Nothing Special   »   [go: up one dir, main page]

WO2012132476A1 - 鉛蓄電池用格子、該格子を用いた正極板、極板群及び鉛蓄電池並びに鉛蓄電池用正極板の製造方法 - Google Patents

鉛蓄電池用格子、該格子を用いた正極板、極板群及び鉛蓄電池並びに鉛蓄電池用正極板の製造方法 Download PDF

Info

Publication number
WO2012132476A1
WO2012132476A1 PCT/JP2012/002286 JP2012002286W WO2012132476A1 WO 2012132476 A1 WO2012132476 A1 WO 2012132476A1 JP 2012002286 W JP2012002286 W JP 2012002286W WO 2012132476 A1 WO2012132476 A1 WO 2012132476A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
grid
electrode plate
lattice
positive electrode
Prior art date
Application number
PCT/JP2012/002286
Other languages
English (en)
French (fr)
Inventor
松濤 白
世龍 王
和成 安藤
佐々木 健浩
室地 省三
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012535477A priority Critical patent/JP5230845B2/ja
Publication of WO2012132476A1 publication Critical patent/WO2012132476A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/745Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lead-acid battery grid, a positive electrode plate using the grid, an electrode plate group, a lead-acid battery, and a method for producing a lead-acid battery positive electrode plate.
  • Lead-acid batteries have advantages such as low cost, stable output, and applicability to large-current discharge, and have been widely used in fields such as vehicle start-up, main power sources for electric vehicles or electric tools, and backup power sources.
  • the lead acid battery mainly includes an open type liquid lead acid battery and a sealed valve control type lead acid battery.
  • Valve controlled lead-acid batteries have the advantage of being maintenance-free and are therefore more widely used.
  • the valve-controlled lead-acid battery is composed of a positive electrode plate, a negative electrode plate, a separator, an electrolyte, a casing with a safety valve, and the like.
  • the positive electrode plate and the negative electrode plate are formed by filling an active material into an alloy lattice.
  • Lead-acid battery grids are mainly divided into two types: cast grids made by casting and expanded grids made by expanding.
  • the expanded lattice produced by the expanding process can not only reduce the material cost but also reduce the variation in weight as compared with the cast lattice produced by the casting process, and the productivity can be greatly improved.
  • Rotational (rotary) expanding methods and reciprocating (reciprocating) expanding methods are well known as methods for producing expanded lattices.
  • a metal sheet has a disk-shaped cutter and is carried in between a pair of rotating rollers to perform an expanding process. Since the lattice is subjected to high stress twice in the slit formation and stretching processes, the lattice lines at the node are easily broken, which adversely affects the life of the battery.
  • a metal sheet is intermittently carried into a mold having a pair of cutters, and slits arranged intermittently in the width direction are formed in the metal sheet by the reciprocating movement of the cutter. While forming one row at a time, the slits are pulled vertically downward by a cutter to form a mesh.
  • the grid line is not twisted regardless of the pressure at the nodes of the lattice, and therefore, a lead-acid battery manufactured using such an expanded lattice exhibits excellent life characteristics.
  • the reciprocating expand method has a drawback that the production speed is low.
  • a plurality of plate-like cutters are overlapped so as to be V-shaped at a predetermined interval, whereby a diagonal slit is formed in the length direction by one punching.
  • a method capable of forming a plurality of rows is disclosed. By this method, a rolled grid sheet having a fine mesh can be produced with high production efficiency.
  • a lead-acid battery used for an electric bicycle or the like that needs to be repeatedly subjected to deep discharge may require high-rate discharge even when the charge depth (SOC) is shallow. Under such use conditions, overdischarge tends to occur. In order to suppress a rapid drop in the positive electrode voltage during overdischarge, it is necessary to reduce the current collecting property of the positive electrode.
  • the outer frame does not exist at the edge of the expanded grid, the current collecting property is lower than that of the cast grid.
  • the active material tends to overflow from the edge of the lattice, the carrying amount is limited. Therefore, when an expanded lattice is used for both the positive electrode plate and the negative electrode plate of the lead storage battery, the battery capacity is low, the active material overflows, and an internal short circuit may occur.
  • Patent Document 2 discloses that the voltage drop during high-rate discharge can be improved by using an expanded grid for the positive electrode plate and a cast grid for the negative electrode plate.
  • Patent Document 3 discloses using an expanded lattice for the positive electrode and a cast lattice for the negative electrode in order to prevent the active material from overflowing from the positive electrode lattice and causing an internal short circuit.
  • the alloy lattice mainly has a function of supporting an active material and a current collecting function. If the adhesiveness between the lattice and the active material is insufficient, the active material is easily peeled off during the charge / discharge process. In addition, non-uniformity of current collection occurs inside the active material, and the active material far from the lattice is likely to deteriorate during overdischarge.
  • Patent Documents 4 to 7 the grid line width, grid line thickness, node cross section, grid thickness, mesh shape, and the like are optimized and designed. It is disclosed to avoid the corrosion and breakage of the wire, improve the adhesiveness of the active material, and improve the battery life characteristics. However, the cycle characteristics under high-rate discharge conditions are insufficient.
  • the main object of the present invention is to provide a lead-acid battery having an excellent cycle life even when high-rate discharge is repeated under a shallow depth of charge (SOC).
  • the lead-acid battery grid according to the present invention is a lead-acid battery grid composed of an expanded grid formed by a reciprocating method, where the width of the grid line of the expanded grid is W and the thickness of the expanded grid is T. / W is in the range of 1.5 to 1.9.
  • W / t is preferably in the range of 1.25 to 1.60, where t is the thickness of the expanded lattice.
  • P / T is in the range of 1.1 to 1.4, where P is the thickness of the positive electrode plate. It is preferable that it exists in.
  • (A) is the front view which showed typically the expanded lattice in one Embodiment of this invention
  • (b) is the figure which expanded a part of expanded lattice of (a)
  • (c) is 2B is a cross-sectional view taken along line AA in FIG.
  • (A) is the front view which showed typically the positive electrode plate in one Embodiment of this invention
  • (b) is a side view of a positive electrode plate
  • (c) is the thickness direction of a positive electrode plate. It is a fragmentary sectional view when cut along. It is a partially cutaway perspective view of a lead acid battery in one embodiment of the present invention. It is the table
  • both the positive electrode plate and the negative electrode plate can have a slightly longer battery life than the case where an expanded lattice or a cast lattice is used, but cannot reach a desired level.
  • the inventor of the present application pays attention to the design improvement of the positive electrode grid, and as a result of repeated studies for improving the adhesion between the active material and the grid, improving the high rate discharge characteristics of the battery, etc., the following knowledge was obtained. .
  • a shaping process is generally performed on a lattice-shaped sheet formed by an expanding process in order to easily perform a subsequent application process.
  • the grid sheet is pressed into a sheet shape thinner than the original lead sheet, thereby reducing the thickness of the grid and corroding near the node of the positive plate grid.
  • interval of the slit in an expanding process is made small, the width
  • Patent Document 6 and Patent Document 7 disclose that the interval between the slits is controlled to be equal to or less than the thickness of the lead sheet in order to reduce the weight of the lattice.
  • the present inventor has discovered the following.
  • the grid-like sheet obtained by the expanding process if the grid-like sheet is not pressed thinly and the bending degree of the expanded grid after shaping is controlled within a suitable range, an excellent lead paste Application property is obtained.
  • the lead paste is not easily deteriorated even when high rate discharge is repeatedly performed at a shallow depth of charge, and excellent high rate discharge cycle characteristics are obtained.
  • the present invention is a lead-acid battery grid composed of an expanded grid formed by a reciprocating system, where the width of the expanded grid line is W and the thickness of the expanded grid is T, T / W is in the range of 1.5 to 1.9. T / W is a ratio representing the degree of bending of the lattice.
  • the ratio W / t of the width W of the lattice line to the thickness t of the lattice line is preferably in the range of 1.25 to 1.60.
  • the thickness of the positive electrode plate is P
  • the thickness P of the positive electrode plate and the thickness T of the positive electrode plate is preferably in the range of 1.1 to 1.4.
  • the grid of the negative electrode plate is formed by a casting method. It preferably consists of a cast grid formed.
  • the manufacturing method of the positive electrode plate for lead acid batteries in the present invention is as follows.
  • step (1) the width direction of the lead sheet is such that T / W is in the range of 1.5 to 1.9, where W is the width of the expanded lattice line and T is the thickness of the expanded lattice.
  • step (2) the pitch between the pair of rollers and the roller pressure are adjusted.
  • the W / t is in the range of 1.25 to 1.60 according to the thickness of the lead sheet.
  • the interval of the slits in the width direction of the lead sheet is adjusted.
  • the coating amount of the lead paste is adjusted in step (3) so that P / T is in the range of 1.1 to 1.4.
  • the action of the lattice in the electrode plate is the support of the active material and the transmission of current between the active material and the terminal.
  • the grid is usually designed in a rectangular shape and has ears for connection to the bus bar.
  • the cast grid produced by the casting method has outer and inner and vertical grid lines, while the expanded grid produced by the expand method is formed by forming a slit on a lead sheet using a press die and then pulling it. This is a formed mesh sheet.
  • the expanded grid is lighter in weight and superior in uniformity, so that the productivity is higher.
  • the lattice of the present invention is an expanded lattice obtained by expanding a lead sheet by the reciprocating expanding method.
  • a lead sheet for example, a Pb alloy foil containing at least one of Ca and Sn can be used. In consideration of corrosion resistance and mechanical strength, it is preferable to use a Pb—Ca—Sn ternary alloy.
  • a reciprocating press mold having a pair of movable mold and fixed mold.
  • the movable mold (upper mold) has a plurality of continuous cutter parts, and these cutter parts are arranged in a V shape in the lead sheet conveyance direction (that is, the length direction).
  • a cutter portion is not provided at a position corresponding to the central portion in the vertical direction.
  • the fixed mold (lower mold) has a plurality of continuous rib portions, and the rib-like surfaces of the rib portions are provided at positions corresponding to the upper cutter portion.
  • ⁇ Fix the fixed mold and press the lead sheet from the top to the bottom of the movable mold.
  • the cutter part of the movable mold passes through the rib line between adjacent rib parts, it forms multiple intermittent slits on the lead sheet, and the tip of the cutter part continues to press downward, along the rib-shaped surface
  • the slit is widened in a direction perpendicular to the lead sheet surface.
  • the lead sheet is processed into a lattice-like sheet having a plurality of meshes by repeating the press while conveying the lead sheet along the length direction of the lead sheet.
  • the central part in the width direction of the lead sheet becomes a plain part without a mesh, and the part is formed by the cutting frame described later and the upper frame of the grid and the electrode plate. It becomes the ear.
  • the pitch between the pair of rollers and the roller pressure are controlled, and a small pressure is applied to the node portion, thereby increasing the height of the node portion.
  • the bending degree of the lattice is maintained as it is with little compression.
  • the corrosion resistance is excellent, the variation in the size of the lattice is small, and the variation in the thickness of the lattice is also reduced.
  • FIGS. 1A to 1C are diagrams schematically showing the expanded lattice 1 of the present invention obtained by the above method.
  • the expanded lattice 1 has a substantially rhombic mesh i formed by intersecting a plurality of lattice lines g, and each mesh i is surrounded by four lattice lines g.
  • the mesh i is connected by the node f.
  • the expanded lattice 1 is a plain portion in which the mesh i is not formed at the center in the width direction.
  • FIG. 1A only the lower part from the center of the expanded lattice 1 is shown. Since the other half has a symmetrical shape, the illustration is omitted.
  • FIG. 1B After expanding the slits cut out from the lead sheet by expanding, lattice lines g having a certain width and thickness are formed.
  • the width W of the grid line g is such that adjacent slits correspond to gaps in the width direction of the lead sheet (slit spacing), and the thickness t of the grid line g is Corresponds to the thickness.
  • the plane on which the grid line g is located is shown to coincide with the paper surface. However, in reality, the plane on which the grid line g is located has a certain inclination with respect to the paper surface.
  • FIG. 1C is a cross-sectional view taken along the line AA in FIG.
  • the grid line g having a width W has a bent zigzag shape.
  • the two lattice lines g overlap each other, the length of the overlapping portion is twice the width W of the lattice line g, and the thickness of the overlapping portion ((hatched portion) is the thickness t of the lattice line g.
  • the maximum height in the thickness direction of the entire lattice that is, the height in the thickness direction of the node f
  • the ratio (T / W) is defined as the degree of bending of the lattice.
  • the bending degree (T / W) of the lattice is controlled within the range of 1.5 to 1.9. can do.
  • the filling property of the lead paste as the active material is improved in the subsequent filling step.
  • the lead paste can be smoothly filled in each mesh of the grid, but also the lead paste can be filled higher than the height of the surface of the grid.
  • filling the lead paste higher than the height of the surface of the lattice is called “overfilling” of the lead paste.
  • an excellent applicability of lead paste can be obtained by increasing the bending degree (T / W) of the expanded lattice as compared with the conventional one.
  • the edge of the expanded lattice is not supported by the outer frame, so in order to avoid the active material from overflowing from the edge of the lattice, the amount of active material to be filled must be limited. If the applied active material layer is too thin, the capacity of the battery is limited, and the current collection of the grid becomes relatively excessive, which tends to cause deterioration of the active material. On the other hand, if the applied active material layer is too thick, the surface of the outer layer of the active material is too far from the lattice, the adhesiveness with the lattice is insufficient, and the current collection is not uniform in the active material. . As a result, the active material is liable to be peeled off at the end of discharge, which causes deterioration of the battery recycling life. Therefore, it is necessary to control the overfilling rate of the lead paste within an appropriate range.
  • the bending degree (T / W) of the lattice is preferably in the range of 1.5 to 1.9, more preferably in the range of 1.6 to 1.8, and 1.65. More preferably, it is in the range of ⁇ 1.75.
  • the degree of bending of the lattice is too small, the adhesion of the active material on the surface of the lead paste is poor, and peeling is easily caused when repeated deep discharges are performed, thereby shortening the cycle life of the battery.
  • the degree of bending of the lattice is too large, excess current collection occurs, the deterioration of the active material during overdischarge proceeds, and the cycle life of the battery is shortened.
  • a lattice having a preferred range of bending degree (T / W) can be manufactured using a reciprocating press mold without destroying the lattice node.
  • a characteristic of the reciprocating press is that it hardly compresses the nodes of the lattice, so that a lattice-like sheet having a high degree of bending can be produced.
  • a shaping mold with a small pressure applied to the node portion of the lattice is adopted. Therefore, the expanded lattice obtained after the shaping has a large degree of bending and the node portion hardly receives pressure. Therefore, high strength is maintained, corrosion becomes difficult, and battery life can be extended.
  • the magnitude of the bending degree (T / W) of the grating is determined by two elements, namely, the grating thickness T and the grating line width W.
  • the grating thickness T is mainly determined by the grating. Is related to the ratio of the thickness before the rolling of the sheet-like sheet and the thickness before and after the grid-like sheet is rolled in the shaping process.
  • the thickness of the grid-like sheet is such as the size of the mesh and the width W of the grid line. Determined by the element. Therefore, a desired bending degree (T / W) can be obtained by appropriately controlling process conditions in the expanding process and the shaping process.
  • the size of the mesh to be formed can be controlled by appropriately adjusting the downward stroke size or the slit length of the movable die of the reciprocating press die.
  • the interval of the slits on the lead sheet can be adjusted by adjusting the pitch of the rib-shaped surfaces of the fixed mold and the distance between the cutter parts of the movable mold.
  • the ratio of the thickness of the grid sheet before and after the grid sheet is rolled can be controlled by adjusting the pitch of the pair of rollers for rolling the grid sheet, the pressing force of the rollers, and the like.
  • the thickness of the lead sheet to be used that is, the thickness t of the lattice line g
  • the thickness W of the lattice line g there is a certain preferable range for the slit interval. Specifically, if the gap between the slits is too large for a certain lead sheet thickness (the width W of the grid line g is too wide), the thickness T of the produced grid is too thick, and the overall weight is also large. It becomes large and it is difficult to realize a high capacity of the battery. If the interval between the slits is too small (the width W of the lattice line g is too small), breakage due to corrosion tends to occur, and the life characteristics of the high rate discharge are deteriorated.
  • the ratio (W / t) of the width W of the lattice line g to the thickness t of the lattice line g in the range of 1.20 to 1.65.
  • W / t after shaping is 1.20 or more, it becomes easy to increase the thickness T of the lattice, and it becomes easy to overfill the lead paste.
  • W / t is 1.65 or less, the weight of the lattice can be reduced.
  • the W / t is preferably in the range of 1.25 to 1.60, more preferably in the range of 1.30 to 1.50, and in the range of 1.30 to 1.40. Further preferred.
  • the expanded lattice obtained as described above is used as a positive electrode lattice, and a lead paste as a positive electrode active material is applied along the length direction of the expanded lattice.
  • the lead paste as the positive electrode active material is obtained by kneading water and sulfuric acid into a lead powder composed of 60 to 90% by mass of lead oxide and 40 to 10% by mass of metal lead. If necessary, other additives may be added to the lead paste.
  • the lead paste may be filled from one side of the grid sheet, or from both sides of the grid sheet.
  • the grid filled with the lead paste is cut into a predetermined size to form an electrode plate shape having electrode plate ears, and when dried, the positive electrode plate 4 shown in FIGS. 2 (a) to (c) is formed. It is formed.
  • the positive electrode plate 4 includes an expanded lattice 1 having an electrode plate ear portion 2 and a lead paste 3 as a positive electrode active material filled in the expanded lattice 1.
  • the thickness P of the electrode plate containing the lead paste is a difference in height in the thickness direction of the lead paste filled in the lattice. The greater the amount of lead paste applied, the greater the thickness P of the electrode plate.
  • the ratio (P / T) of the thickness P of the electrode plate to the thickness T of the grid is defined as the overfilling rate of the lead paste.
  • a lattice having an appropriate bending degree (T / W) is manufactured, and lead paste is filled on the lattice with a predetermined overfill rate (P / T) to obtain excellent high-rate discharge cycle characteristics.
  • the inventor of the present application has examined the relationship between the overfilling rate (P / T) of the lead paste and the cycle characteristics of the high-rate discharge, and as a result, the overfilling rate (P / T) of the lead paste is 1.10 to 1.40. It was found that excellent high rate discharge characteristics can be obtained when it is within the range.
  • the lead paste overfilling rate (P / T) of the lead paste is smaller than 1.10, the lead paste filling amount is substantially the same as the range of filling amount in a normal lattice, The effect of improving the obtained high rate discharge characteristics cannot be obtained.
  • the overfilling ratio (P / T) of the lead paste is greater than 1.40, the filled active material layer is too thick, and the lead paste on the outer surface tends to peel off, and conversely high rate discharge characteristics. Cause a decline. That is, the lead paste overfilling rate (P / T) is preferably controlled in the range of 1.10 to 1.40, more preferably in the range of 1.14 to 1.30. More preferably, it is controlled within the range of 16 to 1.26.
  • the inventor of the present application has the degree of bending of the lattice (T / W), the ratio of the width W of the lattice line g to the thickness t of the lattice line g (W / t), and lead paste It has been found that it is effective to control the overfilling ratio (P / T) of each. However, first, it must be ensured that the degree of bending (T / W) of the lattice is in a preferable range.
  • the overfilling rate (P / T) of the lead paste is in a preferred range (1.10 to 1.40)
  • the lattice bending degree (T / W) is in a preferred range (1.50 to 1.90).
  • the cycle life characteristics of the battery are insufficient.
  • the negative electrode plate includes a negative electrode grid and lead paste as a negative electrode active material filled in the negative electrode grid.
  • the lead paste is kneaded by adding water and sulfuric acid to a lead powder composed of 60 to 90% by mass of lead oxide and 40 to 10% by mass of metallic lead. Other additives may be added to the lead paste as necessary.
  • Lead paste may be filled from one side of the negative electrode grid, or from both sides of the negative electrode grid. When the negative electrode grid filled with the lead paste is dried, a negative electrode plate is formed.
  • the negative grid may be an expanded grid or a cast grid.
  • the expanded lattice is a lattice of the negative electrode plate, it is necessary to cut into a shape having an ear portion of the electrode plate.
  • the electrode plate group includes a positive electrode plate, a negative electrode plate, a separator between the positive electrode plate and the negative electrode plate, and an electrolytic solution.
  • the separator is for partitioning the adjacent positive electrode plate and negative electrode plate, and the acid in the electrolyte solution enters and exits the electrode plate by having a sufficient porosity.
  • a sheet-like thing may be sufficient and the bag-like thing which wraps a positive electrode or a negative electrode may be sufficient.
  • the material of a separator is not specifically limited, For example, materials, such as glass fiber and polyolefin, can be used.
  • the electrode plate group includes a plurality of positive and negative electrode plates, the ears having the same polarity are collected and welded to form a bus bar.
  • Such a plate group constitutes one cell.
  • a casting grid is used as the negative electrode plate and an expanded grid is used as the positive electrode plate.
  • the lead storage battery 11 includes a plurality of single battery cases in which the battery case 8 is partitioned by a partition wall.
  • Each single battery case accommodates one electrode plate group (cell).
  • the electrode plate group is formed by alternately laminating a plurality of positive plates 4, a plurality of negative plates 5, and a plurality of separators 6 between the positive plates and the negative plates.
  • the bus bar 7 is formed by welding the ears of the electrode plates having the same polarity.
  • the bus bar 7 on the positive electrode side of each cell is welded to the bus bar 7 on the negative electrode side of the adjacent electrode plate group (cell) directly or via the pole column, and the electrode plate groups (cells) are connected in series. Has been.
  • An inner lid 9 having a built-in safety valve is attached to the opening of the battery case 8, and the positive pole and the negative pole at both ends of the battery case 8 are connected to the positive terminal and the negative terminal provided on the inner lid 9, respectively.
  • the battery case 8 and the inner lid 9 are hermetically fixed with an adhesive. After the electrolytic solution (not shown) is injected into the battery case 8, the upper lid 10, the battery case 8, and the inner lid 9 are hermetically fixed to complete the lead storage battery 11.
  • the electrolytic solution is not particularly limited, and for example, a sulfuric acid solution or the like can be used.
  • the lead storage battery 11 of the present invention employs an expanded lattice as a positive electrode plate, the degree of bending of the lattice (T / W), the ratio of the width W of the lattice line g to the thickness t of the lattice line g (W / t), and Since the overfilling rate (P / T) of the lead paste is controlled within a suitable range, the current collecting property of the positive electrode is appropriately reduced, the adhesiveness between the active material and the lattice is improved, and the current collecting property is uniform. . Therefore, overdischarge of the positive electrode active material at the time of high rate discharge can be prevented, and it can be applied to charge / discharge equipment that repeatedly performs deep discharge, for example, an electric bicycle, and a battery having a long life can be obtained.
  • the manufacturing method of the positive electrode plate for lead acid batteries in this invention includes the following processes.
  • a grid-like sheet having a mesh in which a plurality of grid lines intersect by forming a plurality of slits in the lead sheet in a direction perpendicular to the lead sheet and extending the slits in the direction perpendicular to the lead sheet.
  • Step of shaping the lattice sheet into an expanded lattice using a pair of rollers (3) Step of filling the expanded lattice with a positive electrode active material made of lead paste (4) Positive electrode active material Cutting the expanded lattice filled with a positive electrode plate of a predetermined size where the width of the lattice line g of the expanded lattice is W and the thickness of the expanded lattice is T, the bending degree of the lattice (T / In the expanding process (1), the slit spacing in the width direction of the lead sheet is adjusted and adjusted so that W) is in the range of 1.5 to 1.9. In the forming step (2), the pitch between the pair of rollers and the roller pressure are adjusted.
  • the ratio (W / t) of the width W of the lattice line to the thickness t of the lattice line is in the range of 1.25 to 1.60.
  • the lead paste overfill ratio (P / T) is in the range of 1.1 to 1.4. It is preferable to adjust the coating amount of the lead paste.
  • the lead-acid battery provided with the positive electrode plate obtained in the production method of the present invention has excellent cycle characteristics in high-rate discharge, and can be applied to charge / discharge equipment that repeats deep discharge, such as an electric bicycle, A battery with a long life can be obtained.
  • values such as the width W of the grid line, the thickness t of the grid line, and the thickness T of the grid are average values of values measured at a plurality of measurement locations.
  • the measurement locations are a plurality of portions selected at a constant pitch in the lattice.
  • Example 1 (Preparation of positive electrode plate) A lead sheet made of a Pb—Ca—Sn ternary alloy sheet was carried into a reciprocating press mold and subjected to an expanding process. Each time it was pressed, a plurality of intermittent slits were formed along the length direction of the lead sheet. At this time, the plurality of slits were arranged obliquely in the width direction at predetermined intervals. Next, the movable mold was pressed downward to widen the slit in a direction perpendicular to the lead sheet surface. This press was repeated a plurality of times to obtain a lattice sheet having a mesh in which a plurality of lattice lines intersected.
  • the center part of the lead sheet was made into the plain part which does not have a mesh by adjusting the position of the cutter part provided in the movable metal mold
  • the width W of the lattice line, the thickness t of the lattice line, and the thickness T of the lattice are set. , Controlled within the desired range.
  • the measured grid thickness T was 2.2 mm
  • the grid line width W was 1.4 mm
  • the grid line thickness t was 1.05 mm.
  • lead powder powder obtained by mixing lead dioxide and metal lead in a mass ratio of 70:30
  • water and sulfuric acid were mixed in a mass ratio of 100: 15: 10 to obtain a positive electrode lead paste.
  • 87.9 g of positive electrode lead paste was filled along the length direction of the lattice on the shaped lattice.
  • the grid filled with the lead paste was cut into a predetermined size and shape and dried to obtain an unformed positive electrode plate (vertical: 139 mm, horizontal: 64 mm).
  • the measured thickness P of the electrode plate was 1.70 mm.
  • the casting grid produced by the casting method is a negative grid (vertical: 142 mm, horizontal: 65 mm, thickness: 1.5 mm).
  • Lead powder powder in which lead dioxide and metal lead were mixed at a mass ratio of 70:30
  • water and sulfuric acid were mixed at a mass ratio of 100: 5: 10 to obtain a negative electrode lead paste.
  • 59.6 g of negative electrode lead paste was filled in the negative electrode grid, and then dried to obtain an unformed negative electrode plate.
  • the thickness P of the electrode plate measured after drying was 1.70 mm.
  • a positive electrode plate and a negative electrode plate were alternately laminated via a separator mainly composed of glass fibers, and the ears of the electrode plates having the same polarity were welded to form a bus bar. Then, each electrode plate group (cell) is accommodated in a battery case partitioned into six single battery cases by a partition wall. The series connection between the electrode plate groups was performed by welding using a bus bar.
  • Example 2 The positive electrode plate was prepared by adjusting the pitch and roller pressure of the pair of rollers and the coating amount of the lead paste so that the thickness T of the grid was 2.3 mm and the thickness of the electrode plate was 2.9 mm. Otherwise, a lead storage battery was produced in the same manner as in Example 1.
  • Example 3 A positive electrode plate was fabricated by adjusting the pitch and roller pressure of the pair of rollers and the amount of lead paste applied so that the thickness T of the grid was 2.4 mm and the thickness of the electrode plate was 2.9 mm. Otherwise, a lead storage battery was produced in the same manner as in Example 1.
  • Example 4 The positive electrode plate was prepared by adjusting the pitch and roller pressure of the pair of rollers and the amount of lead paste applied so that the thickness T of the grid was 2.5 mm and the thickness of the electrode plate was 2.9 mm. Otherwise, a lead storage battery was produced in the same manner as in Example 1.
  • Example 5 A positive electrode plate was prepared by adjusting the pitch and roller pressure of the pair of rollers and the amount of lead paste applied so that the thickness T of the grid was 2.6 mm and the thickness of the electrode plate was 2.9 mm. Otherwise, a lead storage battery was produced in the same manner as in Example 1.
  • Example 6 A positive electrode plate was produced in the same manner as in Example 3.
  • a negative electrode plate was prepared using an expanded lattice similar to the positive electrode lattice. The thickness of the expanded lattice was adjusted to 1.6 mm. Otherwise, a lead storage battery was produced in the same manner as in Example 3.
  • Comparative Example 1 The positive electrode plate was prepared by adjusting the pitch and roller pressure of the pair of rollers and the coating amount of the lead paste so that the thickness T of the lattice was 2.0 mm and the thickness of the electrode plate was 2.9 mm. Otherwise, a lead storage battery was produced in the same manner as in Example 1.
  • Comparative Example 2 The positive electrode plate was prepared by adjusting the pitch and roller pressure of the pair of rollers and the amount of lead paste applied so that the thickness T of the grid was 2.7 mm and the thickness of the electrode plate was 2.9 mm. Otherwise, a lead storage battery was produced in the same manner as in Example 1.
  • Comparative Example 3 The expander grid of the positive electrode plate is obtained by adjusting the thickness of the lead sheet and the expanded line so that the grid line thickness of the expanded grid obtained after shaping is 1.25 mm and the grid line width is 1.7 mm. The slit spacing was adjusted.
  • the positive electrode plate is manufactured by adjusting the pitch and roller pressure of the pair of rollers and the amount of the lead paste applied so that the thickness T of the grid is 2.4 mm and the thickness of the electrode plate is 2.9 mm. did. Otherwise, a lead storage battery was produced in the same manner as in Example 1.
  • Comparative Example 4 As an expanded grid of the positive electrode plate, a cast grid having a grid thickness of 2.0 mm was used. Otherwise, a lead storage battery was produced in the same manner as in Example 1.
  • Example 7 The thickness of the lead sheet was adjusted so that the expander lattice of the positive electrode plate was 1.15 mm in the thickness of the expanded lattice obtained after shaping. Otherwise, a lead storage battery was produced in the same manner as in Example 1.
  • Example 8 The thickness of the lead sheet was adjusted so that the expander lattice of the positive electrode plate had a lattice line thickness of 1.10 mm obtained after shaping. Otherwise, a lead storage battery was produced in the same manner as in Example 1.
  • Example 9 The thickness of the lead sheet was adjusted so that the expander lattice of the positive electrode plate was 0.90 mm in thickness of the expanded lattice obtained after shaping. Otherwise, a lead storage battery was produced in the same manner as in Example 1.
  • Example 10 The thickness of the lead sheet was adjusted so that the expander lattice of the positive electrode plate was 0.85 mm in the thickness of the expanded lattice obtained after shaping. Otherwise, a lead storage battery was produced in the same manner as in Example 1.
  • the number of cycles is 500 times or more ⁇ : The number of cycles is 400 to 500 times ⁇ : The number of cycles is 200 to 400 times ⁇ : The number of cycles is 100 to 200 times ⁇ : The number of cycles is 100 times or less ( (Evaluation of deterioration of lead paste of positive electrode)
  • FIG. 4 shows the results of evaluating the high-rate discharge cycle characteristics and the deterioration of the positive electrode lead paste.
  • the lead storage batteries of Examples 1 to 10 had more than 300 cycles, but the batteries of Comparative Examples 1 to 4 had less than 150 cycles. From this, it was found that the lead storage battery of the present invention has an excellent high rate discharge cycle life.
  • the bending degree (T / W) of the lattice is in the range of 1.50 to 1.90
  • the overfilling rate (P / T) of the lead paste is in the range of 1.10 to 1.40.
  • the lead storage battery inside provided good lead paste applicability and excellent high-rate discharge life. Further, as can be seen from the comparison results with Examples 3, 8, 9 and Examples 7, 10, the width / thickness of the lattice lines can be obtained even if the bending degree of the same lattice and the overfilling rate of the lead paste are provided.
  • a battery having a ratio (W / t) in the range of 1.25 to 1.60 gave a better high rate discharge life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 レシプロ方式で形成されたエキスパンド格子からなる鉛蓄電池用格子であって、エキスパンド格子の格子線gの幅をW、エキスパンド格子の厚さをTとしたとき、格子の屈曲度(T/W)が1.5~1.9の範囲にある。

Description

鉛蓄電池用格子、該格子を用いた正極板、極板群及び鉛蓄電池並びに鉛蓄電池用正極板の製造方法
 本発明は鉛蓄電池用格子、該格子を用いた正極板、極板群及び鉛蓄電池並びに鉛蓄電池用正極板の製造方法に関するものである。
 鉛蓄電池は、低コスト、安定的な出力、大電流放電に適用可能といった利点を有し、車両の起動、電動車両又は電動工具の主電源、バックアップ電源などの分野で広く利用されてきた。鉛蓄電池は、主に、開放形の液式鉛蓄電池と、密閉形の弁制御式鉛蓄電池とがある。弁制御式鉛蓄電池は、メンテナンスフリーという利点を有するので、より広く利用されている。弁制御式鉛蓄電池は、正極板、負極板、セパレータ、電解液、安全弁付きのケーシング等から構成され、正極板及び負極板は、活物質を合金格子に充填することにより形成される。
 鉛蓄電池用格子は、主に、鋳造加工で作製された鋳造格子と、エキスパンド加工で作製されたエキスパンド格子の二種類に大別される。エキスパンド加工で作製されたエキスパンド格子は、鋳造加工で作製された鋳造格子と比較して、材料コストが削減できるだけでなく、重さのバラツキも少なく、生産性が大幅に向上できる。
 エキスパンド格子の製造方法としては、ロータリー(回転式)エキスパンド法と、レシプロ(往復動式)エキスパンド法がよく知られている。ロータリーエキスパンド法は、金属シートを、円盤状カッターを有し、回転する一対のローラ間に搬入してエキスパンド加工を行うものである。格子は、スリットの形成や引き伸ばし工程において高い応力を2回受けるため、ノードにおける格子線が破断しやすくなり、電池の寿命に悪影響を及ぼす。
 一方、レシプロエキスパンド法は、金属シートを、一対の裁断器を有する金型に断続的に搬入し、裁断器の上下往復動移動によって、金属シートに、幅方向に断続的に配列されたスリットを一列ずつ形成するとともに、該スリットが裁断器によって垂直に下向きに引っ張られることにより、メッシュを形成する。レシプロエキスパンド法では、格子のノードに圧力が拘わらず、格子線が捩られることはないため、かかるエキスパンド格子を用いて作製した鉛蓄電池は、優れた寿命特性を示す。
 しかし、レシプロエキスパンド法は、生産スピードが低いという欠点がある。特許文献1には、その欠点を克服するために、複数の板状カッターを所定の間隔でV形状となるように重ね合わせることにより、1回の打ち抜きで、長さ方向に斜め方向のスリットを複数列形成できる方法が開示されている。この方法により、高い生産効率で微細のメッシュを有する圧延格子状シートを製造することができる。
 ところで、深放電を繰り返して行う必要のある電動自転車等に用いられる鉛蓄電池では、充電深度(SOC:State of Charge)が浅くても、ハイレート放電を必要とすることがある。このような使用条件では、過放電が生じやすくなる。過放電の際の正極電圧の急激な降下を抑制するためには、正極の集電性を低減させる必要がある。
 通常、エキスパンド格子の縁には外枠が存在しないため、鋳造格子と比較して、集電性は低い。しかし、活物質は格子の縁から溢れやすいため、担持量は制限される。従って、鉛蓄電池の正極板と負極板の両方にエキスパンド格子を用いると、電池の容量が低く、活物質が溢れて、内部短絡を引き起こすおそれがある。
 このような問題に対して、特許文献2には、正極板にエキスパンド格子を用い、負極板に鋳造格子を用いることによって、ハイレート放電の際の電圧降下を改善できることが開示されている。又、特許文献3には、活物質が正極格子から溢れて、内部短絡を引き起こすことを防止するために、正極にエキスパンド格子を用い、負極に鋳造格子を用いることが開示されている。
 ところで、合金格子は、主に活物質を支持する機能と集電機能とを有する。格子と活物質との間の粘着性が不足すると、充放電過程において活物質が剥離しやすくなる。また、活物質の内部において集電性の不均一が起こり、格子に遠い活物質が過放電の際、劣化しやすくなる。
 このような問題に対して、特許文献4~7では、格子の格子線の幅、格子線の厚さ、ノードの横断面、格子の厚さ及びメッシュ形状等について最適化設計することによって、格子線の腐食、破断を回避するとともに、活物質の粘着性を改善し、電池の寿命特性を改善することが開示されている。しかし、ハイレート放電の条件でのサイクル特性に対しては不十分であった。
中国特許出願公開第1229282号明細書 特開平10-321237号公報 特開平10-334940号公報 中国特許出願公開第1420576号明細書 特開昭58-5969号公報 特公平1-45710号公報 特公平1-42115号公報
 しかしながら、特許文献4~7に開示された方法では、電池の寿命特性は改善されるものの、ハイレート放電の条件でのサイクル特性に対しては不十分であった。
 本発明の主な目的は、浅い充電深度(SOC)のもと、ハイレート放電を繰り返して行っても、優れたサイクル寿命を有する鉛蓄電池を提供することにある。
 本発明に係る鉛蓄電池用格子は、レシプロ方式で形成されたエキスパンド格子からなる鉛蓄電池用格子であって、エキスパンド格子の格子線の幅をW、エキスパンド格子の厚さをTとしたとき、T/Wが1.5~1.9の範囲にある。
 また、上記エキスパンド格子の格子線の厚さをtとしたとき、W/tが1.25~1.60の範囲にあることが好ましい。
 また、上記エキスパンド格子に、鉛ペーストからなる正極活物質が充填された鉛蓄電池用の正極板において、正極板の厚さをPとしたとき、P/Tが1.1~1.4の範囲にあることが好ましい。
 本発明によれば、浅い充電深度(SOC)のもと、ハイレート放電を繰り返して行っても、優れたサイクル寿命を有する鉛蓄電池を提供することができる。
(a)は、本発明の一実施形態におけるエキスパンド格子を模式的に示した正面図であり、(b)は、(a)のエキスパンド格子の一部を拡大した図であり、(c)は、(b)のA-A線に沿った断面図である。 (a)は、本発明の一実施形態における正極板を模式的に示した正面図であり、(b)は、正極板の側面図であり、(c)は、正極板の厚さ方向に沿って裁断したときの部分断面図である。 本発明の一実施形態における鉛蓄電池の一部切り欠け斜視図である。 本発明の実施例における鉛蓄電池の特性の評価結果を示した表である。
 本発明を説明する前に、本発明を想到するに至った経緯を説明する。 
 正極板にエキスパンド格子を用いる一方、負極板に鋳造格子を用いることによって、正極板としてのエキスパンド格子の集電性が低減するので、ハイレート放電の際の活物質の過放電をある程度回避することができる。そのため、正極板と負極板の両方ともエキスパンド格子、あるいは鋳造格子を用いた場合と比較して、電池の寿命を若干長くすることができるが、所望のレベルまで達することができない。
 そのため、本願発明者は、正極格子の設計改善に着目し、活物質と格子との粘着性の向上、電池のハイレート放電の特性の改善などのため、繰り返し検討した結果、以下の知見を得た。
 従来、エキスパンド格子を用いる場合、後工程の塗布工程を容易に行うために、エキスパンド加工で形成された格子状シートに対して整形処理を行うのが一般的である。例えば、特許文献5には、エキスパンド加工が終了した後、格子状シートを元の鉛シートよりも薄いシート状にプレスすることで、格子の厚さを小さくし、正極板格子のノード近傍に腐食を生じることを回避している。また、エキスパンド加工におけるスリットの間隔を小さくすれば、裁断された格子状シートの格子線の幅も小さくなり、格子の厚さも薄くなる。そのため、薄い格子状シートを得るために、スリットの間隔をできるだけ小さくすることが一般的に採用されている。例えば、特許文献6及び特許文献7には、格子の軽量化を図るため、スリットの間隔を鉛シートの厚さ以下に制御することが開示されている。
 しかしながら、本願発明者は以下のことを発見した。即ち、レシプロエキスパンド加工においては、格子線の好適な幅と厚さとの比が得られるように、鉛シートの幅方向に形成されたスリットの間隔と、鉛シートの厚さとの比を調整する必要がある。また、エキスパンド加工によって得られた格子状シートに対して整形処理を行う際、格子状シートを薄くプレスせず、整形後のエキスパンド格子の屈曲度を好適な範囲に制御すると、優れた鉛ペーストの塗布性が得られる。さらに、エキスパンド格子に鉛ペーストを充填する工程においては、好適な範囲の屈曲度を有するエキスパンド格子を用いることで、好適な鉛ペーストの過充填率を容易に実現することができ、このように、鉛ペーストが過充填された極板を鉛蓄電池の正極板に用いると、浅い充電深度でハイレート放電を繰り返し行っても、鉛ペーストは劣化しにくく、優れたハイレート放電サイクル特性が得られる。
 上記の知見に基づいて、本発明は、レシプロ方式で形成されたエキスパンド格子からなる鉛蓄電池用格子であって、エキスパンド格子の格子線の幅をW、エキスパンド格子の厚さをTとしたとき、T/Wを1.5~1.9の範囲にするものである。なお、T/Wは、格子の屈曲度を表す比である。
 また、エキスパンド格子の格子線の厚さをtとしたとき、格子線の幅Wと格子線の厚さtとの比W/tが1.25~1.60の範囲にあることが好ましい。
 また、上記エキスパンド格子に、鉛ペーストからなる正極活物質が充填された鉛蓄電池用の正極板において、正極板の厚さをPとしたとき、正極板の厚さPと正極板の厚さTとの比P/Tが1.1~1.4の範囲にあることが好ましい。
 また、上記正極板と、負極板と、前記正極板と負極板との間に位置するセパレータと、電解液とを備えた鉛蓄電池用の極板群において、負極板の格子は、鋳造法で形成された鋳造格子からなることが好ましい。
 また、本発明における鉛蓄電池用の正極板の製造方法は、
 (1)鉛シートを、該鉛シートに対して垂直方向に複数のスリットを形成するとともに、該スリットを鉛シートの垂直方向に広げることにより、複数の格子線が交差するメッシュを有する格子状シートにエキスパンド加工する工程と、
 (2)格子状シートを、一対のローラを用いて、エキスパンド格子に整形する工程と、
 (3)エキスパンド格子に、鉛ペーストからなる正極活物質を充填する工程と、
 (4)正極活物質が充填されたエキスパンド格子を、所定の寸法の正極板に裁断する工程とを備え、
 エキスパンド格子の格子線の幅をW、エキスパンド格子の厚さをTとしたとき、T/Wが1.5~1.9の範囲になるように、工程(1)において、鉛シートの幅方向におけるスリットの間隔を調整するとともに、工程(2)において、一対のローラ間のピッチ及びローラ圧を調整するものである。
 また、エキスパンド格子の格子線の厚さをtとしたとき、W/tが1.25~1.60の範囲になるように、工程(1)において、鉛シートの厚さに応じて、該鉛シートの幅方向におけるスリットの間隔を調整するものである。
 また、正極板の厚さをPとしたとき、P/Tが1.1~1.4の範囲になるように、工程(3)において、鉛ペーストの塗布量を調整するものである。
 以下に、本発明の実施形態について、図面を参照しながら説明する。以下の図面においては、説明の簡略化のため、実質的に同一の機能を有する構成要素を同一の参照符号で示す。なお、本発明は以下の実施形態に限定されない。
 (鉛蓄電池用格子)
 極板における格子の作用は、活物質の支持と活物質と端子との間の電流の伝達である。格子は、通常矩形に設計され、バスバーに接続されるための耳部を有している。鋳造法で作製した鋳造格子は、外枠と内部の縦横の格子線を有する一方、エキスパンド法で作製したエキスパンド格子は、プレス金型を用いて鉛シート上にスリットを形成した後、引っ張ることにより形成されたメッシュ状シートである。鋳造格子に対して、エキスパンド格子は、重さがより軽く、均一性が優れるため、生産性はより優れている。
 本発明の格子は、レシプロエキスパンド法で鉛シートをエキスパンド加工して得られたエキスパンド格子である。鉛シートは、例えば、CaとSnの少なくとも一つを含有するPb合金箔を用いることができる。また、耐腐食性及び機械的強度を考慮すれば、Pb-Ca-Sn三元合金を用いることが好ましい。
 本発明のエキスパンド加工では、一対の可動金型と固定金型を有するレシプロプレス金型を用いる。可動金型(上型)には、連続したカッター部が複数存在し、これらのカッター部は鉛シートの搬送方向(即ち長さ方向)にV字状に配列されているが、鉛シートの厚さ方向の中央部に対応する位置には、カッター部を設けない。固定金型(下型)には、連続したリブ部が複数存在し、リブ部のリブ状面は、上型のカッター部に対応する位置に設けられている。
 固定金型を固定し、可動金型が上から下向きに鉛シートをプレスする。可動金型のカッター部が、隣り合うリブ部間のリブ線を通る際、鉛シート上に断続したスリットを複数形成するとともに、カッター部の先端が引続き下向きにプレスし、リブ状面に沿って鉛シート表面に直交する方向に該スリットを広げる。鉛シートの長さ方向に沿って、鉛シートを搬送しながら、上記プレスを繰り返して行うことにより、鉛シートを複数のメッシュを有する格子状シートに加工する。また、可動金型におけるカッター部の位置を調整することにより、鉛シートの幅方向の中央部がメッシュを有さない無地部となり、当該部分は後述の裁断加工で格子の上枠と極板の耳部となる。 
 通常、エキスパンド加工が終了した直後の格子状シートの厚さは、変動が大きく、形状が不規則であるため、一対のローラを用いて格子状シートに対して整形を行う必要がある。
 例えば、径の大きい、重量の重い一対のローラを用いて格子状シートに対して整形を行うと、格子状シートにかかる圧力が大きいので、格子線の交差点(ノード)における高さが圧縮され、格子全体の厚さが薄くなり、屈曲度が低減する。しかし、格子状シートにかかる圧力が大きすぎると、格子全体の厚さが薄くなり、強度が大きくなるが、ノード箇所が応力を受けるので、腐食しやすくなり、電池の寿命に悪影響を及ぼす。
 本発明では、例えば、径が小さく重量の軽い一対のローラを使用して、一対のローラ間のピッチ及びローラ圧を制御して、ノード箇所に小さい圧力をかけることによって、ノード箇所の高さをほとんど圧縮せずに、格子の屈曲度をそのまま維持させる。このとき、ノード箇所に圧力がほとんどかかっていないので、ノード箇所において高い強度が維持され、耐腐食性が優れ、且つ格子の寸法の変動が小さく、格子の厚さのバラツキも低減する。
 図1(a)~(c)は、上記の方法で得られた本発明のエキスパンド格子1を模式的示す図である。図1(a)に示すように、エキスパンド格子1は、複数の格子線gが交差してなる略菱形状のメッシュiを有し、各メッシュiは4本の格子線gに囲まれ、各メッシュi間はノードfによって接続されている。エキスパンド格子1は、幅方向の中央部がメッシュiが形成されていない無地部である。なお、図1(a)では、エキスパンド格子1の中央部から下側の部分のみを示す。他方の半分は対称な形状を有するため、図示を省略する。
 エキスパンド加工で鉛シートから切り出されたスリットを広げた後に、一定の幅と厚さを有する格子線gを形成する。図1(b)に示すように、格子線gの幅Wは、隣り合うスリットが鉛シートの幅方向の隙間(スリットの間隔)に対応し、格子線gの厚さtは、鉛シートの厚さに対応する。なお、図1(b)には、便宜上、格子線gが位置する平面を紙面と一致するように示しているが、実際には、格子線gが位置する平面は紙面に対して一定の傾斜を有する。図1(c)は、図1(b)のA-A線に沿った断面図で、幅Wの格子線gは、屈曲したジグザグ形状をなしている。また、ノードfにおいて、2本の格子線gが重なり合い、重なり合う部分の長さは格子線gの幅Wの2倍となり、重なり合う部分((ハッチング部分)の厚さは格子線gの厚さtとなる。なお、格子全体の厚さ方向における最大の高さ(即ち、ノードfの厚さ方向の高さ)を、格子の厚さTとし、格子線gの幅Wに対する格子の厚さTの比(T/W)を、格子の屈曲度と定義する。
 エキスパンド加工でスリットの間隔を調整し、かつ整形工程でローラ間のピッチやローラ圧をそれぞれ適宜調整することによって、格子の屈曲度(T/W)を1.5~1.9の範囲に制御することができる。この場合、その後の充填工程において、活物質としての鉛ペーストの充填性が良好になる。これにより、鉛ペーストを格子の各メッシュにスムーズに充填できるだけではなく、鉛ペーストを格子の表面の高さより高く充填することが可能になる。その結果、正極格子により多くの活物質を収納することができ、高い電池容量が得られる。本明細書において、鉛ペーストを格子の表面の高さより高く充填することを、鉛ペーストの「過充填」と呼ぶ。
 本発明において、エキスパンド格子の屈曲度(T/W)を、従来よりも大きくすることによって、良好な鉛ペーストの塗布性が得られる。単位面積の極板に対する格子の屈曲度が大きいほど、格子と活物質との接触面積が大きくなり、かつ、活物質の表面と格子との距離が近くなる。これにより、活物質と格子との粘着性が改善されるだけでなく、活物質層における各箇所と格子との距離が短くなるため、集電性のばらつきが低減する、その結果、良好なハイレート放電特性を得ることができる。
 通常、エキスパンド格子の縁は外枠で支持されていないので、活物質が格子の縁から溢れるのを回避するためには、充填される活物質の量を制限しなければならない。塗布された活物質の層が薄すぎると、電池の容量は制限され、かつ、格子の集電性は相対的に過剰となり、活物質の劣化を引き起こしやすくなる。一方、塗布された活物質の層が厚すぎると、活物質の外層の表面は格子から遠すぎることになり、格子との粘着性が不足し、かつ活物質において集電性が不均一となる。その結果、放電末期に活物質の剥離が生じやすくなり、電池のリサイクル寿命の劣化を引き起こす。そのため、鉛ペーストの過充填率を適切な範囲内に制御する必要がある。
 格子の屈曲度(T/W)を好適な範囲に制御すると、ペースト塗布性がよくなるため、ペーストの塗布量を増やすことができ、適切な鉛ペーストの過充填率を容易に得ることができる。つまり、電池のハイレート放電特性を高めることができる。この観点から、格子の屈曲度(T/W)は、1.5~1.9の範囲にあることが好ましく、1.6~1.8の範囲内にあることがより好ましく、1.65~1.75の範囲にあることがさらに好ましい。格子の屈曲度が小さすぎると、鉛ペーストの表面における活物質の接着性が悪く、深放電を繰り返して行う場合、剥離が容易に生じ、電池のサイクル寿命の短縮を引き起こす。一方、格子の屈曲度が大きすぎると、集電性の過剰が生じ、過放電の際の活物質の劣化が進み、電池のサイクル寿命の短縮を引き起こす。
 好適な範囲の屈曲度(T/W)を有する格子は、レシプロプレス金型を用いて格子ノードを破壊せず製造することができる。レシプロプレスの特徴は、格子のノードをほとんど圧縮しないことであるので、屈曲度の大きい格子状シートを作製することができる。また、その後の整形工程では、格子のノード箇所にかかる圧力の小さい整形用金型を採用するので、整形後に得られたエキスパンド格子は、屈曲度が大きく、かつノード箇所が圧力をほとんど受けない。従って、高い強度が保持され、腐食しにくくなり、電池の寿命を延ばすことができる。
 本発明において、格子の屈曲度(T/W)の大きさは、格子の厚さTと格子線の幅Wとの二つの要素で決定されるが、格子の厚さTは、主に格子状シートの圧延前の厚さと、整形工程において格子状シートが圧延される前後の厚さの比と関係しており、格子状シートの厚さは、メッシュの大きさと格子線の幅W等の要素で決定される。従って、エキスパンド加工及び整形工程におけるプロセス条件を適宜制御することで、所望の屈曲度(T/W)を得ることができる。例えば、エキスパンド加工において、レシプロプレス金型の可動金型の下向きの行程の大きさ又はスリットの長さを適宜調整して、形成されるメッシュの大小を制御できる。また、固定金型のリブ状面のピッチ及び可動金型のカッター部間の距離を調整して、鉛シート上のスリットの間隔を調整できる。また、整形工程において、格子状シートを圧延する一対のローラのピッチ、ローラの押し圧力などを調整することにより、格子状シートの圧延される前後の厚さの比を制御できる。
 本発明において期待するのは、格子の大きな屈曲度を得ることである。そのため、エキスパンド加工において、スリットの間隔も大きく設定する必要がある。しかしながら、使用する鉛シートの厚さ(即ち、格子線gの厚さt)が異なるため、スリットの間隔(即ち、格子線gの幅W)にも一定の好ましい範囲が存在する。具体的には、一定の鉛シートの厚さに対してスリットの間隔が大きすぎる(格子線gの幅Wが広すぎる)と、作製された格子の厚さTが厚すぎ、全体の重さも大きくなり、電池の高容量化を実現することが困難である。スリットの間隔が小さすぎる(格子線gの幅Wが細すぎる)と、腐食による破断が生じやすく、ハイレート放電の寿命特性が低下する。
 本発明において、格子線gの幅Wと格子線gの厚さtの比(W/t)を1.20~1.65の範囲に制御することが好ましい。整形後のW/tが1.20以上の場合、格子の厚さTを大きくすることが容易になり、鉛ペーストを過充填しやすくなる。また、W/tが1.65以下の場合、格子の軽量化を図ることができる。なお、W/tが1.25~1.60の範囲にあることが好ましく、1.30~1.50の範囲にあることがより好ましく、1.30~1.40の範囲にあることがさらに好ましい。
 (正極板)
 上記のように得られたエキスパンド格子を正極格子とし、エキスパンド格子の長さ方向に沿って正極活物質としての鉛ペーストを塗布する。正極活物質としての鉛ペーストは、60~90質量%の酸化鉛と40~10質量%の金属鉛によって構成された鉛粉末に、水及び硫酸を加えて混錬したものである。なお、必要に応じて、他の添加物を鉛ペーストに加えても良い。格子状シートの一面から鉛ペーストを充填しても良く、格子状シートの両面から充填してもよい。
 その後、鉛ペーストが充填された格子を所定の寸法に裁断して、極板の耳部を有する極板形状に形成し、乾燥すると、図2(a)~(c)に示す正極板4が形成される。図2(a)に示すように、正極板4は、極板の耳部2を有するエキスパンド格子1と、エキスパンド格子1内に充填された正極活物質としての鉛ペースト3とを備えている。
 図2(b)に示すように、鉛ペーストを含む極板の厚さPは、格子内に充填された鉛ペーストの厚さ方向の高さの差である。鉛ペーストの塗布量が多ければ、極板の厚さPも大きくなる。
 また、図2(c)に示すように、格子の厚さTに対する極板の厚さPの比(P/T)を鉛ペーストの過充填率と定義する。本発明は、適切な屈曲度(T/W)を有する格子を作製し、格子上に鉛ペーストを所定の過充填率(P/T)で充填して、優れたハイレート放電のサイクル特性を得ることにある。本願発明者は、鉛ペーストの過充填率(P/T)とハイレート放電のサイクル特性との関係を調べた結果、鉛ペーストの過充填率(P/T)が1.10~1.40の範囲にあるとき、優れたハイレート放電特性が得られることが分かった。
 その理由は下記のように推測される。すなわち、鉛ペーストの過充填率(P/T)が1.10よりも小さいと、鉛ペーストの充填量は、通常の格子内の充填量の範囲と略同じであり、鉛ペーストの過充填により得られるハイレート放電特性の改善効果は得られない。一方、鉛ペーストの過充填率(P/T)が1.40よりも大きいと、充填された活物質層が厚すぎ、外側の表面にある鉛ペーストが剥離しやすくなり、逆にハイレート放電特性の低下を引き起こす。つまり、鉛ペーストの過充填率(P/T)を、1.10~1.40のの範囲に制御することが好ましく、1.14~1.30範囲に制御することがより好ましく、1.16~1.26の範囲に制御することがさらに好ましい。
 本願発明者は、ハイレート放電性能の改善効果から見ると、格子の屈曲度(T/W)、格子線gの幅Wと格子線gの厚さtの比(W/t)、及び鉛ペーストの過充填率(P/T)を、それぞれ制御することが有効であるということを見出した。しかし、まず、格子の屈曲度(T/W)を好ましい範囲にすることを確保しなければならない。例えば、鉛ペーストの過充填率(P/T)が好ましい範囲(1.10~1.40)にあっても、格子の屈曲度(T/W)が好ましい範囲(1.50~1.90)になければ、電池のサイクル寿命特性が不十分である。
 その理由は下記のように推測される。すなわち、正極のエキスパンド格子が屈曲度(T/W)の好適な範囲(1.50~1.90)を満たすと、鉛ペーストの過充填化(P/T)が容易に実現し、かつ、正極格子の鉛ペーストに対する集電性が相応しくなる。その結果、ハイレート放電の際、鉛ペーストの劣化を生じることがなく、電池の寿命が長くなる。格子の湾曲率(T/W)が好ましい範囲にない場合、鉛ペーストが過充填状態にあっても、格子との粘着性が不足するため、集電性の不足又は過剰を招き、その結果、本発明の効果が得られない。
 (負極板)
 負極板は、負極格子と、負極格子内に充填された負極活物質としての鉛ペーストとを備えている。鉛ペーストは、60~90質量%の酸化鉛と、40~10質量%の金属鉛からなる鉛粉末中に、水及び硫酸を加えて混練したものである。必要に応じて他の添加物を鉛ペーストに加えてもよい。負極格子の一方の面から鉛ペーストを充填しても良く、負極格子の両面から充填してもよい。鉛ペーストが充填された負極格子を乾燥すると、負極板が形成される。
 負極格子は、エキスパンド格子及び鋳造格子のいずれを採用してもよい。エキスパンド格子を負極板の格子とした場合、極板の耳部を有する形状に裁断する必要がある。しかし、電池容量の向上や電池内部の短絡の防止の観点から、負極板を鋳造格子とすることが好ましい。
 (極板群)
 極板群は、正極板と、負極板と、正極板と負極板と間にあるセパレータと、電解液とを備えている。セパレータは、隣り合う正極板と負極板と区画するためのものであり、十分な開孔率を有することにより、電解液中の酸が極板を出入りする。セパレータの形態としては、シート状のものであっても良いし、正極又は負極を包み込む袋状のものであっても良い。セパレータの材料は特に限定されないが、例えば、ガラス繊維、ポリオレフィン等の材料を用いることができる。
 極板群に複数の正極板及び負極板を含む場合、極性の同一である耳部を集め溶接して、バスバーを形成する。このような極板群は一つのセルを構成する。
 本発明の極板群には、負極板として鋳造格子、正極板としてエキスパンド格子をそれぞれ採用する。このような組合せによって、正極のエキスパンド格子に横の骨がないため、正極の集電性が相対的に低下して、ハイレート放電の際の正極活物質の過放電を防ぐことができ、寿命の長い電池が得られる。
 (鉛蓄電池)
 図3に示すように、鉛蓄電池11は、電槽8を隔壁によって区画された複数の単一の電槽を含む。各単一の電槽には、1つの極板群(セル)が収納されている。極板群は、複数の正極板4と、複数の負極板5と、正極板と負極板との間にある複数のセパレータ6とが交互に積層されたものである。極性が同じである極板の耳部が溶接されることにより、バスバー7が形成されている。各セルの正極側のバスバー7は、直接または極柱を介して隔壁を越えて隣り合う極板群(セル)の負極側のバスバー7に溶接され、各極板群(セル)が直列に接続されている。電槽8の開口部には、安全弁を内蔵する中蓋9が取り付けられ、電槽8の両側端部における正極柱及び負極柱が、それぞれ中蓋9に設けられた正極端子及び負極端子に接続され、電槽8と中蓋9とが接着剤で密閉固定されている。電解液(不図示)が電槽8内に注入された後、上蓋10と電槽8及び中蓋9とが密閉固定されることにより、鉛蓄電池11が完成される。なお、電解液は、特に制限されないが、例えば、硫酸溶液等を用いることができる。
 本発明の鉛蓄電池11は、正極板としてエキスパンド格子を採用し、格子の屈曲度(T/W)、格子線gの幅Wと格子線gの厚さtの比(W/t)、及び鉛ペーストの過充填率(P/T)を好適な範囲に制御するので、正極の集電性が適度に低下し、活物質と格子との粘着性が良好となり、均一な集電性を有する。そのため、ハイレート放電の際の正極活物質の過放電を防ぐことができ、深放電を繰り返して行う充放電設備、例えば電動自転車に適用することができ、長寿命化された電池が得られる。
 (鉛蓄電池用の正極板の製造方法)
 本発明における鉛蓄電池用の正極板の製造方法は、以下の工程を含む。
 (1)鉛シートを、該鉛シートに対して垂直方向に複数のスリットを形成するとともに、該スリットを鉛シートの垂直方向に広げることにより、複数の格子線が交差するメッシュを有する格子状シートにエキスパンド加工する工程
 (2)格子状シートを、一対のローラを用いて、エキスパンド格子に整形する工程
 (3)エキスパンド格子に、鉛ペーストからなる正極活物質を充填する工程
 (4)正極活物質が充填されたエキスパンド格子を、所定の寸法の正極板に裁断する工程
 ここで、エキスパンド格子の格子線gの幅をW、エキスパンド格子の厚さをTとしたとき、格子の屈曲度(T/W)が1.5~1.9の範囲になるように、エキスパンド加工工程(1)において、鉛シートの幅方向におけるスリットの間隔を調整するとともに、整形工程(2)において、一対のローラ間のピッチ及びローラ圧を調整する。
 また、エキスパンド格子の格子線の厚さをtとしたとき、格子線の幅Wと格子線の厚さtの比(W/t)が1.25~1.60の範囲になるように、エキスパンド加工工程(1)において、鉛シートの厚さに応じて、鉛シートの幅方向におけるスリットの間隔を調整することが好ましい。
 また、正極板の厚さをPとしたとき、鉛ペーストの過充填率(P/T)が1.1~1.4の範囲になるように、正極活物質の充填工程(3)において、鉛ペーストの塗布量を調整することが好ましい。
 本発明の製造方法に得られた正極板を備えた鉛蓄電池は、ハイレート放電における優れたサイクル特性を有し、深放電を繰り返して行う充放電設備、例えば電動自転車に適用することができ、長寿命化された電池が得られる。
 (実施例)
 以下、本発明について実施例と比較例とを用いて説明するが、本発明はこれらに限定されるものではない。また、格子線の幅W、格子線の厚さt、格子の厚さTなどの値は、複数の測定箇所で測定した値の平均値である。なお、格子における各メッシュの大きさや格子線の幅などが位置によって変化する場合も考慮して、測定箇所は、格子における一定のピッチで選出した複数の部位とした。
 実施例1
 (正極板の作製)
 Pb-Ca-Sn三元合金シートで作製された鉛シートを、レシプロプレス金型に搬入し、エキスパンド加工を行った。プレスする度に、鉛シートの長さ方向に沿って複数の断続したスリットを形成した。このとき、複数のスリットは、所定の間隔をおいて、幅方向に斜めに配列させた。次に、可動金型を下向きにプレスし、鉛シート表面に直交する方向にスリットを広げた。このプレスを繰り返し複数回行い、複数の格子線が交差したメッシュを有する格子状シートを得た。なお、可動金型に設けられたカッター部の位置を調整することにより、鉛シートの中央部分を、メッシュを有さない無地部分とした。その後、整形用金型の一対のローラを用いて格子状シートを整形し、正極エキスパンド格子を得た。
 このとき、鉛シート上に形成されたスリットの間隔、一対のローラのピッチ及びローラ圧をそれぞれ調整して、格子の格子線の幅W、格子線の厚さt、及び格子の厚さTを、所望の範囲内に制御した。本実施例において、測定した格子の厚さTは2.2mm、格子線の幅Wは1.4mm、格子線の厚さtは1.05mmであった。
 次に、鉛粉末(二酸化鉛と金属鉛とを質量比70:30で混合した粉末)と、水と硫酸とを、質量比100:15:10で混合して、正極鉛ペーストを得た。整形後の格子上に格子の長さ方向に沿って正極鉛ペーストを87.9g充填した。その後、鉛ペーストが充填された格子を所定の寸法と形状に裁断、乾燥し、未化成の正極板(縦:139mm、横:64mm)を得た。測定された極板の厚さPは、1.70mmであった。
 (負極板の作製)
 鋳造法で作製された鋳造格子を負極格子(縦:142mm、横:65mm、厚さ:1.5mm)とする。鉛粉末(二酸化鉛と金属鉛とを質量比70:30で混合した粉末)と、水と、硫酸とを質量比100:5:10で混合して、負極鉛ペーストを得た。その後、負極格子に負極鉛ペーストを59.6g充填した後、乾燥し、未化成の負極板を得た。ドライ後に測定した極板の厚さPは、1.70mmであった。
 (鉛蓄電池の作製)
 正極板と負極板とを、ガラス繊維を主とするセパレータを介して交互に積層し、極性が同一である極板の耳部を溶接して、バスバーを形成した。その後、隔壁によって6つの単一の電槽に区画された電槽内に、極板群(セル)をそれぞれを収容する。極板群間の直列接続は、バスバーを用いて溶接によって行った。 
 その後、各セル毎に電解液として濃度が1.242g/mlの硫酸を、170ml注入した後、中蓋と上蓋とを電槽の開口部に取り付け、密閉して、化成処理し、電池容量が20Ahの鉛蓄電池を得た。
 実施例2
 格子の厚さTが2.3mm、極板の厚さが2.9mmとなるように、一対のローラのピッチ及びローラ圧と、鉛ペーストの塗布量を調整して、正極板を作製した。それ以外は、実施例1と同様の方法で、鉛蓄電池を作製した。
 実施例3
 格子の厚さTが2.4mm、極板の厚さが2.9mmとなるように、一対のローラのピッチ及びローラ圧と、鉛ペーストの塗布量を調整して、正極板を作製した。それ以外は、実施例1と同様の方法で鉛蓄電池を作製した。
 実施例4
 格子の厚さTが2.5mm、極板の厚さが2.9mmとなるように、一対のローラのピッチ及びローラ圧と、鉛ペーストの塗布量を調整して、正極板を作製した。それ以外は、実施例1と同様の方法で鉛蓄電池を作製した。
 実施例5
 格子の厚さTが2.6mm、極板の厚さが2.9mmとなるように、一対のローラのピッチ及びローラ圧と、鉛ペーストの塗布量を調整して、正極板を作製した。それ以外は、実施例1と同様の方法で鉛蓄電池を作製した。
 実施例6
 実施例3と同様の方法で正極板を作製した。正極格子と同様のエキスパンド格子を用いて負極板を作製した。エキスパンド格子の厚さは1.6mmに調整した。それ以外は実施例3と同様の方法で鉛蓄電池を作製した。
 比較例1
 格子の厚さTが2.0mm、極板の厚さが2.9mmとなるように、一対のローラのピッチ及びローラ圧と、鉛ペーストの塗布量を調整して、正極板を作製した。それ以外は、実施例1と同様の方法で鉛蓄電池を作製した。
 比較例2
 格子の厚さTが2.7mm、極板の厚さが2.9mmとなるように、一対のローラのピッチ及びローラ圧と、鉛ペーストの塗布量を調整して、正極板を作製した。それ以外は、実施例1と同様の方法で鉛蓄電池を作製した。
 比較例3
 正極板のエキスパンダ格子を、整形後に得られるエキスパンド格子の格子線の厚さが1.25mmで、格子線の幅が1.7mmとなるように、鉛シートの厚さ、及びエキスパンド加工時のスリットの間隔を調整して作製した。また、格子の厚さTが2.4mm、極板の厚さが2.9mmとなるように、一対のローラのピッチ及びローラ圧と、鉛ペーストの塗布量を調整して、正極板を作製した。それ以外は、実施例1と同様の方法で鉛蓄電池を作製した。
 比較例4
 正極板のエキスパンド格子として、格子の厚さが2.0mmの鋳造格子を用いた。それ以外は、実施例1と同様の方法で鉛蓄電池を作製した。
 実施例7
 正極板のエキスパンダ格子を、整形後に得られるエキスパンド格子の格子線の厚さが1.15mmとなるように、鉛シートの厚さを調整した。それ以外は、実施例1と同様の方法で鉛蓄電池を作製した。
 実施例8
 正極板のエキスパンダ格子を、整形後に得られるエキスパンド格子の格子線の厚さが1.10mmとなるように、鉛シートの厚さを調整した。それ以外は、実施例1と同様の方法で鉛蓄電池を作製した。
 実施例9
 正極板のエキスパンダ格子を、整形後に得られるエキスパンド格子の格子線の厚さが0.90mmとなるように、鉛シートの厚さを調整した。それ以外は、実施例1と同様の方法で鉛蓄電池を作製した。
 実施例10
 正極板のエキスパンダ格子を、整形後に得られるエキスパンド格子の格子線の厚さが0.85mmとなるように、鉛シートの厚さを調整した。それ以外は、実施例1と同様の方法で鉛蓄電池を作製した。
 (ハイレート放電のサイクル寿命の測定)
 実施例1~10、比較例1~4で得られた各鉛蓄電池に対して、以下の条件でハイレート放電のサイクル寿命の試験を行った。
 電池仕様:12V、20Ah
 充電条件:14.7Vの定電圧充電、最大16時間
 放電条件:30A(1.5C)の定電流放電、電圧が9.6Vまで低下 
 上記の充放電サイクルを繰り返して行い、電池の放電容量が1回目のサイクルの放電容量の80%まで低下したときに試験を終了し、行われた充放電サイクルの回数を測定した。
 ◎  :サイクルの回数が500回以上
 ○  :サイクルの回数が400~500回
 △  :サイクルの回数が200~400回
 ×  : サイクルの回数が100~200回
 ×× :サイクルの回数が100回以下
 (正極の鉛ペーストの劣化の評価)
 サイクル寿命の試験をした後の各蓄電池を分解して、正極板における鉛ペーストの状態を肉眼で観察した。鉛ペーストの格子からの剥離や剥がれが認められた電池を「正極の鉛ペーストの劣化」と評価した。
 図4に、ハイレート放電のサイクル特性、及び正極の鉛ペーストの劣化について評価した結果を示す。
 図4に示すように、実施例1~10の鉛蓄電池は、サイクルの回数が300回よりも多かったが、比較例1~4の電池は、サイクルの回数が150回よりも少なかった。このことから、本発明の鉛蓄電池が優れたハイレート放電のサイクル寿命を有することが分かった。
 また、実施例1~10の鉛蓄電池では、鉛ペーストの劣化が認められなかったが、比較例1~4の電池では、鉛ペーストの劣化が認められた。そのうち比較例1、4の鉛蓄電池の鉛ペーストの劣化が著しく、ハイレート放電のサイクル寿命が非常に短くなり、サイクルの回数が100回を下回ってしまった。
 図1の結果から、比較例1の鉛蓄電池では、鉛ペーストの過充填率が過大(1.45)であるため、鉛ペースト層が厚すぎ、そのため、深放電を繰り返して行う場合は、鉛ペーストの剥離が激しくなる。一方、比較例2の鉛蓄電池では、鉛ペーストの過充填率が不足(1.07)しているので、正極格子の集電性が過剰となり、そのため、深放電を繰り返して行う場合は、鉛ペーストの劣化が生じた。また、比較例3の鉛蓄電池では、鉛ペーストが適切な過充填率を有するものの、正極格子の屈曲度(1.41)が好適な範囲内にないため、鉛ペーストの各箇所における集電性が不均一になり、鉛ペーストが劣化したため、本発明の効果が得られなかった。さらに、比較例4の鉛蓄電池では、正極板が鋳造格子であるため、格子の集電性が過剰となり、かつ鉛ペーストの過充填率が過大になるため、鉛ペーストの劣化が著しかった。
 これに対して、格子の屈曲度(T/W)が1.50~1.90の範囲内にあり、かつ鉛ペーストの過充填率(P/T)が1.10~1.40の範囲内にある鉛蓄電池では、良好な鉛ペーストの塗布性と、優れたハイレート放電寿命が得られた。また、実施例3、8、9及び実施例7、10との比較結果から分かるように、同じ格子の屈曲度と鉛ペーストの過充填率とを有していても、格子線の幅/厚の比(W/t)が1.25~1.60の範囲内にある電池のほうが、より優れたハイレート放電寿命が得られた。なお、実施例3、6及び比較例4との比較結果から分かるように、正極板がエキスパンド格子を採用する一方、負極板が鋳造格子を採用する組合せは、その他のタイプの組合せと比較してより優れたハイレート放電のサイクル寿命特性が得られた。
 1   エキスパンド格子 
 2   耳部 
 3   鉛ペースト 
 4   正極板 
 5   負極板 
 6   セパレータ 
 7   バスバー 
 8   電槽 
 9   中蓋 
 10  上蓋 
 11  鉛蓄電池 

Claims (13)

  1.  レシプロ方式で形成されたエキスパンド格子からなる鉛蓄電池用格子であって、
     前記エキスパンド格子の格子線の幅をW、前記エキスパンド格子の厚さをTとしたとき、T/Wが1.5~1.9の範囲にある、鉛蓄電池用格子。
  2.  T/Wが1.6~1.8の範囲にある、請求項1に記載の鉛蓄電池用格子。
  3.  前記エキスパンド格子の格子線の厚さをtとしたとき、W/tが1.25~1.60の範囲にある、請求項1または2に記載の鉛蓄電池用格子。
  4.  請求項1~3のいずれか1項に記載されたエキスパンド格子に、鉛ペーストからなる正極活物質が充填された、鉛蓄電池用の正極板。
  5.  前記正極板の厚さをPとしたとき、P/Tが1.1~1.4の範囲にある、請求項4に記載の鉛蓄電池用の正極板。
  6.  P/Tが1.14~1.30の範囲にある、請求項5に記載の鉛蓄電池用の正極板。
  7.  請求項4~6のいずれか1項に記載された正極板と、負極板と、前記正極板と負極板との間に位置するセパレータと、電解液とを備えた、鉛蓄電池用の極板群。
  8.  前記負極板の格子は、鋳造法で形成された鋳造格子からなる、請求項7に記載の鉛蓄電池用の極板群。
  9.  請求項7又は8に記載された極板群を備えた、鉛蓄電池。
  10.  請求項9に記載された鉛蓄電池を備えた、電動自転車。
  11.  (1)鉛シートを、該鉛シートに対して垂直方向に複数のスリットを形成するとともに、該スリットを鉛シートの垂直方向に広げることにより、複数の格子線が交差するメッシュを有する格子状シートにエキスパンド加工する工程と、
     (2)前記格子状シートを、一対のローラを用いて、エキスパンド格子に整形する工程と、
     (3)前記エキスパンド格子に、鉛ペーストからなる正極活物質を充填する工程と、
     (4)前記正極活物質が充填されたエキスパンド格子を、所定の寸法の正極板に裁断する工程とを備え、
     前記エキスパンド格子の格子線の幅をW、前記エキスパンド格子の厚さをTとしたとき、T/Wが1.5~1.9の範囲になるように、前記工程(1)において、鉛シートの幅方向における前記スリットの間隔を調整するとともに、前記工程(2)において、前記一対のローラ間のピッチ及びローラ圧を調整する、鉛蓄電池用の正極板の製造方法。
  12.  前記エキスパンド格子の格子線の厚さをtとしたとき、W/tが1.25~1.60の範囲になるように、前記工程(1)において、前記鉛シートの厚さに応じて、該鉛シートの幅方向における前記スリットの間隔を調整する、請求項11に記載の鉛蓄電池用の正極板の製造方法。
  13.  前記正極板の厚さをPとしたとき、P/Tが1.1~1.4の範囲になるように、前記工程(3)において、前記鉛ペーストの塗布量を調整する、請求項11または12に記載の鉛蓄電池用の正極板の製造方法。
PCT/JP2012/002286 2011-03-31 2012-04-02 鉛蓄電池用格子、該格子を用いた正極板、極板群及び鉛蓄電池並びに鉛蓄電池用正極板の製造方法 WO2012132476A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012535477A JP5230845B2 (ja) 2011-03-31 2012-04-02 鉛蓄電池用の極板群、鉛蓄電池、及び鉛蓄電池用の極板群の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110085830.5 2011-03-31
CN201110085830.5A CN102738470B (zh) 2011-03-31 2011-03-31 铅蓄电池用格栅、正极板、极板组、铅蓄电池及其制造方法

Publications (1)

Publication Number Publication Date
WO2012132476A1 true WO2012132476A1 (ja) 2012-10-04

Family

ID=46930244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002286 WO2012132476A1 (ja) 2011-03-31 2012-04-02 鉛蓄電池用格子、該格子を用いた正極板、極板群及び鉛蓄電池並びに鉛蓄電池用正極板の製造方法

Country Status (3)

Country Link
JP (1) JP5230845B2 (ja)
CN (1) CN102738470B (ja)
WO (1) WO2012132476A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715397B (zh) * 2013-12-07 2016-01-13 河南超威电源有限公司 一种板栅表面浸粘液及极板固化工艺方法
CN104752643B (zh) * 2013-12-27 2019-03-15 松下蓄电池(沈阳)有限公司 铅蓄电池
CN106025383B (zh) * 2016-05-24 2020-01-07 淄博火炬能源有限责任公司 阀控式铅酸蓄电池及其制备方法
JP6456537B1 (ja) 2018-02-28 2019-01-23 古河電池株式会社 鉛蓄電池用正極格子体及び鉛蓄電池
CN116833263B (zh) * 2023-09-01 2023-10-31 太原科技大学 燃料电池金属双极板辊冲复合成形工艺及精度调控方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114282A (en) * 1980-02-14 1981-09-08 Yuasa Battery Co Ltd Pasted lead acid battery
JPS56149772A (en) * 1980-04-18 1981-11-19 Yuasa Battery Co Ltd Grid for lead battery
JPS56159065A (en) * 1980-05-13 1981-12-08 Yuasa Battery Co Ltd Grid for lead acid battery
JPS585969A (ja) * 1981-07-02 1983-01-13 Japan Storage Battery Co Ltd 鉛蓄電池
JPH09223502A (ja) * 1996-02-19 1997-08-26 Matsushita Electric Ind Co Ltd 密閉形鉛蓄電池
JP2001006685A (ja) * 1999-06-18 2001-01-12 Matsushita Electric Ind Co Ltd 鉛蓄電池用エキスパンド格子体の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582936A (en) * 1994-11-16 1996-12-10 Globe-Union, Inc. Lead-acid batteries with optimum current collection at grid lugs
US5989749A (en) * 1997-11-26 1999-11-23 Johnson Controls Technology Company Stamped battery grid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114282A (en) * 1980-02-14 1981-09-08 Yuasa Battery Co Ltd Pasted lead acid battery
JPS56149772A (en) * 1980-04-18 1981-11-19 Yuasa Battery Co Ltd Grid for lead battery
JPS56159065A (en) * 1980-05-13 1981-12-08 Yuasa Battery Co Ltd Grid for lead acid battery
JPS585969A (ja) * 1981-07-02 1983-01-13 Japan Storage Battery Co Ltd 鉛蓄電池
JPH09223502A (ja) * 1996-02-19 1997-08-26 Matsushita Electric Ind Co Ltd 密閉形鉛蓄電池
JP2001006685A (ja) * 1999-06-18 2001-01-12 Matsushita Electric Ind Co Ltd 鉛蓄電池用エキスパンド格子体の製造方法

Also Published As

Publication number Publication date
JPWO2012132476A1 (ja) 2014-07-24
CN102738470A (zh) 2012-10-17
CN102738470B (zh) 2015-07-29
JP5230845B2 (ja) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5106712B2 (ja) 鉛蓄電池及び電動車両
EP2122725B1 (en) Negative grid for battery
US7976588B2 (en) Storage battery with expanded grid
JP6162136B2 (ja) 耐食性を変化させた電池グリッド
JP5325358B1 (ja) 電池用極板及びその製造方法、該極板を有する極板群並びに鉛蓄電池
JP5230845B2 (ja) 鉛蓄電池用の極板群、鉛蓄電池、及び鉛蓄電池用の極板群の製造方法
JP2019029068A (ja) 鉛蓄電池
KR100721638B1 (ko) 납축전지용 격자체의 제조방법 및 납축전지
JP4092816B2 (ja) 鉛蓄電池用格子体およびその製造方法
JP6921037B2 (ja) 鉛蓄電池
CN202094213U (zh) 铅蓄电池用格栅、正极板、极板组、以及铅蓄电池
JP4834912B2 (ja) 蓄電池用格子体の製造方法と、その製造方法により製造した蓄電池用格子体を用いる鉛蓄電池の製造方法
KR100216043B1 (ko) 수소흡장 합금전극의 제조방법
JP2000348732A (ja) 鉛蓄電池とその製造方法
JP2004273400A (ja) 蓄電池用格子体とそれを用いた鉛蓄電池
JP2001135318A (ja) 密閉鉛蓄電池用格子体及びその製造方法
JP2002075380A (ja) 鉛蓄電池用エキスパンド格子体
JPH07307148A (ja) 鉛蓄電池
JP2004146179A (ja) 鉛蓄電池
JP2012084302A (ja) 鉛蓄電池用極板およびこれを用いた鉛蓄電池
JP2004192990A (ja) 電池用エキスパンド格子体とそれを用いた電池および鉛蓄電池
JP2006032027A (ja) 鉛蓄電池用エキスパンド格子体の製造方法、それによる格子体、および該格子体を用いた鉛蓄電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012535477

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765638

Country of ref document: EP

Kind code of ref document: A1