Nothing Special   »   [go: up one dir, main page]

WO2012137289A1 - 蓄電モジュール - Google Patents

蓄電モジュール Download PDF

Info

Publication number
WO2012137289A1
WO2012137289A1 PCT/JP2011/058540 JP2011058540W WO2012137289A1 WO 2012137289 A1 WO2012137289 A1 WO 2012137289A1 JP 2011058540 W JP2011058540 W JP 2011058540W WO 2012137289 A1 WO2012137289 A1 WO 2012137289A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage module
power storage
positive
land
bus bar
Prior art date
Application number
PCT/JP2011/058540
Other languages
English (en)
French (fr)
Inventor
菅 厚夫
Original Assignee
日立ビークルエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ビークルエナジー株式会社 filed Critical 日立ビークルエナジー株式会社
Priority to PCT/JP2011/058540 priority Critical patent/WO2012137289A1/ja
Priority to US14/009,454 priority patent/US8962168B2/en
Priority to JP2013508651A priority patent/JP5646046B2/ja
Publication of WO2012137289A1 publication Critical patent/WO2012137289A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/519Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage module, and more particularly, to a power storage module having a battery cell temperature detector.
  • Secondary battery cells such as lithium ion secondary battery cells, nickel hydride secondary battery cells, and nickel cadmium secondary battery cells have been rapidly spreading in recent years as power sources for hybrid vehicles and electric vehicles.
  • a secondary battery cell used as a power source for an automobile is usually a power storage module in which a plurality of secondary battery cells are connected in series with a bus bar.
  • the secondary battery cell is likely to deteriorate in performance related to the battery life, such as capacity reduction under a high temperature environment. On the contrary, the output of the battery is likely to decrease in a low temperature environment.
  • the secondary battery cell it is necessary to manage the secondary battery cell at an appropriate temperature.
  • the surface temperature of the battery container of the secondary battery cell is usually detected by a temperature sensor. ing.
  • a temperature sensor is fastened to a bus bar that connects a positive electrode external terminal and a negative electrode external terminal of an adjacent secondary battery, and a pair of lead terminals of the temperature sensor is provided on a circuit board.
  • a structure for soldering to a circuit pattern is known.
  • the member for attaching the temperature sensor and the circuit pattern for soldering the lead terminals of the temperature sensor are different members.
  • the bus bar and the circuit board are not located on the same plane and are arranged with a step. For this reason, since it is necessary to bend the lead terminal of a temperature sensor, there exists a subject that an assemblability is bad and the storage and conveyance in the state made into the subassembly take time.
  • the power storage module according to the first aspect of the present invention includes an electrode group having positive and negative electrodes and positive and negative current collectors connected to the positive and negative electrodes housed in a battery container.
  • the positive and negative external terminals connected to the negative current collector plate are exposed to the outside of the battery container, and the temperature detection is connected to the positive or negative external terminal of the battery cell.
  • a circuit board having wiring and a temperature detector that is thermally coupled to the wiring and detects the temperature of the battery cell are provided.
  • the power storage module according to the second aspect of the present invention is preferably the power storage module according to claim 1, wherein the wiring has a land, and the temperature detector is thermally coupled to the land.
  • a power storage module according to a fourth aspect of the present invention is the power storage module according to any one of claims 2 to 3, further comprising a bus bar that connects external terminals of opposite polarities of adjacent battery cells, and the circuit board is -It can be set as the aspect which has a through-hole which penetrates the external terminal of a negative electrode, and the land is provided around the through-hole.
  • the power storage module according to the fifth aspect of the present invention is the power storage module according to claim 2 or 3, further comprising a bus bar for connecting external terminals of opposite polarities of adjacent battery cells, and the circuit board is a bus bar. It is possible to adopt a mode in which a through hole is provided through the protrusion formed in the, and the land is provided around the through hole.
  • the power storage module according to a sixth aspect of the present invention is the power storage module according to claim 5, wherein the bus bar has a welded region welded to the positive and negative external terminals, and each welded region has a plurality of welded portions.
  • the bus bar may have a slit provided between the welding parts.
  • the power storage module according to the seventh aspect of the present invention may be a power storage module according to claim 5 or 6, wherein the bus bar protrusion and the land are soldered.
  • the power storage module according to an eighth aspect of the present invention is the power storage module according to any one of claims 2 to 6, wherein the temperature detector is disposed on the land via a heat conductive resin, It is desirable that the portion where the temperature detector is disposed is formed narrower than the portion connected to the external terminal.
  • An electricity storage module according to a ninth aspect of the present invention is the electricity storage module according to any one of claims 1 to 8, wherein the wiring and the temperature detector are thermally coupled via a heat conductive resin. desirable.
  • the temperature detector is provided on the circuit board voltage detection wiring, the assemblability is improved.
  • FIG. 1 is an external perspective view of a power storage module according to an embodiment of the present invention.
  • the whole side view which looked at the electrical storage module illustrated by FIG. 2 from the side surface.
  • FIG. 4 is an enlarged sectional view taken along line IV-IV of the power storage module illustrated in FIG. 2.
  • the top view as one Embodiment of the circuit board for voltage detection with which the electrical storage module of this invention was equipped.
  • FIG. 3 is a plan view of the power storage module illustrated in FIG. 2.
  • the front view of the battery cell which comprises the electrical storage module as Embodiment 2 of this invention.
  • the whole side view which shows Embodiment 2 of the electrical storage module of this invention.
  • FIG. 14 is an enlarged sectional view taken along line IX-IX of the power storage module illustrated in FIG. 13.
  • FIG. 10 is a perspective view of a battery cell connection bus bar illustrated in FIG. 9. The perspective view of the bus bar for wiring connection.
  • FIG. 9 is a plan view of a circuit board for voltage detection illustrated in FIG. 8.
  • FIG. 9 is a plan view of the power storage module illustrated in FIG. 8.
  • the power storage module of the present invention is not intended to be limited, but can be applied, for example, as a power storage device for an in-vehicle power supply device of an electric vehicle, particularly an electric vehicle.
  • the electric vehicle includes a hybrid electric vehicle including an engine that is an internal combustion engine and an electric motor as a driving source of the vehicle, and a genuine electric vehicle using the electric motor as the only driving source of the vehicle.
  • a hybrid vehicle drive system to which the power storage module of the present invention is applied will be described.
  • FIG. 1 is a block circuit diagram of a hybrid vehicle drive system having a power storage module as one embodiment of the present invention.
  • a hybrid vehicle drive system shown in FIG. 1 includes a power storage module device 21, a battery control device 100 that monitors the power storage module device 21, an inverter device 220 that converts DC power from the power storage module device 21 into three-phase AC power, and a vehicle drive system.
  • the motor generator 7 is provided. The motor generator 7 is driven by the three-phase AC power from the inverter device 220.
  • the inverter device 220 and the battery control device 100 are connected by CAN communication, and the inverter device 220 functions as a host controller for the battery control device 100. Inverter device 220 operates based on command information from control device 10.
  • the inverter device 220 includes a power module 226, an MCU 222 that controls the inverter device, and a driver circuit 224 for driving the power module 226.
  • the power module 226 converts the DC power supplied from the power storage module device 21 into three-phase AC power for driving the motor generator 7 as a motor.
  • a large-capacity smoothing capacitor of about 700 ⁇ F to about 2000 ⁇ F is provided between the high voltage lines HV + and HV ⁇ connected to the power module 226.
  • the smoothing capacitor serves to reduce voltage noise applied to the integrated circuit provided in the battery control device 100.
  • the charge of the smoothing capacitor is substantially zero, and when the relay RL is closed, a large initial current flows into the smoothing capacitor.
  • the relay RL may be fused and damaged due to the large current.
  • the MCU 222 further charges the smoothing capacitor by changing the precharge relay RLp from the open state to the closed state at the start of driving of the motor generator 7 in accordance with a command from the control device 10, and thereafter
  • the power supply from the power storage module device 21 to the inverter device 220 is started by changing the RL from the open state to the closed state.
  • charging charging is performed while limiting the maximum current via the resistor Rp.
  • the inverter device 220 controls the phase of the AC power generated by the power module 226 with respect to the rotor of the motor generator 7 so that the motor generator 7 operates as a generator during vehicle braking. That is, regenerative braking control is performed, and the power generated by the generator operation is regenerated to the power storage module device 21 to charge the power storage module device 21.
  • the inverter device 220 operates using the motor generator 7 as a generator.
  • the three-phase AC power generated by the motor generator 7 is converted into DC power by the power module 226 and supplied to the power storage module device 21. As a result, the power storage module device 21 is charged.
  • the MCU 222 controls the driver circuit 224 so as to generate a rotating magnetic field in the forward direction with respect to the rotation of the rotor of the motor generator 7 in accordance with a command from the control device 10. Then, the switching operation of the power module 226 is controlled. In this case, DC power is supplied from the power storage module device 21 to the power module 226.
  • the MCU 222 controls the driver circuit 224 to generate a rotating magnetic field in a delay direction with respect to the rotation of the rotor of the motor generator 7, and the power The switching operation of the module 226 is controlled. In this case, electric power is supplied from the motor generator 7 to the power module 226, and DC power of the power module 226 is supplied to the power storage module device 21. As a result, the motor generator 7 acts as a generator.
  • the power module 226 of the inverter device 220 performs conduction and interruption operations at high speed and performs power conversion between DC power and AC power. At this time, since a large current is interrupted at a high speed, a large voltage fluctuation occurs due to the inductance of the DC circuit. In order to suppress this voltage fluctuation, the above-described large-capacity smoothing capacitor is provided.
  • the power storage module device 21 includes, for example, two power storage modules 20A and 20B connected in series here.
  • Each power storage module 20A, 20B includes a plurality of cell groups in which a plurality of battery cells are connected in series.
  • the power storage module 20A and the power storage module 20B are connected in series via a service disconnect SD-SW for maintenance / inspection in which a switch and a fuse are connected in series.
  • a service disconnect SD-SW By opening this service disconnect SD-SW, the series circuit of the electric circuit is cut off, and even if a connection circuit is formed at one place between the storage modules 20A and 20B and the vehicle, no current flows. .
  • high safety can be maintained. Even if an operator touches between HV + and HV ⁇ during inspection, it is safe because a high voltage is not applied to the human body.
  • a battery disconnect unit BDU including a relay RL, a resistor Rp, and a precharge relay RLp is provided on the high-voltage line HV + between the power storage module device 21 and the inverter device 220.
  • a series circuit of the resistor Rp and the precharge relay RLp is connected in parallel with the relay RL.
  • Battery control device 100 mainly measures the voltage of each battery cell, measures the total voltage, measures the current, adjusts the temperature of the battery cell, and the capacity of each battery cell. Therefore, a plurality of battery control ICs (integrated circuits) are provided as cell controllers.
  • the plurality of battery cells provided in each power storage module 20A, 20B are divided into a plurality of cell groups, and one cell controller IC that controls the battery cells included in each cell group is provided for each cell group. ing.
  • the power storage device 11 includes a battery control device 100 and a power storage module device 21. As will be described later, the battery control device 100 and the power storage module device 21 are connected by voltage detection wiring via a connector provided on the substrate of the battery control device 100.
  • the voltage detection wiring is used for detecting the voltage of each battery cell constituting the power storage module, and is used for discharging (balancing) each battery cell. In the present invention, the voltage detection wiring is used for further charging.
  • Each of the cell controllers IC1 to IC4 for controlling each cell group includes a communication system 602 and a 1-bit communication system 604.
  • serial communication is performed with the microcomputer 30 that controls the power storage module device 21 in a daisy chain manner via an insulating element (for example, photocoupler) PH.
  • the 1-bit communication system 604 transmits an abnormal signal when cell overcharge is detected.
  • the communication system 602 is divided into an upper communication path for the cell controllers IC1 and IC2 of the power storage module 20A and a lower communication path for the cell controllers IC3 and IC4 of the power storage module 20B. That is, the microcomputer 30 functions as a host controller of the cell controllers IC1 to IC4.
  • Each cell controller IC performs an abnormality diagnosis and transmits an abnormality signal from the transmission terminal when it determines that it is abnormal or when an abnormality signal is received from the host cell controller IC at the reception terminal.
  • an abnormal signal that has already been received at the receiving terminal disappears or when the abnormality determination of itself becomes normal, the abnormal signal transmitted from the transmitting terminal disappears.
  • This abnormal signal is a 1-bit signal in this embodiment.
  • the microcomputer 30 does not transmit an abnormal signal to the cell controller IC, but in order to diagnose that the 1-bit communication system 604 that is the transmission path of the abnormal signal operates correctly, a test signal that is a pseudo abnormal signal is transmitted to the 1-bit communication system 604.
  • a test signal that is a pseudo abnormal signal is transmitted to the 1-bit communication system 604.
  • the cell controller IC1 sends an abnormal signal to the communication system 604, and the abnormal signal is received by the cell controller IC2.
  • the abnormal signal is transmitted from the cell controller IC2 to the cell controllers IC3 and IC4 in order, and finally returned from the cell controller IC4 to the microcomputer 30.
  • the pseudo abnormal signal transmitted from the microcomputer 30 returns to the microcomputer 30 via the communication system 604.
  • the microcomputer 30 can send and receive the pseudo-abnormal signal to diagnose the communication system 604, and the reliability of the system is improved.
  • a current sensor Si such as a Hall element is installed in the battery disconnect unit BDU, and the output of the current sensor Si is input to the microcomputer 30.
  • a signal related to the total voltage of the power storage module device 21 and the temperature of each battery cell is also input to the microcomputer 30 and is measured by an AD converter (ADC) of the microcomputer 30.
  • the temperature sensors are provided at a plurality of locations in the power storage modules 20A and 20B.
  • the rotational speed or cooling of a cooling fan for cooling the power storage modules 20A and 20B Control the driver and pump speed to adjust the water supply.
  • each IC performs discharge for adjusting the capacity of the battery cell in response to a command from the microcomputer 30.
  • a resistor and a balancing switch are connected in series between the positive terminal and the negative terminal of each battery cell. Therefore, in order to discharge the battery cell, a discharge command is sent from the microcomputer 30 and the balancing switch is turned on. Thereby, a balancing current flows through the path of the positive electrode terminal, the resistor, the balancing switch, the resistor, and the negative electrode terminal of the battery cell.
  • a communication command from the microcomputer 30 is input to the communication system 602 via the photocoupler PH, and is received at the reception terminal of the IC 1 via the communication system 602.
  • Data and commands corresponding to the communication commands are transmitted from the transmission terminal of the IC1.
  • the communication command received at the reception terminal of IC2 is transmitted from the transmission terminal.
  • reception and transmission are performed in order, and the transmission signal is transmitted from the transmission terminal of the IC 3 and received by the reception terminal of the microcomputer 30 via the photocoupler PH.
  • the IC1 to IC4 transmit measurement data such as cell voltage to the microcomputer 30 and perform a balancing operation according to the received communication command. Further, each of IC1 to IC4 detects cell overcharge based on the measured cell voltage. The detection result (abnormal signal) is transmitted to the microcomputer 30 via the signal system 604.
  • the power storage module device 21 is connected to the battery control device 100 by the voltage detection wiring 301 via the connector 401. Signals relating to the total voltage of the power storage module device 21 and the temperature of each battery cell are input to the microcomputer 30.
  • the power storage module device 21 is connected to the current sensor Si, and the output of the current sensor Si is input to the microcomputer 30.
  • the motor generator 7 operates as a generator, the electric power generated by the motor generator 7 charges each battery cell of the power storage module device 21 by regenerative control.
  • the battery cell in the electrical storage module apparatus 21 is overcharged, it discharges via a balancing switch (not shown).
  • the power storage module device 21 is configured by connecting two power storage modules 20A and 20B with a service disconnect SD-SW. Each battery cell of each power storage module 20A, 20B is connected to each voltage detection wiring 301 formed on the circuit board 350 as shown by a two-dot chain line in FIG.
  • the circuit board 350 is provided with a connector 401, and each voltage detection wiring 301 is connected to the battery control device 100 via the connector 401.
  • the structure of the power storage modules 20A and 20B will be described. However, since the power storage modules 20A and 20B basically have the same function and structure, they will be described as the power storage module 20 as a representative.
  • FIG. 2 is an external perspective view of a power storage module as an embodiment of the present invention
  • FIG. 3 is an overall side view of the power storage module illustrated in FIG. 2 as viewed from the side.
  • the power storage module 20 includes eight battery cells 320.
  • Each battery cell 320 is a square lithium ion secondary battery, for example, and has a flat rectangular parallelepiped shape as a whole.
  • the battery cell 320 includes a battery container 321, and a positive external terminal 331 and a negative external terminal 341 that protrude outside the battery container 321.
  • the battery cell 320 is arranged in such a manner that the positive electrode external terminal 331 and the negative electrode external terminal 341 are alternately opposite to each other, in other words, the external terminals having opposite polarities are opposed to each other and the wide surfaces are in close contact with each other. Yes.
  • Adjacent positive and negative external terminals 331 and 341 are connected by a bus bar 361.
  • the positive electrode external terminal 331 and the negative electrode external terminal 341 of one battery cell 320 are respectively connected to the negative electrode external terminal 341 and the positive electrode external terminal 331 of different battery cells 320, and the eight battery cells are All are connected in series.
  • the negative external terminal 341 of the first battery cell 320 connected in series and the positive external terminal 331 of the last battery cell 320 are not connected by the bus bar 361 and, as will be described later, in the voltage detection wiring 301, Connected directly.
  • a circuit board 350 is disposed on the bus bar 361.
  • a plurality of voltage detection wirings 301 and a temperature detection wiring 302 are formed, and a connector 401 to which the wirings 301 and 302 are connected is provided.
  • the voltage detection wiring 301 is connected to an operational amplifier through a multiplexer (not shown).
  • the multiplexer sequentially switches the connection with the battery cell 320, and the operational amplifier detects the voltage of each battery cell 320.
  • the detected voltage of each battery cell 32 is converted into a digital value by the A / D conversion circuit and held in the storage unit of the microcomputer 30.
  • the positive external terminal 331 and the negative external terminal 341 connected by one bus bar 361 have the same potential. Therefore, the voltage detection wiring 301 is provided for each external terminal connected by the bus bar 361. In the present embodiment, the voltage detection wiring 301 is formed corresponding to each negative external terminal 341.
  • a land 351 is formed on the circuit board 350 corresponding to each negative external terminal 341.
  • the negative external terminal 341 and the positive external terminal 331 are bolt-shaped members having a thread portion formed on the outer periphery, and are fixed to the circuit board 350 by nuts 359, respectively.
  • a land 351 is formed on the circuit board 350 corresponding to the negative electrode external terminal 341. By fastening the nut 359, the negative electrode external terminal 341 is thermally and electrically connected to the land 351 via the nut 359. Is done.
  • the land 352 has a protrusion 353 extending toward the center side of the circuit board 350.
  • a temperature sensor (temperature detector) 381 is mounted on the protrusion 353 of the land 352 across the protrusion 353.
  • a voltage detection wiring 301 is connected to the protruding portion 353 of the land 352.
  • a temperature detection wiring 302 is connected to a pair of connection terminals of the temperature sensor 381. The other end of the temperature detection wiring 302 is connected to the connector 401.
  • FIG. 4 is an enlarged cross-sectional view taken along line IV-IV of the power storage module 20 shown in FIG.
  • the battery cell 320 includes a battery container 321 having a rectangular flat shape.
  • the battery container 321 includes a battery can 321a having an opening at the top, and a lid 321b that closes the opening of the battery can 321a and is joined to the battery can 321a by laser welding or the like.
  • the lid 321b is made of aluminum, for example.
  • the lid 321b is formed with a through hole through which the electrode connection plate 323 connected to the positive external terminal 331 or the negative external terminal 341 is inserted.
  • An insulating member 325 having an opening at the center is fitted into the through hole, and an electrode connection plate 323 is fitted into the through hole of the insulating member 325.
  • a wound electrode group 322 is accommodated in the battery container 321.
  • the wound electrode group 322 is formed by winding a positive electrode and a negative electrode in a flat shape with a separator interposed therebetween.
  • the positive electrode is obtained by coating a positive electrode mixture layer on both surfaces of a positive electrode metal foil made of, for example, an aluminum foil.
  • the positive electrode mixture layer is coated on one side edge so that a positive electrode mixture untreated portion where the positive electrode metal foil is exposed is formed.
  • the negative electrode is obtained by coating a negative electrode mixture layer on both surfaces of a negative electrode metal foil made of copper foil or the like.
  • the negative electrode mixture layer is applied so that a negative electrode mixture untreated portion with the negative electrode metal foil exposed is formed on the other side edge opposite to the side edge where the positive electrode mixture untreated portion is disposed. It is being crafted.
  • the positive electrode mixture is obtained by adding 10 parts by weight of flaky graphite as a conductive material and 10 parts by weight of PVDF as a binder to 100 parts by weight of lithium manganate (chemical formula LiMn 2 O 4 ) as a positive electrode active material, This is prepared by adding NMP as a dispersion solvent and kneading. This positive electrode mixture is applied to both surfaces of an aluminum foil having a thickness of 20 ⁇ m, leaving the untreated portion of the positive electrode mixture. Thereafter, drying, pressing, and cutting are performed to obtain a positive electrode having a thickness of 90 ⁇ m, which is a positive electrode active material coating portion that does not contain an aluminum foil.
  • the negative electrode mixture is prepared by adding 10 parts by weight of polyvinylidene fluoride (hereinafter referred to as PVDF) as a binder to 100 parts by weight of amorphous carbon powder as a negative electrode active material, and adding N- Methyl bilolidon (hereinafter referred to as NMP) is added and kneaded.
  • PVDF polyvinylidene fluoride
  • NMP N- Methyl bilolidon
  • a non-aqueous electrolyte is also injected.
  • the non-aqueous electrolyte include 1 mol / L of lithium hexafluorophosphate in a mixed solution of ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC) in a volume ratio of 1: 1: 1.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • a positive current collector plate 327a is fixed to the lid 321b by caulking or the like.
  • the positive electrode current collector plate 327a is made of aluminum or the like.
  • a negative electrode current collecting plate 327b is fixed to the lid 321b by caulking or the like.
  • the negative electrode current collector plate 327b is made of copper or the like.
  • the positive electrode mixture untreated portion of the wound positive electrode is laminated on one side edge side, and the negative electrode mixture of the negative electrode mixture is not on the other side edge side opposite to the one side edge side. Processing units are stacked.
  • the positive electrode current collector plate 327a and the negative electrode current collector plate 327b are bent in a substantially vertical direction from the attachment portion attached to the lid 321b, and further inclined toward the central portion side in the thickness direction of the battery cell 320.
  • the portion again has a shape bent in a direction perpendicular to the mounting portion.
  • the positive electrode current collector plate 327a is joined to the positive electrode mixture untreated portion
  • the negative electrode current collector plate 327b is joined to the negative electrode mixture untreated portion by ultrasonic welding or the like.
  • the positive and negative current collecting plates 327a and 327b and the electrode connecting plate 323 are insulated from the lid 321b by an insulating member 325.
  • a positive external terminal 331 or a negative external terminal 341 having a threaded portion formed on the outer periphery is connected on each electrode connection plate 323, a positive external terminal 331 or a negative external terminal 341 having a threaded portion formed on the outer periphery is connected. This connection can be performed by caulking the positive external terminal 331 or the negative external terminal 341 and each electrode connection plate 323 directly or via a conductive connection plate (not shown).
  • the positive electrode external terminal 331 and the negative electrode external terminal 341 have large diameter portions 331a and 341a, respectively.
  • Adjacent positive external terminal 331 and negative external terminal 341 are connected by a bus bar 361.
  • the bus bar 361 has a through hole through which the positive external terminal 331 and the negative external terminal 341 are inserted.
  • the through hole is inserted into the positive electrode external terminal 331 and the negative electrode external terminal 341, and the bus bar 361 is welded to the large diameter portions 331a and 341a of the positive and negative external terminals 331 and 341 by arc welding such as TIG (Titan Inert Gas) welding. Join.
  • TIG Tin Inert Gas
  • FIG. 5 is a plan view of the upper surface side of the circuit board 350 for voltage detection
  • FIG. 6 is a plan view of the upper surface side of the power storage module 20. In the following description, FIGS. 5 and 6 are referred to together with FIG.
  • a land 351 is formed on the circuit board 350 corresponding to the negative external terminal 341. Further, a land 352 is formed corresponding to the negative electrode external terminal 341 of the battery cell 320 disposed almost at the center of the power storage module 20 and the positive electrode terminal 331 of the battery cell 320 located at the end of the array of the power storage module 20. ing.
  • the circuit board 350 is formed with a through hole 355 through which the positive external terminal 331 or the negative external terminal 341 is inserted.
  • the positive external terminal 331 and the negative external terminal 341 pass through the through hole 355 of the circuit board 350 and protrude above the circuit board 350.
  • a nut 359 is screwed into the protruding portion, and the circuit board 350 and the bus bar 361 are fastened. Thereby, the eight battery cells 320 and the circuit board 350 are integrated.
  • the negative electrode mixture untreated portion of the wound electrode group 322, the negative electrode current collector plate 327b, the electrode connection plate 323, the negative electrode external terminal 341, the nut 359, and the land 351 or 352 are thermally transmitted. And electrical connections are made.
  • the land 352 formed corresponding to the positive electrode terminal 331 of the battery cell 320 located at the end of the arrangement of the power storage modules 20 includes a positive electrode mixture untreated portion of the wound electrode group 322, a positive electrode current collector plate 327a, Thermal and electrical connections are made through the paths of the electrode connection plate 323, the positive electrode external terminal 331, the nut 359, and the land 352.
  • the land 352 provided on the circuit board 350 is formed with a protruding portion 353 that is narrower than the portion to which the nut 359 is fastened.
  • Pads 354 are provided on both sides of the projecting portion 353 in the circuit board 350 in the width direction.
  • a temperature detection wiring 302 formed on the circuit board 350 connects each pad 354 and the connector 401.
  • a heat conducting member 362 made of a putty or adhesive sheet having high heat conductivity is formed on the projecting portion 353 of the land 352.
  • a heat conducting member 362 made of a putty or adhesive sheet having high heat conductivity is formed.
  • the heat conducting member 362 for example, a silicone resin or the like can be used.
  • a temperature sensor 381 is mounted on the heat conducting member 362.
  • the temperature sensor 381 is a chip type, and the pair of connection terminals 381a and 381b are arranged in a state of straddling the protruding portion 353 of the land 352 in the width direction so as to correspond to the pad 354, respectively. Then, the pair of connection terminals 381a and 381b are respectively soldered to the pads 354 by soldering.
  • the heat conducting member 362 has a function of preventing thermal conductivity from being lowered due to air interposed between the land 352 and the temperature sensor 381.
  • FIG. 1 A plan view from the upper surface side of the power storage module 20 formed in this manner is shown in FIG.
  • the positive electrode external terminal 331 and the negative electrode external terminal 341 of adjacent battery cells 320 are connected by a bus bar 361.
  • Each negative external terminal 341 is connected to a voltage detection wiring 301 via a land 351 or 352 provided on the circuit board 350.
  • the negative external terminal 341 of the first battery cell 320 and the positive external terminal 331 of the last battery cell 320 in the array of the storage modules 20 are directly connected to the voltage detection wiring 301 provided on the circuit board 350. Yes.
  • the voltage of each battery cell is detected, and a signal related to the voltage is input to the microcomputer 30 via the battery control device 100 to control the charging / discharging of each battery cell 320, and the voltage variation between the battery cells 320 is detected.
  • a signal related to the voltage is input to the microcomputer 30 via the battery control device 100 to control the charging / discharging of each battery cell 320, and the voltage variation between the battery cells 320 is detected.
  • the temperature sensor 381 is mounted on the land 352 formed on the circuit board 350. Since the temperature of each battery cell 320 is transmitted to the land 352 via the negative electrode external terminal 341 and the nut 359, the temperature sensor 381 can detect the temperature of each battery cell 320. A signal related to the temperature detected by the temperature sensor 381 is input to the microcomputer 30 via the battery control device 100 from the temperature detection wiring 302 formed on the circuit board 350. In the microcomputer 30, although not shown, based on the input temperature of each battery cell 320 or the average temperature of the power storage module 20, a driver and pump rotation that adjust the number of rotations of a cooling fan or the amount of cooling water supplied The number can be controlled.
  • the temperature sensor 381 is mounted on the land 352 formed on the circuit board 350 as described above.
  • the land 352 and the temperature detection wiring 302 are formed on the same circuit board 350. For this reason, assembly property is favorable and productivity can be improved.
  • the land 352 has both functions for voltage detection and temperature detection. For this reason, the detected temperature becomes accurate and the area of the circuit board 350 can be reduced.
  • a chip-type temperature sensor 381 is mounted on the circuit board 350. For this reason, the circuit board assembly can be made small, storage and transportation are facilitated, and efficiency is improved.
  • a heat conducting member 362 is interposed between the chip-type temperature sensor 381 and the protrusion 353 of the land 352. For this reason, it is possible to prevent air from being interposed between the land 352 and the temperature sensor 381, and to accurately detect the temperature of the battery cell 320.
  • FIG. 7 is a front view of a battery cell constituting the power storage module as Embodiment 2 of the present invention
  • FIG. 8 is an overall side view showing Embodiment 2 of the power storage module of the present invention.
  • the second embodiment has a structure in which a bus bar is provided with a bonding portion that is bonded to a land of a circuit board.
  • the power storage module according to the second embodiment of the present invention will be described with reference to the drawings.
  • the configuration different from the first embodiment will be mainly described, and the same reference numerals are given to the corresponding members for the same configurations as the first embodiment. The description is omitted as appropriate.
  • the power storage module 500 in the second embodiment is also illustrated as including eight battery cells 510.
  • the positive external terminal 520 and the negative external terminal 530 formed by being insulated and protruded from the lid 321b of the battery container 321 by the insulating member 325 are not formed in a bolt shape but are formed in a flat plate-shaped member. ing.
  • the structure in which the positive electrode external terminal 520 and the negative electrode external terminal 530 of one battery cell 510 are connected to the negative electrode external terminal 530 and the positive electrode external terminal 520 of the different battery cells 510 by the bus bar 540 is the same as that of the first embodiment. It is the same.
  • the through holes formed in the circuit board 550 are not formed so as to correspond to the negative external terminal 530 and the positive external terminal 520, respectively, and with respect to the pair of positive and negative external terminals 320 and 330.
  • One through hole is formed.
  • a protrusion 542 formed on the bus bar 540 is inserted through the through hole and protrudes above the circuit board 550.
  • FIG. 9 is an enlarged cross-sectional view in the vicinity of the positive and negative terminals in a pair of adjacent battery cells, and is an enlarged cross-sectional view taken along line IX-IX of the power storage module 500 shown in FIG. 13 to be described later.
  • the positive external terminal 520 and the negative external terminal 530 each have a lower part for fixing the positive and negative current collecting plates 327a and 327b and an upper part having a flat outer surface.
  • the main body portion 541 of the bus bar 540 is welded to the upper portions of the positive external terminal 520 and the negative external terminal 530.
  • the bus bar 540 has a protrusion 542 that stands vertically from the main body 541, and the protrusion 542 is soldered to a land 552 or 551 formed on the circuit board 550.
  • 591 is a solder layer.
  • FIG. 10 is an external perspective view of the bus bar 540.
  • the bus bar 540 has a line-symmetric shape with respect to the longitudinal center.
  • the main body 541 of the bus bar 540 is formed with a slit 543 that extends in the longitudinal direction at the center in the width direction and opens to the outside at the end.
  • a circular opening 544 is formed in the approximate center of each slit 543.
  • the bus bar 540 can be formed by pressing a plate-like member.
  • the protrusion 542 of the bus bar 540 is formed as an upright piece, and the upper surface has an elongated rectangular shape.
  • FIG. 12 is a plan view of the circuit board for voltage detection according to the second embodiment
  • FIG. 13 is a plan view of the power storage module 500 shown in FIG. 8 as viewed from above.
  • the circuit board 550 has a long and narrow rectangular through-hole 561 in a plan view at a position corresponding to the boundary between adjacent battery cells 510.
  • the through hole 561 is also formed at a position corresponding to the negative external terminal 530 of the first battery cell 510 and the positive external terminal 520 of the last battery cell 510 in the arrangement of the power storage modules 500.
  • the protrusion 542 of the bus bar 540 is fitted into the through hole 561 of the circuit board 550. Since the through hole 561 and the protruding portion 542 of the bus bar 540 have a rectangular shape that is long in the longitudinal direction, rattling in a state in which the through hole 561 is fitted to the through hole 561 can be reduced.
  • a bus bar 540A having a shape different from that of the bus bar 540 is formed in a through hole 561 formed at a position corresponding to the negative electrode external terminal 530 of the first battery cell 510 and the positive electrode external terminal 520 of the last battery cell 510 in the arrangement of the power storage modules 500. Are fitted.
  • FIG. 11 is an external perspective view of the bus bar 540A.
  • the bus bar 540A is joined to only one of the positive and negative external terminals 520 and 530. For this reason, the bus bar 540 has a shape obtained by cutting out almost half of the longitudinal direction of the bus bar 540.
  • the protrusion 542 in the bus bar 540A has the same shape and size as the bus bar 540. For this reason, all the through-holes 561 formed in the circuit board 550 can have the same shape and dimensions, and can have versatility.
  • Bus bars 540 and 540A are joined to positive external terminal 520 or negative external terminal 530 by arc welding such as TIG welding.
  • the welding site w welded to the positive / negative external terminals 520 and 530 is indicated by a dotted line.
  • the positive and negative external terminals 520 and 530 are welded at four locations. Each weld site w is positioned at a position where the slit 543 is substantially centered in the width direction, and at a position where the circular opening 544 is approximately centered in the longitudinal direction.
  • the function of the slit 543 and the circular opening 544 is to improve the welding between the bus bars 540 and 540A and the positive and negative external terminals 520 and 530.
  • it is important that the thermal energy at the time of welding is not dispersed around the welded part of the welded body but concentrated on the welded part.
  • a slit 543 and a circular opening 544 are formed between the welding parts w, and the thermal energy for welding radiated to the bus bars 540 and 540A is transmitted by the slit 543 and the circular opening 544. , Heat conduction to the surroundings is cut off.
  • the heat stored in the bus bars 540, 540A is conducted to the positive / negative external terminals 520, 530 arranged immediately below. That is, the heat energy is concentrated at the welded part w and is melted with the welded part w at a high temperature as compared with the surroundings, so that good bonding is performed.
  • a rectangular land 551 is formed around each through hole 561 of the circuit board 550 in a plan view.
  • a land 552 having a shape different from the land 551 is formed around one through edge 561 located in the vicinity of one side edge and one corner of the circuit board 550 shown in FIG. Yes.
  • the land 552 has a protruding portion 553 that extends toward the center side of the circuit board 550.
  • a heat conducting member 362 is formed on the protruding portion 553.
  • Pads 554 are formed on both sides of the projecting portion 553 in the width direction of the circuit board 550.
  • Each land 551 is connected to a voltage detection wiring 301.
  • a voltage detection wiring 301 is also connected to the tip of the protrusion 553 of the land 352.
  • Each pad 554 is connected to a temperature detection wiring 302.
  • the protrusion 542 of the bus bar 540 is fitted into the through hole 561 of the circuit board 550, and the protrusion 542 is soldered to the land 551 or 552.
  • the protruding portion 542 of the bus bar 540A is formed in the through hole 561 formed corresponding to the negative external terminal 530 of the first battery cell 510 and the positive external terminal 520 of the last battery cell 510 in the arrangement of the storage modules 500. Mated.
  • the protrusion 542 of the bus bar 540A is also soldered to the land 551 or 552.
  • a chip-type temperature sensor 381 is mounted on the heat conduction member 362 formed on the protrusion 553 of the land 552, and a pair of connection terminals 381 a and 381 b of the temperature sensor 381 are soldered to the pad 554.
  • the positive external terminal 520 and the negative external terminal 530 of the adjacent battery cells 510 are connected by a bus bar 540.
  • Each negative external terminal 530 is connected to a voltage detection wiring 301 via a land 551 or 552 provided on the circuit board 550.
  • the negative external terminal 530 of the first battery cell 510 and the positive external terminal 520 of the last battery cell 510 in the arrangement of the power storage modules 500 are directly connected to the voltage detection wiring 301 provided on the circuit board 550. Yes.
  • the voltage of each battery cell is detected, and a signal related to the voltage is input to the microcomputer 30 via the battery control device 100 to control charging / discharging of each battery cell 510, and the variation in voltage between the battery cells 510 is detected. Can be small.
  • the temperature sensor 381 is mounted on the land 552 formed on the circuit board 550. Since the temperature of each battery cell 510 is transmitted to the land 552 from the positive / negative external terminals 520 and 530 through the bus bar 540, the temperature of the pair of battery cells 320 can be detected by the temperature sensor 381. Therefore, as in the case of the first embodiment, the microcomputer 30 can control the input temperature of each battery cell 510 or the power storage module 500.
  • the land 552 has both functions for voltage detection and temperature detection. Therefore, the detected temperature becomes accurate and the area of the circuit board 550 can be reduced.
  • a chip-type temperature sensor 381 is mounted on the circuit board 550. For this reason, the circuit board assembly can be made small, storage and transportation are facilitated, and efficiency is improved.
  • the bus bar 540 that joins the positive external terminal 520 and the negative external terminal 530 of the adjacent battery cell 510 is directly fixed to the land 551 or 552 of the circuit board 550. For this reason, the number of parts can be reduced as compared with the case of the first embodiment, and the productivity can be improved.
  • all the lands formed on the circuit boards 350 and 550 may have a shape having protrusions 353 and 553 for mounting the temperature sensor 381, such as 352 or 552. In this way, if the temperature of each battery cell 320, 510 is detected, the temperature is monitored and managed for each pair of battery cells 320, 510 connected by a bus bar. It is also possible to calculate the average temperature of 20 and 500 and manage the temperature for each of the power storage modules 20 and 500, and to perform control with higher reliability.
  • the entire structure is expensive. Therefore, for each power storage module, the battery cell 320 at the position where the maximum temperature and the minimum temperature are set in advance. 510 may be confirmed by a test or the like, and the temperature of the battery cell 320 or 510 at that position may be detected.
  • the lands 352 and 552 for detecting the temperature are illustrated as being provided on the upper surface side of the circuit boards 350 and 550.
  • the lands 352 and 552 may be provided on the lower surfaces of the circuit boards 350 and 550, and the through-hole structure in which the upper and lower lands 352 and 552 are connected by a heat conductive member may be used. In this way, the thermal conductivity from the battery cells 320 and 510 to the land can be further improved.
  • the lands 352 and 552 are illustrated as having both a voltage detection function and a temperature detection function.
  • the temperature detection land may be formed separately from the voltage detection land.
  • lands and wires for temperature detection are formed on one surface of the circuit board and lands and wires for voltage detection are formed on the other surface of the circuit board.
  • connection between the lands 352 and 552 and the battery cells 320 and 510 is exemplified as a structure using a fastening member or soldering.
  • the present invention is not limited to this method, and various methods can be applied.
  • hook portions are provided on the positive and negative external terminals 331 and 341
  • the protrusions 542 of the bus bar 540, and the hook portions are formed on the lands 352 and 552. You may make it contact
  • the power storage modules 20 and 500 shown in the above embodiments are used as power storage devices that constitute power supply devices other than electric vehicles, such as uninterruptible power supply devices used in computer systems and server systems, and power supply devices used in private power generation facilities. Can also be applied. *
  • the power storage module of the present invention can be variously modified and configured within the scope of the invention.
  • the main points are an electrode group having positive and negative electrodes and positive and negative electrodes.
  • a plurality of positive and negative current collectors connected to the positive and negative current collectors and the positive and negative external terminals connected to the positive and negative current collectors are exposed to the outside of the battery case;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 蓄電モジュール20は、正・負極の電極を有する捲回電極群322と、正・負極の電極に接続された正・負極の集電板327a、327bとが電池容器321内に収容され、正・負極の外部端子331、341が電池容器321の外部に露出して設けられた複数の電池セル320と、正・負極の外部端子331、341に接続された電池セル320の温度検出用の配線302を有する回路基板350と、配線302上に設けられた電池セル320の温度を検出する温度検出器381とを備える。

Description

蓄電モジュール
 本発明は、蓄電モジュールに関し、より詳細には、電池セルの温度検出器を有する蓄電モジュールに関する。
 リチウムイオン二次電池セル、ニッケル水素二次電池セル、ニッケルカドミウム二次電池セル等の二次電池セルは、ハイブリッド自動車や電気自動車の電源として近年、急速に普及しつつある。
 自動車用の電源として用いられる二次電池セルは、通常、複数個の二次電池セルをバスバーで直列に接続された蓄電モジュールとされる。
 二次電池セルは、高温の環境下では容量減少等、電池寿命に関する性能劣化が起こり易くなる。逆に、低温の環境下では、電池の出力低下が起こり易くなる。
 このため、二次電池セルを適温に管理する必要がある。本来的には、二次電池セルの内部温度を検出する方が望ましいが、技術上およびコスト上の面から、通常は、二次電池セルの電池容器の表面温度を温度センサにより検出するようにしている。
 このような構造として、特許文献1の如く、隣接する二次電池の正極外部端子と、負極外部端子を接続するバスバーに温度センサを締結し、この温度センサの一対のリード端子を回路基板に設けられた回路パターンに半田付けする構造が知られている。
特開2002-246074号公報
 特許文献1に記載された発明では、温度センサを取りつける部材と、温度センサのリード端子を半田付けする回路パターンとが異なる部材である。しかも、通常、バスバーと回路基板とは、同一平面に位置せず、段差をもって配置される。このため、温度センサのリード端子を折曲する必要があるので、組立性が悪く、また、サブアセンブリにした状態おける保管・運搬に手間が掛かるという課題がある。
 本発明の第1の態様による蓄電モジュールは、正・負極の電極を有する電極群と、正・負極の電極に接続された正・負極の集電板とが電池容器内に収容され、正・負極の集電板に接続された正・負極の外部端子が電池容器の外部に露出して設けられた複数の電池セルと、電池セルの正極または負極の外部端子に接続された温度検出用の配線を有する回路基板と、配線に熱結合され、電池セルの温度を検出する温度検出器とを備えている。
 本発明の第2の態様による蓄電モジュールは、請求項1記載の蓄電モジュールにおいて、配線はランドを有し、温度検出器は、ランドに熱結合されていることが望ましい。
 本発明の第3の態様による蓄電モジュールは、請求項1または2記載の蓄電モジュールおいて、ランドに電池セルの電圧検出用の配線が形成されていることが望ましい。
 本発明の第4の態様による蓄電モジュールは、請求項2乃至3に記載の蓄電モジュールにおいて、さらに、隣接する電池セルの逆極性の外部端子同士を接続するバスバーを有し、回路基板は、正・負極の外部端子を挿通する貫通孔を有し、ランドは貫通孔の周囲に設けられている態様とすることができる。
 本発明の第5の態様による蓄電モジュールは、請求項2または3に記載の蓄電モジュールにおいて、さらに、隣接する電池セルの逆極性の外部端子同士を接続するバスバーを有し、回路基板は、バスバーに形成された突起を挿通する貫通孔を有し、ランドは貫通孔の周囲に設けられている態様とすることができる。
 本発明の第6の態様による蓄電モジュールは、請求項5に記載の蓄電モジュールにおいて、バスバーは、正・負極の外部端子に溶接される溶接領域を有し、各溶接領域は複数の溶接部位を有し、バスバーは、溶接部位間に設けられたスリットを有する態様とすることができる。
 本発明の第7の態様による蓄電モジュールは、請求項5または6に記載の蓄電モジュールにおいて、バスバー突起と、ランドとが半田付けされている態様とすることができる。
 本発明の第8の態様による蓄電モジュールは、請求項2~6のいずれか1項に記載の蓄電モジュールにおいて、温度検出器は、ランド上に熱伝導性樹脂を介して配置され、ランドは、温度検出器が配置される部分が外部端子に接続される部分よりも幅狭に形成されていることが望ましい。
 本発明の第9の態様による蓄電モジュールは、請求項1~8のいずれか1項に記載の蓄電モジュールにおいて、配線と温度検出器とは熱伝導性樹脂を介して熱結合されていることが望ましい。
 本発明の蓄電モジュールによれば、回路基板の電圧検出用の配線を上に温度検出器を設けるので、組立性が向上する。
本発明の蓄電モジュールを備えた一実施の形態としてのハイブリッド自動車駆動システムのブロック回路図。 本発明の一実施の形態としての蓄電モジュールの外観斜視図。 図2に図示された蓄電モジュールを側面から観た全体側面図。 図2に図示された蓄電モジュールのIV-IV線に沿う切断拡大断面図。 本発明の蓄電モジュールに備えられた電圧検出用の回路基板の、一実施の形態としての平面図。 図2に図示された蓄電モジュールの平面図。 本発明の実施形態2としての蓄電モジュールを構成する電池セルの正面図。 本発明の蓄電モジュールの実施形態2を示す全体側面図。 図13に図示された蓄電モジュールのIX-IX線に沿う切断拡大断面図。 図9に図示された電池セル接続用のバスバーの斜視図。 配線接続用のバスバーの斜視図。 図8に図示された電圧検出用の回路基板の平面図。 図8に図示された蓄電モジュールの平面図。
--実施形態1-
 以下、本発明の蓄電モジュールの一実施の形態を、図面を参照して説明する。
 本発明の蓄電モジュールは、限定する意図ではないが、例えば、電動車両、特に電気自動車の車載電源装置の蓄電装置として、適用することができる。電気自動車は、内燃機関であるエンジンと電動機とを車両の駆動源として備えたハイブリッド電気自動車、および電動機を車両の唯一の駆動源とする純正電気自動車等を含む。
 そこで、本発明の蓄電モジュールが適用されたハイブリッド自動車用駆動システムについて説明する。
[ハイブリッド自動車駆動システム]
 図1は、本発明の一実施の形態としての蓄電モジュールを有するハイブリッド自動車駆動システムのブロック回路図である。
 図1に示すハイブリッド自動車駆動システムは、蓄電モジュール装置21、蓄電モジュール装置21を監視する電池制御装置100、蓄電モジュール装置21からの直流電力を3相交流電力に変換するインバータ装置220、車両駆動用の電動発電機7を備えている。電動発電機7は、インバータ装置220からの3相交流電力により駆動される。インバータ装置220と電池制御装置100とはCAN通信で結ばれており、インバータ装置220は電池制御装置100に対して上位コントローラとして機能する。また、インバータ装置220は、制御装置10からの指令情報に基づいて動作する。
 インバータ装置220は、パワーモジュール226と、インバータ装置を制御するMCU222と、パワーモジュール226を駆動するためのドライバ回路224とを有している。パワーモジュール226は、蓄電モジュール装置21から供給される直流電力を、電動発電機7をモータとして駆動するための3相交流電力に変換する。なお、図示していないが、パワーモジュール226に接続される強電ラインHV+、HV-間には、約700μF~約2000μF程度の大容量の平滑キャパシタが設けられている。この平滑キャパシタは、電池制御装置100に設けられた集積回路に加わる電圧ノイズを低減する働きをする。
 インバータ装置220の動作開始状態では平滑キャパシタの電荷は略ゼロであり、リレーRLを閉じると大きな初期電流が平滑キャパシタへ流れ込む。そして、この大電流のためにリレーRLが融着して破損するおそれがある。この問題を解決するために、MCU222は、さらに制御装置10からの命令に従い、電動発電機7の駆動開始時に、プリチャージリレーRLpを開状態から閉状態にして平滑キャパシタを充電し、その後にリレーRLを開状態から閉状態として、蓄電モジュール装置21からインバータ装置220への電力の供給を開始する。平滑キャパシタを充電する際には、抵抗Rpを介して最大電流を制限しながら充電を行う。このような動作を行うことで、リレー回路を保護すると共に、電池セルやインバータ装置220を流れる最大電流を所定値以下に低減でき、高い安全性を維持できる。
 なお、インバータ装置220は、電動発電機7の回転子に対するパワーモジュール226により発生する交流電力の位相を制御して、車両制動時には電動発電機7を発電機として動作させる。すなわち回生制動制御を行い、発電機運転により発電された電力を蓄電モジュール装置21に回生して蓄電モジュール装置21を充電する。蓄電モジュール装置21の充電状態が基準状態より低下した場合には、インバータ装置220は電動発電機7を発電機として運転する。電動発電機7で発電された3相交流電力は、パワーモジュール226により直流電力に変換されて蓄電モジュール装置21に供給される。その結果、蓄電モジュール装置21は充電される。
 一方、電動発電機7をモータとして力行運転する場合、MCU222は制御装置10の命令に従い、電動発電機7の回転子の回転に対して進み方向の回転磁界を発生するようにドライバ回路224を制御し、パワーモジュール226のスイッチング動作を制御する。この場合は、蓄電モジュール装置21から直流電力がパワーモジュール226に供給される。また、回生制動制御により蓄電モジュール装置21を充電する場合には、MCU222は、電動発電機7の回転子の回転に対して遅れ方向の回転磁界を発生するようにドライバ回路224を制御し、パワーモジュール226のスイッチング動作を制御する。この場合は電動発電機7から電力がパワーモジュール226に供給され、パワーモジュール226の直流電力が蓄電モジュール装置21へ供給される。結果的に電動発電機7は発電機として作用することとなる。
 インバータ装置220のパワーモジュール226は、導通および遮断動作を高速で行い直流電力と交流電力間の電力変換を行う。このとき、大電流を高速で遮断するので、直流回路の有するインダクタンスにより大きな電圧変動が発生する。この電圧変動を抑制するため、上述した大容量の平滑キャパシタが設けられている。
 蓄電モジュール装置21は、例えばここでは直列接続された2つの蓄電モジュール20A、20Bで構成されている。各蓄電モジュール20A、20Bは、各々複数の電池セルを直列接続したセルグループを複数直列に接続されたものを備えている。蓄電モジュール20Aと蓄電モジュール20Bとは、スイッチとヒューズとが直列接続された保守・点検用のサービスディスコネクトSD-SWを介して直列接続される。このサービスディスコネクトSD-SWが開くことで電気回路の直列回路が遮断され、仮に蓄電モジュール20A、20Bのどこかで車両との間に1箇所接続回路ができたとしても電流が流れることはない。このような構成により高い安全性を維持できる。又、点検時に作業者がHV+とHV-の間を触っても、高電圧は人体に印加されないので安全である。
 蓄電モジュール装置21とインバータ装置220との間の強電ラインHV+には、リレーRL、抵抗RpおよびプリチャージリレーRLpを備えた電池ディスコネクトユニットBDUが設けられている。抵抗RpとプリチャージリレーRLpとの直列回路は、リレーRLと並列に接続されている。
 電池制御装置100は、主に各電池セルの電圧の測定、総電圧の測定、電流の測定、電池セルの温度および各電池セルの容量調整等を行う。そのために、セルコントローラとして、複数の電池制御用IC(集積回路)が設けられている。各蓄電モジュール20A、20B内に設けられた複数の電池セルは、複数のセルグループに分けられ、セルグループ毎に、各セルグループに含まれる電池セルを制御するセルコントローラICが1つずつ設けられている。
蓄電装置11は電池制御装置100と蓄電モジュール装置21とで構成されている。
 後述するように、電池制御装置100と蓄電モジュール装置21とは、電池制御装置100の基板に設けられたコネクタを介して、電圧検出用の配線によって接続されている。この電圧検出用の配線は、蓄電モジュールを構成する各電池セルの電圧を検出するために用いられ、また各電池セルの放電(バランシング)を行うために用いられる。本発明では、この電圧検出用の配線は、さらに充電を行うために使用される。
各セルグループを制御するセルコントローラIC1~IC4は、各々通信系602と1ビット通信系604とを備えている。セル電圧値読み取りや各種コマンド送信のための通信系602においては、絶縁素子(例えば、フォトカプラ)PHを介してデイジーチェーン方式で蓄電モジュール装置21を制御するマイコン30とシリアル通信を行う。1ビット通信系604は、セル過充電が検知されたときの異常信号を送信する。図1に示す例では、通信系602は、蓄電モジュール20AのセルコントローラIC1、IC2に対する上位の通信経路と、蓄電モジュール20BのセルコントローラIC3、IC4に対する下位の通信経路とに分けられている。
 すなわちマイコン30はセルコントローラIC1~IC4の上位制御装置として機能している。
 各セルコントローラICは異常診断を行い、自分自身が異常と判断した場合、あるいは上位のセルコントローラICから異常信号を受信端子で受信した場合に、送信端子から異常信号を送信する。一方、既に受信端子で受信していた異常信号が消えたり、あるいは自分自身の異常判断が正常判断となったりした場合には、送信端子から伝送される異常信号は消える。この異常信号は本実施形態では1ビット信号である。
 マイコン30は異常信号をセルコントローラICに送信しないが、異常信号の伝送路である1ビット通信系604が正しく動作することを診断するために、擬似異常信号であるテスト信号を1ビット通信系604に送出する。このテスト信号を受信したセルコントローラIC1は異常信号を通信系604へ送出し、その異常信号がセルコントローラIC2によって受信される。異常信号はセルコントローラIC2からセルコントローラIC3、IC4の順に送信され、最終的にはセルコントローラIC4からマイコン30へと返信される。通信系604が正常に動作していれば、マイコン30から送信された擬似異常信号は通信系604を介してマイコン30に戻ってくる。このように擬似異常信号をマイコン30が送受することで通信系604の診断ができ、システムの信頼性が向上する。
電池ディスコネクトユニットBDU内にはホール素子等の電流センサSiが設置されており、電流センサSiの出力はマイコン30に入力される。
 また、蓄電モジュール装置21の総電圧および各電池セルの温度に関する信号もマイコン30に入力され、それぞれマイコン30のAD変換器(ADC)によって測定される。温度センサは蓄電モジュール20A、20B内の複数箇所に設けられている。
 なお、マイコン30では、入力された各電池セルの温度、または蓄電モジュール20A、20Bの平均温度に基づいて、図示はしないが、蓄電モジュール20A、20Bを冷却する冷却用のファンの回転数または冷却水の供給量を調整するドライバーおよびポンプ回転数を制御する。
 蓄電モジュール装置21の性能を最大限に活用するためには、32個の電池セルのセル電圧を均等化する必要がある。例えば、セル電圧のばらつきが大きい場合、回生充電時に最も高い電池セルが上限電圧に達した時点で回生動作を停止する必要がある。この場合、その他の電池セルのセル電圧は上限に達していないにもかかわらず、回生動作を停止して、ブレーキとしてエネルギーを消費することになる。このようなことを防止するために、各ICは、マイコン30からのコマンドで電池セルの容量調整のための放電を行う。
 図示はしないが、各電池セルの正極端子と負極端子との間には、抵抗器とバランシングスイッチが直列に接続されて配置されている。そこで、電池セルの放電を行うには、マイコン30から放電指令を送出し、バランシングスイッチをオンする。これにより、電池セルの正極端子、抵抗器、バランシングスイッチ、抵抗器、負極端子の経路でバランシング電流が流れる。
IC1~IC4間には、上述したように通信系602,604が設けられている。マイコン30からの通信コマンドは、フォトカプラPHを介して通信系602に入力され、通信系602を介してIC1の受信端子で受信される。IC1の送信端子からは、通信コマンドに応じたデータやコマンドが送信される。IC2の受信端子で受信された通信コマンドは、送信端子から送信される。このように順に受信および送信を行い、伝送信号は、IC3の送信端子から送信され、フォトカプラPHを介してマイコン30の受信端子で受信される。IC1~IC4は、受信した通信コマンドに応じて、セル電圧等の測定データのマイコン30への送信や、バランシング動作を行う。さらに、各IC1~IC4は、測定したセル電圧に基づいてセル過充電を検知する。その検知結果(異常信号)は、信号系604を介してマイコン30へ送信される。
[蓄電モジュール]
 上述した通り、蓄電モジュール装置21は、コネクタ401を介して電圧検出用の配線301により電池制御装置100に接続される。
 蓄電モジュール装置21の総電圧および各電池セルの温度に関する信号はマイコン30に入力される。
 蓄電モジュール装置21は電流センサSiに接続されており、電流センサSiの出力はマイコン30に入力される。
 電動発電機7が発電機として動作するとき、電動発電機7により発電された電力は、回生制御により蓄電モジュール装置21の各電池セルを充電する。また、蓄電モジュール装置21内の電池セルが過充電となった場合には、バラシングスイッチ(図示せず)を介して放電する。
 蓄電モジュール装置21は、2つの蓄電モジュール20Aと20BをサービスディスコネクトSD-SWで接続して構成される。
 各蓄電モジュール20A、20Bの各電池セルは、図1に二点鎖線で図示するように回路基板350に形成された各電圧検出用の配線301に接続されている。回路基板350には、コネクタ401が設けられており、各電圧検出用の配線301は、コネクタ401を介して電池制御装置100に接続されている。
 以下、蓄電モジュール20A、20Bの構造について説明する。但し、蓄電モジュール20A、20Bは、基本的には、同じ機能および構造を有するので、代表として、蓄電モジュール20として説明することとする。
 図2は、本発明の一実施の形態としての蓄電モジュールの外観斜視図であり、図3は、図2に図示された蓄電モジュールを側面から観た全体側面図である。
 蓄電モジュール20は、8個の電池セル320を備えている。各電池セル320は、例えば、角形リチウムイオン二次電池であり、全体として扁平形の直方体形状を有する。電池セル320は、電池容器321と、この電池容器321の外部に突き出す正極外部端子331および負極外部端子341を備えている。
 電池セル320は、正極外部端子331と負極外部端子341とを、交互に逆向きにして、換言すれば、互いに逆極性の外部端子を対向させて、幅広い面を密着させた状態で配列されている。
 隣り合う正・負極の外部端子331、341は、バスバー361により接続されている。この場合、1個の電池セル320の正極外部端子331と負極外部端子341とは、それぞれ、異なる電池セル320の負極外部端子341と正極外部端子331に接続されており、8個の電池セルはすべて直列に接続されている。直列に接続された最初の電池セル320の負極外部端子341と最後の電池セル320の正極外部端子331とは、バスバー361により接続されてはおらず、後述する如く、電圧検出用の配線301に、直接、接続されている。
 バスバー361上には、回路基板350が配置されている。回路基板350の上面には、複数の電圧検出用の配線301、温度検出用の配線302が形成され、また、配線301、302が接続されたコネクタ401が設けられている。
 電圧検出用の配線301は、図示はしないが、マルチプレクサを介して作動増幅器に接続されている。マルチプレクサにより、順次、電池セル320との接続を切換えて作動増幅器により各電池セル320の電圧が検出される。検出された各電池セル32の電圧は、A/D変換回路においてデジタル値に変換されてマイコン30の記憶部に保持される。
 1つのバスバー361により接続された正極外部端子331と負極外部端子341とは同電位である。そこで、電圧検出用の配線301は、バスバー361により接続された外部端子毎に対応して設けられている。
 本実施形態では、各負極外部端子341に対応して電圧検出用の配線301を形成した場合で例示している。
 回路基板350には、各負極外部端子341に対応してランド351が形成されている。負極外部端子341および正極外部端子331は、外周にねじ部が形成されたボルト状の部材であり、それぞれ、ナット359により、回路基板350に固定されている。
 回路基板350には、負極外部端子341に対応してランド351が形成されており、ナット359を締結することにより、負極外部端子341はナット359を介してランド351に熱的および電気的に接続される。
 蓄電モジュール20のほぼ中央部に配置された電池セル320の負極外部端子341および蓄電モジュール20の配列の最後に位置する電池セル320の正極端子331に対応して、ランド351とは異なる形状のランド352が形成されている。
 ランド352は、回路基板350の中央側に向かって延出された突出部353を有する。ランド352の突出部353上には、突出部353を跨いで温度センサ(温度検出器)381が実装されている。ランド352の突出部353には電圧検出用の配線301が接続されている。また、温度センサ381の一対の接続端子には、温度検出用の配線302が接続されている。温度検出用の配線302の他端側は、コネクタ401に接続されている。
 図4は、図2に図示された蓄電モジュール20のIV-IV線に沿う切断拡大断面図である。
 電池セル320は、角形扁平形状の電池容器321を有する。電池容器321は、上部に開口を有する電池缶321aと、この電池缶321aの開口部を塞いで、電池缶321aにレーザ溶接等により接合された蓋321bとから構成される。蓋321bは、例えば、アルミニウムにより形成される。
 蓋321bには、正極外部端子331または負極外部端子341に接続される電極接続板323を挿通する貫通孔が形成されている。貫通孔には、中央部に開口部を有する絶縁部材325が嵌合され、この絶縁部材325の貫通孔に電極接続板323が嵌合している。
 電池容器321の内部には捲回電極群322が収容されている。捲回電極群322は、図示はしないが、正極電極と負極電極とをセパレータを介在して扁平状に捲回して形成されたものである。
 リチウムイオン二次電池の場合、正極電極は、例えば、アルミニウム箔等からなる正極金属箔の両面に正極合剤層が塗工されたものである。正極合剤層は、一側縁に、正極金属箔が露出された正極合剤未処理部が形成されるように塗工されている。
 負極電極は、銅箔等からなる負極金属箔の両面に負極合剤層が塗工されたものである。負極合剤層は、正極合剤未処理部が配置された側縁と対向する側縁である他側縁に、負極金属箔が露出された負極合剤未処理部が形成されるように塗工されている。
 正極合剤は、正極活物質としてマンガン酸リチウム(化学式LiMn)100重量部に対し、導電材として10重量部の鱗片状黒鉛と結着剤として10重量部のPVDFとを添加し、これに分散溶媒としてNMPを添加、混練して作製する。この正極合剤を厚さ20μmのアルミニウム箔の両面に正極合剤未処理部を残して塗布する。その後、乾燥、プレス、裁断してアルミニウム箔を含まない正極活物質塗布部の厚さ90μmの正極電極を得る。
 負極合剤は、負極活物質として非晶質炭素粉末100重量部に対して、結着剤として10重量部のポリフッ化ビニリデン(以下、PVDFという。)を添加し、これに分散溶媒としてN-メチルビロリドン(以下、NMPという。)を添加、混練して作製する。この負極合剤を厚さ10μmの銅箔の両面に負極合剤未処理部を残して塗布する。その後、乾燥、プレス、裁断して銅箔を含まない負極活物質塗布部の厚さ70μmの負極電極を得る。
 電池容器321内には、また、非水電解液が注入されている。非水電解液としては、例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)の体積比1:1:1の混合溶液中に六フッ化リン酸リチウムを1mol/Lとなるように溶解した非水電解液を用いる。
 一方の電極接続板323には、正極集電板327aがかしめ等により蓋321bに固定されている。正極集電板327aはアルミニウム等により形成されている。
 他方の電極接続板323には、負極集電板327bがかしめ等により蓋321bに固定されている。負極集電板327bは銅等により形成されている。
 捲回電極群322は、一側縁側において、捲回された正極電極の正極合剤未処理部が積層され、また一側縁側と反対側の他側縁側において、負極合剤の負極合剤未処理部が積層されている。
 正極集電板327aおよび負極集電板327bは、蓋321bに取り付けられた取付部分から、ほぼ垂直方向に折曲され、さらに電池セル320の厚さ方向における中央部側に傾斜されたうえ、中央部において、再度、取付部に垂直な方向に屈曲された形状を有する。この中央部において、正極集電板327aは正極合剤未処理部に、負極集電板327bは負極合剤未処理部に超音波溶接等により接合されている。
 正・負極の集電板327a、327bおよび電極接続板323は、絶縁部材325によって、蓋321bとは絶縁されている。
 各電極接続板323上には、外周にねじ部が形成されたそれぞれ、正極外部端子331または負極外部端子341が接続されている。この接続は、正極外部端子331または負極外部端子341と各電極接続板323とを、直接または導電接続板(図示せず)を介してかしめることにより行うことができる。
 正極外部端子331および負極外部端子341は、それぞれ、径大部331a、341aを有する。
 隣り合う正極外部端子331および負極外部端子341は、バスバー361により接続される。バスバー361には正極外部端子331および負極外部端子341を挿通する貫通孔が形成されている。この貫通孔を、正極外部端子331および負極外部端子341に挿通して、正・負極の外部端子331、341の径大部331a、341aにTIG(Titan Inert Gas)溶接等のアーク溶接によりバスバー361を接合する。
[電圧検出用回路基板]
 バスバー361上には、電圧検出用の回路基板350が実装される。
 図5は、電圧検出用の回路基板350の上面側の平面図であり、図6は、蓄電モジュール20の上面側の平面図である。以下の説明では、図4と共に図5および図6を参照する。
 回路基板350には、負極外部端子341に対応してランド351が形成されている。また、蓄電モジュール20のほぼ中央部に配置された電池セル320の負極外部端子341と、蓄電モジュール20の配列の最後に位置する電池セル320の正極端子331とに対応してランド352が形成されている。回路基板350には、正極外部端子331または負極外部端子341を挿通する貫通孔355が形成されている。
 正極外部端子331および負極外部端子341は、回路基板350の貫通孔355を挿通して回路基板350の上方に突き出される。この突き出された部分にナット359を螺合し、回路基板350とバスバー361とを締結する。これにより、8個の電池セル320と回路基板350とが一体化される。
 この状態では、負極側においては、捲回電極群322の負極合剤未処理部、負極集電板327b、電極接続板323、負極外部端子341、ナット359およびランド351または352の経路で熱的および電気的な接続がなされる。また、蓄電モジュール20の配列の最後に位置する電池セル320の正極端子331に対応して形成されたランド352には、捲回電極群322の正極合剤未処理部、正極集電板327a、電極接続板323、正極外部端子331、ナット359およびランド352の経路で熱的および電気的な接続がなされる。
 図5に図示されるように、回路基板350に設けられたランド352には、ナット359が締結される部分よりも幅狭の突出部353が形成されている。回路基板350における突出部353の幅方向の両側には、パッド354が設けられている。回路基板350に形成された温度検出用の配線302は、各パッド354とコネクタ401を接続する。ランド352の突出部353上には、熱伝導性の高いパテまたは接着シートで構成された熱伝導部材362が形成されている。熱伝導部材362としては、例えば、シリコーン系樹脂等を用いることができる。
 熱伝導部材362上には、温度センサ381が実装される。温度センサ381は、チップ型であり、一対の接続端子381a、381bが、それぞれ、パッド354に対応するように、ランド352の突出部353を幅方向に跨いだ状態で配置される。そして、半田付けにより、一対の接続端子381a、381bが、それぞれ、パッド354に半田付けされる。熱伝導部材362は、ランド352と温度センサ381との間に空気が介在されることにより熱伝導性が低下するのを防止する作用を有する。
 このようにして形成された蓄電モジュール20の上面側からの平面図が図6に図示されている。
 本実施形態における蓄電モジュール20では、隣接する電池セル320の正極外部端子331と負極外部端子341とがバスバー361により接続されている。各負極外部端子341は回路基板350に設けられたランド351または352を介して電圧検出用の配線301に接続されている。また、蓄電モジュール20の配列の最初の電池セル320の負極外部端子341と最後の電池セル320の正極外部端子331とは、回路基板350に設けられた電圧検出用の配線301に直接接続されている。
 従って、各電池セルの電圧を検出して、電圧に関する信号を、電池制御装置100を介してマイコン30に入力し、各電池セル320の充放電を制御し、電池セル320間の電圧のばらつきを小さくすることができる。
 また、本実施形態における蓄電モジュール20では、回路基板350に形成されたランド352に温度センサ381を実装している。ランド352には各電池セル320の温度が、負極外部端子341、ナット359を介して伝達されるため、温度センサ381により各電池セル320の温度を検出することができる。温度センサ381により検出された温度に関する信号は、回路基板350に形成された温度検出用の配線302から電池制御装置100を介してマイコン30に入力される。マイコン30では、入力された各電池セル320の温度、または蓄電モジュール20の平均温度に基づいて、図示はしないが、冷却用のファンの回転数または冷却水の供給量を調整するドライバーおよびポンプ回転数を制御することができる。
 本実施形態における蓄電モジュール20では、上記のように、回路基板350に形成されたランド352に温度センサ381を実装している。ランド352および温度検出用の配線302は同一の回路基板350に形成されている。このため、組立性が良好であり、生産性を向上することができる。
 本実施形態における蓄電モジュール20では、ランド352に電圧検出用と温度検出用との機能を兼用させている。このため、検出温度が正確になり、かつ、回路基板350の面積を小さくすることができる。
 本実施形態における蓄電モジュール20では、チップ型の温度センサ381を回路基板350に実装している。このため、回路基板アセンブリを小さくすることができ、保管・運搬が容易となり、かつ、能率も向上する。
 本実施形態における蓄電モジュール20では、チップ型の温度センサ381とランド352の突出部353との間に熱伝導部材362を介在させている。このため、ランド352と温度センサ381との間に空気が介在されることを防止し、電池セル320の温度を正確に検出することができる。
 --実施形態2-
 図7は、本発明の実施形態2としての蓄電モジュールを構成する電池セルの正面図であり、図8は、本発明の蓄電モジュールの実施形態2を示す全体側面図である。
 実施形態2は、バスバーに回路基板のランドに接合する接合部位を持たせた構造としたものである。
 以下、図面と共に本発明の実施形態2に係る蓄電モジュールを説明するが、実施形態1と異なる構成を主体に説明することとし、実施形態1と同一の構成については、対応する部材に同一の符号を付し、その説明を、適宜、省略する。
 実施形態2における蓄電モジュール500も、8個の電池セル510を備えたものとして例示されている。
 電池セル510においては、電池容器321の蓋321bから、絶縁部材325により絶縁されて突き出して形成された正極外部端子520および負極外部端子530は、ボルト状ではなく、平坦な板状部材で形成されている。
 1個の電池セル510の正極外部端子520と負極外部端子530とは、それぞれ、バスバー540により、異なる電池セル510の負極外部端子530と正極外部端子520に接続されている構造は実施形態1と同様である。
 しかし、回路基板550に形成される貫通孔は、負極外部端子530と正極外部端子520のそれぞれに対応するようには形成されておらず、一対の正・負極の外部端子320,330に対して1つの貫通孔が形成されている。
 その貫通孔にバスバー540に形成された突起部542が挿通され、回路基板550の上方に突き出している。
 図9は、隣接する一対の電池セルにおける正・負極端子付近の拡大断面図であり、後述する図13に図示された蓄電モジュール500のIX-IX線に沿う切断拡大断面図である。
 正極外部端子520および負極外部端子530は、それぞれ、正・負極の集電板327a、327bを固定する下部と、平坦な外面を有する上部とを有する。
 正極外部端子520および負極外部端子530の各上部には、バスバー540の本体部541が溶接される。バスバー540は、本体部541から垂直に起立された突起部542を有し、この突起部542が回路基板550に形成されたランド552または551に半田付けされる。図9において591は半田層である。
 図10は、バスバー540の外観斜視図である。
 バスバー540は、長手方向の中心に対して線対称の形状を有している。バスバー540の本体部541には、幅方向におけるほぼ中央に、長手方向に延出され、端部で外部に開通するスリット543が形成されている。各スリット543のほぼ中央には、円形の開口544が形成されている。本体部541の中央部における一側縁側に、本体部541に対してほぼ垂直に起立された突起部542が形成されている。
 バスバー540は、板状部材を、プレス加工して形成することができる。バスバー540の突起部542は、起立片として成形され、上面は、細長い矩形形状を有している。
 図12は、実施形態2の電圧検出用の回路基板の平面図であり、図13は、図8に図示された蓄電モジュール500を上方から観た平面図である。
 回路基板550には、隣接する電池セル510の境界部に対応する位置に、平面視で細長い矩形形状の貫通孔561が形成されている。貫通孔561は、蓄電モジュール500の配列の最初の電池セル510の負極外部端子530と最後の電池セル510の正極外部端子520に対応する位置にも形成されている。
 バスバー540の突起部542は、回路基板550の貫通孔561に嵌合される。貫通孔561およびバスバー540の突起部542は、長手方向に長い矩形形状をしているので、貫通孔561に嵌合した状態におけるがたつきを小さくすることができる。
 蓄電モジュール500の配列の最初の電池セル510の負極外部端子530と最後の電池セル510の正極外部端子520に対応する位置に形成された貫通孔561には、バスバー540とは異なる形状のバスバー540Aが嵌合される。
 図11は、バスバー540Aの外観斜視図である。
 バスバー540Aは、正・負極の外部端子520、530の一方のみに接合されるものである。このため、バスバー540の長手方向のほぼ半分を切り取ったような形状を有している。ただし、バスバー540Aにおける突起部542は、バスバー540と同一の形状・寸法を有している。このため、回路基板550に形成される貫通孔561は、すべて同一の形状・寸法とすることができ、汎用性をもたせることができる。
 バスバー540、540Aは、正極外部端子520または負極外部端子530にTIG溶接等のアーク溶接により接合される。
 図10および図11において、正・負極の外部端子520、530に溶接される溶接部位wを点線で示す。各正・負極の外部端子520、530には、4箇所で溶接される。各溶接部位wは、幅方向においてはスリット543がほぼ中心とする位置に、また、長手方向においては、円形の開口544がほぼ中心となる位置に位置づけられる。
 スリット543および円形の開口544の機能は、バスバー540、540Aと正・負極の外部端子520、530との溶接を良好なものとすることにある。アーク溶接等の溶接において、溶接を良好に行うためには、溶接時の熱エネルギーが被溶接体の溶接部位の周囲に分散せず、溶接部位に集中させるようにすることが重要である。
 バスバー540、540Aには、各溶接部位wの間にスリット543および円形の開口544が形成されており、バスバー540、540Aに放射された溶接用の熱エネルギーは、スリット543および円形の開口544により、周囲への熱伝導が遮断される。
 このため、バスバー540、540Aに蓄熱された熱は、直下に配置された正・負極の外部端子520、530に伝導される。すなわち、熱エネルギーは、溶接部位wに集中し、周囲に比し、この溶接部位wを高温にして溶融することになり、良好な接合が行われる。
 図12に図示されるように、回路基板550の各貫通孔561の周囲には、平面視で矩形形状のランド551が形成されている。また、図12に図示された回路基板550のほぼ中央部における一方の側縁および一つの角部付近に位置する貫通孔561の周囲には、ランド551とは異なる形状のランド552が形成されている。
 ランド552は、実施形態1に示したランド352と同様、回路基板550の中央側に向かって延出された突出部553を有する。突出部553上には、熱伝導部材362が形成されている。
 回路基板550における突出部553の幅方向における両側には、パッド554が形成されている。
 各ランド551には電圧検出用の配線301が接続されている。また、ランド352の突出部553の先端部にも、電圧検出用の配線301が接続されている。各パッド554には、温度検出用の配線302が接続されている。
 図13に図示されるように、回路基板550の貫通孔561には、バスバー540の突起部542が嵌合され、この突起部542がランド551または552に半田付けされる。
この場合、蓄電モジュール500の配列の最初の電池セル510の負極外部端子530と最後の電池セル510の正極外部端子520に対応して形成された貫通孔561には、バスバー540Aの突起部542が嵌合される。バスバー540Aの突起部542も、ランド551または552に半田付けされる。
 ランド552の突出部553上に形成された熱伝導部材362上にチップ型の温度センサ381が搭載され、温度センサ381の一対の接続端子381a、381bがパッド554に半田付けされる。
 本発明の実施形態2における蓄電モジュール500では、隣接する電池セル510の正極外部端子520と負極外部端子530とがバスバー540により接続されている。各負極外部端子530は回路基板550に設けられたランド551または552を介して電圧検出用の配線301に接続されている。また、蓄電モジュール500の配列の最初の電池セル510の負極外部端子530と最後の電池セル510の正極外部端子520とは、回路基板550に設けられた電圧検出用の配線301に直接接続されている。
 従って、各電池セルの電圧を検出して、電圧に関する信号を、電池制御装置100を介してマイコン30に入力し、各電池セル510の充放電を制御し、電池セル510間の電圧のばらつきを小さくすることができる。
 本発明の実施形態2における蓄電モジュール500では、回路基板550に形成されたランド552に温度センサ381を実装している。ランド552には各電池セル510の温度が、正・負極の外部端子520、530からバスバー540を介して伝達されるため、温度センサ381により一対の電池セル320の温度を検出することができる。従って、実施形態1の場合と同様に、マイコン30により、入力された各電池セル510の温度、または蓄電モジュール500を制御することができる。
 本発明の実施形態2における蓄電モジュール500では、ランド552に電圧検出用と温度検出用との機能を兼用させている。このため、検出温度が正確になり、かつ、回路基板550の面積を小さくすることができる。
 本発明の実施形態2における蓄電モジュール500では、チップ型の温度センサ381を回路基板550に実装している。このため、回路基板アセンブリを小さくすることができ、保管・運搬が容易となり、かつ、能率も向上する。
 本発明の実施形態2における蓄電モジュール500では、隣接する電池セル510の正極外部端子520と負極外部端子530とを接合するバスバー540が、直接、回路基板550のランド551または552に固定される。このため、実施形態1の場合よりも部品点数を削減することができ、また、生産性を向上することができる。
 なお、上記各実施形態においては、蓄電モジュール20、500の電池セル320、510の温度を2箇所の部位で検出する場合で例示した。しかし、回路基板350、550に形成するランドをすべて352または552のように、温度センサ381を実装するための突出部353、553を有する形状としてもよい。
 このようにして、各電池セル320、510の温度を検出すれば、バスバーで接続された一対の電池セル320、510毎に温度を監視して、管理する他、電池制御装置100において、蓄電モジュール20、500の平均温度を算出し、蓄電モジュール20、500毎に温度を管理することも可能となり、より信頼性が高い制御をすることが可能となる。
 バスバーで接続された一対の電池セル320、510のすべての温度を検出する構造の場合、全体では高価となるため、蓄電モジュール毎に、予め、最高温度および最低温度となる位置の電池セル320、510を試験等により確認しておき、その位置の電池セル320、510の温度を検出するようにしてもよい。
 上記各実施形態においては、温度を検出するためのランド352、552を回路基板350、550の上面側に設けた場合で例示した。しかし、ランド352、552を回路基板350、550の下面にも設け、上下のランド352、552を熱伝導部材で接続するスルーホール構造としてもよい。このようにすれば、電池セル320、510からランドまでの熱伝導性を一層向上することができる。
 上記各実施形態においては、ランド352、552が電圧検出用の機能と、温度検出用の機能とを兼用するものとして例示した。しかし、温度検出用のランドを、電圧検出用のランドとは分離して形成するようにしてもよい。この一例として、回路基板の一面に温度検出用のランドおよび配線を形成し、回路基板の他面に電圧検出用のランドおよび配線を形成する構造とする場合が例示される。すべての電池セル320、510の温度を検出するようにする場合には、配線が多くなり、回路基板が大型化されるので、このような両面回路基板とすることにより対応を図ることができる。
 上記各実施形態においては、ランド352、552と電池セル320、510との接続は、締結部材または半田付けによる構造として例示した。しかし、この方法に限られるものではなく、種々の方法を適用することができる。例えば、実施形態1の場合には、正・負極の外部端子331、341に、実施形態2の場合にはバスバー540の突起部542に、フック部を設け、このフック部をランド352、552に当接させるようにしてもよい。この場合、フック部を折曲してランド352、552に押し付けるようにしてもよい。
 上記各実施形態に示した蓄電モジュール20、500を、コンピュータシステムやサーバシステムなどに用いられる無停電電源装置、自家用発電設備に用いられる電源装置など、電動車両以外の電源装置を構成する蓄電装置にも適用することもできる。 
 その他、本発明の蓄電モジュールは、発明の趣旨の範囲内において、種々、変形して構成することが可能であり、要は、正・負極の電極を有する電極群と、正・負極の電極に接続された正・負極の集電板とが電池容器内に収容され、正・負極の集電板に接続された正・負極の外部端子が電池容器の外部に露出して設けられた複数の電池セルと、電池セルの正極または負極の外部端子に接続された温度検出用の配線を有する回路基板と、配線に熱結合され、電池セルの温度を検出する温度検出器とを備えているものであればよい。
 
 

Claims (9)

  1.  正・負極の電極を有する電極群と、前記正・負極の電極に接続された正・負極の集電板とが電池容器内に収容され、前記正・負極の集電板に接続された正・負極の外部端子が前記電池容器の外部に露出して設けられた複数の電池セルと、
     前記電池セルの前記正極または負極の外部端子に接続された温度検出用の配線を有する回路基板と、
     前記配線に熱結合され、前記電池セルの温度を検出する温度検出器とを備える蓄電モジュール。
  2.  請求項1記載の蓄電モジュールにおいて、前記配線はランドを有し、前記温度検出器は、前記ランドに熱結合されている蓄電モジュール。
  3.  請求項1または2記載の蓄電モジュールおいて、前記ランドに前記電池セルの電圧検出用の配線が形成されている蓄電モジュール。
  4.  請求項2乃至3に記載の蓄電モジュールにおいて、さらに、隣接する前記電池セルの逆極性の外部端子同士を接続するバスバーを有し、前記回路基板は、前記正・負極の外部端子を挿通する貫通孔を有し、前記ランドは前記貫通孔の周囲に設けられている蓄電モジュール。
  5.  請求項2または3に記載の蓄電モジュールにおいて、さらに、隣接する前記電池セルの逆極性の外部端子同士を接続するバスバーを有し、前記回路基板は、前記バスバーに形成された突起部を挿通する貫通孔を有し、前記ランドは前記貫通孔の周囲に設けられている蓄電モジュール。
  6.  請求項5に記載の蓄電モジュールにおいて、前記バスバーは、前記正・負極の外部接続端子に溶接される溶接領域を有し、前記各溶接領域は複数の溶接部位を有し、前記バスバーは、前記溶接部位間に設けられたスリットを有する蓄電モジュール。
  7.  請求項5または6に記載の蓄電モジュールにおいて、前記バスバーの突起部と前記ランドとが半田付けされている蓄電モジュール。
  8.  請求項2~6のいずれか1項に記載の蓄電モジュールにおいて、前記温度検出器は、前記ランド上に熱伝導性樹脂を介して配置され、前記ランドは、前記温度検出器が配置される部分が前記外部端子に接続される部分よりも幅狭に形成されている蓄電モジュール。
  9.  請求項1~8のいずれか1項に記載の蓄電モジュールにおいて、前記配線と前記温度検出器とは熱伝導性樹脂を介して熱結合されている蓄電モジュール。
PCT/JP2011/058540 2011-04-04 2011-04-04 蓄電モジュール WO2012137289A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/058540 WO2012137289A1 (ja) 2011-04-04 2011-04-04 蓄電モジュール
US14/009,454 US8962168B2 (en) 2011-04-04 2011-04-04 Storage battery module
JP2013508651A JP5646046B2 (ja) 2011-04-04 2011-04-04 蓄電モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/058540 WO2012137289A1 (ja) 2011-04-04 2011-04-04 蓄電モジュール

Publications (1)

Publication Number Publication Date
WO2012137289A1 true WO2012137289A1 (ja) 2012-10-11

Family

ID=46968730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058540 WO2012137289A1 (ja) 2011-04-04 2011-04-04 蓄電モジュール

Country Status (3)

Country Link
US (1) US8962168B2 (ja)
JP (1) JP5646046B2 (ja)
WO (1) WO2012137289A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887574A (zh) * 2012-12-21 2014-06-25 三菱重工业株式会社 电池状态监视装置以及具备该电池状态监视装置的电池模块
WO2014097896A1 (ja) * 2012-12-19 2014-06-26 三菱重工業株式会社 電池状態監視装置及びこれを備えた電池モジュール
EP2842797A1 (en) * 2013-08-30 2015-03-04 Samsung SDI Co., Ltd. Battery pack
US20150064526A1 (en) * 2012-03-30 2015-03-05 Robert Bosch Gmbh Temperature sensor and method for detecting a temperature of a battery cell
WO2016067528A1 (ja) * 2014-10-27 2016-05-06 パナソニックIpマネジメント株式会社 電池内蔵機器
JP2016513337A (ja) * 2013-01-30 2016-05-12 ジェンサーム インコーポレイテッドGentherm Incorporated 熱電ベースの熱管理システム
JP2017168464A (ja) * 2017-06-28 2017-09-21 日立マクセル株式会社 電池パック
JP2018523269A (ja) * 2015-06-25 2018-08-16 ティーイー・コネクティビティ・コーポレイションTE Connectivity Corporation 温度監視アセンブリを有する電池モジュール
US10236547B2 (en) 2013-10-29 2019-03-19 Gentherm Incorporated Battery thermal management systems including heat spreaders with thermoelectric devices
JP2019046791A (ja) * 2017-09-06 2019-03-22 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited 電池モジュール
US10337770B2 (en) 2011-07-11 2019-07-02 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
CN110313081A (zh) * 2017-02-23 2019-10-08 松下知识产权经营株式会社 电池模块
US10686232B2 (en) 2013-01-14 2020-06-16 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
US10700393B2 (en) 2014-09-12 2020-06-30 Gentherm Incorporated Graphite thermoelectric and/or resistive thermal management systems and methods
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
US11264655B2 (en) 2009-05-18 2022-03-01 Gentherm Incorporated Thermal management system including flapper valve to control fluid flow for thermoelectric device
US11370369B1 (en) * 2020-12-29 2022-06-28 Lear Corporation Header terminal alignment assembly
WO2022249574A1 (ja) * 2021-05-26 2022-12-01 株式会社オートネットワーク技術研究所 センサユニットおよびセンサユニット付電池配線モジュール
US11993132B2 (en) 2018-11-30 2024-05-28 Gentherm Incorporated Thermoelectric conditioning system and methods

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015096066A1 (zh) * 2013-12-25 2015-07-02 深圳市依思普林科技有限公司 电动汽车的电池管理系统及其控制方法
ES2555672B1 (es) * 2014-06-03 2016-11-03 Dachs Electrónica, S. A. Elemento de batería que comprende una pluralidad de celdas de batería dispuestas en línea
CN104064720A (zh) * 2014-07-09 2014-09-24 深圳市格瑞普电池有限公司 多电压输出的锂离子电池组
JP2016090286A (ja) * 2014-10-30 2016-05-23 矢崎総業株式会社 温度検出体の取付構造
US10301801B2 (en) 2014-12-18 2019-05-28 Delta Faucet Company Faucet including capacitive sensors for hands free fluid flow control
US11078652B2 (en) 2014-12-18 2021-08-03 Delta Faucet Company Faucet including capacitive sensors for hands free fluid flow control
CN104953642A (zh) * 2015-03-27 2015-09-30 广东欧珀移动通信有限公司 充电电池组件和终端设备
KR102742694B1 (ko) * 2016-05-30 2024-12-16 삼성에스디아이 주식회사 배터리 모듈
KR102059612B1 (ko) 2016-08-24 2019-12-26 주식회사 엘지화학 전지모듈 내에서 공간을 적게 점유하는 상호 연결 부재 및 이를 포함하는 전지모듈
GB2554747A (en) * 2016-10-07 2018-04-11 Univ Of The Western Cape Battery balancing component
CN110431686B (zh) * 2017-03-15 2023-01-31 株式会社杰士汤浅国际 蓄电装置
US11670813B2 (en) * 2019-04-01 2023-06-06 Applied Thermoelectric Solutions, LLC Electrically insulative and thermally conductive parallel battery cooling and temperature control system
WO2021075165A1 (ja) * 2019-10-17 2021-04-22 株式会社オートネットワーク技術研究所 配線モジュール
CN114976495A (zh) * 2021-02-19 2022-08-30 三星Sdi株式会社 连接器的热保护
WO2023108570A1 (zh) * 2021-12-16 2023-06-22 宁德时代新能源科技股份有限公司 电池及其制造方法、用电设备
WO2024207555A1 (zh) * 2023-04-03 2024-10-10 惠州亿纬锂能股份有限公司 温度电压采集集成模块及电池模组
CN117013210B (zh) * 2023-10-07 2023-12-08 江苏华友能源科技有限公司 一种温感与电感集成式汇流排以及电池包内温度采集方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124305A (ja) * 2000-10-13 2002-04-26 Matsushita Electric Ind Co Ltd 電池パック
JP2005078858A (ja) * 2003-08-28 2005-03-24 Sanyo Electric Co Ltd パック電池
JP2006073362A (ja) * 2004-09-02 2006-03-16 Sanyo Electric Co Ltd 車両用の電源装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246074A (ja) 2001-02-13 2002-08-30 Japan Storage Battery Co Ltd 組電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124305A (ja) * 2000-10-13 2002-04-26 Matsushita Electric Ind Co Ltd 電池パック
JP2005078858A (ja) * 2003-08-28 2005-03-24 Sanyo Electric Co Ltd パック電池
JP2006073362A (ja) * 2004-09-02 2006-03-16 Sanyo Electric Co Ltd 車両用の電源装置

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11264655B2 (en) 2009-05-18 2022-03-01 Gentherm Incorporated Thermal management system including flapper valve to control fluid flow for thermoelectric device
US10337770B2 (en) 2011-07-11 2019-07-02 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
US20150064526A1 (en) * 2012-03-30 2015-03-05 Robert Bosch Gmbh Temperature sensor and method for detecting a temperature of a battery cell
US9853333B2 (en) * 2012-03-30 2017-12-26 Robert Bosch Gmbh Temperature sensor and method for detecting a temperature of a battery cell
EP2937930A4 (en) * 2012-12-19 2016-08-03 Mitsubishi Heavy Ind Ltd DEVICE FOR MONITORING THE BATTERY STATUS AND BATTERY MODULE THEREWITH
WO2014097896A1 (ja) * 2012-12-19 2014-06-26 三菱重工業株式会社 電池状態監視装置及びこれを備えた電池モジュール
JP2014139560A (ja) * 2012-12-19 2014-07-31 Mitsubishi Heavy Ind Ltd 電池状態監視装置及びこれを備えた電池モジュール
CN104704674A (zh) * 2012-12-19 2015-06-10 三菱重工业株式会社 电池状态监视装置及具备该电池状态监视装置的电池模块
JP2014122855A (ja) * 2012-12-21 2014-07-03 Mitsubishi Heavy Ind Ltd 電池状態監視装置及びこれを備えた電池モジュール
CN103887574A (zh) * 2012-12-21 2014-06-25 三菱重工业株式会社 电池状态监视装置以及具备该电池状态监视装置的电池模块
US9337518B2 (en) 2012-12-21 2016-05-10 Mitsubishi Heavy Industries, Ltd. Battery state monitoring device and battery module having the same
US10686232B2 (en) 2013-01-14 2020-06-16 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
US10270141B2 (en) 2013-01-30 2019-04-23 Gentherm Incorporated Thermoelectric-based thermal management system
JP2016513337A (ja) * 2013-01-30 2016-05-12 ジェンサーム インコーポレイテッドGentherm Incorporated 熱電ベースの熱管理システム
US10784546B2 (en) 2013-01-30 2020-09-22 Gentherm Incorporated Thermoelectric-based thermal management system
KR101720614B1 (ko) * 2013-08-30 2017-03-28 삼성에스디아이 주식회사 배터리 팩
EP2842797A1 (en) * 2013-08-30 2015-03-04 Samsung SDI Co., Ltd. Battery pack
KR20150026112A (ko) * 2013-08-30 2015-03-11 삼성에스디아이 주식회사 배터리 팩
CN104425792B (zh) * 2013-08-30 2018-09-28 三星Sdi株式会社 电池组
CN104425792A (zh) * 2013-08-30 2015-03-18 三星Sdi株式会社 电池组
US10236547B2 (en) 2013-10-29 2019-03-19 Gentherm Incorporated Battery thermal management systems including heat spreaders with thermoelectric devices
US10700393B2 (en) 2014-09-12 2020-06-30 Gentherm Incorporated Graphite thermoelectric and/or resistive thermal management systems and methods
US10476318B2 (en) 2014-10-27 2019-11-12 Panasonic Intellectual Property Management Co., Ltd. Battery-embedded device
WO2016067528A1 (ja) * 2014-10-27 2016-05-06 パナソニックIpマネジメント株式会社 電池内蔵機器
JP2018523269A (ja) * 2015-06-25 2018-08-16 ティーイー・コネクティビティ・コーポレイションTE Connectivity Corporation 温度監視アセンブリを有する電池モジュール
CN110313081A (zh) * 2017-02-23 2019-10-08 松下知识产权经营株式会社 电池模块
CN110313081B (zh) * 2017-02-23 2023-05-09 松下知识产权经营株式会社 电池模块
JP2017168464A (ja) * 2017-06-28 2017-09-21 日立マクセル株式会社 電池パック
JP2019046791A (ja) * 2017-09-06 2019-03-22 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited 電池モジュール
US11993132B2 (en) 2018-11-30 2024-05-28 Gentherm Incorporated Thermoelectric conditioning system and methods
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
US11370369B1 (en) * 2020-12-29 2022-06-28 Lear Corporation Header terminal alignment assembly
US20220203906A1 (en) * 2020-12-29 2022-06-30 Lear Corporation Header terminal alignment assembly
WO2022249574A1 (ja) * 2021-05-26 2022-12-01 株式会社オートネットワーク技術研究所 センサユニットおよびセンサユニット付電池配線モジュール
JP7486028B2 (ja) 2021-05-26 2024-05-17 株式会社オートネットワーク技術研究所 センサユニットおよびセンサユニット付電池配線モジュール

Also Published As

Publication number Publication date
US8962168B2 (en) 2015-02-24
JPWO2012137289A1 (ja) 2014-07-28
JP5646046B2 (ja) 2014-12-24
US20140023897A1 (en) 2014-01-23

Similar Documents

Publication Publication Date Title
JP5646046B2 (ja) 蓄電モジュール
JP5508923B2 (ja) 蓄電モジュール
JP5743356B2 (ja) バッテリー・モジュールとこれを含むバッテリーパック
KR101743696B1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
JP5976634B2 (ja) 電源装置及び電源装置を備える車両
US8410372B2 (en) Wiring board, stacked battery device, and vehicle having stacked battery device
JP5501286B2 (ja) 蓄電装置
JP5209019B2 (ja) 蓄電モジュールおよび蓄電装置
JP3899423B2 (ja) 薄型電池モジュール
KR101943493B1 (ko) 배터리 모듈 어셈블리 및 이를 포함하는 배터리 팩
KR20110013324A (ko) 배터리 시스템 및 이를 구비한 전동 차량
US10578650B2 (en) Shunt resistor for measuring current
JP2004071290A (ja) 自動車用電池
JP2015187910A (ja) 電池パック及びこれを備える電動車両並びに蓄電装置
JP2011216424A (ja) 蓄電モジュール
JP2008226744A (ja) 組電池
JP2010015931A (ja) 二次電池を用いた電源装置
WO2018113158A1 (zh) 智能电池保护板、智能电池及可移动平台
KR101443833B1 (ko) 신규한 구조의 외부 입출력 케이블 어셈블리 및 이를 포함하는 전지모듈 어셈블리
JP3832397B2 (ja) 薄型電池モジュール
JP5323645B2 (ja) 蓄電デバイス、蓄電モジュールおよび自動車
JP2005216631A (ja) 組電池
JP2010203848A (ja) 電池の監視装置
JP7291312B2 (ja) バスバーと電圧センシング部材との接続構造として非溶接方式構造を適用したバッテリーモジュール
JP2000277176A (ja) リチウム二次電池及び使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508651

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14009454

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862980

Country of ref document: EP

Kind code of ref document: A1