Nothing Special   »   [go: up one dir, main page]

WO2013073231A1 - リチウムイオン二次電池及びその製造方法 - Google Patents

リチウムイオン二次電池及びその製造方法 Download PDF

Info

Publication number
WO2013073231A1
WO2013073231A1 PCT/JP2012/067985 JP2012067985W WO2013073231A1 WO 2013073231 A1 WO2013073231 A1 WO 2013073231A1 JP 2012067985 W JP2012067985 W JP 2012067985W WO 2013073231 A1 WO2013073231 A1 WO 2013073231A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
manganese
secondary battery
ion secondary
fluorine
Prior art date
Application number
PCT/JP2012/067985
Other languages
English (en)
French (fr)
Inventor
晃大 松山
静修 小宗
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/358,129 priority Critical patent/US20150050552A1/en
Priority to CN201280056355.1A priority patent/CN103959543A/zh
Priority to JP2013544151A priority patent/JP5831769B2/ja
Publication of WO2013073231A1 publication Critical patent/WO2013073231A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • the present invention relates to a lithium ion secondary battery and a method for manufacturing the same. Specifically, the present invention relates to a lithium ion secondary battery including a positive electrode active material mainly composed of a lithium composite oxide containing manganese and a method for manufacturing the same.
  • a lithium ion secondary battery including a positive electrode active material mainly composed of a lithium composite oxide containing manganese and a method for manufacturing the same.
  • the lithium ion secondary battery includes a positive electrode and a negative electrode, and an electrolytic solution (non-aqueous electrolytic solution) interposed between the two electrodes, and the lithium ion passes through an electrolytic solution containing a supporting electrolyte such as a lithium salt. Charging / discharging is performed by going back and forth between the positive electrode and the negative electrode.
  • the positive electrode contains a positive electrode active material that reversibly occludes and releases lithium ions.
  • An example of such a positive electrode active material is a lithium composite oxide (lithium-containing compound) containing lithium and at least one transition metal element.
  • a manganese-containing lithium composite oxide containing at least manganese (Mn) as a transition metal element is a positive electrode active material having a high capacity and excellent thermal stability.
  • Patent document 1 is mentioned as a prior art regarding the lithium ion secondary battery containing such a positive electrode active material.
  • Patent Document 1 describes a lithium ion secondary battery including a lithium manganese oxide that is a manganese-containing solid solution.
  • the present invention has been created to solve the above-described conventional problems, and the object thereof is a lithium ion secondary battery with improved elution suppression performance of manganese during charging and discharging of the lithium ion secondary battery. And to provide a method for suitably manufacturing the secondary battery.
  • the present invention provides a lithium ion secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte. That is, in the lithium ion secondary battery disclosed herein, the positive electrode includes a positive electrode current collector and a positive electrode mixture layer including at least a positive electrode active material formed on the positive electrode current collector.
  • the positive electrode active material is mainly composed of a manganese-containing lithium composite oxide containing lithium and at least manganese as a transition metal element, and at least iron formed on at least a part of the surface of the manganese-containing lithium composite oxide ( It is a positive electrode active material with a film provided with a film of an amorphous structure containing Fe) and fluorine (F).
  • the lithium ion secondary battery provided by the present invention is a positive electrode active in which a film of an amorphous structure containing at least iron (Fe) and fluorine (F) is formed on at least a part of the surface of a manganese-containing lithium composite oxide.
  • a film of an amorphous structure containing at least iron (Fe) and fluorine (F) is formed on at least a part of the surface of a manganese-containing lithium composite oxide.
  • at least a part (preferably substantially the entire surface) of the surface of the manganese-containing lithium composite oxide capable of reversibly occluding and releasing lithium ions is a substance different from the oxide.
  • Patent Document 2 discloses a technique in which an amorphous layer is formed on the surface of a metal compound (positive electrode active material).
  • the amorphous layer is formed on the surface of the positive electrode active material itself by ion implantation. A part thereof is made amorphous, and the configuration is different from that of the present invention described above.
  • the molar ratio (F / Fe) of iron (Fe) and fluorine (F) contained in the film of the amorphous structure is 1 or more. It is large and smaller than 6 (preferably 2 or more and 5 or less, more preferably 3 or more and 4 or less). According to such a configuration, since a film of a preferable embodiment is formed on the surface of the manganese-containing lithium composite oxide, a lithium ion secondary battery having excellent performance (excellent capacity retention rate) can be obtained.
  • the coating amount when the total amount of the coated positive electrode active material is 100% by mass is 0.5% by mass to 1.5% by mass. %. According to such a configuration, an appropriate amount of a film is formed on the surface of the manganese-containing lithium composite oxide, so that a lithium ion secondary battery having excellent performance can be obtained.
  • the manganese-containing lithium composite oxide has a layered rock salt structure or a spinel structure.
  • the manganese-containing lithium composite oxide has a redox potential of 4.6 V or more with respect to a metal lithium electrode.
  • the non-aqueous electrolyte includes at least an organic solvent and a lithium salt containing fluorine (F) as a constituent element.
  • a non-aqueous electrolyte exhibits high conductivity, and thus has a desirable property as a non-aqueous electrolyte used in a lithium ion secondary battery, while reacting with a trace amount of water that can be contained in the non-aqueous electrolyte.
  • Hydrogen fluoride (HF) is generated, and the HF reacts with the manganese-containing lithium composite oxide, so that manganese may be eluted into the non-aqueous electrolyte. Therefore, the effect by adopting the configuration of the present invention in which the amorphous structure coating having excellent hydrogen fluoride resistance is formed on the surface of the high-potential manganese-containing lithium composite oxide can be particularly exhibited.
  • a positive electrode in which a positive electrode mixture layer containing at least a positive electrode active material is formed on a positive electrode current collector, and at least a negative electrode active material on the negative electrode current collector
  • a method for producing a lithium ion secondary battery comprising: a negative electrode on which a negative electrode composite material layer containing a non-aqueous electrolyte is formed; That is, the method for producing a lithium ion secondary battery disclosed herein includes forming an electrode body including the positive electrode and the negative electrode, and housing the electrode body in a battery case together with the non-aqueous electrolyte. Includes.
  • the positive electrode active material As the positive electrode active material, the following treatments: an iron-containing solution containing at least one type of iron ion in an organic solvent, a fluorine-containing aqueous solution containing at least one type of fluorine ion in water, and at least as lithium and a transition metal element A step of preparing a mixed solution obtained by mixing manganese-containing lithium composite oxide containing manganese; a step of generating a precursor by removing the organic solvent and water in the mixed solution; By firing, a coated positive electrode active material in which a film of an amorphous structure containing at least iron (Fe) and fluorine (F) is formed on at least part of the surface of the manganese-containing lithium composite oxide is generated.
  • the film-coated positive electrode active material obtained by the step is used.
  • a coated positive electrode active material in which a film of an amorphous structure containing at least iron (Fe) and fluorine (F) is formed in a preferable form on at least a part of the surface of the manganese-containing lithium composite oxide is used. Therefore, the lithium-ion secondary battery in which manganese in the manganese-containing lithium composite oxide is effectively prevented from eluting from the oxide to the non-aqueous electrolyte during charging / discharging of the lithium-ion secondary battery Can be obtained.
  • the molar ratio of the iron ions contained in the iron-containing solution to the fluorine ions contained in the fluorine-containing aqueous solution (fluorine ions / iron).
  • the iron-containing solution and the fluorine-containing aqueous solution are prepared so that the ions are larger than 1 and smaller than 6 (preferably 2 or more and 5 or less, more preferably 3 or more and 4 or less). According to such a configuration, it is possible to form a film of a preferred embodiment on the surface of the manganese-containing lithium composite oxide.
  • the step of preparing the mixed solution includes iron obtained by dissolving an iron compound containing at least one iron ion in an organic solvent. Preparing a mixed material in which the manganese-containing lithium composite oxide is mixed in the containing solution, preparing a fluorine-containing aqueous solution in which a fluoride containing at least one fluorine ion is dissolved in water, and the mixing Mixing the material with the fluorine-containing aqueous solution. According to this configuration, it is possible to manufacture a lithium ion secondary battery using the coated positive electrode active material in which the above-described coating film in a preferable form is formed on the surface of the manganese-containing lithium composite oxide.
  • the coating amount is 0.5% by mass to 1.5% by mass when the total amount of the positive electrode active material with a coating is 100% by mass.
  • the mixed liquid is prepared. According to such a configuration, an appropriate amount of film can be formed on the surface of the manganese-containing lithium composite oxide, so that a lithium ion secondary battery having excellent performance can be manufactured.
  • the manganese-containing lithium composite oxide is a layered rock salt structure or a spinel structure.
  • the manganese-containing lithium composite oxide one having an oxidation-reduction potential of 4.6 V or more based on a metal lithium electrode is used.
  • the temperature for firing the precursor is set to 400 ° C. to 550 ° C. According to such a configuration, it is possible to form a film having a preferable form on the surface of the oxide while maintaining the structure of the manganese-containing lithium composite oxide.
  • the precursor is fired in an inert atmosphere.
  • the amorphous structure coating film is formed on the surface of the manganese-containing lithium composite oxide without forming an iron-derived oxide that may hinder the occlusion and release of lithium ions in the manganese-containing lithium composite oxide. Can be formed.
  • any one of the lithium ion secondary batteries disclosed herein or the lithium ion secondary battery obtained by any one of the manufacturing methods has a positive electrode active material (manganese-containing lithium composite oxide) during charging and discharging. Since the positive electrode active material with a film excellent in the performance which suppresses elution to the non-aqueous electrolyte of manganese is provided, it becomes a lithium ion secondary battery which can maintain a high capacity
  • a vehicle typically, an automobile including an electric motor such as an automobile, particularly
  • FIG. 1 is a perspective view schematically showing the outer shape of a lithium ion secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a flowchart for explaining a method of manufacturing a coated cathode active material according to an embodiment of the present invention.
  • FIG. 4 is a diagram schematically showing the structure of the positive electrode according to one embodiment of the present invention.
  • FIG. 5 is a cross-sectional TEM image showing the surface state of the coated positive electrode active material according to Example 1.
  • 6 is a graph showing the EDX results of the coated cathode active material according to Example 1.
  • FIG. 7 is a graph showing the results of differential scanning calorimetry (DSC) of the coated cathode active material according to Examples 1 to 4.
  • FIG. 8 is a graph showing the manganese deposition concentration of the lithium ion secondary batteries according to Examples 1A to 3A.
  • FIG. 9 is a graph showing the relationship between the coating amount and the output ratio and the coating amount and the capacity retention rate of the lithium ion secondary batteries according to Examples 12 to 16.
  • FIG. 10 is a side view schematically showing a vehicle (automobile) provided with the lithium ion secondary battery according to the present invention.
  • FIG. 11 is a graph showing the relationship between the molar ratio of iron and fluorine (F / Fe) and the capacity retention rate.
  • FIG. 12 is a graph showing the relationship between the type of coating and the capacity retention rate.
  • the positive electrode active material contained in the positive electrode mainly comprises a manganese-containing lithium composite oxide containing lithium and at least manganese as a transition metal element, and It is characterized by being a coated positive electrode active material comprising a film of an amorphous structure containing at least iron (Fe) and fluorine (F) formed on at least part of the surface of the manganese-containing lithium composite oxide.
  • a coated positive electrode active material comprising a film of an amorphous structure containing at least iron (Fe) and fluorine (F) formed on at least part of the surface of the manganese-containing lithium composite oxide.
  • the positive electrode disclosed here includes a positive electrode current collector and a positive electrode mixture layer including at least a positive electrode active material (a positive electrode active material with a film) formed on the positive electrode current collector.
  • the positive electrode current collector used in the positive electrode of the lithium ion secondary battery disclosed here is mainly composed of aluminum or aluminum, as in the positive electrode current collector used in the positive electrode of a conventional lithium ion secondary battery. An aluminum alloy is used.
  • the shape of the positive electrode current collector may vary depending on the shape or the like of the lithium ion secondary battery, and is not particularly limited, and may be various forms such as a foil shape, a sheet shape, a rod shape, and a plate shape.
  • the positive electrode active material used in the positive electrode of the lithium ion secondary battery disclosed herein includes a manganese-containing lithium composite oxide capable of reversibly occluding and releasing lithium ions, and at least a part of the surface of the composite oxide.
  • a coated positive electrode active material comprising a formed amorphous structure film containing at least iron (Fe) and fluorine (F).
  • the manganese-containing lithium composite oxide that is the main component of the coated positive electrode active material include lithium (element) and a lithium-containing compound containing at least manganese as a transition metal element.
  • Li x Mn y M z O 2 (where 1 ⁇ x ⁇ 2, 0.2 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 2 ⁇ x + y + z ⁇ 3, M is Co, Ni, F, B, At least one element selected from Al, W, Mo, Cr, Ta, Nb, V, Zr, Ti, and Y (typically a transition metal element)), Li 1 + x Mn 2- y My O 4 (Where 0 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 1, M is selected from Co, Ni, F, B, Al, W, Mo, Cr, Ta, Nb, V, Zr, Ti, Y And at least one element (typically a transition metal element).
  • Li 1.2 Mn 0.54 Co 0.13 Ni 0.13 O 2 having a layered rock salt structure (layered rock salt type crystal structure) or LiMn 0.33 Co 0.33 Ni 0. Examples include 33 O 2 and LiMn 1.5 Ni 0.5 O 4 having a spinel structure.
  • the manganese-containing lithium composite oxide a high-potential oxide having an oxidation-reduction potential of 4.6 V or more with respect to a metal lithium electrode can be preferably used.
  • the manganese-containing lithium composite oxide may be in the form of secondary particles in which primary particles are collected, and the average particle size (median diameter d50) of the secondary particles is, for example, 1 ⁇ m to 50 ⁇ m.
  • the thickness is preferably 3 ⁇ m to 10 ⁇ m.
  • the average particle diameter can be easily measured by a particle size distribution measuring apparatus based on various commercially available laser diffraction / scattering methods.
  • the film formed on at least a part of the surface of the manganese-containing lithium composite oxide, which is the main component of the coated positive electrode active material, is an amorphous structure containing at least iron (Fe) and fluorine (F).
  • the coating of this is mentioned.
  • the iron (Fe) constituting the coating film of the amorphous structure both divalent iron (Fe (II)) and trivalent iron (Fe (III)) having an ionic valence can be preferably used.
  • the film of the amorphous structure include iron (Fe), fluorine (F), and oxygen (O) such as Fe (II) -FO, Fe (III) -FO. Things.
  • the molar ratio (F / Fe) of iron (Fe) and fluorine (F) contained in the film of the amorphous structure is more than 1 and less than 6 (preferably 2 or more and 5 or less, more preferably Is 3 or more and 3.5 or less).
  • the molar ratio (F / Fe) is less than 1, the amount of fluorine is too small, and therefore the amorphous structure containing at least iron (Fe) and fluorine (F) on the surface of the manganese-containing lithium composite oxide. A film cannot be formed sufficiently.
  • the amount of fluorine is too large, and there is a possibility that fluorine and a manganese-containing lithium composite oxide react to produce a compound such as LiF. is there. Since such a compound cannot contribute to charging / discharging, the capacity retention rate decreases.
  • the amount of the iron element and the amount of the fluorine element contained in the film of the amorphous structure can be detected by, for example, ICP (high frequency inductively coupled plasma) emission analysis, ion chromatography, or the like.
  • the coating amount of the amorphous structure is approximately 0.5% by mass when the total amount of the positive electrode active material with the coating (that is, the total amount of the manganese-containing lithium composite oxide and the amorphous structure coating) is 100% by mass. It is preferable that the amount is 1.5% by mass (preferably 0.8% by mass to 1.2% by mass). When the amount of coating is less than 0.5% by mass or when the amount of coating is more than 1.5% by mass, the capacity retention rate may be greatly reduced.
  • FIG. 3 is a flowchart for explaining a method of manufacturing a coated cathode active material according to an embodiment of the present invention. As shown in FIG. 3, a mixed solution preparation step (S10), a precursor generation step (S20), and a coated positive electrode active material generation step (S30) are included.
  • the mixed solution preparation step includes an iron-containing solution containing at least one iron ion in an organic solvent, a fluorine-containing aqueous solution containing at least one fluorine ion in water, and manganese containing at least manganese as lithium and a transition metal element Mixing with a lithium composite oxide is included.
  • the iron-containing solution is a solution containing at least one iron ion in an organic solvent as described above, and an iron compound containing at least one iron ion (divalent or trivalent) is added to the organic solvent and stirred. And can be prepared by sonication or the like.
  • the iron compound include inorganic acid salts (eg, iron nitrate, iron sulfate, iron chloride) and organic acid salts (eg, iron acetate, iron citrate, iron malate, iron ascorbate, iron oxalate, etc.) Can be used. Among these, you may use together 1 type, or 2 or more types.
  • organic solvent for example, N, N-dimethylformamide, N-methyl-2-pyrrolidone (NMP), pyridine, N, N-dimethylacetamide, parachlorophenol, etc. are used alone or in appropriate combination. can do.
  • the fluorine-containing aqueous solution is a solution containing at least one fluorine ion in water as described above, and a fluoride containing at least one fluorine ion is poured into water (typically ion-exchanged water or distilled water). It can be prepared by stirring and sonication.
  • water typically ion-exchanged water or distilled water.
  • the fluoride any water-soluble fluoride that does not contain a metal element can be used without any particular limitation. For example, ammonium fluoride etc. are mentioned.
  • the molar ratio (fluorine ion / iron ion) between the iron ions contained in the iron-containing solution and the fluorine ions contained in the fluorine-containing aqueous solution is larger than 1 and smaller than 6 (preferably 2 or more and 5 or less, It is more preferable that the iron-containing solution and the fluorine-containing aqueous solution are prepared so as to be 3 or more and 3.5 or less.
  • the above-mentioned iron-containing solution, the above-mentioned fluorine-containing aqueous solution, and the above-mentioned manganese-containing lithium composite oxide are mixed, and a mixed solution is prepared by mixing these materials by stirring and ultrasonication.
  • a mixed material prepared by mixing the manganese-containing lithium composite oxide in the iron-containing solution in advance is prepared (prepared), and a mixed solution prepared by mixing the mixed material and the fluorine-containing aqueous solution is prepared. It is preferable.
  • the precursor generation step includes removing the organic solvent and water in the prepared mixed liquid.
  • the method for removing the organic solvent and water in the mixed solution is not particularly limited, and examples thereof include a method of heating the mixed solution and a method using a commercially available reduced pressure concentrator (for example, a rotary evaporator, a flash evaporator, etc.). .
  • the temperature at which the mixed solution is heated is a temperature at which the organic solvent in the iron-containing solution and the water in the fluorine-containing aqueous solution can be removed (evaporated) (typically a temperature equal to or higher than the boiling point of the organic solvent). For example, it is about 170 ° C. to 200 ° C.
  • a precursor can be produced
  • the step of generating a coated positive electrode active material includes firing the precursor.
  • a coated cathode active material in which a film of an amorphous structure containing at least iron (Fe) and fluorine (F) is formed on at least a part of the surface of the manganese-containing lithium composite oxide.
  • the temperature for firing the precursor is preferably about 400 ° C. to 550 ° C. (for example, 450 ° C.). If the firing temperature is lower than 400 ° C., impurities may be contained in the produced coated positive electrode active material, which is not preferable.
  • the transition metal element in the manganese-containing lithium composite oxide which is the main component of the coated positive electrode active material, may react and the structure of the oxide may be broken. is there.
  • inert atmosphere such as argon gas and nitrogen gas.
  • the positive electrode mixture layer may contain an optional component such as a conductive material and a binder (binder) in addition to the positive electrode active material with a film as necessary.
  • the conductive material is not limited to a specific conductive material as long as it is conventionally used in the positive electrode of this type of lithium ion secondary battery.
  • carbon materials such as carbon powder and carbon fiber can be used.
  • As the carbon powder various carbon blacks (for example, acetylene black, furnace black, ketjen black, etc.), carbon powders such as graphite powder can be used. Among these, you may use together 1 type, or 2 or more types.
  • the amount of the conductive material used is not particularly limited.
  • the conductive material is used in an amount of 1% by mass to 20% by mass (preferably 5% by mass to 15% by mass) with respect to 100% by mass of the coated positive electrode active material. Is exemplified.
  • the same binder as that used for the positive electrode of a general lithium ion secondary battery can be appropriately adopted.
  • a solvent-based paste-like composition a paste-like composition includes a slurry-like composition and an ink-like composition
  • a polyfluoride is used as the composition for forming the positive electrode mixture layer.
  • Polymer materials that dissolve in an organic solvent (non-aqueous solvent) such as vinylidene chloride (PVDF) and polyvinylidene chloride (PVDC) can be used.
  • PVDF vinylidene chloride
  • PVDC polyvinylidene chloride
  • an aqueous paste composition a polymer material that can be dissolved or dispersed in water can be preferably used.
  • polytetrafluoroethylene PTFE
  • CMC carboxymethyl cellulose
  • the polymer material illustrated above may be used as a thickener and other additives in the above composition in addition to being used as a binder.
  • the amount of the binder used is not particularly limited, and can be, for example, 0.5% by mass to 10% by mass with respect to 100% by mass of the coated positive electrode active material.
  • the “solvent-based paste-like composition” is a concept indicating a composition in which the dispersion medium of the coated positive electrode active material is mainly an organic solvent.
  • the organic solvent for example, N-methyl-2-pyrrolidone (NMP) can be used.
  • NMP N-methyl-2-pyrrolidone
  • the “aqueous paste-like composition” is a concept indicating a composition using water or a mixed solvent mainly composed of water as a dispersion medium for the positive electrode active material with a film.
  • a solvent other than water constituting such a mixed solvent one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used.
  • the positive electrode of the lithium ion secondary battery disclosed here can be produced as follows, for example.
  • a paste-like composition for forming a positive electrode mixture layer is prepared (preparation, purchase, etc.) in which the positive electrode active material with a film and other optional components (the conductive material, the binder, etc.) are dispersed in an appropriate solvent.
  • the prepared composition is applied (applied) to the surface of the positive electrode current collector, the composition is dried to form a positive electrode mixture layer, and then compressed (pressed) as necessary.
  • a positive electrode provided with a positive electrode current collector and a positive electrode mixture layer formed on the positive electrode current collector can be produced.
  • the technique similar to a conventionally well-known method is employable suitably.
  • the composition can be suitably applied to the positive electrode current collector by using an appropriate application device such as a die coater, a slit coater, or a gravure coater.
  • an appropriate application device such as a die coater, a slit coater, or a gravure coater.
  • a compression (pressing) method conventionally known compression methods such as a roll press method and a flat plate press method can be employed.
  • the positive electrode 64 manufactured as described above includes a positive electrode current collector 62 and a positive electrode mixture layer 66 including a positive electrode active material 70 with a film formed on the current collector 62. And.
  • the coated positive electrode active material 70 in the positive electrode mixture layer 66 is a film of an amorphous structure formed on at least a part of the surface of the manganese-containing lithium composite oxide 72 and containing at least iron (Fe) and fluorine (F). 74 is a positive electrode active material.
  • the coated positive electrode active material 70 has a higher heat generation start temperature and a smaller heat generation amount than those without a film, and is excellent in thermal stability.
  • illustration of a conductive material, a binder, etc. is abbreviate
  • the negative electrode includes a negative electrode current collector and a negative electrode mixture layer including at least a negative electrode active material formed on the negative electrode current collector.
  • the negative electrode active material one or more materials conventionally used for negative electrodes of lithium ion secondary batteries can be used without particular limitation.
  • carbon materials such as graphite (graphite), oxide materials such as lithium titanium oxide (Li 4 Ti 5 O 12 ), metals such as tin, aluminum (Al), zinc (Zn), silicon (Si), or Examples thereof include metal materials composed of metal alloys mainly composed of these metal elements.
  • the negative electrode mixture layer may contain any component such as a binder (binder) and a thickener as necessary in addition to the negative electrode active material.
  • a binder the thing similar to the binder used for the negative electrode of a general lithium ion secondary battery can be employ
  • a polymer material that is dissolved or dispersed in water can be preferably used.
  • Polymer materials that disperse in water include rubbers such as styrene butadiene rubber (SBR) and fluorine rubber; fluorine resins such as polyethylene oxide (PEO) and polytetrafluoroethylene (PTFE); vinyl acetate Examples thereof include copolymers.
  • SBR styrene butadiene rubber
  • fluorine resins such as polyethylene oxide (PEO) and polytetrafluoroethylene (PTFE); vinyl acetate Examples thereof include copolymers.
  • a polymer material that is dissolved or dispersed in water or a solvent (organic solvent) can be employed as the thickener.
  • water-soluble (water-soluble) polymer materials include cellulose polymers such as carboxymethyl cellulose (CMC), methyl cellulose (MC), cellulose acetate phthalate (CAP), and hydroxypropylmethyl cellulose (HPMC); polyvinyl alcohol ( PVA); and the like.
  • the negative electrode mixture layer is, for example, for forming a paste-like negative electrode mixture layer in which the negative electrode active material and other optional components (binder, thickener, etc.) are dispersed in an appropriate solvent (for example, water).
  • an appropriate solvent for example, water.
  • a lithium ion secondary battery including a positive electrode and a negative electrode disclosed herein will be described with reference to the drawings.
  • the present invention is not intended to be limited to such an embodiment. That is, as long as the positive electrode is employed, the shape (outer shape and size) of the manufactured lithium ion secondary battery is not particularly limited.
  • a lithium ion secondary battery having a configuration in which a wound electrode body and an electrolytic solution are housed in a rectangular battery case will be described as an example.
  • symbol is attached
  • the dimensional relationship (length, width, thickness, etc.) in each drawing does not necessarily reflect the actual dimensional relationship.
  • FIG. 1 is a perspective view schematically showing a lithium ion secondary battery (nonaqueous electrolyte secondary battery) 10 according to the present embodiment.
  • FIG. 2 is a longitudinal sectional view taken along line II-II in FIG.
  • the lithium ion secondary battery 10 according to this embodiment includes a battery case 15 made of metal (a resin or a laminate film is also suitable).
  • the case (outer container) 15 includes a flat cuboid case main body 30 having an open upper end, and a lid body 25 that closes the opening 20.
  • the lid body 25 seals the opening 20 of the case main body 30 by welding or the like.
  • a positive electrode terminal 60 electrically connected to the positive electrode 64 of the wound electrode body 50 and a negative electrode terminal 80 electrically connected to the negative electrode 84 of the electrode body are provided on the upper surface of the case 15 (that is, the lid body 25).
  • the lid 25 is provided with a safety valve 40 for discharging the gas generated inside the case 15 to the outside of the case 15 when the battery is abnormal, as in the case of the conventional lithium ion secondary battery.
  • a sheet-like positive electrode 64 and a sheet-like negative electrode 84 are laminated together with a total of two separators 90 and wound in the longitudinal direction. The flat wound electrode body 50 and the non-aqueous electrolyte solution produced by this are accommodated.
  • the positive electrode mixture layer non-formed portion of the positive electrode 64 that is, the portion where the positive electrode current collector 62 is exposed without forming the positive electrode mixture layer 66
  • the negative electrode 84 are formed so that the negative electrode mixture layer non-formed portion (that is, the portion where the negative electrode collector layer 86 is not formed and the negative electrode collector 82 is exposed) protrudes from both sides in the width direction of the separator 90. Are overlapped slightly in the width direction.
  • the electrode mixture layer non-formed portions of the positive electrode 64 and the negative electrode 84 are respectively wound core portions (that is, the positive electrode mixture layer 66 and the negative electrode 84 of the positive electrode 64).
  • the positive electrode terminal 60 is joined to the portion where the positive electrode mixture layer is not formed, and the positive electrode 64 and the positive electrode terminal 60 of the wound electrode body 50 formed in the flat shape are electrically connected. .
  • the negative electrode terminal 80 is joined to the portion where the negative electrode mixture layer is not formed, and the negative electrode 84 and the negative electrode terminal 80 are electrically connected.
  • the positive and negative electrode terminals 60 and 80 and the positive and negative electrode current collectors 62 and 82 can be joined by, for example, ultrasonic welding, resistance welding, or the like.
  • non-aqueous electrolyte the thing similar to the non-aqueous electrolyte conventionally used for the lithium ion secondary battery can be used without limitation.
  • a non-aqueous electrolyte typically has a composition in which a supporting salt is contained in an appropriate organic solvent (non-aqueous solvent).
  • organic solvent for example, one or more selected from ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and the like are used. be able to.
  • the supporting salt for example, LiPF 6, LiBF 4, LiAsF 6, Li (CF 3 SO 2) 2 N, lithium salt containing as a constituent element fluorine (F), such as LiCF 3 SO 3 Is preferably used.
  • difluorophosphate LiPO 2 F 2
  • lithium bisoxalate borate LiBOB
  • a conventionally known separator can be used without any particular limitation.
  • a porous sheet made of resin a microporous resin sheet
  • a porous polyolefin resin sheet such as polyethylene (PE) or polypropylene (PP) is preferred.
  • PE polyethylene
  • PP polypropylene
  • a PE sheet, a PP sheet, a sheet having a three-layer structure (PP / PE / PP structure) in which PP layers are laminated on both sides of the PE layer, and the like can be suitably used.
  • Example 1 An iron-containing solution containing 0.075 g of iron (II) acetate as an iron compound in N, N-dimethylformamide as an organic solvent and dissolved by stirring and sonication was added to a manganese-containing lithium composite oxide ( A mixed material according to Example 1 prepared by mixing 4 g of Li 1.2 Mn 0.54 Co 0.13 Ni 0.13 O 2 as a positive electrode active material) was prepared. Next, 0.032 g of ammonium fluoride as a fluoride was added to ion-exchanged water, and stirred and subjected to ultrasonic treatment to prepare a fluorine-containing aqueous solution according to Example 1.
  • N, N-dimethylformamide and ion-exchanged water are removed (evaporated) while stirring a mixed solution obtained by mixing the mixed material according to Example 1 and the fluorine-containing aqueous solution according to Example 1 at 180 ° C.
  • a precursor was produced. Thereafter, the precursor is baked at 450 ° C. for 10 hours in an inert atmosphere (argon gas), and a film of an amorphous structure containing at least iron and fluorine on the surface of the manganese-containing lithium composite oxide (positive electrode active material) ( A coated positive electrode active material according to Example 1 in which Fe (II) -FO) was formed was obtained.
  • FIG. 5 is a cross-sectional TEM image showing the surface state of the coated positive electrode active material according to Example 1.
  • a film 74 was formed on the surface of the manganese-containing lithium composite oxide 72, and it was confirmed that the structure of the film 74 was an amorphous structure.
  • FIG. 6 is a graph showing the results of EDX analysis of the coated cathode active material according to Example 1. As shown in FIG. 6, it was confirmed that the film 74 (see FIG. 5) contains iron (Fe), fluorine (F), and oxygen (O).
  • the positive electrode active material with a film according to Example 1, acetylene black (AB) as a conductive material, and PVDF as a binder are weighed so as to have a mass ratio of 85: 10: 5.
  • a paste-like composition for forming a positive electrode mixture layer according to Example 1 was prepared by dispersing. The composition is applied on both sides of a positive electrode current collector (aluminum foil) having a thickness of 15 ⁇ m, applied at a coating amount of 6.4 mg / cm 2 , and the applied composition is dried to form a positive electrode mixture layer. did.
  • the positive electrode in which the positive electrode mixture layer was formed on the positive electrode current collector was obtained by pressing the positive electrode mixture layer so as to have a mixture density of 2.45 g / cm 3 with a rolling press. Finally, this positive electrode was cut out to have a diameter of 16 mm to produce the positive electrode according to Example 1.
  • a lithium ion secondary battery (CR2032-type coin cell) was produced using the positive electrode according to Example 1 and a negative electrode made of metallic lithium having a diameter of 19 mm and a thickness of 35 ⁇ m.
  • the porous separator made from polyethylene was used as a separator.
  • the non-aqueous electrolyte a non-aqueous electrolyte having a composition in which 1 mol / L LiPF 6 was dissolved as a supporting salt in a 1: 1 (volume ratio) mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC). used.
  • Example 2 Manganese-containing lithium is added to an iron-containing solution in which 0.1092 g of iron (III) nitrate nonahydrate as an iron compound is placed in N, N-dimethylformamide as an organic solvent and dissolved by stirring and ultrasonication.
  • a mixed material according to Example 2 prepared by mixing 4 g of Li 1.2 Mn 0.54 Co 0.13 Ni 0.13 O 2 as a composite oxide (positive electrode active material) was prepared.
  • a lithium ion secondary battery according to Example 2 was fabricated in the same manner as Example 1 except that the mixed material according to Example 2 was used.
  • the positive electrode active material with a film according to Example 2 is a film of an amorphous structure (Fe (III) -FO) containing at least iron and fluorine on the surface of a manganese-containing lithium composite oxide (positive electrode active material). It is formed.
  • Example 3 The mass ratio of Li 1.2 Mn 0.54 Co 0.13 Ni 0.13 O 2 , acetylene black (AB), and PVDF as a manganese-containing lithium composite oxide (positive electrode active material) is 85:10: 5 was measured and these materials were dispersed in NMP to prepare a paste-like composition for forming a positive electrode mixture layer according to Example 3.
  • a lithium ion secondary battery according to Example 3 was produced in the same manner as in Example 1 except that the composition according to Example 3 was used.
  • Example 4 0.11 g of aluminum nitrate and 0.21 g of ammonium fluoride were dissolved in distilled water to prepare a mixed solution. Next, 4 g of Li 1.2 Mn 0.54 Co 0.13 Ni 0.13 O 2 as a manganese-containing lithium composite oxide (positive electrode active material) was charged into N, N-dimethylformamide, and the above preparation was performed. A mixed solution according to Example 4 prepared by mixing the mixed solution was prepared. A coated positive electrode active material according to Example 4 was obtained in the same manner as in Example 1 except that the mixed liquid according to Example 4 was used.
  • the coated positive electrode active material according to Example 4 is obtained by forming a film of aluminum fluoride (AlF 3 ) on the surface of a manganese-containing lithium composite oxide (positive electrode active material). At this time, the mass ratio of the positive electrode active material to AlF 3 was 99: 1.
  • the positive electrode active material with a film according to Example 4, acetylene black (AB), and PVDF are weighed so as to have a mass ratio of 85: 10: 5, and these materials are dispersed in NMP to obtain a paste form according to Example 4
  • a positive electrode mixture layer forming composition was prepared.
  • a lithium ion secondary battery according to Example 4 was produced in the same manner as in Example 1 except that the composition according to Example 4 was used.
  • Example 5 Titanium (IV) ethoxide 0.08 g as a titanium compound was put into N, N-dimethylformamide and dissolved by stirring and ultrasonic treatment to obtain a manganese-containing lithium composite oxide (positive electrode active material).
  • a mixed material according to Example 5 was prepared by mixing 4 g of Li 1.2 Mn 0.54 Co 0.13 Ni 0.13 O 2 .
  • a lithium ion secondary battery according to Example 5 was fabricated in the same manner as in Example 1 except that the mixed material according to Example 5 was used instead of the mixed material according to Example 1.
  • the positive electrode active material with a film according to Example 5 has an amorphous structure film (Ti (IV) -FO) containing at least titanium and fluorine on the surface of a manganese-containing lithium composite oxide (positive electrode active material). It is formed.
  • Example 6 LiMn 0 as a manganese-containing lithium composite oxide (positive electrode active material) was added to an iron-containing solution in which 0.075 g of iron (II) acetate was put into N, N-dimethylformamide and dissolved by stirring and ultrasonic treatment.
  • a mixed material according to Example 6 prepared by mixing 4 g of .33 Co 0.33 Ni 0.33 O 2 was prepared.
  • a lithium ion secondary battery according to Example 6 was produced in the same manner as in Example 1 except that the mixed material according to Example 6 was used.
  • Example 7 Manganese-containing lithium composite oxide (positive electrode active material) was added to an iron-containing solution in which 0.1092 g of iron (III) nitrate nonahydrate was put into N, N-dimethylformamide and dissolved by stirring and sonication. A mixed material according to Example 7 prepared by mixing 4 g of LiMn 0.33 Co 0.33 Ni 0.33 O 2 was prepared. A lithium ion secondary battery according to Example 7 was produced in the same manner as in Example 1 except that the mixed material according to Example 7 was used.
  • Example 8 A lithium ion secondary battery according to Example 8 was produced in the same manner as in Example 3, except that LiMn 0.33 Co 0.33 Ni 0.33 O 2 was used as the manganese-containing lithium composite oxide (positive electrode active material). did.
  • Example 9 A lithium ion secondary battery according to Example 9 was prepared in the same manner as in Example 4 except that LiMn 0.33 Co 0.33 Ni 0.33 O 2 was used as the manganese-containing lithium composite oxide (positive electrode active material). did.
  • Example 10 LiMn 1 as a manganese-containing lithium composite oxide (positive electrode active material) was added to an iron-containing solution in which 0.075 g of iron (II) acetate was put into N, N-dimethylformamide and dissolved by stirring and ultrasonic treatment.
  • a mixed material according to Example 10 prepared by mixing 4 g of 0.5 Ni 0.5 O 4 was prepared.
  • a lithium ion secondary battery according to Example 10 was fabricated in the same manner as in Example 1 except that the mixed material according to Example 10 was used.
  • Example 11 Weighing so that the mass ratio of LiMn 1.5 Ni 0.5 O 4 as manganese-containing lithium composite oxide (positive electrode active material), acetylene black (AB), and PVDF is 85: 10: 5, These materials were dispersed in NMP to prepare a paste-like composition for forming a positive electrode mixture layer according to Example 11.
  • a lithium ion secondary battery according to Example 11 was produced in the same manner as in Example 1 except that the composition according to Example 11 was used.
  • Table 1 shows the configurations of the lithium ion secondary batteries according to Examples 1 to 11.
  • charge / discharge conditions of one cycle for the lithium ion secondary batteries according to Example 10 and Example 11 were constant current and constant voltage charge (CCCV charge) up to a voltage of 5 V at a measurement rate of 25 ° C., and thereafter Constant current discharge was performed to a voltage of 4.3 V at a discharge rate of 2C.
  • the discharge capacity at the first cycle and the discharge capacity at the 30th cycle were measured.
  • the ratio of the discharge capacity after 30 cycles to the discharge capacity after 1 cycle (initial capacity) ((discharge capacity after 30 cycles / initial capacity) ⁇ 100 (%)) was calculated as the capacity retention rate (%).
  • the above measurement results are shown in Table 1.
  • the capacity retention rate of the manganese-containing lithium composite oxide having an amorphous structure coating containing at least iron and fluorine is higher than that having no coating. (Example 1 to Example 3. Example 6 to Example 8. Example 10 and Example 11). Furthermore, it was confirmed that the film of the amorphous structure containing at least iron and fluorine has a greatly improved capacity retention rate as compared with the film containing other transition metal elements (Examples 1, 2, 4 and 5. Examples 6, 7 and Example 9).
  • FIG. 7 is a graph (DSC curve) showing the results of differential scanning calorimetry of the coated cathode active material according to Examples 1 to 4.
  • the heat generation start temperature [° C.] was determined from the tangent at the initial peak of the DSC curve, and the heat generation amount [kJ / g] was determined from the area from 50 ° C. to 350 ° C. of the DSC curve.
  • the measurement results are shown in Table 1.
  • the heat generation start temperature is higher than that without the film.
  • the calorific value was greatly reduced (Example 1 to Example 3.
  • the coating of the amorphous structure containing at least iron and fluorine may have a higher heat generation start temperature and / or a lower heating value than the coating containing other transition metal elements. (Examples 1, 2, 4, and 5. Examples 6, 7, and 9).
  • the coated positive electrode active material in which the film of the amorphous structure containing at least iron and fluorine is formed on the surface of the manganese-containing lithium composite oxide has excellent thermal stability, and the conventional positive electrode active material Compared to the above, the possibility of occurrence of defects at high temperatures is small.
  • Example 1A [Measurement of manganese precipitation concentration] ⁇ Example 1A> Weigh so that the mass ratio of natural graphite as a negative electrode active material, SBR as a binder, and CMC as a thickener is 98: 1: 1, and these materials are dispersed in ion-exchanged water to form a paste.
  • a negative electrode mixture layer forming composition was prepared. The composition is coated on both sides of a negative electrode current collector (copper foil) having a thickness of 10 ⁇ m, and the applied composition is dried to obtain a negative electrode in which a negative electrode mixture layer is formed on the negative electrode current collector. Produced.
  • a lithium ion secondary battery according to Example 1A was produced in the same manner as Example 1 except that the produced negative electrode was used.
  • Example 2A> A lithium ion secondary battery according to Example 2A was produced in the same manner as Example 1A, except that the coated cathode active material according to Example 2 was used.
  • Example 3A> A lithium ion secondary battery according to Example 3A was produced in the same manner as Example 1A, except that the composition according to Example 3 was used.
  • the manganese precipitation concentration is the precipitation amount [g] of Mn relative to the total amount [g] of the negative electrode active material.
  • the measurement results are shown in FIG.
  • the lithium ion secondary battery including the coating film of Example 1A (Fe (II) -FO) and the coating film of Example 2A (Fe (III) -FO) includes the above-described coating film. It was confirmed that the manganese precipitation concentration was reduced to half or less as compared with the lithium ion secondary battery according to Example 3A.
  • Example 12 Iron acetate (II) 0.075 g N, in which dissolved N- charged in dimethyl formamide is subjected to stirring and sonication, Li 1.2 as manganese-containing lithium composite oxide (positive electrode active material)
  • a mixed material according to Example 12 was prepared by mixing 4 g of Mn 0.54 Co 0.13 Ni 0.13 O 2 .
  • 0.032 g of ammonium fluoride as a fluoride was added to ion-exchanged water, and stirred and subjected to ultrasonic treatment to prepare a fluorine-containing aqueous solution according to Example 12.
  • N, N-dimethylformamide and ion-exchanged water are removed (evaporated) while stirring a mixed solution obtained by mixing the mixed material according to Example 12 and the fluorine-containing aqueous solution according to Example 12 at 180 ° C.
  • a precursor was produced. Thereafter, the precursor is baked at 450 ° C. for 10 hours in an inert atmosphere (argon gas), and a film of an amorphous structure containing at least iron and fluorine on the surface of the manganese-containing lithium composite oxide (positive electrode active material) ( A coated positive electrode active material according to Example 12 in which Fe (II) -FO) was formed was obtained.
  • a lithium ion secondary battery according to Example 12 was produced in the same manner as in Example 1, except that the coated cathode active material according to Example 12 was used.
  • lithium ion secondary batteries according to Examples 13 to 16 were produced.
  • the manganese-containing lithium composite was prepared by adjusting the amounts of iron (II) acetate and ammonium fluoride used when producing the coated cathode active material according to each example. It is a lithium ion secondary battery in which the coating amount formed on the surface of the oxide is changed.
  • Table 2 shows the configurations of the lithium ion secondary batteries according to Examples 12 to 16.
  • the coating amount when the total amount of the coated positive electrode active material is 100% by mass is 0.5% by mass to 1.5% by mass (for example, 0.8% by mass to 1.2% by mass). Was confirmed to be preferable.
  • the lithium ion secondary battery provided with the coating of Fe (II) -FO and Fe (III) -FO is excellent in battery performance (capacity maintenance ratio, etc.).
  • capacity maintenance rate of the lithium ion secondary battery changes depending on the molar ratio of iron to fluorine for the amorphous structure coating containing iron (Fe) and fluorine (F).
  • Example 2-1 The iron-containing solution so that the molar ratio of the iron ions contained in the iron-containing solution and the fluorine ions contained in the fluorine-containing aqueous solution is 1: 3 (that is, the molar ratio (fluorine ions / iron ions) is 3).
  • a lithium ion secondary battery according to Example 2-1 was produced in the same manner as in Example 1 except that the fluorine-containing aqueous solution was prepared. At this time, the molar ratio (F / Fe) between iron and fluorine contained in the amorphous structure coating (Fe (II) -FO) was 3.
  • Example 2-2 A lithium ion secondary battery according to Example 2-2 was produced in the same manner as in Example 1 except that the fluorine-containing aqueous solution was not used.
  • the positive electrode active material with a film according to Example 2-2 is a film in which an amorphous structure film (Fe (II) O) containing at least iron is formed on the surface of a manganese-containing lithium composite oxide (positive electrode active material).
  • the molar ratio of iron to fluorine (F / Fe) was 0.
  • Example 2-3 The iron-containing solution so that the molar ratio of the iron ions contained in the iron-containing solution and the fluorine ions contained in the fluorine-containing aqueous solution is 1: 1 (that is, the molar ratio (fluorine ions / iron ions) is 1).
  • a lithium ion secondary battery according to Example 2-3 was produced in the same manner as in Example 1 except that a fluorine-containing aqueous solution was prepared. At this time, the molar ratio (F / Fe) between iron and fluorine contained in the amorphous structure coating (Fe (II) -FO) was 1.
  • Example 2-4 The iron-containing solution so that the molar ratio of the iron ions contained in the iron-containing solution and the fluorine ions contained in the fluorine-containing aqueous solution is 1: 2 (that is, the molar ratio (fluorine ions / iron ions) is 2).
  • a lithium ion secondary battery according to Example 2-4 was produced in the same manner as in Example 1 except that a fluorine-containing aqueous solution was prepared. At this time, the molar ratio (F / Fe) of iron and fluorine contained in the amorphous structure coating (Fe (II) -FO) was 2.
  • Example 2-5 The molar ratio between the iron ions contained in the iron-containing solution and the fluorine ions contained in the fluorine-containing aqueous solution is 1: 3.5 (that is, the molar ratio (fluorine ions / iron ions) is 3.5).
  • a lithium ion secondary battery according to Example 2-5 was produced in the same manner as in Example 1 except that an iron-containing solution and a fluorine-containing aqueous solution were prepared. At this time, the molar ratio (F / Fe) of iron and fluorine contained in the film (Fe (II) -FO) of the amorphous structure was 3.5.
  • Example 2-6 The iron-containing solution so that the molar ratio of the iron ions contained in the iron-containing solution to the fluorine ions contained in the fluorine-containing aqueous solution is 1: 6 (that is, the molar ratio (fluorine ions / iron ions) is 6).
  • a lithium ion secondary battery according to Example 2-6 was produced in the same manner as in Example 1 except that the fluorine-containing aqueous solution was prepared. At this time, the molar ratio (F / Fe) of iron and fluorine contained in the amorphous structure coating (Fe (II) -FO) was 6.
  • the charge / discharge conditions of one cycle for the lithium ion secondary batteries according to Example 2-1 to Example 2-6 are constant current and constant voltage charge up to a voltage of 4.6 V at a charge rate of 2 C at a measurement temperature of 25 ° C. CCCV charge), followed by constant current discharge to a voltage of 2.5 V at a discharge rate of 2C.
  • the discharge capacity at the first cycle and the discharge capacity at the 30th cycle were measured.
  • the ratio of the discharge capacity after 30 cycles to the discharge capacity after 1 cycle (initial capacity) ((discharge capacity after 30 cycles / initial capacity) ⁇ 100 (%)) was calculated as the capacity retention rate (%).
  • the above measurement results are shown in FIG.
  • the molar ratio (F / Fe) is 2 or more and 4 or less, and particularly when the molar ratio (F / Fe) is 3 or more and 3.5 or less, the capacity retention rate exceeds 90%, and the battery performance is improved. It was confirmed to be excellent. Therefore, from this test result, the molar ratio (F / Fe) of iron and fluorine contained in the film of the amorphous structure is larger than 1 and smaller than 6, preferably 2 or more and 4 or less, more preferably 3 or more and 3.5. It was confirmed that the battery performance was excellent.
  • the capacity retention rate of the lithium ion secondary battery depends on the type of transition metal contained in the coating film. I examined how it changed.
  • Example 2-7 In the same manner as in Example 3, a lithium ion secondary battery according to Example 2-7 was produced.
  • a mixed material according to Example 2-9 prepared by mixing 4 g of Li 1.2 Mn 0.54 Co 0.13 Ni 0.13 O 2 as an active material) was prepared.
  • a lithium ion secondary battery according to Example 2-9 was produced in the same manner as in Example 1 except that the mixed material according to Example 2-9 was used instead of the mixed material according to Example 1.
  • the coated positive electrode active material according to Example 2-9 is a film of an amorphous structure (Mn (II) -FO) containing at least manganese and fluorine on the surface of a manganese-containing lithium composite oxide (positive electrode active material). ) Is formed.
  • ⁇ Example 2-9> In the same manner as in Example 5, a lithium ion secondary battery according to Example 2-9 was produced.
  • Example 2-10 A manganese-containing lithium composite oxide (positive electrode) was prepared by adding 0.11 g of chromium (III) nitrate nonahydrate as a chromium compound to N, N-dimethylformamide and dissolving it by stirring and ultrasonic treatment.
  • a mixed material according to Example 2-10 was prepared by mixing 4 g of Li 1.2 Mn 0.54 Co 0.13 Ni 0.13 O 2 as the active material).
  • a lithium ion secondary battery according to Example 2-10 was produced in the same manner as Example 1, except that the mixed material according to Example 2-10 was used instead of the mixed material according to Example 1.
  • the coated positive electrode active material according to Example 2-10 is a film of an amorphous structure (Cr (III) -FO) containing at least chromium and fluorine on the surface of a manganese-containing lithium composite oxide (positive electrode active material). ) Is formed.
  • a manganese-containing lithium composite oxide (positive electrode) was prepared by adding 0.089 g of nickel (II) acetate tetrahydrate as a nickel compound into N, N-dimethylformamide and dissolving it by stirring and ultrasonic treatment.
  • a mixed material according to Example 2-11 was prepared by mixing 4 g of Li 1.2 Mn 0.54 Co 0.13 Ni 0.13 O 2 as the active material).
  • a lithium ion secondary battery according to Example 2-11 was produced in the same manner as Example 1, except that the mixed material according to Example 2-11 was used instead of the mixed material according to Example 1.
  • the coated positive electrode active material according to Example 2-11 is a film of an amorphous structure (Ni (II) -FO containing at least nickel and fluorine on the surface of a manganese-containing lithium composite oxide (positive electrode active material). ) Is formed.
  • Example 2-12> A manganese-containing lithium composite oxide (positive electrode) was prepared by adding 0.089 g of cobalt (II) acetate tetrahydrate as a cobalt compound into N, N-dimethylformamide and dissolving it by stirring and ultrasonic treatment.
  • a mixed material according to Example 2-12 was prepared by mixing 4 g of Li 1.2 Mn 0.54 Co 0.13 Ni 0.13 O 2 as the active material).
  • a lithium ion secondary battery according to Example 2-12 was fabricated in the same manner as Example 1, except that the mixed material according to Example 2-12 was used instead of the mixed material according to Example 1.
  • the coated positive electrode active material according to Example 2-12 is a film of an amorphous structure (Co (II) -FO with at least cobalt and fluorine on the surface of a manganese-containing lithium composite oxide (positive electrode active material)). ) Is formed.
  • the lithium ion secondary battery according to Example 2-1 using iron as the transition metal contained in the film of the amorphous structure containing fluorine (F) has the highest capacity retention rate. It was confirmed to be high.
  • the lithium ion secondary battery according to Example 2-1 has a capacity maintenance ratio of 8% higher than the lithium ion secondary battery according to Example 2-11, which has the second highest capacity maintenance ratio, and is particularly excellent. confirmed.
  • the non-aqueous electrolyte secondary battery obtained by the production method according to the present invention it is suppressed that manganese in the manganese-containing lithium composite oxide is eluted from the oxide into the non-aqueous electrolyte during charging and discharging. Therefore, it is possible to prevent a decrease in capacity maintenance rate. Therefore, it can be used as a non-aqueous electrolyte secondary battery for various applications.
  • a power source drive power source
  • the non-aqueous electrolyte secondary battery (lithium ion secondary battery) 10 used in the vehicle 100 may be used alone or in the form of an assembled battery that is connected in series and / or in parallel. Also good.
  • Lithium ion secondary battery non-aqueous electrolyte secondary battery
  • Battery case Opening 25 Cover body
  • Case body 40
  • Safety valve 50
  • Electrode body (winding electrode body) 60
  • Positive electrode terminal 62
  • Positive electrode current collector 64
  • Positive electrode 66
  • Positive electrode mixture layer 70
  • Positive electrode active material with coating 72
  • Manganese-containing lithium composite oxide 72
  • Coating 80
  • Negative electrode terminal 82
  • Negative electrode current collector 84
  • Negative electrode 86 Negative electrode composite material layer 90 Separator 100 Vehicle (automobile)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 リチウムイオン二次電池の充放電時におけるマンガンの溶出抑制性能を向上させたリチウムイオン二次電池を提供される。このリチウムイオン二次電池において、正極64は、正極集電体62と、該正極集電体上に形成された少なくとも正極活物質70を含む正極合材層66と、を備えており、正極活物質は、リチウムと遷移金属元素として少なくともマンガンとを含むマンガン含有リチウム複合酸化物72を主体としており、且つ、該マンガン含有リチウム複合酸化物の表面の少なくとも一部に形成された少なくとも鉄(Fe)とフッ素(F)とを含むアモルファス構造物の被膜74を備える被膜付き正極活物質70である。

Description

リチウムイオン二次電池及びその製造方法
 本発明は、リチウムイオン二次電池とその製造方法に関する。詳しくは、マンガンを含有するリチウム複合酸化物を主体とする正極活物質を備えるリチウムイオン二次電池とその製造方法に関する。
 なお、本出願は2011年11月16日に出願された日本国特許出願2011-250369号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 リチウムイオン二次電池は、正極及び負極と、それら両電極間に介在された電解液(非水電解液)とを備えており、リチウムイオンがリチウム塩等の支持電解質を含む電解液を介して正極と負極との間を行き来することにより充放電を行う。正極は、リチウムイオンを可逆的に吸蔵及び放出する正極活物質を含んでいる。かかる正極活物質の一つとして、例えば、リチウムと少なくとも1種の遷移金属元素とを含むリチウム複合酸化物(リチウム含有化合物)が挙げられる。かかる遷移金属元素として少なくともマンガン(Mn)を含むマンガン含有リチウム複合酸化物は、高容量であって熱安定性に優れる正極活物質である。このような正極活物質を含むリチウムイオン二次電池に関する従来技術として、特許文献1が挙げられる。特許文献1には、マンガン含有固溶体であるリチウムマンガン酸化物を備えるリチウムイオン二次電池が記載されている。
日本国特許出願公開第2010-282874号公報 日本国特許出願公開第平10-144291号公報
 しかしながら、上記特許文献1に記載の技術では、正極活物質としてマンガン含有リチウム複合酸化物を用いて構築されたリチウムイオン二次電池の充放電の際に、正極活物質中のマンガンが電解液中に溶出してしまい電池性能が低下する虞がある。
 そこで、本発明は、上述した従来の課題を解決すべく創出されたものであり、その目的は、リチウムイオン二次電池の充放電時におけるマンガンの溶出抑制性能を向上させたリチウムイオン二次電池を提供することであり、該二次電池を好適に製造する方法を提供することである。
 上記目的を実現すべく、本発明により、正極と、負極と、非水電解液と、を備えるリチウムイオン二次電池が提供される。即ちここで開示されるリチウムイオン二次電池において、上記正極は、正極集電体と、該正極集電体上に形成された少なくとも正極活物質を含む正極合材層と、を備えている。上記正極活物質は、リチウムと遷移金属元素として少なくともマンガンとを含むマンガン含有リチウム複合酸化物を主体としており、且つ、該マンガン含有リチウム複合酸化物の表面の少なくとも一部に形成された少なくとも鉄(Fe)とフッ素(F)とを含むアモルファス構造物の被膜を備える被膜付き正極活物質であることを特徴とする。
 本発明によって提供されるリチウムイオン二次電池は、マンガン含有リチウム複合酸化物の表面の少なくとも一部において少なくとも鉄(Fe)とフッ素(F)とを含むアモルファス構造物の被膜が形成された正極活物質を含んでいる。
 このように、リチウムイオンを可逆的に吸蔵及び放出可能なマンガン含有リチウム複合酸化物の表面の少なくとも一部(好ましくは実質的に表面の全体)が、該酸化物とは別の物質である少なくとも鉄(Fe)とフッ素(F)とを含むアモルファス構造物の被膜によって覆われていることにより、リチウムイオン二次電池の充放電の際にマンガン含有リチウム複合酸化物中のマンガンが該酸化物から非水電解液へと溶出することが抑制される。このようにマンガンの溶出が抑制されることによって、マンガン含有リチウム複合酸化物の構造も安定的に維持される。このため、上記被膜を備える被膜付き正極活物質によると、リチウムイオンが吸蔵及び放出可能なスペースも保持されて容量維持率の低下を防止することができる。
 なお、特許文献2に記載の技術には、金属化合物(正極活物質)の表面にアモルファス層が形成されたものが開示されているが、該アモルファス層はイオン注入によって正極活物質自体の表面の一部をアモルファス化するものであって、上述した本願発明とは構成の異なるものである。
 ここで開示されるリチウムイオン二次電池の好適な一態様では、上記アモルファス構造物の被膜に含まれる鉄(Fe)とフッ素(F)とのモル比(F/Fe)は、は、1より大きく6より小さい(好ましくは2以上5以下、より好ましくは3以上4以下である。)ことを特徴とする。
 かかる構成によると、マンガン含有リチウム複合酸化物の表面に好ましい態様の被膜が形成されているため、性能に優れた(容量維持率に優れた)リチウムイオン二次電池となり得る。
 ここで開示されるリチウムイオン二次電池の好適な他の一態様では、上記被膜付き正極活物質の全量を100質量%としたときの該被膜量は、0.5質量%~1.5質量%であることを特徴とする。
 かかる構成によると、マンガン含有リチウム複合酸化物の表面に適切な量の被膜が形成されているため、性能に優れたリチウムイオン二次電池となり得る。
 ここで開示されるリチウムイオン二次電池の好適な他の一態様では、上記マンガン含有リチウム複合酸化物は、層状岩塩構造又はスピネル構造であることを特徴とする。好ましくは、上記マンガン含有リチウム複合酸化物は、金属リチウム電極基準で4.6V以上の酸化還元電位を有する。
 このような高電位なマンガン含有リチウム複合酸化物を使用することにより、リチウムイオン二次電池の満充電時において高い電池電圧を得ることができるものの、かかる高電圧下では非水電解液と該酸化物との界面(表面)における反応によって該酸化物からマンガンが溶出してしまう虞がある。従って、高電位なマンガン含有リチウム複合酸化物の表面に上記アモルファス構造物の被膜が形成されている被膜付き正極活物質を備えるという本発明の構成を採用することによる効果が特に発揮され得る。
 ここで開示されるリチウムイオン二次電池の好適な他の一態様では、上記非水電解液は、有機溶媒と、フッ素(F)を構成元素として含むリチウム塩と、を少なくとも含んでいることを特徴とする。
 このような非水電解液は、高い導電性を示すためリチウムイオン二次電池に用いられる非水電解液として好ましい性質を有する一方、該非水電解液中に含まれ得る微量な水分と反応してフッ化水素(HF)が発生し、該HFがマンガン含有リチウム複合酸化物と反応することでマンガンが非水電解液中に溶出してしまう虞がある。従って、高電位なマンガン含有リチウム複合酸化物の表面に耐フッ化水素性に優れる上記アモルファス構造物の被膜が形成されているという本発明の構成を採用することによる効果が特に発揮され得る。
 また、本発明によると、上記目的を実現する他の側面として、正極集電体上に少なくとも正極活物質を含む正極合材層が形成された正極と、負極集電体上に少なくとも負極活物質を含む負極合材層が形成された負極と、非水電解液と、を備えるリチウムイオン二次電池の製造方法が提供される。即ち、ここで開示されるリチウムイオン二次電池の製造方法は、上記正極及び上記負極を含む電極体を形成すること、上記電極体を上記非水電解液とともに電池ケース内に収容すること、を包含する。
 ここで、上記正極活物質として、以下の処理:有機溶媒中に少なくとも一種の鉄イオンを含む鉄含有溶液と、水中に少なくとも一種のフッ素イオンを含むフッ素含有水溶液と、リチウムと遷移金属元素として少なくともマンガンとを含むマンガン含有リチウム複合酸化物と、を混合させてなる混合液を調製する工程;上記混合液中の上記有機溶媒及び水を除去することによって前駆体を生成する工程;上記前駆体を焼成することによって、上記マンガン含有リチウム複合酸化物の表面の少なくとも一部に少なくとも鉄(Fe)とフッ素(F)とを含むアモルファス構造物の被膜が形成されてなる被膜付き正極活物質を生成する工程;によって得られた該被膜付き正極活物質を用いることを特徴とする。
 かかる方法によると、マンガン含有リチウム複合酸化物の表面の少なくとも一部に少なくとも鉄(Fe)とフッ素(F)とを含むアモルファス構造物の被膜を好ましい形態で形成された被膜付き正極活物質を用いているため、リチウムイオン二次電池の充放電の際にマンガン含有リチウム複合酸化物中のマンガンが該酸化物から非水電解液へと溶出することが効果的に抑制されたリチウムイオン二次電池を得ることができる。
 ここで開示されるリチウムイオン二次電池の製造方法の好適な一態様では、上記鉄含有溶液中に含まれる鉄イオンと上記フッ素含有水溶液中に含まれるフッ素イオンとのモル比(フッ素イオン/鉄イオン)が、1より大きく6より小さく(好ましくは2以上5以下、より好ましくは3以上4以下である。)なるように上記鉄含有溶液及び上記フッ素含有水溶液を調製することを特徴とする。
 かかる構成によると、マンガン含有リチウム複合酸化物の表面に好ましい態様の被膜を形成することができる。このため、リチウムイオン二次電池の充放電の際にマンガン含有リチウム複合酸化物中のマンガンが該酸化物から非水電解液へと溶出することを抑制することができると共に、性能に優れた(容量維持率に優れた)リチウムイオン二次電池を得ることができる。
 ここで開示されるリチウムイオン二次電池の製造方法の好適な他の一態様では、上記混合液を調製する工程は、少なくとも一種の鉄イオンを含む鉄化合物を有機溶媒中に溶解させてなる鉄含有溶液中に、上記マンガン含有リチウム複合酸化物を混合させてなる混合材料を準備すること、少なくとも一種のフッ素イオンを含むフッ化物を水中に溶解させてなるフッ素含有水溶液を準備すること、上記混合材料と上記フッ素含有水溶液とを混合させること、を包含することを特徴とする。
 かかる構成によると、マンガン含有リチウム複合酸化物の表面により好ましい形態の上記被膜が形成された被膜付き正極活物質を用いたリチウムイオン二次電池を製造することができる。
 ここで開示される製造方法の好適な一態様では、上記被膜付き正極活物質の全量を100質量%としたときの上記被膜量が0.5質量%~1.5質量%となるように、上記混合液を調製することを特徴とする。
 かかる構成によると、マンガン含有リチウム複合酸化物の表面に適切な量の被膜を形成することができるため、性能に優れたリチウムイオン二次電池を製造することができる。
 ここで開示される製造方法の好適な他の一態様では、上記マンガン含有リチウム複合酸化物として、層状岩塩構造又はスピネル構造であるものを用いることを特徴とする。好ましくは、上記マンガン含有リチウム複合酸化物として、金属リチウム電極基準で4.6V以上の酸化還元電位を有するものを用いる。
 ここで開示される製造方法の好適な他の一態様では、上記前駆体を焼成する温度を400℃~550℃に設定することを特徴とする。かかる構成によると、マンガン含有リチウム複合酸化物の構造を保持した状態で該酸化物の表面に好ましい形態の被膜を形成することができる。
 好ましくは、上記前駆体は不活性雰囲気中で焼成することを特徴とする。かかる構成によると、マンガン含有リチウム複合酸化物におけるリチウムイオンの吸蔵及び放出を妨げる虞のある鉄由来の酸化物を形成することなく、マンガン含有リチウム複合酸化物の表面に上記アモルファス構造物の被膜を形成することができる。
 上述のように、ここで開示されるいずれかのリチウムイオン二次電池或いはいずれかの製造方法により得られたリチウムイオン二次電池は、充放電時において正極活物質(マンガン含有リチウム複合酸化物)中のマンガンの非水電解液への溶出を抑制する性能に優れた被膜付き正極活物質を備えているため、高い容量維持率を維持し得るリチウムイオン二次電池となる。従って、上記リチウムイオン二次電池は、車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)の駆動電源として用いることができる。また、本発明の他の側面として、ここで開示されるいずれかのリチウムイオン二次電池(複数個の電池が典型的には直列に接続された組電池の形態であり得る。)を駆動電源として備える車両を提供する。
図1は、本発明の一実施形態に係るリチウムイオン二次電池の外形を模式的に示す斜視図である。 図2は、図1中のII‐II線に沿う断面図である。 図3は、本発明の一実施形態に係る被膜付き正極活物質の製造方法を説明するためのフローチャートである。 図4は、本発明の一実施形態に係る正極の構造を模式的に示す図である。 図5は、例1に係る被膜付き正極活物質の表面の状態を示す断面TEM画像である。 図6は、例1に係る被膜付き正極活物質のEDXの結果を示すグラフである。 図7は、例1から例4に係る被膜付き正極活物質の示差走査熱量測定(DSC)の結果を示すグラフである。 図8は、例1Aから例3Aに係るリチウムイオン二次電池のマンガン析出濃度を示すグラフである。 図9は、例12から例16に係るリチウムイオン二次電池の被膜量と出力比及び被膜量と容量維持率との関係を示すグラフである。 図10は、本発明に係るリチウムイオン二次電池を備えた車両(自動車)を模式的に示す側面図である。 図11は、鉄とフッ素とのモル比(F/Fe)と容量維持率との関係を示すグラフである。 図12は、被膜の種類と容量維持率との関係を示すグラフである。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事項は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 本発明によって提供されるリチウムイオン二次電池は、上述の通り正極に含まれる正極活物質が、リチウムと遷移金属元素として少なくともマンガンとを含むマンガン含有リチウム複合酸化物を主体としており、且つ、該マンガン含有リチウム複合酸化物の表面の少なくとも一部に形成された少なくとも鉄(Fe)とフッ素(F)とを含むアモルファス構造物の被膜を備える被膜付き正極活物質であることによって特徴づけられる。以下、ここで開示されるリチウムイオン二次電池について詳細に説明する。
 まず、本発明によって提供されるリチウムイオン二次電池の正極について説明する。ここで開示される正極は、正極集電体と、該正極集電体上に形成された少なくとも正極活物質(被膜付き正極活物質)を含む正極合材層と、を備えている。
 ここで開示されるリチウムイオン二次電池の正極で用いられる正極集電体としては、従来のリチウムイオン二次電池の正極に用いられている正極集電体と同様、アルミニウム又はアルミニウムを主体とするアルミニウム合金が用いられる。正極集電体の形状は、リチウムイオン二次電池の形状等に応じて異なり得るため、特に制限はなく、箔状、シート状、棒状、板状等の種々の形態であり得る。
 ここで開示されるリチウムイオン二次電池の正極で用いられる正極活物質は、リチウムイオンを可逆的に吸蔵及び放出可能なマンガン含有リチウム複合酸化物と、該複合酸化物の表面の少なくとも一部に形成された少なくとも鉄(Fe)とフッ素(F)とを含むアモルファス構造物の被膜とを含む被膜付き正極活物質である。
 上記被膜付き正極活物質の主体たるマンガン含有リチウム複合酸化物としては、リチウム(元素)と遷移金属元素として少なくともマンガンを含むリチウム含有化合物が挙げられる。例えば、LiMn(ここで、1≦x≦2、0.2≦y≦1、0≦z<1、2≦x+y+z≦3、MはCo、Ni、F、B、Al、W、Mo、Cr、Ta、Nb、V、Zr、Ti、Yから選ばれる少なくとも一種の元素(典型的には遷移金属元素)である。)、Li1+xMn2-y(ここで、0≦x≦0.3、0≦y≦1、MはCo、Ni、F、B、Al、W、Mo、Cr、Ta、Nb、V、Zr、Ti、Yから選ばれる少なくとも一種の元素(典型的には遷移金属元素)である。)等が挙げられる。具体的には、例えば、層状岩塩構造(層状岩塩型の結晶構造)を有するLi1.2Mn0.54Co0.13Ni0.13やLiMn0.33Co0.33Ni0.33、スピネル構造を有するLiMn1.5Ni0.5等が挙げられる。上記マンガン含有リチウム複合酸化物として、金属リチウム電極基準で4.6V以上の酸化還元電位を有する高電位な酸化物を好ましく用いることができる。
 上記マンガン含有リチウム複合酸化物は、一次粒子が集まった二次粒子の形態をなすものであり得、その二次粒子の平均粒径(メジアン径d50)は、例えば、1μm~50μm。好ましくは3μm~10μmである。なお、平均粒径は、市販されている種々のレーザー回折・散乱法に基づく粒度分布測定装置によって容易に測定することができる。
 上記被膜付き正極活物質の主体たるマンガン含有リチウム複合酸化物の表面の少なくとも一部に形成された被膜としては、少なくとも鉄(Fe)とフッ素(F)とを含むアモルファス(非晶質)構造物の被膜が挙げられる。上記アモルファス構造物の被膜を構成する鉄(Fe)は、そのイオン価数が2価の鉄(Fe(II))及び3価の鉄(Fe(III))のいずれも好ましく用いることができる。上記アモルファス構造物の被膜としては、例えば、Fe(II)-F-O、Fe(III)-F-O等のように鉄(Fe)とフッ素(F)と酸素(O)とが含まれるものが挙げられる。
 上記アモルファス(非晶質)構造物の被膜に含まれる鉄(Fe)とフッ素(F)とのモル比(F/Fe)は、1より大きく6より小さい(好ましくは2以上5以下、より好ましくは3以上3.5以下である。)。モル比(F/Fe)が1よりも小さすぎる場合には、フッ素の量が少なすぎるためマンガン含有リチウム複合酸化物の表面に少なくとも鉄(Fe)とフッ素(F)とを含むアモルファス構造物の被膜を十分に形成することができない。一方、モル比(F/Fe)が6よりも多きすぎる場合には、フッ素の量が多すぎるため、フッ素とマンガン含有リチウム複合酸化物とが反応してLiF等の化合物が生成される虞がある。かかる化合物は充放電に寄与できないため、容量維持率が低下してしまう。
 なお、上記アモルファス構造物の被膜に含まれる鉄元素の量及びフッ素元素の量は、例えば、ICP(高周波誘導結合プラズマ)発光分析、イオンクロマトグラフィ等によって検出することができる。
 上記アモルファス構造物の被膜量は、上記被膜付き正極活物質の全量(即ちマンガン含有リチウム複合酸化物とアモルファス構造物の被膜との合計量)を100質量%としたときに凡そ0.5質量%~1.5質量%(好ましくは0.8質量%~1.2質量)であることが好ましい。被膜量が0.5質量%よりも少なすぎる場合や、被膜量が1.5質量%よりも多すぎる場合には、容量維持率が大きく低下してしまう虞がある。
 ここで、上記被膜付き正極活物質を製造する方法(即ち、上記マンガン含有リチウム複合酸化物の表面に上記アモルファス構造物の被膜を形成する方法)について説明する。図3は、本発明の一実施形態に係る被膜付き正極活物質の製造方法を説明するためのフローチャートである。
 図3に示すように、混合液調製工程(S10)と、前駆体生成工程(S20)と、被膜付き正極活物質生成工程(S30)とを包含する。
 まず、混合液調製工程(S10)について説明する。混合液調製工程には、有機溶媒中に少なくとも一種の鉄イオンを含む鉄含有溶液と、水中に少なくとも一種のフッ素イオンを含むフッ素含有水溶液と、リチウムと遷移金属元素として少なくともマンガンとを含むマンガン含有リチウム複合酸化物と、を混合させることが含まれている。
 上記鉄含有溶液は、上述のとおり有機溶媒中に少なくとも一種の鉄イオンを含む溶液であって、少なくとも一種の鉄イオン(2価或いは3価)を含む鉄化合物を有機溶媒中に投入して撹拌及び超音波処理等を施すことにより調製することができる。上記鉄化合物としては、例えば、無機酸塩(例えば、硝酸鉄、硫酸鉄、塩化鉄等)や有機酸塩(例えば、酢酸鉄、クエン酸鉄、リンゴ酸鉄、アスコルビン酸鉄、シュウ酸鉄等の錯体)を用いることができる。これらのうち一種又は二種以上を併用してもよい。また、上記有機溶媒としては、例えば、N,N-ジメチルホルムアミド、N‐メチル‐2‐ピロリドン(NMP)、ピリジン、N,N-ジメチルアセトアミド、パラクロロフェノール等を、単独でまたは適宜組み合わせて使用することができる。
 上記フッ素含有水溶液は、上述のとおり水中に少なくとも一種のフッ素イオンを含む溶液であって、少なくとも一種のフッ素イオンを含むフッ化物を水中(典型的にはイオン交換水や蒸留水)に投入して撹拌及び超音波処理等を施すことにより調製することができる。上記フッ化物としては、水溶性のフッ化物であって金属元素を含まないものであれば特に限定なく使用することができる。例えば、フッ化アンモニウム等が挙げられる。
 なお、上記鉄含有溶液中に含まれる鉄イオンと上記フッ素含有水溶液中に含まれるフッ素イオンとのモル比(フッ素イオン/鉄イオン)が、1より大きく6より小さく(好ましくは2以上5以下、より好ましくは3以上3.5以下である。)となるように鉄含有溶液及びフッ素含有水溶液を調製することが好ましい。
 上記鉄含有溶液と、上記フッ素含有水溶液と、上記マンガン含有リチウム複合酸化物とを混合して、撹拌及び超音波処理等を施すことによりこれらの材料を混合させてなる混合液を調製する。なお、予め上記鉄含有溶液中に上記マンガン含有リチウム複合酸化物を混合させてなる混合材料を調製(準備)して、該混合材料と上記フッ素含有水溶液とを混合させてなる混合液を調製することが好ましい。
 次に、前駆体生成工程(S20)について説明する。前駆体生成工程には、上記調製された混合液中の有機溶媒及び水を除去することが含まれる。
 上記混合液中の有機溶媒及び水を除去する方法は、特に制限されないが、例えば混合液を加熱する方法や、市販の減圧濃縮装置(例えばロータリーエバポレータ、フラッシュエバポレータ等)を用いる方法等が挙げられる。上記混合液を加熱する際の温度は、上記鉄含有溶液中の有機溶媒及び上記フッ素含有水溶液中の水を除去(蒸発)することができる温度(典型的には有機溶媒の沸点以上の温度)、例えば170℃~200℃程度である。上記混合液から有機溶媒及び水を除去することによって前駆体を生成することができる。
 次に、被膜付き正極活物質生成工程(S30)について説明する。被膜付き正極活物質生成工程には、上記前駆体を焼成することが含まれている。
 上記前駆体を焼成することによって、上記マンガン含有リチウム複合酸化物の表面の少なくとも一部に少なくとも鉄(Fe)とフッ素(F)とを含むアモルファス構造物の被膜が形成されてなる被膜付き正極活物質を生成することができる。
 上記前駆体を焼成する温度は、例えば、400℃~550℃程度(例えば450℃)であることが好ましい。焼成温度が400℃よりも低すぎる場合には、生成された被膜付き正極活物質に不純物が含有される虞があり好ましくない。また、焼成温度が550℃よりも高すぎる場合には、被膜付き正極活物質の主体たるマンガン含有リチウム複合酸化物中の遷移金属元素が反応してしまい該酸化物の構造が壊れてしまう虞がある。
 また、上記前駆体を焼成する際、アルゴンガスや窒素ガス等の不活性雰囲気中で焼成することが好ましい。不活性雰囲気中で上記前駆体を焼成することにより、鉄(Fe)成分が前駆体内部へ拡散することによるマンガン含有リチウム複合酸化物の組成比ズレを抑制することができ、マンガン含有リチウム複合酸化物の表面に上記アモルファス構造物の被膜を形成することができる。
 上記正極合材層は、上記被膜付き正極活物質の他に、導電材、結着材(バインダ)等の任意の成分を必要に応じて含有し得る。
 上記導電材としては、従来この種のリチウムイオン二次電池の正極で用いられているものであればよく、特定の導電材に限定されない。例えば、カーボン粉末やカーボンファイバー等のカーボン材料を用いることができる。カーボン粉末としては、種々のカーボンブラック(例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラック等)、グラファイト粉末等のカーボン粉末を用いることができる。これらのうち一種又は二種以上を併用してもよい。導電材の使用量については特に限定されるものではないが、例えば、上記被膜付き正極活物質100質量%に対して1質量%~20質量%(好ましくは5質量%~15質量%)とすることが例示される。
 上記結着材(バインダ)としては、一般的なリチウムイオン二次電池の正極に使用される結着材と同様のものを適宜採用することができる。例えば、上記正極合材層を形成する組成物として溶剤系のペースト状組成物(ペースト状組成物には、スラリー状組成物及びインク状組成物が包含される。)を用いる場合には、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)等の、有機溶媒(非水溶媒)に溶解するポリマー材料を用いることができる。あるいは、水系のペースト状組成物を用いる場合には、水に溶解または分散するポリマー材料を好ましく採用し得る。例えば、ポリテトラフルオロエチレン(PTFE)、カルボキシメチルセルロース(CMC)等が挙げられる。なお、上記で例示したポリマー材料は、結着材として用いられる他に、上記組成物の増粘剤その他の添加剤として使用されることもあり得る。結着材の使用量は特に限定されるものではないが、例えば、上記被膜付き正極活物質100質量%に対して0.5質量%~10質量%とすることができる。
 ここで、「溶剤系のペースト状組成物」とは、被膜付き正極活物質の分散媒が主として有機溶媒である組成物を指す概念である。有機溶媒としては、例えば、N‐メチル‐2‐ピロリドン(NMP)等を用いることができる。「水系のペースト状組成物」とは、被膜付き正極活物質の分散媒として水または水を主体とする混合溶媒を用いた組成物を指す概念である。かかる混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶媒(低級アルコール、低級ケトン等)の一種または二種以上を適宜選択して用いることができる。
 ここで開示されるリチウムイオン二次電池の正極は、例えば、以下のようにして作製することができる。上記被膜付き正極活物質と他の任意成分(上記導電材、結着材等)とを適当な溶媒に分散したペースト状の正極合材層形成用組成物を用意(調製、購入等)する。そして、該用意した組成物を上記正極集電体の表面に塗布(付与)して該組成物を乾燥させて正極合材層を形成した後、必要に応じて圧縮(プレス)する。これにより、正極集電体と、該正極集電体上に形成された正極合材層とを備える正極を作製することができる。
 なお、上記組成物を正極集電体上に塗布する方法としては、従来公知の方法と同様の技法を適宜採用することができる。例えば、ダイコーター、スリットコーター、グラビアコーター等の適当な塗布装置を使用することにより、正極集電体に上記組成物を好適に塗布することができる。また、圧縮(プレス)方法としては、従来公知のロールプレス法、平板プレス法等の圧縮方法を採用することができる。
 図4に示すように、上記のようにして作製された正極64は、正極集電体62と、該集電体62上に形成された少なくとも被膜付き正極活物質70を含む正極合材層66とを備えている。正極合材層66中の被膜付き正極活物質70は、マンガン含有リチウム複合酸化物72の表面の少なくとも一部に形成された少なくとも鉄(Fe)とフッ素(F)とを含むアモルファス構造物の被膜74を備える正極活物質である。このため、リチウムイオン二次電池の充放電の際に、マンガン含有リチウム複合酸化物中のマンガンが該酸化物から非水電解液へと溶出することが抑制される。また、被膜74が形成されていることにより、被膜付き正極活物質70は、被膜のないものと比べて発熱開始温度が高く且つ発熱量が小さいものとなっており熱安定性に優れている。なお、図4において導電材、結着材等の図示は省略している。
 次に、ここで開示されるリチウムイオン二次電池に備えられる負極について説明する。かかる負極は、負極集電体と、該負極集電体上に形成された少なくとも負極活物質を含む負極合材層と、を備えている。
 上記負極活物質としては、従来からリチウムイオン二次電池の負極に用いられる材料の一種または二種以上を特に限定なく使用することができる。例えば、黒鉛(グラファイト)等のカーボン材料、リチウム・チタン酸化物(LiTi12)等の酸化物材料、スズ、アルミニウム(Al)、亜鉛(Zn)、ケイ素(Si)等の金属若しくはこれらの金属元素を主体とする金属合金からなる金属材料、等が挙げられる。
 上記負極合材層は、上記負極活物質の他に、結着材(バインダ)、増粘材等の任意の成分を必要に応じて含有し得る。
 上記結着材としては、一般的なリチウムイオン二次電池の負極に使用される結着材と同様のものを適宜採用することができる。例えば、負極合材層を形成するために水系のペースト状組成物を用いる場合には、水に溶解または分散するポリマー材料を好ましく採用し得る。水に分散する(水分散性の)ポリマー材料としては、スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム類;ポリエチレンオキサイド(PEO)、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂;酢酸ビニル共重合体等が例示される。
 また、上記増粘材としては、水若しくは溶剤(有機溶媒)に溶解又は分散するポリマー材料を採用し得る。水に溶解する(水溶性の)ポリマー材料としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)等のセルロース系ポリマー;ポリビニルアルコール(PVA);等が挙げられる。
 上記負極合材層は、例えば、上記負極活物質と、他の任意成分(結着材、増粘材等)とを適当な溶媒(例えば水)に分散したペースト状の負極合材層形成用組成物を用意(調製、購入等)し、該組成物を負極集電体の表面に塗布(付与)して該組成物を乾燥させた後に、必要に応じてプレス(圧縮)することによって負極合材層が形成される。これにより、負極集電体と、負極合材層を備える負極を作製することができる。
 以下、ここで開示される正極及び負極を備えるリチウムイオン二次電池の一形態を図面を参照しつつ説明するが、本発明をかかる実施形態に限定することを意図したものではない。即ち、上記正極が採用される限りにおいて、作製されるリチウムイオン二次電池の形状(外形やサイズ)には特に制限はない。以下の実施形態では、捲回電極体および電解液を角型形状の電池ケースに収容した構成のリチウムイオン二次電池を例にして説明する。
 なお、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略することがある。また、各図における寸法関係(長さ、幅、厚さ等)は、必ずしも実際の寸法関係を反映するものではない。
 図1は、本実施形態に係るリチウムイオン二次電池(非水電解液二次電池)10を模式的に示す斜視図である。図2は、図1中のII-II線に沿う縦断面図である。
 図1に示すように、本実施形態に係るリチウムイオン二次電池10は、金属製(樹脂製又はラミネートフィルム製も好適である。)の電池ケース15を備える。このケース(外容器)15は、上端が開放された扁平な直方体状のケース本体30と、その開口部20を塞ぐ蓋体25とを備える。溶接等により蓋体25は、ケース本体30の開口部20を封止している。ケース15の上面(すなわち蓋体25)には、捲回電極体50の正極64と電気的に接続する正極端子60および該電極体の負極84と電気的に接続する負極端子80が設けられている。また、蓋体25には、従来のリチウムイオン二次電池のケースと同様に、電池異常の際にケース15内部で発生したガスをケース15の外部に排出するための安全弁40が設けられている。ケース15の内部には、シート状の正極64およびシート状の負極84を計二枚のセパレータ90とともに積層して長手方向に捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって作製される扁平形状の捲回電極体50及び非水電解液が収容されている。
 上記積層の際には、図2に示すように、正極64の正極合材層非形成部分(即ち正極合材層66が形成されずに正極集電体62が露出した部分)と負極84の負極合材層非形成部分(即ち負極合材層86が形成されずに負極集電体82が露出した部分)とがセパレータ90の幅方向の両側からそれぞれはみ出すように、正極64と負極84とを幅方向にややずらして重ね合わせる。その結果、捲回電極体50の捲回方向に対する横方向において、正極64および負極84の電極合材層非形成部分がそれぞれ捲回コア部分(すなわち正極64の正極合材層66と負極84の負極合材層86と二枚のセパレータ90とが密に捲回された部分)から外方にはみ出ている。図2に示すように、かかる正極合材層非形成部分に正極端子60を接合して、上記扁平形状に形成された捲回電極体50の正極64と正極端子60とを電気的に接続する。同様に負極合材層非形成部分に負極端子80を接合して、負極84と負極端子80とを電気的に接続する。なお、正負極端子60,80と正負極集電体62,82とは、例えば、超音波溶接、抵抗溶接等によりそれぞれ接合することができる。
 上記非水電解液としては、従来からリチウムイオン二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な有機溶媒(非水溶媒)に支持塩を含有させた組成を有する。上記有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等から選択される一種又は二種以上を用いることができる。また、上記支持塩(支持電解質)としては、例えば、LiPF、LiBF、LiAsF、Li(CFSON、LiCFSO等のフッ素(F)を構成元素として含むリチウム塩を用いることが好ましい。さらに上記非水電解液に、ジフルオロリン酸塩(LiPO)やリチウムビスオキサレートボレート(LiBOB)を溶解させてもよい。
 また、上記セパレータとしては、従来公知のものを特に制限なく使用することができる。例えば、樹脂からなる多孔性シート(微多孔質樹脂シート)を好ましく用いることができる。ポリエチレン(PE)、ポリプロピレン(PP)等の多孔質ポリオレフィン系樹脂シートが好ましい。例えば、PEシート、PPシート、PE層の両側にPP層が積層された三層構造(PP/PE/PP構造)のシート等を好適に使用し得る。
 以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。
[リチウムイオン二次電池の作製]
<例1>
 鉄化合物としての酢酸鉄(II)0.075gを有機溶媒としてのN,N-ジメチルホルムアミド中に投入し撹拌及び超音波処理を施して溶解させた鉄含有溶液に、マンガン含有リチウム複合酸化物(正極活物質)としてのLi1.2Mn0.54Co0.13Ni0.13を4g混合させてなる例1に係る混合材料を調製した。
 次に、フッ化物としてのフッ化アンモニウム0.032gをイオン交換水に投入し撹拌及び超音波処理を施して溶解させてなる例1に係るフッ素含有水溶液を調製した。
 そして、上記例1に係る混合材料と上記例1に係るフッ素含有水溶液とを混合させてなる混合液を180℃で撹拌しながらN,N-ジメチルホルムアミド及びイオン交換水を除去(蒸発)させて前駆体を生成した。その後、該前駆体を不活性雰囲気(アルゴンガス)中450℃で10時間焼成して、マンガン含有リチウム複合酸化物(正極活物質)の表面に少なくとも鉄とフッ素とを含むアモルファス構造物の被膜(Fe(II)‐F‐O)が形成された例1に係る被膜付き正極活物質を得た。
 ここで、例1に係る被膜付き正極活物質について透過型電子顕微鏡(TEM)観察とエネルギー分散型X線分光法(EDX;Energy Dispersive X-ray Spectroscopy)を行った。図5は、例1に係る被膜付き正極活物質の表面の状態を示す断面TEM画像である。図5に示すように、マンガン含有リチウム複合酸化物72の表面には被膜74が形成されており、該被膜74の構造がアモルファス構造であることが確認された。また、図6は、例1に係る被膜付き正極活物質のEDX分析の結果を示すグラフである。図6に示すように、被膜74(図5参照)は、鉄(Fe)とフッ素(F)と酸素(O)とを含んでいることが確認された。
 例1に係る被膜付き正極活物質と、導電材としてのアセチレンブラック(AB)と、結着材としてのPVDFとの質量比が85:10:5となるように秤量し、これら材料をNMPに分散させて例1に係るペースト状の正極合材層形成用組成物を調製した。該組成物を厚さ15μmの正極集電体(アルミニウム箔)上に両面合わせて塗布量6.4mg/cmで塗布し、該塗布された組成物を乾燥することで正極合材層を形成した。次いで、圧延プレス機によって正極合材層の合材密度が2.45g/cmとなるようにプレスすることで、正極集電体上に正極合材層が形成された正極を得た。最後にこの正極を直径16mmとなるように切り出して例1に係る正極を作製した。
 上記例1に係る正極と、直径19mm、厚み35μmの金属リチウムからなる負極を用いてリチウムイオン二次電池(CR2032型コインセル)を作製した。なお、セパレータとしては、ポリエチレン製の多孔質セパレータを使用した。非水電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との1:1(体積比)混合溶媒に支持塩として1mol/LのLiPFを溶解させた組成の非水電解液を使用した。
<例2>
 鉄化合物としての硝酸鉄(III)九水和物0.1092gを有機溶媒としてのN,N-ジメチルホルムアミド中に投入し撹拌及び超音波処理を施して溶解させた鉄含有溶液に、マンガン含有リチウム複合酸化物(正極活物質)としてのLi1.2Mn0.54Co0.13Ni0.13を4g混合させてなる例2に係る混合材料を調製した。例2に係る混合材料を用いた他は例1と同様にして、例2に係るリチウムイオン二次電池を作製した。なお、例2に係る被膜付き正極活物質は、マンガン含有リチウム複合酸化物(正極活物質)の表面に少なくとも鉄とフッ素とを含むアモルファス構造物の被膜(Fe(III)‐F‐O)が形成されたものである。
<例3>
 マンガン含有リチウム複合酸化物(正極活物質)としてのLi1.2Mn0.54Co0.13Ni0.13と、アセチレンブラック(AB)と、PVDFとの質量比が85:10:5となるように秤量し、これら材料をNMPに分散させて例3に係るペースト状の正極合材層形成用組成物を調製した。例3に係る組成物を用いた他は例1と同様にして、例3に係るリチウムイオン二次電池を作製した。
<例4>
 硝酸アルミニウム0.11gとフッ化アンモニウム0.21gとを蒸留水で溶解し混合溶液を調製した。次いで、N,N-ジメチルホルムアミド中にマンガン含有リチウム複合酸化物(正極活物質)としてのLi1.2Mn0.54Co0.13Ni0.13を4g投入し、さらに上記調製した混合溶液を混合させてなる例4に係る混合液を調整した。例4に係る混合液を用いた他は例1と同様にして、例4に係る被膜付き正極活物質を得た。なお、例4に係る被膜付き正極活物質は、マンガン含有リチウム複合酸化物(正極活物質)の表面にフッ化アルミニウム(AlF)の被膜が形成されたものである。このときの上記正極活物質とAlFとの質量比は99:1であった。
 例4に係る被膜付き正極活物質と、アセチレンブラック(AB)と、PVDFとの質量比が85:10:5となるように秤量し、これら材料をNMPに分散させて例4に係るペースト状の正極合材層形成用組成物を調製した。例4に係る組成物を用いた他は例1と同様にして、例4に係るリチウムイオン二次電池を作製した。
<例5>
 チタン化合物としてのチタン(IV)エトキシド0.08gをN,N-ジメチルホルムアミド中に投入し撹拌及び超音波処理を施して溶解させたものに、マンガン含有リチウム複合酸化物(正極活物質)としてのLi1.2Mn0.54Co0.13Ni0.13を4g混合させてなる例5に係る混合材料を調製した。例1に係る混合材料の代わりに例5に係る混合材料を用いた他は例1と同様にして、例5に係るリチウムイオン二次電池を作製した。なお、例5に係る被膜付き正極活物質は、マンガン含有リチウム複合酸化物(正極活物質)の表面に少なくともチタンとフッ素とを含むアモルファス構造物の被膜(Ti(IV)‐F‐O)が形成されたものである。
<例6>
 酢酸鉄(II)0.075gをN,N-ジメチルホルムアミド中に投入し撹拌及び超音波処理を施して溶解させた鉄含有溶液に、マンガン含有リチウム複合酸化物(正極活物質)としてのLiMn0.33Co0.33Ni0.33を4g混合させてなる例6に係る混合材料を調製した。例6に係る混合材料を用いた他は例1と同様にして、例6に係るリチウムイオン二次電池を作製した。
<例7>
 硝酸鉄(III)九水和物0.1092gをN,N-ジメチルホルムアミド中に投入し撹拌及び超音波処理を施して溶解させた鉄含有溶液に、マンガン含有リチウム複合酸化物(正極活物質)としてのLiMn0.33Co0.33Ni0.33を4g混合させてなる例7に係る混合材料を調製した。例7に係る混合材料を用いた他は例1と同様にして、例7に係るリチウムイオン二次電池を作製した。
<例8>
 マンガン含有リチウム複合酸化物(正極活物質)としてのLiMn0.33Co0.33Ni0.33を用いた他は例3と同様にして、例8に係るリチウムイオン二次電池を作製した。
<例9>
 マンガン含有リチウム複合酸化物(正極活物質)としてのLiMn0.33Co0.33Ni0.33を用いた他は例4と同様にして、例9に係るリチウムイオン二次電池を作製した。
<例10>
 酢酸鉄(II)0.075gをN,N-ジメチルホルムアミド中に投入し撹拌及び超音波処理を施して溶解させた鉄含有溶液に、マンガン含有リチウム複合酸化物(正極活物質)としてのLiMn1.5Ni0.5を4g混合させてなる例10に係る混合材料を調製した。例10に係る混合材料を用いた他は例1と同様にして、例10に係るリチウムイオン二次電池を作製した。
<例11>
 マンガン含有リチウム複合酸化物(正極活物質)としてのLiMn1.5Ni0.5と、アセチレンブラック(AB)と、PVDFとの質量比が85:10:5となるように秤量し、これら材料をNMPに分散させて例11に係るペースト状の正極合材層形成用組成物を調製した。例11に係る組成物を用いた他は例1と同様にして、例11に係るリチウムイオン二次電池を作製した。例1~例11に係るリチウムイオン二次電池の構成を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[初期充放電処理]
 上記作製した例1~例9に係るリチウムイオン二次電池対して、正極の理論容量のC/3の充電レートで4.8Vまで定電流(CC)で充電する操作と、C/3の放電レートで2.5Vまで定電流放電させる操作を3回繰り返した。ここで1Cとは、正極の理論容量より予測した電池容量(Ah)を1時間で充電できる電流量を意味する。
 また、上記作製した例10及び例11に係るリチウムイオン二次電池に対して、正極の理論容量のC/3の充電レートで5Vまで定電流(CC)で充電する操作と、C/3の放電レートで4.3Vまで定電流放電させる操作を3回繰り返した。
[充放電サイクル試験]
 上記初期充放電処理後の例1~例11の各リチウムイオン二次電池に対して、充放電を30サイクル繰り返し、30サイクル後の容量維持率[%]を求めた。即ち、例1~例9に係るリチウムイオン二次電池についての1サイクルの充放電条件は、測定温度25℃において、2Cの充電レートで電圧4.8Vまで定電流定電圧充電(CCCV充電)行い、その後2Cの放電レートで電圧2.5Vまで定電流放電を行った。一方、例10及び例11に係るリチウムイオン二次電池についての1サイクルの充放電条件は、測定温度25℃において、2Cの充電レートで電圧5Vまで定電流定電圧充電(CCCV充電)行い、その後2Cの放電レートで電圧4.3Vまで定電流放電を行った。そして、各例において1サイクル目の放電容量と30サイクル目の放電容量とを測定した。1サイクル後の放電容量(初期容量)に対する、30サイクル後の放電容量の割合((30サイクル後の放電容量/初期容量)×100(%))を容量維持率(%)として算出した。以上の測定結果を表1に示す。
 表1に示すように、マンガン含有リチウム複合酸化物の表面に少なくとも鉄とフッ素とを含むアモルファス構造物の被膜が形成されているものは、被膜がないものと比べて容量維持率が増大していることが確認された(例1~例3。例6~例8。例10及び例11。)。さらに、少なくとも鉄とフッ素とを含むアモルファス構造物の被膜は、他の遷移金属元素を含む被膜と比較して容量維持率が大きく向上していることが確認された(例1、2、4及び5。例6、7及び例9。)。
[示差走査熱量測定]
 上記例1~例11に係るリチウムイオン二次電池について、上限電圧(例1~例9は4.8V。例10及び例11は5V。)まで充電をし、満充電状態(SOC(State of Charge)100%)の各二次電池を解体して被膜付き正極活物質を取り出した。各被膜付き正極活物質に対して示差走査熱量測定(DSC;Differential Scanning Calorimetry)を行った。具体的には、DSC測定装置(株式会社島津製作所製、型式「DSC-60」)を用いて、窒素雰囲気下、5℃/分の昇温速度で50℃から350℃まで温度を変化させて示差走査熱量測定を行った。図7は、例1~例4に係る被膜付き正極活物質の示差走査熱量測定の結果を示すグラフ(DSC曲線)である。発熱開始温度[℃]はDSC曲線の初期ピークにおける接線から求め、発熱量[kJ/g]はDSC曲線の50℃から350℃までの面積から求めた。測定結果を表1に示す。
 表1に示すように、マンガン含有リチウム複合酸化物の表面に少なくとも鉄とフッ素とを含むアモルファス構造物の被膜が形成されているものは、被膜がないものと比べて発熱開始温度が高くなっており、且つ発熱量が大きく低下していることが確認された(例1~例3。例6~例8。例10及び例11。)。さらに、少なくとも鉄とフッ素とを含むアモルファス構造物の被膜は、他の遷移金属元素を含む被膜と比較して発熱開始温度高くなっているか若しくは発熱量が低下しているか若しくはその両方であることが確認された(例1、2、4及び5。例6、7及び例9。)。このように、マンガン含有リチウム複合酸化物の表面に少なくとも鉄とフッ素とを含むアモルファス構造物の被膜が形成されている被膜付き正極活物質は、熱安定性に優れており、従来の正極活物質と比べて高温時における不具合の発生の虞が小さいものとなっている。
[マンガン析出濃度測定]
<例1A>
 負極活物質としての天然黒鉛と、バインダとしてのSBRと、増粘材としてのCMCとの質量比が98:1:1となるように秤量し、これら材料をイオン交換水に分散させてペースト状の負極合材層形成用組成物を調製した。該組成物を厚さ10μmの負極集電体(銅箔)上に両面塗布し、該塗布された組成物を乾燥することで、負極集電体上に負極合材層が形成された負極を作製した。
 上記作製した負極を用いた他は例1と同様にして、例1Aに係るリチウムイオン二次電池を作製した。
<例2A>
 例2に係る被膜付き正極活物質を用いた他は例1Aと同様にして、例2Aに係るリチウムイオン二次電池を作製した。
<例3A>
 例3に係る組成物を用いた他は例1Aと同様にして、例3Aに係るリチウムイオン二次電池を作製した。
 上記例1~例9に係るリチウムイオン二次電池に対して行った初期充放電処理と同様の処理を上記例1A~例3Aに係るリチウムイオン二次電池に施した。
 上記初期充放電処理後の例1A~例3Aのリチウムイオン二次電池について、各二次電池を解体して負極及びセパレータを取り出した。該負極及びセパレータをエチレンカーボネートで洗浄した後、王水100ml中に投入した。該溶液に対してICP発光分析を行い、マンガン含有リチウム複合酸化物(ここではLi1.2Mn0.54Co0.13Ni0.13)から溶出して負極及びセパレータに析出したマンガン析出濃度[質量%]を測定した。ここで上記マンガンの析出濃度とは、負極活物質全量[g]に対するMnの析出量[g]である。測定結果を図8に示す。
 図8に示すように、例1Aの被膜(Fe(II)‐F‐O)及び例2Aの被膜(Fe(III)‐F‐O)を備えるリチウムイオン二次電池では、上記被膜を備えていない例3Aに係るリチウムイオン二次電池と比べてマンガン析出濃度が半分以下に減少していることが確認された。
<例12>
 酢酸鉄(II)0.075gをN,N-ジメチルホルムアミド中に投入し撹拌及び超音波処理を施して溶解させたものに、マンガン含有リチウム複合酸化物(正極活物質)としてのLi1.2Mn0.54Co0.13Ni0.13を4g混合させてなる例12に係る混合材料を調製した。
 次に、フッ化物としてのフッ化アンモニウム0.032gをイオン交換水に投入し撹拌及び超音波処理を施して溶解させてなる例12に係るフッ素含有水溶液を調製した。
 そして、上記例12に係る混合材料と上記例12に係るフッ素含有水溶液とを混合させてなる混合液を180℃で撹拌しながらN,N-ジメチルホルムアミド及びイオン交換水を除去(蒸発)させて前駆体を生成した。その後、該前駆体を不活性雰囲気(アルゴンガス)中450℃で10時間焼成して、マンガン含有リチウム複合酸化物(正極活物質)の表面に少なくとも鉄とフッ素とを含むアモルファス構造物の被膜(Fe(II)‐F‐O)が形成された例12に係る被膜付き正極活物質を得た。
 なお、例12に係る被膜付き正極活物質の全量(即ちマンガン含有リチウム複合酸化物と被膜の合計量)を100質量%としたときの上記被膜(Fe(II)‐F‐O)量は、1質量%であった。例12に係る被膜付き正極活物質を用いた他は例1と同様にして、例12に係るリチウムイオン二次電池を作製した。
<例13~例16>
 次に、例13~例16に係るリチウムイオン二次電池を作製した。例13~例16に係るリチウムイオン二次電池では、各例に係る被膜付き正極活物質を生成する際に酢酸鉄(II)及びフッ化アンモニウムの使用量を調整することによって、マンガン含有リチウム複合酸化物の表面に形成される被膜量を変えたリチウムイオン二次電池である。例12~例16に係るリチウムイオン二次電池の構成を表2に示す。
Figure JPOXMLDOC01-appb-T000002
[充放電サイクル試験]
 上記作製した例12~例16に係るリチウムイオン二次電池に対して、上記例1~例11に係るリチウムイオン二次電池に対して行ったのと同様の条件で初期充放電処理及び充放電サイクル試験を行い30サイクル後の容量維持率[%]を求めた。測定結果を表2及び図9に示す。
[出力特性評価]
 また、上記作製した例12~例16に係るリチウムイオン二次電池に対して、上記例1~例11に係るリチウムイオン二次電池に対して行ったのと同様の条件で初期充放電処理を行った。その後、測定温度25℃において、1Cの充電レートで電圧4.3Vまで定電流充電(CC充電)行い、その後20Cの放電レートで電圧2.5Vまで定電流放電を行った。このときに得られる容量を20C放電容量とした。また、測定温度25℃において、1Cの充電レートで電圧4.3Vまで定電流充電(CC充電)行い、その後1Cの放電レートで電圧2.5Vまで定電流放電を行った。このときに得られる容量を1C放電容量とした。ここで、次式:((20C放電容量)/(1C放電容量)×100);を出力比[%]とした。各例に係る二次電池の出力比を表2及び図9に示す。
 表2及び図9に示すように、出力比は被膜量が多くなるにつれて低下していることが確認された。一方で、容量維持率は被膜量が1質量%のときに最も優れていることが確認された。また、被膜量が0.5質量%よりも小さい場合や1.5質量%よりも大きい場合には容量維持率が大きくて以下していることが確認された。以上より、被膜付き正極活物質の全量を100質量%としたときの被膜量は、0.5質量%~1.5質量%(例えば0.8質量%~1.2質量%)であることが好ましいことが確認された。
 上記試験結果によると、Fe(II)‐F‐O及びFe(III)‐F‐Oの被膜を備えるリチウムイオン二次電池は電池性能(容量維持率等)に優れていることが確認された。次に、鉄(Fe)とフッ素(F)とを含むアモルファス構造物の被膜について、鉄とフッ素とのモル比によってリチウムイオン二次電池の容量維持率がどのように変化するのかを調べた。
[リチウムイオン二次電池の作製]
<例2-1>
 鉄含有溶液中に含まれる鉄イオンと、フッ素含有水溶液中に含まれるフッ素イオンとのモル比が1:3(即ち、モル比(フッ素イオン/鉄イオン)が3)となるように鉄含有溶液及びフッ素含有水溶液を調製した他は例1と同様にして、例2-1に係るリチウムイオン二次電池を作製した。このとき、アモルファス構造物の被膜(Fe(II)‐F‐O)に含まれる鉄とフッ素とのモル比(F/Fe)は3であった。
<例2-2>
 フッ素含有水溶液を用いなかった他は例1と同様にして、例2-2に係るリチウムイオン二次電池を作製した。なお、例2-2に係る被膜付き正極活物質は、マンガン含有リチウム複合酸化物(正極活物質)の表面に少なくとも鉄を含むアモルファス構造物の被膜(Fe(II)O)が形成されたものであり、鉄とフッ素とのモル比(F/Fe)は0であった。
<例2-3>
 鉄含有溶液中に含まれる鉄イオンと、フッ素含有水溶液中に含まれるフッ素イオンとのモル比が1:1(即ち、モル比(フッ素イオン/鉄イオン)が1)となるように鉄含有溶液及びフッ素含有水溶液を調製した他は例1と同様にして、例2-3に係るリチウムイオン二次電池を作製した。このとき、アモルファス構造物の被膜(Fe(II)‐F‐O)に含まれる鉄とフッ素とのモル比(F/Fe)は1であった。
<例2-4>
 鉄含有溶液中に含まれる鉄イオンと、フッ素含有水溶液中に含まれるフッ素イオンとのモル比が1:2(即ち、モル比(フッ素イオン/鉄イオン)が2)となるように鉄含有溶液及びフッ素含有水溶液を調製した他は例1と同様にして、例2-4に係るリチウムイオン二次電池を作製した。このとき、アモルファス構造物の被膜(Fe(II)‐F‐O)に含まれる鉄とフッ素とのモル比(F/Fe)は2であった。
<例2-5>
 鉄含有溶液中に含まれる鉄イオンと、フッ素含有水溶液中に含まれるフッ素イオンとのモル比が1:3.5(即ち、モル比(フッ素イオン/鉄イオン)が3.5)となるように鉄含有溶液及びフッ素含有水溶液を調製した他は例1と同様にして、例2-5に係るリチウムイオン二次電池を作製した。このとき、アモルファス構造物の被膜(Fe(II)‐F‐O)に含まれる鉄とフッ素とのモル比(F/Fe)は3.5であった。
<例2-6>
 鉄含有溶液中に含まれる鉄イオンと、フッ素含有水溶液中に含まれるフッ素イオンとのモル比が1:6(即ち、モル比(フッ素イオン/鉄イオン)が6)となるように鉄含有溶液及びフッ素含有水溶液を調製した他は例1と同様にして、例2-6に係るリチウムイオン二次電池を作製した。このとき、アモルファス構造物の被膜(Fe(II)‐F‐O)に含まれる鉄とフッ素とのモル比(F/Fe)は6であった。
[充放電サイクル試験]
 上記作製した例2-1~例2-6に係るリチウムイオン二次電池に対して初期充放電処理を行った。具体的には、正極の理論容量のC/3の充電レートで4.8Vまで定電流(CC)で充電する操作と、C/3の放電レートで2.5Vまで定電流放電させる操作を3回繰り返した。
 上記初期充放電処理後の例2-1~例2-6の各リチウムイオン二次電池に対して、充放電を30サイクル繰り返し、30サイクル後の容量維持率[%]を求めた。即ち、例2-1~例2-6に係るリチウムイオン二次電池についての1サイクルの充放電条件は、測定温度25℃において、2Cの充電レートで電圧4.6Vまで定電流定電圧充電(CCCV充電)行い、その後2Cの放電レートで電圧2.5Vまで定電流放電を行った。そして、各例において1サイクル目の放電容量と30サイクル目の放電容量とを測定した。1サイクル後の放電容量(初期容量)に対する、30サイクル後の放電容量の割合((30サイクル後の放電容量/初期容量)×100(%))を容量維持率(%)として算出した。以上の測定結果を図11及び表3に示す。
Figure JPOXMLDOC01-appb-T000003
 図11及び表3に示すように、モル比(F/Fe)が1より大きく6より小さいときに容量維持率が高く、電池性能に優れていることが確認できた。好ましくはモル比(F/Fe)が2以上4以下のときであり、特にモル比(F/Fe)が3以上3.5以下のときには、容量維持率が90%を越えており電池性能に優れていることが確認された。従って、かかる試験結果からアモルファス構造物の被膜に含まれる鉄とフッ素とのモル比(F/Fe)は、1より大きく6より小さい(好ましくは2以上4以下、より好ましくは3以上3.5以下である。)ときに電池性能に優れていることが確認された。
 次に、マンガン含有リチウム複合酸化物の表面の少なくとも一部に形成されたフッ素(F)を含むアモルファス構造物の被膜について、被膜に含まれる遷移金属の種類によってリチウムイオン二次電池の容量維持率がどのように変化するのかを調べた。
[リチウムイオン二次電池の作製]
<例2-7>
 例3と同様にして、例2-7に係るリチウムイオン二次電池を作製した。
<例2-8>
 マンガン化合物としての酢酸マンガン(II)・4水和物0.089gをN,N-ジメチルホルムアミド中に投入し撹拌及び超音波処理を施して溶解させたものに、マンガン含有リチウム複合酸化物(正極活物質)としてのLi1.2Mn0.54Co0.13Ni0.13を4g混合させてなる例2-9に係る混合材料を調製した。例1に係る混合材料の代わりに例2-9に係る混合材料を用いた他は例1と同様にして、例2-9に係るリチウムイオン二次電池を作製した。なお、例2-9に係る被膜付き正極活物質は、マンガン含有リチウム複合酸化物(正極活物質)の表面に少なくともマンガンとフッ素とを含むアモルファス構造物の被膜(Mn(II)‐F‐O)が形成されたものである。
<例2-9>
 例5と同様にして、例2-9に係るリチウムイオン二次電池を作製した。
<例2-10>
 クロム化合物としての硝酸クロム(III)・9水和物0.11gをN,N-ジメチルホルムアミド中に投入し撹拌及び超音波処理を施して溶解させたものに、マンガン含有リチウム複合酸化物(正極活物質)としてのLi1.2Mn0.54Co0.13Ni0.13を4g混合させてなる例2-10に係る混合材料を調製した。例1に係る混合材料の代わりに例2-10に係る混合材料を用いた他は例1と同様にして、例2-10に係るリチウムイオン二次電池を作製した。なお、例2-10に係る被膜付き正極活物質は、マンガン含有リチウム複合酸化物(正極活物質)の表面に少なくともクロムとフッ素とを含むアモルファス構造物の被膜(Cr(III)‐F‐O)が形成されたものである。
<例2-11>
 ニッケル化合物としての酢酸ニッケル(II)・4水和物0.089gをN,N-ジメチルホルムアミド中に投入し撹拌及び超音波処理を施して溶解させたものに、マンガン含有リチウム複合酸化物(正極活物質)としてのLi1.2Mn0.54Co0.13Ni0.13を4g混合させてなる例2-11に係る混合材料を調製した。例1に係る混合材料の代わりに例2-11に係る混合材料を用いた他は例1と同様にして、例2-11に係るリチウムイオン二次電池を作製した。なお、例2-11に係る被膜付き正極活物質は、マンガン含有リチウム複合酸化物(正極活物質)の表面に少なくともニッケルとフッ素とを含むアモルファス構造物の被膜(Ni(II)‐F‐O)が形成されたものである。
<例2-12>
 コバルト化合物としての酢酸コバルト(II)・4水和物0.089gをN,N-ジメチルホルムアミド中に投入し撹拌及び超音波処理を施して溶解させたものに、マンガン含有リチウム複合酸化物(正極活物質)としてのLi1.2Mn0.54Co0.13Ni0.13を4g混合させてなる例2-12に係る混合材料を調製した。例1に係る混合材料の代わりに例2-12に係る混合材料を用いた他は例1と同様にして、例2-12に係るリチウムイオン二次電池を作製した。なお、例2-12に係る被膜付き正極活物質は、マンガン含有リチウム複合酸化物(正極活物質)の表面に少なくともコバルトとフッ素とを含むアモルファス構造物の被膜(Co(II)‐F‐O)が形成されたものである。
[充放電サイクル試験]
 上記作製した例2-7~例2-12に係るリチウムイオン二次電池について、例2-1~例2-6の各リチウムイオン二次電池に対して行った充放電サイクル試験と同様の試験を行った。即ち、例2-7~例2-12に係るリチウムイオン二次電池について、充放電を30サイクル繰り返し、30サイクル後の容量維持率[%]を求めた。測定結果を図12及び表4に示す。なお、表4には、例2-1に係るリチウムイオン二次電池の測定結果も示されている。
Figure JPOXMLDOC01-appb-T000004
 図12及び表4に示すように、フッ素(F)を含むアモルファス構造物の被膜中に含まれる遷移金属として鉄を用いた例2-1に係るリチウムイオン二次電池は、最も容量維持率が高いことが確認された。例2-1に係るリチウムイオン二次電池は、2番目に容量維持率の高かった例2-11に係るリチウムイオン二次電池よりも容量維持率が8%も高く、特に優れていることが確認された。
 以上、本発明の具体例を詳細に説明したが、上記実施形態及び実施例は例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 本発明に係る製造方法により得られた非水電解液二次電池では、充放電の際にマンガン含有リチウム複合酸化物中のマンガンが該酸化物から非水電解液へと溶出することが抑制されるため容量維持率の低下を防止することができる。このため各種用途向けの非水電解液二次電池として利用可能である。例えば、図10に示すように、自動車等の車両100に搭載される車両駆動用モーターの電源(駆動電源)として好適に利用することができる。車両100に使用される非水電解液二次電池(リチウムイオン二次電池)10は、単独で使用されてもよく、直列及び/又は並列に複数接続されてなる組電池の形態で使用されてもよい。
10 リチウムイオン二次電池(非水電解液二次電池)
15 電池ケース
20 開口部
25 蓋体
30 ケース本体
40 安全弁
50 電極体(捲回電極体)
60 正極端子
62 正極集電体
64 正極
66 正極合材層
70 被膜付き正極活物質(正極活物質)
72 マンガン含有リチウム複合酸化物
74 被膜
80 負極端子
82 負極集電体
84 負極
86 負極合材層
90 セパレータ
100 車両(自動車)

Claims (15)

  1.  正極と、負極と、非水電解液と、を備えるリチウムイオン二次電池であって、
     前記正極は、正極集電体と、該正極集電体上に形成された少なくとも正極活物質を含む正極合材層と、を備えており、
     前記正極活物質は、リチウムと遷移金属元素として少なくともマンガンとを含むマンガン含有リチウム複合酸化物を主体としており、且つ、該マンガン含有リチウム複合酸化物の表面の少なくとも一部に形成された少なくとも鉄(Fe)とフッ素(F)とを含むアモルファス構造物の被膜を備える被膜付き正極活物質であることを特徴とする、リチウムイオン二次電池。
  2.  前記アモルファス構造物の被膜に含まれる鉄(Fe)とフッ素(F)とのモル比(F/Fe)は、1より大きく6より小さいことを特徴とする、請求項1に記載のリチウムイオン二次電池。
  3.  前記被膜付き正極活物質の全量を100質量%としたときの該被膜量は、0.5質量%~1.5質量%であることを特徴とする、請求項1又は2に記載のリチウムイオン二次電池。
  4.  前記マンガン含有リチウム複合酸化物は、層状岩塩構造又はスピネル構造であることを特徴とする、請求項1から3のいずれか一項に記載のリチウムイオン二次電池。
  5.  前記マンガン含有リチウム複合酸化物は、金属リチウム電極基準で4.6V以上の酸化還元電位を有することを特徴とする、請求項4に記載のリチウムイオン二次電池。
  6.  前記非水電解液は、有機溶媒と、フッ素(F)を構成元素として含むリチウム塩と、を少なくとも含んでいることを特徴とする、請求項1から5のいずれか一項に記載のリチウムイオン二次電池。
  7.  正極集電体上に少なくとも正極活物質を含む正極合材層が形成された正極と、負極集電体上に少なくとも負極活物質を含む負極合材層が形成された負極と、非水電解液と、を備えるリチウムイオン二次電池の製造方法であって、
     前記正極及び前記負極を含む電極体を形成すること、
     前記電極体を前記非水電解液とともに電池ケース内に収容すること、
    を包含し、
     ここで、前記正極活物質として、以下の処理:
     有機溶媒中に少なくとも一種の鉄イオンを含む鉄含有溶液と、水中に少なくとも一種のフッ素イオンを含むフッ素含有水溶液と、リチウムと遷移金属元素として少なくともマンガンとを含むマンガン含有リチウム複合酸化物と、を混合させてなる混合液を調製する工程;
     前記混合液中の前記有機溶媒及び水を除去することによって前駆体を生成する工程;
     前記前駆体を焼成することによって、前記マンガン含有リチウム複合酸化物の表面の少なくとも一部に少なくとも鉄(Fe)とフッ素(F)とを含むアモルファス構造物の被膜が形成されてなる被膜付き正極活物質を生成する工程;
    によって得られた該被膜付き正極活物質を用いることを特徴とする、リチウムイオン二次電池の製造方法。
  8.  前記鉄含有溶液中に含まれる鉄イオンと前記フッ素含有水溶液中に含まれるフッ素イオンとのモル比(フッ素イオン/鉄イオン)が、1より大きく6より小さくなるように前記鉄含有溶液及び前記フッ素含有水溶液を調製することを特徴とする、請求項7に記載の製造方法。
  9.  前記混合液を調製する工程は、少なくとも一種の鉄イオンを含む鉄化合物を有機溶媒中に溶解させてなる鉄含有溶液中に、前記マンガン含有リチウム複合酸化物を混合させてなる混合材料を準備すること、
     少なくとも一種のフッ素イオンを含むフッ化物を水中に溶解させてなるフッ素含有水溶液を準備すること、
     前記混合材料と前記フッ素含有水溶液とを混合させること、
    を包含することを特徴とする、請求項7又は8に記載の製造方法。
  10.  前記被膜付き正極活物質の全量を100質量%としたときの前記被膜量が0.5質量%~1.5質量%となるように、前記混合液を調製することを特徴とする、請求項7から9のいずれか一項に記載の製造方法。
  11.  前記マンガン含有リチウム複合酸化物として、層状岩塩構造又はスピネル構造であるものを用いることを特徴とする、請求項7から10のいずれか一項に記載の製造方法。
  12.  前記マンガン含有リチウム複合酸化物として、金属リチウム電極基準で4.6V以上の酸化還元電位を有するものを用いることを特徴とする、請求項11に記載の製造方法。
  13.  前記前駆体を焼成する温度を400℃~550℃に設定することを特徴とする、請求項7から12のいずれか一項に記載の製造方法。
  14.  前記前駆体は不活性雰囲気中で焼成することを特徴とする、請求項7から13のいずれか一項に記載の製造方法。
  15.  車両の駆動電源として用いられることを特徴とする、請求項1から6のいずれか一項に記載のリチウムイオン二次電池或いは請求項7から14のいずれか一項に記載の製造方法により得られたリチウムイオン二次電池。
PCT/JP2012/067985 2011-11-16 2012-07-13 リチウムイオン二次電池及びその製造方法 WO2013073231A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/358,129 US20150050552A1 (en) 2011-11-16 2012-07-13 Lithium ion secondary battery and method for manufacturing same
CN201280056355.1A CN103959543A (zh) 2011-11-16 2012-07-13 锂离子二次电池及其制造方法
JP2013544151A JP5831769B2 (ja) 2011-11-16 2012-07-13 リチウムイオン二次電池及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-250369 2011-11-16
JP2011250369 2011-11-16

Publications (1)

Publication Number Publication Date
WO2013073231A1 true WO2013073231A1 (ja) 2013-05-23

Family

ID=48429314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067985 WO2013073231A1 (ja) 2011-11-16 2012-07-13 リチウムイオン二次電池及びその製造方法

Country Status (4)

Country Link
US (1) US20150050552A1 (ja)
JP (1) JP5831769B2 (ja)
CN (1) CN103959543A (ja)
WO (1) WO2013073231A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2897201A4 (en) * 2013-06-18 2016-05-25 Lg Chemical Ltd CATHODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND PREPARATION METHOD THEREFOR
JPWO2017104688A1 (ja) * 2015-12-15 2018-11-15 株式会社Gsユアサ リチウム二次電池用正極活物質、正極活物質の前駆体の製造方法、正極活物質の製造方法、リチウム二次電池用正極及びリチウム二次電池
CN114050242A (zh) * 2021-11-10 2022-02-15 蜂巢能源科技有限公司 包覆型铁锰基正极材料及其制备方法、锂离子电池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6326366B2 (ja) * 2014-12-25 2018-05-16 信越化学工業株式会社 リチウムリン系複合酸化物炭素複合体及びその製造方法並びに、電気化学デバイス及びリチウムイオン二次電池
US10355269B2 (en) * 2015-01-14 2019-07-16 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery having positive electrode active material particle with fluorine and phosphorous containing film, and method of manufacturing the same
JP6332235B2 (ja) * 2015-11-10 2018-05-30 トヨタ自動車株式会社 二次電池
CN114583102B (zh) * 2022-02-21 2023-08-15 远景动力技术(江苏)有限公司 正极活性材料、电化学装置和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202678A (ja) * 2005-01-24 2006-08-03 Gs Yuasa Corporation:Kk 正極活物質及びその製造方法、並びに、それを用いた非水電解質電池
JP2009087891A (ja) * 2007-10-03 2009-04-23 Toyota Motor Corp 正極活物質の製造方法およびリチウム二次電池の製造方法
WO2009063630A1 (ja) * 2007-11-12 2009-05-22 Toda Kogyo Corporation 非水電解液二次電池用マンガン酸リチウム粒子粉末及びその製造方法、並びに非水電解液二次電池
JP2010177042A (ja) * 2009-01-29 2010-08-12 Sumitomo Electric Ind Ltd 非水電解質電池用正極とその製造方法および非水電解質電池
JP2012508444A (ja) * 2008-11-10 2012-04-05 エルジー・ケム・リミテッド 高電圧における改善された特性を示すカソード活物質

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3157413B2 (ja) * 1995-03-27 2001-04-16 三洋電機株式会社 リチウム二次電池
KR100822013B1 (ko) * 2005-04-15 2008-04-14 주식회사 에너세라믹 불소화합물코팅 리튬이차전지 양극 활물질 및 그 제조방법
CN100490226C (zh) * 2007-09-14 2009-05-20 中南大学 一种有效改善锂镍钴锰氧倍率性能的多孔包覆材料的包覆方法
JP5229472B2 (ja) * 2007-11-12 2013-07-03 戸田工業株式会社 非水電解液二次電池用マンガン酸リチウム粒子粉末及びその製造方法、並びに非水電解液二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202678A (ja) * 2005-01-24 2006-08-03 Gs Yuasa Corporation:Kk 正極活物質及びその製造方法、並びに、それを用いた非水電解質電池
JP2009087891A (ja) * 2007-10-03 2009-04-23 Toyota Motor Corp 正極活物質の製造方法およびリチウム二次電池の製造方法
WO2009063630A1 (ja) * 2007-11-12 2009-05-22 Toda Kogyo Corporation 非水電解液二次電池用マンガン酸リチウム粒子粉末及びその製造方法、並びに非水電解液二次電池
JP2012508444A (ja) * 2008-11-10 2012-04-05 エルジー・ケム・リミテッド 高電圧における改善された特性を示すカソード活物質
JP2010177042A (ja) * 2009-01-29 2010-08-12 Sumitomo Electric Ind Ltd 非水電解質電池用正極とその製造方法および非水電解質電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHUNBO QING ET AL.: "Enhanced cycling stability of LiMn204 cathode by amorphous FeP04 coating", ELECTROCHIMICA ACTA, vol. 56, no. 19, 12 May 2011 (2011-05-12), pages 6612 - 6618 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2897201A4 (en) * 2013-06-18 2016-05-25 Lg Chemical Ltd CATHODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND PREPARATION METHOD THEREFOR
US9972834B2 (en) 2013-06-18 2018-05-15 Lg Chem, Ltd. Cathode active material for lithium secondary battery and method for manufacturing the same
JPWO2017104688A1 (ja) * 2015-12-15 2018-11-15 株式会社Gsユアサ リチウム二次電池用正極活物質、正極活物質の前駆体の製造方法、正極活物質の製造方法、リチウム二次電池用正極及びリチウム二次電池
CN114050242A (zh) * 2021-11-10 2022-02-15 蜂巢能源科技有限公司 包覆型铁锰基正极材料及其制备方法、锂离子电池
CN114050242B (zh) * 2021-11-10 2023-04-21 蜂巢能源科技有限公司 包覆型铁锰基正极材料及其制备方法、锂离子电池

Also Published As

Publication number Publication date
JP5831769B2 (ja) 2015-12-09
US20150050552A1 (en) 2015-02-19
JPWO2013073231A1 (ja) 2015-04-02
CN103959543A (zh) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5300502B2 (ja) 電池用活物質、非水電解質電池および電池パック
JP5614600B2 (ja) リチウムイオン二次電池及びその製造方法
JP4760816B2 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
Kisu et al. The origin of anomalous large reversible capacity for SnO 2 conversion reaction
JP5831769B2 (ja) リチウムイオン二次電池及びその製造方法
WO2011036759A1 (ja) リチウム二次電池及びその製造方法
JP2015156328A (ja) 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
WO2015140934A1 (ja) 電池用活物質、非水電解質電池及び電池パック
JP2012199146A (ja) 電池用活物質、非水電解質電池及び電池パック
JP7055899B2 (ja) 電極、電池、及び電池パック
JP2013243091A (ja) 非水電解質二次電池
JP6096985B1 (ja) 非水電解質電池及び電池パック
JP2011146158A (ja) リチウム二次電池
JP5585834B2 (ja) リチウムイオン二次電池
JP2013062089A (ja) リチウムイオン二次電池
WO2022138451A1 (ja) 電極、非水電解質電池及び電池パック
CN114824244A (zh) 正极活性物质和使用该正极活性物质的非水电解质二次电池
JP6981027B2 (ja) リチウムイオン二次電池用負極活物質、負極及びリチウムイオン二次電池
JP5017010B2 (ja) リチウム二次電池
JP2017091821A (ja) 非水電解質二次電池用正極活物質およびその製造方法
JP2012195239A (ja) リチウムイオン二次電池
JP5733550B2 (ja) リチウムイオン二次電池
CN112689916A (zh) 蓄电元件
JP7500871B2 (ja) 電極、電池、及び電池パック
JP5532330B2 (ja) リチウムイオン二次電池用正極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013544151

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14358129

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12849523

Country of ref document: EP

Kind code of ref document: A1