WO2013047439A1 - X線ct装置及び画像補正方法 - Google Patents
X線ct装置及び画像補正方法 Download PDFInfo
- Publication number
- WO2013047439A1 WO2013047439A1 PCT/JP2012/074397 JP2012074397W WO2013047439A1 WO 2013047439 A1 WO2013047439 A1 WO 2013047439A1 JP 2012074397 W JP2012074397 W JP 2012074397W WO 2013047439 A1 WO2013047439 A1 WO 2013047439A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- image
- scan
- ray
- scans
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 35
- 238000003702 image correction Methods 0.000 title claims description 12
- 238000012937 correction Methods 0.000 claims description 60
- 238000013480 data collection Methods 0.000 claims description 27
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 230000001360 synchronised effect Effects 0.000 claims description 6
- 230000007423 decrease Effects 0.000 claims description 4
- 238000012545 processing Methods 0.000 abstract description 40
- 238000009548 contrast radiography Methods 0.000 abstract 1
- 238000003384 imaging method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 239000002872 contrast media Substances 0.000 description 7
- 210000000056 organ Anatomy 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 230000000747 cardiac effect Effects 0.000 description 2
- 238000002586 coronary angiography Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
- G06T5/92—Dynamic range modification of images or parts thereof based on global image properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/481—Diagnostic techniques involving the use of contrast agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/486—Diagnostic techniques involving generating temporal series of image data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/503—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5258—Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
- A61B6/541—Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
- A61B6/545—Control of apparatus or devices for radiation diagnosis involving automatic set-up of acquisition parameters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/005—Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/46—Arrangements for interfacing with the operator or the patient
- A61B6/461—Displaying means of special interest
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/46—Arrangements for interfacing with the operator or the patient
- A61B6/461—Displaying means of special interest
- A61B6/466—Displaying means of special interest adapted to display 3D data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5288—Devices using data or image processing specially adapted for radiation diagnosis involving retrospective matching to a physiological signal
Definitions
- the present invention relates to an X-ray CT apparatus, and more particularly to an X-ray CT apparatus that performs imaging and reconstruction using electrocardiogram information of a subject collected from an electrocardiograph.
- An X-ray CT apparatus irradiates an X-ray while rotating an X-ray source and an X-ray detector arranged so as to oppose the subject around the subject, and transmits the X-ray transmitted through the subject over the entire circumference.
- the tomogram is obtained by detecting and reconstructing an image based on the obtained projection data.
- the subject or the organ in the subject must be stationary, and if the subject or organ is moving while the projection data is being collected, the subject will be imaged. The image is not correctly formed during reconstruction, resulting in a blurred image (motion artifact).
- the heart is an organ that is constantly beating, in order to obtain a stationary image of the heart, it is necessary to improve the time for collecting projection data, that is, the time resolution. Therefore, in cardiac imaging using an X-ray CT system, an electrocardiograph is attached to the subject, and projection data with a phase with little heart movement is collected using the electrocardiogram information of the subject to reconstruct an image. Thus, an electrocardiographic reconstruction method for obtaining a relatively stationary heart image has been performed.
- Retrospective Retro Gating method as described above, helical scan while collecting the electrocardiogram information of the subject, and collects only the projection data of the phase with little movement using the electrocardiogram information from the obtained projection data Then, the image is reconstructed. Since this method performs helical scanning by continuously irradiating X-rays, an image having an arbitrary phase can be created. However, on the other hand, since projection data having the same phase must be collected from a plurality of heartbeats, the moving speed of the table becomes slow, and the exposure amount is several times that of a normal helical scan.
- the Prospective-triggering method is a method in which the electrocardiogram information of the subject is monitored, and, for example, X-rays are irradiated and axial scanning is performed only after a predetermined phase is reached after detecting the R wave.
- X-rays are not irradiated continuously, but are irradiated only when a specific phase is reached, so that an extremely small exposure amount is required compared with the Retrospective-Gating method (Patent Document 1).
- the above-mentioned Prospective Triggering method scans only once at the same body axis direction position, the next body axis direction position scan collects projection data from heartbeats different from the previous scan. For this reason, there is a portion that is not temporally continuous between slices. Accordingly, when coronary angiography is performed using the Prospective Triggering method, the concentration of the contrast agent changes greatly in portions that are not temporally continuous, and when an MPR (Multi Plannar Reconstruction) image is created, the image becomes uncomfortable. Further, even if an attempt is made to extract a coronary artery by image processing, it may not be correctly extracted due to this rapid change in contrast density.
- MPR Multi Plannar Reconstruction
- the present invention has been made in view of the above problems, and X-ray CT capable of correcting contrast density unevenness caused by temporal discontinuity between slices in contrast imaging using the Prospective-triggering method.
- An object is to provide a device or the like.
- the first invention collects the electrocardiogram information of the subject from the electrocardiograph, executes a scan synchronized with the collected electrocardiogram information, and obtains projection data obtained by the scan.
- an X-ray CT system that obtains a tomographic image of a subject by reconstruction, projection data of a specific phase of the heart at each body axis direction position by irradiating and scanning with X-rays at a predetermined timing
- a data acquisition unit that intermittently acquires a plurality of time phases
- a reconstruction unit that reconstructs a tomographic image at each position in the body axis direction based on the projection data acquired by the data acquisition unit, and a scan from the next
- a correction unit that calculates a time difference between the tomographic images, and calculates a time difference between the tomographic images in the body axis direction range determined according to the calculated length of the time between the scans.
- Correction by the correction unit A display unit for displaying an image generated based on the tomogram, an image generated based
- the second invention collects the electrocardiogram information of the subject from the electrocardiograph, executes a scan synchronized with the collected electrocardiogram information, and reconstructs the projection data obtained by the scan.
- An image correction method in an X-ray CT apparatus for obtaining a tomographic image of an examiner, which is projected by irradiating X-rays at a predetermined timing to scan projection data of a specific phase of the heart at each body axis direction position
- Data acquisition step for intermittent acquisition at multiple time phases, reconstruction step for reconstructing tomographic images at each body axis position based on the acquired projection data, and scan from one scan to the next scan
- a correction step for calculating a time interval, correcting a density difference between the tomographic images for a tomographic image in a range in the body axis direction determined according to the calculated length of the time between scans, and a corrected tomographic image Generated based on
- the X-ray CT apparatus and the image correction method of the present invention it is possible to correct density unevenness due to temporal discontinuity between slices in contrast imaging using the Prospective-Triggering method, and an MPR image or target without a sense of incongruity Image processing such as part extraction processing can be easily performed.
- Configuration diagram of X-ray CT system 1 Configuration diagram of image processing device 4 Flow chart showing operation procedure of X-ray CT apparatus 1
- Conceptual diagram explaining the relationship between ECG waveform, delay time and X-ray irradiation timing in Prospective Triggering Scan Conceptual diagram explaining the relationship between X-ray shape and table travel
- Conceptual diagram explaining the boundary position between scans and density unevenness Conceptual diagram explaining how to find the time between scans
- Example of correction range when the time between scans is short
- Example of correction range when the time between scans is long
- the figure explaining how to determine the correction range Another example of density line used for correction Diagram showing the contribution ratio of overlap data when the time between scans is short
- Diagram showing the contribution ratio of overlap data when the time between scans is long
- Display example showing correction range and correction level Another display example showing the correction range and degree of correction
- the X-ray CT apparatus 1 includes a gantry 100, an X-ray controller 201 that controls X-ray irradiation, a gantry controller 202 that controls the operation of the gantry 100, and a table controller 203 that controls the operation of the table 109.
- the data acquisition device (DAS; Data Acquisition System) 204 that converts the intensity of the X-rays incident on the X-ray detector 105 into an electrical signal and collects it, and acquires the electrical signal converted by the DAS 204 and corrects the acquired data
- the reconstruction calculator 3 for performing image reconstruction, the electrocardiograph 5 for collecting electrocardiogram information of the subject 6, the electrocardiogram information measured by the electrocardiograph 5, and the X-ray controller 201
- An image processing device 4 that controls the gantry controller 202, the table controller 203, and the DAS 204 to execute a scan by the gantry 100 and acquire a tomographic image reconstructed by the reconstruction computing unit 3. .
- an X-ray source 101 and an X-ray detector 105 are disposed to face each other via a table 109 on which the subject 6 is placed.
- the X-ray source 101 is controlled by the X-ray controller 201 to emit X-rays having a predetermined intensity.
- the X-ray detector 105 detects X-rays irradiated from the X-ray source 101 and transmitted through the subject 6, and generates an electrical signal according to the intensity of the detected transmitted X-rays.
- the X-ray source 101 and the X-ray detector 105 rotate around the rotation center according to a control signal input from the gantry controller 202.
- the operations of the X-ray source 101 and the gantry 100 are controlled by an X-ray controller 201 and a gantry controller 202.
- the X-ray controller 201 supplies a power signal and an X-ray generation timing signal to the X-ray source 101.
- the gantry controller 202 controls the rotational speed and position of the gantry 100.
- the table 109 is controlled by the table controller 203.
- the table controller 203 controls the moving speed and position of the table 109.
- the transmitted X-ray incident on the X-ray detector 105 is converted into a digital signal by the DAS 204 and sent to the image processing apparatus 4 as digital data.
- the reconstruction calculator 3 When the reconstruction calculator 3 acquires digital data from the image processing device 4, it performs data correction processing such as sensitivity correction, logarithmic conversion, and offset correction to generate projection data, and executes image reconstruction processing using the projection data To do.
- the image data (tomographic image) reconstructed by the image reconstruction process is input to the image processing device 4, stored in the data recording device 403 (FIG. 2), and displayed on the image display device 405.
- FIG. 2 is a configuration diagram of the image processing apparatus 4.
- the image processing apparatus 4 mainly includes a central processing unit (CPU 401) that controls the operation of each of the above-described components, a main memory 402 that stores a control program for the image processing apparatus 4, and a data recording device 403 that stores image data.
- a display memory 404 that temporarily stores the image data of the subject 6, an image display device 405 that performs display based on the image data temporarily stored in the display memory 404, and a soft switch on the image display device 405.
- a pointing device 407 such as a mouse and a touch panel and a controller 408, an external input device 406 such as a keyboard having keys and switches for setting various parameters, and the image processing device 4 in a local area network, telephone line, Internet, etc.
- the data recording device 403 may be a storage device such as a magnetic disk, or a device that writes data to or reads data from a removable external medium.
- the image processing apparatus 4 may be connected to an external image database 412 via the network adapter 409 and the network 411, and may transmit / receive image data to / from the image database 412.
- the electrocardiograph 5 measures electrocardiographic information representing the time change of the action potential reflecting the heartbeat movement of the heart via an electrode attached to the subject 6, for example, a predetermined sampling such as an interval of 0.1 second. Convert to digital signal with pitch.
- the electrocardiogram information obtained by the electrocardiograph 5 is sequentially sent to the image processing device 4.
- the X-ray CT apparatus 1 performs electrocardiogram synchronous imaging according to the procedure shown in the flowchart of FIG. That is, the CPU 401 of the image processing apparatus 4 reads out the program and data related to the electrocardiogram synchronous imaging process shown in FIG. 3 from the main memory 402, and executes processing based on this program and data.
- the image processing apparatus 4 collects projection data of the stationary phase of the heart and reconstructs an image using the collected projection data (step S1).
- the X-ray CT apparatus 1 sets the phase to be scanned with respect to the heart rate information of the subject 6 in advance as an arbitrary reference phase, for example, the delay time setting from the R wave before imaging. Accept.
- the image processing apparatus 4 monitors the electrocardiogram information of the subject 6, and controls to irradiate X-rays after the delay time after detecting the R wave as shown in FIG.
- the X-ray CT apparatus 1 scans by irradiating the body axis direction position Z1 with X-rays after the above-described delay time after detecting the R wave. Thereafter, the table 109 is moved to the next body axis direction position Z2, and when an R wave is detected, X-rays are irradiated again after a delay time and scanning is performed.
- the shape of the X-ray is a cone shape, in order to maintain the continuity in the body axis direction of the reconstructed image,
- the amount of table movement between scans with different data collection times can be made shorter than the X-ray irradiation width at the rotation center of the gantry 100, and an overlap section can be provided in the X-ray irradiation area between each scan.
- the reconstruction calculator 3 reconstructs an image based on the projection data obtained as described above. Through the above processing, a tomographic image of a specific phase of electrocardiogram information (after a predetermined delay time has elapsed after detection of an R wave) is intermittently obtained over a plurality of time phases (data collection times).
- an unnatural density difference may occur in the body axis direction as shown in an image 70 shown in FIG. This is because one MPR image 70 is created using projection data at different heartbeats, that is, at different data collection times. Because there is a time difference in each heartbeat, the contrast agent concentration also changes, and the boundary slices 71, 72, 73, 74 between scans in different time phases (data collection times) increase the density difference and cause uneven density. Become.
- correction processing is performed in the procedure of steps S2 to S4.
- the image processing apparatus 4 calculates a data collection time and an inter-scan time for each scan (step S2).
- the data collection time is the projection data collection time for each scan. Further, the image processing apparatus 4 obtains a time (inter-scan time) between a certain scan (k-th) and the next scan (k + 1).
- the CPU of the image processing apparatus 4 first obtains the time from the data collection time of the first scan (scan start time) to the data collection time of each scan.
- projection data is collected by temporally correlating each view (View) of the projection data with electrocardiogram information.
- a view range (first hatched portion in FIG. 7) irradiated with X-rays first.
- the time required from the first scan to each scan is obtained by converting the obtained number of views into time.
- the time required from the first scan to each scan is the rotation time per scanner rotation (ST [ms / rot]) and the number of view captures per scanner rotation at that rotation time (view rate: VR [view / rot]) and the number of views (N [view]) between scans obtained earlier can be obtained using the following equation (1).
- the reference position for obtaining the time from the first scan to each scan is set from the center to the center of the view range irradiated with the X-rays.
- the reference position is not limited to this. It may be the start position or end position of the view range.
- the inter-scan time is obtained by subtracting the time IT from the first scan of each scan obtained as described above.
- the time between scans may be expressed not as time but as the number of R waves.
- the image processing device 4 calculates a body axis direction range (hereinafter referred to as a correction range) of a tomographic image to be subjected to image correction (step S3).
- the image processing apparatus 4 determines an appropriate correction range according to the interscan time obtained in step S2.
- inter-scan boundary positions 80 and 90 shown in FIGS. 8 and 9 correspond to any of the boundary slices 71, 72, 73, and 74 shown in FIG.
- the image processing device 4 shows the difference in contrast density at the position in the body axis direction, as shown in FIG. 10 (A), from the pixel values of the corresponding pixels of the original tomographic image group obtained in step S1.
- a concentration curve C1 is obtained. Note that in FIG. 10A, the concentration curve is stepped for easy understanding, but it is not necessarily stepped.
- the image processing apparatus 4 obtains a density difference 81 at the inter-scan boundary position 80 and calculates its median value (density midpoint 82).
- the image processing apparatus 4 calculates a certain density line 83 passing through the density midpoint 82.
- the image processing apparatus 4 decreases the slope of the density line 83 when the time between scans is long, and increases the slope of the density line 83 when the time between scans is short.
- the image processing apparatus 4 calculates two intersection points 84 and 85 of the density line 83 and the density curve C1 as shown in FIG. 10 (D), and two intersection points as shown in FIG. 10 (E).
- a correction range 86 is determined between 84 and 85.
- the correction range is wide, and when the interscan time is short and the contrast density difference 81 is small, the correction range is narrow.
- concentration line 83 is not limited to a straight line as shown in FIGS. 8 to 10, and may be a curve as shown in FIG. In addition, the shape of the concentration line 83 is not limited to this.
- projection data at the data collection time t1 and projection data at the data collection time t2 are collected.
- an image is generated by using 50% of the projection data at the data collection time t1 and the projection data at the data collection time t2. Further, as the distance from the inter-scan boundary position 80 increases, an image is generated such that the contribution rate of projection data that is distant in time (the ratio of using projection data) gradually decreases.
- the concentration change of the contrast agent is relatively small. Therefore, a smooth density change can be obtained without much correction.
- the time between scans is shorter than this, as shown in FIG. 12, the contribution ratio of projection data far in time is reduced at a position away from the inter-scan boundary position 80.
- the time between scans is long, the density difference cannot be suppressed unless correction is performed even at a position away from the boundary slice. Therefore, as shown in FIG. 13, the contribution ratio of the projection data far in time is increased even at a position away from the boundary slice.
- the image processing device 4 corrects the image of the boundary portion between the scans in the correction range obtained in step S3 (step S4).
- the correction process may be executed only for the contrasted portion of each tomographic image. As a result, it becomes possible to perform correction processing at high speed for the portion of interest.
- the image processing device 4 displays the correction range obtained in step S3 on the image display device 405 together with the corrected image 95 (step S5).
- the start position and end position of the correction range obtained in step S3 are displayed on the corrected image 95 with lines L1 and L2.
- the weighting factor used for correction so as to correspond to the image position on or near the corrected image 95 (the inclination angle of the density line or the contribution ratio in the overlap section)
- a correction bar 97 indicating the density and color corresponding to is displayed.
- the display method is not limited to the above, and the index indicating the correction range and the degree of correction, such as the correction range, the inclination angle of the density line, the contribution ratio in the overlap section, and the like, using a mark, a graph, a chart, a color display, etc. Can be displayed. Further, only the corrected image 95 may be displayed on the image display device 405 without displaying the correction range, or the corrected image 95 and the image before correction are displayed side by side on the image display device 405. Also good.
- the X-ray is irradiated and scanned after a predetermined time after detecting the R wave of the electrocardiogram information, so that each body axis direction position of the heart is detected.
- Projection data of a specific phase of the heart is intermittently acquired at a plurality of time phases, and a tomogram at each body axis direction position is reconstructed based on the acquired projection data (Prospective Triggering Scan).
- the time between scans from one scan to the next scan is calculated based on the electrocardiogram information, and the tomographic image in the range of the body axis direction determined according to the calculated length of the scan time is between each tomographic image. Correct the resulting density difference.
- an image generated based on the corrected tomographic image is displayed, and the corrected body axis direction range is displayed.
- the density change can be made uniform by narrowing the correction range when the time between scans is short and widening the correction range when the time between scans is long.
- an image may be generated using each projection data having a different contribution rate and different data collection time.
- correction processing can be performed at high speed particularly for a site of interest.
- 1 X-ray CT device 100 gantry, 101 X-ray source, 105 X-ray detector, 109 table, 201 X-ray controller, 202 gantry controller, 203 table controller, 204 DAS, 3 reconstruction calculator, 4 images
- Treatment device 5 electrocardiographs, 6 subjects, C1 concentration curve, 80, 90 boundary position between scans, 81 concentration difference, 82 concentration midpoint, 83 concentration line, 84, 85 intersection, 95 corrected image, 96 , 97 Correction indicator
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- High Energy & Nuclear Physics (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Pulmonology (AREA)
- Cardiology (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physiology (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
したがってProspective Triggering法で冠動脈造影撮影を行うと、時間的に連続しない部分で造影剤の濃度が大きく変わり、MPR(Multi Plannar Reconstruction)画像を作成すると違和感のある画像となる。また、画像処理により冠動脈を抽出しようとしても、この造影濃度の急激な変化により正しく抽出できない場合がある。
[実施形態]
まず、図1を参照して、X線CT装置1の構成について説明する。
X線CT装置1は、ガントリ100と、X線の照射を制御するX線制御器201と、ガントリ100の動作を制御するガントリ制御器202と、テーブル109の動作を制御するテーブル制御器203と、X線検出器105に入射したX線の強度を電気信号に変換し、収集するデータ収集装置(DAS;Data Acquisition System)204と、DAS204で変換した電気信号を取得し、取得したデータの補正及び画像再構成を行う再構成演算器3と、被検者6の心電情報を収集する心電計5と、心電計5で計測した心電情報を取得するとともに、X線制御器201、ガントリ制御器202、テーブル制御器203、及びDAS204を制御してガントリ100によるスキャンを実行し、また再構成演算器3にて再構成された断層像を取得する画像処理装置4と、を備える。
画像処理装置4は主として、上述の各構成要素の動作を制御する中央処理装置(CPU401)と、画像処理装置4の制御プログラムが格納された主メモリ402と、画像データを格納するデータ記録装置403と、被検者6の画像データを一時記憶する表示メモリ404と、この表示メモリ404に一時記憶された画像データに基づく表示を行う画像表示装置405と、画像表示装置405上のソフトスイッチを操作するためのマウス、タッチパネル等のポインティングデバイス407及びコントローラ408と、各種パラメータ設定用のキーやスイッチを備えたキーボード等の外部入力装置406と、画像処理装置4をローカルエリアネットワーク、電話回線、インターネット等のネットワークに接続するためのネットワークアダプタ409と、上記各構成要素を接続するデータバス410とから構成される。データ記録装置403は、磁気ディスク等の記憶装置や、取り出し可能な外部メディアに対してデータの書き込みや読み出しを行う装置でもよい。画像処理装置4はネットワークアダプタ409及びネットワーク411を介して外部の画像データベース412と接続し、画像データベース412との間で画像データを送受信するようにしてもよい。
ステップS2で算出したスキャン間時間が短い場合、図8(A)に示すように、造影剤の濃度変化が比較的小さくなることが予想される。この場合、図8(B)に示すように、スキャン間境界位置80を中心として補正範囲を狭くとることで、造影剤の量が体軸方向に沿って滑らかに変化しているように見えるように画像補正する。
これにより着目される部分について高速に補正処理を行うことが可能となる。
Claims (12)
- 被検者の心電情報を心電計から収集するとともに、収集した心電情報に同期したスキャンを実行し、スキャンで得た投影データを再構成することにより被検者の断層像を得るX線CT装置において、
所定のタイミングでX線を照射してスキャンすることにより、心臓の各体軸方向位置で心臓の特定の位相の投影データを複数の時相で断続的に取得するデータ収集部と、
前記データ収集部により取得した投影データに基づいて各体軸方向位置での断層像を再構成する再構成部と、
あるスキャンから次のスキャンまでのスキャン間時間を算出し、算出した前記スキャン間時間の長さに応じて決定される体軸方向範囲の断層像について各断層像間で生じた濃度差を補正する補正部と、
前記補正部により補正された断層像を基に生成される画像を表示する表示部と、
を備えることを特徴とするX線CT装置。 - 前記表示部は、前記補正部により補正された体軸方向範囲を生成された画像とともに表示することを特徴とする請求項1に記載のX線CT装置。
- 前記補正部は、補正対象とする断層像の体軸方向範囲を、前記スキャン間時間が短い場合は狭くし、前記スキャン間時間が長い場合は広くすることを特徴とする請求項1に記載のX線CT装置。
- 前記データ収集部が、あるデータ収集時刻におけるスキャンのX線照射領域と次のデータ収集時刻におけるスキャンのX線照射領域とにオーバーラップ区間を設けてスキャンする場合において、
前記補正部は、前記スキャン間時間の長さに応じて決定される寄与率とデータ収集時刻の異なる各投影データとを用いて画像を生成することにより各断層像間で生じた濃度差を補正することを特徴とする請求項1に記載のX線CT装置。 - 前記補正部は、前記スキャン間時間が短い場合は前記寄与率を小さくし、前記スキャン間時間が長い場合は前記寄与率を大きくすることを特徴とする請求項4に記載のX線CT装置。
- 前記補正部は、前記断層像の造影された部分のみを補正対象とすることを特徴とする請求項1に記載のX線CT装置。
- 被検者の心電情報を心電計から収集するとともに、収集した心電情報に同期したスキャンを実行し、スキャンで得た投影データを再構成することにより被検者の断層像を得るX線CT装置における画像補正方法であって、
所定のタイミングでX線を照射してスキャンすることにより、心臓の各体軸方向位置で心臓の特定の位相の投影データを複数の時相で断続的に取得するデータ収集ステップと、 取得した投影データに基づいて各体軸方向位置での断層像を再構成する再構成ステップと、
あるスキャンから次のスキャンまでのスキャン間時間を算出し、算出した前記スキャン間時間の長さに応じて決定される体軸方向範囲の断層像について各断層像間で生じた濃度差を補正する補正ステップと、
補正された断層像を基に生成される画像を表示する表示ステップと、
を含むことを特徴とする画像補正方法。 - 前記表示ステップは、前記補正ステップにより補正された体軸方向範囲を生成された画像とともに表示することを特徴とする請求項7に記載の画像補正方法。
- 前記補正ステップは、補正対象とする断層像の体軸方向範囲を、前記スキャン間時間が短い場合は狭くし、前記スキャン間時間が長い場合は広くすることを特徴とする請求項7に記載の画像補正方法。
- 前記データ収集ステップが、あるデータ収集時刻におけるスキャンのX線照射領域と次のデータ収集時刻におけるスキャンのX線照射領域とにオーバーラップ区間を設けてスキャンする場合において、
前記補正ステップは、前記スキャン間時間の長さに応じて決定される寄与率とデータ収集時刻の異なる各投影データとを用いて画像を生成することにより各断層像間で生じた濃度差を補正することを特徴とする請求項7に記載の画像補正方法。 - 前記補正ステップは、前記スキャン間時間が短い場合は前記寄与率を小さくし、前記スキャン間時間が長い場合は前記寄与率を大きくすることを特徴とする請求項10に記載の画像補正方法。
- 前記補正ステップは、前記断層像の造影された部分のみを補正対象とすることを特徴とする請求項7に記載の画像補正方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280039786.7A CN103764034B (zh) | 2011-09-27 | 2012-09-24 | X射线ct装置及图像补正方法 |
JP2013536265A JP6104166B2 (ja) | 2011-09-27 | 2012-09-24 | X線ct装置及び画像補正方法 |
US14/239,867 US9129389B2 (en) | 2011-09-27 | 2012-09-24 | X-ray CT apparatus and image correction method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-210120 | 2011-09-27 | ||
JP2011210120 | 2011-09-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013047439A1 true WO2013047439A1 (ja) | 2013-04-04 |
Family
ID=47995471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/074397 WO2013047439A1 (ja) | 2011-09-27 | 2012-09-24 | X線ct装置及び画像補正方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9129389B2 (ja) |
JP (1) | JP6104166B2 (ja) |
CN (1) | CN103764034B (ja) |
WO (1) | WO2013047439A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107087393A (zh) * | 2014-10-21 | 2017-08-22 | 通用电气公司 | 用于将多个采集的对比度归一化的方法和系统 |
EP3104782A4 (en) * | 2014-02-12 | 2017-12-27 | Samsung Electronics Co., Ltd. | Tomography apparatus and method of displaying a tomography image by the tomography apparatus |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7051307B2 (ja) * | 2016-05-09 | 2022-04-11 | キヤノンメディカルシステムズ株式会社 | 医用画像診断装置 |
DE202019003376U1 (de) | 2019-03-21 | 2019-09-13 | Ziehm Imaging Gmbh | Röntgensystem zur iterativen Bestimmung einer optimalen Koordinatentransformation zwischen überlappenden Volumina, die aus Volumendatensätzen von diskret abgetasteten Objektbereichen rekonstruiert wurden |
CN117115577B (zh) * | 2023-10-23 | 2023-12-26 | 南京安科医疗科技有限公司 | 一种心脏ct投影域最优相位识别方法、设备及介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004057506A (ja) * | 2002-07-29 | 2004-02-26 | Toshiba Corp | ディジタル画像処理装置及びx線診断装置 |
JP2006021022A (ja) * | 2004-06-11 | 2006-01-26 | Toshiba Corp | X線ct装置および心筋パーフュージョン像生成システム |
JP2006326078A (ja) * | 2005-05-27 | 2006-12-07 | Hitachi Medical Corp | 血流動態解析装置、x線ct装置、mri装置、及び血流動態解析プログラム |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU5653599A (en) * | 1998-09-18 | 2000-04-10 | Mitsubishi Plastics Inc. | Image processing device and method, and recording medium |
DE19957083B4 (de) * | 1999-11-28 | 2004-11-18 | Siemens Ag | Verfahren zur Untersuchung eines eine periodische Bewegung ausführenden Körperbereichs |
DE60212917T2 (de) * | 2001-10-16 | 2007-03-01 | Kabushiki Kaisha Toshiba | Vorrichtung zur Berechnung eines Index von örtlichen Blutflüssen |
JP2003210456A (ja) * | 2002-01-21 | 2003-07-29 | Toshiba Corp | 時系列画像の処理装置 |
JP4025677B2 (ja) * | 2003-04-04 | 2007-12-26 | 株式会社日立メディコ | X線ct装置 |
AR047692A1 (es) * | 2003-07-10 | 2006-02-08 | Epix Medical Inc | Imagenes de blancos estacionarios |
CN100462050C (zh) * | 2004-06-11 | 2009-02-18 | 株式会社东芝 | X射线ct装置和心肌灌注图像产生系统 |
US7352840B1 (en) * | 2004-06-21 | 2008-04-01 | Radiation Monitoring Devices, Inc. | Micro CT scanners incorporating internal gain charge-coupled devices |
WO2006077869A1 (ja) * | 2005-01-18 | 2006-07-27 | Hitachi Medical Corporation | X線ct装置 |
DE102005052368B4 (de) * | 2005-10-31 | 2015-07-30 | Bayer Pharma Aktiengesellschaft | Röntgensystem zur Erstellung diagnostischer Röntgendarstellungen unter Applikation von Kontrastmitteln |
WO2007138979A1 (ja) * | 2006-05-25 | 2007-12-06 | Hitachi Medical Corporation | X線ct装置 |
JP5019930B2 (ja) * | 2007-04-05 | 2012-09-05 | 富士フイルム株式会社 | 放射線断層画像取得装置 |
JP4966120B2 (ja) * | 2007-07-18 | 2012-07-04 | 株式会社東芝 | X線アンギオ撮影装置 |
DE102009043633A1 (de) * | 2009-09-29 | 2011-03-31 | Siemens Aktiengesellschaft | Verbesserte Abtastung eines zyklisch bewegten Untersuchungsobjektes unter Einsatz eines Kontrastmittels im Rahmen einer Voruntersuchung mittels eines CT-Gerätes |
JP5631698B2 (ja) * | 2009-12-07 | 2014-11-26 | 株式会社東芝 | 医用画像処理装置及び医用画像処理方法 |
US9119590B2 (en) * | 2010-02-18 | 2015-09-01 | Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center | Method for thoracic vertebral bone density measurement by thoracic quantitative computed tomography |
US8718747B2 (en) * | 2010-04-16 | 2014-05-06 | Oslo Universitetssykehus Hf | Estimating and correcting for contrast agent extravasation in tissue perfusion imaging |
US8768031B2 (en) * | 2010-10-01 | 2014-07-01 | Mistretta Medical, Llc | Time resolved digital subtraction angiography perfusion measurement method, apparatus and system |
-
2012
- 2012-09-24 CN CN201280039786.7A patent/CN103764034B/zh not_active Expired - Fee Related
- 2012-09-24 WO PCT/JP2012/074397 patent/WO2013047439A1/ja active Application Filing
- 2012-09-24 JP JP2013536265A patent/JP6104166B2/ja active Active
- 2012-09-24 US US14/239,867 patent/US9129389B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004057506A (ja) * | 2002-07-29 | 2004-02-26 | Toshiba Corp | ディジタル画像処理装置及びx線診断装置 |
JP2006021022A (ja) * | 2004-06-11 | 2006-01-26 | Toshiba Corp | X線ct装置および心筋パーフュージョン像生成システム |
JP2006326078A (ja) * | 2005-05-27 | 2006-12-07 | Hitachi Medical Corp | 血流動態解析装置、x線ct装置、mri装置、及び血流動態解析プログラム |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3104782A4 (en) * | 2014-02-12 | 2017-12-27 | Samsung Electronics Co., Ltd. | Tomography apparatus and method of displaying a tomography image by the tomography apparatus |
CN107087393A (zh) * | 2014-10-21 | 2017-08-22 | 通用电气公司 | 用于将多个采集的对比度归一化的方法和系统 |
JP2017537674A (ja) * | 2014-10-21 | 2017-12-21 | ゼネラル・エレクトリック・カンパニイ | 複数回の取得にわたってコントラストを正規化するための方法およびシステム |
Also Published As
Publication number | Publication date |
---|---|
US20140212016A1 (en) | 2014-07-31 |
CN103764034B (zh) | 2016-03-02 |
US9129389B2 (en) | 2015-09-08 |
JP6104166B2 (ja) | 2017-03-29 |
CN103764034A (zh) | 2014-04-30 |
JPWO2013047439A1 (ja) | 2015-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7684537B2 (en) | X-ray CT apparatus | |
JP6618900B2 (ja) | X線ct装置及び画像再構成方法 | |
JP5643218B2 (ja) | X線ct装置及びx線ct装置による画像表示方法 | |
US9542762B2 (en) | X-ray CT apparatus and image reconstruction method | |
JP2004275440A (ja) | X線コンピュータ断層撮影装置 | |
JP2009028065A (ja) | X線ct装置 | |
EP2224851B1 (en) | Correction for un-voluntary respiratory motion in cardiac ct | |
US7831011B2 (en) | Computed tomography method and system | |
JP6509131B2 (ja) | X線ct装置、画像処理装置、及び画像再構成方法 | |
JP6104166B2 (ja) | X線ct装置及び画像補正方法 | |
US11160523B2 (en) | Systems and methods for cardiac imaging | |
JP2004121840A (ja) | 周期的に運動する器官のct画像形成方法およびこの方法を実施するためのct装置 | |
US20140105477A1 (en) | Low dose cardiac ct imaging with time-adaptive filtration | |
CN102028493B (zh) | 在使用造影剂的条件下对周期性运动检查对象的改善扫描 | |
US12070348B2 (en) | Methods and systems for computed tomography | |
JP2003204961A (ja) | X線ct装置 | |
CN104755030A (zh) | 借助动态准直进行剂量减小的ct拍摄 | |
US9737279B2 (en) | X-ray CT apparatus | |
WO2004071301A1 (ja) | X線ct装置 | |
JP4007928B2 (ja) | X線ct装置 | |
US20060120586A1 (en) | Method and system for extracting information about the cardiac cycle from CT projection data | |
WO2014188936A1 (ja) | X線ct装置及び撮影方法 | |
JP5931642B2 (ja) | X線ct装置 | |
US7023958B2 (en) | Radiation image-acquiring apparatus, and radiation image-acquiring method | |
JP5203750B2 (ja) | 心電同期スキャン方法及びx線コンピュータ断層撮影装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12835719 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013536265 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14239867 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12835719 Country of ref document: EP Kind code of ref document: A1 |