Nothing Special   »   [go: up one dir, main page]

WO2013069538A1 - 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法 - Google Patents

無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2013069538A1
WO2013069538A1 PCT/JP2012/078341 JP2012078341W WO2013069538A1 WO 2013069538 A1 WO2013069538 A1 WO 2013069538A1 JP 2012078341 W JP2012078341 W JP 2012078341W WO 2013069538 A1 WO2013069538 A1 WO 2013069538A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
sequence
pseudo
reference signal
user terminal
Prior art date
Application number
PCT/JP2012/078341
Other languages
English (en)
French (fr)
Inventor
聡 永田
祥久 岸山
和晃 武田
シアオミン シェ
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to EP12847294.1A priority Critical patent/EP2779730A4/en
Priority to US14/356,289 priority patent/US9337907B2/en
Priority to CN201280054454.6A priority patent/CN103918297A/zh
Priority to KR1020147012083A priority patent/KR20140095480A/ko
Priority to IN3875CHN2014 priority patent/IN2014CN03875A/en
Priority to CA2853607A priority patent/CA2853607A1/en
Publication of WO2013069538A1 publication Critical patent/WO2013069538A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present invention relates to a radio communication system, a radio base station apparatus, a user terminal, and a radio communication method applicable to a cellular system or the like.
  • Non-patent Document 1 In the UMTS (Universal Mobile Telecommunications System) network, WSDPA (High Speed Downlink Packet Access) and HSUPA (High Speed Uplink Packet Access) are adopted for the purpose of improving frequency utilization efficiency and data rate.
  • the system features based on CDMA (Wideband-Code Division Multiple Access) are being extracted to the maximum.
  • LTE Long Term Evolution
  • Non-patent Document 1 LTE (Long Term Evolution) has been studied for the purpose of further high data rate and low delay.
  • the third generation system can achieve a maximum transmission rate of about 2 Mbps on the downlink using generally a fixed bandwidth of 5 MHz.
  • a maximum transmission rate of about 300 Mbps on the downlink and about 75 Mbps on the uplink can be realized using a variable band of 1.4 MHz to 20 MHz.
  • LTE-A LTE Advanced
  • inter-cell orthogonalization is one promising technique for further improving the system performance over the LTE system.
  • orthogonalization within a cell is realized by orthogonal multi-access for both uplink and downlink. That is, in the downlink, orthogonalization is performed between user terminals UE (User Equipment) in the frequency domain.
  • UE User Equipment
  • W-CDMA Wideband Code Division Multiple Access
  • a coordinated multi-point transmission / reception (CoMP) technique is being studied as a technique for realizing inter-cell orthogonalization.
  • CoMP coordinated multi-point transmission / reception
  • a plurality of cells perform transmission / reception signal processing in cooperation with one or a plurality of user terminals UE.
  • simultaneous transmission of multiple cells to which precoding is applied, cooperative scheduling / beamforming, and the like are being studied.
  • Application of these CoMP transmission / reception techniques is expected to improve the throughput characteristics of the user terminal UE located particularly at the cell edge.
  • a configuration including a plurality of remote radio devices RRE: Remote Radio Equipment
  • RRE Remote Radio Equipment
  • radio base station device eNB radio base station device
  • RRE optical fiber
  • the remote radio apparatus RRE is centrally controlled by the radio base station apparatus eNB.
  • an optical fiber is used between a radio base station apparatus eNB (concentrated base station) that performs baseband signal processing and control of a plurality of remote radio apparatuses RRE and each cell (that is, each remote radio apparatus RRE). Since connection is performed using a baseband signal, radio resource control between cells can be performed collectively in a centralized base station. Therefore, in the RRE configuration, a method using high-speed signal processing between cells such as simultaneous transmission of a plurality of cells can be applied in the downlink.
  • the transmission power of the remote radio apparatus RRE is approximately the same as the transmission power of the radio base station apparatus (macro base station) eNB (high transmission power RRE).
  • an overlay type network environment in which a plurality of remote radio apparatuses RRE are arranged in a cover area of a radio base station apparatus (macro base station) eNB. Environment).
  • the cell of the macro base station eNB and the cell of the remote radio apparatus RRE are different, that is, the cell identification information (cell ID) of the macro base station eNB and the cell ID of the remote radio apparatus RRE are different (first 1 heterogeneous environment) and the cell of the macro base station eNB and the cell of the remote radio apparatus RRE are the same, that is, the environment where the cell ID of the macro base station eNB and the cell ID of the remote radio apparatus RRE are the same (second Heterogeneous environment).
  • the transmission power of the remote radio apparatus RRE is lower than the transmission power of the radio base station apparatus (macro base station) eNB (low transmission power RRE).
  • the control environment is simpler than the first heterogeneous environment.
  • the cell of the macro base station eNB the hexagonal cell in FIG. 2
  • the cell of the remote radio apparatus RRE the circular cell in FIG. 2. It is difficult to determine which cell the downlink signal is from, which causes a problem that reception accuracy is lowered. For example, if the user terminal cannot determine from which cell a reference signal sequence such as a demodulation reference signal or a channel state information reference signal is transmitted, the demodulation accuracy and the channel estimation accuracy are reduced. There's a problem.
  • An object of the present invention is to provide a radio communication system, a radio base station apparatus, a user terminal, and a radio communication method.
  • a radio communication system of the present invention is a radio communication system comprising a plurality of radio base station devices and a user terminal configured to be capable of cooperative multipoint transmission / reception with the plurality of radio base station devices, wherein the radio base station
  • the station apparatus includes a generation unit that generates a reference signal sequence using a pseudo-random sequence using user-specific information, and a transmission unit that transmits the reference signal sequence to a user terminal. It has a signal processing part which performs signal processing using the reference signal sequence transmitted from the radio base station apparatus.
  • a radio base station apparatus is a radio base station apparatus in a radio communication system comprising a plurality of radio base station apparatuses and a user terminal configured to be capable of cooperative multipoint transmission / reception with the plurality of radio base station apparatuses.
  • a generation unit that generates a reference signal sequence using a pseudo-random sequence using user-specific information, and a transmission unit that transmits the reference signal sequence to a user terminal.
  • a user terminal is a user terminal in a radio communication system comprising a plurality of radio base station devices and a user terminal configured to be capable of cooperative multipoint transmission / reception with the plurality of radio base station devices,
  • a signal processing unit is provided that performs signal processing using a reference signal sequence that is transmitted from a radio base station apparatus and is generated using a pseudo-random sequence using user-specific information.
  • a radio communication method of the present invention is a radio communication method of a radio communication system comprising a plurality of radio base station devices and a user terminal configured to be capable of cooperative multipoint transmission / reception with the plurality of radio base station devices.
  • a step of generating a reference signal sequence using a pseudo random sequence using user-specific information a step of transmitting the reference signal sequence to a user terminal, and in the user terminal, the radio base station And a step of performing signal processing using the reference signal sequence transmitted from the station apparatus.
  • the present invention even in a heterogeneous environment using the same cell identification information, it is possible to determine from which cell the user terminal is a downlink signal, thereby maintaining reception accuracy.
  • Downlink CoMP transmission includes Coordinated Scheduling / Coordinated Beamforming and Joint processing.
  • Coordinated Scheduling / Coordinated Beamforming is a method for transmitting a shared data channel from only one cell to one user terminal UE, and in the frequency / space domain considering interference from other cells and interference to other cells. Assign radio resources.
  • Joint processing is a method for transmitting a shared data channel from a plurality of cells at the same time by applying precoding, and a joint transmission for transmitting a shared data channel from a plurality of cells to one user terminal UE, and an instantaneous process.
  • DPS Dynamic Point Selection
  • the cell ID of the macro base station eNB and the cell ID of the remote radio apparatus RRE are the same.
  • a reference signal sequence for example, a demodulation reference signal sequence (DM-RS sequence) or a channel state information reference signal sequence (CSI-RS sequence)
  • CSI-RS sequence channel state information reference signal sequence
  • the DM-RS sequence r (m) is defined by the following formula (1) (Release 10 LTE).
  • the pseudo-random sequence c (i) included in the equation (1) is initialized as follows (C init ).
  • the initialization As can be seen from the pseudo-random sequence C init, contains different terms N ID cell by cell ID in the initialized pseudo random sequence C init. Note that this pseudo-random sequence c (i) is generated using a 31-length gold sequence. Also, during initialization pseudo random sequence C init, it includes scrambling identity (SCID) is. This SCID takes values of 0 and 1 (the beginning of each subframe). Thus, the pseudo-random sequence used when generating the DM-RS sequence r (m) is set so as to differ depending on the cell ID.
  • SCID scrambling identity
  • the CSI-RS sequence r l, ns (m) is defined by the following equation (2) (Release 10 LTE).
  • the pseudo-random sequence c (i) included in the equation (2) is initialized as follows (C init ).
  • the initialization As can be seen from the pseudo-random sequence C init, contains different terms N ID cell by cell ID in the initialized pseudo random sequence C init.
  • the pseudo-random sequence used when generating the CSI-RS sequence r l, ns (m) is also set to be different depending on the cell ID.
  • both the DM-RS sequence and the CSI-RS sequence are generated using a pseudo-random sequence including different terms depending on the cell ID, in the second heterogeneous environment, the cell of the macro base station eNB Since the ID and the cell ID of the remote radio device RRE are the same, the same DM-RS sequence and CSI-RS sequence are applied between the macro base station eNB and the plurality of remote radio devices RRE. There is a high possibility that DM-RS and CSI-RS are multiplexed in resources. In such a state, it becomes difficult to determine whether the user terminal is a downlink signal from the macro base station eNB or a downlink signal from the remote radio apparatus RRE (reference signal collision) (FIG. 3).
  • a DM-RS collision may cause a decrease in DM-RS channel estimation accuracy and a PDSCH demodulation accuracy
  • a CSI-RS collision may cause a decrease in CSI-RS channel estimation accuracy and CSI estimation accuracy.
  • the present inventor has a high possibility that a reference signal collision occurs in the second heterogeneous environment because the pseudo-random sequence used when generating the reference signal sequence includes a term different depending on the cell ID. It is possible to avoid collision of reference signals in the second heterogeneous environment by using user specific information, for example, user identification information (UEID), as a pseudo-random sequence used when generating a reference signal sequence.
  • UEID user identification information
  • the gist of the present invention is that a radio base station apparatus generates a reference signal sequence using a pseudo-random sequence using user-specific information, transmits the reference signal sequence to the user terminal, and the user terminal By performing signal processing using the reference signal sequence transmitted from the device, even in a heterogeneous environment using the same cell identification information, the user terminal determines which cell the downlink signal is from, and receives it accordingly It is to maintain accuracy.
  • user-specific information such as user identification information (UEID) is used for the pseudo-random sequence used when generating the reference signal sequence.
  • the DM-RS sequence is generated using user identification information (UEID) instead of the cell ID in the pseudo-random sequence as shown in the following formula (3) (first method). That is, the term N ID cell in the equation (1) in the initialized pseudo-random sequence is changed to the term UE ID .
  • the cell ID of the cell of the macro base station eNB and the remote radio overlaid with this cell Since the cell ID of the cell of the device RRE is the same, the same DM-RS sequence is used in the user terminals UE # 1 to # 3, and there is a high possibility that the multiplexing positions of the DM-RS are the same. -An RS collision occurs, and it becomes difficult for the user terminal UE to determine whether it is a downlink signal from the macro base station eNB or a downlink signal from the remote radio apparatus RRE.
  • the cell ID of the cell of the macro base station eNB is overlaid with the cell in the second heterogeneous environment shown in FIG.
  • the cell IDs of the cells of the remote radio apparatus RRE are the same, but since the UE IDs are different in the user terminals UE # 1 to # 3, different DM-RS sequences are used in the user terminals UE # 1 to # 3. -It is less likely that the multiple positions of the RS will be the same.
  • the pseudo-random sequence using Equation (3) is a pseudo-random sequence using user specific information.
  • the DM-RS sequence is generated using the user specific information X1 instead of the cell ID in the pseudo-random sequence as shown in the following equation (4) (second method 1). That is, the term N ID cell in the equation (1) in the initialized pseudo-random sequence is changed to the term X1.
  • the DM-RS sequence is generated by adding user-specific information X1 to the cell ID in the pseudo-random sequence as shown in the following formula (5) (second method 2-2). That is, the term X1 is added to the term N ID cell of the equation (1) in the initialized pseudo-random sequence.
  • the term X1 in the initialization pseudo-random sequence is a term using user-specific information.
  • X1 is notified to the user terminal by higher layer or signaling (for example, RRC signaling).
  • X1 is a value unique to the user, and the same X1 is signaled to a specific group of user terminals. Thereby, it can be set as the pseudorandom series using user specific information, without being tied to UEID.
  • the cell ID of the cell of the macro base station eNB and the remote radio overlaid with this cell Since the cell ID of the cell of the device RRE is the same, the same DM-RS sequence is used in the user terminals UE # 1 to # 3, and there is a high possibility that the multiplexing positions of the DM-RS are the same. -An RS collision occurs, and it becomes difficult for the user terminal UE to determine whether it is a downlink signal from the macro base station eNB or a downlink signal from the remote radio apparatus RRE.
  • the DM-RS sequence is generated using the pseudo-random sequence shown in the above equations (4) and (5), in the second heterogeneous environment shown in FIG. 3, the cell ID of the cell of the macro base station eNB, This cell and the cell ID of the cell of the overlaid remote radio apparatus RRE are the same, but by generating a different pseudo-random sequence using higher layer signaling notified from the radio base station apparatus, the user terminal UE # 1 Different DM-RS sequences are used in ⁇ # 3, and the possibility that the multiplexing positions of DM-RS are the same is reduced.
  • the user terminal UE can easily determine whether it is a downlink signal from the macro base station eNB or a downlink signal from the remote radio apparatus RRE. As a result, DM-RS channel estimation accuracy and PDSCH demodulation accuracy can be maintained.
  • the DM-RS sequence is generated using the UEID instead of the SCID in the pseudo-random sequence as shown in the following formula (6) (third method). That is, the term n SCID of the equation (1) in the initialized pseudo-random sequence is changed to the term X2 (X2 is a term using user specific information (UE ID )).
  • the term X2 in the initialization pseudo-random sequence is a term using user specific information (UE ID ).
  • UE ID user specific information
  • n SCID is dynamically transmitted from the radio base station apparatus to the user terminal using a downlink control channel signal.
  • DCI downlink control information
  • the term X2 is dynamically transmitted using downlink control information (DCI).
  • DCI downlink control information
  • the value “0” or “1” of X2 can be defined as follows. By defining as follows, the form of notification using DCI is not changed. Moreover, backward compatibility can be achieved by such a definition.
  • a pseudo-random sequence using the term X2 defined as follows is set as a pseudo-random sequence using user-specific information.
  • X2 0: Value “0” and UEID is not used
  • X2 1: UEID (UE number)
  • the cell ID of the cell of the macro base station eNB and the remote radio overlaid with this cell Since the cell ID of the cell of the device RRE is the same, the same DM-RS sequence is used in the user terminals UE # 1 to # 3, and there is a high possibility that the multiplexing positions of the DM-RS are the same. -An RS collision occurs, and it becomes difficult for the user terminal UE to determine whether it is a downlink signal from the macro base station eNB or a downlink signal from the remote radio apparatus RRE.
  • the cell ID of the cell of the macro base station eNB is overlaid with this cell.
  • the cell IDs of the cells of the remote radio apparatus RRE are the same, but since the UE IDs are different in the user terminals UE # 1 to # 3, different DM-RS sequences are used in the user terminals UE # 1 to # 3. -It is less likely that the multiple positions of the RS will be the same.
  • the user terminal UE can easily determine whether it is a downlink signal from the macro base station eNB or a downlink signal from the remote radio apparatus RRE. As a result, DM-RS channel estimation accuracy and PDSCH demodulation accuracy can be maintained.
  • the DM-RS sequence is generated by adding the term Y1 as shown in the following formula (7) (fourth method). That is, the term Y1 is added to Equation (1) in the initialized pseudo-random sequence.
  • the term Y1 in the initialization pseudo-random sequence is user-specific.
  • the information of this term Y1 is notified from the radio base station apparatus to the user terminal by higher layer signaling (for example, RRC signaling).
  • the pseudo-random sequence using the above equation (7) is a pseudo-random sequence (a pseudo-random sequence for realizing UE-specific operation) in which the radio base station apparatus uses user-specific information. is there.
  • the cell ID of the cell of the macro base station eNB and the remote radio overlaid with this cell Since the cell ID of the cell of the device RRE is the same, the same DM-RS sequence is used in the user terminals UE # 1 to # 3, and there is a high possibility that the multiplexing positions of the DM-RS are the same. -An RS collision occurs, and it becomes difficult for the user terminal UE to determine whether it is a downlink signal from the macro base station eNB or a downlink signal from the remote radio apparatus RRE.
  • the cell ID of the cell of the macro base station eNB is overlaid with this cell.
  • the cell IDs of the cells of the remote radio apparatus RRE are the same, but differ by the user terminals UE # 1 to # 3 by generating different pseudo-random sequences using higher layer signaling notified from the radio base station apparatus
  • the DM-RS sequence is used, and the possibility that the multiplexing positions of the DM-RS are the same is reduced.
  • the user terminal UE can easily determine whether it is a downlink signal from the macro base station eNB or a downlink signal from the remote radio apparatus RRE. As a result, DM-RS channel estimation accuracy and PDSCH demodulation accuracy can be maintained.
  • a CSI-RS sequence is generated by adding a UEID in a pseudo-random sequence as shown in the following equation (8) (fifth method). That is, the UE ID is added to Equation (2) in the initialization pseudo-random sequence.
  • the cell ID of the cell of the macro base station eNB and the remote radio overlaid with this cell Since the cell ID of the cell of the device RRE is the same, the same CSI-RS sequence is used in the user terminals UE # 1 to # 3, and there is a high possibility that the CSI-RS multiplexing positions are the same. -An RS collision occurs, and it becomes difficult for the user terminal UE to determine whether it is a downlink signal from the macro base station eNB or a downlink signal from the remote radio apparatus RRE.
  • the CSI-RS channel estimation accuracy and the CSI-RS accuracy may be degraded.
  • the cell ID of the cell of the macro base station eNB is overlaid with this cell in the second heterogeneous environment shown in FIG.
  • the cell IDs of the cells of the remote radio apparatus RRE are the same, but since the UE IDs are different in the user terminals UE # 1 to # 3, different CSI-RS sequences are used in the user terminals UE # 1 to # 3, and the CSI -It is less likely that the multiple positions of the RS will be the same.
  • the pseudo-random sequence using the above equation (8) is set as a pseudo-random sequence using user specific information (UE ID ).
  • the CSI-RS sequence is generated by adding the term X3 in the pseudo-random sequence as shown in the following formula (9) (sixth method). That is, the term X3 is added to Equation (2) in the initialized pseudo-random sequence.
  • the term X3 in the initialization pseudo-random sequence is a term using user specific information (UE ID ).
  • the term X3 is a term for distinguishing between the case where the initialization pseudo-random sequence is user-specific and the case where the initialization pseudo-random sequence is not user-specific. For example, if it is user-specific, the term X3 is set as the UE ID (in this case, the fifth method), and if not specific to the user, the term X3 is set to 0. That is, it is determined whether or not to be user-specific in the radio base station apparatus, and the initialization pseudo-random sequence is changed based on the determination (determines whether or not to add a user-specific term (X3)).
  • the pseudo-random sequence using (9) is a pseudo-random sequence using user specific information.
  • the cell ID of the cell of the macro base station eNB and the remote radio overlaid with this cell Since the cell ID of the cell of the device RRE is the same, the same CSI-RS sequence is used in the user terminals UE # 1 to # 3, and there is a high possibility that the CSI-RS multiplexing positions are the same. -An RS collision occurs, and it becomes difficult for the user terminal UE to determine whether it is a downlink signal from the macro base station eNB or a downlink signal from the remote radio apparatus RRE.
  • the CSI-RS channel estimation accuracy and the CSI-RS accuracy may be degraded.
  • the cell ID of the cell of the macro base station eNB is overlaid with this cell in the second heterogeneous environment shown in FIG.
  • the cell IDs of the cells of the remote radio apparatus RRE are the same, but since the UE IDs are different in the user terminals UE # 1 to # 3, different CSI-RS sequences are used in the user terminals UE # 1 to # 3, and the CSI -It is less likely that the multiple positions of the RS will be the same.
  • CSI-RS collision does not occur, and the user terminal UE can easily determine whether it is a downlink signal from the macro base station eNB or a downlink signal from the remote radio apparatus RRE. As a result, CSI-RS channel estimation accuracy and CSI-RS accuracy can be maintained.
  • the CSI-RS sequence is generated by adding the term Y2 in the pseudo-random sequence as shown in the following formula (10) (seventh method). That is, the term Y2 is added to Equation (2) in the initialized pseudo-random sequence.
  • the term Y2 in the initialization pseudo-random sequence is user-specific.
  • the information of this term Y2 is notified from the radio base station apparatus to the user terminal by higher layer signaling (for example, RRC signaling).
  • the pseudo-random sequence using the above equation (10) is a pseudo-random sequence (a pseudo-random sequence for realizing UE-specific operation) in which the radio base station apparatus uses user-specific information. is there.
  • the cell ID of the cell of the macro base station eNB and the remote radio overlaid with this cell Since the cell ID of the cell of the device RRE is the same, the same CSI-RS sequence is used in the user terminals UE # 1 to # 3, and there is a high possibility that the CSI-RS multiplexing positions are the same. -An RS collision occurs, and it becomes difficult for the user terminal UE to determine whether it is a downlink signal from the macro base station eNB or a downlink signal from the remote radio apparatus RRE.
  • the CSI-RS channel estimation accuracy and the CSI-RS accuracy may be degraded.
  • the cell ID of the cell of the macro base station eNB is overlaid with this cell in the second heterogeneous environment shown in FIG.
  • the cell IDs of the cells of the remote radio apparatus RRE are the same, but differ by the user terminals UE # 1 to # 3 by generating different pseudo-random sequences using higher layer signaling notified from the radio base station apparatus A CSI-RS sequence is used, and the possibility that CSI-RS multiplexing positions are the same is reduced.
  • CSI-RS collision does not occur, and the user terminal UE can easily determine whether it is a downlink signal from the macro base station eNB or a downlink signal from the remote radio apparatus RRE. As a result, CSI-RS channel estimation accuracy and CSI-RS accuracy can be maintained.
  • FIG. 4 is an explanatory diagram of the system configuration of the wireless communication system according to the present embodiment.
  • This radio communication system includes a plurality of radio base station apparatuses and user terminals configured to be capable of cooperative multipoint transmission / reception with the plurality of radio base station apparatuses.
  • the radio communication system shown in FIG. 4 is a system including, for example, an LTE system or SUPER 3G.
  • carrier aggregation in which a plurality of fundamental frequency blocks with the system band of the LTE system as a unit is integrated is used.
  • this wireless communication system may be called IMT-Advanced or 4G.
  • the radio communication system 1 includes radio base station apparatuses 20A and 20B and a plurality of first and second user terminals 10A and 10B communicating with the radio base station apparatuses 20A and 20B. It is configured.
  • the radio base station devices 20 ⁇ / b> A and 20 ⁇ / b> B are connected to the higher station device 30, and the higher station device 30 is connected to the core network 40.
  • the radio base station apparatuses 20A and 20B are connected to each other by wired connection or wireless connection.
  • the first and second user terminals 10A and 10B can communicate with the radio base station apparatuses 20A and 20B in the cells C1 and C2.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Note that, between cells, control of CoMP transmission is performed by a plurality of base stations as necessary.
  • RNC radio network controller
  • MME mobility management entity
  • the first and second user terminals 10A and 10B include an LTE terminal and an LTE-A terminal. In the following, the description will proceed as the first and second user terminals unless otherwise specified. Further, for convenience of explanation, it is assumed that the first and second user terminals 10A and 10B communicate wirelessly with the radio base station apparatuses 20A and 20B, but more generally both user terminals and fixed terminal apparatuses are used.
  • the user equipment (UE) may be included.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the wireless access method is not limited to this.
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single carrier transmission method that reduces interference between terminals by dividing a system band into bands each consisting of one or continuous resource blocks for each terminal, and a plurality of terminals using different bands. .
  • the downlink communication channel includes PDSCH (Physical Downlink Shared Channel) as a downlink data channel shared by the first and second user terminals 10A and 10B, and a downlink L1 / L2 control channel (PDCCH, PCFICH, PHICH) Have Transmission data and higher control information are transmitted by the PDSCH.
  • PDSCH and PUSCH scheduling information and the like are transmitted by PDCCH (Physical Downlink Control Channel).
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH (Physical Control Format Indicator Channel).
  • the HARQ ACK / NACK for PUSCH is transmitted by PHICH (Physical Hybrid-ARQ Indicator Channel).
  • the uplink communication channel has PUSCH (Physical Uplink Shared Channel) as an uplink data channel shared by each user terminal and PUCCH (Physical Uplink Control Channel) as an uplink control channel. Transmission data and higher control information are transmitted by this PUSCH. Also, downlink reception quality information (CQI), ACK / NACK, and the like are transmitted by PUCCH.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the radio base station apparatus 20 includes a transmission / reception antenna 201, an amplifier unit 202, a transmission / reception unit (notification unit) 203, a baseband signal processing unit 204, a call processing unit 205, and a transmission path interface 206. Transmission data transmitted from the radio base station apparatus 20 to the user terminal via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 204 via the transmission path interface 206.
  • the downlink data channel signal is transmitted from the RCP layer, such as PDCP layer processing, transmission data division / combination, RLC (Radio Link Control) retransmission control transmission processing, and MAC (Medium Access).
  • RCP layer such as PDCP layer processing, transmission data division / combination, RLC (Radio Link Control) retransmission control transmission processing, and MAC (Medium Access).
  • Control Retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, and precoding processing are performed.
  • transmission processing such as channel coding and inverse fast Fourier transform is performed on the signal of the physical downlink control channel that is the downlink control channel.
  • the baseband signal processing unit 204 notifies the control information for each user terminal 10 to wirelessly communicate with the radio base station apparatus 20 to the user terminals 10 connected to the same cell through the broadcast channel.
  • the information for communication in the cell includes, for example, system bandwidth in uplink or downlink, and root sequence identification information (Root Sequence) for generating a random access preamble signal in PRACH (Physical Random Access Channel). Index) etc. are included.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band.
  • the amplifier unit 202 amplifies the radio frequency signal subjected to frequency conversion and outputs the amplified signal to the transmission / reception antenna 201.
  • the transmission / reception part 203 comprises the receiving means which receives the information of the phase difference between several cells, and the uplink signal containing PMI, and the transmission means which transmits a reference signal sequence to a user terminal.
  • a radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202 and is frequency-converted by the transmission / reception unit 203 to be baseband.
  • the signal is converted into a signal and input to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs FFT (Fast Fourier Transform) processing, IDFT (Inverse Discrete Fourier Transform) processing, error correction decoding, and MAC retransmission control on transmission data included in the baseband signal received on the uplink. Reception processing, RLC layer, and PDCP layer reception processing are performed.
  • the decoded signal is transferred to the higher station apparatus 30 via the transmission path interface 206.
  • the call processing unit 205 performs call processing such as communication channel setting and release, state management of the radio base station apparatus 20, and radio resource management.
  • FIG. 6 is a block diagram showing a configuration of a baseband signal processing unit in the radio base station apparatus shown in FIG.
  • the baseband signal processing unit 204 includes a transmission data generation unit 2041, an RS sequence generation unit 2042, a multiplexing unit 2043, an IFFT (Inverse Fast Fourier Transform) unit 2044, and a CP (Cyclic Prefix) addition unit 2045. It is configured.
  • the transmission data generation unit 2041 performs error correction coding and interleaver on the transmission data symbol series.
  • Transmission data generation section 2041 performs error correction coding / interleaving on the transmission data, and then serial-parallel converts the transmission data sequence (n bits constituting one OFDM symbol) to generate a plurality of data signals for subcarrier modulation. Generate. Interleaving may be performed after a plurality of data signals are generated.
  • Transmission data generation section 2041 further subcarrier modulates a plurality of data signals in parallel.
  • the RS sequence generation unit 2042 generates a reference signal sequence using a pseudo-random sequence using UEID. If the reference signal sequence is a DM-RS sequence, the RS sequence generation section 2042 generates a DM-RS with a DM-RS sequence using the pseudo-random sequence shown in Equation (3) (first method) ), Generate a DM-RS with a DM-RS sequence using the pseudo-random sequence shown in the above equations (4) and (5) (second method), or use the pseudo-random sequence shown in the above equation (6).
  • the DM-RS is generated from the DM-RS sequence (third method) or the DM-RS sequence using the pseudo-random sequence shown in the above equation (7) is generated (fourth method).
  • the RS sequence generation section 2042 generates a CSI-RS using the CSI-RS sequence using the pseudo-random sequence shown in the above equation (8) (fifth method). ), CSI-RS is generated with the CSI-RS sequence using the pseudo-random sequence shown in the above equation (9) (sixth method), or the CSI-RS sequence using the pseudo-random sequence shown in the above equation (10) To generate CSI-RS (seventh method).
  • the information on the term X2 in the pseudo-random sequence of Equation (6) is dynamically notified to the user terminal using the downlink control channel (for example, DCI).
  • the information of the term X1 in the pseudo-random sequence of Equation (4) and Equation (5) and the term in the pseudo-random sequence of Equation (7) are reported semi-statically to the user terminal by higher layer signaling (for example, RRC signaling). .
  • the multiplexing unit 2043 multiplexes the transmission data and the RS into a radio resource.
  • IFFT section 2044 performs inverse fast Fourier transform on a frequency domain transmission signal (subcarrier signal) in which transmission data and RS are subcarrier mapped.
  • the frequency component signal assigned to the subcarrier is converted into a time component signal sequence by inverse fast Fourier transform. Thereafter, a cyclic prefix is added by the CP adding unit 2045.
  • the user terminal 10 includes a transmission / reception antenna 101, an amplifier unit 102, a transmission / reception unit (reception unit) 103, a baseband signal processing unit 104, and an application unit 105.
  • a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102, frequency-converted by the transmission / reception unit 103, and converted into a baseband signal.
  • the baseband signal is subjected to FFT processing, error correction decoding, retransmission control reception processing, and the like by the baseband signal processing unit 104.
  • downlink transmission data is transferred to the application unit 105.
  • the application unit 105 performs processing related to layers higher than the physical layer and the MAC layer. Also, the broadcast information in the downlink data is also transferred to the application unit 105.
  • uplink transmission data is input from the application unit 105 to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs mapping processing, retransmission control (HARQ) transmission processing, channel coding, DFT (Discrete Fourier Transform) processing, and IFFT processing.
  • the transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 into a radio frequency band. Thereafter, the amplifier unit 102 amplifies the frequency-converted radio frequency signal and transmits it from the transmission / reception antenna 101.
  • the transmission / reception part 103 comprises the receiving means which receives a downlink signal.
  • FIG. 8 is a block diagram showing a configuration of a baseband signal processing unit in the user terminal shown in FIG.
  • the baseband signal processing unit 104 mainly includes a CP removal unit 1041, an FFT unit 1042, a separation unit 1043, a channel estimation unit 1044, a demodulation unit 1045, and a feedback information generation unit 1046.
  • CP removing section 1041 removes the cyclic prefix from the received signal.
  • the FFT unit 1042 performs fast Fourier transform on the received signal from which CP has been removed, and converts a time-series signal component into a sequence of frequency components.
  • Separating section 1043 performs subcarrier demapping on the received signal to separate the RS and the shared channel signal (data signal).
  • the reference signals (DM-RS, CSI-RS) are output to channel estimation section 1044.
  • the channel estimation unit 1044 performs channel estimation using DM-RS and CSI-RS.
  • Channel estimation section 1044 outputs the channel estimation value obtained using DM-RS to demodulation section 1045, and outputs the channel estimation value obtained using CSI-RS to feedback information generation section 1046.
  • Demodulation section 1045 demodulates the shared channel signal using the channel estimation value.
  • the feedback information generation unit 1046 generates CSI (feedback information) using the channel estimation value.
  • CSI include per-cell CSI (PMI, CDI, CQI), inter-cell CSI (phase difference information, amplitude difference information), RI (Rank Indicator), and the like. These CSIs are fed back to the radio base station apparatus through PUCCH and PUSCH.
  • the channel estimation unit 1044, the demodulation unit 1045, and the feedback information generation unit 1046 are signal processing units that perform signal processing using the reference signal sequence transmitted from the radio base station apparatus.
  • the signal processing unit is the channel estimation unit 1044 and the demodulation unit 1045.
  • the signal processing unit is the channel estimation unit 1044 and A feedback information generation unit 1046.
  • the RS sequence generation section 2042 of the radio base station apparatus generates a reference signal sequence using a pseudo random sequence using UEID.
  • the reference signal sequence is a DM-RS sequence
  • the reference signal sequence is a CSI-RS sequence
  • the information on the term X2 in the pseudo-random sequence of Equation (6) is dynamically notified to the user terminal using the downlink control channel (for example, DCI).
  • the information of the term X1 in the pseudo-random sequence of Equation (4) and Equation (5) and the term in the pseudo-random sequence of Equation (7) are reported semi-statically to the user terminal by higher layer signaling (for example, RRC signaling). .
  • the first method uses the pseudo-random sequence shown in the above equation (3)
  • the second method uses the pseudo-random sequence shown in the above-described equations (4) and (5).
  • the pseudo random sequence shown in the above equation (7) is used in the fourth method
  • the pseudo random sequence shown in the above equation (8) is used in the fifth method
  • the pseudo random sequence shown in the above equation (8) is used in the sixth method
  • the pseudo-random sequence shown in the above equation (9) is used
  • the pseudo-random sequence shown in the above equation (10) is used.
  • the channel estimation unit 1044 performs channel estimation using the reference signal sequence obtained in this manner
  • the demodulation unit 1045 demodulates data
  • the feedback information generation unit 1046 generates feedback information.
  • the macro base station eNB when a DM-RS sequence or a CSI-RS sequence generated using the pseudo-random sequence shown in the above equations (3) to (10) is used, in the second heterogeneous environment, the macro base station eNB The cell ID of the cell of the remote radio device RRE overlaid with this cell is the same, but each user terminal UE has a different UEID, so that each user terminal UE has a different DM-RS sequence or A CSI-RS sequence is used, and it is less likely that DM-RS or CSI-RS multiplexing positions are the same.
  • the collision of DM-RS or CSI-RS does not occur, and the user terminal UE can easily determine whether it is a downlink signal from the macro base station eNB or a downlink signal from the remote radio apparatus RRE. As a result, it is possible to maintain DM-RS or CSI-RS channel estimation accuracy, PDSCH demodulation accuracy, and CSI accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 同じセル識別情報を用いるヘテロジニアス環境においても、ユーザ端末がいずれのセルからの下りリンク信号であるか判別でき、それにより受信精度が維持できること。本発明の無線通信方法は、無線基地局装置において、ユーザ固有情報を含む擬似ランダム系列を用いて参照信号系列を生成し、参照信号系列をユーザ端末に送信し、ユーザ端末において、無線基地局装置から送信された参照信号系列を用いて信号処理を行うことを特徴とする。

Description

無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
 本発明は、セルラーシステム等に適用可能な無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいては、周波数利用効率の向上、データレートの向上を目的として、HSDPA(High Speed Downlink Packet Access)やHSUPA(High Speed Uplink Packet Access)を採用することにより、W-CDMA(Wideband-Code Division Multiple Access)をベースとしたシステムの特徴を最大限に引き出すことが行われている。このUMTSネットワークについては、更なる高速データレート、低遅延などを目的としてLTE(Long Term Evolution)が検討されている(非特許文献1)。
 第3世代のシステムは、概して5MHzの固定帯域を用いて、下り回線で最大2Mbps程度の伝送レートを実現できる。一方、LTEのシステムでは、1.4MHz~20MHzの可変帯域を用いて、下り回線で最大300Mbps及び上り回線で75Mbps程度の伝送レートを実現できる。また、UMTSネットワークにおいては、更なる広帯域化及び高速化を目的として、LTEの後継のシステムも検討されている(例えば、LTEアドバンスト(LTE-A))。
 ところで、LTEシステムに対してさらにシステム性能を向上させるための有望な技術の1つとして、セル間直交化がある。例えば、LTE-Aシステムでは、上下リンクとも直交マルチアクセスによりセル内の直交化が実現されている。すなわち、下りリンクでは、周波数領域においてユーザ端末UE(User Equipment)間で直交化されている。一方、セル間はW-CDMAと同様、1セル周波数繰り返しによる干渉ランダム化が基本である。
 そこで、3GPP(3rd Generation Partnership Project)では、セル間直交化を実現するための技術として、協調マルチポイント送受信(CoMP:Coordinated Multi-Point transmission/reception)技術が検討されている。このCoMP送受信では、1つあるいは複数のユーザ端末UEに対して複数のセルが協調して送受信の信号処理を行う。例えば、下りリンクでは、プリコーディングを適用する複数セル同時送信、協調スケジューリング/ビームフォーミングなどが検討されている。これらのCoMP送受信技術の適用により、特にセル端に位置するユーザ端末UEのスループット特性の改善が期待される。
 CoMP送受信を適用する環境としては、例えば、無線基地局装置(無線基地局装置eNB)に対して光ファイバ等で接続された複数の遠隔無線装置(RRE:Remote Radio Equipment)とを含む構成(RRE構成に基づく集中制御)と、無線基地局装置(無線基地局装置eNB)の構成(独立基地局構成に基づく自律分散制御)とがある。RRE構成においては、図1に示すように、遠隔無線装置RREを無線基地局装置eNBで集中的に制御する。RRE構成では、複数の遠隔無線装置RREのベースバンド信号処理及び制御を行う無線基地局装置eNB(集中基地局)と各セル(すなわち、各遠隔無線装置RRE)との間が光ファイバを用いたベースバンド信号で接続されるため、セル間の無線リソース制御を集中基地局において一括して行うことができる。したがって、RRE構成においては、下りリンクでは、複数セル同時送信のような高速なセル間の信号処理を用いる方法が適用できる。図1においては、遠隔無線装置RREの送信電力は、無線基地局装置(マクロ基地局)eNBの送信電力と同程度である(高送信電力RRE)。
 CoMP送受信を適用する別の環境としては、図2に示すように、無線基地局装置(マクロ基地局)eNBのカバーエリア内に遠隔無線装置RREを複数配置してなるオーバレイ型ネットワーク環境(ヘテロジニアス環境)がある。この環境においては、マクロ基地局eNBのセルと遠隔無線装置RREのセルとが異なる、すなわち、マクロ基地局eNBのセル識別情報(セルID)と遠隔無線装置RREのセルIDとが異なる環境(第1ヘテロジニアス環境)と、マクロ基地局eNBのセルと遠隔無線装置RREのセルとが同じ、すなわち、マクロ基地局eNBのセルIDと遠隔無線装置RREのセルIDとが同じである環境(第2ヘテロジニアス環境)とがある。図2においては、遠隔無線装置RREの送信電力は、無線基地局装置(マクロ基地局)eNBの送信電力よりも低い(低送信電力RRE)。
3GPP, TR25.912 (V7.1.0), "Feasibility study for Evolved UTRA and UTRAN", Sept. 2006
 第2ヘテロジニアス環境は、マクロ基地局eNBのセルIDと遠隔無線装置RREのセルIDとが同じであるので、ハンドオーバが不要であり、第1ヘテロジニアス環境よりも簡易な制御環境であるといえる。しかしながら、第2ヘテロジニアス環境では、マクロ基地局eNBのセル(図2における六角形状のセル)と遠隔無線装置RREのセル(図2における円形状のセル)との区別がないので、ユーザ端末においてはいずれのセルからの下りリンク信号であるか判別し難く、それにより受信精度が低下するという問題ある。例えば、ユーザ端末において、復調用参照信号やチャネル状態情報用参照信号などの参照信号系列がいずれのセルから送信されたものであるか判別できないと、復調精度やチャネル推定精度が低下してしまうという問題がある。
 本発明はかかる点に鑑みてなされたものであり、同じセル識別情報を用いるヘテロジニアス環境においても、ユーザ端末がいずれのセルからの下りリンク信号であるか判別でき、それにより受信精度が維持できる無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法を提供することを目的とする。
 本発明の無線通信システムは、複数の無線基地局装置と、前記複数の無線基地局装置と協調マルチポイント送受信可能に構成されたユーザ端末と、を備えた無線通信システムであって、前記無線基地局装置は、ユーザ固有情報を利用した擬似ランダム系列を用いて参照信号系列を生成する生成部と、前記参照信号系列をユーザ端末に送信する送信部と、を有し、前記ユーザ端末は、前記無線基地局装置から送信された参照信号系列を用いて信号処理を行う信号処理部を有することを特徴とする。
 本発明の無線基地局装置は、複数の無線基地局装置と、前記複数の無線基地局装置と協調マルチポイント送受信可能に構成されたユーザ端末と、を備えた無線通信システムにおける無線基地局装置であって、ユーザ固有情報を利用した擬似ランダム系列を用いて参照信号系列を生成する生成部と、前記参照信号系列をユーザ端末に送信する送信部と、を有ることを特徴とする。
 本発明のユーザ端末は、複数の無線基地局装置と、前記複数の無線基地局装置と協調マルチポイント送受信可能に構成されたユーザ端末と、を備えた無線通信システムにおけるユーザ端末であって、前記無線基地局装置から送信され、ユーザ固有情報を利用した擬似ランダム系列を用いて生成された参照信号系列を用いて信号処理を行う信号処理部を有することを特徴とする。
 本発明の無線通信方法は、複数の無線基地局装置と、前記複数の無線基地局装置と協調マルチポイント送受信可能に構成されたユーザ端末と、を備えた無線通信システムの無線通信方法であって、前記無線基地局装置において、ユーザ固有情報を利用した擬似ランダム系列を用いて参照信号系列を生成する工程と、前記参照信号系列をユーザ端末に送信する工程と、前記ユーザ端末において、前記無線基地局装置から送信された参照信号系列を用いて信号処理を行う工程と、を有することを特徴とする。
 本発明によれば、同じセル識別情報を用いるヘテロジニアス環境においても、ユーザ端末がいずれのセルからの下りリンク信号であるか判別でき、それにより受信精度を維持することができる。
協調マルチポイント送信を説明するための図である。 協調マルチポイント送信を説明するための図である。 協調マルチポイント送信における下りリンクを示す図である。 無線通信システムのシステム構成を説明するための図である。 無線基地局装置の全体構成を説明するための図である。 無線基地局装置のベースバンド処理部に対応した機能ブロック図である。 ユーザ端末の全体構成を説明するための図である。 ユーザ端末のベースバンド処理部に対応した機能ブロック図である。
 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。
 まず、下りリンクのCoMP送信について説明する。下りリンクのCoMP送信としては、Coordinated Scheduling/Coordinated Beamformingと、Joint processingとがある。Coordinated Scheduling/Coordinated Beamformingは、1つのユーザ端末UEに対して1つのセルからのみ共有データチャネルを送信する方法であり、他セルからの干渉や他セルへの干渉を考慮して周波数/空間領域における無線リソースの割り当てを行う。一方、Joint processingは、プリコーディングを適用して複数のセルから同時に共有データチャネルを送信する方法であり、1つのユーザ端末UEに対して複数のセルから共有データチャネルを送信するJoint transmissionと、瞬時に1つのセルを選択し共有データチャネルを送信するDynamic Point Selection(DPS)とがある。
 マクロ基地局eNBのセルと遠隔無線装置RREのセルとが同じ、すなわち、マクロ基地局eNBのセルIDと遠隔無線装置RREのセルIDとが同じである環境(第2ヘテロジニアス環境)において、上記のようなCoMP送信を適用することを考える。この場合において、参照信号系列(例えば、復調用参照信号系列(DM-RS系列)やチャネル状態情報用参照信号系列(CSI-RS系列))を生成すると、マクロ基地局eNBのセルIDと遠隔無線装置RREのセルIDとが同じであることから、マクロ基地局eNBと複数の遠隔無線装置RREとの間で同一の参照信号系列(DM-RS系列、CSI-RS系列)が適用され、同一の無線リソースに参照信号(DM-RS、CSI-RS)が多重される可能性が高い。
 ここで、参照信号系列について説明する。
 DM-RS系列r(m)は下記式(1)により定義されている(Release 10 LTE)。この式(1)に含まれる擬似ランダム系列c(i)は、以下のように初期化される(Cinit)。この初期化擬似ランダム系列Cinitから分かるように、初期化擬似ランダム系列Cinit中にセルIDにより異なる項NID cellが含まれている。なお、この擬似ランダム系列c(i)は、31長ゴールド系列を用いて生成される。また、初期化擬似ランダム系列Cinit中には、スクランブリング識別情報(SCID)が含まれている。このSCIDは、0,1(各サブフレームの初め)の値をとる。このように、DM-RS系列r(m)を生成する際に用いられる擬似ランダム系列は、セルIDで異なるように設定されている。
Figure JPOXMLDOC01-appb-M000001
 また、CSI-RS系列rl,ns(m)は下記式(2)により定義されている(Release 10 LTE)。この式(2)に含まれる擬似ランダム系列c(i)は、以下のように初期化される(Cinit)。この初期化擬似ランダム系列Cinitから分かるように、初期化擬似ランダム系列Cinit中にセルIDにより異なる項NID cellが含まれている。このように、CSI-RS系列rl,ns(m)を生成する際に用いられる擬似ランダム系列も、セルIDで異なるように設定されている。
Figure JPOXMLDOC01-appb-M000002
 上記のように、DM-RS系列及びCSI-RS系列は、いずれもセルIDにより異なる項を含む擬似ランダム系列を用いて生成されるので、第2ヘテロジニアス環境においては、マクロ基地局eNBのセルIDと遠隔無線装置RREのセルIDとが同じであることから、マクロ基地局eNBと複数の遠隔無線装置RREとの間で同一のDM-RS系列、CSI-RS系列が適用され、同一の無線リソースにDM-RS、CSI-RSが多重される可能性が高くなる。このような状態では、ユーザ端末がマクロ基地局eNBからの下りリンク信号であるのか遠隔無線装置RREからの下りリンク信号であるのか判別が難しくなってしまう(参照信号の衝突)(図3)。このため、ユーザ端末において信号処理精度が低下する可能性がある。すなわち、DM-RSの衝突は、DM-RSのチャネル推定精度やPDSCHの復調精度の低下を招き、CSI-RSの衝突は、CSI-RSのチャネル推定精度やCSI推定精度の低下を招く恐れがある。
 本発明者は、参照信号系列を生成する際に使用する擬似ランダム系列に、セルIDにより異なる項が含まれていることにより、第2ヘテロジニアス環境において参照信号の衝突が起きる可能性が高いことに着目し、参照信号系列を生成する際に使用する擬似ランダム系列に、ユーザ固有情報、例えば、ユーザ識別情報(UEID)を利用することで第2ヘテロジニアス環境において参照信号の衝突を回避できることを見出し本発明をするに至った。
 すなわち、本発明の骨子は、無線基地局装置において、ユーザ固有情報を利用した擬似ランダム系列を用いて参照信号系列を生成し、参照信号系列をユーザ端末に送信し、ユーザ端末において、無線基地局装置から送信された参照信号系列を用いて信号処理を行うことにより、同じセル識別情報を用いるヘテロジニアス環境においても、ユーザ端末がいずれのセルからの下りリンク信号であるか判別し、それにより受信精度を維持することである。
 本発明においては、参照信号系列を生成する際に使用する擬似ランダム系列に、ユーザ固有情報、例えば、ユーザ識別情報(UEID)などを利用する。
 DM-RS系列については、下記式(3)に示すように、擬似ランダム系列においてセルIDの代わりにユーザ識別情報(UEID)を用いて生成する(第1方法)。すなわち、初期化擬似ランダム系列における式(1)の項NID cellを項UEIDに変える。
Figure JPOXMLDOC01-appb-M000003
 上記式(1)に示す擬似ランダム系列を用いてDM-RS系列を生成すると、図3に示す第2ヘテロジニアス環境では、マクロ基地局eNBのセルのセルIDと、このセルとオーバレイした遠隔無線装置RREのセルのセルIDとが同じであるので、ユーザ端末UE#1~#3で同じDM-RS系列が使用され、DM-RSの多重位置が同じになる可能性が高くなるので、DM-RSの衝突が起こり、ユーザ端末UEでマクロ基地局eNBからの下りリンク信号か遠隔無線装置RREからの下りリンク信号かの判別が難しくなる。これにより、DM-RSのチャネル推定精度やPDSCHの復調精度の低下を招く恐れがある。一方、上記式(3)に示す擬似ランダム系列を用いてDM-RS系列を生成すると、図3に示す第2ヘテロジニアス環境では、マクロ基地局eNBのセルのセルIDと、このセルとオーバレイした遠隔無線装置RREのセルのセルIDとが同じであるが、ユーザ端末UE#1~#3でそれぞれUEIDが異なるので、ユーザ端末UE#1~#3で異なるDM-RS系列が使用され、DM-RSの多重位置が同じになる可能性が低くなる。このため、DM-RSの衝突が起らず、ユーザ端末UEでマクロ基地局eNBからの下りリンク信号か遠隔無線装置RREからの下りリンク信号かの判別が容易となる。その結果、DM-RSのチャネル推定精度やPDSCHの復調精度を維持することができる。本発明の第1方法においては、上記式(3)を用いた擬似ランダム系列を、ユーザ固有情報を利用した擬似ランダム系列とする。
 また、DM-RS系列については、下記式(4)に示すように、擬似ランダム系列においてセルIDの代わりにユーザ固有情報X1を用いて生成する(第2-1方法)。すなわち、初期化擬似ランダム系列における式(1)の項NID cellを項X1に変える。
Figure JPOXMLDOC01-appb-M000004
 また、DM-RS系列については、下記式(5)に示すように、擬似ランダム系列においてセルIDにユーザ固有情報X1を加えて生成する(第2-2方法)。すなわち、初期化擬似ランダム系列における式(1)の項NID cellに項X1を加える。
Figure JPOXMLDOC01-appb-M000005
 ここで、初期化擬似ランダム系列における項X1はユーザ固有情報を利用した項である。このとき、X1はハイヤレイやシグナリング(例えばRRCシグナリング)でユーザ端末に通知される。X1はユーザ固有の値であり、特定のグループのユーザ端末に同一のX1をシグナリングする。これにより、UEIDに縛られずに、ユーザ固有情報を利用した擬似ランダム系列にすることができる。
 上記式(1)に示す擬似ランダム系列を用いてDM-RS系列を生成すると、図3に示す第2ヘテロジニアス環境では、マクロ基地局eNBのセルのセルIDと、このセルとオーバレイした遠隔無線装置RREのセルのセルIDとが同じであるので、ユーザ端末UE#1~#3で同じDM-RS系列が使用され、DM-RSの多重位置が同じになる可能性が高くなるので、DM-RSの衝突が起こり、ユーザ端末UEでマクロ基地局eNBからの下りリンク信号か遠隔無線装置RREからの下りリンク信号かの判別が難しくなる。これにより、DM-RSのチャネル推定精度やPDSCHの復調精度の低下を招く恐れがある。一方、上記式(4)、式(5)に示す擬似ランダム系列を用いてDM-RS系列を生成すると、図3に示す第2ヘテロジニアス環境では、マクロ基地局eNBのセルのセルIDと、このセルとオーバレイした遠隔無線装置RREのセルのセルIDとが同じであるが、無線基地局装置から通知されたハイヤレイヤシグナリングを用いて異なる擬似ランダム系列を生成することにより、ユーザ端末UE#1~#3で異なるDM-RS系列が使用され、DM-RSの多重位置が同じになる可能性が低くなる。このため、DM-RSの衝突が起らず、ユーザ端末UEでマクロ基地局eNBからの下りリンク信号か遠隔無線装置RREからの下りリンク信号かの判別が容易となる。その結果、DM-RSのチャネル推定精度やPDSCHの復調精度を維持することができる。
 また、DM-RS系列については、下記式(6)に示すように、擬似ランダム系列においてSCIDの代わりにUEIDを利用して生成する(第3方法)。すなわち、初期化擬似ランダム系列における式(1)の項nSCIDを項X2(X2はユーザ固有情報(UEID)を利用した項)に変える。
Figure JPOXMLDOC01-appb-M000006
 ここで、初期化擬似ランダム系列における項X2はユーザ固有情報(UEID)を利用した項である。項nSCIDは、下り制御チャネル信号で無線基地局装置からユーザ端末にダイナミックに送信される。上記式(1)の擬似ランダム系列を用いる場合には、項nSCIDの値が”0”又は”1”であり、下り制御情報(DCI)に1ビットで送信される。本発明においては、下り制御情報(DCI)で項X2をダイナミックに送信する。このとき、X2の値”0”又は”1”について以下のように定義することができる。以下のように定義することにより、DCIを用いた通知の形態を変えることがない。また、このような定義により、バックワードコンパチビリティを達成することができる。本発明の第3方法においては、以下のように定義した項X2を用いた擬似ランダム系列を、ユーザ固有情報を利用した擬似ランダム系列とする。
   X2=0:値”0”であってUEIDを使用しない
   X2=1:UEID(UE番号)
 上記式(1)に示す擬似ランダム系列を用いてDM-RS系列を生成すると、図3に示す第2ヘテロジニアス環境では、マクロ基地局eNBのセルのセルIDと、このセルとオーバレイした遠隔無線装置RREのセルのセルIDとが同じであるので、ユーザ端末UE#1~#3で同じDM-RS系列が使用され、DM-RSの多重位置が同じになる可能性が高くなるので、DM-RSの衝突が起こり、ユーザ端末UEでマクロ基地局eNBからの下りリンク信号か遠隔無線装置RREからの下りリンク信号かの判別が難しくなる。これにより、DM-RSのチャネル推定精度やPDSCHの復調精度の低下を招く恐れがある。一方、上記式(6)に示す擬似ランダム系列を用いてDM-RS系列を生成すると、図3に示す第2ヘテロジニアス環境では、マクロ基地局eNBのセルのセルIDと、このセルとオーバレイした遠隔無線装置RREのセルのセルIDとが同じであるが、ユーザ端末UE#1~#3でそれぞれUEIDが異なるので、ユーザ端末UE#1~#3で異なるDM-RS系列が使用され、DM-RSの多重位置が同じになる可能性が低くなる。このため、DM-RSの衝突が起らず、ユーザ端末UEでマクロ基地局eNBからの下りリンク信号か遠隔無線装置RREからの下りリンク信号かの判別が容易となる。その結果、DM-RSのチャネル推定精度やPDSCHの復調精度を維持することができる。
 また、DM-RS系列については、下記式(7)に示すように、項Y1を加えて生成する(第4方法)。すなわち、初期化擬似ランダム系列における式(1)に項Y1を加える。
Figure JPOXMLDOC01-appb-M000007
 ここで、初期化擬似ランダム系列における項Y1はユーザ固有である。この項Y1の情報はハイヤレイヤシグナリング(例えばRRCシグナリング)で無線基地局装置からユーザ端末に通知される。本発明の第4方法においては、上記式(7)を用いた擬似ランダム系列は無線基地局装置がユーザ固有情報を利用した擬似ランダム系列(UE-specific operationを実現するための擬似ランダム系列)である。
 上記式(1)に示す擬似ランダム系列を用いてDM-RS系列を生成すると、図3に示す第2ヘテロジニアス環境では、マクロ基地局eNBのセルのセルIDと、このセルとオーバレイした遠隔無線装置RREのセルのセルIDとが同じであるので、ユーザ端末UE#1~#3で同じDM-RS系列が使用され、DM-RSの多重位置が同じになる可能性が高くなるので、DM-RSの衝突が起こり、ユーザ端末UEでマクロ基地局eNBからの下りリンク信号か遠隔無線装置RREからの下りリンク信号かの判別が難しくなる。これにより、DM-RSのチャネル推定精度やPDSCHの復調精度の低下を招く恐れがある。一方、上記式(7)に示す擬似ランダム系列を用いてDM-RS系列を生成すると、図3に示す第2ヘテロジニアス環境では、マクロ基地局eNBのセルのセルIDと、このセルとオーバレイした遠隔無線装置RREのセルのセルIDとが同じであるが、無線基地局装置から通知されたハイヤレイヤシグナリングを用いて異なる擬似ランダム系列を生成することにより、ユーザ端末UE#1~#3で異なるDM-RS系列が使用され、DM-RSの多重位置が同じになる可能性が低くなる。このため、DM-RSの衝突が起らず、ユーザ端末UEでマクロ基地局eNBからの下りリンク信号か遠隔無線装置RREからの下りリンク信号かの判別が容易となる。その結果、DM-RSのチャネル推定精度やPDSCHの復調精度を維持することができる。
 CSI-RS系列については、下記式(8)に示すように、擬似ランダム系列においてUEIDを加えて生成する(第5方法)。すなわち、初期化擬似ランダム系列における式(2)にUEIDを加える。
Figure JPOXMLDOC01-appb-M000008
 上記式(2)に示す擬似ランダム系列を用いてCSI-RS系列を生成すると、図3に示す第2ヘテロジニアス環境では、マクロ基地局eNBのセルのセルIDと、このセルとオーバレイした遠隔無線装置RREのセルのセルIDとが同じであるので、ユーザ端末UE#1~#3で同じCSI-RS系列が使用され、CSI-RSの多重位置が同じになる可能性が高くなるので、CSI-RSの衝突が起こり、ユーザ端末UEでマクロ基地局eNBからの下りリンク信号か遠隔無線装置RREからの下りリンク信号かの判別が難しくなる。これにより、CSI-RSのチャネル推定精度やCSI-RS精度の低下を招く恐れがある。一方、上記式(8)に示す擬似ランダム系列を用いてCSI-RS系列を生成すると、図3に示す第2ヘテロジニアス環境では、マクロ基地局eNBのセルのセルIDと、このセルとオーバレイした遠隔無線装置RREのセルのセルIDとが同じであるが、ユーザ端末UE#1~#3でそれぞれUEIDが異なるので、ユーザ端末UE#1~#3で異なるCSI-RS系列が使用され、CSI-RSの多重位置が同じになる可能性が低くなる。このため、CSI-RSの衝突が起らず、ユーザ端末UEでマクロ基地局eNBからの下りリンク信号か遠隔無線装置RREからの下りリンク信号かの判別が容易となる。その結果、CSI-RSのチャネル推定精度やCSI-RS精度を維持することができる。本発明の第5方法においては、上記式(8)を用いた擬似ランダム系列を、ユーザ固有情報(UEID)を利用した擬似ランダム系列とする。
 また、CSI-RS系列については、下記式(9)に示すように、擬似ランダム系列において項X3を加えて生成する(第6方法)。すなわち、初期化擬似ランダム系列における式(2)に項X3を加える。
Figure JPOXMLDOC01-appb-M000009
 ここで、初期化擬似ランダム系列における項X3はユーザ固有情報(UEID)を利用した項である。項X3は、初期化擬似ランダム系列をユーザ固有にする場合と、初期化擬似ランダム系列をユーザ固有にしない場合とを区別する項である。例えば、ユーザ固有にする場合には、項X3をUEIDとし(この場合第5方法となる)、ユーザ固有にしない場合には、項X3を0とする。すなわち、無線基地局装置でユーザ固有にするかどうかを決定し、その決定に基づいて初期化擬似ランダム系列を変える(ユーザ固有の項(X3)を加えるかどうかを決める)。この項X3(ユーザ固有にするかどうか(ユーザ固有の項を加えるかどうか)の情報はハイヤレイヤシグナリングで無線基地局装置からユーザ端末に通知される。本発明の第6方法においては、上記式(9)を用いた擬似ランダム系列を、ユーザ固有情報を利用した擬似ランダム系列とする。
 上記式(2)に示す擬似ランダム系列を用いてCSI-RS系列を生成すると、図3に示す第2ヘテロジニアス環境では、マクロ基地局eNBのセルのセルIDと、このセルとオーバレイした遠隔無線装置RREのセルのセルIDとが同じであるので、ユーザ端末UE#1~#3で同じCSI-RS系列が使用され、CSI-RSの多重位置が同じになる可能性が高くなるので、CSI-RSの衝突が起こり、ユーザ端末UEでマクロ基地局eNBからの下りリンク信号か遠隔無線装置RREからの下りリンク信号かの判別が難しくなる。これにより、CSI-RSのチャネル推定精度やCSI-RS精度の低下を招く恐れがある。一方、上記式(9)に示す擬似ランダム系列を用いてCSI-RS系列を生成すると、図3に示す第2ヘテロジニアス環境では、マクロ基地局eNBのセルのセルIDと、このセルとオーバレイした遠隔無線装置RREのセルのセルIDとが同じであるが、ユーザ端末UE#1~#3でそれぞれUEIDが異なるので、ユーザ端末UE#1~#3で異なるCSI-RS系列が使用され、CSI-RSの多重位置が同じになる可能性が低くなる。このため、CSI-RSの衝突が起らず、ユーザ端末UEでマクロ基地局eNBからの下りリンク信号か遠隔無線装置RREからの下りリンク信号かの判別が容易となる。その結果、CSI-RSのチャネル推定精度やCSI-RS精度を維持することができる。
 また、CSI-RS系列については、下記式(10)に示すように、擬似ランダム系列において項Y2を加えて生成する(第7方法)。すなわち、初期化擬似ランダム系列における式(2)に項Y2を加える。
Figure JPOXMLDOC01-appb-M000010
 ここで、初期化擬似ランダム系列における項Y2はユーザ固有である。この項Y2の情報はハイヤレイヤシグナリング(例えばRRCシグナリング)で無線基地局装置からユーザ端末に通知される。本発明の第7方法においては、上記式(10)を用いた擬似ランダム系列は無線基地局装置がユーザ固有情報を利用した擬似ランダム系列(UE-specific operationを実現するための擬似ランダム系列)である。
 上記式(2)に示す擬似ランダム系列を用いてCSI-RS系列を生成すると、図3に示す第2ヘテロジニアス環境では、マクロ基地局eNBのセルのセルIDと、このセルとオーバレイした遠隔無線装置RREのセルのセルIDとが同じであるので、ユーザ端末UE#1~#3で同じCSI-RS系列が使用され、CSI-RSの多重位置が同じになる可能性が高くなるので、CSI-RSの衝突が起こり、ユーザ端末UEでマクロ基地局eNBからの下りリンク信号か遠隔無線装置RREからの下りリンク信号かの判別が難しくなる。これにより、CSI-RSのチャネル推定精度やCSI-RS精度の低下を招く恐れがある。一方、上記式(10)に示す擬似ランダム系列を用いてCSI-RS系列を生成すると、図3に示す第2ヘテロジニアス環境では、マクロ基地局eNBのセルのセルIDと、このセルとオーバレイした遠隔無線装置RREのセルのセルIDとが同じであるが、無線基地局装置から通知されたハイヤレイヤシグナリングを用いて異なる擬似ランダム系列を生成することにより、ユーザ端末UE#1~#3で異なるCSI-RS系列が使用され、CSI-RSの多重位置が同じになる可能性が低くなる。このため、CSI-RSの衝突が起らず、ユーザ端末UEでマクロ基地局eNBからの下りリンク信号か遠隔無線装置RREからの下りリンク信号かの判別が容易となる。その結果、CSI-RSのチャネル推定精度やCSI-RS精度を維持することができる。
 以下に、本発明の実施の形態に係る無線通信システムについて詳細に説明する。図4は、本実施の形態に係る無線通信システムのシステム構成の説明図である。この無線通信システムは、複数の無線基地局装置と、複数の無線基地局装置と協調マルチポイント送受信可能に構成されたユーザ端末と、を備えている。なお、図4に示す無線通信システムは、例えば、LTEシステム或いは、SUPER 3Gが包含されるシステムである。この無線通信システムでは、LTEシステムのシステム帯域を一単位とする複数の基本周波数ブロックを一体としたキャリアアグリゲーションが用いられている。また、この無線通信システムは、IMT-Advancedと呼ばれても良く、4Gと呼ばれても良い。
 図4に示すように、無線通信システム1は、無線基地局装置20A,20Bと、この無線基地局装置20A,20Bと通信する複数の第1、第2のユーザ端末10A,10Bとを含んで構成されている。無線基地局装置20A,20Bは、上位局装置30と接続され、この上位局装置30は、コアネットワーク40と接続される。また、無線基地局装置20A,20Bは、有線接続又は無線接続により相互に接続されている。第1、第2のユーザ端末10A,10Bは、セルC1,C2において無線基地局装置20A,20Bと通信を行うことができる。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。なお、セル間では、必要に応じて、複数の基地局によりCoMP送信の制御が行われる。
 第1、第2のユーザ端末10A,10Bは、LTE端末及びLTE-A端末を含むが、以下においては、特段の断りがない限り第1、第2のユーザ端末として説明を進める。また、説明の便宜上、無線基地局装置20A,20Bと無線通信するのは第1、第2のユーザ端末10A,10Bであるものとして説明するが、より一般的にはユーザ端末も固定端末装置も含むユーザ装置(UE)でよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が、上りリンクについてはSC-FDMA(シングルキャリア-周波数分割多元接続)が適用されるが、上りリンクの無線アクセス方式はこれに限定されない。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。
 下りリンクの通信チャネルは、第1、第2のユーザ端末10A,10Bで共有される下りデータチャネルとしてのPDSCH(Physical Downlink Shared Channel)と、下りL1/L2制御チャネル(PDCCH、PCFICH、PHICH)とを有する。PDSCHにより、送信データ及び上位制御情報が伝送される。PDCCH(Physical Downlink Control Channel)により、PDSCHおよびPUSCHのスケジューリング情報等が伝送される。PCFICH(Physical Control Format Indicator Channel)により、PDCCHに用いるOFDMシンボル数が伝送される。PHICH(Physical Hybrid-ARQ Indicator Channel)により、PUSCHに対するHARQのACK/NACKが伝送される。
 上りリンクの通信チャネルは、各ユーザ端末で共有される上りデータチャネルとしてのPUSCH(Physical Uplink Shared Channel)と、上りリンクの制御チャネルであるPUCCH(Physical Uplink Control Channel)とを有する。このPUSCHにより、送信データや上位制御情報が伝送される。また、PUCCHにより、下りリンクの受信品質情報(CQI)、ACK/NACKなどが伝送される。
 図5を参照しながら、本実施の形態に係る無線基地局装置の全体構成について説明する。なお、無線基地局装置20A,20Bは、同様な構成であるため、無線基地局装置20として説明する。また、後述する第1、第2のユーザ端末10A,10Bも、同様な構成であるため、ユーザ端末10として説明する。無線基地局装置20は、送受信アンテナ201と、アンプ部202と、送受信部(通知部)203と、ベースバンド信号処理部204と、呼処理部205と、伝送路インターフェース206とを備えている。下りリンクにより無線基地局装置20からユーザ端末に送信される送信データは、上位局装置30から伝送路インターフェース206を介してベースバンド信号処理部204に入力される。
 ベースバンド信号処理部204において、下りデータチャネルの信号は、PDCPレイヤの処理、送信データの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御、例えば、HARQの送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT)処理、プリコーディング処理が行われる。また、下りリンク制御チャネルである物理下りリンク制御チャネルの信号に関しても、チャネル符号化や逆高速フーリエ変換等の送信処理が行われる。
 また、ベースバンド信号処理部204は、報知チャネルにより、同一セルに接続するユーザ端末10に対して、各ユーザ端末10が無線基地局装置20との無線通信するための制御情報を通知する。当該セルにおける通信のための情報には、例えば、上りリンク又は下りリンクにおけるシステム帯域幅や、PRACH(Physical Random Access Channel)におけるランダムアクセスプリアンブルの信号を生成するためのルート系列の識別情報(Root Sequence Index)などが含まれる。
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換する。アンプ部202は周波数変換された無線周波数信号を増幅して送受信アンテナ201へ出力する。なお、送受信部203は、複数セル間の位相差の情報及びPMIを含む上りリンク信号を受信する受信手段、及び参照信号系列をユーザ端末に送信する送信手段を構成する。
 一方、上りリンクによりユーザ端末10から無線基地局装置20に送信される信号については、送受信アンテナ201で受信された無線周波数信号がアンプ部202で増幅され、送受信部203で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部204に入力される。
 ベースバンド信号処理部204は、上りリンクで受信したベースバンド信号に含まれる送信データに対して、FFT(Fast Fourier Transform)処理、IDFT(Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理を行う。復号された信号は伝送路インターフェース206を介して上位局装置30に転送される。
 呼処理部205は、通信チャネルの設定や解放等の呼処理や、無線基地局装置20の状態管理や、無線リソースの管理を行う。
 図6は、図5に示す無線基地局装置におけるベースバンド信号処理部の構成を示すブロック図である。ベースバンド信号処理部204は、送信データ生成部2041と、RS系列生成部2042と、多重部2043と、IFFT(Inverse Fast Fourier Transform)部2044と、CP(Cyclic Prefix)付加部2045と、から主に構成されている。
 送信データ生成部2041は、送信データのシンボル系列に対して誤り訂正符号化、インターリーバを施す。送信データ生成部2041は、送信データを誤り訂正符号化・インターリーブした後、送信データ系列(1つのOFDMシンボルを構成するnビット)を直並列変換してサブキャリア変調用の複数系列のデータ信号を生成する。複数系列のデータ信号を生成してからインターリーブを施しても良い。送信データ生成部2041は、さらに複数系列のデータ信号を並列にサブキャリア変調する。
 RS系列生成部2042は、UEIDを利用した擬似ランダム系列を用いて参照信号系列を生成する。RS系列生成部2042は、参照信号系列がDM-RS系列である場合には、上記式(3)に示す擬似ランダム系列を用いたDM-RS系列でDM-RSを生成するか(第1方法)、上記式(4)、式(5)に示す擬似ランダム系列を用いたDM-RS系列でDM-RSを生成するか(第2方法)、上記式(6)に示す擬似ランダム系列を用いたDM-RS系列でDM-RSを生成するか(第3方法)、上記式(7)に示す擬似ランダム系列を用いたDM-RS系列でDM-RSを生成する(第4方法)。RS系列生成部2042は、参照信号系列がCSI-RS系列である場合には、上記式(8)に示す擬似ランダム系列を用いたCSI-RS系列でCSI-RSを生成するか(第5方法)、上記式(9)に示す擬似ランダム系列を用いたCSI-RS系列でCSI-RSを生成するか(第6方法)、上記式(10)に示す擬似ランダム系列を用いたCSI-RS系列でCSI-RSを生成する(第7方法)。なお、第3方法の場合には、式(6)の擬似ランダム系列における項X2の情報を下り制御チャネル(例えば、DCI)でダイナミックにユーザ端末に通知する。第2方法、第4方法、第6方法及び第7方法の場合には、それぞれ式(4)、式(5)の擬似ランダム系列における項X1の情報、式(7)の擬似ランダム系列における項Y1の情報、式(9)の擬似ランダム系列における項X3の情報、式(10)の擬似ランダム系列における項Y2の情報をハイヤレイヤシグナリング(例えば、RRCシグナリング)でセミスタティックにユーザ端末に通知する。
 多重部2043は、送信データとRSとを無線リソースに多重する。IFFT部2044は、送信データとRSとがサブキャリアマッピングされた周波数領域の送信信号(サブキャリア信号)を逆高速フーリエ変換する。逆高速フーリエ変換によってサブキャリアに割り当てられた周波数成分の信号が時間成分の信号列に変換される。その後、CP付加部2045でサイクリックプレフィックスが付加される。
 次に、図7を参照しながら、本実施の形態に係るユーザ端末の全体構成について説明する。LTE端末もLTE-A端末もハードウエアの主要部構成は同じであるので、区別せずに説明する。ユーザ端末10は、送受信アンテナ101と、アンプ部102と、送受信部(受信部)103と、ベースバンド信号処理部104と、アプリケーション部105とを備えている。
 下りリンクのデータについては、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅され、送受信部103で周波数変換されてベースバンド信号に変換される。このベースバンド信号は、ベースバンド信号処理部104でFFT処理や、誤り訂正復号、再送制御の受信処理等がなされる。この下りリンクのデータの内、下りリンクの送信データは、アプリケーション部105に転送される。アプリケーション部105は、物理レイヤやMACレイヤより上位のレイヤに関する処理等を行う。また、下りリンクのデータの内、報知情報も、アプリケーション部105に転送される。
 一方、上りリンクの送信データは、アプリケーション部105からベースバンド信号処理部104に入力される。ベースバンド信号処理部104においては、マッピング処理、再送制御(HARQ)の送信処理や、チャネル符号化、DFT(Discrete Fourier Transform)処理、IFFT処理を行う。送受信部103は、ベースバンド信号処理部104から出力されたベースバンド信号を無線周波数帯に変換する。その後、アンプ部102は、周波数変換された無線周波数信号を増幅して送受信アンテナ101より送信する。なお、送受信部103は、下りリンク信号を受信する受信手段を構成する。
 図8は、図7に示すユーザ端末におけるベースバンド信号処理部の構成を示すブロック図である。ベースバンド信号処理部104は、CP除去部1041と、FFT部1042と、分離部1043と、チャネル推定部1044と、復調部1045と、フィードバック情報生成部1046と、から主に構成されている。
 CP除去部1041は、受信信号からサイクリックプレフィックスを除去する。FFT部1042は、CP除去された受信信号を高速フーリエ変換して時系列の信号成分を周波数成分の列に変換する。分離部1043は、受信信号をサブキャリアデマッピングして、RS、共有チャネル信号(データ信号)を分離する。参照信号(DM-RS、CSI-RS)は、チャネル推定部1044に出力される。
 チャネル推定部1044は、DM-RS及びCSI-RSを用いてチャネル推定する。チャネル推定部1044は、DM-RSを用いて得られたチャネル推定値を復調部1045に出力し、CSI-RSを用いて得られたチャネル推定値をフィードバック情報生成部1046に出力する。復調部1045は、チャネル推定値を用いて共有チャネル信号を復調する。
 フィードバック情報生成部1046は、チャネル推定値を用いてCSI(フィードバック情報)を生成する。CSIとしては、セル毎CSI(PMI、CDI、CQI)、セル間CSI(位相差情報、振幅差情報)、RI(Rank Indicator)などが挙げられる。これらのCSIは、PUCCHやPUSCHで無線基地局装置にフィードバックされる。
 本発明においては、チャネル推定部1044、復調部1045及びフィードバック情報生成部1046が、無線基地局装置から送信された参照信号系列を用いて信号処理を行う信号処理部である。参照信号系列がDM-RS系列の場合には、信号処理部がチャネル推定部1044及び復調部1045であり、参照信号系列がCSI-RS系列の場合には、信号処理部がチャネル推定部1044及びフィードバック情報生成部1046である。
 上記構成を有する無線通信システムにおいては、まず、無線基地局装置のRS系列生成部2042において、UEIDを利用した擬似ランダム系列を用いて参照信号系列を生成する。このとき、参照信号系列がDM-RS系列である場合には、上記式(3)に示す擬似ランダム系列を用いたDM-RS系列でDM-RSを生成するか(第1方法)、上記式(4)、式(5)に示す擬似ランダム系列を用いたDM-RS系列でDM-RSを生成するか(第2方法)、上記式(6)に示す擬似ランダム系列を用いたDM-RS系列でDM-RSを生成するか(第3方法)、上記式(7)に示す擬似ランダム系列を用いたDM-RS系列でDM-RSを生成する(第4方法)。また、参照信号系列がCSI-RS系列である場合には、上記式(8)に示す擬似ランダム系列を用いたCSI-RS系列でCSI-RSを生成するか(第5方法)、上記式(9)に示す擬似ランダム系列を用いたCSI-RS系列でCSI-RSを生成するか(第6方法)、上記式(10)に示す擬似ランダム系列を用いたCSI-RS系列でCSI-RSを生成する(第7方法)。なお、第3方法の場合には、式(6)の擬似ランダム系列における項X2の情報を下り制御チャネル(例えば、DCI)でダイナミックにユーザ端末に通知する。第2方法、第4方法、第6方法及び第7方法の場合には、それぞれ式(4)、式(5)の擬似ランダム系列における項X1の情報、式(7)の擬似ランダム系列における項Y1の情報、式(9)の擬似ランダム系列における項X3の情報、式(10)の擬似ランダム系列における項Y2の情報をハイヤレイヤシグナリング(例えば、RRCシグナリング)でセミスタティックにユーザ端末に通知する。
 次いで、ユーザ端末において、第1方法では、上記式(3)に示す擬似ランダム系列を用い、第2方法では、上記式(4)、式(5)に示す擬似ランダム系列を用い、第3方法では、上記式(6)に示す擬似ランダム系列を用い、第4方法では、上記式(7)に示す擬似ランダム系列を用い、第5方法では、上記式(8)に示す擬似ランダム系列を用い、第6方法では、上記式(9)に示す擬似ランダム系列を用い、第7方法では、上記式(10)に示す擬似ランダム系列を用いる。第1方法~第7方法においては、UEIDを利用した擬似ランダム系列を用いているので、第2ヘテロジニアス環境でセルIDが同じであっても、各ユーザ端末で異なる参照信号系列を用いることができる。各ユーザ端末においては、このようにして得られた参照信号系列でチャネル推定部1044でチャネル推定し、復調部1045でデータを復調し、フィードバック情報生成部1046でフィードバック情報を生成する。
 このような制御において、上記式(3)~(10)に示す擬似ランダム系列を用いて生成されたDM-RS系列又はCSI-RS系列を用いると、第2ヘテロジニアス環境では、マクロ基地局eNBのセルのセルIDと、このセルとオーバレイした遠隔無線装置RREのセルのセルIDとが同じであるが、各ユーザ端末UEでそれぞれUEIDが異なるので、各ユーザ端末UEで異なるDM-RS系列又はCSI-RS系列が使用され、DM-RS又はCSI-RSの多重位置が同じになる可能性が低くなる。このため、DM-RS又はCSI-RSの衝突が起らず、ユーザ端末UEでマクロ基地局eNBからの下りリンク信号か遠隔無線装置RREからの下りリンク信号かの判別が容易となる。その結果、DM-RS又はCSI-RSのチャネル推定精度、PDSCHの復調精度、CSI精度を維持することができる。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2011年11月7日出願の特願2011-244007、及び2011年11月10日出願の特願2011-246875に基づく。この内容は、全てここに含めておく。

Claims (11)

  1.  複数の無線基地局装置と、前記複数の無線基地局装置と協調マルチポイント送受信可能に構成されたユーザ端末と、を備えた無線通信システムであって、
     前記無線基地局装置は、ユーザ固有情報を利用した擬似ランダム系列を用いて参照信号系列を生成する生成部と、前記参照信号系列をユーザ端末に送信する送信部と、を有し、
     前記ユーザ端末は、前記無線基地局装置から送信された参照信号系列を用いて信号処理を行う信号処理部を有することを特徴とする無線通信システム。
  2.  前記参照信号系列が復調用参照信号であり、前記信号処理部が受信信号を復調する復調部であることを特徴とする請求項1記載の無線通信システム。
  3.  前記生成部は、擬似ランダム系列においてセル識別情報の代わりにユーザ固有情報を用いて参照信号系列を生成することを特徴とする請求項2記載の無線通信システム。
  4.  前記生成部は、擬似ランダム系列においてスクランブリング識別情報の代わりにユーザ固有情報を用いて参照信号系列を生成することを特徴とする請求項2記載の無線通信システム。
  5.  前記参照信号系列がチャネル状態情報用参照信号であり、前記信号処理部がフィードバック情報を生成するフィードバック情報生成部であることを特徴とする請求項1記載の無線通信システム。
  6.  前記生成部は、擬似ランダム系列においてユーザ固有情報を加えて参照信号系列を生成することを特徴とする請求項5記載の無線通信システム。
  7.  前記無線基地局装置は、前記ユーザ固有情報を加えるかどうかの情報をハイヤレイヤシグナリングでユーザ端末に通知することを特徴とする請求項5又は請求項6記載の無線通信システム。
  8.  前記複数の無線基地局装置は、マクロ基地局のカバーエリア内に低送信電力装置を複数配置してなるオーバレイ型ネットワークを構成し、前記マクロ基地局のセル識別情報と前記低送信電力装置のセル識別情報とが同じであることを特徴とする請求項1から請求項6のいずれかに記載の無線通信システム。
  9.  複数の無線基地局装置と、前記複数の無線基地局装置と協調マルチポイント送受信可能に構成されたユーザ端末と、を備えた無線通信システムにおける無線基地局装置であって、
     ユーザ固有情報を利用した擬似ランダム系列を用いて参照信号系列を生成する生成部と、前記参照信号系列をユーザ端末に送信する送信部と、を有ることを特徴とする無線基地局装置。
  10.  複数の無線基地局装置と、前記複数の無線基地局装置と協調マルチポイント送受信可能に構成されたユーザ端末と、を備えた無線通信システムにおけるユーザ端末であって、
     前記無線基地局装置から送信され、ユーザ固有情報を利用した擬似ランダム系列を用いて生成された参照信号系列を用いて信号処理を行う信号処理部を有することを特徴とするユーザ端末。
  11.  複数の無線基地局装置と、前記複数の無線基地局装置と協調マルチポイント送受信可能に構成されたユーザ端末と、を備えた無線通信システムの無線通信方法であって、
     前記無線基地局装置において、ユーザ固有情報を利用した擬似ランダム系列を用いて参照信号系列を生成する工程と、前記参照信号系列をユーザ端末に送信する工程と、前記ユーザ端末において、前記無線基地局装置から送信された参照信号系列を用いて信号処理を行う工程と、を有することを特徴とする無線通信方法。
PCT/JP2012/078341 2011-11-07 2012-11-01 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法 WO2013069538A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12847294.1A EP2779730A4 (en) 2011-11-07 2012-11-01 WIRELESS COMMUNICATION SYSTEM, WIRELESS BASE STATION, USER DEVICE AND WIRELESS COMMUNICATION PROCESS
US14/356,289 US9337907B2 (en) 2011-11-07 2012-11-01 Radio communication system, radio base station apparatus, user terminal and radio communication method
CN201280054454.6A CN103918297A (zh) 2011-11-07 2012-11-01 无线通信系统、无线基站装置、用户终端以及无线通信方法
KR1020147012083A KR20140095480A (ko) 2011-11-07 2012-11-01 무선통신시스템, 무선기지국장치, 유저단말 및 무선통신방법
IN3875CHN2014 IN2014CN03875A (ja) 2011-11-07 2012-11-01
CA2853607A CA2853607A1 (en) 2011-11-07 2012-11-01 Radio communication system, radio base station apparatus, user terminal and radio communication method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-244007 2011-11-07
JP2011244007 2011-11-07
JP2011-246875 2011-11-10
JP2011246875A JP2013123080A (ja) 2011-11-07 2011-11-10 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2013069538A1 true WO2013069538A1 (ja) 2013-05-16

Family

ID=48289915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078341 WO2013069538A1 (ja) 2011-11-07 2012-11-01 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法

Country Status (8)

Country Link
US (1) US9337907B2 (ja)
EP (1) EP2779730A4 (ja)
JP (1) JP2013123080A (ja)
KR (1) KR20140095480A (ja)
CN (1) CN103918297A (ja)
CA (1) CA2853607A1 (ja)
IN (1) IN2014CN03875A (ja)
WO (1) WO2013069538A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US9685997B2 (en) 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
JP2013123080A (ja) * 2011-11-07 2013-06-20 Ntt Docomo Inc 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
JP5959830B2 (ja) * 2011-11-10 2016-08-02 株式会社Nttドコモ 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US10194346B2 (en) * 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
RU2767777C2 (ru) 2013-03-15 2022-03-21 Риарден, Ллк Системы и способы радиочастотной калибровки с использованием принципа взаимности каналов в беспроводной связи с распределенным входом - распределенным выходом
EP3096561A4 (en) * 2014-01-14 2016-12-07 Sharp Kk BASE STATION DEVICE, AND TERMINAL DEVICE
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
JP6933352B2 (ja) * 2015-08-12 2021-09-08 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 情報送信方法、チャネル推定方法、基地局、ユーザ機器、システム、およびプログラム
US10680855B2 (en) * 2016-05-13 2020-06-09 Huawei Technologies Co., Ltd. Measurement in non-cellular wireless networks
CN111133808B (zh) * 2017-07-28 2022-06-07 株式会社Ntt都科摩 用户终端以及无线通信方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021513A2 (ko) * 2008-08-22 2010-02-25 엘지전자 주식회사 이종 셀 식별 정보 관리 방법
WO2010078271A2 (en) * 2008-12-30 2010-07-08 Qualcomm Incorporated Centralized control of peer discovery pilot transmission
JP2011142516A (ja) * 2010-01-07 2011-07-21 Ntt Docomo Inc 移動端末装置、無線基地局装置及び無線通信方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20065180A0 (fi) * 2006-03-20 2006-03-20 Nokia Corp Kanavan laadun osoittimen lähettäminen
CA2679187C (en) * 2007-02-28 2015-11-03 Ntt Docomo, Inc. Base station apparatus, user apparatus and method used in mobile communication system
US8289946B2 (en) * 2007-08-14 2012-10-16 Qualcomm Incorporated Reference signal generation in a wireless communication system
US20100232384A1 (en) * 2009-03-13 2010-09-16 Qualcomm Incorporated Channel estimation based upon user specific and common reference signals
KR101663616B1 (ko) * 2009-04-29 2016-10-07 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 참조 신호 시퀀스 생성 방법 및 이를 위한 장치
US8923905B2 (en) * 2009-09-30 2014-12-30 Qualcomm Incorporated Scrambling sequence initialization for coordinated multi-point transmissions
US8964657B2 (en) * 2009-11-02 2015-02-24 Qualcomm Incorporated Apparatus and method for joint encoding of user specific reference signal information in wireless communication
JP5081257B2 (ja) * 2010-02-04 2012-11-28 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、無線基地局装置および通信制御方法
JP2013123080A (ja) * 2011-11-07 2013-06-20 Ntt Docomo Inc 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
JP5959830B2 (ja) * 2011-11-10 2016-08-02 株式会社Nttドコモ 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021513A2 (ko) * 2008-08-22 2010-02-25 엘지전자 주식회사 이종 셀 식별 정보 관리 방법
WO2010078271A2 (en) * 2008-12-30 2010-07-08 Qualcomm Incorporated Centralized control of peer discovery pilot transmission
JP2011142516A (ja) * 2010-01-07 2011-07-21 Ntt Docomo Inc 移動端末装置、無線基地局装置及び無線通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3RD GENERATION PARTNERSHIP PROJECT: "3GPP, TR25.912 (V7.1.0), "Feasibility study for Evolved UTRA and UTRAN"", September 2006 (2006-09-01)
See also references of EP2779730A4

Also Published As

Publication number Publication date
CA2853607A1 (en) 2013-05-16
EP2779730A4 (en) 2015-07-15
KR20140095480A (ko) 2014-08-01
IN2014CN03875A (ja) 2015-10-16
CN103918297A (zh) 2014-07-09
EP2779730A1 (en) 2014-09-17
US20140307630A1 (en) 2014-10-16
JP2013123080A (ja) 2013-06-20
US9337907B2 (en) 2016-05-10

Similar Documents

Publication Publication Date Title
WO2013069538A1 (ja) 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
JP6076044B2 (ja) 無線通信方法、無線通信システム、無線基地局及びユーザ端末
US9634808B2 (en) Radio communication system, radio communication method, user terminal and radio base station
JP6081080B2 (ja) 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法
JP5437310B2 (ja) 無線基地局装置、移動端末装置、無線通信方法及び無線通信システム
JP5526165B2 (ja) 無線通信システム、基地局装置、ユーザ端末、及びチャネル状態情報測定方法
JP5959830B2 (ja) 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
JP5612770B2 (ja) 無線通信システム、無線通信方法、無線基地局装置及びユーザ端末
JP2013236340A (ja) 無線通信システム、無線基地局装置、ユーザ端末および通信制御方法
WO2013051510A1 (ja) 無線通信システム、フィードバック方法、ユーザ端末、及び無線基地局装置
WO2013161588A1 (ja) 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法
JP5970170B2 (ja) 無線通信システム、基地局装置、移動端末装置、及び干渉測定方法
JP5918505B2 (ja) 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
WO2014045755A1 (ja) 無線通信システム、ユーザ端末、無線基地局及び無線通信方法
JP6096253B2 (ja) ユーザ端末、無線基地局装置、無線通信システムおよび通信制御方法
JP2016106499A (ja) 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2853607

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20147012083

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14356289

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012847294

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201402818

Country of ref document: ID