Nothing Special   »   [go: up one dir, main page]

WO2013008344A1 - Plasma processing apparatus - Google Patents

Plasma processing apparatus Download PDF

Info

Publication number
WO2013008344A1
WO2013008344A1 PCT/JP2011/071657 JP2011071657W WO2013008344A1 WO 2013008344 A1 WO2013008344 A1 WO 2013008344A1 JP 2011071657 W JP2011071657 W JP 2011071657W WO 2013008344 A1 WO2013008344 A1 WO 2013008344A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
processing apparatus
cathode electrode
plasma processing
plasma
Prior art date
Application number
PCT/JP2011/071657
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 正康
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2013523764A priority Critical patent/JP5804059B2/en
Priority to CN201180070316.2A priority patent/CN103493602B/en
Priority to KR1020137028584A priority patent/KR101485140B1/en
Publication of WO2013008344A1 publication Critical patent/WO2013008344A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges

Definitions

  • the present invention relates to a plasma processing apparatus for generating a plasma to perform substrate processing.
  • a plasma processing apparatus is used in a film forming process, an etching process, an ashing process, and the like because of high-precision process control.
  • a plasma processing apparatus for example, a plasma chemical vapor deposition (CVD) apparatus, a plasma etching apparatus, a plasma ashing apparatus, and the like are known.
  • CVD plasma chemical vapor deposition
  • a plasma etching apparatus a plasma ashing apparatus, and the like are known.
  • a plasma CVD apparatus a raw material gas is turned into plasma by high-frequency power or the like, and a thin film is formed on a substrate by a chemical reaction.
  • a processing apparatus has been proposed (see, for example, Patent Document 1).
  • an object of the present invention is to provide a plasma processing apparatus capable of stably generating uniform and high-density plasma on both surfaces of a cathode electrode.
  • an anode electrode on which a processing substrate is mounted a cathode electrode that is disposed so as to face the anode electrode, and has a through-hole that is provided with an opening on the facing surface, the anode electrode and the cathode
  • a gas supply device for introducing a process gas between the electrodes; an AC power supply for supplying AC power between the anode electrode and the cathode electrode to bring the process gas into a plasma state between the anode electrode and the cathode electrode; and the anode electrode and the cathode electrode
  • a plasma processing apparatus including a chamber for storing the gas, an exhaust pump for evacuating the chamber, an exhaust speed controller for adjusting the exhaust speed, and a pressure measuring device for measuring the pressure inside the chamber.
  • the present invention it is possible to provide a plasma processing apparatus capable of stably generating uniform and high-density plasma on both sides of the cathode electrode.
  • the plasma processing apparatus 10 includes an anode electrode 11 on which a processing substrate is mounted, and a through-hole 120 in which an opening is provided on a surface facing the anode electrode 11.
  • a cathode electrode 12 having a gas source, a gas supply device 13 for introducing a process gas 100 between the anode electrode 11 and the cathode electrode 12, and an AC power supply between the anode electrode 11 and the cathode electrode 12, 12 and an AC power supply 14 for bringing the process gas 100 into a plasma state.
  • the anode electrode 11 and the cathode electrode 12 are flat plate types, and the plasma processing apparatus 10 utilizes capacitively coupled plasma. It is desirable that the distance between the capacitive coupling type electrodes be approximately uniform.
  • the cathode electrode 12 provided with an opening on the surface functions as a hollow cathode electrode for generating a hollow cathode discharge.
  • hollow cathode discharge will be described.
  • ionization is maintained by ionizing gas molecules in a chain manner starting from secondary electrons emitted by ions incident on the surface of the cathode electrode 12.
  • plasma generation on the surface of the cathode electrode 12 excluding the inside of the through hole 120 corresponds to this.
  • the plasma generation inside the through hole 120 is a hollow cathode discharge, and in the hollow cathode discharge, electrons are confined in the through hole 120 and have kinetic energy in the through hole 120 of the cathode electrode 12, thereby having high density. An electron space is formed.
  • debye blocking is caused by the cathode drop generated on the side wall of the through hole 120 provided in the cathode electrode 12, and electrons do not enter the side wall of the through hole 120 and disappear. That is, a high-density electron space is formed inside the through-hole 120 by repeating repulsion called “Pendulum effect” in which the electrons are repelled from the opposing wall surface inside the through-hole 120. Electrons that collide with gas molecules repeat inelastic collisions to maintain and promote ionization. These electrons are scattered in various directions inside the through hole 120 and repeat ionization amplification and cumulative ionization.
  • FIG. 2 is an enlarged view of the region A shown in FIG.
  • a glow discharge region 101 is formed between the anode electrode 11 and the cathode electrode 12, and a hollow discharge region 102 is formed inside the through hole 120 formed in the cathode electrode 12.
  • a sheath region 200 is formed between the anode electrode 11 and the cathode electrode 12 and the glow discharge region 101, respectively.
  • a sheath region 200 is formed between the cathode electrode 12 and the hollow discharge region 102 inside the through hole 120.
  • the distance between the anode electrode 11 and the cathode electrode 12 is a distance S.
  • the ions 50 that have entered the through hole 120 are accelerated by the sheath region 200 and collide with the inner wall surface of the cathode electrode 12.
  • the secondary electrons 60 radiated from the wall surface are accelerated in a direction perpendicular to the wall surface by the sheath electric field.
  • the electrons 61 that have reached the vicinity of the opposite wall surface are repelled by the opposite sheath electric field and pushed back into the plasma.
  • This is called the pendulum motion effect, and the establishment of the presence of electrons in the through-hole 120 increases dramatically.
  • the inside of the through hole 120 is maintained at a high electron density, and a plasma structure different from the glow discharge formed between the parallel plates is obtained.
  • the gas molecules that have entered the high electron density region repeat ionization and recombination, and are observed as high-luminance emission during recombination.
  • the precursor 80 generated in the high-density plasma is a radical species and diffuses to the outside of the through-hole 120 regardless of the electrode potential, and forms a thin film on the substrate surface disposed on the anode electrode 11, for example.
  • the diameter of the through-hole 120 to obtain a uniform and high electron density efficiently is considered from the pressure, temperature, process gas type and the mean free path of the electrons.
  • the diameter of the through hole 120 will be described later.
  • the cathode electrode 12 is preferably made of a carbon material that is inexpensive, easy to process, and easy to maintain such as cleaning.
  • the cathode electrode 12 made of a carbon material can be cleaned by hydrofluoric acid treatment.
  • the use of the carbon material does not cause deformation due to high temperature in the plasma treatment process.
  • an aluminum alloy or the like on which a metal oxide film is easily formed is a material suitable for a hollow cathode electrode.
  • carbon containing carbon fiber, stainless alloy, copper, copper alloy, glass, ceramics, and the like can be used for the cathode electrode 12.
  • the above material may be coated by alumite treatment, plating, or thermal spraying.
  • a carbon material is also preferably used for the anode electrode 11. Further, carbon containing carbon fiber, aluminum alloy, stainless alloy, copper, copper alloy, glass, ceramics, and the like can be used for the anode electrode 11. Alternatively, these materials may be coated by alumite treatment, plating, or thermal spraying.
  • a large number of through holes 120 that generate hollow cathode discharge are formed at a constant density on the surface of the cathode electrode 12, thereby generating a uniform high electron density electric field on both surfaces of the cathode electrode 12. Can be easily achieved. This is because the difference in density of the plasma density on both sides of the cathode electrode 12 is automatically corrected due to the bipolar diffusion property of the plasma through the through hole 120.
  • This comparative example is an example employing a shower electrode to which the process gas 100 is supplied from the inside of the cathode electrode 12A.
  • the inside of the recess 601 is a space where high-density plasma is generated by hollow cathode discharge.
  • the process gas 100 is efficiently passed through the high-density plasma space by ejecting the process gas 100 from a fine gas ejection port 602 formed on the bottom surface of the recess 601.
  • the process gas is stably flowed in the vicinity of the through-hole 120 where high-density plasma is generated by hollow cathode discharge. For this reason, the uniformity of the discharge is maintained on the entire surfaces of both surfaces of the cathode electrode 12.
  • the through-hole 120 is formed so that the openings are arranged closest to the surface of the cathode electrode 12 as in a hexagonal close-packed arrangement. Thereby, uniformly high-density plasma is formed on the surface of the cathode electrode 12.
  • FIG. 7 shows an example of the surface of the cathode electrode 12 in which the opening of the through hole 120 is formed.
  • the center-to-center distance between the through holes 120 adjacent in the vertical direction is 3 mm
  • the left and right between the through holes 120 adjacent in the diagonal direction are Set the distance in the direction to 5.2 mm.
  • the gas supply nozzle 130 that ejects the process gas 100 of the gas supply device 13 faces the bottom surface of the cathode electrode 12, and when there are a plurality of gas supply nozzles 130, A gas supply nozzle 130 is arranged along the bottom surface of the electrode 12. By directing the gas supply nozzle 130 toward the bottom surface of the cathode electrode 12, the process gas 100 can be supplied to both surfaces of the cathode electrode 12 almost evenly.
  • the process gas 100 is a gas in which a plurality of types of gases are mixed
  • the process gas 100 in which all the gases are mixed may be supplied from the gas supply nozzle 130, or the gas supply nozzle 130 that is different for each type of gas.
  • the gas may be supplied from each.
  • FIG. 9 shows details of the discharge state in region A of FIG. Electrons repel the cathode electrode 12 without being able to penetrate inside the Debye length ⁇ d.
  • FIG. 11 is a table showing the conditions of the pressure P at which hollow cathode discharge occurs and the diameter d of the through hole 120 when the gas type is ammonia and the temperature is 673K.
  • the ratio of the diameter d of the through hole 120 to the electron mean free path Y is 2.38, and the number of collisions is 3.7.
  • the length c decreases and it becomes difficult to secure a plasma generation space.
  • FIG. 12 shows the relationship between the electron mean free path Y and the pressure P when the temperature is 673K.
  • the circles indicate the mean free process in ammonia (NH 3 ) gas
  • the triangles indicate the mean free process in monosilane (SiH 4 ) gas.
  • FIG. 13 shows an example of the calculated value of the Debye length ⁇ d.
  • the Debye length ⁇ d was calculated using the electron temperature and electron density of a general high-density glow discharge plasma.
  • Equation (4) T is the ambient temperature (K), P is the pressure (Pa), and D is the diameter (m) of the gas molecules.
  • the diameter d of the through hole 120 can be determined by setting the optimum length c as described above. That is, it is possible to prepare the cathode electrode 12 that is designed specifically for the hollow cathode discharge to be generated most efficiently by a predetermined pressure, ambient temperature, and gas type.
  • the mean free path of electrons is determined by the atmospheric temperature and pressure, and the size of gas molecules.
  • the inventors conducted experiments using the cathode electrode 12 having a large number of through-holes 120 and using a mixed gas of monosilane (SiH 4 ) gas and ammonia (NH 3 ) gas as the process gas 100.
  • the atmospheric temperature T is set to 350 ° C. to 450 ° C.
  • the “multi-hollow discharge” is a discharge generated on the surface of the cathode electrode 12 by combining the hollow cathode discharges generated in the respective through holes 120.
  • the diameter d of the through hole 120 was estimated based on the mean free path of electrons in ammonia gas having a large gas flow rate ratio. Specifically, when a mixed gas of monosilane gas and ammonia gas is used, the ambient temperature T is 400 ° C., and the pressure P is 67 Pa, the diameter d of the through hole 120 is set to 5 mm, and the uniform multi-hollow on both surfaces of the cathode electrode 12 is used. Discharge is obtained.
  • CVD process gas is usually introduced by mixing gas species such as monosilane, hydrogen, nitrogen, etc. However, in examining the diameter of the through-hole 120, focusing on the gas type with the longest mean free path in the mixed gas, The optimum value of the diameter of the hole 120 was derived.
  • the diameter d of the through hole 120 is set to about 3.8 mm to 8.0 mm. These dimensions are easier than forming the 0.3 mm to 0.4 mm holes required to manufacture the shower electrode. For this reason, the manufacturing cost of the plasma processing apparatus 10 can be reduced.
  • the through hole 120 has a circular cross section.
  • the cross-section of the through-hole 120 may be a polygon having an approximate diameter of about 3.8 mm to 8.0 mm.
  • a large number of through holes 120 having the same cross-sectional shape along the long axis direction may be formed in the cathode electrode 12, or through holes having different cross-sectional sizes or shapes along the long axis direction may be formed. 120 may be mixed and formed. By mixing the through holes 120 having different diameters d, multi-hollow discharges can be obtained under a plurality of conditions with different pressures, temperatures, gas types, and the like.
  • the length of the through-hole 120 in the major axis direction, that is, the thickness t of the cathode electrode 12 is set to about 3 mm to 10 mm, preferably about 5 mm so that hollow cathode discharge is likely to occur.
  • the distance S between the anode electrode 11 and the cathode electrode 12 is preferably about 10 mm to 40 mm. Thereby, plasma can be generated uniformly between the anode electrode 11 and the cathode electrode 12.
  • the process gas 100 is only discharged uniformly from the concave portion 601 where the high-density plasma is generated by the hollow cathode discharge like a shower, and then the entire surface of the cathode electrode 12A. Plasma uniformity can be obtained.
  • the process gas 100 is introduced without passing through the cathode electrode 12. Since the diameter d of the through hole 120 is considerably larger than the diameter of the hole necessary for the shower electrode, there is no concern about clogging, and maintenance is easy.
  • the plasma processing apparatus 10 it is preferable to introduce the process gas 100 between the anode electrode 11 and the cathode electrode 12 from below to above.
  • the process gas 100 By introducing the process gas 100 from below, gas molecules and radical particles having a light specific gravity that have been turned into plasma naturally flow upward on the surface of the cathode electrode 12 as an upward flow. Therefore, the process gas is uniformly supplied to the surface of the cathode electrode 12 without using a complicated structure such as a shower electrode.
  • the space in which high-density plasma is generated by the hollow cathode discharge is the through-hole 120, the continuity of the plasma is secured on the front and back of the cathode electrode 12, and the density of the plasma density is automatically corrected mutually. . Therefore, the plasma processing apparatus 10 can generate a uniform high-density plasma on both surfaces of the cathode electrode 12.
  • the surface of the cathode electrode 12 is smooth so that the process gas 100 flows smoothly, and the surface roughness is finished to 3 ⁇ m or less except for the inner surface of the through hole 120.
  • the surface of the cathode electrode 12 is flattened to such an extent that the finish symbol is represented by “ ⁇ ”. That is, it is preferable that the maximum height Ry is 6.3S, the ten-point average roughness Rz is 6.3Z, and the arithmetic average roughness Ra is smaller than 1.6a.
  • the plasma processing apparatus 10 according to the first embodiment of the present invention, by forming the through-hole 120 in the cathode electrode 12, uniform and high-density plasma on both surfaces of the cathode electrode 12. Can be stably generated. Furthermore, the manufacturing period of the plasma processing apparatus 10 is shorter and the manufacturing yield is improved as compared with an apparatus using a shower electrode that requires processing of several thousand or more micro holes. For this reason, the increase in the manufacturing cost of the plasma processing apparatus 10 is suppressed.
  • the plasma processing apparatus 10 it is possible to generate a uniform high-density plasma in a large area regardless of the frequency of the AC power supplied from the AC power supply 14. Even if the frequency of the AC power supplied by the AC power supply 14 is set to, for example, about 60 Hz to 27 MHz, uniform and high-density plasma can be generated. That is, there is no need to use an AC power supply that supplies expensive VHF band AC power.
  • the plasma density can be improved and In order to eliminate the non-uniformity of the plasma density due to waves, it was necessary to use a VHF band frequency such as 27 MHz of 13.56 MHz or higher.
  • AC power output from the AC power source 14 may be supplied between the anode electrode 11 and the cathode electrode 12 via a pulse generator.
  • the output of the pulse generator is supplied to the cathode electrode 12, and the anode electrode 11 is grounded.
  • plasma is stably formed. This is because by providing a stop period for the supply of AC power, the temperature of the electrons is lowered and the stability of the discharge is improved.
  • the AC power is supplied between the anode electrode 11 and the cathode electrode 12 so that the ON time is 600 ⁇ s and the OFF time when the AC power supply is stopped is 50 ⁇ s, and the ON time and the OFF time are alternately repeated. Supplied.
  • the on-time is preferably set in the range of about 100 ⁇ s to 1000 ⁇ s, and the off-time is preferably set in the range of about 10 ⁇ s to 100 ⁇ s.
  • the supply of AC power between the anode electrode 11 and the cathode electrode 12 is pulse-controlled and the supply of AC power is periodically turned on / off, thereby suppressing the occurrence of abnormal discharge.
  • FIG. 14 shows an example of the plasma processing apparatus 10 when there is one anode electrode 11.
  • the cathode back plate 121 is disposed at a position of a distance k from the surface of the cathode electrode 12 where the plasma is not excited.
  • the distance k is set so that k ⁇ b (b: electron mean free path) so that plasma is not generated between the cathode electrode 12 and the cathode back plate 121.
  • AC power is supplied from the AC power source 14 to the cathode electrode 12 and the cathode back plate 121.
  • a process gas 100 is introduced between the anode electrode 11 and the cathode electrode 12 and between the cathode electrode 12 and the cathode back plate 121.
  • FIG. 15 An example in which the plasma processing apparatus 10 has a plurality of cathode electrodes 12 is shown in FIG.
  • the anode electrodes 11 and the cathode electrodes 12 are alternately arranged, and the anode electrode 11 is arranged on the outermost side. For this reason, the number of anode electrodes 11 is one more than that of the cathode electrodes 12.
  • FIG. 15 shows an example in which the number of cathode electrodes 12 is three, it goes without saying that the number of cathode electrodes 12 is not limited to three.
  • the number of plasma regions formed in the anode electrode 11 and the cathode electrode 12 can be increased. Thereby, the processing capability of the plasma processing apparatus 10 improves.
  • the plasma processing apparatus 10 shown in FIG. 1 can be applied to a plasma chemical vapor deposition (CVD) apparatus, a plasma etching apparatus, a plasma ashing apparatus, and the like.
  • CVD plasma chemical vapor deposition
  • FIG. 16 shows an example in which the plasma processing apparatus 10 shown in FIG. 1 is used in a plasma CVD apparatus.
  • the anode electrode 11 and the cathode electrode 12 are disposed in the chamber 20, and the substrate 1 to be deposited is disposed on the anode electrode 11.
  • the anode electrode 11 is grounded.
  • a gas containing a raw material gas for film formation is used as the process gas 100, and the process gas 100 is introduced from the gas supply device 13 into the chamber 20 through the gas supply nozzle 130.
  • the pressure in the chamber 20 is measured by a pressure measuring device 16 such as a capacitance gauge, and the pressure in the chamber 20 is adjusted by an exhaust speed controller (APC) 15 that is an exhaust pump that evacuates the chamber 20 and adjusts the exhaust speed.
  • APC exhaust speed controller
  • a desired thin film mainly composed of the raw material contained in the raw material gas is formed on the exposed surface of the substrate 1.
  • the temperature of the substrate 1 during the film forming process may be set by the substrate heater 21 shown in FIG.
  • the film formation speed can be increased and the film quality can be improved.
  • the plasma processing apparatus 10 shown in FIG. 1 uniform high-density plasma is generated on the surface of the cathode electrode 12. Therefore, according to the plasma CVD apparatus shown in FIG. 16, the source gas is efficiently decomposed, and a thin film is uniformly formed on the substrate 1 in a large area at a high speed. Therefore, the film thickness and film quality uniformity of the formed film are improved, and the film forming speed is improved.
  • a desired thin film can be formed by appropriately selecting a source gas by a plasma CVD apparatus employing the plasma processing apparatus 10.
  • a silicon semiconductor thin film, a silicon nitride thin film, a silicon oxide thin film, a silicon oxynitride thin film, a carbon thin film, or the like can be formed on the substrate 1.
  • a silicon nitride (SiN) film is formed on the substrate 1 using a mixed gas of ammonia (NH 3 ) gas and monosilane (SiH 4 ) gas.
  • a silicon oxide (SiO x) film is formed on the substrate 1 using a mixed gas of monosilane (SiH 4 ) gas and N 2 O gas, or TEOS gas and oxygen gas.
  • FIG. 17 shows an example in which the AC power supply 17 is attached to the anode electrode 11 separately from the AC power supply 14 attached to the cathode electrode 12.
  • the frequency of the AC power supplied from the AC power supply 17 may be equal to or lower than the frequency of the AC power supplied from the AC power supply 14.
  • the frequency of the AC power supplied from the AC power supply 17 is set to about 60 Hz to 27 MHz.
  • the anode electrode 11 can be cleaned by supplying AC power only from the AC power supply 17 without supplying AC power from the AC power supply 14. Specifically, a sputtering gas is introduced into the chamber 20, and the anode electrode 11 is cleaned by sputter etching while supplying AC power from the AC power supply 17.
  • the plasma processing apparatus 10 shown in FIG. 18 in which the AC power supplies 14 and 17 are respectively attached to the cathode electrode 12 and the anode electrode 11 is used for the plasma CVD apparatus. May be.
  • the distance k from the surface of the cathode electrode 12 that does not excite the plasma to the cathode back plate 121 is set so that k ⁇ b.
  • the plasma processing apparatus 10 having the plurality of cathode electrodes 12 as shown in FIG. 15 to the plasma CVD apparatus, the number of substrates to be formed at a time increases, and the film forming processing capability is improved. Can do.
  • the example in which the plasma processing apparatus 10 shown in FIG. 1 is applied to a plasma CVD apparatus has been described above.
  • the plasma processing apparatus 10 shown in FIG. 1 can be applied to a plasma etching apparatus or a plasma ashing apparatus by changing the gas type of the process gas 100 with the configuration shown in FIGS.
  • a plasma etching apparatus that etches and removes a film formed on the substrate 1 can be realized by introducing a plasma etching gas as the process gas 100 into the chamber 20.
  • the plasma etching gas is appropriately selected depending on the material to be etched.
  • a fluorine-based gas such as nitrogen trifluoride (NF 3 ) gas or carbon tetrafluoride (CF 4 ) gas can be used.
  • a plasma ashing apparatus using the plasma processing apparatus 10 can be realized.
  • oxygen and argon gas as the process gas 100, it is possible to ash the carbon film or the photoresist film formed on the substrate 1 as an etching mask.
  • the plasma processing apparatus 10 that can stably generate uniform and high-density plasma on both surfaces of the cathode electrode 12, a plasma CVD apparatus, a plasma etching apparatus, a plasma ashing apparatus, etc.
  • the processing speed and accuracy can be improved.
  • the plasma processing apparatus of the present invention can be used for the purpose of generating uniform and high-density plasma on both sides of the cathode electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

This plasma processing apparatus is provided with: an anode electrode; a cathode electrode having a through hole that is provided with openings in the surfaces that face the anode electrode; a gas supply apparatus, which introduces a process gas to between the anode electrode and the cathode electrode; and an alternating current power supply, which supplies alternating current power to between the anode electrode and the cathode electrode, and brings the process gas into the plasma state at an area between the anode electrode and the cathode electrode.

Description

プラズマ処理装置Plasma processing equipment
 本発明は、プラズマを発生して基板処理を行うプラズマ処理装置に関する。 The present invention relates to a plasma processing apparatus for generating a plasma to perform substrate processing.
 半導体デバイスの製造工程において、高精度のプロセス制御が容易であるという利点から、成膜工程、エッチング工程、アッシング工程などにおいてプラズマ処理装置が用いられている。プラズマ処理装置として、例えばプラズマ化学気相成長(CVD)装置、プラズマエッチング装置、プラズマアッシング装置などが知られている。例えばプラズマCVD装置では、高周波電力などにより原料ガスがプラズマ化され、化学反応によって基板上に薄膜が形成される。 In the semiconductor device manufacturing process, a plasma processing apparatus is used in a film forming process, an etching process, an ashing process, and the like because of high-precision process control. As a plasma processing apparatus, for example, a plasma chemical vapor deposition (CVD) apparatus, a plasma etching apparatus, a plasma ashing apparatus, and the like are known. For example, in a plasma CVD apparatus, a raw material gas is turned into plasma by high-frequency power or the like, and a thin film is formed on a substrate by a chemical reaction.
 更に、プラズマ密度を均一にするためにカソード電極の内部からプロセスガスを供給するシャワー電極を使用したプラズマ処理装置や、更に高密度のプラズマを発生させるためにシャワー電極においてホローカソード放電を利用したプラズマ処理装置が提案されている(例えば、特許文献1参照)。 Furthermore, a plasma processing apparatus using a shower electrode that supplies a process gas from the inside of the cathode electrode in order to make the plasma density uniform, or a plasma that uses a hollow cathode discharge in the shower electrode to generate a higher density plasma. A processing apparatus has been proposed (see, for example, Patent Document 1).
特開2004-296526号公報JP 2004-296526 A
 しかしながら、シャワー電極によるプラズマ処理を行うためには、直径が0.3~0.4mm程度の微細な孔をカソード電極の表面に多数形成する必要がある。このため、カソード電極の製造やメンテナンスが困難であり、コストが高い。また、シャワー電極の目詰まりによって連続使用ができない場合がある。これらの問題は、ホローカソード放電を利用したプラズマ処理装置でも同様に発生する。また、引用例ではカソードに対向する一つの面にのみプラズマを生成する構成であり、カソード電極の両面に均一で高密度のプラズマを安定して生成することは困難である。 However, in order to perform plasma treatment with the shower electrode, it is necessary to form a large number of fine holes having a diameter of about 0.3 to 0.4 mm on the surface of the cathode electrode. For this reason, manufacture and maintenance of a cathode electrode are difficult, and cost is high. Moreover, continuous use may not be possible due to clogging of the shower electrode. These problems also occur in a plasma processing apparatus using hollow cathode discharge. In the cited example, the plasma is generated only on one surface facing the cathode, and it is difficult to stably generate uniform and high-density plasma on both surfaces of the cathode electrode.
 上記問題点に鑑み、本発明は、カソード電極の両面に均一で高密度のプラズマを安定して生成することができるプラズマ処理装置を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a plasma processing apparatus capable of stably generating uniform and high-density plasma on both surfaces of a cathode electrode.
 本発明の一態様によれば、処理基板を装着するアノード電極と、アノード電極に対向するように配置され、対向する面に開口部が設けられた貫通孔を有するカソード電極と、アノード電極とカソード電極間にプロセスガスを導入するガス供給装置と、アノード電極とカソード電極間に交流電力を供給して、アノード電極とカソード電極間においてプロセスガスをプラズマ状態にする交流電源と、アノード電極とカソード電極を格納するチャンバーと、チャンバーを真空排気する排気ポンプ及び排気速度を調整する排気速度制御部と、チャンバー内部の圧力を測定する圧力測定器を備えるプラズマ処理装置が提供される。 According to one aspect of the present invention, an anode electrode on which a processing substrate is mounted, a cathode electrode that is disposed so as to face the anode electrode, and has a through-hole that is provided with an opening on the facing surface, the anode electrode and the cathode A gas supply device for introducing a process gas between the electrodes; an AC power supply for supplying AC power between the anode electrode and the cathode electrode to bring the process gas into a plasma state between the anode electrode and the cathode electrode; and the anode electrode and the cathode electrode There is provided a plasma processing apparatus including a chamber for storing the gas, an exhaust pump for evacuating the chamber, an exhaust speed controller for adjusting the exhaust speed, and a pressure measuring device for measuring the pressure inside the chamber.
 本発明によれば、カソード電極の両面に均一で高密度のプラズマを安定して生成することができるプラズマ処理装置を提供できる。 According to the present invention, it is possible to provide a plasma processing apparatus capable of stably generating uniform and high-density plasma on both sides of the cathode electrode.
本発明の第1の実施形態に係るプラズマ処理装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the plasma processing apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るプラズマ処理装置の貫通孔におけるプラズマ領域を説明するための模式図である(その1)。It is a schematic diagram for demonstrating the plasma area | region in the through-hole of the plasma processing apparatus which concerns on the 1st Embodiment of this invention (the 1). 本発明の第1の実施形態に係るプラズマ処理装置の貫通孔におけるプラズマ領域を説明するための模式図である(その2)。It is a schematic diagram for demonstrating the plasma area | region in the through-hole of the plasma processing apparatus which concerns on the 1st Embodiment of this invention (the 2). 本発明の第1の実施形態に係るプラズマ処理装置の貫通孔におけるプラズマ領域を説明するための模式図である(その3)。It is a schematic diagram for demonstrating the plasma area | region in the through-hole of the plasma processing apparatus which concerns on the 1st Embodiment of this invention (the 3). 本発明の第1の実施形態に係るプラズマ処理装置の貫通孔におけるプラズマ領域を説明するための模式図である(その4)。It is a schematic diagram for demonstrating the plasma area | region in the through-hole of the plasma processing apparatus which concerns on the 1st Embodiment of this invention (the 4). 比較例のホローカソード放電を説明するための模式図である。It is a schematic diagram for demonstrating the hollow cathode discharge of a comparative example. 本発明の第1の実施形態に係るプラズマ処理装置のカソード電極の構造例を示す模式図である。It is a schematic diagram which shows the structural example of the cathode electrode of the plasma processing apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るプラズマ処理装置のカソード電極に形成される貫通孔の開口部の配置例を示す模式図である。It is a schematic diagram which shows the example of arrangement | positioning of the opening part of the through-hole formed in the cathode electrode of the plasma processing apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るプラズマ処理装置における放電状態を示す模式図である。It is a schematic diagram which shows the discharge state in the plasma processing apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るプラズマ処理装置における他の放電状態を示す模式図である。It is a schematic diagram which shows the other discharge state in the plasma processing apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るプラズマ処理装置のホローカソード放電の条件を示す表である。It is a table | surface which shows the conditions of the hollow cathode discharge of the plasma processing apparatus which concerns on the 1st Embodiment of this invention. 電子の平均自由工程と圧力との関係を示すグラフである。It is a graph which shows the relationship between an electron mean free path and pressure. デバイ長の計算値の例を示す表である。It is a table | surface which shows the example of the calculated value of Debye length. 本発明の第1の実施形態の第1の変形例に係るプラズマ処理装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the plasma processing apparatus which concerns on the 1st modification of the 1st Embodiment of this invention. 本発明の第1の実施形態の第2の変形例に係るプラズマ処理装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the plasma processing apparatus which concerns on the 2nd modification of the 1st Embodiment of this invention. 本発明の第2の実施形態に係るプラズマ処理装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the plasma processing apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係るプラズマ処理装置の他の構成を示す模式図である。It is a schematic diagram which shows the other structure of the plasma processing apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態の変形例に係るプラズマ処理装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the plasma processing apparatus which concerns on the modification of the 2nd Embodiment of this invention.
 次に、図面を参照して、本発明の第1及び第2の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであることに留意すべきである。又、以下に示す第1及び第2の実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施形態は、構成部品の構造、配置などを下記のものに特定するものでない。この発明の実施形態は、請求の範囲において、種々の変更を加えることができる。 Next, first and second embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic. Further, the following first and second embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the embodiments of the present invention include the structure of component parts, The arrangement is not specified as follows. The embodiment of the present invention can be variously modified within the scope of the claims.
(第1の実施形態)
 本発明の第1の実施形態に係るプラズマ処理装置10は、図1に示すように、処理基板を装着するアノード電極11と、アノード電極11に対向する面に開口部が設けられた貫通孔120を有するカソード電極12と、アノード電極11とカソード電極12間にプロセスガス100を導入するガス供給装置13と、アノード電極11とカソード電極12間に交流電力を供給して、アノード電極11とカソード電極12間においてプロセスガス100をプラズマ状態にする交流電源14とを備える。図1に示したようにアノード電極11とカソード電極12は平板型であり、プラズマ処理装置10は容量結合型プラズマを利用したものである。容量結合方式の電極間の距離は概略均一であることが望ましい。
(First embodiment)
As shown in FIG. 1, the plasma processing apparatus 10 according to the first embodiment of the present invention includes an anode electrode 11 on which a processing substrate is mounted, and a through-hole 120 in which an opening is provided on a surface facing the anode electrode 11. A cathode electrode 12 having a gas source, a gas supply device 13 for introducing a process gas 100 between the anode electrode 11 and the cathode electrode 12, and an AC power supply between the anode electrode 11 and the cathode electrode 12, 12 and an AC power supply 14 for bringing the process gas 100 into a plasma state. As shown in FIG. 1, the anode electrode 11 and the cathode electrode 12 are flat plate types, and the plasma processing apparatus 10 utilizes capacitively coupled plasma. It is desirable that the distance between the capacitive coupling type electrodes be approximately uniform.
 表面に開口部が設けられたカソード電極12は、ホローカソード放電を生成させるホローカソード電極として機能する。以下に、ホローカソード放電について説明する。 The cathode electrode 12 provided with an opening on the surface functions as a hollow cathode electrode for generating a hollow cathode discharge. Hereinafter, hollow cathode discharge will be described.
 一般的な容量結合型プラズマでは、カソード電極12の表面への入射イオンにより放出される2次電子を起点として連鎖的にガス分子をイオン化することで電離を維持している。本発明の場合は、貫通孔120の内部を除くカソード電極12の表面でのプラズマ生成がこれにあたる。一方、貫通孔120内部でのプラズマ生成がホローカソード放電であり、ホローカソード放電では、カソード電極12の貫通孔120内部では電子が貫通孔120内部に閉じ込められ且つ運動エネルギーを持つことで、高密度電子の空間が形成される。即ち、カソード電極12に設けられた貫通孔120の側壁に発生する陰極降下によりデバイ遮断され、電子が貫通孔120の側壁に入射して消滅することはない。つまり、貫通孔120内部において電子が対向する壁面からはじき返される「振り子運動(Pendulum)効果」といわれるような反発を繰り返すことで、貫通孔120内部に高密度電子空間が形成される。ガス分子に衝突した電子は非弾性衝突を繰り返し、電離を維持・促進する。これらの電子は貫通孔120内部で様々な方向に散乱し、電離増幅と累積電離を繰り返す。 In general capacitively coupled plasma, ionization is maintained by ionizing gas molecules in a chain manner starting from secondary electrons emitted by ions incident on the surface of the cathode electrode 12. In the case of the present invention, plasma generation on the surface of the cathode electrode 12 excluding the inside of the through hole 120 corresponds to this. On the other hand, the plasma generation inside the through hole 120 is a hollow cathode discharge, and in the hollow cathode discharge, electrons are confined in the through hole 120 and have kinetic energy in the through hole 120 of the cathode electrode 12, thereby having high density. An electron space is formed. That is, debye blocking is caused by the cathode drop generated on the side wall of the through hole 120 provided in the cathode electrode 12, and electrons do not enter the side wall of the through hole 120 and disappear. That is, a high-density electron space is formed inside the through-hole 120 by repeating repulsion called “Pendulum effect” in which the electrons are repelled from the opposing wall surface inside the through-hole 120. Electrons that collide with gas molecules repeat inelastic collisions to maintain and promote ionization. These electrons are scattered in various directions inside the through hole 120 and repeat ionization amplification and cumulative ionization.
 上記の現象を、図2~図5を参照して説明する。図2は、図1に示した領域Aを拡大した図である。アノード電極11とカソード電極12間にグロー放電領域101が形成されており、カソード電極12に形成された貫通孔120内部にホロー放電領域102が形成されている。なお、アノード電極11及びカソード電極12とグロー放電領域101間にシース領域200がそれぞれ形成されている。また、貫通孔120内部において、カソード電極12とホロー放電領域102間にシース領域200が形成されている。アノード電極11とカソード電極12間の間隔は距離Sとする。 The above phenomenon will be described with reference to FIGS. FIG. 2 is an enlarged view of the region A shown in FIG. A glow discharge region 101 is formed between the anode electrode 11 and the cathode electrode 12, and a hollow discharge region 102 is formed inside the through hole 120 formed in the cathode electrode 12. A sheath region 200 is formed between the anode electrode 11 and the cathode electrode 12 and the glow discharge region 101, respectively. In addition, a sheath region 200 is formed between the cathode electrode 12 and the hollow discharge region 102 inside the through hole 120. The distance between the anode electrode 11 and the cathode electrode 12 is a distance S.
 図3に示すように、貫通孔120に侵入したイオン50は、シース領域200によって加速され、カソード電極12の内壁面に衝突する。 3, the ions 50 that have entered the through hole 120 are accelerated by the sheath region 200 and collide with the inner wall surface of the cathode electrode 12.
 壁面から放射された2次電子60は、図4に示すように、シース電界によって壁面と垂直方向に加速される。加速されて十分なエネルギーを得た2次電子60は中性ガス分子70に衝突し、電子なだれを起こす。これにより、貫通孔120内部の電子密度は急速に増大する。 As shown in FIG. 4, the secondary electrons 60 radiated from the wall surface are accelerated in a direction perpendicular to the wall surface by the sheath electric field. The secondary electrons 60 that have been accelerated to obtain sufficient energy collide with the neutral gas molecules 70 to cause electron avalanche. Thereby, the electron density inside the through-hole 120 increases rapidly.
 図5に示すように、壁面から放射された2次電子60のうち、反対側の壁面近辺に到達した電子61は、反対側のシース電界で反発してプラズマ中に押し戻される。これが振り子運動効果とよばれ、貫通孔120内での電子の存在確立は飛躍的に増加する。これらの作用により、貫通孔120内は高電子密度に維持され、平行平板間に形成されるグロー放電とは異なるプラズマ構造となる。 As shown in FIG. 5, among the secondary electrons 60 radiated from the wall surface, the electrons 61 that have reached the vicinity of the opposite wall surface are repelled by the opposite sheath electric field and pushed back into the plasma. This is called the pendulum motion effect, and the establishment of the presence of electrons in the through-hole 120 increases dramatically. By these actions, the inside of the through hole 120 is maintained at a high electron density, and a plasma structure different from the glow discharge formed between the parallel plates is obtained.
 高電子密度領域に侵入したガス分子は電離と再結合を繰り返し、再結合時には高輝度の発光として観測される。高密度プラズマ中で生成された前駆体80はラジカル種であり、電極電位に関係なく貫通孔120の外側へ拡散し、例えばアノード電極11に配置された基板表面で薄膜を形成する。 The gas molecules that have entered the high electron density region repeat ionization and recombination, and are observed as high-luminance emission during recombination. The precursor 80 generated in the high-density plasma is a radical species and diffuses to the outside of the through-hole 120 regardless of the electrode potential, and forms a thin film on the substrate surface disposed on the anode electrode 11, for example.
 効率よく均一な高電子密度を得るための貫通孔120の径は、圧力、温度、プロセスガス種とその電子の平均自由工程から考察される。貫通孔120の径については後述する。 The diameter of the through-hole 120 to obtain a uniform and high electron density efficiently is considered from the pressure, temperature, process gas type and the mean free path of the electrons. The diameter of the through hole 120 will be described later.
 なお、上記の原理から、カソード電極12には安価且つ加工が容易で、洗浄などのメンテナンスが容易なカーボン材などが好適である。例えばフッ酸処理によって、カーボン材からなるカソード電極12を洗浄できる。また、カーボン材を使用することにより、プラズマ処理工程における高温による変形が生じない。或いは、金属酸化膜が容易に形成されるアルミニウム合金などは、ホローカソード電極に適した材料である。他に、カーボン繊維入りカーボン、ステンレス合金、銅、銅合金、ガラス、セラミックスなどをカソード電極12に使用できる。または、上記の材料にアルマイト処理、めっき、溶射でコーティングを施してもよい。 In addition, from the above principle, the cathode electrode 12 is preferably made of a carbon material that is inexpensive, easy to process, and easy to maintain such as cleaning. For example, the cathode electrode 12 made of a carbon material can be cleaned by hydrofluoric acid treatment. In addition, the use of the carbon material does not cause deformation due to high temperature in the plasma treatment process. Alternatively, an aluminum alloy or the like on which a metal oxide film is easily formed is a material suitable for a hollow cathode electrode. In addition, carbon containing carbon fiber, stainless alloy, copper, copper alloy, glass, ceramics, and the like can be used for the cathode electrode 12. Alternatively, the above material may be coated by alumite treatment, plating, or thermal spraying.
 アノード電極11についてもカーボン材が好適に用いられる。また、カーボン繊維入りカーボン、アルミニウム合金、ステンレス合金、銅、銅合金、ガラス、セラミックスなどをアノード電極11に使用できる。または、これらの材料にアルマイト処理、めっき、溶射でコーティングを施してもよい。 A carbon material is also preferably used for the anode electrode 11. Further, carbon containing carbon fiber, aluminum alloy, stainless alloy, copper, copper alloy, glass, ceramics, and the like can be used for the anode electrode 11. Alternatively, these materials may be coated by alumite treatment, plating, or thermal spraying.
 図1に示したプラズマ処理装置10では、ホローカソード放電が生じる多数の貫通孔120をカソード電極12の表面に一定の密度で形成することにより、カソード電極12の両面で均一な高電子密度電界を容易に達成することができる。これは、貫通孔120を介するプラズマの両極性拡散の性質により、カソード電極12の両面におけるプラズマ密度の濃淡の差が自動的に補正されるためである。 In the plasma processing apparatus 10 shown in FIG. 1, a large number of through holes 120 that generate hollow cathode discharge are formed at a constant density on the surface of the cathode electrode 12, thereby generating a uniform high electron density electric field on both surfaces of the cathode electrode 12. Can be easily achieved. This is because the difference in density of the plasma density on both sides of the cathode electrode 12 is automatically corrected due to the bipolar diffusion property of the plasma through the through hole 120.
 これに対し、図6に示すような、カソード電極12Aの表面に凹部601を形成し、凹部601の底面にガス噴き出し口602を設けた比較例を検討する。この比較例は、カソード電極12Aの内部からプロセスガス100が供給されるシャワー電極を採用した例である。図6に示した比較例では、凹部601の内部が、ホローカソード放電による高密度プラズマが生成される空間である。凹部601の底面に形成された微小径のガス噴き出し口602からプロセスガス100を噴き出すことで、高密度プラズマ空間をプロセスガス100が効率的に通過するように構成されている。 In contrast, a comparative example in which a recess 601 is formed on the surface of the cathode electrode 12A and a gas ejection port 602 is provided on the bottom surface of the recess 601 as shown in FIG. This comparative example is an example employing a shower electrode to which the process gas 100 is supplied from the inside of the cathode electrode 12A. In the comparative example shown in FIG. 6, the inside of the recess 601 is a space where high-density plasma is generated by hollow cathode discharge. The process gas 100 is efficiently passed through the high-density plasma space by ejecting the process gas 100 from a fine gas ejection port 602 formed on the bottom surface of the recess 601.
 しかし、図6に示した比較例では、多数の凹部601にプロセスガス100を均一に供給することは困難であり、ガス噴き出し口602の開口径や長さ、プロセスガス100の流量や圧力などに、種々の制約がある。更に、ガス噴き出し口602が極微小径であるため、目詰まりを起こしやすい。目詰まりのためにプロセスガス100を導入できない場合には、目詰まりを起こした凹部601ではホローカソード放電が生じ難いため、カソード電極12Aの全面での放電の均一性が維持できない。 However, in the comparative example shown in FIG. 6, it is difficult to uniformly supply the process gas 100 to a large number of recesses 601, and the opening diameter and length of the gas ejection port 602, the flow rate and pressure of the process gas 100, etc. There are various restrictions. Furthermore, since the gas outlet 602 has a very small diameter, clogging is likely to occur. When the process gas 100 cannot be introduced due to clogging, hollow cathode discharge is unlikely to occur in the clogged recess 601, so that the uniformity of discharge over the entire surface of the cathode electrode 12 </ b> A cannot be maintained.
 一方、図1に示したプラズマ処理装置10では、ホローカソード放電による高密度プラズマが生成される貫通孔120付近に安定してプロセスガスが流される。このため、カソード電極12の両面のそれぞれの全面で放電の均一性が維持される。 On the other hand, in the plasma processing apparatus 10 shown in FIG. 1, the process gas is stably flowed in the vicinity of the through-hole 120 where high-density plasma is generated by hollow cathode discharge. For this reason, the uniformity of the discharge is maintained on the entire surfaces of both surfaces of the cathode electrode 12.
 貫通孔120は、カソード電極12の表面にできるだけ数多く形成することが好ましい。例えば六方最密配置などのように、カソード電極12の表面に開口部が最密に配置されるように、貫通孔120を形成する。これにより、カソード電極12の表面に均一に高密度のプラズマが形成される。 It is preferable to form as many through holes 120 as possible on the surface of the cathode electrode 12. For example, the through-hole 120 is formed so that the openings are arranged closest to the surface of the cathode electrode 12 as in a hexagonal close-packed arrangement. Thereby, uniformly high-density plasma is formed on the surface of the cathode electrode 12.
 図7に、貫通孔120の開口部が形成されたカソード電極12の表面の例を示す。このとき、例えば図8に示すように、貫通孔120の径が5mmである場合に、上下方向に隣接する貫通孔120間の中心間距離を3mm、斜め方向に隣接する貫通孔120間の左右方向の距離を5.2mmに設定する。 FIG. 7 shows an example of the surface of the cathode electrode 12 in which the opening of the through hole 120 is formed. At this time, for example, as shown in FIG. 8, when the diameter of the through hole 120 is 5 mm, the center-to-center distance between the through holes 120 adjacent in the vertical direction is 3 mm, and the left and right between the through holes 120 adjacent in the diagonal direction are Set the distance in the direction to 5.2 mm.
 なお、図7に示したように、ガス供給装置13のプロセスガス100を噴き出すガス供給ノズル130は、カソード電極12の底面に向いており、且つ、ガス供給ノズル130が複数ある場合には、カソード電極12の底面に沿ってガス供給ノズル130が配列されている。ガス供給ノズル130をカソード電極12の底面に向けることにより、カソード電極12の両面にほぼ均等にプロセスガス100を供給することができる。 As shown in FIG. 7, the gas supply nozzle 130 that ejects the process gas 100 of the gas supply device 13 faces the bottom surface of the cathode electrode 12, and when there are a plurality of gas supply nozzles 130, A gas supply nozzle 130 is arranged along the bottom surface of the electrode 12. By directing the gas supply nozzle 130 toward the bottom surface of the cathode electrode 12, the process gas 100 can be supplied to both surfaces of the cathode electrode 12 almost evenly.
 プロセスガス100が複数の種類のガスを混合したガスである場合に、すべてのガスを混合したプロセスガス100をガス供給ノズル130から供給してもよいし、ガスの種類毎に異なるガス供給ノズル130からガスをそれぞれ供給してもよい。 When the process gas 100 is a gas in which a plurality of types of gases are mixed, the process gas 100 in which all the gases are mixed may be supplied from the gas supply nozzle 130, or the gas supply nozzle 130 that is different for each type of gas. The gas may be supplied from each.
 図1に示したプラズマ処理装置10について、効率的にホローカソード放電を形成するための貫通孔120のサイズを決定するために、電子の挙動を検討する必要がある。以下に、貫通孔120における電子の挙動を説明する。 In the plasma processing apparatus 10 shown in FIG. 1, it is necessary to examine the behavior of electrons in order to determine the size of the through hole 120 for efficiently forming a hollow cathode discharge. Hereinafter, the behavior of electrons in the through hole 120 will be described.
 図9に、図1の領域Aにおける放電状態の詳細を示す。電子は、カソード電極12に対してデバイ長λdよりも内側に侵入できず、反発する。また、貫通孔120の内壁面から放出された電子は、電子の平均自由工程付近でガス分子と1回目の衝突を起こし、ガス分子をイオン化してプラズマを生成する。図9において、貫通孔120の直径dから両側のデバイ長λdを除いた距離を長さaで示している。電子の平均自由工程(mean free pass)をbとすると、以下の式(1)が成り立つ:

a=2b+c ・・・(1)

式(1)において、長さcは、貫通孔120内部のシース領域を除いた領域の直径方向の距離である。貫通孔120の直径dは、以下の式(2)で表される:

d=a+2×λd=2b+c+2×λd ・・・(2)

 c=0の場合、十分な運動エネルギーを持った電子の移動空間が確保できず、貫通孔120内部に十分なプラズマ生成空間が確保されないことになる。
FIG. 9 shows details of the discharge state in region A of FIG. Electrons repel the cathode electrode 12 without being able to penetrate inside the Debye length λd. The electrons emitted from the inner wall surface of the through-hole 120 collide with gas molecules for the first time in the vicinity of the electron mean free process, and ionize the gas molecules to generate plasma. In FIG. 9, the distance obtained by removing the Debye length λd on both sides from the diameter d of the through hole 120 is indicated by the length a. If the mean free pass of electrons is b, the following equation (1) holds:

a = 2b + c (1)

In formula (1), the length c is the distance in the diameter direction of the region excluding the sheath region inside the through hole 120. The diameter d of the through hole 120 is represented by the following formula (2):

d = a + 2 × λd = 2b + c + 2 × λd (2)

When c = 0, an electron moving space having sufficient kinetic energy cannot be secured, and a sufficient plasma generation space cannot be secured inside the through hole 120.
 なお、c>5bのように貫通孔120の直径dが太い場合には、図10に示すように、貫通孔120内部で高密度のプラズマが貫通孔120の壁面に張り付くように生成される。このため、長さfで表される貫通孔120の中心空間において、プラズマ密度が希薄になってしまう。 When the diameter d of the through hole 120 is large as in c> 5b, high-density plasma is generated inside the through hole 120 so as to stick to the wall surface of the through hole 120 as shown in FIG. For this reason, in the central space of the through-hole 120 represented by the length f, the plasma density is diluted.
 一方、図11に示したように、貫通孔120の直径dが小さくなると貫通孔120内の長さcで表される電子移動範囲が小さくなる。このため、十分なプラズマ空間を発生できない。 On the other hand, as shown in FIG. 11, when the diameter d of the through hole 120 becomes smaller, the electron movement range represented by the length c in the through hole 120 becomes smaller. For this reason, a sufficient plasma space cannot be generated.
 図11は、ガス種がアンモニア、温度が673Kである場合におけるホローカソード放電が生じる圧力P、貫通孔120の直径dの条件を示した表である。図11では、電子の平均自由工程Yに対する貫通孔120の直径dの比が2.38、衝突回数が3.7をホローカソード放電が生じる条件とした。図11に示すように、貫通孔120の直径dが小さくなるほど長さcは小さくなり、プラズマ生成空間を確保することが困難になる。 FIG. 11 is a table showing the conditions of the pressure P at which hollow cathode discharge occurs and the diameter d of the through hole 120 when the gas type is ammonia and the temperature is 673K. In FIG. 11, the ratio of the diameter d of the through hole 120 to the electron mean free path Y is 2.38, and the number of collisions is 3.7. As shown in FIG. 11, as the diameter d of the through hole 120 decreases, the length c decreases and it becomes difficult to secure a plasma generation space.
 長さcが最適であれば、十分な運動エネルギーを有する電子の移動空間が確保され、更に、十分な広さの高密度プラズマ空間が確保される。 If the length c is optimal, an electron moving space having sufficient kinetic energy is secured, and a sufficiently high density plasma space is secured.
 図12に、温度が673Kであるときの電子の平均自由工程Yと圧力Pとの関係を示す。図12において、丸印がアンモニア(NH3)ガスにおける平均自由工程、三角印がモノシラン(SiH4)ガスにおける平均自由工程である。なお、図11に例示した圧力P=67、87、130Paでの平均自由工程Yを、図12では白抜きの丸印及び三角印で示している。 FIG. 12 shows the relationship between the electron mean free path Y and the pressure P when the temperature is 673K. In FIG. 12, the circles indicate the mean free process in ammonia (NH 3 ) gas, and the triangles indicate the mean free process in monosilane (SiH 4 ) gas. Note that the mean free path Y at pressures P = 67, 87, and 130 Pa illustrated in FIG. 11 is indicated by white circles and triangles in FIG.
 なお、デバイ長λdと電子温度Te、及び電子密度neの関係は、以下の式(3)で表される:

λd=7.4×103×(Te/ne)1/2 ・・・(3)

 図13に、デバイ長λdの計算値の例を示す。ここでは、一般的な高密度グロー放電プラズマの電子温度と電子密度を用いてデバイ長λdを算出した。なお、ガス分子の平均自由工程λgは式(4)、電子の平均自由工程λeは式(5)でそれぞれ表される:

λg=3.11×10-24×T4/(P×D) ・・・(4)
λe=λg×4×21/2 ・・・(5)

式(4)で、Tは雰囲気温度(K)、Pは圧力(Pa)、Dはガス分子の直径(m)である。
The relationship between the Debye length λd, the electron temperature Te, and the electron density ne is expressed by the following formula (3):

λd = 7.4 × 10 3 × (Te / ne) 1/2 (3)

FIG. 13 shows an example of the calculated value of the Debye length λd. Here, the Debye length λd was calculated using the electron temperature and electron density of a general high-density glow discharge plasma. Note that the mean free path λg of gas molecules is expressed by the formula (4), and the mean free process λe of electrons is expressed by the formula (5):

λg = 3.11 × 10 −24 × T 4 / (P × D) (4)
λe = λg × 4 × 2 1/2 (5)

In Equation (4), T is the ambient temperature (K), P is the pressure (Pa), and D is the diameter (m) of the gas molecules.
 上記のように最適な長さcを設定することにより、貫通孔120の直径dを決定できる。つまり、所定の圧力、雰囲気温度、ガス種により、最も効率的にホローカソード放電が生じるように専用設計されたカソード電極12を用意することができる。 The diameter d of the through hole 120 can be determined by setting the optimum length c as described above. That is, it is possible to prepare the cathode electrode 12 that is designed specifically for the hollow cathode discharge to be generated most efficiently by a predetermined pressure, ambient temperature, and gas type.
 図1に示したプラズマ処理装置10では、貫通孔120の内部で最も効率よく電子の振り子運動効果を利用してホローカソード放電を生じさせることが必要である。このとき、電子の平均自由工程は、雰囲気温度と圧力、ガス分子の大きさで決定される。発明者らは、多数の貫通孔120を形成したカソード電極12を使用して、モノシラン(SiH4)ガスとアンモニア(NH3)ガスの混合ガスをプロセスガス100に用いて実験を行った。雰囲気温度Tを350℃~450℃、圧力Pを67Paに設定した場合に、貫通孔120の直径が5.0mm、カソード電極12の厚み、即ち貫通孔120の長さtが5mm、アノード電極11とカソード電極12間の距離Sが16mmのときにカソード電極12の両面に均一なマルチホロー放電を得ることができた。「マルチホロー放電」とは、各貫通孔120にそれぞれ生じたホローカソード放電が合わさってカソード電極12の表面に生じた放電である。 In the plasma processing apparatus 10 shown in FIG. 1, it is necessary to generate hollow cathode discharge by utilizing the pendulum motion effect of electrons most efficiently inside the through hole 120. At this time, the mean free path of electrons is determined by the atmospheric temperature and pressure, and the size of gas molecules. The inventors conducted experiments using the cathode electrode 12 having a large number of through-holes 120 and using a mixed gas of monosilane (SiH 4 ) gas and ammonia (NH 3 ) gas as the process gas 100. When the atmospheric temperature T is set to 350 ° C. to 450 ° C. and the pressure P is set to 67 Pa, the diameter of the through hole 120 is 5.0 mm, the thickness of the cathode electrode 12, that is, the length t of the through hole 120 is 5 mm, and the anode electrode 11 When the distance S between the cathode electrode 12 and the cathode electrode 12 was 16 mm, uniform multi-hollow discharge could be obtained on both surfaces of the cathode electrode 12. The “multi-hollow discharge” is a discharge generated on the surface of the cathode electrode 12 by combining the hollow cathode discharges generated in the respective through holes 120.
 また、貫通孔120の直径が3.9mm、2.9mmの場合には、図11に示したように、圧力Pがそれぞれ87Pa、130Pa付近で均一なマルチホロー放電が得られた。これは、雰囲気温度Tが400℃のとき、モノシランガス中の電子の平均自由工程の4.72倍、アンモニアガス中の電子の平均自由工程の2.38倍になる(モノシランガス中の電子の平均自由工程とアンモニアガス中の電子の平均自由工程の比は1.98である。)。 Further, when the diameter of the through hole 120 was 3.9 mm and 2.9 mm, as shown in FIG. 11, uniform multi-hollow discharge was obtained when the pressure P was around 87 Pa and 130 Pa, respectively. This is 4.72 times the mean free path of electrons in the monosilane gas and 2.38 times the mean free path of electrons in the ammonia gas when the ambient temperature T is 400 ° C. (the mean free path of electrons in the monosilane gas). The ratio of the process to the mean free process of electrons in ammonia gas is 1.98).
 実際はプロセスガス100に混合ガスを使用するため、ガス流量比の多いアンモニアガス中の電子の平均自由工程を基準に貫通孔120の直径dを試算した。具体的には、モノシランガスとアンモニアガスの混合ガスを使用し、雰囲気温度Tが400℃、圧力Pが67Paのとき、貫通孔120の直径dを5mmとして、カソード電極12の両面に均一なマルチホロー放電が得られる。CVDのプロセスガスは通常、モノシラン、水素、窒素等のガス種が混合して導入されるが、貫通孔120直径の検討においては混合ガス中でもっとも平均自由工程が長いガス種に着目し、貫通孔120の直径の最適値を導いた。 Actually, since a mixed gas is used as the process gas 100, the diameter d of the through hole 120 was estimated based on the mean free path of electrons in ammonia gas having a large gas flow rate ratio. Specifically, when a mixed gas of monosilane gas and ammonia gas is used, the ambient temperature T is 400 ° C., and the pressure P is 67 Pa, the diameter d of the through hole 120 is set to 5 mm, and the uniform multi-hollow on both surfaces of the cathode electrode 12 is used. Discharge is obtained. CVD process gas is usually introduced by mixing gas species such as monosilane, hydrogen, nitrogen, etc. However, in examining the diameter of the through-hole 120, focusing on the gas type with the longest mean free path in the mixed gas, The optimum value of the diameter of the hole 120 was derived.
 なお、加工の容易さや、所望の圧力でマルチホロー放電を得るためには、貫通孔120の直径dを3.8mm~8.0mm程度にすることが好ましい。これらの寸法は、シャワー電極を製造するために必要な0.3mm~0.4mmの孔を形成するよりも容易である。このため、プラズマ処理装置10の製造コストを低減することができる。 In order to obtain multi-hollow discharge with ease of processing and a desired pressure, it is preferable to set the diameter d of the through hole 120 to about 3.8 mm to 8.0 mm. These dimensions are easier than forming the 0.3 mm to 0.4 mm holes required to manufacture the shower electrode. For this reason, the manufacturing cost of the plasma processing apparatus 10 can be reduced.
 なお、上記では貫通孔120の断面が円形である例を示した。しかし、貫通孔120の断面が概略直径が3.8mm~8.0mm程度の多角形であってもよい。 In the above example, the through hole 120 has a circular cross section. However, the cross-section of the through-hole 120 may be a polygon having an approximate diameter of about 3.8 mm to 8.0 mm.
 また、長軸方向に沿った断面形状が互いに同一の多数の貫通孔120をカソード電極12に形成してもよいし、或いは、長軸方向に沿った断面形状のサイズ又は形状が互いに異なる貫通孔120を混在させて形成してもよい。直径dが異なる貫通孔120を混在させることによって、圧力や温度、ガス種などが異なる複数の条件で、それぞれマルチホロー放電を得ることができる。 In addition, a large number of through holes 120 having the same cross-sectional shape along the long axis direction may be formed in the cathode electrode 12, or through holes having different cross-sectional sizes or shapes along the long axis direction may be formed. 120 may be mixed and formed. By mixing the through holes 120 having different diameters d, multi-hollow discharges can be obtained under a plurality of conditions with different pressures, temperatures, gas types, and the like.
 貫通孔120の長軸方向の長さ、即ちカソード電極12の厚みtは、ホローカソード放電が発生しやすいように、3mm~10mm程度、好ましくは5mm程度に設定される。 The length of the through-hole 120 in the major axis direction, that is, the thickness t of the cathode electrode 12 is set to about 3 mm to 10 mm, preferably about 5 mm so that hollow cathode discharge is likely to occur.
 アノード電極11とカソード電極12間の距離Sは、10mm~40mm程度が好ましい。これにより、アノード電極11とカソード電極12間に均一にプラズマを発生できる。 The distance S between the anode electrode 11 and the cathode electrode 12 is preferably about 10 mm to 40 mm. Thereby, plasma can be generated uniformly between the anode electrode 11 and the cathode electrode 12.
 図6に示した比較例などの従来手法では、ホローカソード放電による高密度プラズマが生成される凹部601からシャワーのようにプロセスガス100が均一に放出されることではじめて、カソード電極12Aの全面でプラズマの均一性を得ることができる。 In the conventional method such as the comparative example shown in FIG. 6, the process gas 100 is only discharged uniformly from the concave portion 601 where the high-density plasma is generated by the hollow cathode discharge like a shower, and then the entire surface of the cathode electrode 12A. Plasma uniformity can be obtained.
 これに対し、図1に示したプラズマ処理装置10では、カソード電極12を介さずにプロセスガス100が導入される。貫通孔120の直径dがシャワー電極に必要な孔の直径よりもかなり大きいため、目詰まりの心配が無く、更に、メンテナンスも容易である。 In contrast, in the plasma processing apparatus 10 shown in FIG. 1, the process gas 100 is introduced without passing through the cathode electrode 12. Since the diameter d of the through hole 120 is considerably larger than the diameter of the hole necessary for the shower electrode, there is no concern about clogging, and maintenance is easy.
 プラズマ処理装置10では、アノード電極11とカソード電極12間に、下方から上方に向かってプロセスガス100を導入することが好ましい。下方からプロセスガス100を導入することにより、比重の軽いプラズマ化したガス分子、ラジカル粒子は上方流としてカソード電極12の表面を自然に流れ上がる。したがって、シャワー電極のような複雑な構造を用いなくても、カソード電極12の表面にプロセスガスが均一に供給される。また、ホローカソード放電による高密度プラズマが生成される空間が貫通孔120であるため、カソード電極12の表裏でプラズマの連続性が確保されており、相互的にプラズマ密度の濃淡が自動補正される。このため、プラズマ処理装置10では、カソード電極12の両面で均一な高密度のプラズマ生成が可能である。 In the plasma processing apparatus 10, it is preferable to introduce the process gas 100 between the anode electrode 11 and the cathode electrode 12 from below to above. By introducing the process gas 100 from below, gas molecules and radical particles having a light specific gravity that have been turned into plasma naturally flow upward on the surface of the cathode electrode 12 as an upward flow. Therefore, the process gas is uniformly supplied to the surface of the cathode electrode 12 without using a complicated structure such as a shower electrode. Further, since the space in which high-density plasma is generated by the hollow cathode discharge is the through-hole 120, the continuity of the plasma is secured on the front and back of the cathode electrode 12, and the density of the plasma density is automatically corrected mutually. . Therefore, the plasma processing apparatus 10 can generate a uniform high-density plasma on both surfaces of the cathode electrode 12.
 なお、プロセスガス100がスムーズに流れるように、カソード電極12の表面は滑らかであることが好ましく、貫通孔120の内部表面を除いて、表面粗さを3μm以下に仕上げる。例えば、仕上げ記号が「▽▽▽」で表される程度にカソード電極12の表面を平坦にする。つまり、最大高さRyが6.3S、十点平均粗さRzが6.3Z、算術平均粗さRaが1.6aよりも小さくすることが好ましい。カソード電極12の表面粗さを小さくすることによって、基板1に形成される薄膜の成膜速度を上げることができる。 In addition, it is preferable that the surface of the cathode electrode 12 is smooth so that the process gas 100 flows smoothly, and the surface roughness is finished to 3 μm or less except for the inner surface of the through hole 120. For example, the surface of the cathode electrode 12 is flattened to such an extent that the finish symbol is represented by “▽▽▽”. That is, it is preferable that the maximum height Ry is 6.3S, the ten-point average roughness Rz is 6.3Z, and the arithmetic average roughness Ra is smaller than 1.6a. By reducing the surface roughness of the cathode electrode 12, the deposition rate of the thin film formed on the substrate 1 can be increased.
 以上に説明したように、本発明の第1の実施形態に係るプラズマ処理装置10によれば、カソード電極12に貫通孔120を形成することによって、カソード電極12の両面において均一で高密度のプラズマを安定して生成することができる。更に、数千個以上の微細孔加工が必要なシャワー電極を用いた装置と比較して、プラズマ処理装置10の製造期間が短く、且つ製造歩留まりが向上する。このため、プラズマ処理装置10の製造コストの増大が抑制される。 As described above, according to the plasma processing apparatus 10 according to the first embodiment of the present invention, by forming the through-hole 120 in the cathode electrode 12, uniform and high-density plasma on both surfaces of the cathode electrode 12. Can be stably generated. Furthermore, the manufacturing period of the plasma processing apparatus 10 is shorter and the manufacturing yield is improved as compared with an apparatus using a shower electrode that requires processing of several thousand or more micro holes. For this reason, the increase in the manufacturing cost of the plasma processing apparatus 10 is suppressed.
 また、プラズマ処理装置10によれば、交流電源14の供給する交流電力の周波数に関係なく、大面積で均一な高密度プラズマの生成が可能である。交流電源14が供給する交流電力の周波数を、例えば60Hz~27MHz程度に設定しても、均一で高密度のプラズマを生成できる。つまり、高価なVHF帯の交流電力を供給する交流電源を使用する必要がない。これに対し、従来の平行平板型のプラズマ処理装置では、大面積で高密度の容量結合高周波放電のためには、例えば13.56MHzのRF帯の周波数に代えて、プラズマ密度の向上と定在波によるプラズマ密度の不均一とを解消するために、13.56MHz以上の27MHzなどのVHF帯の周波数を使用する必要があった。 Further, according to the plasma processing apparatus 10, it is possible to generate a uniform high-density plasma in a large area regardless of the frequency of the AC power supplied from the AC power supply 14. Even if the frequency of the AC power supplied by the AC power supply 14 is set to, for example, about 60 Hz to 27 MHz, uniform and high-density plasma can be generated. That is, there is no need to use an AC power supply that supplies expensive VHF band AC power. On the other hand, in the conventional parallel plate type plasma processing apparatus, for high-capacity coupled high-frequency discharge having a large area and high density, for example, instead of the frequency in the RF band of 13.56 MHz, the plasma density can be improved and In order to eliminate the non-uniformity of the plasma density due to waves, it was necessary to use a VHF band frequency such as 27 MHz of 13.56 MHz or higher.
 プラズマ処理装置10では、例えば250KHzのような安価な低周波RF帯であっても、VHF帯の交流電源を使用する従来のプラズマ処理装置と同等以上の高密度プラズマを得ることができる。 In the plasma processing apparatus 10, even in an inexpensive low frequency RF band such as 250 KHz, high-density plasma equivalent to or higher than that of a conventional plasma processing apparatus using a VHF band AC power supply can be obtained.
 なお、交流電源14が出力する交流電力を、パルスジェネレータを介してアノード電極11とカソード電極12間に供給してもよい。例えば、パルスジェネレータの出力をカソード電極12に供給し、アノード電極11を接地する。交流電力の供給を一定の周期で停止することにより、プラズマが安定して形成される。これは、交流電力の供給に停止期間を設けることによって電子の温度が下がり、放電の安定性が向上するためである。 Note that AC power output from the AC power source 14 may be supplied between the anode electrode 11 and the cathode electrode 12 via a pulse generator. For example, the output of the pulse generator is supplied to the cathode electrode 12, and the anode electrode 11 is grounded. By stopping the supply of AC power at a constant period, plasma is stably formed. This is because by providing a stop period for the supply of AC power, the temperature of the electrons is lowered and the stability of the discharge is improved.
 例えば、交流電力を供給するオン時間を600μ秒、交流電力の供給を停止するオフ時間を50μ秒として、オン時間とオフ時間を交互に繰り返すようにアノード電極11とカソード電極12間に交流電力が供給される。なお、オン時間は100μ秒~1000μ秒程度、オフ時間は10μ秒~100μ秒程度の範囲で設定されることが好ましい。 For example, the AC power is supplied between the anode electrode 11 and the cathode electrode 12 so that the ON time is 600 μs and the OFF time when the AC power supply is stopped is 50 μs, and the ON time and the OFF time are alternately repeated. Supplied. The on-time is preferably set in the range of about 100 μs to 1000 μs, and the off-time is preferably set in the range of about 10 μs to 100 μs.
 上記のようにアノード電極11とカソード電極12間への交流電力の供給をパルス制御して、交流電力の供給を周期的にオン・オフさせることより、異常放電の発生を抑制できる。 As described above, the supply of AC power between the anode electrode 11 and the cathode electrode 12 is pulse-controlled and the supply of AC power is periodically turned on / off, thereby suppressing the occurrence of abnormal discharge.
<第1の変形例>
 図14に、アノード電極11が1つの場合におけるプラズマ処理装置10の例を示す。図14に示すようにカソード電極12の片側の表面にのみプラズマを励起する場合には、カソード電極12のプラズマを励起しない面から距離kの位置にカソード背板121を配置する。このとき、カソード電極12とカソード背板121間にプラズマが発生しないように、k<b(b:電子の平均自由工程)であるように距離kを設定する。このとき、カソード電極12とカソード背板121に交流電源14から交流電力が供給される。なお、アノード電極11とカソード電極12間、及びカソード電極12とカソード背板121間に、プロセスガス100が導入される。
<First Modification>
FIG. 14 shows an example of the plasma processing apparatus 10 when there is one anode electrode 11. As shown in FIG. 14, when the plasma is excited only on one surface of the cathode electrode 12, the cathode back plate 121 is disposed at a position of a distance k from the surface of the cathode electrode 12 where the plasma is not excited. At this time, the distance k is set so that k <b (b: electron mean free path) so that plasma is not generated between the cathode electrode 12 and the cathode back plate 121. At this time, AC power is supplied from the AC power source 14 to the cathode electrode 12 and the cathode back plate 121. A process gas 100 is introduced between the anode electrode 11 and the cathode electrode 12 and between the cathode electrode 12 and the cathode back plate 121.
<第2の変形例>
 プラズマ処理装置10が、複数のカソード電極12を有する例を図15に示す。図15に示したプラズマ処理装置10では、アノード電極11とカソード電極12が交互に配置され、且つ、最も外側にはアノード電極11が配置されている。このため、アノード電極11の枚数はカソード電極12よりも1枚多い。図15ではカソード電極12が3枚である例を示したが、カソード電極12の枚数が3枚に限られないことはもちろんである。
<Second Modification>
An example in which the plasma processing apparatus 10 has a plurality of cathode electrodes 12 is shown in FIG. In the plasma processing apparatus 10 shown in FIG. 15, the anode electrodes 11 and the cathode electrodes 12 are alternately arranged, and the anode electrode 11 is arranged on the outermost side. For this reason, the number of anode electrodes 11 is one more than that of the cathode electrodes 12. Although FIG. 15 shows an example in which the number of cathode electrodes 12 is three, it goes without saying that the number of cathode electrodes 12 is not limited to three.
 図15に示した構成を採用することにより、アノード電極11とカソード電極12に形成されるプラズマ領域の数を増やすことができる。これにより、プラズマ処理装置10の処理能力が向上する。 By adopting the configuration shown in FIG. 15, the number of plasma regions formed in the anode electrode 11 and the cathode electrode 12 can be increased. Thereby, the processing capability of the plasma processing apparatus 10 improves.
(第2の実施形態)
 図1に示したプラズマ処理装置10は、プラズマ化学気相成長(CVD)装置、プラズマエッチング装置、プラズマアッシング装置などに適用可能である。
(Second Embodiment)
The plasma processing apparatus 10 shown in FIG. 1 can be applied to a plasma chemical vapor deposition (CVD) apparatus, a plasma etching apparatus, a plasma ashing apparatus, and the like.
 図16に、図1に示したプラズマ処理装置10をプラズマCVD装置に使用した例を示す。アノード電極11及びカソード電極12はチャンバー20内に配置され、アノード電極11上に成膜処理対象の基板1が配置されている。アノード電極11は接地されている。 FIG. 16 shows an example in which the plasma processing apparatus 10 shown in FIG. 1 is used in a plasma CVD apparatus. The anode electrode 11 and the cathode electrode 12 are disposed in the chamber 20, and the substrate 1 to be deposited is disposed on the anode electrode 11. The anode electrode 11 is grounded.
 プロセスガス100として成膜用の原料ガスを含むガスが使用され、ガス供給装置13からガス供給ノズル130を介してチャンバー20内にプロセスガス100が導入される。 A gas containing a raw material gas for film formation is used as the process gas 100, and the process gas 100 is introduced from the gas supply device 13 into the chamber 20 through the gas supply nozzle 130.
 チャンバー20内の圧力はキャパシタンスゲージなどの圧力測定器16によって測定され、チャンバー20を真空排気する排気ポンプであり排気速度を調整する排気速度制御部(APC)15によってチャンバー20内の圧力が調整される。チャンバー20内のプロセスガス100の圧力が所定のガス圧に調整された後、交流電源14により所定の交流電力がカソード電極12とアノード電極11間に供給される。これにより、チャンバー20内のプロセスガス100がプラズマ化される。形成されたプラズマに基板1を曝すことにより、原料ガスに含まれる原料を主成分とする所望の薄膜が基板1の露出した表面に形成される。 The pressure in the chamber 20 is measured by a pressure measuring device 16 such as a capacitance gauge, and the pressure in the chamber 20 is adjusted by an exhaust speed controller (APC) 15 that is an exhaust pump that evacuates the chamber 20 and adjusts the exhaust speed. The After the pressure of the process gas 100 in the chamber 20 is adjusted to a predetermined gas pressure, a predetermined AC power is supplied between the cathode electrode 12 and the anode electrode 11 by the AC power source 14. Thereby, the process gas 100 in the chamber 20 is turned into plasma. By exposing the substrate 1 to the formed plasma, a desired thin film mainly composed of the raw material contained in the raw material gas is formed on the exposed surface of the substrate 1.
 なお、図16に示す基板加熱ヒータ21によって、成膜処理中の基板1の温度を設定してもよい。成膜処理中の基板1の温度を所定の温度に設定することにより、成膜速度を速めたり、膜質を向上させたりすることができる。 Note that the temperature of the substrate 1 during the film forming process may be set by the substrate heater 21 shown in FIG. By setting the temperature of the substrate 1 during the film formation process to a predetermined temperature, the film formation speed can be increased and the film quality can be improved.
 既に説明したように、図1に示したプラズマ処理装置10では、カソード電極12の表面に均一な高密度のプラズマが生成される。このため、図16に示したプラズマCVD装置によれば、原料ガスが効率よく分解され、高速で大面積に薄膜が基板1上に均一に形成される。したがって、形成される膜の膜厚、膜質の均一性が向上すると共に、成膜速度が向上する。 As already described, in the plasma processing apparatus 10 shown in FIG. 1, uniform high-density plasma is generated on the surface of the cathode electrode 12. Therefore, according to the plasma CVD apparatus shown in FIG. 16, the source gas is efficiently decomposed, and a thin film is uniformly formed on the substrate 1 in a large area at a high speed. Therefore, the film thickness and film quality uniformity of the formed film are improved, and the film forming speed is improved.
 プラズマ処理装置10を採用したプラズマCVD装置により、原料ガスを適宜選択することによって、所望の薄膜を形成できる。例えば、シリコン半導体薄膜、シリコン窒化薄膜、シリコン酸化薄膜、シリコン酸窒化薄膜、カーボン薄膜などを基板1上に形成することができる。具体的には、アンモニア(NH3)ガスとモノシラン(SiH4)ガスの混合ガスを用いて、基板1上に窒化シリコン(SiN)膜が形成される。或いは、モノシラン(SiH4)ガスとN2Oガスの混合ガスを、又はTEOSガスと酸素ガスを用いて、基板1上に酸化シリコン(SiOx)膜が形成される。 A desired thin film can be formed by appropriately selecting a source gas by a plasma CVD apparatus employing the plasma processing apparatus 10. For example, a silicon semiconductor thin film, a silicon nitride thin film, a silicon oxide thin film, a silicon oxynitride thin film, a carbon thin film, or the like can be formed on the substrate 1. Specifically, a silicon nitride (SiN) film is formed on the substrate 1 using a mixed gas of ammonia (NH 3 ) gas and monosilane (SiH 4 ) gas. Alternatively, a silicon oxide (SiO x) film is formed on the substrate 1 using a mixed gas of monosilane (SiH 4 ) gas and N 2 O gas, or TEOS gas and oxygen gas.
 図17に、カソード電極12に装着された交流電源14とは別に、アノード電極11に交流電源17を装着した例を示す。アノード電極11に交流電力を供給することによって、基板1に形成される薄膜の膜質を向上できる。交流電源17の供給する交流電力の周波数は、交流電源14の供給する交流電力の周波数と同等か、或いは低くともよい。例えば、交流電源17が供給する交流電力の周波数は60Hz~27MHz程度に設定される。 FIG. 17 shows an example in which the AC power supply 17 is attached to the anode electrode 11 separately from the AC power supply 14 attached to the cathode electrode 12. By supplying AC power to the anode electrode 11, the film quality of the thin film formed on the substrate 1 can be improved. The frequency of the AC power supplied from the AC power supply 17 may be equal to or lower than the frequency of the AC power supplied from the AC power supply 14. For example, the frequency of the AC power supplied from the AC power supply 17 is set to about 60 Hz to 27 MHz.
 なお、交流電源14からは交流電力を供給せず、交流電源17のみから交流電力を供給することにより、アノード電極11をクリーニングできる。具体的には、スパッタ用のガスをチャンバー20内に導入し、交流電源17から交流電力を供給しながらのスパッタエッチングによって、アノード電極11をクリーニングする。 The anode electrode 11 can be cleaned by supplying AC power only from the AC power supply 17 without supplying AC power from the AC power supply 14. Specifically, a sputtering gas is introduced into the chamber 20, and the anode electrode 11 is cleaned by sputter etching while supplying AC power from the AC power supply 17.
 また、図14に示したようなアノード電極11が1つの場合に、カソード電極12とアノード電極11にそれぞれ交流電源14、17を装着した図18に示すプラズマ処理装置10を、プラズマCVD装置に使用してもよい。なお、既に説明したように、k<bとなるように、カソード電極12のプラズマを励起しない面からカソード背板121までの距離kが設定される。 Further, when there is one anode electrode 11 as shown in FIG. 14, the plasma processing apparatus 10 shown in FIG. 18 in which the AC power supplies 14 and 17 are respectively attached to the cathode electrode 12 and the anode electrode 11 is used for the plasma CVD apparatus. May be. As already described, the distance k from the surface of the cathode electrode 12 that does not excite the plasma to the cathode back plate 121 is set so that k <b.
 なお、図15に示したような複数のカソード電極12を有するプラズマ処理装置10をプラズマCVD装置に適用することによって、一度に成膜する基板の数が増大し、成膜処理能力を向上させることができる。 Note that by applying the plasma processing apparatus 10 having the plurality of cathode electrodes 12 as shown in FIG. 15 to the plasma CVD apparatus, the number of substrates to be formed at a time increases, and the film forming processing capability is improved. Can do.
 図1に示したプラズマ処理装置10をプラズマCVD装置に適用した例を以上に説明した。図15や図16に示した構成で、プロセスガス100のガス種を替えることによって、図1に示したプラズマ処理装置10をプラズマエッチング装置やプラズマアッシング装置などに適用可能である。 The example in which the plasma processing apparatus 10 shown in FIG. 1 is applied to a plasma CVD apparatus has been described above. The plasma processing apparatus 10 shown in FIG. 1 can be applied to a plasma etching apparatus or a plasma ashing apparatus by changing the gas type of the process gas 100 with the configuration shown in FIGS.
 例えば、プラズマエッチング用ガスをプロセスガス100としてチャンバー20内に導入することによって、基板1上に形成された膜をエッチング除去するプラズマエッチング装置を実現できる。プラズマエッチング用ガスはエッチング対象の材料によって適宜選択されるが、例えば、三フッ化窒素(NF3)ガスや四フッ化炭素(CF4)ガスなどのフッ素系ガスを採用可能である。 For example, a plasma etching apparatus that etches and removes a film formed on the substrate 1 can be realized by introducing a plasma etching gas as the process gas 100 into the chamber 20. The plasma etching gas is appropriately selected depending on the material to be etched. For example, a fluorine-based gas such as nitrogen trifluoride (NF 3 ) gas or carbon tetrafluoride (CF 4 ) gas can be used.
 また、プラズマアッシング用ガスをプロセスガス100としてチャンバー20内に導入することによって、プラズマ処理装置10を用いたプラズマアッシング装置を実現できる。例えば、プロセスガス100として酸素及びアルゴンガスを使用することにより、エッチング用マスクとして基板1に形成されたカーボン膜やフォトレジスト膜などをアッシングできる。 Further, by introducing the plasma ashing gas into the chamber 20 as the process gas 100, a plasma ashing apparatus using the plasma processing apparatus 10 can be realized. For example, by using oxygen and argon gas as the process gas 100, it is possible to ash the carbon film or the photoresist film formed on the substrate 1 as an etching mask.
 以上に説明したように、カソード電極12の両面において均一で高密度のプラズマを安定して生成することができるプラズマ処理装置10を使用することにより、プラズマCVD装置、プラズマエッチング装置、プラズマアッシング装置などの処理速度や精度を向上できる。 As described above, by using the plasma processing apparatus 10 that can stably generate uniform and high-density plasma on both surfaces of the cathode electrode 12, a plasma CVD apparatus, a plasma etching apparatus, a plasma ashing apparatus, etc. The processing speed and accuracy can be improved.
 上記のように、本発明は第1及び第2の実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。即ち、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められるものである。 As described above, the present invention has been described according to the first and second embodiments. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. That is, it goes without saying that the present invention includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
 本発明のプラズマ処理装置は、カソード電極の両面に均一で高密度のプラズマを生成する用途に利用可能である。 The plasma processing apparatus of the present invention can be used for the purpose of generating uniform and high-density plasma on both sides of the cathode electrode.

Claims (13)

  1.  基板を装着するアノード電極と、
     前記アノード電極に対向するように配置され、対向する面に開口部が設けられた貫通孔を有するカソード電極と、
     前記アノード電極と前記カソード電極間にプロセスガスを導入するガス供給装置と、
     前記アノード電極と前記カソード電極間に交流電力を供給して、前記アノード電極と前記カソード電極間において前記プロセスガスをプラズマ状態にする交流電源と
     を備えることを特徴とするプラズマ処理装置。
    An anode electrode for mounting the substrate;
    A cathode electrode that is disposed so as to face the anode electrode and has a through-hole provided with an opening on the facing surface;
    A gas supply device for introducing a process gas between the anode electrode and the cathode electrode;
    An AC power supply that supplies AC power between the anode electrode and the cathode electrode to bring the process gas into a plasma state between the anode electrode and the cathode electrode.
  2.  前記ガス供給装置が、前記プロセスガスを下方から上方に向かって前記アノード電極と前記カソード電極間に導入することを特徴とする請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the gas supply device introduces the process gas from the lower side to the upper side between the anode electrode and the cathode electrode.
  3.  前記ガス供給装置が、前記カソード電極の底面に沿って配置されたガス供給ノズルから前記カソード電極の底部に向けて前記プロセスガスを噴き出すことを特徴とする請求項2に記載のプラズマ処理装置。 3. The plasma processing apparatus according to claim 2, wherein the gas supply device ejects the process gas from a gas supply nozzle disposed along the bottom surface of the cathode electrode toward the bottom of the cathode electrode.
  4.  前記カソード電極の前記開口部が設けられた両面にそれぞれ対向して前記アノード電極が配置されていることを特徴とする請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the anode electrode is disposed so as to face both surfaces of the cathode electrode where the opening is provided.
  5.  前記カソード電極を複数備えることを特徴とする請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, comprising a plurality of the cathode electrodes.
  6.  前記アノード電極及び前記カソード電極の少なくともいずれかがカーボンからなることを特徴とする請求項1に記載のプラズマ処理装置。 2. The plasma processing apparatus according to claim 1, wherein at least one of the anode electrode and the cathode electrode is made of carbon.
  7.  前記貫通孔の直径が3.8mm以上且つ8.0mm以下であることを特徴とする請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the diameter of the through hole is 3.8 mm or more and 8.0 mm or less.
  8.  前記カソード電極の表面に前記開口部が最密に配置されていることを特徴とする請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the openings are arranged closest to the surface of the cathode electrode.
  9.  前記カソード電極に、長軸方向に沿った断面形状のサイズ又は形状が互いに異なる複数種類の前記貫通孔が形成されていることを特徴とする請求項1に記載のプラズマ処理装置。 2. The plasma processing apparatus according to claim 1, wherein the cathode electrode is formed with a plurality of types of the through-holes having different cross-sectional sizes or shapes along a major axis direction.
  10.  前記交流電源が供給する前記交流電力の周波数が、60Hz以上且つ27MHz以下であることを特徴とする請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the frequency of the AC power supplied by the AC power source is 60 Hz or more and 27 MHz or less.
  11.  前記プロセスガスとして成膜用の原料ガスを含むガスを使用して、前記アノード電極上に配置された基板に前記原料ガスに含まれる原料を主成分とする膜を形成することを特徴とする請求項1項に記載のプラズマ処理装置。 A film containing a raw material gas contained in the raw material gas as a main component is formed on a substrate disposed on the anode electrode using a gas containing a raw material gas for film formation as the process gas. Item 2. The plasma processing apparatus according to Item 1.
  12.  前記アノード電極上に配置された基板の表面に形成された膜をエッチングするガスを前記プロセスガスとして使用することを特徴とする請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein a gas for etching a film formed on a surface of a substrate disposed on the anode electrode is used as the process gas.
  13.  前記プロセスガスとして酸素ガス及びアルゴンガスを含むガスを使用して、前記アノード電極上に配置された基板の表面に形成された膜をアッシングすることを特徴とする請求項1に記載のプラズマ処理装置。 2. The plasma processing apparatus according to claim 1, wherein a gas including oxygen gas and argon gas is used as the process gas to ash the film formed on the surface of the substrate disposed on the anode electrode. .
PCT/JP2011/071657 2011-07-14 2011-09-22 Plasma processing apparatus WO2013008344A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013523764A JP5804059B2 (en) 2011-07-14 2011-09-22 Plasma processing equipment
CN201180070316.2A CN103493602B (en) 2011-07-14 2011-09-22 Plasma processing apparatus
KR1020137028584A KR101485140B1 (en) 2011-07-14 2011-09-22 Plasma processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-155514 2011-07-14
JP2011155514 2011-07-14

Publications (1)

Publication Number Publication Date
WO2013008344A1 true WO2013008344A1 (en) 2013-01-17

Family

ID=47505662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071657 WO2013008344A1 (en) 2011-07-14 2011-09-22 Plasma processing apparatus

Country Status (4)

Country Link
JP (1) JP5804059B2 (en)
KR (1) KR101485140B1 (en)
CN (1) CN103493602B (en)
WO (1) WO2013008344A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188576A1 (en) * 2013-05-24 2014-11-27 株式会社島津製作所 Plasma processing apparatus
JP2016197528A (en) * 2015-04-03 2016-11-24 株式会社島津製作所 Plasma processing apparatus
JP2017520906A (en) * 2014-04-30 2017-07-27 コーニング インコーポレイテッド Etchback process of bonding materials for the fabrication of through glass vias
WO2019230967A1 (en) * 2018-06-01 2019-12-05 株式会社島津製作所 Method for forming electroconductive film, and method for manufacturing wiring substrate
US10756003B2 (en) 2016-06-29 2020-08-25 Corning Incorporated Inorganic wafer having through-holes attached to semiconductor wafer
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
KR20210151472A (en) * 2020-06-05 2021-12-14 한국기계연구원 PLASMA REACTOR AND PFCs REDUCTION SCRUBBER
FR3115180A1 (en) * 2020-10-14 2022-04-15 Peter Choi Plasma generating device
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498898B (en) 2008-08-04 2017-10-24 北美Agc平板玻璃公司 Pass through the method for the chemical vapor deposition formation coating of plasma enhancing
EP3228160B1 (en) 2014-12-05 2021-07-21 AGC Glass Europe SA Hollow cathode plasma source
JP6508746B2 (en) * 2014-12-05 2019-05-08 エージーシー フラット グラス ノース アメリカ,インコーポレイテッドAgc Flat Glass North America,Inc. Plasma source using macro particle reduction coating and method of using plasma source with macro particle reduction coating for thin film coating and surface modification
US9721765B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
US10242846B2 (en) 2015-12-18 2019-03-26 Agc Flat Glass North America, Inc. Hollow cathode ion source
CN109358237B (en) * 2018-09-26 2020-11-06 台州学院 Experiment platform for influence of plasma collision frequency on electromagnetic propagation and using method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301134A (en) * 1989-05-16 1990-12-13 Kokusai Electric Co Ltd Plasma controller for plasma generator
JP2001155997A (en) * 1999-11-24 2001-06-08 Kanegafuchi Chem Ind Co Ltd Plasma cvd system and method for fabricating silicon based thin film photoelectric converter
JP2001271168A (en) * 2000-03-24 2001-10-02 Komatsu Ltd Surface treating device
JP2002280377A (en) * 2001-03-19 2002-09-27 Hitachi Kokusai Electric Inc Substrate treatment apparatus
JP2006057122A (en) * 2004-08-18 2006-03-02 Kyoto Institute Of Technology Plasma chemical vapor deposition system and plasma chemical vapor deposition method
WO2009069211A1 (en) * 2007-11-29 2009-06-04 Shimadzu Corporation Plasma process electrode and plasma process device
JP2010034532A (en) * 2008-07-29 2010-02-12 Psk Inc Method for treating large-area substrate using hollow cathode plasma
JP2010109157A (en) * 2008-10-30 2010-05-13 Shibaura Mechatronics Corp Semiconductor manufacturing apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1109365A (en) * 1994-01-20 1995-10-04 顾恩友 Cold plasma sterilizing and disinfecting device
CN201172685Y (en) * 2008-03-31 2008-12-31 北京世纪辉光科技发展有限公司 Vertical producing apparatus for double-face plasma surface treated sheet metal
WO2009125477A1 (en) * 2008-04-08 2009-10-15 株式会社島津製作所 Cathode electrode for plasma cvd and plasma cvd apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301134A (en) * 1989-05-16 1990-12-13 Kokusai Electric Co Ltd Plasma controller for plasma generator
JP2001155997A (en) * 1999-11-24 2001-06-08 Kanegafuchi Chem Ind Co Ltd Plasma cvd system and method for fabricating silicon based thin film photoelectric converter
JP2001271168A (en) * 2000-03-24 2001-10-02 Komatsu Ltd Surface treating device
JP2002280377A (en) * 2001-03-19 2002-09-27 Hitachi Kokusai Electric Inc Substrate treatment apparatus
JP2006057122A (en) * 2004-08-18 2006-03-02 Kyoto Institute Of Technology Plasma chemical vapor deposition system and plasma chemical vapor deposition method
WO2009069211A1 (en) * 2007-11-29 2009-06-04 Shimadzu Corporation Plasma process electrode and plasma process device
JP2010034532A (en) * 2008-07-29 2010-02-12 Psk Inc Method for treating large-area substrate using hollow cathode plasma
JP2010109157A (en) * 2008-10-30 2010-05-13 Shibaura Mechatronics Corp Semiconductor manufacturing apparatus

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6065111B2 (en) * 2013-05-24 2017-01-25 株式会社島津製作所 Plasma processing equipment
WO2014188576A1 (en) * 2013-05-24 2014-11-27 株式会社島津製作所 Plasma processing apparatus
JP2017520906A (en) * 2014-04-30 2017-07-27 コーニング インコーポレイテッド Etchback process of bonding materials for the fabrication of through glass vias
JP2016197528A (en) * 2015-04-03 2016-11-24 株式会社島津製作所 Plasma processing apparatus
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US10756003B2 (en) 2016-06-29 2020-08-25 Corning Incorporated Inorganic wafer having through-holes attached to semiconductor wafer
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11972993B2 (en) 2017-05-25 2024-04-30 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
WO2019230967A1 (en) * 2018-06-01 2019-12-05 株式会社島津製作所 Method for forming electroconductive film, and method for manufacturing wiring substrate
JP7146213B2 (en) 2018-06-01 2022-10-04 株式会社島津製作所 Method for forming conductive film and method for manufacturing wiring board
JPWO2019230967A1 (en) * 2018-06-01 2021-10-21 株式会社島津製作所 Conductive film forming method and wiring board manufacturing method
KR102377982B1 (en) 2020-06-05 2022-03-23 한국기계연구원 PLASMA REACTOR AND PFCs REDUCTION SCRUBBER
KR20210151472A (en) * 2020-06-05 2021-12-14 한국기계연구원 PLASMA REACTOR AND PFCs REDUCTION SCRUBBER
FR3115180A1 (en) * 2020-10-14 2022-04-15 Peter Choi Plasma generating device
WO2022079203A1 (en) * 2020-10-14 2022-04-21 Peter Choi Plasma generating apparatus

Also Published As

Publication number Publication date
JPWO2013008344A1 (en) 2015-02-23
CN103493602A (en) 2014-01-01
CN103493602B (en) 2016-06-08
KR101485140B1 (en) 2015-01-22
JP5804059B2 (en) 2015-11-04
KR20130137034A (en) 2013-12-13

Similar Documents

Publication Publication Date Title
JP5804059B2 (en) Plasma processing equipment
US9196460B2 (en) Plasma processing apparatus and plasma processing method
JP5328685B2 (en) Plasma processing apparatus and plasma processing method
KR100416308B1 (en) Plasma process device
US8635971B2 (en) Tunable uniformity in a plasma processing system
US7927455B2 (en) Plasma processing apparatus
US9117635B2 (en) Electrode plate for plasma etching and plasma etching apparatus
JP5287850B2 (en) Cathode electrode for plasma CVD and plasma CVD apparatus
JP4433614B2 (en) Etching equipment
KR101650795B1 (en) Plasma film forming apparatus
KR20030074721A (en) Plasma processing device and plasma processing method
JP5119580B2 (en) Plasma processing method
JP2008211243A (en) Plasma processing apparatus
JP4673457B2 (en) Plasma processing method
JP2017054943A (en) Plasma processing device
JP6065111B2 (en) Plasma processing equipment
JP2011228546A (en) Plasma cvd apparatus and cleaning method therefor
JP4304280B2 (en) Plasma generating apparatus and plasma processing manufacturing method
JP2016197528A (en) Plasma processing apparatus
JP2006324603A (en) Plasma treatment method and apparatus as well as plasma cvd method and apparatus
US12002659B2 (en) Apparatus for generating etchants for remote plasma processes
JP2011146745A (en) Plasma cvd apparatus and method for manufacturing silicon based film using plasma cvd apparatus
JP2002237461A (en) Plasma cvd apparatus
JP2011129954A (en) Plasma cvd apparatus and method of manufacturing silicon based film using plasma cvd apparatus
JP2018185958A (en) Surface treatment device and surface treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869230

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523764

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137028584

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869230

Country of ref document: EP

Kind code of ref document: A1