Nothing Special   »   [go: up one dir, main page]

WO2013047439A1 - X線ct装置及び画像補正方法 - Google Patents

X線ct装置及び画像補正方法 Download PDF

Info

Publication number
WO2013047439A1
WO2013047439A1 PCT/JP2012/074397 JP2012074397W WO2013047439A1 WO 2013047439 A1 WO2013047439 A1 WO 2013047439A1 JP 2012074397 W JP2012074397 W JP 2012074397W WO 2013047439 A1 WO2013047439 A1 WO 2013047439A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
image
scan
ray
scans
Prior art date
Application number
PCT/JP2012/074397
Other languages
English (en)
French (fr)
Inventor
角村 卓是
國分 博人
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to CN201280039786.7A priority Critical patent/CN103764034B/zh
Priority to JP2013536265A priority patent/JP6104166B2/ja
Priority to US14/239,867 priority patent/US9129389B2/en
Publication of WO2013047439A1 publication Critical patent/WO2013047439A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • G06T5/92Dynamic range modification of images or parts thereof based on global image properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/503Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/541Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/545Control of apparatus or devices for radiation diagnosis involving automatic set-up of acquisition parameters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5288Devices using data or image processing specially adapted for radiation diagnosis involving retrospective matching to a physiological signal

Definitions

  • the present invention relates to an X-ray CT apparatus, and more particularly to an X-ray CT apparatus that performs imaging and reconstruction using electrocardiogram information of a subject collected from an electrocardiograph.
  • An X-ray CT apparatus irradiates an X-ray while rotating an X-ray source and an X-ray detector arranged so as to oppose the subject around the subject, and transmits the X-ray transmitted through the subject over the entire circumference.
  • the tomogram is obtained by detecting and reconstructing an image based on the obtained projection data.
  • the subject or the organ in the subject must be stationary, and if the subject or organ is moving while the projection data is being collected, the subject will be imaged. The image is not correctly formed during reconstruction, resulting in a blurred image (motion artifact).
  • the heart is an organ that is constantly beating, in order to obtain a stationary image of the heart, it is necessary to improve the time for collecting projection data, that is, the time resolution. Therefore, in cardiac imaging using an X-ray CT system, an electrocardiograph is attached to the subject, and projection data with a phase with little heart movement is collected using the electrocardiogram information of the subject to reconstruct an image. Thus, an electrocardiographic reconstruction method for obtaining a relatively stationary heart image has been performed.
  • Retrospective Retro Gating method as described above, helical scan while collecting the electrocardiogram information of the subject, and collects only the projection data of the phase with little movement using the electrocardiogram information from the obtained projection data Then, the image is reconstructed. Since this method performs helical scanning by continuously irradiating X-rays, an image having an arbitrary phase can be created. However, on the other hand, since projection data having the same phase must be collected from a plurality of heartbeats, the moving speed of the table becomes slow, and the exposure amount is several times that of a normal helical scan.
  • the Prospective-triggering method is a method in which the electrocardiogram information of the subject is monitored, and, for example, X-rays are irradiated and axial scanning is performed only after a predetermined phase is reached after detecting the R wave.
  • X-rays are not irradiated continuously, but are irradiated only when a specific phase is reached, so that an extremely small exposure amount is required compared with the Retrospective-Gating method (Patent Document 1).
  • the above-mentioned Prospective Triggering method scans only once at the same body axis direction position, the next body axis direction position scan collects projection data from heartbeats different from the previous scan. For this reason, there is a portion that is not temporally continuous between slices. Accordingly, when coronary angiography is performed using the Prospective Triggering method, the concentration of the contrast agent changes greatly in portions that are not temporally continuous, and when an MPR (Multi Plannar Reconstruction) image is created, the image becomes uncomfortable. Further, even if an attempt is made to extract a coronary artery by image processing, it may not be correctly extracted due to this rapid change in contrast density.
  • MPR Multi Plannar Reconstruction
  • the present invention has been made in view of the above problems, and X-ray CT capable of correcting contrast density unevenness caused by temporal discontinuity between slices in contrast imaging using the Prospective-triggering method.
  • An object is to provide a device or the like.
  • the first invention collects the electrocardiogram information of the subject from the electrocardiograph, executes a scan synchronized with the collected electrocardiogram information, and obtains projection data obtained by the scan.
  • an X-ray CT system that obtains a tomographic image of a subject by reconstruction, projection data of a specific phase of the heart at each body axis direction position by irradiating and scanning with X-rays at a predetermined timing
  • a data acquisition unit that intermittently acquires a plurality of time phases
  • a reconstruction unit that reconstructs a tomographic image at each position in the body axis direction based on the projection data acquired by the data acquisition unit, and a scan from the next
  • a correction unit that calculates a time difference between the tomographic images, and calculates a time difference between the tomographic images in the body axis direction range determined according to the calculated length of the time between the scans.
  • Correction by the correction unit A display unit for displaying an image generated based on the tomogram, an image generated based
  • the second invention collects the electrocardiogram information of the subject from the electrocardiograph, executes a scan synchronized with the collected electrocardiogram information, and reconstructs the projection data obtained by the scan.
  • An image correction method in an X-ray CT apparatus for obtaining a tomographic image of an examiner, which is projected by irradiating X-rays at a predetermined timing to scan projection data of a specific phase of the heart at each body axis direction position
  • Data acquisition step for intermittent acquisition at multiple time phases, reconstruction step for reconstructing tomographic images at each body axis position based on the acquired projection data, and scan from one scan to the next scan
  • a correction step for calculating a time interval, correcting a density difference between the tomographic images for a tomographic image in a range in the body axis direction determined according to the calculated length of the time between scans, and a corrected tomographic image Generated based on
  • the X-ray CT apparatus and the image correction method of the present invention it is possible to correct density unevenness due to temporal discontinuity between slices in contrast imaging using the Prospective-Triggering method, and an MPR image or target without a sense of incongruity Image processing such as part extraction processing can be easily performed.
  • Configuration diagram of X-ray CT system 1 Configuration diagram of image processing device 4 Flow chart showing operation procedure of X-ray CT apparatus 1
  • Conceptual diagram explaining the relationship between ECG waveform, delay time and X-ray irradiation timing in Prospective Triggering Scan Conceptual diagram explaining the relationship between X-ray shape and table travel
  • Conceptual diagram explaining the boundary position between scans and density unevenness Conceptual diagram explaining how to find the time between scans
  • Example of correction range when the time between scans is short
  • Example of correction range when the time between scans is long
  • the figure explaining how to determine the correction range Another example of density line used for correction Diagram showing the contribution ratio of overlap data when the time between scans is short
  • Diagram showing the contribution ratio of overlap data when the time between scans is long
  • Display example showing correction range and correction level Another display example showing the correction range and degree of correction
  • the X-ray CT apparatus 1 includes a gantry 100, an X-ray controller 201 that controls X-ray irradiation, a gantry controller 202 that controls the operation of the gantry 100, and a table controller 203 that controls the operation of the table 109.
  • the data acquisition device (DAS; Data Acquisition System) 204 that converts the intensity of the X-rays incident on the X-ray detector 105 into an electrical signal and collects it, and acquires the electrical signal converted by the DAS 204 and corrects the acquired data
  • the reconstruction calculator 3 for performing image reconstruction, the electrocardiograph 5 for collecting electrocardiogram information of the subject 6, the electrocardiogram information measured by the electrocardiograph 5, and the X-ray controller 201
  • An image processing device 4 that controls the gantry controller 202, the table controller 203, and the DAS 204 to execute a scan by the gantry 100 and acquire a tomographic image reconstructed by the reconstruction computing unit 3. .
  • an X-ray source 101 and an X-ray detector 105 are disposed to face each other via a table 109 on which the subject 6 is placed.
  • the X-ray source 101 is controlled by the X-ray controller 201 to emit X-rays having a predetermined intensity.
  • the X-ray detector 105 detects X-rays irradiated from the X-ray source 101 and transmitted through the subject 6, and generates an electrical signal according to the intensity of the detected transmitted X-rays.
  • the X-ray source 101 and the X-ray detector 105 rotate around the rotation center according to a control signal input from the gantry controller 202.
  • the operations of the X-ray source 101 and the gantry 100 are controlled by an X-ray controller 201 and a gantry controller 202.
  • the X-ray controller 201 supplies a power signal and an X-ray generation timing signal to the X-ray source 101.
  • the gantry controller 202 controls the rotational speed and position of the gantry 100.
  • the table 109 is controlled by the table controller 203.
  • the table controller 203 controls the moving speed and position of the table 109.
  • the transmitted X-ray incident on the X-ray detector 105 is converted into a digital signal by the DAS 204 and sent to the image processing apparatus 4 as digital data.
  • the reconstruction calculator 3 When the reconstruction calculator 3 acquires digital data from the image processing device 4, it performs data correction processing such as sensitivity correction, logarithmic conversion, and offset correction to generate projection data, and executes image reconstruction processing using the projection data To do.
  • the image data (tomographic image) reconstructed by the image reconstruction process is input to the image processing device 4, stored in the data recording device 403 (FIG. 2), and displayed on the image display device 405.
  • FIG. 2 is a configuration diagram of the image processing apparatus 4.
  • the image processing apparatus 4 mainly includes a central processing unit (CPU 401) that controls the operation of each of the above-described components, a main memory 402 that stores a control program for the image processing apparatus 4, and a data recording device 403 that stores image data.
  • a display memory 404 that temporarily stores the image data of the subject 6, an image display device 405 that performs display based on the image data temporarily stored in the display memory 404, and a soft switch on the image display device 405.
  • a pointing device 407 such as a mouse and a touch panel and a controller 408, an external input device 406 such as a keyboard having keys and switches for setting various parameters, and the image processing device 4 in a local area network, telephone line, Internet, etc.
  • the data recording device 403 may be a storage device such as a magnetic disk, or a device that writes data to or reads data from a removable external medium.
  • the image processing apparatus 4 may be connected to an external image database 412 via the network adapter 409 and the network 411, and may transmit / receive image data to / from the image database 412.
  • the electrocardiograph 5 measures electrocardiographic information representing the time change of the action potential reflecting the heartbeat movement of the heart via an electrode attached to the subject 6, for example, a predetermined sampling such as an interval of 0.1 second. Convert to digital signal with pitch.
  • the electrocardiogram information obtained by the electrocardiograph 5 is sequentially sent to the image processing device 4.
  • the X-ray CT apparatus 1 performs electrocardiogram synchronous imaging according to the procedure shown in the flowchart of FIG. That is, the CPU 401 of the image processing apparatus 4 reads out the program and data related to the electrocardiogram synchronous imaging process shown in FIG. 3 from the main memory 402, and executes processing based on this program and data.
  • the image processing apparatus 4 collects projection data of the stationary phase of the heart and reconstructs an image using the collected projection data (step S1).
  • the X-ray CT apparatus 1 sets the phase to be scanned with respect to the heart rate information of the subject 6 in advance as an arbitrary reference phase, for example, the delay time setting from the R wave before imaging. Accept.
  • the image processing apparatus 4 monitors the electrocardiogram information of the subject 6, and controls to irradiate X-rays after the delay time after detecting the R wave as shown in FIG.
  • the X-ray CT apparatus 1 scans by irradiating the body axis direction position Z1 with X-rays after the above-described delay time after detecting the R wave. Thereafter, the table 109 is moved to the next body axis direction position Z2, and when an R wave is detected, X-rays are irradiated again after a delay time and scanning is performed.
  • the shape of the X-ray is a cone shape, in order to maintain the continuity in the body axis direction of the reconstructed image,
  • the amount of table movement between scans with different data collection times can be made shorter than the X-ray irradiation width at the rotation center of the gantry 100, and an overlap section can be provided in the X-ray irradiation area between each scan.
  • the reconstruction calculator 3 reconstructs an image based on the projection data obtained as described above. Through the above processing, a tomographic image of a specific phase of electrocardiogram information (after a predetermined delay time has elapsed after detection of an R wave) is intermittently obtained over a plurality of time phases (data collection times).
  • an unnatural density difference may occur in the body axis direction as shown in an image 70 shown in FIG. This is because one MPR image 70 is created using projection data at different heartbeats, that is, at different data collection times. Because there is a time difference in each heartbeat, the contrast agent concentration also changes, and the boundary slices 71, 72, 73, 74 between scans in different time phases (data collection times) increase the density difference and cause uneven density. Become.
  • correction processing is performed in the procedure of steps S2 to S4.
  • the image processing apparatus 4 calculates a data collection time and an inter-scan time for each scan (step S2).
  • the data collection time is the projection data collection time for each scan. Further, the image processing apparatus 4 obtains a time (inter-scan time) between a certain scan (k-th) and the next scan (k + 1).
  • the CPU of the image processing apparatus 4 first obtains the time from the data collection time of the first scan (scan start time) to the data collection time of each scan.
  • projection data is collected by temporally correlating each view (View) of the projection data with electrocardiogram information.
  • a view range (first hatched portion in FIG. 7) irradiated with X-rays first.
  • the time required from the first scan to each scan is obtained by converting the obtained number of views into time.
  • the time required from the first scan to each scan is the rotation time per scanner rotation (ST [ms / rot]) and the number of view captures per scanner rotation at that rotation time (view rate: VR [view / rot]) and the number of views (N [view]) between scans obtained earlier can be obtained using the following equation (1).
  • the reference position for obtaining the time from the first scan to each scan is set from the center to the center of the view range irradiated with the X-rays.
  • the reference position is not limited to this. It may be the start position or end position of the view range.
  • the inter-scan time is obtained by subtracting the time IT from the first scan of each scan obtained as described above.
  • the time between scans may be expressed not as time but as the number of R waves.
  • the image processing device 4 calculates a body axis direction range (hereinafter referred to as a correction range) of a tomographic image to be subjected to image correction (step S3).
  • the image processing apparatus 4 determines an appropriate correction range according to the interscan time obtained in step S2.
  • inter-scan boundary positions 80 and 90 shown in FIGS. 8 and 9 correspond to any of the boundary slices 71, 72, 73, and 74 shown in FIG.
  • the image processing device 4 shows the difference in contrast density at the position in the body axis direction, as shown in FIG. 10 (A), from the pixel values of the corresponding pixels of the original tomographic image group obtained in step S1.
  • a concentration curve C1 is obtained. Note that in FIG. 10A, the concentration curve is stepped for easy understanding, but it is not necessarily stepped.
  • the image processing apparatus 4 obtains a density difference 81 at the inter-scan boundary position 80 and calculates its median value (density midpoint 82).
  • the image processing apparatus 4 calculates a certain density line 83 passing through the density midpoint 82.
  • the image processing apparatus 4 decreases the slope of the density line 83 when the time between scans is long, and increases the slope of the density line 83 when the time between scans is short.
  • the image processing apparatus 4 calculates two intersection points 84 and 85 of the density line 83 and the density curve C1 as shown in FIG. 10 (D), and two intersection points as shown in FIG. 10 (E).
  • a correction range 86 is determined between 84 and 85.
  • the correction range is wide, and when the interscan time is short and the contrast density difference 81 is small, the correction range is narrow.
  • concentration line 83 is not limited to a straight line as shown in FIGS. 8 to 10, and may be a curve as shown in FIG. In addition, the shape of the concentration line 83 is not limited to this.
  • projection data at the data collection time t1 and projection data at the data collection time t2 are collected.
  • an image is generated by using 50% of the projection data at the data collection time t1 and the projection data at the data collection time t2. Further, as the distance from the inter-scan boundary position 80 increases, an image is generated such that the contribution rate of projection data that is distant in time (the ratio of using projection data) gradually decreases.
  • the concentration change of the contrast agent is relatively small. Therefore, a smooth density change can be obtained without much correction.
  • the time between scans is shorter than this, as shown in FIG. 12, the contribution ratio of projection data far in time is reduced at a position away from the inter-scan boundary position 80.
  • the time between scans is long, the density difference cannot be suppressed unless correction is performed even at a position away from the boundary slice. Therefore, as shown in FIG. 13, the contribution ratio of the projection data far in time is increased even at a position away from the boundary slice.
  • the image processing device 4 corrects the image of the boundary portion between the scans in the correction range obtained in step S3 (step S4).
  • the correction process may be executed only for the contrasted portion of each tomographic image. As a result, it becomes possible to perform correction processing at high speed for the portion of interest.
  • the image processing device 4 displays the correction range obtained in step S3 on the image display device 405 together with the corrected image 95 (step S5).
  • the start position and end position of the correction range obtained in step S3 are displayed on the corrected image 95 with lines L1 and L2.
  • the weighting factor used for correction so as to correspond to the image position on or near the corrected image 95 (the inclination angle of the density line or the contribution ratio in the overlap section)
  • a correction bar 97 indicating the density and color corresponding to is displayed.
  • the display method is not limited to the above, and the index indicating the correction range and the degree of correction, such as the correction range, the inclination angle of the density line, the contribution ratio in the overlap section, and the like, using a mark, a graph, a chart, a color display, etc. Can be displayed. Further, only the corrected image 95 may be displayed on the image display device 405 without displaying the correction range, or the corrected image 95 and the image before correction are displayed side by side on the image display device 405. Also good.
  • the X-ray is irradiated and scanned after a predetermined time after detecting the R wave of the electrocardiogram information, so that each body axis direction position of the heart is detected.
  • Projection data of a specific phase of the heart is intermittently acquired at a plurality of time phases, and a tomogram at each body axis direction position is reconstructed based on the acquired projection data (Prospective Triggering Scan).
  • the time between scans from one scan to the next scan is calculated based on the electrocardiogram information, and the tomographic image in the range of the body axis direction determined according to the calculated length of the scan time is between each tomographic image. Correct the resulting density difference.
  • an image generated based on the corrected tomographic image is displayed, and the corrected body axis direction range is displayed.
  • the density change can be made uniform by narrowing the correction range when the time between scans is short and widening the correction range when the time between scans is long.
  • an image may be generated using each projection data having a different contribution rate and different data collection time.
  • correction processing can be performed at high speed particularly for a site of interest.
  • 1 X-ray CT device 100 gantry, 101 X-ray source, 105 X-ray detector, 109 table, 201 X-ray controller, 202 gantry controller, 203 table controller, 204 DAS, 3 reconstruction calculator, 4 images
  • Treatment device 5 electrocardiographs, 6 subjects, C1 concentration curve, 80, 90 boundary position between scans, 81 concentration difference, 82 concentration midpoint, 83 concentration line, 84, 85 intersection, 95 corrected image, 96 , 97 Correction indicator

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Cardiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 Prospective Triggering法を用いた造影撮影において、スライス間の時間的不連続に起因する造影濃度ムラを補正することが可能なX線CT装置を提供する。 X線CT装置1では、心臓の各体軸方向の位置で心電情報のR波を検出してから所定の時間後にX線を照射してスキャンし、心臓の特定の位相の投影データを得る。画像処理装置4は、収集した投影データに基づいて断層像を再構成し、上述の各スキャンにおける投影データ収集時刻を心電計5から収集した心電情報から算出し、算出した投影データ収集時刻に基づいてスキャン間時間を求め、スキャン間時間に応じた範囲の体軸方向位置の画像について濃度差が滑らかに変化するように補正する。

Description

X線CT装置及び画像補正方法
 本発明は、X線CT装置に関し、特に心電計から収集した被検者の心電情報を用いて撮影及び再構成するX線CT装置等に関する。
 X線CT装置は、X線源とそれに対向するように配置したX線検出器とを被検体を中心に回転させながらX線を照射し、被検体を透過したX線を全周に亘って検出し、得られた投影データに基づいて画像再構成して断層像を得るものである。この画像再構成では、被検体または被検体内の臓器は静止していることが必要条件となっており、投影データを収集している間に被検体や臓器が動いているとその対象は画像再構成の際に正しく結像されず、ぼけた画像(モーションアーチファクト)となる。
 特に心臓は常に拍動している臓器であるため、心臓の静止した画像を得るためには投影データを収集する時間、すなわち時間分解能を向上させる必要がある。そこでX線CT装置を用いた心臓撮影では、被検者に心電計を装着し、被検者の心電情報を用いて心臓の動きが少ない位相の投影データを収集して画像再構成することで比較的静止した心臓の画像を得る心電同期再構成法が行われている。
 X線CT装置を用いた心臓撮影における撮影方法には、大きく分けてRetrospective Gating法とProspective Triggering法の2つがある。
 Retrospective Gating法は、先に述べたように被検者の心電情報を収集しながらヘリカルスキャンし、得られた投影データの中から心電情報を用いて動きが少ない位相の投影データのみを収集して画像再構成する方法である。この方法はX線を連続的に照射してヘリカルスキャンするため、任意の位相の画像を作成することができる。しかし一方で複数の心拍から同位相の投影データを収集しなければならないため、テーブルの移動速度は遅くなり、被ばく量は通常のヘリカルスキャンの数倍となる。
 Prospective Triggering法は、被検者の心電情報をモニタリングし、例えばR波を検出してから予め設定した特定の位相になる時間後にのみX線を照射してアキシャルスキャンする方法である。この場合、X線を連続的に照射せずに特定の位相になったときのみ照射するので、Retrospective Gating法と比べて非常に少ない被ばく量で済む(特許文献1)。
 両者それぞれにメリットとデメリットがあるが、被検者への負担を考慮すると、被ばくの少ないProspective Triggering法で撮影するのが望ましい。
特開平9-24045号公報
 しかしながら、上述のProspective Triggering法は、同じ体軸方向位置で1回しかスキャンしないため、次の体軸方向位置のスキャンは前のスキャンとは異なる心拍から投影データを収集することになる。そのため、スライス間で時間的に連続しない部分ができる。
したがってProspective Triggering法で冠動脈造影撮影を行うと、時間的に連続しない部分で造影剤の濃度が大きく変わり、MPR(Multi Plannar Reconstruction)画像を作成すると違和感のある画像となる。また、画像処理により冠動脈を抽出しようとしても、この造影濃度の急激な変化により正しく抽出できない場合がある。
 本発明は、以上の問題点に鑑みてなされたものであり、Prospective Triggering法を用いた造影撮影において、スライス間の時間的不連続に起因する造影濃度ムラを補正することが可能なX線CT装置等を提供することを目的とする。
 前述した目的を達成するために第1の発明は、被検者の心電情報を心電計から収集するとともに、収集した心電情報に同期したスキャンを実行し、スキャンで得た投影データを再構成することにより被検者の断層像を得るX線CT装置において、所定のタイミングでX線を照射してスキャンすることにより、心臓の各体軸方向位置で心臓の特定の位相の投影データを複数の時相で断続的に取得するデータ収集部と、前記データ収集部により取得した投影データに基づいて各体軸方向位置での断層像を再構成する再構成部と、あるスキャンから次のスキャンまでのスキャン間時間を算出し、算出した前記スキャン間時間の長さに応じて決定される体軸方向範囲の断層像について各断層像間で生じた濃度差を補正する補正部と、前記補正部により補正された断層像を基に生成される画像を表示する表示部と、を備えることを特徴とするX線CT装置である。
 また、第2の発明は、被検者の心電情報を心電計から収集するとともに、収集した心電情報に同期したスキャンを実行し、スキャンで得た投影データを再構成することにより被検者の断層像を得るX線CT装置における画像補正方法であって、所定のタイミングでX線を照射してスキャンすることにより、心臓の各体軸方向位置で心臓の特定の位相の投影データを複数の時相で断続的に取得するデータ収集ステップと、取得した投影データに基づいて各体軸方向位置での断層像を再構成する再構成ステップと、あるスキャンから次のスキャンまでのスキャン間時間を算出し、算出した前記スキャン間時間の長さに応じて決定される体軸方向範囲の断層像について各断層像間で生じた濃度差を補正する補正ステップと、補正された断層像を基に生成される画像を表示する表示ステップと、を含むことを特徴とする画像補正方法である。
 本発明のX線CT装置及び画像補正方法により、Prospective Triggering法を用いた造影撮影において、スライス間の時間的不連続に起因する濃度ムラを補正することが可能となり、違和感のないMPR画像または対象部位の抽出処理等の画像処理を容易に行うことができる。
X線CT装置1の構成図 画像処理装置4の構成図 X線CT装置1の動作手順を示すフローチャート Prospective Triggering Scanにおける心電波形とディレータイム、X線照射タイミングの関係を説明する概念図 X線の形状とテーブル移動量との関係を説明する概念図 スキャン間境界位置と濃度ムラについて説明する概念図 スキャン間時間を求める方法を説明する概念図 スキャン間時間が短い場合の補正範囲の一例 スキャン間時間が長い場合の補正範囲の一例 補正範囲の決定方法について説明する図 補正に用いる濃度線の別の例 スキャン間時間が短い場合のオーバーラップデータ寄与率を示す図 スキャン間時間が長い場合のオーバーラップデータ寄与率を示す図 補正範囲や補正の程度を示す表示例 補正範囲と補正の程度を示す別の表示例
 以下、添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。
 [実施形態]
 まず、図1を参照して、X線CT装置1の構成について説明する。
 X線CT装置1は、ガントリ100と、X線の照射を制御するX線制御器201と、ガントリ100の動作を制御するガントリ制御器202と、テーブル109の動作を制御するテーブル制御器203と、X線検出器105に入射したX線の強度を電気信号に変換し、収集するデータ収集装置(DAS;Data Acquisition System)204と、DAS204で変換した電気信号を取得し、取得したデータの補正及び画像再構成を行う再構成演算器3と、被検者6の心電情報を収集する心電計5と、心電計5で計測した心電情報を取得するとともに、X線制御器201、ガントリ制御器202、テーブル制御器203、及びDAS204を制御してガントリ100によるスキャンを実行し、また再構成演算器3にて再構成された断層像を取得する画像処理装置4と、を備える。
 ガントリ100には、X線源101とX線検出器105とが被検者6の載置されるテーブル109を介して対向配置されている。
 X線源101はX線制御器201に制御されて所定の強度のX線を照射する。X線検出器105はX線源101から照射され、被検者6を透過したX線を検出し、検出した透過X線の強度に従った電気信号を発生する。スキャンの際、X線源101及びX線検出器105はガントリ制御器202から入力される制御信号に従って回転中心の周りを回転する。
 X線源101及びガントリ100の動作は、X線制御器201とガントリ制御器202によって制御される。X線制御器201は、X線源101に電力信号およびX線発生タイミング信号を供給する。ガントリ制御器202は、ガントリ100の回転速度及び位置を制御する。テーブル109はテーブル制御器203によって制御される。テーブル制御器203は、テーブル109の移動速度および位置を制御する。
 X線検出器105に入射した透過X線は、DAS204によってデジタル信号に変換され、デジタルデータとして画像処理装置4に送られる。
 再構成演算器3は画像処理装置4からデジタルデータを取得すると、感度補正、対数変換、オフセット補正等のデータ補正処理を行って投影データを生成し、投影データを用いて画像再構成処理を実行する。画像再構成処理によって再構成された画像データ(断層像)は画像処理装置4に入力され、データ記録装置403(図2)に保存されるとともに、画像表示装置405に表示される。
 図2は画像処理装置4の構成図である。
 画像処理装置4は主として、上述の各構成要素の動作を制御する中央処理装置(CPU401)と、画像処理装置4の制御プログラムが格納された主メモリ402と、画像データを格納するデータ記録装置403と、被検者6の画像データを一時記憶する表示メモリ404と、この表示メモリ404に一時記憶された画像データに基づく表示を行う画像表示装置405と、画像表示装置405上のソフトスイッチを操作するためのマウス、タッチパネル等のポインティングデバイス407及びコントローラ408と、各種パラメータ設定用のキーやスイッチを備えたキーボード等の外部入力装置406と、画像処理装置4をローカルエリアネットワーク、電話回線、インターネット等のネットワークに接続するためのネットワークアダプタ409と、上記各構成要素を接続するデータバス410とから構成される。データ記録装置403は、磁気ディスク等の記憶装置や、取り出し可能な外部メディアに対してデータの書き込みや読み出しを行う装置でもよい。画像処理装置4はネットワークアダプタ409及びネットワーク411を介して外部の画像データベース412と接続し、画像データベース412との間で画像データを送受信するようにしてもよい。
 心電計5は、被検者6に取り付けた電極を介して、心臓の心拍運動を反映した活動電位の時間変化を表す心電情報を計測し、例えば0.1秒間隔等の所定のサンプリングピッチでデジタル信号に変換する。心電計5で得た心電情報は、画像処理装置4へ順次送出される。
 次に、図3を参照して、X線CT装置1の動作について説明する。
 本実施の形態のX線CT装置1は、図3のフローチャートに示す手順で心電同期撮影を実行する。すなわち、画像処理装置4のCPU401は、主メモリ402から図3に示す心電同期撮影処理に関するプログラム及びデータを読み出し、このプログラム及びデータに基づいて処理を実行する。
 本処理では、冠動脈の造影撮影をProspective Triggering Scan法にて実行する。画像処理装置4は、心臓の静止位相の投影データを収集し、収集した投影データを用いて画像再構成する(ステップS1)。
 Prospective Triggering Scanにおいて、X線CT装置1は、撮影前に予め被検者6の心拍情報に対してどの位相をスキャンするかの設定を任意の基準位相、例えばR波からのディレータイムの設定として受け付ける。スキャンの際、画像処理装置4は、被検者6の心電情報をモニタリングし、図4に示すようにR波を検出してからディレータイム後にX線を照射するよう制御する。
 X線CT装置1は、R波を検出してから上述のディレータイム後に、体軸方向位置Z1に対してX線を照射し、スキャンする。その後、テーブル109を次の体軸方向位置Z2まで移動させ、R波を検出したら再度ディレータイム後にX線を照射し、スキャンする。
 このとき例えば64スライス以上等の多列のX線検出器105を有するX線CT装置1では、X線の形状はコーン状となるが、再構成画像の体軸方向の連続性を保つため、図5に示すようにデータ収集時刻の異なる各スキャン間のテーブル移動量をガントリ100の回転中心におけるX線照射幅より短くして、各スキャン間でX線照射領域にオーバーラップ区間を設けることが望ましい。また、画像を再構成するスライス数(画像作成領域)もX線検出器105のスライス数未満となるように設定しておくことが望ましい。
 再構成演算器3は、以上のようにして得られた投影データを基に画像再構成する。以上の処理により、心電情報の特定位相(R波検出後、所定のディレータイム経過後)の断層像を、複数の時相(データ収集時刻)にわたって断続的に得る。
 このようにして得た断層像を用いてMPR画像を作成すると、図6に示す画像70のように、体軸方向で不自然な濃度差が生じることがある。これは、異なる心拍、すなわち異なるデータ収集時刻における投影データを用いて1枚のMPR画像70を作成するためである。各心拍で時間差があるため造影剤の濃度にも変化が生じ、異なる時相(データ収集時刻)の各スキャン間の境界スライス71、72、73、74で、濃度差が大きくなり、濃度ムラとなる。
 こうした濃度ムラの発生を防ぐため、本発明では、ステップS2~ステップS4の手順で補正処理を行う。
 まず、画像処理装置4は、各スキャンのデータ収集時刻及びスキャン間時間を算出する(ステップS2)。
 データ収集時刻とは、各スキャンにおける投影データの収集時刻である。また、画像処理装置4はあるスキャン(k回目)と次のスキャン(k+1回目)との間の時間(スキャン間時間)を求める。
 Prospective Triggering Scanでは、R波の検出後、所定のディレータイム経過をトリガとして体軸方向の各位置でスキャン(データ収集)するため、体軸方向で時間的に不連続なスライスが生じる。
 スキャン間時間を求めるために、画像処理装置4のCPUは、まず、最初のスキャンのデータ収集時刻(スキャン開始時刻)から、各スキャンのデータ収集時刻までの時間を求める。
 図7に示すように、投影データの各ビュー(View)と心電情報を時間的に対応させて投影データを収集し、例えば、最初にX線が照射されたビュー範囲(図7の斜線部)の中心から各スキャンでX線が照射されたビュー範囲の中心までのビュー数を求める。次に、求めたビュー数を時間に換算することによって、最初のスキャンから各スキャンまでに要する時間が求められる。最初のスキャンから各スキャンまでに要する時間(IT[ms])は、スキャナ1回転あたりの回転時間(ST[ms/rot])とその回転時間におけるスキャナ1回転あたりのビュー取り込み数(ビューレート:VR[view/rot])と先で求めたスキャン間のビュー数(N[view])と、から、以下の式(1)を用いて求めることができる。
Figure JPOXMLDOC01-appb-M000001
 なお、図7の例では、最初のスキャンから各スキャンまでの時間を求めるための基準位置をX線が照射されたビュー範囲の中心から中心までとしているが、これに限定されず、基準位置はビュー範囲の開始位置や終了位置であっても構わない。
 スキャン間時間は、以上のようにして求めた各スキャンの最初のスキャンからの時間ITを互いに引くことで求められる。なお、スキャン間時間は、時間ではなく、R波の個数として表すようにしてもよい。
 次に、画像処理装置4は、画像補正を行う断層像の体軸方向範囲(以下、補正範囲という)を算出する(ステップS3)。
 画像処理装置4は、ステップS2で求めたスキャン間時間に応じて適切な補正範囲を決定する。
 以下、図8及び図9を参照して補正範囲の求め方の一例を示す。
 ステップS2で算出したスキャン間時間が短い場合、図8(A)に示すように、造影剤の濃度変化が比較的小さくなることが予想される。この場合、図8(B)に示すように、スキャン間境界位置80を中心として補正範囲を狭くとることで、造影剤の量が体軸方向に沿って滑らかに変化しているように見えるように画像補正する。
 一方、ステップS2で算出したスキャン間時間が長い場合は、図9(A)に示すように造影剤の濃度変化が大きくなることが予想される。この場合、図9(B)に示すように、スキャン間境界位置90を中心として補正範囲を広くとることで、造影剤の量が体軸方向に沿って滑らかに変化しているように見えるように画像補正する。
 なお、図8、図9に示すスキャン間境界位置80、90は、図6に示す境界スライス71、72、73、74のいずれかに対応するものである。
 補正範囲を求める手順の詳細を、図10を参照して説明する。
 まず、画像処理装置4は、ステップS1で得た元の断層像群のそれぞれ対応する画素の画素値から、図10(A)に示すように、体軸方向位置での造影濃度の違いを示す濃度曲線C1を得る。なお、図10(A)では説明を分かり易くするために濃度曲線を階段状としているが、必ずしも階段状となるものではない。
 次に、画像処理装置4は、図10(B)に示すように、スキャン間境界位置80の濃度差81を求めて、その中央値(濃度中点82)を算出する。
 次に、画像処理装置4は、図10(C)に示すように、濃度中点82を通る、ある傾きの濃度線83を算出する。
 ここで、画像処理装置4は、スキャン間時間が長い場合は濃度線83の傾きを小さくし、スキャン間時間が短い場合は濃度線83の傾きを大きくするようにする。
 そして、画像処理装置4は、図10(D)に示すように、濃度線83と濃度曲線C1との2つの交点84、85を算出し、図10(E)に示すように、2つの交点84、85間を、補正範囲86と決定する。
 これにより、スキャン間時間が長く造影濃度差81が大きい場合は広い補正範囲となり、スキャン間時間が短く、造影濃度差81が小さい場合は狭い補正範囲となる。
 なお、濃度線83は、図8~10に示すような直線に限定されず、図11に示すような曲線としてもよい。その他、濃度線83の形状はこの限りではない。
 また、ステップS1のスキャン時に各スキャンでX線照射幅をオーバーラップさせて投影データを得ている場合は、X線がオーバーラップする区間では、同じ体軸位置でデータ収集時刻の異なる2スキャン分の投影データを取得できる。
 そのため、上述のステップS3で決定した補正範囲の断層像を補正する際に、上述のスキャン間時間の長さに応じて決定される寄与率とデータ収集時刻の異なる各投影データとを用いて画像を生成し、これにより各断層像間の濃度値ムラを補正するようにしてもよい。
 そして、スキャン間時間が短い場合は上述の寄与率を小さくし、スキャン間時間が長い場合は上述の寄与率を大きくすることが望ましい。
 すなわち、オーバーラップ区間では、データ収集時刻t1の投影データとデータ収集時刻t2の投影データとが収集されている。スキャン間境界位置80ではデータ収集時刻t1の投影データとデータ収集時刻t2の投影データを互いに50パーセントずつ用いて画像を生成する。また、スキャン間境界位置80から離れるに従って、時間的に遠い投影データの寄与率(投影データを利用する割合)を徐々に小さくなるようにして、画像を生成する。
 このとき、上述のように、スキャン間時間が短い場合、造影剤の濃度変化は比較的小さい。したがって補正をあまりしなくても滑らかな濃度変化が得られる。これよりスキャン間の時間が短い場合は、図12に示すようにスキャン間境界位置80から離れた位置では時間的に遠い投影データの寄与率を少なくする。一方、スキャン間の時間が長い場合は、境界スライスから離れた位置でも補正を行わないと濃度差を抑えることができない。したがって図13に示すように境界スライスから離れた位置においても時間的に遠い投影データの寄与率を多くする。
 補正範囲が決定されると、画像処理装置4はステップS3で求めた補正範囲のスキャン間境界部分の画像を補正する(ステップS4)。
 なお、補正処理は、各断層像の特に造影部分についてのみ実行するようにしてもよい。
これにより着目される部分について高速に補正処理を行うことが可能となる。
 次に、画像処理装置4は、ステップS3で求めた補正範囲を、補正後の画像95と併せて画像表示装置405に表示する(ステップS5)。
 例えば、図14に示すように、ステップS3で求めた補正範囲の開始位置及び終了位置を補正後の画像95上にラインL1、L2で表示する。
 また、例えば、図14に示すように、補正後の画像95上または当該画像95の近くに、画像位置と対応するように補正に用いた重み係数(オーバーラップ区間内の寄与率)を示すグラフ96で表示する。
 或いは、図15に示すように、補正後の画像95上または画像95の近くに、画像位置と対応するように補正に用いた重み係数(濃度線の傾斜角度またはオーバーラップ区間内の寄与率)に対応する濃度や色を示す、補正バー97を表示する。
 なお、これらの表示方法に限定されず、補正範囲、濃度線の傾斜角度、オーバーラップ区間内の寄与率等、補正範囲と補正の程度を示す指標をマーク、グラフ、図表、カラー表示等を用いて表示すればよい。また、補正範囲を表示することなく、補正後の画像95のみを画像表示装置405に表示しても良いし、補正後の画像95と補正前の画像とを並べて画像表示装置405に表示しても良い。
 以上説明したように、本発明のX線CT装置1では、心電情報のR波を検出してから所定の時間後にX線を照射してスキャンすることにより、心臓の各体軸方向位置で心臓の特定の位相の投影データを複数の時相で断続的に取得し、取得した投影データに基づいて各体軸方向位置での断層像を再構成する(Prospective Triggering Scan)。そして、心電情報に基づいてあるスキャンから次のスキャンまでのスキャン間時間を算出し、算出したスキャン間時間の長さに応じて決定される体軸方向範囲の断層像について各断層像間で生じた濃度差を補正する。また、補正された断層像を基に生成される画像を表示するとともに、補正された体軸方向範囲を表示する。
 したがって、Prospective Triggering法を用いた造影撮影において、スライス間の時間的不連続に起因する濃度ムラを補正することが可能となり、違和感のないMPR画像または対象部位の抽出処理等の画像処理を容易に行うことができるようになる。
 また、スキャン間時間が短い場合は補正範囲を狭くし、スキャン間時間が長い場合は補正範囲を広くすることで、濃度変化を一様にすることができる。
 また、あるデータ収集時刻におけるスキャンのX線照射領域と次のデータ収集時刻におけるスキャンのX線照射領域とにオーバーラップ区間を設けてスキャンする場合において、スキャン間時間の長さに応じて決定される寄与率でデータ収集時刻の異なる各投影データを用いて画像を生成するようにしてもよい。
 この場合、スキャン間時間が短い場合は時間的に離れた投影データの寄与率を小さくし、スキャン間時間が長い場合は時間的に離れた投影データの寄与率を大きくすれば、各スキャンでの投影データを使用して信頼性の高い画像を作成しつつ、濃度ムラのない画像を得ることが可能となる。
 また、造影された部分のみを補正対象とすれば、特に着目する部位について高速に補正処理を行える。
 なお、本発明は、上述の実施形態に限定されるものではない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 1 X線CT装置、100 ガントリ、101 X線源、105 X線検出器、109 テーブル、201 X線制御器、202 ガントリ制御器、203 テーブル制御器、204 DAS、3 再構成演算器、4 画像処理装置、5 心電計、6 被検者、C1 濃度曲線、80、90 スキャン間境界位置、81 濃度差、82 濃度中点、83 濃度線、84、85 交点、95 補正後の画像、96、97 補正の指標

Claims (12)

  1.  被検者の心電情報を心電計から収集するとともに、収集した心電情報に同期したスキャンを実行し、スキャンで得た投影データを再構成することにより被検者の断層像を得るX線CT装置において、
     所定のタイミングでX線を照射してスキャンすることにより、心臓の各体軸方向位置で心臓の特定の位相の投影データを複数の時相で断続的に取得するデータ収集部と、
     前記データ収集部により取得した投影データに基づいて各体軸方向位置での断層像を再構成する再構成部と、
     あるスキャンから次のスキャンまでのスキャン間時間を算出し、算出した前記スキャン間時間の長さに応じて決定される体軸方向範囲の断層像について各断層像間で生じた濃度差を補正する補正部と、
     前記補正部により補正された断層像を基に生成される画像を表示する表示部と、
     を備えることを特徴とするX線CT装置。
  2.  前記表示部は、前記補正部により補正された体軸方向範囲を生成された画像とともに表示することを特徴とする請求項1に記載のX線CT装置。
  3.  前記補正部は、補正対象とする断層像の体軸方向範囲を、前記スキャン間時間が短い場合は狭くし、前記スキャン間時間が長い場合は広くすることを特徴とする請求項1に記載のX線CT装置。
  4.  前記データ収集部が、あるデータ収集時刻におけるスキャンのX線照射領域と次のデータ収集時刻におけるスキャンのX線照射領域とにオーバーラップ区間を設けてスキャンする場合において、
     前記補正部は、前記スキャン間時間の長さに応じて決定される寄与率とデータ収集時刻の異なる各投影データとを用いて画像を生成することにより各断層像間で生じた濃度差を補正することを特徴とする請求項1に記載のX線CT装置。
  5.  前記補正部は、前記スキャン間時間が短い場合は前記寄与率を小さくし、前記スキャン間時間が長い場合は前記寄与率を大きくすることを特徴とする請求項4に記載のX線CT装置。
  6.  前記補正部は、前記断層像の造影された部分のみを補正対象とすることを特徴とする請求項1に記載のX線CT装置。
  7.  被検者の心電情報を心電計から収集するとともに、収集した心電情報に同期したスキャンを実行し、スキャンで得た投影データを再構成することにより被検者の断層像を得るX線CT装置における画像補正方法であって、
     所定のタイミングでX線を照射してスキャンすることにより、心臓の各体軸方向位置で心臓の特定の位相の投影データを複数の時相で断続的に取得するデータ収集ステップと、 取得した投影データに基づいて各体軸方向位置での断層像を再構成する再構成ステップと、
     あるスキャンから次のスキャンまでのスキャン間時間を算出し、算出した前記スキャン間時間の長さに応じて決定される体軸方向範囲の断層像について各断層像間で生じた濃度差を補正する補正ステップと、
     補正された断層像を基に生成される画像を表示する表示ステップと、
     を含むことを特徴とする画像補正方法。
  8.  前記表示ステップは、前記補正ステップにより補正された体軸方向範囲を生成された画像とともに表示することを特徴とする請求項7に記載の画像補正方法。
  9.  前記補正ステップは、補正対象とする断層像の体軸方向範囲を、前記スキャン間時間が短い場合は狭くし、前記スキャン間時間が長い場合は広くすることを特徴とする請求項7に記載の画像補正方法。
  10.  前記データ収集ステップが、あるデータ収集時刻におけるスキャンのX線照射領域と次のデータ収集時刻におけるスキャンのX線照射領域とにオーバーラップ区間を設けてスキャンする場合において、
     前記補正ステップは、前記スキャン間時間の長さに応じて決定される寄与率とデータ収集時刻の異なる各投影データとを用いて画像を生成することにより各断層像間で生じた濃度差を補正することを特徴とする請求項7に記載の画像補正方法。
  11.  前記補正ステップは、前記スキャン間時間が短い場合は前記寄与率を小さくし、前記スキャン間時間が長い場合は前記寄与率を大きくすることを特徴とする請求項10に記載の画像補正方法。
  12.  前記補正ステップは、前記断層像の造影された部分のみを補正対象とすることを特徴とする請求項7に記載の画像補正方法。
PCT/JP2012/074397 2011-09-27 2012-09-24 X線ct装置及び画像補正方法 WO2013047439A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280039786.7A CN103764034B (zh) 2011-09-27 2012-09-24 X射线ct装置及图像补正方法
JP2013536265A JP6104166B2 (ja) 2011-09-27 2012-09-24 X線ct装置及び画像補正方法
US14/239,867 US9129389B2 (en) 2011-09-27 2012-09-24 X-ray CT apparatus and image correction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-210120 2011-09-27
JP2011210120 2011-09-27

Publications (1)

Publication Number Publication Date
WO2013047439A1 true WO2013047439A1 (ja) 2013-04-04

Family

ID=47995471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074397 WO2013047439A1 (ja) 2011-09-27 2012-09-24 X線ct装置及び画像補正方法

Country Status (4)

Country Link
US (1) US9129389B2 (ja)
JP (1) JP6104166B2 (ja)
CN (1) CN103764034B (ja)
WO (1) WO2013047439A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107087393A (zh) * 2014-10-21 2017-08-22 通用电气公司 用于将多个采集的对比度归一化的方法和系统
EP3104782A4 (en) * 2014-02-12 2017-12-27 Samsung Electronics Co., Ltd. Tomography apparatus and method of displaying a tomography image by the tomography apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7051307B2 (ja) * 2016-05-09 2022-04-11 キヤノンメディカルシステムズ株式会社 医用画像診断装置
DE202019003376U1 (de) 2019-03-21 2019-09-13 Ziehm Imaging Gmbh Röntgensystem zur iterativen Bestimmung einer optimalen Koordinatentransformation zwischen überlappenden Volumina, die aus Volumendatensätzen von diskret abgetasteten Objektbereichen rekonstruiert wurden
CN117115577B (zh) * 2023-10-23 2023-12-26 南京安科医疗科技有限公司 一种心脏ct投影域最优相位识别方法、设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004057506A (ja) * 2002-07-29 2004-02-26 Toshiba Corp ディジタル画像処理装置及びx線診断装置
JP2006021022A (ja) * 2004-06-11 2006-01-26 Toshiba Corp X線ct装置および心筋パーフュージョン像生成システム
JP2006326078A (ja) * 2005-05-27 2006-12-07 Hitachi Medical Corp 血流動態解析装置、x線ct装置、mri装置、及び血流動態解析プログラム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5653599A (en) * 1998-09-18 2000-04-10 Mitsubishi Plastics Inc. Image processing device and method, and recording medium
DE19957083B4 (de) * 1999-11-28 2004-11-18 Siemens Ag Verfahren zur Untersuchung eines eine periodische Bewegung ausführenden Körperbereichs
DE60212917T2 (de) * 2001-10-16 2007-03-01 Kabushiki Kaisha Toshiba Vorrichtung zur Berechnung eines Index von örtlichen Blutflüssen
JP2003210456A (ja) * 2002-01-21 2003-07-29 Toshiba Corp 時系列画像の処理装置
JP4025677B2 (ja) * 2003-04-04 2007-12-26 株式会社日立メディコ X線ct装置
AR047692A1 (es) * 2003-07-10 2006-02-08 Epix Medical Inc Imagenes de blancos estacionarios
CN100462050C (zh) * 2004-06-11 2009-02-18 株式会社东芝 X射线ct装置和心肌灌注图像产生系统
US7352840B1 (en) * 2004-06-21 2008-04-01 Radiation Monitoring Devices, Inc. Micro CT scanners incorporating internal gain charge-coupled devices
WO2006077869A1 (ja) * 2005-01-18 2006-07-27 Hitachi Medical Corporation X線ct装置
DE102005052368B4 (de) * 2005-10-31 2015-07-30 Bayer Pharma Aktiengesellschaft Röntgensystem zur Erstellung diagnostischer Röntgendarstellungen unter Applikation von Kontrastmitteln
WO2007138979A1 (ja) * 2006-05-25 2007-12-06 Hitachi Medical Corporation X線ct装置
JP5019930B2 (ja) * 2007-04-05 2012-09-05 富士フイルム株式会社 放射線断層画像取得装置
JP4966120B2 (ja) * 2007-07-18 2012-07-04 株式会社東芝 X線アンギオ撮影装置
DE102009043633A1 (de) * 2009-09-29 2011-03-31 Siemens Aktiengesellschaft Verbesserte Abtastung eines zyklisch bewegten Untersuchungsobjektes unter Einsatz eines Kontrastmittels im Rahmen einer Voruntersuchung mittels eines CT-Gerätes
JP5631698B2 (ja) * 2009-12-07 2014-11-26 株式会社東芝 医用画像処理装置及び医用画像処理方法
US9119590B2 (en) * 2010-02-18 2015-09-01 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center Method for thoracic vertebral bone density measurement by thoracic quantitative computed tomography
US8718747B2 (en) * 2010-04-16 2014-05-06 Oslo Universitetssykehus Hf Estimating and correcting for contrast agent extravasation in tissue perfusion imaging
US8768031B2 (en) * 2010-10-01 2014-07-01 Mistretta Medical, Llc Time resolved digital subtraction angiography perfusion measurement method, apparatus and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004057506A (ja) * 2002-07-29 2004-02-26 Toshiba Corp ディジタル画像処理装置及びx線診断装置
JP2006021022A (ja) * 2004-06-11 2006-01-26 Toshiba Corp X線ct装置および心筋パーフュージョン像生成システム
JP2006326078A (ja) * 2005-05-27 2006-12-07 Hitachi Medical Corp 血流動態解析装置、x線ct装置、mri装置、及び血流動態解析プログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3104782A4 (en) * 2014-02-12 2017-12-27 Samsung Electronics Co., Ltd. Tomography apparatus and method of displaying a tomography image by the tomography apparatus
CN107087393A (zh) * 2014-10-21 2017-08-22 通用电气公司 用于将多个采集的对比度归一化的方法和系统
JP2017537674A (ja) * 2014-10-21 2017-12-21 ゼネラル・エレクトリック・カンパニイ 複数回の取得にわたってコントラストを正規化するための方法およびシステム

Also Published As

Publication number Publication date
US20140212016A1 (en) 2014-07-31
CN103764034B (zh) 2016-03-02
US9129389B2 (en) 2015-09-08
JP6104166B2 (ja) 2017-03-29
CN103764034A (zh) 2014-04-30
JPWO2013047439A1 (ja) 2015-03-26

Similar Documents

Publication Publication Date Title
US7684537B2 (en) X-ray CT apparatus
JP6618900B2 (ja) X線ct装置及び画像再構成方法
JP5643218B2 (ja) X線ct装置及びx線ct装置による画像表示方法
US9542762B2 (en) X-ray CT apparatus and image reconstruction method
JP2004275440A (ja) X線コンピュータ断層撮影装置
JP2009028065A (ja) X線ct装置
EP2224851B1 (en) Correction for un-voluntary respiratory motion in cardiac ct
US7831011B2 (en) Computed tomography method and system
JP6509131B2 (ja) X線ct装置、画像処理装置、及び画像再構成方法
JP6104166B2 (ja) X線ct装置及び画像補正方法
US11160523B2 (en) Systems and methods for cardiac imaging
JP2004121840A (ja) 周期的に運動する器官のct画像形成方法およびこの方法を実施するためのct装置
US20140105477A1 (en) Low dose cardiac ct imaging with time-adaptive filtration
CN102028493B (zh) 在使用造影剂的条件下对周期性运动检查对象的改善扫描
US12070348B2 (en) Methods and systems for computed tomography
JP2003204961A (ja) X線ct装置
CN104755030A (zh) 借助动态准直进行剂量减小的ct拍摄
US9737279B2 (en) X-ray CT apparatus
WO2004071301A1 (ja) X線ct装置
JP4007928B2 (ja) X線ct装置
US20060120586A1 (en) Method and system for extracting information about the cardiac cycle from CT projection data
WO2014188936A1 (ja) X線ct装置及び撮影方法
JP5931642B2 (ja) X線ct装置
US7023958B2 (en) Radiation image-acquiring apparatus, and radiation image-acquiring method
JP5203750B2 (ja) 心電同期スキャン方法及びx線コンピュータ断層撮影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536265

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14239867

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835719

Country of ref document: EP

Kind code of ref document: A1