer, Si layer, and to adjust the thickness of each layer of the SiO 2 layer.
- FIG. 10 shows the reflectance distribution of the evaluation substrate of Comparative Example 3.
- FIG. 10 also shows the reflectance distribution of the evaluation substrate of Example 1 for comparison.
- the visible region was larger than that of the evaluation substrate of Example 1 in which the repeated structure was provided. It can be seen that the reflectance at is significantly increased.
- the evaluation substrate of Comparative Example 3 has a maximum reflectance of 13.0% at 900 nm in the wavelength region of 400 to 900 nm.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本発明の光選択吸収膜は、基材上に形成される光選択吸収膜であって、前記基材上に積層され、前記基材側から順に金属層と半導体層との繰り返し構造を2以上有する第1の積層部と、前記第1の積層部上に積層され、誘電体層と半導体層との繰り返し構造を1以上有する第2の積層部と、前記第2の積層部上に積層された誘電体層からなる第3の積層部とを有する。当該光選択吸収膜は、日射エネルギー吸収率が高く、かつ400℃以上での放射率が低い。
Description
本発明は、光選択吸収膜、集熱管、および太陽熱発電装置に係り、特に太陽熱発電装置用の集熱管の表面に好適に形成される光選択吸収膜、該光選択吸収膜を有する集熱管、および太陽熱発電装置に関する。
太陽熱発電(CSP:Concentrating Solar Power)は、例えば、鏡等の太陽光反射板により太陽光を集光して熱を発生させ、この熱によりオイル等の液体を加熱し、この熱を蒸気に変換し、蒸気タービンを回転させて発電を行う発電方式である。発電の原理は伝統的な火力発電と基本的に同様であるが、熱の発生に燃料の燃焼ではなく、太陽熱を利用する点で環境に優しい発電方式である。
CSPには、パラボリックトラフ式、リニアフレネル式、ディッシュ式、タワー式等の方式がある。例えば、パラボリックトラフ式は、太陽光反射板となる雨樋形状の曲面鏡と、この曲面鏡の焦点付近に沿って設置されたパイプ状の集熱管とを有し、太陽光を曲面鏡によって集熱管に集光し、この集熱管内を流れるオイル等の液体を加熱し、これにより発電する発電方式である。タワー式太陽熱発電と比較すると、太陽光反射板の配置が容易なことから大規模な施設の建設が容易である点で優れる。
このような集熱管を流れる液体の温度は400℃以上となる。また、集熱管の表面には、日射エネルギーを効率よく吸収する一方、集熱管から外部への熱放射を低減する目的から、光選択吸収膜が設けられる。
光選択吸収膜として、例えば、赤外領域反射層に、金、銀、あるいは白金を用いたものが提案されている(例えば、特許文献1参照)。しかし、赤外領域反射層に、金、銀、あるいは白金を用いた場合、赤外領域反射層を挟むようにSiOx層からなるバリア層が必要となる。
また、光選択吸収膜として、例えば、誘電体層と、クロム、窒化クロム、および酸窒化クロムからなる群から選択された1種以上のクロム系層とを有するものが提案されている(例えば、特許文献2参照)。しかし、このような光選択吸収膜は主として太陽熱温水器に用いられるものであり、太陽熱発電における集熱管の作動温度である400℃付近に相当する波長4~5μmの波長域の放射率は必ずしも低くない。すなわち、上記波長域の反射率は必ずしも十分に高くなく、太陽熱発電の集熱管に適用した場合、集熱管から外部に熱が逃げやすい。
さらに、光選択吸収膜として、例えば、TiSi層、TiO2層、およびSiO2層を有するものが提案されている(例えば、特許文献3参照)。しかし、このような光選択吸収膜は層数が多くなりやすく、構成が複雑となり、また各層の膜厚を精密に制御する必要がある。
また、光選択吸収膜として、例えば、MoとSiO2のサーメット層を有するものが提案されている(例えば、特許文献4参照)。しかし、Moを用いるために高温での耐酸化性が十分でなく、またサーメット層を安定的に形成することは容易でない。さらに、WとAl2O3の傾斜組成を有するサーメット層を有するものが提案されている(例えば、特許文献5参照)。しかし、一部にRFスパッタ法による成膜方法を用いることから、必ずしも成膜速度が早くなく生産性が十分でない。
本発明は、上記課題を解決するためになされたものであって、日射エネルギー吸収率が高く、かつ400℃以上での放射率が低い光選択吸収膜の提供を目的とする。また、本発明は、このような光選択吸収膜を有する集熱管、および太陽熱発電装置の提供を目的とする。
本発明の光選択吸収膜は、基材上に形成される光選択吸収膜であって、前記基材上に積層され、前記基材側から順に金属層と半導体層との繰り返し構造を2以上有する第1の積層部と、前記第1の積層部上に積層され、誘電体層と半導体層との繰り返し構造を1以上有する第2の積層部と、前記第2の積層部上に積層された誘電体層からなる第3の積層部とを有することを特徴とする。
本発明の集熱管は、集熱管本体と、前記集熱管本体の外面に形成される光選択吸収膜とを有する集熱管であって、前記光選択吸収膜が上記した本発明の光選択吸収膜であることを特徴とする。
本発明の太陽熱発電装置は、集熱管と、前記集熱管に太陽光を集光する集光手段とを有する集熱器を備える太陽熱発電装置であって、前記集熱管が上記した本発明の集熱管であることを特徴とする。
本発明の光選択吸収膜は、基材側から順に金属層と半導体層との繰り返し構造を2以上有する第1の積層部と、該第1の積層部上に積層され、誘電体層と半導体層との繰り返し構造を1以上有する第2の積層部と、該第2の積層部上に積層された誘電体層からなる第3の積層部とを有する。このような構造によれば、日射エネルギー吸収率を高くできるとともに、400℃以上での放射率を低くできる。また、本発明の集熱管、および太陽熱発電装置によれば、このような光選択吸収膜を有することで太陽熱発電の発電効率を向上できる。
以下、本発明の実施の形態について説明する。
図1は、太陽熱発電装置における集熱器の一実施形態としてのパラボリックトラフ型集熱器の外観図である。
図1は、太陽熱発電装置における集熱器の一実施形態としてのパラボリックトラフ型集熱器の外観図である。
パラボリックトラフ型集熱器1は、集光手段としての放物面反射鏡であるパラボリック反射鏡2を有する。パラボリック反射鏡2は、反射鏡用支持体3によって支持される。パラボリック反射鏡2の焦点部分には、該焦点部分に沿って延びるように集熱管4が設けられる。集熱管4は、集熱管用支持体5によってパラボリック反射鏡2や反射鏡用支持体3に固定される。
このようなパラボリックトラフ型集熱器1では、パラボリック反射鏡2によって太陽光が集熱管4に集光され、この集光された太陽光によって集熱管4が加熱される。集熱管4の内部にはオイル等の熱媒体が流動しており、集熱管4の加熱によって内部の熱媒体が加熱される。図示しないが、パラボリックトラフ型集熱器1は蒸気タービンに接続されており、熱媒体の熱を利用して蒸気タービンを回転させることにより発電が行われる。
図2は、パラボリックトラフ型集熱器1に用いられる集熱管4の一実施形態を示す平面図である。また、図3は、図2に示す集熱管4のAA線断面図である。集熱管4は、内部に熱媒体が流動されるスチール管等からなる集熱管本体41を有し、その外面に光選択吸収膜42が設けられる。集熱管本体41の外側には、集熱管本体41を覆うように所定の間隔を設けてガラス管43が設けられる。集熱管本体41とガラス管43とは、これらの間が真空状態となるように両端部が固定金具44によって固定される。
図4は、太陽熱発電装置における集熱器の他の実施形態としてのリニアフレネル型集熱器の外観図である。また、図5は、図4に示すリニアフレネル型集熱器のレシーバーを示す断面図である。
リニアフレネル型集熱器6は、例えば、集光手段としての複数の並列配置された板状の第1の反射鏡7を有し、これらの間に、これらと並列、かつこれらよりも高い位置にレシーバー8が配置される。レシーバー8は、例えば、レシーバー用支持体9によって固定される。レシーバー8は、集熱管4と、第1の反射鏡7の反射光を集熱管4に集光する集光手段としての第2の反射鏡81、この第2の反射鏡81を収容するとともに第1の反射鏡7側が開口されたケース部82、およびこのケース部82の開口部に配置されたガラス板83を有する。リニアフレネル型集熱器6の集熱管4は、例えば、内部に熱媒体が流動されるスチール管等からなる集熱管本体41を有し、その外面に光選択吸収膜42が設けられる。
図6は、光選択吸収膜42の一実施形態を示す断面図である。なお、図6には、基材となる集熱管本体41を併せて示す。
光選択吸収膜42は、集熱管本体41側から、第1の積層部421、第2の積層部422、および第3の積層部423を順に有する。第1の積層部421は、集熱管本体41側から順に金属層421aと半導体層421bとの繰り返し構造を2以上有する。第2の積層部422は、集熱管本体41側から順に誘電体層422aと半導体層422bとの繰り返し構造を1以上有する。第3の積層部423は、誘電体層423aを有する。
このような光選択吸収膜42によれば、金属層421aと半導体層421bとの繰り返し構造を2以上有する第1の積層部421、誘電体層422aと半導体層422bとの繰り返し構造を1以上有する第2の積層部422、および誘電体層423aを有する第3の積層部423を備えることで、日射エネルギー吸収率を高くでき、かつ400℃以上での放射率を低くできる。従って、上記したパラボリックトラフ型集熱器1やリニアフレネル型集熱器6のように集熱管4の温度が400℃以上となるものに適用することで、これらを有する太陽熱発電装置の発電効率を効果的に向上できる。
また、各層の構成材料が比較的に単純なことから、例えばサーメット層を有するものに比べて容易かつ安定的に形成できる。さらに、半導体層と誘電体層との基本的な構成元素を同種の元素とすることもでき、このようなものによれば、例えばスパッタリング法により製造する場合にターゲットの使用本数を削減でき、生産性を向上できる。以下、各積層部について説明する。
第1の積層部421は、主として波長選択性を向上させる役割を有する。すなわち、可視域および近赤外域の光を吸収するとともに、赤外域の光を反射する機能を主として有する。繰り返し構造の数は、波長選択性、すなわち、可視域および近赤外域では反射率を0%に近くする一方、近赤外域から赤外域にかけて急激に反射率を上昇させる観点から、少なくとも2以上である。繰り返し構造の数は、波長選択性を向上させる観点からは多い方が好ましいが、多くなると膜数が多くなるために生産性が低下し、また耐熱性も低下しやすい。このため繰り返し構造の数は、2~10が好ましく、2~8がより好ましく、2~6がさらに好ましい。
ここで、繰り返し構造の数は、金属層421aと半導体層421bとの組み合わせを1として数える。すなわち、繰り返し構造の数が2の場合、「金属層421a/半導体層421b/金属層421a/半導体層421b」の構造となる。
金属層421aは、主として波長選択性を向上させる役割を有する。金属層421aは、金属材料からなるものであって、波長選択性を有するもの、すなわち、可視域および近赤外域の光を吸収するとともに、赤外域の光を反射するものであれば必ずしも限定されないが、Ag、Al、Au、Cr、Cu、Fe、Hf、In、La、Mo、Ni、Pd、Pt、Rh、Sn、Ta、Ti、Zr、もしくはW、またはこれらの元素から選ばれる1種以上の元素を含む合金からなるものが好ましい。これらの中でも、耐熱性、化学的安定性、基材となる集熱管本体41との密着性、入手の容易さ等の観点から、Cr単体またはCr合金からなるものがより好ましく、特にCr単体からなるものが好ましい。
なお、複数の金属層421aの構成元素は、互いに同一であってもよいし、異なってもよいが、例えばスパッタリング法により製造する場合のターゲットの使用本数を削減できることから、互いに同一であることが好ましい。
金属層421aの物理膜厚は、集熱管本体41に最初に積層される金属層421aの物理膜厚が60~200nm、その他の金属層421aの物理膜厚が5~10nmであることが好ましい。なお、その他の金属層421aが複数ある場合、物理膜厚は、互いに同一であってもよいし、異なってもよい。金属層421aの物理膜厚が上記範囲内にあると、十分な波長選択性を得ることができ、また生産性も良好とできる。集熱管本体41に最初に積層される金属層421aの物理膜厚は65~200nmがより好ましく、70~130nmがさらに好ましく、その他の金属層421aの物理膜厚は6~9nmがより好ましい。
半導体層421bは、金属層421aによる波長選択性を向上させる役割を有する。半導体層421bは、半導体材料からなるものであって、金属層421aによる波長選択性を向上できるものであれば必ずしも限定されないが、SiもしくはGeの単体、またはこれらの元素から選ばれる少なくとも1種の元素を含む化合物からなることが好ましい。これらの中でも、Si単体またはSi化合物からなるものがより好ましく、特にSi単体からなるものが好ましい。Si単体からなるものによれば、特に、耐熱性に優れるとともに、可視域では吸収層として高吸収率が得られ、赤外域では透明層として低放射率が得られる。
なお、複数の半導体層421bの構成元素は、互いに同一であってもよいし、異なってもよいが、例えばスパッタリング法により製造する場合のターゲットの使用本数を削減できることから、互いに同一であることが好ましい。
半導体層421bの物理膜厚は、いずれも5~20nmが好ましい。なお、半導体層421bの物理膜厚は、互いに同一であってもよいし、異なってもよいが、いずれも上記範囲内にあることが好ましい。半導体層421bの物理膜厚が上記範囲内にあると、金属層421aによる波長選択性を効果的に向上できる。半導体層421bの物理膜厚は、集熱管本体41に最も近い側となる半導体層421bの物理膜厚が7~18nmであることがより好ましく、その他の半導体層421bの物理膜厚が9~15nmであることがより好ましい。
第1の積層部421には、耐熱性を向上させる観点から、上記した金属層421aおよび半導体層421bに加えて、図示しない誘電体層を設けることができる。誘電体層を設けることで、光学特性に影響を与えずに耐熱性を向上できる。誘電体層は、金属層421aと半導体層421bとの間であれば特に制限されることなく設けることができ、一部の間のみに設けてもよいし、全ての間に設けてもよい。以下、このような誘電体層を層間誘電体層と記す。
層間誘電体層は、誘電材料からなるものであれば必ずしも限定されないが、Al、Ce、Hf、In、La、Nb、Sb、Si、Sn、Ta、Ti、Zn、およびZrから選ばれる1種以上の元素の酸化物、またはこれらの元素から選ばれる1種以上の元素を含む複合酸化物からなるものが好ましい。このようなものとしては、例えば、Al2O3、CeO2、HfO2、In2O3、La2O3、Nb2O5、Sb2O5、SiO2、SnO2、Ta2O5、TiO2、ZnOまたはZrO2等が挙げられる。
これらの中でも、SiもしくはGeの酸化物、またはSiおよびGeから選ばれる1種以上の元素を含む複合酸化物からなるものが好ましく、特に、Siの酸化物またはSiを含む複合酸化物からなるものがより好ましく、Siの酸化物からなるものがさらに好ましい。
なお、層間誘電体層が複数ある場合、層間誘電体層の構成元素は、互いに同一であってもよいし、異なってもよいが、例えばスパッタリング法により製造する場合のターゲットの使用本数を削減できることから、互いに同一であることが好ましい。また、同様の観点から、層間誘電体層の酸素以外の構成元素は、第1の積層部421の半導体層421bの構成元素と同一であることが好ましい。
層間誘電体層の物理膜厚は、1~30nmが好ましい。なお、層間誘電体層が複数ある場合、層間誘電体層の物理膜厚は、互いに同一であってもよいし、異なってもよいが、いずれも上記範囲内にあることが好ましい。層間誘電体層の物理膜厚が上記範囲内にあると、耐熱性を効果的に向上できる。層間誘電体層の物理膜厚は、2~20nmがより好ましく、3~10nmがさらに好ましい。
第2の積層部422および第3の積層部423は、光干渉により波長選択性を向上させる役割を有する。
第2の積層部422は、誘電体層422aと半導体層422bとの繰り返し構造を1以上有する。第2の積層部422における繰り返し構造の数は、波長選択性を向上させる観点から、少なくとも1以上である。繰り返し構造の数は、波長選択性を向上させる観点からは多い方が好ましいが、多くなると膜数が多くなるために生産性が低下し、また耐熱性も低下しやすい。このため繰り返し構造の数は、1~10が好ましく、1~6がより好ましく、1~4がさらに好ましい。
ここでの繰り返し構造の数も、誘電体層422aと半導体層422bとの組み合わせを1として数える。すなわち、繰り返し構造の数が1の場合、「誘電体層422a/半導体層422b」の構造となる。
誘電体層422aは、半導体層422bと合わせて光干渉により波長選択性を向上させる機能を有する。誘電体層422aは、誘電材料からなるものであれば必ずしも限定されないが、Al、Ce、Ge、Hf、In、La、Nb、Sb、Si、Sn、Ta、Ti、Zn、およびZrから選ばれる1種以上の元素の酸化物、またはこれらの元素から選ばれる1種以上の元素を含む複合酸化物からなるものが好ましい。
これらの中でも、SiもしくはGeの酸化物、またはSiおよびGeから選ばれる1種以上の元素を含む複合酸化物からなるものが好ましく、Siの酸化物またはSiを含む複合酸化物からなるものがより好ましく、特にSiの酸化物からなるものが好ましい。Siの酸化物からなるものによれば、特に、耐熱性と物理化学的安定性に優れ、また低屈折率物質として光学干渉により高吸収率が得られる。
なお、誘電体層422aが複数ある場合、誘電体層422aの構成元素は、互いに同一であってもよいし、異なってもよいが、例えばスパッタリング法により製造する場合のターゲットの使用本数を削減できることから、互いに同一であることが好ましい。また、同様の観点から、誘電体層422aの酸素以外の構成元素は、第1の積層部421の半導体層421bの構成元素と同一であることが好ましい。
誘電体層422aの物理膜厚は、10~30nmが好ましい。なお、誘電体層422aが複数ある場合、誘電体層422aの物理膜厚は、互いに同一であってもよいし、異なってもよいが、いずれも上記範囲内にあることが好ましい。誘電体層422aの物理膜厚が上記範囲内にあると、波長選択性を効果的に向上できる。誘電体層422aの物理膜厚は、15~25nmがより好ましい。
半導体層422bは、誘電体層422aと合わせて光干渉により波長選択性を向上させる機能を有する。半導体層422bは、半導体材料からなるものであれば必ずしも限定されないが、SiもしくはGeの単体、またはこれらの元素から選ばれる1種以上の元素を含む化合物からなることが好ましい。これらの中でも、Si単体またはSi化合物からなるものがより好ましく、特にSi単体からなるものが好ましい。Si単体からなるものによれば、特に、耐熱性に優れるとともに、可視域では吸収層として高吸収率が得られ、赤外域では透明層として低放射率が得られる。
なお、半導体層422bが複数ある場合、半導体層422bの構成元素は、互いに同一であってもよいし、異なってもよいが、例えばスパッタリング法により製造する場合のターゲットの使用本数を削減できることから、互いに同一であることが好ましい。また、同様の観点から、半導体層422bの構成元素は、第1の積層部421の半導体層421bの構成元素および第2の積層部422の誘電体層422aの酸素以外の構成元素と同一であることが好ましい。
半導体層422bの物理膜厚は、2~9nmが好ましい。なお、半導体層422bが複数ある場合、半導体層422bの物理膜厚は、互いに同一であってもよいし、異なってもよいが、いずれも上記範囲内にあることが好ましい。半導体層422bの物理膜厚が上記範囲内にあると、波長選択性を効果的に向上できる。半導体層422bの物理膜厚は、3~7nmがさらに好ましい。
第3の積層部423は、誘電体層423aを有する。誘電体層423aは、第2の積層部422の誘電体層422aおよび半導体層422bと合わせて光干渉により波長選択性を向上させる機能を有するとともに、反射防止の機能を有する。誘電体層423aは、誘電材料からなるものであれば必ずしも限定されないが、Al、Ce、Ge、Hf、In、La、Nb、Sb、Si、Sn、Ta、Ti、Zn、およびZrから選ばれる1種以上の元素の酸化物、またはこれらの元素から選ばれる1種以上の元素を含む複合酸化物からなるものが好ましい。
これらの中でも、SiもしくはGeの酸化物、またはSiおよびGeから選ばれる1種以上の元素を含む複合酸化物からなるものが好ましく、Siの酸化物またはSiを含む複合酸化物からなるものがより好ましく、特にSiの酸化物からなるものが好ましい。Siの酸化物からなるものによれば、特に、耐熱性と物理化学的安定性に優れ、また低屈折率物質として光学干渉により可視域で良好な反射防止機能が得られ、結果として高吸収率が得られる。
なお、誘電体層423aの酸素以外の構成元素は、例えばスパッタリング法により製造する場合のターゲットの使用本数を削減できることから、第1の積層部421の半導体層421bの構成元素、第2の積層部422の誘電体層422aの酸素以外の構成元素、第2の積層部422の半導体層422bの構成元素と同一であることが好ましい。
誘電体層423aの物理膜厚は、上記機能を効果的に得る観点から、40~150nmが好ましい。誘電体層423aの物理膜厚は、50~130nmがより好ましく、60~110nmがさらに好ましい。
光選択吸収膜42においては、全ての半導体層の構成元素が互いに同一であり、また全ての誘電体層の構成元素が互いに同一であり、さらに半導体層の構成元素と誘電体層の酸素以外の構成元素とが互いに同一であることが好ましい。このようなものによれば、例えば、スパッタリング法により形成する場合、金属層を形成するためのターゲットと、半導体層および誘電体層を形成するためのターゲットとの2種のターゲットのみを用いればよく、特に生産性を向上できる。
ここで、半導体層としては、第1の積層部421の半導体層421bおよび第2の積層部422の半導体層422bが挙げられ、誘電体層としては、層間誘電体層、第2の積層部422の誘電体層422a、第3の積層部423の誘電体層423aが挙げられる。
また、光選択吸収膜42の物理膜厚、すなわち全ての層の物理膜厚の合計は、200~300nmが好ましい。光選択吸収膜42の物理膜厚を上記範囲内とすることで、日射エネルギー吸収率を高くでき、かつ400℃以上での放射率を低くできる。また、耐熱性や生産性に優れるものとできる。
このような光選択吸収膜42によれば、例えば、400~900nmの波長域全体にわたって反射率を6%以下とするのが好ましく、3%以下とするのがより好ましい。また、例えば、20000~25000nmの波長域全体にわたって反射率を70%以上とするのが好ましく、80%以上がより好ましく、90%以上が特に好ましい。また、このような光選択吸収膜42によれば、例えば、日射エネルギー吸収率αを0.9以上、放射率εを0.2以下とできるため好ましい。
このような光選択吸収膜42は、スパッタリング法、電子ビーム蒸着法、真空蒸着法等の乾式法により好適に形成できる。これらの中でもスパッタリング法が好ましい。スパッタリング法の場合、生産性の観点から、例えば、金属層を形成するためのターゲットと、半導体層および誘電体層を形成するためのターゲットとの2種のターゲットのみを用いることが好ましい。
ここで、金属層としては、第1の積層部421の金属層421aが挙げられる。
金属層の形成に用いられるターゲットとしては、例えば、Ag、Al、Au、Cr、Cu、Fe、Hf、In、La、Mo、Ni、Pd、Pt、Rh、Sn、Ta、Ti、Zr、もしくはW、またはこれらの元素から選ばれる1種以上の元素を含む合金からなる金属ターゲットが挙げられる。これらの中でも、形成される金属層の耐熱性、化学的安定性、および基材となる集熱管本体41との密着性、またターゲットの入手の容易さ等の観点から、Cr単体またはCr合金からなる金属ターゲットがより好ましく、特にCr単体からなる金属ターゲットが好ましい。金属層は、このような金属ターゲットを用いて、例えばアルゴンガス雰囲気等の非酸化性雰囲気中でスパッタリングを行うことにより形成できる。
半導体層および誘電体層の形成に用いられるターゲットとしては、例えば、SiもしくはGeの単体、またはこれらの元素から選ばれる1種以上の元素を含む化合物からターゲットが挙げられる。これらの中でも、Si単体またはSi化合物からなるターゲットがより好ましく、特にSi単体からなるターゲットが好ましい。
半導体層は、このようなターゲットを用いて、例えばアルゴンガス雰囲気等の非酸化性雰囲気中でスパッタリングを行うことにより形成することが好ましい。また、誘電体層は、このようなターゲットを用いて、例えばアルゴンガスおよび酸素を含む酸化性雰囲気中でスパッタリングを行うことにより形成することが好ましい。
以上、光選択吸収膜、集熱管、および太陽熱発電装置の実施形態について説明したが、太陽熱発電装置としては、必ずしもパラボリックトラフ型集熱器やリニアフレネル型集熱器を用いるものに限定されず、上記した光選択吸収膜を適用するものであれば他の方式の太陽熱発電装置であってもよい。また、光選択吸収膜としては、太陽熱発電装置の集熱管に用いられるものが代表的なものとして挙げられるが、必ずしも太陽熱発電装置の集熱管に限定されず、同様の機能が要求される用途であれば、他の用途に使用されるものであっても構わない。
以下、本発明の実施形態について実施例を参照して具体的に説明する。
(実施例1)
まず、算術平均表面粗さRaが0.4μm程度となるように表面を磨いたステンレススチール(JIS規格 SUS321)基板を準備した。ステンレススチール基板の寸法は、縦50mm×横50mm×厚さ5mmとした。
まず、算術平均表面粗さRaが0.4μm程度となるように表面を磨いたステンレススチール(JIS規格 SUS321)基板を準備した。ステンレススチール基板の寸法は、縦50mm×横50mm×厚さ5mmとした。
このステンレススチール基板上に、スパッタリング法により、図6に示すような積層構造を有する光選択吸収膜42を形成して評価用基板とした。なお、光選択吸収膜42は、ステンレススチール基板側から順に、Cr層(第1の積層部421の金属層421a、物理膜厚106.25nm)/Si層(第1の積層部421の半導体層421b、物理膜厚10.78nm)/Cr層(第1の積層部421の金属層421a、物理膜厚7.49nm)/Si層(第1の積層部421の半導体層421b、物理膜厚12.86nm)/SiO2層(第2の積層部422の誘電体層422a、物理膜厚19.77nm)/Si層(第2の積層部422の半導体層422b、物理膜厚5.75nm)/SiO2層(第3の積層部423の誘電体層423a、物理膜厚79.15nm)となるようにした。
スパッタ装置には、DCマグネトロンスパッタリング装置(日本真空光学社製)を使用した。Cr層の成膜には、市販のCrターゲット(純度:99.99%)を使用し、Si層およびSiO2層の成膜には、市販のSiターゲット(純度:99.999%)を使用した。
Cr層およびSi層の各層の成膜では、成膜雰囲気にアルゴンガスを用いた。スパッタリング圧力は1×10-1Paとし、成膜温度(基板温度)は室温とした。また、放電の安定化のため、電源にはMF電源(AE社製)を用いて、周期的に電力を印加した。このときの周波数は、100kHzとした。
また、SiO2層の成膜では、成膜雰囲気にアルゴンガスと酸素ガスとの混合ガスを用いた。アルゴンガスと酸素ガスとの混合割合は、体積%で70:30とした。スパッタリング圧力は2×10-1Paとし、成膜温度(基板温度)は室温とした。また、放電の安定化のため、電源にはMF電源(AE社製)を用いて、周期的に電力を印加した。このときの周波数は、100kHzとした。
このようにして得られた評価用基板について、日射エネルギー吸収率α、および450℃における放射率εを求めた。日射エネルギー吸収率αは、AM1.5(ASTM G173-03 Reference Spectra)と評価用基板の測定反射率とから求めた。450℃における放射率εは、プランクの公式から求めた。この結果、日射エネルギー吸収率αは0.90(設計値:0.91)、放射率εは0.16(設計値:0.09)であった。
また、図7に、評価用基板の反射率分布および吸収率分布を示す。なお、反射率分布、吸収率分布は、実測値と設計値(シミュレーション結果)とを示す。また、併せて、ASTM G173-03の基準スペクトル、450℃の黒体放射スペクトルを示す。
図7から明らかなように、所定の構成を有する評価用基板によれば、450℃の黒体放射スペクトルの波長域よりも低波長域(可視域および近赤外域)では透過率を低くできるとともに、450℃の黒体放射スペクトルの波長域(赤外域)では透過率を高くでき、また近赤外域から赤外域にかけての透過率の立ち上がりも十分とできることが認められる。また、所定の構成を有する評価用基板によれば、設計値に近い実測値が得られることが認められる。
なお、この評価用基板では、400~900nmの波長域については900nmで反射率が最大の実測値:5.5%(設計値:3.0%)となり、400~900nmの波長域全体における平均反射率は実測値:1.2%(設計値:0.8%)となる。また、2000~20000nmの波長域全体における平均反射率は実測値:91%(設計値:93%)となる。
(実施例2)
実施例1と同様に、ステンレススチール基板上に、スパッタリング法により、図6に示すような積層構造を有する光選択吸収膜42を形成して評価用基板とした。なお、光選択吸収膜42は、ステンレススチール基板側から順に、Cr層(第1の積層部421の金属層421a、物理膜厚104.62nm)/SiO2層(図示しない誘電体層、物理膜厚5.00nm)/Si層(第1の積層部421の半導体層421b、物理膜厚10.42nm)/SiO2層(図示しない誘電体層、物理膜厚5.00nm)/Cr層(第1の積層部421の金属層421a、物理膜厚6.03nm)/SiO2層(図示しない誘電体層、物理膜厚5.00nm)/Si層(第1の積層部421の半導体層421b、物理膜厚8.03nm)/SiO2層(第2の積層部422の誘電体層422a、物理膜厚19.27nm)/Si層(第2の積層部422の半導体層422b、物理膜厚3.97nm)/SiO2層(第3の積層部423の誘電体層423a、物理膜厚73.96nm)となるようにした。
実施例1と同様に、ステンレススチール基板上に、スパッタリング法により、図6に示すような積層構造を有する光選択吸収膜42を形成して評価用基板とした。なお、光選択吸収膜42は、ステンレススチール基板側から順に、Cr層(第1の積層部421の金属層421a、物理膜厚104.62nm)/SiO2層(図示しない誘電体層、物理膜厚5.00nm)/Si層(第1の積層部421の半導体層421b、物理膜厚10.42nm)/SiO2層(図示しない誘電体層、物理膜厚5.00nm)/Cr層(第1の積層部421の金属層421a、物理膜厚6.03nm)/SiO2層(図示しない誘電体層、物理膜厚5.00nm)/Si層(第1の積層部421の半導体層421b、物理膜厚8.03nm)/SiO2層(第2の積層部422の誘電体層422a、物理膜厚19.27nm)/Si層(第2の積層部422の半導体層422b、物理膜厚3.97nm)/SiO2層(第3の積層部423の誘電体層423a、物理膜厚73.96nm)となるようにした。
成膜は、実施例1で使用したスパッタ装置、ターゲットと同様のものを使用した。各層の成膜条件も実施例1に記載と同様に行った。このようにして得られた評価用基板を実施例1と同様に評価した。その結果、日射エネルギー吸収率αは0.90(設計値:0.91)、放射率εは0.11(設計値:0.08)であった。
実施例2の構成を有する評価用基板によっても、450℃の黒体放射スペクトルの波長域よりも低波長域(可視域および近赤外域)では透過率を低くできるとともに、450℃の黒体放射スペクトルの波長域(赤外域)では透過率を高くでき、また近赤外域から赤外域にかけての透過率の立ち上がりも十分とできることが認められた。また、所定の構成を有する評価用基板によれば、設計値に近い実測値が得られることが認められた。
なお、実施例2の評価用基板では、400~900nmの波長域については900nmで反射率が最大の実測値:2.5%(設計値:2.4%)となり、400~900nmの波長域全体における平均反射率は実測値:1.3%(設計値:0.8%)となる。また、2000~20000nmの波長域全体における平均反射率は実測値:92%(設計値:91%)となる。
(比較例1)
光選択吸収膜として、Cr層とSiO2層との交互積層構造からなり、Si層を有しないものを設けた評価用基板とした。すなわち、光選択吸収膜は、ステンレススチール基板側から順に、Cr層(物理膜厚91.79nm)/SiO2層(物理膜厚88.69nm)/Cr層(物理膜厚5.92nm)/SiO2層(物理膜厚77.22nm)となるようにした。なお、光選択吸収膜は、実施例1の光選択吸収膜にできるかぎり近い光学特性が得られるように、Cr層およびSiO2層の各層の厚みを調整した。
光選択吸収膜として、Cr層とSiO2層との交互積層構造からなり、Si層を有しないものを設けた評価用基板とした。すなわち、光選択吸収膜は、ステンレススチール基板側から順に、Cr層(物理膜厚91.79nm)/SiO2層(物理膜厚88.69nm)/Cr層(物理膜厚5.92nm)/SiO2層(物理膜厚77.22nm)となるようにした。なお、光選択吸収膜は、実施例1の光選択吸収膜にできるかぎり近い光学特性が得られるように、Cr層およびSiO2層の各層の厚みを調整した。
図8に、比較例1の評価用基板の反射率分布を示す。なお、図8には、比較のために実施例1の評価用基板の反射率分布を併せて示す。図8から明らかなように、Si層を有しない比較例1の評価用基板の場合、Si層を有する実施例1の評価用基板と比べて、可視域での反射率が一部で高くなる一方、赤外域での反射率は低くなることがわかる。なお、比較例1の評価用基板については、400~900nmの波長域では440nmで反射率が最大の3.3%となる。
(比較例2)
光選択吸収膜のCr層とSi層との繰り返し構造の数(第1の積層部における繰り返し構造の数に相当)を1とした以外は基本的に実施例1の評価用基板と同様の積層構造を有する評価用基板とした。すなわち、光選択吸収膜は、ステンレススチール基板側から順に、Cr層(物理膜厚128.35nm)/Si層(物理膜厚17.14nm)/SiO2層(物理膜厚22.61nm)/Si層(物理膜厚6.41nm)/SiO2層(物理膜厚82.19nm)となるようにした。なお、光選択吸収膜は、実施例1の光選択吸収膜にできるかぎり近い光学特性が得られるように、Cr層、Si層、およびSiO2層の各層の厚みを調整した。
光選択吸収膜のCr層とSi層との繰り返し構造の数(第1の積層部における繰り返し構造の数に相当)を1とした以外は基本的に実施例1の評価用基板と同様の積層構造を有する評価用基板とした。すなわち、光選択吸収膜は、ステンレススチール基板側から順に、Cr層(物理膜厚128.35nm)/Si層(物理膜厚17.14nm)/SiO2層(物理膜厚22.61nm)/Si層(物理膜厚6.41nm)/SiO2層(物理膜厚82.19nm)となるようにした。なお、光選択吸収膜は、実施例1の光選択吸収膜にできるかぎり近い光学特性が得られるように、Cr層、Si層、およびSiO2層の各層の厚みを調整した。
図9に、比較例2の評価用基板の反射率分布を示す。なお、図9には、比較のために実施例1の評価用基板の反射率分布を併せて示す。図9から明らかなように、Cr層とSi層との繰り返し構造の数を1とした比較例2の評価用基板の場合、繰り返し構造の数を2とした実施例1の評価用基板と比べて、可視域での反射率が全体的に高くなることがわかる。なお、比較例2の評価用基板については、400~900nmの波長域では440nmで反射率が最大の5.9%となる。
(比較例3)
SiO2層とSi層との繰り返し構造(第2の積層部に相当)を設けないこと以外は基本的に実施例1の評価用基板と同様の積層構造を有する評価用基板とした。すなわち、光選択吸収膜は、ステンレススチール基板側から順に、Cr層(物理膜厚143.32nm)/Si層(物理膜厚17.5nm)/Cr層(物理膜厚9.16nm)/Si層(物理膜厚14.34nm)/SiO2層(物理膜厚81.42nm)となるようにした。なお、光選択吸収膜は、実施例1の光選択吸収膜にできるかぎり近い光学特性が得られるように、Cr層、Si層、およびSiO2層の各層の厚みを調整した。
SiO2層とSi層との繰り返し構造(第2の積層部に相当)を設けないこと以外は基本的に実施例1の評価用基板と同様の積層構造を有する評価用基板とした。すなわち、光選択吸収膜は、ステンレススチール基板側から順に、Cr層(物理膜厚143.32nm)/Si層(物理膜厚17.5nm)/Cr層(物理膜厚9.16nm)/Si層(物理膜厚14.34nm)/SiO2層(物理膜厚81.42nm)となるようにした。なお、光選択吸収膜は、実施例1の光選択吸収膜にできるかぎり近い光学特性が得られるように、Cr層、Si層、およびSiO2層の各層の厚みを調整した。
図10に、比較例3の評価用基板の反射率分布を示す。なお、図10には、比較のために実施例1の評価用基板の反射率分布を併せて示す。図10から明らかなように、SiO2層とSi層との繰り返し構造を設けなかった比較例3の評価用基板の場合、繰り返し構造を設けた実施例1の評価用基板と比べて、可視域での反射率が大幅に高くなることがわかる。なお、比較例3の評価用基板については、400~900nmの波長域では900nmで反射率が最大の13.0%となる。
以上、本発明を詳細に説明したが、これらは例示に過ぎず、本発明は、さらに別の態様でも実施でき、その主旨を逸脱しない範囲で種々変更を加えうるものである。
本出願は、2012年3月23日付けで出願された日本特許出願(特願2012-068037)に基づいており、その全体が引用により援用される。
本出願は、2012年3月23日付けで出願された日本特許出願(特願2012-068037)に基づいており、その全体が引用により援用される。
1…パラボリックトラフ型集熱器、2…パラボリック反射鏡、3…反射鏡用支持体、4…集熱管、6…リニアフレネル型集熱器、7…第1の反射鏡、8…レシーバー、9…レシーバー用支持体、41…集熱管本体、42…光選択吸収膜、43…ガラス管、44…固定金具、81…第2の反射鏡、82…ケース部、83…ガラス板、421…第1の積層部、421a…第1の積層部の金属層、421b…第1の積層部の半導体層、422…第2の積層部、422a…第2の積層部の誘電体層、422b…第2の積層部の半導体層、423…第3の積層部、423a…第3の積層部の誘電体層
Claims (7)
- 基材上に形成される光選択吸収膜であって、
前記基材上に積層され、前記基材側から順に金属層と半導体層との繰り返し構造を2以上有する第1の積層部と、
前記第1の積層部上に積層され、誘電体層と半導体層との繰り返し構造を1以上有する第2の積層部と、
前記第2の積層部上に積層された誘電体層からなる第3の積層部と
を有することを特徴とする光選択吸収膜。 - 前記第1の積層部は、前記金属層のうち前記基材上に最初に積層される金属層の物理膜厚が60~200nmの範囲内、その他の金属層の物理膜厚が互いに同一または異なって5~10nmの範囲内、前記半導体層の物理膜厚が互いに同一または異なって5~20nmの範囲内、
前記第2の積層部は、前記誘電体層の物理膜厚が互いに同一または異なって10~30nmの範囲内、前記半導体層の物理膜厚が互いに同一または異なって2~9nmの範囲内、
前記第3の積層部は、前記誘電体層の物理膜厚が40~150nmの範囲内
にある請求項1記載の光選択吸収膜。 - 前記光選択吸収膜の全体の物理膜厚は200~300nmである請求項1または2記載の光選択吸収膜。
- 前記第1の積層部の前記金属層は、互いに同一または異なって、Ag、Al、Au、Cu、Fe、Hf、In、La、Mo、Ni、Pd、Pt、Rh、Sn、Ta、Ti、Zr、もしくはW、またはこれらの元素から選ばれる1種以上の元素を含む合金からなり、
前記第1の積層部の前記半導体層および前記第2の積層部の前記半導体層は、互いに同一または異なって、SiもしくはGeの単体、またはこれらの元素から選ばれる1種以上の元素を含む化合物からなり、
前記第2の積層部の前記誘電体層および前記第3の積層部の前記誘電体層は、互いに同一または異なって、SiもしくはGeの酸化物、またはSiおよびGeから選ばれる1種以上の元素を含む複合酸化物からなる
請求項1~3のいずれか1項記載の光選択吸収膜。 - 前記光選択吸収膜における全ての半導体層の構成元素が互いに同一であり、前記光選択吸収膜における全ての誘電体層の構成元素が互いに同一であり、さらに前記半導体層の構成元素と前記誘電体層の酸素以外の構成元素とが互いに同一である請求項4記載の光選択吸収膜。
- 集熱管本体と、前記集熱管本体の外面に形成される光選択吸収膜とを有する集熱管であって、
前記光選択吸収膜が請求項1~5のいずれか1項記載の光選択吸収膜であることを特徴とする集熱管。 - 集熱管と、前記集熱管に太陽光を集光する集光手段とを有する集熱器を備える太陽熱発電装置であって、
前記集熱管が請求項6記載の集熱管であることを特徴とする太陽熱発電装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012068037A JP2015111011A (ja) | 2012-03-23 | 2012-03-23 | 光選択吸収膜、集熱管、および太陽熱発電装置 |
JP2012-068037 | 2012-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013141180A1 true WO2013141180A1 (ja) | 2013-09-26 |
Family
ID=49222639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/057557 WO2013141180A1 (ja) | 2012-03-23 | 2013-03-15 | 光選択吸収膜、集熱管、および太陽熱発電装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015111011A (ja) |
WO (1) | WO2013141180A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014087759A1 (ja) * | 2012-12-07 | 2014-06-12 | 株式会社豊田自動織機 | 光学選択膜 |
WO2014181586A1 (ja) * | 2013-05-07 | 2014-11-13 | 株式会社豊田自動織機 | 太陽光-熱変換部材、太陽光-熱変換積層体、太陽光-熱変換装置及び太陽熱発電装置 |
CN106032941A (zh) * | 2015-03-17 | 2016-10-19 | 益科博能源科技(上海)有限公司 | 真空集热器 |
WO2017002493A1 (ja) * | 2015-06-30 | 2017-01-05 | 株式会社豊田自動織機 | 太陽熱集熱管及び太陽熱発電装置 |
EP3410032A4 (en) * | 2016-01-29 | 2019-07-10 | Kabushiki Kaisha Toyota Jidoshokki | SOLAR HEAT COLLECTION TUBE |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101965619B1 (ko) * | 2017-06-07 | 2019-04-04 | 한국과학기술연구원 | 흡수체를 이용한 태양열 보일러 |
USD902234S1 (en) | 2019-02-13 | 2020-11-17 | Sonos, Inc. | Display screen or portion thereof with graphical user interface for podcasts |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5989956A (ja) * | 1982-10-08 | 1984-05-24 | ユニバ−シテイ・オブ・シドニ− | 太陽選択表面被覆、太陽エネルギ収集器の吸収体、及び収集器素子 |
US5523132A (en) * | 1991-07-19 | 1996-06-04 | The University Of Sydney | Thin film solar selective surface coating |
JP2006214654A (ja) * | 2005-02-03 | 2006-08-17 | Nippon Electric Glass Co Ltd | 太陽熱集熱板、選択吸収膜及び太陽熱温水器 |
JP2008057823A (ja) * | 2006-08-30 | 2008-03-13 | Matsushita Electric Ind Co Ltd | 太陽熱集熱器およびそれを用いた太陽熱利用装置 |
JP2009198170A (ja) * | 2008-02-20 | 2009-09-03 | Schott Ag | 放射線選択的吸収コーティング、吸収チューブ、及び吸収チューブの製造方法 |
JP2010271033A (ja) * | 2009-05-20 | 2010-12-02 | Schott Solar Ag | 放射線選択性吸収体コーティング、及び放射線選択性吸収体コーティングを処理した吸収体管 |
-
2012
- 2012-03-23 JP JP2012068037A patent/JP2015111011A/ja active Pending
-
2013
- 2013-03-15 WO PCT/JP2013/057557 patent/WO2013141180A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5989956A (ja) * | 1982-10-08 | 1984-05-24 | ユニバ−シテイ・オブ・シドニ− | 太陽選択表面被覆、太陽エネルギ収集器の吸収体、及び収集器素子 |
US5523132A (en) * | 1991-07-19 | 1996-06-04 | The University Of Sydney | Thin film solar selective surface coating |
JP2006214654A (ja) * | 2005-02-03 | 2006-08-17 | Nippon Electric Glass Co Ltd | 太陽熱集熱板、選択吸収膜及び太陽熱温水器 |
JP2008057823A (ja) * | 2006-08-30 | 2008-03-13 | Matsushita Electric Ind Co Ltd | 太陽熱集熱器およびそれを用いた太陽熱利用装置 |
JP2009198170A (ja) * | 2008-02-20 | 2009-09-03 | Schott Ag | 放射線選択的吸収コーティング、吸収チューブ、及び吸収チューブの製造方法 |
JP2010271033A (ja) * | 2009-05-20 | 2010-12-02 | Schott Solar Ag | 放射線選択性吸収体コーティング、及び放射線選択性吸収体コーティングを処理した吸収体管 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014087759A1 (ja) * | 2012-12-07 | 2014-06-12 | 株式会社豊田自動織機 | 光学選択膜 |
JP2014114996A (ja) * | 2012-12-07 | 2014-06-26 | Toyota Industries Corp | 光学選択膜 |
US9970684B2 (en) | 2012-12-07 | 2018-05-15 | Kabushiki Kaisha Toyota Jidoshokki | Optical selective film |
WO2014181586A1 (ja) * | 2013-05-07 | 2014-11-13 | 株式会社豊田自動織機 | 太陽光-熱変換部材、太陽光-熱変換積層体、太陽光-熱変換装置及び太陽熱発電装置 |
CN106032941A (zh) * | 2015-03-17 | 2016-10-19 | 益科博能源科技(上海)有限公司 | 真空集热器 |
WO2017002493A1 (ja) * | 2015-06-30 | 2017-01-05 | 株式会社豊田自動織機 | 太陽熱集熱管及び太陽熱発電装置 |
JP2017015306A (ja) * | 2015-06-30 | 2017-01-19 | 株式会社豊田自動織機 | 太陽熱集熱管及び太陽熱発電装置 |
CN107709893A (zh) * | 2015-06-30 | 2018-02-16 | 株式会社丰田自动织机 | 太阳能集热管以及太阳能发电装置 |
EP3318819A4 (en) * | 2015-06-30 | 2018-07-04 | Kabushiki Kaisha Toyota Jidoshokki | Solar heat collecting tube and solar thermal power generating device |
US10533774B2 (en) | 2015-06-30 | 2020-01-14 | Kabushiki Kaisha Toyota Jidoshokki | Solar heat collection tube and solar heat power generation device |
EP3410032A4 (en) * | 2016-01-29 | 2019-07-10 | Kabushiki Kaisha Toyota Jidoshokki | SOLAR HEAT COLLECTION TUBE |
US11009264B2 (en) | 2016-01-29 | 2021-05-18 | Kabushiki Kaisha Toyota Jidoshokki | Solar heat collector tube |
Also Published As
Publication number | Publication date |
---|---|
JP2015111011A (ja) | 2015-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013141180A1 (ja) | 光選択吸収膜、集熱管、および太陽熱発電装置 | |
CN101900446B (zh) | 选择性辐射吸收涂层以及具有选择性辐射吸收涂层的吸收管 | |
JP5229075B2 (ja) | 広帯域反射鏡 | |
CN101514853B (zh) | 选择性吸收辐射涂层、吸收管及其制造方法 | |
JP2015166637A (ja) | 光選択吸収膜、集熱管および太陽熱発電装置 | |
CN103946645B (zh) | 太阳光-热转换构件、太阳光-热转换装置和太阳热发电装置 | |
ITTO20070855A1 (it) | Rivestimento assorbente selettivo alla radiazione, tubo assorbitore e procedimento per la sua fabbricazione | |
JPWO2012056806A1 (ja) | 発電装置、熱発電方法および太陽光発電方法 | |
PT2312234T (pt) | Revestimento absorvedor de radiação seletiva e tubo absorvedor com revestimento absorvedor de radiação seletiva | |
EP1759031B1 (en) | Spectrally selective surface coating of the receiver tube of a solar concentrator, and method for the manufacture thereof | |
EP2913604B1 (en) | Use of heat-to-light conversion member | |
JP6193688B2 (ja) | 太陽光−熱変換装置及び太陽熱発電装置 | |
JP5896889B2 (ja) | 光学選択膜 | |
JP6513957B2 (ja) | 太陽熱集熱管、太陽光−熱変換装置及び太陽熱発電装置 | |
EP2677249A1 (en) | Heat receiver tube with a diffusion barrier layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13763494 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13763494 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |