Nothing Special   »   [go: up one dir, main page]

WO2012177111A2 - Eolienne a axe vertical, convertible, autoregule, combinant une savoni us et une darrieus, a aubage composee - Google Patents

Eolienne a axe vertical, convertible, autoregule, combinant une savoni us et une darrieus, a aubage composee Download PDF

Info

Publication number
WO2012177111A2
WO2012177111A2 PCT/MA2012/000008 MA2012000008W WO2012177111A2 WO 2012177111 A2 WO2012177111 A2 WO 2012177111A2 MA 2012000008 W MA2012000008 W MA 2012000008W WO 2012177111 A2 WO2012177111 A2 WO 2012177111A2
Authority
WO
WIPO (PCT)
Prior art keywords
savonius
darrieus
configurations
turbine
blade
Prior art date
Application number
PCT/MA2012/000008
Other languages
English (en)
Other versions
WO2012177111A3 (fr
Inventor
Mohamed ENNAJI
Janah SAADI
Original Assignee
Université Hassan Ii - Casablanca
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Université Hassan Ii - Casablanca filed Critical Université Hassan Ii - Casablanca
Publication of WO2012177111A2 publication Critical patent/WO2012177111A2/fr
Publication of WO2012177111A3 publication Critical patent/WO2012177111A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/064Fixing wind engaging parts to rest of rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/212Rotors for wind turbines with vertical axis of the Darrieus type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/213Rotors for wind turbines with vertical axis of the Savonius type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/302Segmented or sectional blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present patent relates to a new vertical axis turbine configuration shown in Figure (1), this device has significant advantages from the point of view of the operating range in speed and the power output, greater than those of other wind turbines vertical axis, this device has several advantages, which can be summarized in three points:
  • the proposed wind turbine is a variable geometry transformable device combined with a system that ensures this transformation, passing from one configuration to another according to the air flow rate and external conditions.
  • a turbine is a device for capturing the kinetic energy conveyed by the flows.
  • the present invention generally relates to the field of air and hydraulic turbines (wind turbine and tidal type applications), this device allows the transformation of energy. conveyed by an aerodynamic or hydrodynamic flow into exploitable mechanical energy, to drive rotary devices, either for the production of electricity, if it is combined with a generator, or a direct mechanical operation for pumping or driving applications.
  • This device consists of a rotor (1) rotatable about a main axis (2), the rotor is composed of at least two blades (3), each blade is composed in turn of several blade blocks (4) group in such a way that the vane geometry is semicircular in shape ( Figure A and B).
  • the blades are manufactured so that the weight of the blade is greater at the edge edge (5), having a geometric shape (6) as close as possible to a type GOE225 aerodynamic profile as is presented in Figure C, this profile configuration gives a better performance, as it is characterized by the advantage of being able to produce a torque (lift, drag) greater as shown in both figure Z.
  • the leading edge portion of the blade is manufactured in a thin shell geometric configuration (7), hollow to have the minimum weight, and the trailing edge portion in a solid configuration (8), with a bore (9) along the entire length of the blade for placing an assembly element (10) (eg: axis) which makes it possible to ensure freedom of rotation by means of a mechanical pivot connection on the z axis perpendicular to the aerodynamic profile surface, allowing a complete revolution, to allow transformation, as shown in Figure D.
  • assembly element 10
  • Figure D shows a cross sectional view of an elementary blade, showing its geometry and all the elements for its assembly.
  • the blade elements must be assembled as in Figure E, to form the blade of a semicircular shape, around a reference circle (11).
  • the turbine is assembled in such a way that the reference circle of the blading represents a center distance greater than the radius (R) of the main axis (2), knowing that the center distance (12) is the distance separating the main axis of the turbine, and the fictitious axis of the blade in the open initial position as shown in FIG. F.
  • the structure (1) (rotor) on which the bladed and fixed, will in turn be fixed to another fixed bearing structure (stator) which will allow the attachment of the turbine and also the drive of the system of use (generator: to produce electricity, pump or compressor: for pumping or compressing a fluid or simply to drive any mechanical system).
  • V v the speed of V flow.
  • centrifugal force is equal to:
  • the change in wind speed produces a proportional change in the rotational speed of the turbine, this change is due to the change in the aerodynamic parameters caused by the flow of wind around the wind turbine.
  • the turbine is in its initial configuration ( Figure G), and the wind begins to blow, the flow of wind around the turbine (14), exerts pressure on the blade, this pressure produces a lift force (15) turned it at a low speed.
  • Figures I, J, K, L, M and N show the progress of the transformation process.
  • the turbine takes different forms, from the inclination of the elements of the blading (the blades), during the initial configuration the turbine is similar to a Savonius, but once the process of transformation is triggered the turbine takes the appearance of a turbine composed of several Darrieus as shown in Figures 0, P, Q, R, S and T, this configuration produces a larger torque and it represents the sum of the torque produced by each turbine Darrieus , which makes the power produced by this device even more important.
  • This device has the advantage of being able to exploit the two forces resulting from the flow, the drag and the lift, through the transformation device which makes it possible to switch between two Savonius or Darrieus configurations, thus combining the advantage of the two configurations, the transformation is done in operation of the speed of the flow, in a first case the turbine is in its default configuration (the Savonius) as the flow rate increases, the turbine tends to increase its rotational speed.
  • the initial arrangement of the blades makes it possible to have an architecture similar to that of Savonius-type wind turbines, and with the increase in the speed of rotation, the device ensures a transformation of the turbine from a Savonius configuration to a Darrieus, to arrive at the profile of the desired configuration.
  • Figures N, O, P, Q and R show the two initial and final configurations of the turbine, in front view and tri-metric view in longitudinal section.
  • figure X represents the characteristic curves of the various wind turbine configurations, this figure allows us to see the interest of the combination of the two Darrieus and Savonius configuration, as well as the complementarity that this combination represents.
  • the Savonius and Darrieus wind turbines have the advantage of being able to exploit very weak winds (from 0.5m / S) that the other configurations can not exploit, their domains in speed complement each other, once the Savonius wind turbine enters into the extinction range, Darrieus resumes the relay and starts in turn, which is shown in Figure Yl.
  • the device disclosed in the patent represents another advantage over other combined turbine configurations (Fig. Y2) in that the transformation process provides continuity in power recovery (Fig. Y3).

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

L' invention consterne un dispositif de transformation de l'énergie cinétique véhiculé par un écoulement aérodynamique ou hydrodynamique, en énergie cinétique exploitable, ce dispositif combine les deux configurations classiques Savonius et Darrieus, le dit dispositif est transformable, à géometrie variable, utilisant un aubage composé, et combiné à un système mécanique qui assure cette transformation, en passant d'une configuration à une autre selon la vitesse d'écoulement de l'air et les conditions externes. Cette turbine débute son cycle avec une configuration Savonius, et au fur et à mesure que la vitesse du vent augmente, elle se transforme en plusieurs turbines de type Darrieus imbriquées. ce qui fait qu'elle exploite les efforts aérodynamiques de type portance et trainée, qui présentent des complémentarités à plusieurs niveaux.

Description

EOLIENNE A AXE VERTICAL, CONVERTIBLE, AUTOREGULE, COMBINANT UNE SAVONI US ET UNE DARRIEUS, A AUBAGE
COMPOSEE
Descriptif du dispositif:
Le présent brevet concerne une nouvelle configuration de turbine à axe vertical présenté sur la figure (1), ce dispositif présente d'important avantages du point de vue du domaine de fonctionnement en vitesse ainsi que la puissance produite, plus importants que celles des autres éoliennes à axe vertical, ce dispositif à plusieurs avantages, qui peuvent être résumés en trois points :
• L'auto-adaptation aux conditions externes, liée au fait que ce dispositif change automatiquement de configuration.
• L' autorégulation assurée par le dispositif de transformation qui peut être lié a un système de contrôle mécatronique.
• La continuité dans la production de l'énergie quelque soit le sens de l'écoulement et la vitesse du vent.
Ces avantages sont du au fait qu'elle combine les deux configurations classiques Savonius et Darrieus, ce qui fait qu'elle exploite les efforts aérodynamiques de type portance et traînée, qui présentent des complémentarités à plusieurs niveaux.
En effet l'éolienne proposée est un dispositif transformable à géométrie variable combiné à un système qui assure cette transformation, en passant d'une configuration à une autre selon la vitesse d'écoulement de l'air et les conditions externes.
Applications :
Production d'énergie électrique, pneumatique, hydraulique, pompage.
Une turbine est un dispositif de captation de l'énergie cinétique véhiculé par les écoulements, La présente invention concerne en générale, le domaine des turbines aérauliques et hydrauliques (des applications de type éoliennes et hydroliennes), ce dispositif permet la transformation de l'énergie véhiculé par un écoulement aérodynamique ou hydrodynamique en énergie mécanique exploitable, pour entraîner des dispositifs rotatifs, soit pour la production de l'électricité, si elle est combinée à une génératrice, ou une exploitation mécanique directe pour des applications de pompage ou d'entrainement en générale.
Ce dispositif est constitué d'un rotor (1) mobile en rotation autour d'un axe principal (2), le rotor est composé d'au moins deux aubes (3), chaque aube est composé à son tour de plusieurs blocs de pale (4) regrouper d'une façon à ce que la géométrie de l'aubage soit de forme semi-circulaire (Figure A et B).
Les pales sont fabriqué pour que le poids de la pale soit plus important au niveau de la partie bord de fuit (5), en ayant une forme géométrique (6) la plus proche possible à un profil aérodynamique de type GOE225 comme se qui est présenté dans la figure C, cette configuration de profil donne un meilleur rendement, vue qu'il se caractérise par l'avantage de pouvoir produire un couple (portance ; traînée) plus importante comme se que montre les deux figure Z. Pour avoir cette différence de poids, la partie bord d'attaque de la pale est fabriquée sous une configuration géométrique coque mince (7), creuse pour avoir le minimum de poids, et la partie bord de fuite sous une configuration pleine (8), avec un perçage (9) sur tout le long de la pale permettant de placer élément d'assemblage (10) (ex : Axe) qui permet d'assurer une liberté de rotation par une liaison mécanique pivot sur l'axe z perpendiculaire à la surface du profil aérodynamique, permettant une révolution complète, pour permettre la transformation, comme le présente la figure D.
La figure D représente une vue en coupe transversale d'une pale élémentaire, montrant sa géométrie ainsi que l'ensemble des éléments permettant son assemblage.
Les éléments de pale doivent être assemblés comme dans la figure E, pour former l'aubage d'une forme semi-circulaire, autour d'un cercle de référence (11).
La turbine est assemblée, d'une façon à ce que le cercle référence de l'aubage représente un entre-axe supérieur au rayon (R) de l'axe principale (2), sachant que l'entre- axe (12) est la distance séparant l'axe principale de la turbine, et l'axe fictif de l'aubage en position initiale ouverte comme présenté sur la figure F.
La structure (1) (rotor) sur laquelle l'aubage et solidaire, sera fixé a son tour a une autre structure porteuse fixe (stator) qui permettra la fixation de la turbine et aussi l'entrainement du système d'utilisation (génératrice : pour produire l'électricité, pompe ou compresseur : pour le pompage ou la compression d'un fluide ou tout simplement pour entraîner un système mécanique quelconque).
La liberté de déplacement des éléments des aubages (des pales par rapport à la structure (1)) sera conditionnée par un système d'attache élastique (13) (ressort, fil élastique, ...) qui permet d'attaché l'extrémité bord de fuite (point Ppale) de chaque pale à un point (Pstructure) de la structure (1), ce système d'attache élastique doit être caractérisé par une raideur spécifique, égale au rapport de l'effort centrifuge minimum à partir du quel la transformation doit se déclenché et de la déflexion résultante.
^centrifuge min
X
^centrifuge Tïl C' û R
Sachant que :
R■ rayan, distance séparant le point (20) de l'axe principal
^centrifuge '· Rendement de la turbine
m: la masse de l'aubage {des deux semi
— aubes et des axes de l'aubage)
Et la vitesse de rotation est égale à :
ϋ
Sachant que :
ω : la vitesse de rotation
ϋ■ Rendement de la turbine
Vv: la vitesse de V écoulement.
Et la force centrifuge est égale à :
k = m—
R x
Et au fure et à mesure que le processus de transformation avance les points (Ppale) - qui représente l'extrémité bord d'attaque de chaque pale se déplacent en rotation autour de l'axe porteur de chaque pale.
Le changement de la vitesse du vent produit un changement proportionnel de la vitesse de rotation de la turbine, ce changement est dû au changement des paramètres aérodynamiques causé par l'écoulement du vent autour de l'éolienne.
Dans un premier temps le dispositif est dans une configuration initiale de type Savonius (Figure A), l'écoulement du vent autour de l'aube produit un effort de type traînée, la distribution de l'effort sur la surface de l'aube exerce une pression sur cette surface, cette pression ayant le même sens que celui de l'écoulement, la turbine commence son cycle de rotation.
Au fure et à mesure que l'écoulement est plus important, la vitesse du vent augmente, la vitesse de rotation augmente aussi, un effort centrifuge est exercé sur les éléments de l'aubage (pales), due a la distribution du poids sur les pales.
Description de la transformation :
La turbine est dans sa configuration initiale (figure G), et le vent commence à souffler, l'écoulement du vent autour de la turbine (14), exerce une pression sur l'aubage, cette pression produit un effort de portance ( 15) la fait tourné à une vitesse faible.
La vitesse du vent augmente se qui entraine une augmentation de la vitesse de rotation de la turbine, l'effort centrifuge (16) exercer sur les pale augmente aussi, une fois cet effort devient plus important que la raideur des éléments d'attaches ( 17), il entraine le déplacement circulaire des pales, l'angle de calage ( 18) (<Xj) de chaque pale varie (a, avec i indice de la pale) (Figure H), jusqu'à ce que l'effort centrifuge soit égal à l'effort exercé par l'élément d'attache sur la pale, ce qui freine le déplacement des pales, si le vitesse du vent continue à augmenté les pales continue la rotation, mais une fois la vitesse du vent est très importante, l'effort centrifuge fait incliner les pales jusqu'à ce que chaque pale atteint un angle de calage supérieur à l'angle de décrochage (a décrochage), a pale est en décrochage aérodynamique, donc la pale arrête sa rotation, et constitue un élément de freinage de la turbine, si toutes les pales décroches, l'effort de freinage deviens important, la vitesse de rotation baisse et les pales reprennent petit à petit leurs configurations initiales, et le dispositif est autorégulé par ce phénomène de décrochage aérodynamique.
Les figures I, J, K, L, M et N montre le déroulement du procédé de transformation.
Durant cette transformation, la turbine prend différentes formes, du a l'inclinaison des éléments de l'aubage (les pales), pendant la configuration initiale la turbine est similaire à une Savonius, mais une fois le processus de transformation se déclenche la turbine prend l'allure d'une turbine composé de plusieurs Darrieus comme ce qui est présenté sur les figure 0, P, Q, R, S et T , cette configuration produit un couple plus important et il représente la somme des couple produit par chaque turbine Darrieus, se qui rend la puissance produite par ce dispositif encore plus importante.
Ce dispositif à l'avantage de pouvoir exploité les deux efforts résultants de l'écoulement, la traîné et la portance, à travers le dispositif de transformation qui permet de basculer entre deux configurations Savonius ou Darrieus, donc de combinée les avantage des deux configuration, la transformation se fait en fonctionnement de la vitesse de l'écoulement, dans un premier cas la turbine se trouve dans sa configuration par défaut (la Savonius) au fur-et-à-mesure que la vitesse de l'écoulement augmente, la turbine à tendance d'augmenté sa vitesse de rotation.
La disposition initiale des aubes, permet d'avoir une architecture similaire à celle des turbines éoliennes de type Savonius, et avec l'augmentation de la vitesse de rotation, le dispositif assure une transformation de la turbine d'une configuration Savonius à une Darrieus, pour aboutir au profil de la configuration recherchée.
Les figures N, O, P, Q et R montre les deux configurations initiale et final de la turbine, en vue frontale et vue tri-métrique en coupe longitudinale.
Après étude des dispositions et configurations des éoliennes, on peut constater que les configurations Savonius et Darrieus représentent des complémentarités au niveau du domaine de fonctionnement et aussi au niveau de la puissance récupérée, la figure X représentes les courbes caractéristiques des différentes configurations de turbine éoliennes, cette figure nous permet de voir l'intérêt de la combinaison des deux configuration Darrieus et Savonius, ainsi que la complémentarité que représente cette combinaison.
Les éolienne Savonius et Darrieus ont l'avantage de pouvoir exploité des vents très faibles (à partir de 0,5m/S) que les autres configurations ne peuvent pas exploiter, leurs domaines en vitesse se complètent, une fois l'éolienne Savonius entre dans le domaine d'extinction, la Darrieus reprend le relais et démarre a son tour se qui est présenté sur la figure Yl.
Donc l'avantage le plus important des turbines combinées (figure Y2) est au niveau du domaine de fonctionnement en vitesse, qui est plus large par rapport aux autres configurations.
Le dispositif présenté dans se brevet représente un autre avantage par rapport aux autres configurations de turbine combinées (figure Y2), du au fait que le processus de transformation assure une continuité au niveau de la récupération de la puissance (figure Y3).

Claims

Revendications :
1. Dispositif de transformation d'écoulement de fluide (gazeux ou liquide), composé d'aubage transformable, exploitant les deux efforts aérodynamiques portance et traînée, contrôlé par un système exploitant l'effort centrifuge comme acteur de la transformation.
2. Dispositif selon la revendication (1), exploitant un aubage composé par de pales.
3. Dispositif selon les revendications (1) et /ou (2), avec un processus de transformation rotatif des pales.
4. Dispositif selon l'une des revendications précédentes, exploitant un système d'attache comme système de rappel et de régulation.
5. Dispositif selon l'une des revendications précédentes, caractérisé par la configuration géométrique présenté dans le descriptif, caractérisé par un aubage en matériau composite, plastique, ferrique ou autre matériau offrant des caractéristiques similaires à ceux décrit précédemment.
Figure imgf000007_0001
Figure C
Figure imgf000008_0001
Figure C
PCT/MA2012/000008 2011-06-24 2012-06-22 Eolienne a axe vertical, convertible, autoregule, combinant une savoni us et une darrieus, a aubage composee WO2012177111A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MA33978A MA33875B1 (fr) 2011-06-24 2011-06-24 Eolienne à axe vertical, convertible, autorégulée, combinant une savonius et une darrieus, à pale pliable.
MA33978 2011-06-24

Publications (2)

Publication Number Publication Date
WO2012177111A2 true WO2012177111A2 (fr) 2012-12-27
WO2012177111A3 WO2012177111A3 (fr) 2013-03-14

Family

ID=47019129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MA2012/000008 WO2012177111A2 (fr) 2011-06-24 2012-06-22 Eolienne a axe vertical, convertible, autoregule, combinant une savoni us et une darrieus, a aubage composee

Country Status (2)

Country Link
MA (1) MA33875B1 (fr)
WO (1) WO2012177111A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2477115A1 (es) * 2014-05-30 2014-07-15 Universidad De La Rioja Generador eólico de eje vertical
JP2015108364A (ja) * 2013-12-03 2015-06-11 通孝 月岡 サボニウス型風車

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19501036A1 (de) * 1995-01-16 1995-07-13 Richter Wolfgang Radial durchströmter Windenergie-Konverter mit vertikaler Drehachse
US7362004B2 (en) * 2003-07-29 2008-04-22 Becker William S Wind turbine device
JP2007270746A (ja) * 2006-03-31 2007-10-18 Univ Nihon 可変翼を有する垂直軸形風水車
JP4041838B2 (ja) * 2007-01-10 2008-02-06 シーベルインターナショナル株式会社 風力発電用の風車及び風力発電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108364A (ja) * 2013-12-03 2015-06-11 通孝 月岡 サボニウス型風車
ES2477115A1 (es) * 2014-05-30 2014-07-15 Universidad De La Rioja Generador eólico de eje vertical

Also Published As

Publication number Publication date
WO2012177111A3 (fr) 2013-03-14
MA33875B1 (fr) 2013-01-02

Similar Documents

Publication Publication Date Title
US20090180880A1 (en) Check valve turbine
AU2006284845B2 (en) Multi-rotor wind turbine supported by continuous central driveshaft
US20100233919A1 (en) Check valve turbine
EP2572100B1 (fr) Turbogenerateur a rotor a pales a incidence adaptee au vent apparent
CA2719144C (fr) Pale pour appareil de generation d&#39;energie, a partir d&#39;un fluide, et appareil comprenant un rotor faisant application de telles pales
GB2451670A (en) A fluid driven rotor
US8317480B2 (en) Turbine assembly and energy transfer method
FR2932230A1 (fr) Dispositif de deversoir pour machine a turbine hydraulique respectueuse de l&#39;environnement
AU2008222708B2 (en) Hubless windmill
FR2857062A1 (fr) Eolienne carenee auto-orientable
WO2012177111A2 (fr) Eolienne a axe vertical, convertible, autoregule, combinant une savoni us et une darrieus, a aubage composee
JP2014101756A (ja) 風力発電装置
WO2014106765A1 (fr) Turbine a aubes helicoidales
EP2610483B1 (fr) Eolienne à axe vertical
JP5363731B2 (ja) 縦軸型タービン装置
FR2859247A1 (fr) Eolienne a axe vertical
WO2012177112A2 (fr) Eolienne a axe vertical, convertible, autoregu le, combinant une savonius et une darrieus, a pale pliable
WO2012177110A2 (fr) Eolienne a axe vertical, convertible, autoregule, combinant une savonius et une darrieus, a pale escamotable
WO2023220330A1 (fr) Turbines à axe vertical et aubes pour turbines à axe vertical
FR2997736A1 (fr) Eolienne a axe vertical, comprenant au moins une paire de pales pivotantes dont les pivotements sont associes l&#39;un a l&#39;autre
PATEL et al. DESIGN AND EXPERIMENTAL ANALYSIS OF 2-STAGE SAVONIUS TURBINE
FR2857063A1 (fr) Eolienne carenee auto-orientable
WO2009056748A2 (fr) Dispositif de conversion d&#39;energie eolienne a axe vertical
WO2011048298A2 (fr) Unite de production d&#39;energie a rendement eleve
WO2006104472A1 (fr) Roue a tourbillons servant a augmenter le rendement des eoliennes

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12772820

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 12772820

Country of ref document: EP

Kind code of ref document: A2