Nothing Special   »   [go: up one dir, main page]

WO2012171481A1 - 全面综合回收和基本无三废、零排放的湿法冶金方法 - Google Patents

全面综合回收和基本无三废、零排放的湿法冶金方法 Download PDF

Info

Publication number
WO2012171481A1
WO2012171481A1 PCT/CN2012/077001 CN2012077001W WO2012171481A1 WO 2012171481 A1 WO2012171481 A1 WO 2012171481A1 CN 2012077001 W CN2012077001 W CN 2012077001W WO 2012171481 A1 WO2012171481 A1 WO 2012171481A1
Authority
WO
WIPO (PCT)
Prior art keywords
leaching
waste
zero
agent
emission
Prior art date
Application number
PCT/CN2012/077001
Other languages
English (en)
French (fr)
Inventor
王钧
王秀珍
徐进勇
Original Assignee
Wang Jun
Wang Xiuzhen
Xu Jinyong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Jun, Wang Xiuzhen, Xu Jinyong filed Critical Wang Jun
Publication of WO2012171481A1 publication Critical patent/WO2012171481A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the comprehensive comprehensive recovery of each component in minerals, metallurgical slag and waste by the hydrometallurgical method, and basically has no three wastes and zero discharge, and the process technology belongs to the fields of hydrometallurgy and environmental protection. Background technique
  • Hydrometallurgy is an indispensable technology in China and the world, and it can separate various valuable trace, semi-micro and constant elements and compounds from minerals, metallurgical slag and/or waste materials. Produce a variety of metals, non-metals and compounds, and become an indispensable raw material and product in the national economy, national defense construction and technology. Science and technology workers in China and the world have made tremendous contributions to this and have established a complete set of hydrometallurgical systems, such as beneficiation, leaching, solid-liquid separation, separation and purification, to produce a wide range of products to meet human substances. The need for civilization and spiritual civilization.
  • the traditional hydrometallurgical method is to leaching high-grade ore after grinding. More often, the ore of industrial grade is leached by grinding and ore dressing to obtain concentrate, and the leaching method is best. Leaching agents and physicochemical conditions The desired, valuable one or several elements are leached into the solution and then isolated and purified to produce the product. The waste residue and waste water generated in the hydrometallurgical process are usually discharged into the tailings dam and stored for further economic and environmental protection. Therefore, due to the lack of economic and environmental treatment, these wastes and waste water are now It has become a public hazard that pollutes the environment. Moreover, the comprehensive recovery rate of the traditional hydrometallurgical method is determined by the ore recovery rate, the leaching recovery rate, etc., and it is generally difficult to achieve 90%.
  • the concept and method of comprehensive comprehensive recovery proposed by the invention is a comprehensive recovery of hydrometallurgy with the premise of basically no three wastes and zero discharge, that is, the process technology of exhaust gas, waste water and waste residue discharge in the whole process of hydrometallurgy.
  • Excipients in hydrometallurgical processes such as acids and bases, can also be recovered in the process or converted into additional commodities, ie, chemical processes and chemical processes to achieve self-circulation of the hydrometallurgical process. Conversion and energy conversion and self-circulation to achieve the best purpose.
  • This is the theory, method and purpose of the comprehensive comprehensive recovery of hydrometallurgy proposed by the present invention.
  • the raw material is leached by using a high-strength leaching agent and physical and chemical conditions such as heating, pressurization, complexation, and oxidation.
  • the purpose of optimal high-strength leaching is: First, high-value rare, rare, rare earth and/or precious metals are leached into the solution at the optimum leaching rate and enriched by leaching solution recycling and wastewater recycling.
  • the trace or semi-micro component is constant, and the separation and purification of each component is the commodity to achieve the purpose of rational utilization of resources; second, the leaching and filtration of the slag reaches the requirements of building materials such as cement, ceramic tile, etc.
  • the traditional method does not use high-strength acid or alkali for leaching because traditional hydrometallurgy has a large number of serious environmental problems such as tailings and wastewater. If high-strength acid or alkali is used for leaching, the tail is subsequently processed. The cost of mines and wastewater will be greatly increased, and it will not be worth the loss.
  • the comprehensive and comprehensive recycling concept proposed by the present invention namely tailings-free and wastewater discharge, does not require subsequent treatment costs, so high-strength acid or alkali can be used for leaching.
  • high-strength acid or alkali leaching The main purpose of using high-strength acid or alkali leaching is: (1) high-strength acid or alkali can immerse the rare, rare, rare earth and/or precious metals in the raw material into the solution; (2) high-strength acid or alkali leaching slag, filtered After washing, a large amount of SiO 2 , Fe, Ca, etc. in the raw material is concentrated in the leaching slag, and can be used as a cement building material or an iron concentrate raw material.
  • the raw material is leached by a high-strength leaching agent, which means an acid or a base in an amount higher than 20% or more of the acid leaching agent or the alkali leaching agent used in the conventional method.
  • a high-strength leaching agent which means an acid or a base in an amount higher than 20% or more of the acid leaching agent or the alkali leaching agent used in the conventional method.
  • the main purpose of using high-strength acid or alkali leaching is to: (1) High-strength acid or alkali can leach various valuable components in the raw material into the solution; (2) High-strength acid or alkali leaching can also make the elements contained in the raw material rich in Si0 2 , Fe, Ca, etc. It is collected in the leaching residue as a cement building material or iron concentrate raw material.
  • the complexing agent is a complexing agent having an optimal complexing effect such as NH 4 C1 or NH 4 Br, and the oxidizing agent is NaC10 3 , 3 ⁇ 40 2 , 0 3 , etc. Further, 0 2 in the air is also an oxidant source.
  • the amount of complexing agent is determined experimentally. Due to the recycling of wastewater, the consumption of complexing agent is extremely low, and it is appropriately supplemented during the production process. The amount and type of oxidant are determined experimentally.
  • the leachate can be recycled to increase the concentration of the component to be extracted in the leachate, thereby achieving the purpose of constant separation.
  • the leaching solution after the completion of the first raw material leaching is directly used for the leaching of the next raw material, and so on, and the main components to be extracted which are circulated to the leaching liquid can be separated and purified by a conventional method.
  • the wastewater produced in each step can be returned to the leaching or/and purification with similar properties.
  • the steps continue to be used. Thereby achieving the goal of no three wastes and zero emissions.
  • Antimony ore including leaching, separation, purification into various product steps, in the leaching step, using high-strength concentrated sulfuric acid leaching agent for leaching, the amount of which is increased by more than 20% compared with the conventional method, in order to increase the associated components
  • the leaching rate is added to the complexing agent NH 4 C1 and/or NH 4 Br, and NaC10 3 , H 2 0 2 , 0 3 , 0 2 or the like is added as an oxidizing agent.
  • the leachate is directly returned to the next raw material for leaching, until the concentration of radon in the leachate can be separated and extracted by a constant separation method such as extraction.
  • the separated and purified hydrazine and hydrazine wastewater can be returned for use in a leaching step or other steps having similar properties.
  • the stibnite mine includes the steps of leaching, separating and purifying into various products.
  • the high-concentration concentrated hydrochloric acid leaching agent is used for leaching, and the amount thereof is increased by more than 20% compared with the conventional method for leaching, thereby increasing the associated components.
  • the leaching rate is added to the complexing agent NH 4 C1 and/or NH 4 Br and the like.
  • the collected leachate is returned to the leaching of the next stibnite raw material, and so on, until the concentration of the cesium to be extracted in the leaching solution reaches the standard of separation and purification by the conventional method, Separation and purification.
  • the separated and purified wastewater can be returned for use in the phase A leaching step or other step of a similar nature.
  • the high-strength concentrated sulfuric acid leaching agent is used for leaching, and the amount thereof is increased by more than 20% compared with the conventional method, and the high-pressure pipe leaching method is adopted.
  • the collected leachate is returned to the next copper ore leaching, and so on, until the concentration of copper to be extracted in the leachate reaches the standard of separation and purification by conventional methods, then separation and purification can be carried out. .
  • the separated wastewater after purification of copper can be returned for use in a leaching step or other steps having similar properties.
  • Nickel (molybdenum) ore including leaching, separation, and purification into various product steps.
  • high-strength concentrated sulfuric acid leaching agent is used for leaching, and the amount thereof is increased by more than 20% compared with the conventional method, and NH 4 is added.
  • a complexing agent C1 and/or NH 4 Br or the like is added as an oxidizing agent such as NaC10 3 , 3 ⁇ 40 2 , 0 3 , 0 2 or the like.
  • the collected leachate is returned to the next nickel (molybdenum) ore raw material for leaching, and so on, until the concentration of nickel to be extracted in the leachate reaches the standard for separation and purification by conventional methods. , can be separated and purified.
  • the wastewater after separation and purification of nickel can be returned for use in a leaching step or other steps having similar properties.
  • the leaching slag after leaching of nickel may contain molybdenum, and the leaching slag after leaching nickel may be used as a new raw material, and the high-strength leaching system proposed by the present invention is used, that is, leaching is carried out by a conventional method.
  • the strong base such as NaOH
  • the oxidant is added with 3 ⁇ 40 2 or 0 3 to leaching for 6 to 8 hours
  • the leaching temperature is 40 to 60 ° C
  • the leaching pressure is ⁇ . ] ⁇ 2 .
  • the collected leachate can be returned to the leaching of the next leaching slag raw material, and so on, until the concentration of the molybdenum to be extracted in the leaching solution reaches the standard of separation and purification by the conventional method, that is, It can be separated and purified.
  • the wastewater after separation and purification of molybdenum can be returned for use in a leaching step or other steps having similar properties.
  • Gold ore including leaching, separation, and purification into various product steps.
  • high-strength ⁇ 3 ⁇ ⁇ 2 0 leaching agent is used for leaching, and the amount thereof is increased by more than 20% compared with the conventional method.
  • the addition of NH 3 ⁇ H 2 0 upon leaching produces ⁇ 4 + which acts directly as a complexing agent.
  • CuS is added (V5H 2 0 is leached for more than 9 hours, and then added with (NH 4 ) 2 S 2 0 3 to control the pH to 9 to 10, and (NH 4 ) 2 S 2 0 3 can also produce NH 4 + as a complexing agent.
  • the collected leachate is returned for the leaching of the next gold material, and so on, until the concentration of the gold to be extracted in the leachate reaches the standard for separation and purification by conventional methods. Separation and purification.
  • the wastewater after separation and purification of gold can be returned for use in a leaching step or other steps having similar properties.
  • Molybdenum-nickel spent catalyst including leaching, separation, purification into various product steps, in the leaching step, using high-strength concentrated sulfuric acid leaching agent for leaching, the amount of which is increased by more than 20% compared with the conventional method, using high-pressure pipe Road leaching, leaching pressure ⁇ 3013 ⁇ 4 / ⁇ 2 ; adding complexing agent NH 4 C1 and / or NH 4 Br.
  • the remaining acidity of the leaching was >1 mol/L, the leaching temperature was 40 to 60 ° C, and the leaching was carried out for 4 to 8 hours.
  • the wastewater after separation and purification of nickel can be returned for use in a leaching step or other steps having similar properties.
  • the molybdenum-nickel spent catalyst has a high content of molybdenum and nickel, so that for a spent catalyst having a high molybdenum-nickel content, the standard of shared purification can be achieved without using a leachate cycle.
  • the above-mentioned acidic oxidative leaching is used to mainly leaching nickel in the molybdenum-nickel spent catalyst, and molybdenum in the leaching slag can continue to adopt the high-strength leaching system proposed by the present invention, that is, using a strong alkali having a higher amount of 20% or more when leached by a conventional method, For example, leaching with NaOH, and adding oxidizing agent 3 ⁇ 40 2 or 0 3, etc., leaching time 4 to 8 hours, leaching temperature is 40 to 60 ° C, and leachate pH is 9 to 10.
  • the wastewater after separation and purification of molybdenum can be returned for use in a leaching step or other steps having similar properties.
  • the advantages of the invention are as follows: First, comprehensively realize comprehensive recovery, effectively and fully utilize resources, and achieve the purpose of making the best use of them. Second, the goal of hydrometallurgy without three wastes and zero emissions has been basically achieved, and environmental pollution problems have been solved more thoroughly. Third, the recycling rate is high, up to 99%, the most recycled products, and basically no waste, can be applied to various industries as raw materials or products. It is the highest recovery method among existing closed-circuit recycling methods. Fourth, compared with traditional methods, the cost is the lowest and the profit is the biggest.
  • the enhanced leaching of the present invention has the problems of high energy consumption and large amount of leaching agent, but after many experimental studies and economic data comparisons, it is found that:
  • the present invention is the lowest cost and most profitable method for six reasons: First, the mineral processing technology is abandoned, and the cost of mineral processing is eliminated. Second, the comprehensive recovery rate is increased by about 10%, and the unit cost of the product is reduced.
  • the comprehensive recovery of products, especially high value (such as rare, rare, rare earth and precious metals) ) The recycling of products and construction materials, after the production cost is distributed to each product, the overall cost is lower; Fourth, the leachate is returned to the leaching or closed circuit, which effectively saves the auxiliary materials, such as leaching agent; (such as Na + , S0 4 2 _, Cl_, etc.) for effective recycling, which not only reduces costs, but also increases profits; sixth, effectively reducing the amount of water, generally can reduce about 80%. Sixth, effectively realize the circular economy and save natural resources.
  • the present invention can provide Si, Ca and Al ore raw materials required for iron ore, aluminum ore and building materials, and correspondingly reduce the natural The mining of ore to better protect the earth; seventh, the traditional hydrometallurgical waste of rare elements, rare metals, rare earths and precious metals, the methods of the present invention can be effectively recovered, these high-value products are a huge wealth.
  • the remaining wastewater is recycled; after leaching, the washing slag is filtered to reach the standard of the raw materials and other raw materials of the building materials, and the waste slag is returned to the leaching or the waste liquid absorbed by the acid absorption or alkali absorption. Phase in chemical process In the near-natural solution, it is recovered; the heat generated in the chemical process should be fully utilized.
  • the present invention will be further described in detail below with reference to the examples. Although the optimum enhanced leaching conditions in the following six examples are different, the leaching rates are all above 92.3%.
  • the comprehensive comprehensive recovery contents are: exhaust gas absorption by acid or alkali After absorption, enter the acid solution or the alkali solution, and the acid solution or the alkali solution can be used in the leaching or chemical process to realize the recycling of the wastewater.
  • the filter slag after high-strength leaching can be used as building materials, such as cement, brick, ceramic tile and other chemical materials. It can also be used as raw materials such as white carbon black and polysilicon.
  • the leaching solution can fully recover the main products and other rare, rare and rare earths. And precious metals and their compound products.
  • the raw materials are different, there are mineral raw materials, and there are also smelting wastes.
  • the grades and compositions of the raw materials are different, but all of them have achieved comprehensive and comprehensive recycling and basically no three wastes and zero emissions.
  • the percentages are by weight, unless otherwise specified, and the liquid-solid ratio is the liquid volume (m 3 ) to the solid mass (tons).
  • the antimony ore is 18 tons, crushed to ⁇ 80 mesh, and the main elements in the raw materials are shown in Table 1.
  • the liquid-solid ratio is 2: 1, that is, adding 6m 3 of water to the first 3 tons of raw materials, 525kg of NH 4 C1, 60kg of NH 4 Br, after leaching for 3 hours, adding concentrated H 2 S0 4 3 tons, the leaching temperature is controlled at 65 After leaching for 3 hours, 150 kg of NaC10 3 was added, the leaching temperature was controlled at 95 ° C, and after leaching for 5 hours, the remaining acidity was 1.5 mol/L, and the mixture was washed by filtration, and the resulting leachate was used for the second raw material leaching.
  • the liquid-solid ratio of the second and subsequent 4 raw materials is 2: 1.
  • the water is added; the amount of NH 4 C1 and NH 4 Br is determined according to the solution.
  • the content of C1 and Br is determined so that Cl > 115 kg / ton 'mine in the solution, Br ⁇ 16 kg / ton 'mine; concentrated H 2 S0 4 and NaC10 3 according to the amount of H 2 S0 4 and NaC10 3 in the solution Depending on the content, it is maintained at the first optimum leaching concentration, ie, the concentration of concentrated H 2 S0 4 in the solution is 3 tons, and that of NaC10 3 is 150 kg.
  • the other leaching conditions are the same as those in the first raw material leaching. Table 2 leaching conditions of antimony ore
  • the leaching rate of bulk elements and compounds is only 1.24% to 23.4%.
  • Ca Fe Al Si0 2 is enriched in leaching and filtration washing slag, and the content is from 10.5% to 49.1%. It can be used as building materials, such as cement. , bricks, tiles, etc.
  • the optimum leaching agent and leaching conditions in the present embodiment can achieve a leaching rate of 95.4% to 99.9% of the rare element Te, the rare metal Bi Cu Co Ni, the rare earth metal Sc and the noble metal Ag in terms of slag.
  • the leaching rate is about 10% higher than the traditional method.
  • the best enhanced leaching agent and leaching conditions will increase the output value after comprehensive comprehensive recovery by about 40%, achieving the lowest cost and the most profit.
  • the content of valuable elements in the raw materials is low.
  • the leaching solution is recycled (5 times), the rare Te, rare Cu Co Ni, and the concentration of rare earth Sc are increased. It can be extracted to the extent that it can be recycled.
  • Waste water recycling Adjust the pH of the leachate after leaching with NaOH to 2.7 3.1, and separate Te And Bi, wastewater is returned for leaching.
  • the wastewater is returned to use, and the concentration of the auxiliary ions, Cl, NH 4 + , oxidant NaC10, NaC10 2 and H + , is effectively utilized, thereby increasing the leaching rate and reducing the cost.
  • the excess waste water can be used as the production auxiliary material H 2 S0 4 , so as to achieve the goal of zero waste zero discharge.
  • the reaction formula is as follows: Na 2 SO4-10H 2 O+H 2 O+CaO ⁇ NaOH+CaSO 4
  • , CaS0 4 is used as a building material, and NaOH can be returned to the reaction system for further use.
  • Table 4 Components and content of stibnite 3kg of raw material is leached in 3 times, lkg is leached each time, the first raw material is added with water 0.3L, 1:1HC1 is added to keep the residual acidity of the solution at ⁇ lmol/L ; NH 4 C1 10g is added, the reaction temperature is 50 ⁇ 70°C , reaction 4h. After the first raw material leaching is completed, the mixture is filtered and washed, and 0.3 L of the leachate and the washing liquid are used for the second portion of 1 kg of the raw material to be leached, and 1:1 HC1 is added to maintain the remaining acidity of the solution at ⁇ lm 0 l/L ; and NH 4 C1 is added.
  • the amount of NH 4 C1 in the solution is kept at the optimum enhanced leaching concentration at the first leaching, and the remaining leaching conditions are the same as those in the first portion, and the leaching of the third raw material is the same as the leaching step and conditions of the second raw material, such as Table 5 shows.
  • the leaching rate of elements such as Sb, Bi, Zn, Cu and As and noble metal Au is 97.8 % ⁇ 99.3 %, which is higher than the traditional wet leaching rate.
  • the experimental data shows that after the leachate is returned to the leaching for 2 times, it can enter the traditional reliable separation and purification procedure, such as the acidity adjustment method.
  • the products are Sb 2 0 3 , Bi 2 0 3, etc., and the remaining wastewater can still be returned to leaching.
  • the leaching rate of bulk elements and compounds is only 1.5% Si0 2 and 15.1% Fe. After filtration and washing, the slag is up to 27.5 %, and Si0 2 is 70.7%. It can be used as building materials.
  • the traditional method is to use Sb 2 0 3 produced by the fire method after the beneficiation of 1.5% Sb antimony ore.
  • the purity and recovery rate of the product are low, the cost is high, the pollution is large, and it is difficult to comprehensively recover. It is difficult to meet the basic three-waste and zero-emission requirements.
  • the raw materials are divided into 10 parts, each lkg.
  • Each of the raw materials was stirred and leached in a closed reaction vessel. 2dm 3 water is added to the first raw material, and the subsequent raw materials are recycled by using the leachate, so only when the used leachate is less than 2dm 3 , water is added; adding 50% concentrated H 2 S0 4 and adding 10g of NH 4 Cl is used as a complexing agent; the generated H 2 S gas is obtained by using a common oxidation method to obtain sulfur in a closed pipeline; the leaching slurry enters a high pressure (pressure 0.5 MPa) pipeline to continue leaching, and 30 g of NaClO 3 is added thereto to make it Leaching temperature ⁇ 65°C, leaching time ⁇ 1011 in high pressure pipeline, residual acidity>2mol/L ; leachate and slag washing liquid, return to the next raw material for leaching, returning the number of leaching to 9 times, after 10 times of leaching, The concentration of Cu in the leachate reaches ⁇ 28 ⁇ , which can enter the traditional electrolysis
  • the constant elements Fe and Al are separated into crude products such as Fe(OH) 3 and Al(OH) 3 by conventional methods, and are used for raw materials such as Fe and A1 and their chemical products.
  • the results of the full analysis of the leachate and the leach residue after 10 times of leaching were completed are shown in Table 8.
  • the average slag rate of the 10 times of leaching was 78.3 %, that is, 9.4 kg of dry slag remained after the leaching was completed, and the leachate was 1.8 L, and the acidity was 2.1 mol/L.
  • the leaching rate of Cu is as high as 95%, and the beneficiation process is successfully abandoned.
  • Bulk elements and substances such as Si0 2 , Fe, Ca, Al, etc. are effectively concentrated in the slag, and are washed by filtration. It can be used as a building material such as cement, brick and tile. The remaining small amount of rare elements are concentrated in a solution and concentrated in a small amount of slag by conventional effective methods for comprehensive recovery.
  • High-pressure pipe leaching is another outstanding highlight of the present invention. High-pressure leaching not only improves the leaching rate, but also saves a lot of investment and greatly reduces production costs, saves energy and is environmentally friendly. On the contrary, the traditional production method is to build roads, and to use the car to pull the ore into the leaching workshop, and the production cost is high.
  • a solution with a Ni concentration of 37.72 g/L is neutralized with NH 3 to 1 mol/L H 2 S0 4 , and (NH 4 ) 2 Ni(S0 4 ) 2 is precipitated, which can be used to produce a crude nickel carbonate product of Ni ⁇ 47%.
  • the coprecipitated mother liquor can be returned to the oxidative acid leaching process. If the concentrations of U, Cu, etc. meet the separation requirements, they can be separated and purified into products by conventional precipitation methods.
  • Table 10 also shows that the leaching rate of Mo is very low, generally about 10%, but since the acid leaching residue is only 50%, that is, 210 g of dry slag, Mo is still enriched in the slag to 5.026%. Alkaline NaOH was oxidized and leached, so that Mo was effectively leached, and the results are shown in Table 11.
  • the acid leaching residue is still recycled by the leaching solution, that is, the first acid leaching slag is leached according to the leaching conditions of Table 11, and the resulting leaching liquid and washing liquid are used for the leaching of the second acid leaching slag, and the acid leaching slag is divided into two leaching times. The leachate is recycled once. Table 11 Leaching conditions and leachate concentration of molybdenum-nickel ore leaching residue
  • the concentration of Mo reached 49.9 g/L, and the qualified export grade Mo0 3 was directly prepared by the conventional acid precipitation method, the Mo content was over 63%, and the leaching rate was over 99%.
  • the washing slag is filtered, and the leaching rate of Ca, Si, Fe, and Al is very low.
  • the wastewater having a pH of about 2 after acid precipitation can be returned to the oxidizing acid leaching step.
  • the oxidizing agent for leaching by alkali can be H 2 O 2 , and it is also possible to use inexpensive air or liquid 0 2 or the like.
  • Table 13 Gold mineral composition and content The raw materials are divided into 6 parts, each of which is leached at 12 kg, and the leaching liquid has a solid ratio of 1.5, that is, when the first raw material is leached, 18 dm 3 of water is added to 12 kg of the raw material, and then 5 parts of the raw materials are leached, and the leaching liquid is recycled, when the leaching liquid volume is used. When it is less than 18dm 3 , add water.
  • the leachate After the leachate is returned to the leaching for 5 times, it can enter the traditional reliable separation and purification procedure, and the rich liquid containing gold and silver can be obtained.
  • the main product is gold and silver.
  • the waste liquid after gold extraction can adjust the pH and add the leaching agent.
  • the waste water is reused, and there is basically no waste liquid discharge, which is conducive to environmental protection.
  • the filtered slag contains 88.6% of Si0 2 , followed by mainly Fe and A1 oxides, and 96% of Si0 2 can be obtained by one pickling, which can be used as a commercial product.
  • the Mo Ni spent catalyst is present in the form of NiS MoS 2 MoS 3 and the additive is Si0 2 or A1 2 0 3 .
  • the traditional comprehensive recovery method at home and abroad is pyrometallurgical combined with hydrometallurgy: After the spent catalyst is oxidized and calcined, it is separately leached with acid and alkali leached.
  • the main disadvantage of this method is the environmental problem, which has caused air pollution caused by S0 2 and has now been banned.
  • the invention adopts the comprehensive comprehensive recovery and basically no three wastes and zero discharge method: under closed circuit conditions, high-pressure leaching with concentrated H 2 S0 4 , the specific reaction equation is:
  • the H 2 S gas produced in the above process can be produced in a closed circuit by a conventional method for the production of H 2 S0 4 for use in the hydrometallurgical process, and the heat of reaction can be used for power generation.
  • the principle is:
  • electrolytic Ni or NiS0 4 or NiC0 3 can be produced.
  • the precipitate obtained after filtration and washing of the leachate is mainly H 2 Mo0 4 and SiO 2 or A1 2 0 3 , wherein the precipitate is leached by NaOH to produce Na 2 Mo 0 4 -H 2 0 ; the slag after alkali leaching is mainly SiO 2 or A1 2 0 3 , can be used as building materials.
  • a very small amount of residual gas is absorbed by NaOH and returned to alkali leaching.
  • the acid and alkali waste liquid can be returned to the acid leaching and alkali leaching processes.
  • the leaching rate of Ni leached with H 2 S0 4 is 99%, and the leaching rate of Mo immersed with NaOH is also 99%. If it is found to be low when immersing Mo, it can be added with oxidant 3 ⁇ 40 2 and the like.
  • the Na 2 SO 4 by-product can be comprehensively recovered when the Na 2 SO 4 _10H 2 O can be precipitated by freezing.
  • Si0 2 3. 98.3 % of Si0 2 can be sold on the market.
  • Exhaust gas H 2 S can be used as a raw material for the production of concentrated H 2 S0 4 , and its heat can be used for power generation.
  • the acidic wastewater can be returned to the acid leaching process, and the alkaline wastewater can be returned to the alkali leaching process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种全面综合回收和基本无三废、零排放的湿法冶金方法,其特征在于采用高强度的浸出剂,如高酸氧化、络合浸出剂,高碱氧化、络合浸出剂,以及高强度物理化学条件如高温、高压浸出,使得稀散、稀有、稀土和贵金属等其他有价组分都可以达到最佳的浸出率而进入溶液中,浸出液循环和废水循环使用。该方法更经济、更有效、节能和环保。

Description

全面综合回收和基本无三废、 零排放的湿法冶金方法 技术领域
本发明涉及用湿法冶金的方法全面综合回收矿物、 冶金渣和废料中的各组分为商 品, 并基本做到无三废、 零排放, 其工艺技术属湿法冶金和环保领域。 背景技术
湿法冶金是我国和世界蓬勃发展和人类不可缺少的工艺技术, 它能将矿物、 冶金渣 和 /或废料等原料中的各种有价值的微量、半微量和常量的元素及化合物分离出来,生产 出各种金属、 非金属和化合物, 成为国民经济、 国防建设和科技领域不可缺少的原材料 及产品。 我国和世界的科技工作者为此做出了巨大的贡献, 并建立了一整套湿法冶金体 系, 如选矿、 浸出、 固液分离、 分离提纯, 生产出各种各样的产品, 满足人类物质文明 和精神文明的需要。
前人在湿法冶金综合回收副产品方面已经做了大量的工作,有些研究已成为研究设 计方面的指导思想, 取得了很大的成绩。 但目前为止, 还没有人提出全面的、 有效的湿 法冶金综合回收的理念和方法。 在环保方面, 全世界都制定了很多达标排放的规则和标 准,但是在目前的选矿、火法冶金和湿法冶金的生产过程中,全世界都存在大量的废渣、 废水和废气, 严重污染环境, 这些已成为我国和世界的公害! 我国排放的火法冶金和湿 法冶金废渣每年高达 2.2亿吨, 废渣中的有用物质不计其数, 几乎每个尾矿坝的废渣都 是一座 "金矿", 只是品位和价值不同而已。 废水的排放量更大, 资源浪费十分严重! 造 成我们对地球的过度开发和伤害!
传统的湿法冶金方法是将高品位的矿石经磨矿后进行浸出, 更多的情况是将工业品 位的矿石经磨矿、 选矿获得精矿后再进行浸出, 浸出的方法是用最佳的浸出剂和物理化 学条件将所需的、 有价值的一个或几个元素浸出在溶液中, 然后分离提纯制得产品。 在 湿法冶金过程中产生的废渣和废水通常是排放到尾矿坝中储存起来,待有经济和环保的 解决方法时再予以进一步处理, 因此由于缺乏经济环保的处理办法, 这些废渣和废水现 在已经成为污染环境的公害。并且,传统湿法冶金方法的综合回收率决定于选矿回收率、 浸出回收率等, 一般很难达到 90 %。
火法和湿法冶金早就提出综合回收的概念, 并已部分成功实施。 但如上所说, 废渣 和废水的问题并未得到完全解决, 导致目前这些问题存在的原因是多方面的, 我们认为 主要是: 第一, 科学技术发展的必然性。 由低级阶段到高级阶段, 到了高级阶段也就是 全面解决问题的时候了; 第二, 误区。 认为全面综合回收成本高利润少, 急功近利。 我 们认为全面综合回收成本更低, 效益更大, 这就是本专利的目的; 第三, 传统观念。 现 在是改变传统观念并重新建立和完善湿法冶金的工艺、 技术体系的时候了; 第四, 研发 资金投入少和部分投入的方法不当。 如多数投入是头痛医头, 脚痛医脚, 理论研究和工 艺技术如设备等的投入太少, 或根本不重视; 第五, 维护和管理好地球的责任和观念尚 未形成。 浪费资源又过度开发是对人类的子孙后代极不负责的做法, 也是一种罪过。 综 合回收利用矿物, 做到物尽其用是科技工作者的责任和义务。
发明内容
本发明提出的全面综合回收的理念和方法是湿法冶金以基本无三废、零排放为前提 条件的综合回收, 即湿法冶金全过程基本没有废气、 废水和废渣排放的工艺技术。 湿法 冶金过程中的辅料, 如酸、 碱等, 也能在工艺过程中基本得到回收, 或转换为另外的商 品, 即经过化学反应和化学过程实现湿法冶金工艺过程的自循环, 实现物质转换和能量 转换与自循环,达到物尽其用的目的。这是本发明提出的湿法冶金全面综合回收的理论、 方法和目的。
在本发明中, 具体到工艺技术而言, 是采用高强度浸出剂和物理化学条件如加温、 加压、络合、氧化对原料进行浸出。最佳高强度浸出的目的是: 其一, 将高价值的稀散、 稀有、稀土和 /或贵金属以最佳的浸出率被浸出到溶液中,并以浸出液循环使用和废水循 环使用的方法富集微量或半微量组分为常量, 达到分离提纯各组分为商品, 达到合理利 用资源的目的; 其二, 浸出过滤洗渣达到建筑材料如水泥、 瓷砖等的要求和制备生产其 他化工原料或冶炼金属原料如 Fe、 A1等的标准, 实现无废渣的目的。 从而达到全面综 合回收和基本无三废、 零排放的目的。 传统的方法之所以未采用高强度的酸或碱进行浸 出, 是因为传统的湿法冶金存在着大量的尾矿和废水等严重环境问题, 若采用高强度酸 或碱进行浸出, 则后续处理尾矿与废水的成本将会大大增高, 得不偿失; 本发明提出的 全面综合回收理念, 即无尾矿和废水排放, 无需后续处理成本, 因此可采用高强度的酸 或碱进行浸出。采用高强度酸或碱浸出的主要目的在于: (1)高强度酸或碱可将原料中的 稀散、 稀有、 稀土和 /或贵金属浸入溶液; (2)高强度酸或碱浸出渣, 经过滤洗涤后, 原 料中大量的 Si02、 Fe、 Ca等富集在浸出渣中, 可作水泥建筑材料或铁精矿原料。
采用高强度浸出剂对原料进行浸出,所述高强度浸出剂是指用量高于传统方法所使 用的酸浸出剂或碱浸出剂 20%以上的酸或碱。 采用高强度酸或碱浸出的主要目的在于: (1)高强度酸或碱可将原料中的各种有价值组分浸出, 进入溶液中; (2)高强度酸或碱浸 出还可让原料中含有的 Si02、 Fe、 Ca等元素富集在浸出渣中, 作为水泥建筑材料或铁 精矿原料。 除采用高强度酸或碱浸出外, 还需要通过实验确定浸出时的物理化学条件, 如通过加温、 加压、 加入络合剂、 加入氧化剂等物理化学条件中的一种或多种方式, 使 原料中有用组分达到最佳的浸出率, 实现全面综合回收的目的。 所述络合剂为 NH4C1 或 NH4Br等具有最佳络合效应的络合剂, 所述氧化剂为 NaC103、 ¾02、 03等, 此外, 空气中的 02也是氧化剂来源之一。 络合剂的用量根据实验确定, 因废水循环使用, 络 合剂的消耗量极低, 在生产过程中给予适当补充。 氧化剂的用量及种类由实验确定。
当原料中待提取组分的含量较低, 即原料品位较低时, 可将浸出液循环使用以提高 浸出液中待提取组分的浓度, 实现常量分离的目的。 即将第一份原料浸出完成后的浸出 液直接用于下一份原料的浸出, 以此类推, 循环到浸出液中的主要待提取组分可被常规 方法分离提纯。
除浸出液可直接返回下一份原料的浸出使用外, 由于废水中还含有大量有用的酸或 碱或络合离子,因此还可将各步骤中产生的废水返回具有相似性质的浸出或 /和提纯步骤 继续使用。 从而实现了无三废、 零排放的目的。
在本发明中, 我们选取了湿法冶金领域中具有不同物理与化学性质的原料来验证高 强度浸出体系及浸出液循环使用的理论, 包括: 稀散元素一碲铋矿、 辉锑矿、 有色金 属一铜矿、 镍钼矿、 贵金属一金矿、 废料一钼镍废催化剂。 虽然不同原料有不同 的物理与化学性质, 但都可采用本发明所提出的高强度浸出体系进行全面综合回收。
碲铋矿: 包括浸出、 分离、 提纯成各种产品步骤, 在浸出步骤中, 采用高强度浓硫 酸浸出剂进行浸出,其用量较常规方法浸出时的用量增加 20%以上,为增加伴生组分的 浸出率, 加入络合剂 NH4C1禾 Π/或 NH4Br等, 加入 NaC103、 H202、 03、 02等作为氧化 剂。 当碲铋矿原料中碲铋品位较低时, 将浸出液直接返回下一份原料浸出, 直到浸出液 中碲铋浓度可采用常量分离法, 如萃取等方法进行分离提取。 分离提纯碲、 铋后的废水 可返回用于具有相似性质的浸出步骤或其他步骤使用。
辉锑矿: 包括浸出、 分离、 提纯成各种产品步骤, 在浸出步骤中, 采用高强度浓盐 酸浸出剂进行浸出,其用量较常规方法浸出时的用量增加 20%以上,为增加伴生组分的 浸出率, 加入络合剂 NH4C1和 /或 NH4Br等。 当辉锑矿原料品位较低时, 收取的浸出液 返回用于下一份辉锑矿原料的浸出, 依此类推, 直到浸出液中待提取的锑的浓度达到常 规方法分离提纯的标准时, 即可进行分离提纯。 分离提纯锑后的废水可返回用于具有相 似性质的浸出步骤或其他步骤使用。
铜矿: 包括浸出、 分离、 提纯成各种产品步骤, 在浸出步骤中, 采用高强度浓硫酸 浸出剂进行浸出,其用量较常规方法浸出时的用量增加 20%以上,并采用高压管道浸出 方式浸出, 管道压力≥0.5Mpa, 浸出时间≥10小时, 剩余酸度≥21^1/1^; 加入 NH4C1和 / 或 NH4Br等作为络合剂; 加入 NaC103、 ¾02、 03、 02等作为氧化剂。 当铜矿原料品位 较低时, 收取的浸出液返回用于下一份铜矿原料的浸出, 依此类推, 直到浸出液中待提 取的铜的浓度达到常规方法分离提纯的标准时, 即可进行分离提纯。 分离提纯铜后的废 水可返回用于具有相似性质的浸出步骤或其他步骤使用。
镍 (钼)矿: 包括浸出、 分离、 提纯成各种产品步骤, 在浸出步骤中, 采用高强度浓 硫酸浸出剂进行浸出, 其用量较常规方法浸出时的用量增加 20%以上, 加入 NH4C1和 / 或 NH4Br等作为络合剂, 加入 NaC103、 ¾02、 03、 02等作为氧化剂。 当镍 (钼)矿原料 品位较低时, 收取的浸出液返回用于下一份镍 (钼)矿原料的浸出, 依此类推, 直到浸出 液中待提取的镍的浓度达到常规方法分离提纯的标准时, 即可进行分离提纯。 分离提纯 镍后的废水可返回用于具有相似性质的浸出步骤或其他步骤使用。当镍矿中还伴生有钼 时, 浸出镍后的浸出渣中会含有钼, 可将浸出镍后的浸出渣作为新的原料, 采用本发明 提出的高强度浸出体系, 即采用较常规方法浸出时用量高 20%以上的强碱, 如 NaOH 进行浸出, 并加入氧化剂 ¾02或 03等浸出 6〜8小时, 浸出温度为 40〜60°C, 浸出压 力^。]^^^2。 当钼渣中钼的含量较低时, 可将收取的浸出液返回用于下一份浸出渣原 料的浸出,依此类推,直到浸出液中待提取的钼的浓度达到常规方法分离提纯的标准时, 即可进行分离提纯。分离提纯钼后的废水可返回用于具有相似性质的浸出步骤或其他步 骤使用。
金矿:包括浸出、分离、提纯成各种产品步骤,在浸出步骤中,采用高强度 ΝΗ3·Η20 浸出剂进行浸出, 其用量较常规方法浸出时的用量增加 20%以上。 加入的 NH3·H20在 浸出时产生 ΝΗ4 +可直接作为络合剂。 并加入 CuS(V5H20 浸出 9 小时以上, 再加入 (NH4)2S203控制 pH为 9〜10, (NH4)2S203也可以产生 NH4 +作为络合剂。 当金矿中金的 品位较低时, 将收取的浸出液返回用于下一份金原料的浸出, 依此类推, 直到浸出液中 待提取的金的浓度达到常规方法分离提纯的标准时, 即可进行分离提纯。 分离提纯金后 的废水可返回用于具有相似性质的浸出步骤或其他步骤使用。
钼镍废催化剂: 包括浸出、 分离、 提纯成各种产品步骤, 在浸出步骤中, 采用高强 度浓硫酸浸出剂进行浸出,其用量较常规方法浸出时的用量增加 20%以上,采用高压管 道浸出, 浸出压力≥301¾/^2 ; 加入络合剂 NH4C1 和 /或 NH4Br等。 浸出剩余酸度为 >lmol/L, 浸出温度 40〜60°C, 浸出 4〜8小时。分离提纯镍后的废水可返回用于具有相 似性质的浸出步骤或其他步骤使用。 通常钼镍废催化剂中钼、 镍含量较高, 因此针对钼 镍含量较高的废催化剂, 无需使用浸出液循环即可达到分享提纯的标准。 采用上述酸性 氧化浸出, 主要浸出钼镍废催化剂中的镍, 钼在浸出渣中, 可继续采用本发明提出的高 强度浸出体系, 即采用较常规方法浸出时用量高 20%以上的强碱, 如 NaOH进行浸出, 并加入氧化剂 ¾02或 03等浸出时间 4〜8小时,浸出温度为 40〜60°C,浸出液 PH为 9〜 10。 分离提纯钼后的废水可返回用于具有相似性质的浸出步骤或其他步骤使用。
本发明的优点是: 第一, 全面实现综合回收, 有效充分地利用资源, 达到物尽其用 的目的。 第二, 基本实现湿法冶金无三废、 零排放的目的, 较彻底的解决了环境污染问 题。 第三, 回收率高, 最高可达 99%, 回收的产品种类最多, 并基本无浪费, 可应用于 各行各业作为原料或产品。 是现有闭路回收方法中回收率最高的一种方法。 第四, 较传 统方法相比, 成本最低、 利润最大。 从表面上看, 本发明的强化浸出具有能耗高、 浸出 剂用量大的问题, 但经过很多实验研究和经济数据比较后发现: 本发明是成本最低、 利 润最大的方法, 其原因有六: 其一, 摒弃选矿工艺, 省掉选矿成本; 其二, 综合回收率 增加 10%左右, 产品单位成本降低; 其三, 全面回收产品, 尤其是增加了高价值 (如稀 散、 稀有、 稀土和贵金属)的产品和建筑原料的回收, 生产成本分配到各个产品后, 总 体成本更低; 其四, 浸出液返回浸出或闭路循环使用, 有效节约了辅料, 如浸出剂等; 其五, 对废水辅料离子 (如 Na+、 S04 2_、 Cl_等)进行有效回收利用, 既降低了成本, 又增 加了利润; 其六, 有效减少水的用量, 一般均能减少 80%左右。 第六, 有效实现循环经 济, 节省自然资源, 根据国家环保局公布的废渣数据初步推算, 本发明可以提供铁矿、 铝矿和建材所需的 Si、 Ca和 Al矿石原料, 相应减少该类天然矿石的开采, 从而更好地 保护地球; 第七, 传统的湿法冶金浪费的稀散元素、 稀有金属、 稀土和贵金属, 本发明 的方法均能有效回收, 这些高价值的产品是一笔巨大的财富。
为此, 我们将全面综合回收利用和基本无三废、 零排放定义为: 用最佳的强化浸出 剂和物理化学条件, 将矿物冶金渣和废料中的稀散、 稀有、 稀土和贵金属基本浸出在溶 液中, 浸出液可返回浸出, 再用传统有效的、 经济的方法如沉淀法、 萃取法等将各组分 分离提纯成适销对路或自用的产品, 废水中的辅料如浸出剂等适时回收利用, 剩下的废 水循环使用; 浸出后过滤洗涤渣达到使用量极大的建筑材料的原料和其他原料的标准成 为商品, 实现无废渣的目的; 废气用酸吸收或碱吸收的废液返回到浸出或化工过程中相 近性质的溶液中, 予以回收; 化学过程中的产生的热量要充分利用。
具体实施方式
下面结合实施例对本发明作进一步的详细说明, 下面六个实例中最佳的强化浸出条 件虽然各不相同, 但浸出率均达到 92.3 %以上, 全面综合回收的内容是: 废气通过酸吸 收或碱吸收后, 进入酸溶液或碱溶液中, 这些酸溶液或碱溶液可进入浸出或化工过程中 继续使用, 实现废水循环使用。高强度浸出后的过滤洗涤渣可作建筑材料, 如水泥、砖、 瓷砖和其他化工原料, 还可以作为白碳黑、 多晶硅等原料使用, 浸出液可全面综合回收 主产品和其他稀散、 稀有、 稀土和贵金属及其化合物产品。
由于矿物的种类繁多,全面综合回收并基本无三废的湿法冶金体系还有大量的工作 要做, 还有许多特殊性的例证需要补充和完善, 仅仅 6个例证是远远不够的, 创新和发 展的空间巨大, 任重道远, 该体系是否对所有的矿物和冶金渣都产生最佳的经济的社会 效益是我们长期研究和探讨的任务。
以下六个实施例中原料各不相同, 有矿物原料, 也有冶炼废渣, 各原料品位和组成 各不相同, 但均做到了全面综合回收和基本无三废、 零排放的要求。 实施例中, 如无特 别说明, 所述百分含量均为重量百分含量, 所述液固比为液体体积 (m3)比固体质量 (吨)。
实例一碲铋矿
碲铋矿 18吨, 粉碎至≥80目, 原料中主要元素含量如表 1所示。
表 1碲铋矿组分及含量
Figure imgf000007_0001
将原料分为 6份, 每份 3吨, 浸出条件如表 2所示。 液固比为 2 : 1, 即向第 1份 3 吨原料中加水 6m3、 525kg NH4C1、 60kg NH4Br, 浸出 3小时后, 加入浓 H2S04 3吨, 浸 出温度控制在 65°C, 浸出 3小时后, 加入 NaC103 150kg, 浸出温度控制在 95°C, 浸出 5小时后, 剩余酸度为 1.5mol/L, 过滤洗涤, 所得浸出液用于第二份原料浸出。 第二份 及其后 4份原料的液固比均为 2: 1, 每份原料浸出时, 返回使用的浸出液体积不足 6m3 时, 加水补充; NH4C1与 NH4Br的加入量根据溶液中 C1与 Br的含量而定, 使溶液中 Cl >115公斤 /吨'矿, Br≥16公斤 /吨'矿; 浓 H2S04与 NaC103加入量根据溶液中 H2S04 与 NaC103的含量而定, 使其保持在第一次的最佳强化浸出浓度, 即溶液中浓 H2S04为 3吨, NaC103为 150kg, 其他浸出条件与第一份原料浸出时相同。 表 2碲铋矿浸出条件
Figure imgf000008_0001
浸出液返回浸出使用 5次后的全分析结果, 以及浸渣的全分析结果如表 3所示。
表 3浸出液及浸出渣全分析结果
Figure imgf000008_0002
从表 1-3可得出如下结论:
1、 大宗元素和化合物的浸出率仅 1.24%到 23.4%, 如 Ca Fe Al Si02富集在浸 出过滤洗涤渣中, 含量达 10.5 %到 49.1 %, 完全可以作建筑材料之用, 如作水泥、 砖、 瓷砖等。
2、本实施例中的最佳强化浸出剂和浸出条件,可将稀散元素 Te,稀有金属 Bi Cu Co Ni, 稀土金属 Sc和贵金属 Ag以渣计的浸出率均可达到 95.4%到 99.9% Te的浸 出率较传统方法增加 10%左右。
3、 最佳强化浸出剂和浸出条件达到全面综合回收后的产值增加 40%左右, 达到成 本最低、 利润最大的目的。
4、原料中有价元素碲、铋、铜、钴、镍、钪等的含量较低, 采用浸出液循环使用 (循 环次数为 5次), 稀散 Te, 稀有 Cu Co Ni, 稀土 Sc元素的浓度增加到可回收的程度 时即可进行提取。 原料中碲铋含量稍高, 因此碲铋先被提取; 将提取碲铋后的废水调至 pH=7.0时, 沉淀物中 Cu Co Ni Ag Sc的含量达到 1 20%, 这是一笔重要的财 。
废水循环使用: 用 NaOH调节浸出完成后的浸出液的 pH值为 2.7 3.1, 分离出 Te 和 Bi, 废水返回浸出使用。 废水返回使用, 有效利用了辅料离子 Cl、 NH4 +, 氧化剂 NaC10、 NaC102和 H+浓度, 从而提高了浸出率并降低了成本。 多余的废水可作生产辅 料 H2S04之用, 从而全面达到无三废零排放的目的。
辅料回收: 大量浸出剂 H2S04在用 NaOH调至 pH = 2.7〜3.1时, 过滤母液, 经冷 冻生成大颗粒的 Na2SO4_10H2O 结晶。 一方面可用于生产芒硝 Na2S04, 另一方面可将 Na2SO4-10H2O 转 化 为 NaOH 禾 Π CaS04 产 品 。 反 应 式 如 下 : Na2SO4-10H2O+H2O+CaO→NaOH+CaSO4|, CaS04作建筑材料之用, NaOH可返回反应 体系继续使用。
实例二辉锑矿
辉锑矿 3kg, 粉碎至≥80目, 原料主要元素含量如表 4。
表 4辉锑矿组分及含量
Figure imgf000009_0001
原料 3kg共分 3次浸出, 每次浸出 lkg, 第 1份原料加水 0.3L, 加入 1 : 1HC1, 使 溶液剩余酸度保持在≥lmol/L; 加入 NH4C1 10g, 反应温度 50〜70°C, 反应 4h。 第 1份 原料浸出完成后,过滤洗涤,将浸出液与洗涤液 0.3L用于第 2份 1kg原料浸出,加入 1: 1HC1, 使溶液剩余酸度保持在≥lm0l/L; 加入 NH4C1的量使溶液中 NH4C1含量保持在第 1份浸出时的最佳强化浸出浓度, 其余浸出条件与第 1份相同, 第 3份原料的浸出与第 2份原料的浸出步骤及条件相同, 如表 5所示。
表 5辉锑矿浸出条件
Figure imgf000009_0002
3次浸出完成后, 浸出液及浸出渣的全分析结果如表 6所示。
表 6辉锑矿 3次浸出后浸出液及浸出渣的全分析结果
干渣 名称 Sb Fe Si02 Pb Bi Zn Cu As Au 浸液 15.1 13.1 1.61 30.1 7.93 15.2 11.91 0.1 2.8x l0—3
(g/L )
浸出渣 0.045 27.57 70.7 0.0014 0.0198 0.0279 0.0421 0.000145 0.026g/t 1.45kg (%)
如如
Figure imgf000010_0001
从表 4-6可得出如下结论:
1、 最佳的强化浸出剂和浸出条件下: Sb、 Bi、 Zn、 Cu和 As等元素和贵金属 Au 的浸出率达到 97.8 %〜99.3 %, 较传统的湿法浸出率高。
2、 实验数据显示, 浸出液返回浸出 2次后, 可进入传统的可靠的分离提纯程序, 如调酸度等方法即可。 产品是 Sb203、 Bi203等, 剩余的废水仍可返回浸出使用。
3、 大宗元素和化合物的浸出率仅为 1.5 %Si02和 15.1 %Fe, 过滤洗涤后的渣, Fe 达 27.5 %, Si02达 70.7%, 完全可以作建筑材料之用。
4、 传统的方法是用 1.5 %Sb的锑矿经选矿后, 用火法生产的 Sb203, 产品纯度和回 收率都较低, 成本高、 污染大, 很难综合回收。 很难达到基本无三废、 零排放要求。
实施例三铜矿
铜矿 10kg, 磨矿至≥80目, 原料主要元素含量如表 7。
表 7铜矿组分及含量
名称 Cu Si02 Fe Pb Zn Co Ni Al Ca
0.51 45.20 18.10 0.2 0.4 0.01 0.1 5.10 3.10 名称 Mg Mo W03 Sn Bi Ag Au S
1.50 0.01 0.05 0.04 0.05 l -5g/t 0.3g/t 1.5 浸出方法及结果:
原料分为 10份, 每份 lkg。
每份原料在密闭反应容器中搅拌浸出。 第 1份原料中加入 2dm3水, 随后的原料采 用浸出液循环使用, 所以只有当返回使用的浸出液不足 2dm3时, 才加水补充; 加入原 料重量 50%的浓 H2S04,加入 10g NH4Cl作络合剂;产生的 H2S气体在密闭的管道中采 用常用的氧化法制取硫磺并回收; 浸出矿浆进入高压 (压力为 0.5MPa)管道继续进行浸 出, 并加入 30g NaClO3, 使其浸出温度≥65°C, 在高压管道中浸出时间≥1011, 剩余酸度 >2mol/L; 浸出液和矿渣洗涤液, 返回下一份原料浸出使用, 返回浸出次数为 9次, 10 次浸出完成后, 浸出液中 Cu浓度达到≥28§ , 可进入传统的电解工序, 并分离提纯; 其它稀贵金属在电解铜后的阳极泥中, 也可用传统方法分离提纯。 常量元素 Fe、 Al按 传统方法分离制成 Fe(OH)3和 Al(OH)3等粗品, 供炼 Fe和炼 A1及其化工产品作原料之 用。 10次浸出完成后, 浸出液及浸出渣的全分析结果如表 8所示。
表 8铜矿 10次浸出后浸出液及浸出渣的全分析结果
Figure imgf000011_0001
10次浸出平均渣率为 78.3 %, 即浸出完成后剩下 9.4kg干渣, 得浸出液 1.8L, 酸度 为 2.1mol/L。
从表 7和表 8可以得出如下结论:
1、 在高强度浸出剂和高压浸出条件下, Cu的浸出率高达 95 %, 成功摒弃了选矿工 序, 大宗元素和物质如 Si02、 Fe、 Ca、 Al等有效集中在渣中, 经过滤洗涤可作建筑材 料如水泥、 砖和瓷砖的配料, 其余少量的稀贵元素在溶液中, 用传统的有效方法富集在 少量渣中进行综合回收。
2、 有效利用了反应热如浓 H2S04和 NaC103在反应时产生的热量, 充分节省能源。
3、 在闭路条件下, H2S04酸浸时产生 H2S, 用传统的氧化法回收 S, 得到的 S与生 产过程中的废水一起用于浓 H2S04的生产, 其热量用来发电, 尤其是在边远山区的铜矿 生产电解铜来说是一个简便、 节能、 环保、 降低成本的有效方法。
4、 浸出液返回使用 9次是本发明创新的突出亮点, 不仅提高了浸出液中铜离子浓 度, 使其达到电解铜所需的浓度, 还有效的节省 30%左右浓 H2S04用量。 实验还发现, 在高 S04 2浓度条件下, Fe2~3+、 Al3+、 Ca2+的浓度 Si03 2基本上是一个常数, 即随着浸出 液循环次数的增加, 其浓度变化不大。 而稀贵金属的浸出率仍能保持在 78〜96%。
5、 高压管道浸出是本发明的另一个创新的突出亮点, 高压浸出不仅能提高浸出率, 还节省大量的投资和大幅度地降低生产成本, 节省能源而且环保。 相反, 传统生产方法 是修路, 用汽车将矿石拉到浸矿车间, 生产成本高。
铜矿的种类较多、 品位不相同, 生产过程中, 个别参数会有调整, 其整体方法不会 有大的变动。 例如, 当 Cu的品位高时, 浸液返回浸出次数会减少。 当 Cu易浸出时, 浸出压力可降低一些等。
实例四钼镍矿
镍钼矿 400g, 粉碎至≥300目, 原料中的主要成分如表 9。 表 9钼镍矿组分及含量
Figure imgf000012_0001
将原料分为 4份进行酸性氧化浸出, 每份 100g, 液固比为 2: 1。 第 1份原料浸出 时, 浸出液为 200ml水、 50g浓 H2S04, 加入 lgNH4Cl作络合剂, 加入 NaClO340g作氧 化剂。 后 3份原料浸出时, 采用浸出液循环使用, 当循环使用的浸出液体积不足 200ml 时, 补加水, 根据上次浸出消耗 ¾S04量, 相应补加浓 H2S04, 使溶液中浓 H2S04的量 为原料重量的 50% ; 试验条件及结果如表 10所示。
表 10钼镍矿浸出条件及浸出液浓度
Figure imgf000012_0002
结果表明, 浸出液循环使用 3次浸出后, Ni的浓度成倍增加, 浸出率达到 99.2%以 上。 浸出液返回浸出, 浸出剂能得到有效利用。 稀有金属和贵金属在高强度浸出剂和物 理化学条件下也能被有效浸出。
Ni浓度达到 37.72g/L的溶液用 NH3中和至 lmol/L H2S04, (NH4)2Ni(S04)2沉淀析出, 可用它生产 Ni≥47%的碱式碳酸镍粗产品, 共沉淀母液可返回氧化酸性浸出工序。 如果 U、 Cu等浓度达到了分离要求时, 可用传统的沉淀法分离提纯成产品。
表 10还表明, Mo的浸出率很低, 一般在 10%左右, 但由于酸浸渣仅为 50%, 即 210g干渣, Mo仍在渣中富集到 5.026%, 为此, 特用高压碱性 NaOH氧化浸出, 从而 使 Mo得到有效浸出, 结果如表 11所示。 对酸浸渣仍然采用浸出液循环使用, 即第 1 份酸浸渣按照表 11浸出条件浸出后,产生的浸出液和洗涤液用于第 2份酸浸渣的浸出, 酸浸渣共分两次浸出, 浸出液循环使用 1次。 表 11钼镍矿酸浸渣浸出条件及浸出液浓度
Figure imgf000013_0001
酸浸渣的 2次碱浸出结果如表 12所示。
表 12酸浸渣碱浸出液浓度
Figure imgf000013_0002
2次浸出结束后, Mo的浓度达到 49.9g/L, 可直接用传统的酸沉淀法制成合格的出 口级 Mo03, Mo含量达到 63 %以上, 浸出率达 99%以上。 浸出后过滤洗涤渣, Ca、 Si、 Fe、 Al的浸出率很低, 经酸碱氧化强化浸出后, 在渣中有效富集, 可做水泥、 瓷砖等建 筑材料,从而达到无废渣的目的。酸沉后的 pH为 2左右的废水可返回氧化酸浸出工序。 氧化碱浸出的氧化剂可用 H202, 也可用廉价的空气或液态的 02等。
实例五: 金矿
金矿 72kg, 磨矿至≥250目, 原料主要元素含量如表 13。
表 13金矿组分及含量
Figure imgf000013_0003
将原料分为 6份, 每份 12kg进行浸出, 浸出液固比 1.5, 即对第 1份原料浸出时, 12kg原料中加入 18dm3水, 随后 5份原料浸出时, 采用浸出液循环使用, 当浸出液体积 不足 18dm3时, 补加水。 每份原料浸出时, ΝΗ3·Η20 的加入量应满足溶液中 ΝΗ3·Η20 的含量为 6dm3, CuS04_5H20为 0.936kg, 浸出 9小时后, 加入 (NH4)2S203, 其加入量应 满足溶液中 (NH4)2S203的含量为 3.558kg,控制 pH为 9〜10,该过程在室温常压下进行。 6份原料浸出完成后的浸出结果如表 15所示。 表 14金矿浸出条件
Figure imgf000014_0001
表 15金矿浸出渣分析结果
Figure imgf000014_0002
从上述表 14 15可以得出以下结论:
1、 在 pH为 9 10碱性中, 以适量的 CuS04作催化剂, (NH4)2S203为络合剂, 搅 拌氧化浸出时, 金、 银的浸出率在 90%以上, 且杂质离子如 FeO Si02 MSi04 MC03 等基本不会进入浸出液, 较传统的氰化物浸出, 此法浸出速度快, 浸出率高、安全无毒, 对环境友好。
2、 浸出液返回浸出使用 5次后, 可进入传统的可靠的分离提纯程序, 可得到含金 银的富液, 主产品是金银, 提金后的废液可以通过调节 pH, 添加浸出剂, 使废水得到 重新利用, 基本无废液的排放, 有利于环保。 过滤的渣中含 Si02达 88.6%, 其次主要 是 Fe和 A1的氧化物, 通过一次酸洗可以得到含量 96%的 Si02, 可以作为商品。
3、 金矿的种类较多, 可根据矿物的差异, 做适当的调整, 本方法的创新之处在全 面综合回收, 基本无废液废渣的排放, 降低了成本, 同时减少了对环境的影响。 同时本 方法生成的 [AU(S203)2]3, 碳对其的吸附很少, 可用于当今难处理的高硫高砷含碳金矿 的浸出。
实施例六废料—— Mo Ni废催化剂
Mo Ni废催化剂的存在形式是 NiS MoS2 MoS3, 其添加剂是 Si02或 A1203。 目 前国内外传统的综合回收方法是火法冶金结合湿法冶金的方法: 将废催化剂氧化焙烧 后, 再分别用酸浸出和碱浸出。 该方法的主要缺点是环境问题, 产生得 S02造成大气污 染, 现已被禁用。
本发明采用的全面综合回收、 基本无三废零排放方法: 在闭路条件下, 用浓 H2S04 高压浸出, 具体反应方程式为:
NiS+H2S04→NiS04+H2S† 或 MoS2+H2S04+H20→H2Mo04+H2S†
或 MoS3+H2S04+H20→H2Mo04+H2S†
上述过程中产生得 H2S气体在闭路管道中可采用传统的方法生产 H2S04供本湿法冶 金工艺自用, 反应热可用于发电。 其原理为:
H2S+02+H20→H2S04+Q (Q为反应热)
浸出液中的 NiS04经分离提纯后可生产电解 Ni或 NiS04或 NiC03。浸出液经过滤、 洗涤后得到的沉淀主要是 H2Mo04和 Si02或 A1203, 其中沉淀经 NaOH 浸出可生产 Na2Mo04-H20; 碱浸出后的渣主要是 Si02或 A1203, 可作建筑材料之用。 极少量的残余 气体经 NaOH吸收, 返回碱浸出使用。 酸、 碱废液可返回酸浸出和碱浸出工序使用。
Mo、 Ni废催化剂 lkg, 原料中的主要组成如表 16所示。
表 16Mo、 Ni废催化剂组分及含量
Figure imgf000015_0002
液固比为 2, 采用浓 H2S04对原料进行浸出, 浸出压力≥301¾/(^12, 加入 10gNH4Cl 作络合剂。 浸出条件及结果如表 17所示。
表 17Mo、 Ni废催化剂浸出条件
Figure imgf000015_0003
酸浸渣经 NaOH碱浸出的条件以及浸出结果如表 18所示。
表 18浸出条件及浸出结果
Figure imgf000015_0004
碱浸出渣经过一次洗涤的结果如表 19所示。
表 19碱浸出渣组分及含量
Figure imgf000015_0001
结果及说明:
1. 用 H2S04浸出 Ni的浸出率达到 99%, 用 NaOH浸 Mo的浸出率也可达 99%。 浸 Mo时如发现低时, 则可以加氧化剂 ¾02等。
2. 当废水中 S04 2和 Na+浓度达到回收技术标准时, 可冷冻结晶析出 Na2SO4_10H2O 时, 可综合回收 Na2S04副产品。
3. 98.3 %的 Si02可做商品在市场上销售。
4. 废气 H2S可作生产浓 H2S04的原料, 其热量可用于发电。
酸性废水可返回酸浸出工序, 碱性废水可返回碱浸出工序。

Claims

1. 一种全面综合回收和基本无三废、零排放的湿法冶金方法, 包括原料的浸出、 分 离、 提纯成各种产品步骤, 其特征在于, 浸出步骤中采用高强度浸出剂和高强度物理化 学条件对原料进行浸出,所述高强度浸出剂为用量较常规方法浸出时的用量增加 20%以 上的酸或碱, 所述高强度物理化学条件为加温、 加压、 加络合剂、 加氧化剂中的一种或 多种。
2. 根据权利要求 1 所述的一种全面综合回收和基本无三废、 零排放的湿法冶金方 法, 其特征在于, 所述络合剂为 NH4C1和 /或 NH4Br等, 所述氧化剂为 NaC103、 ¾02、 03、 02等。
3. 根据权利要求 2 所述的一种全面综合回收和基本无三废、 零排放的湿法冶金方 法, 其特征在于, 所述浸出步骤产生的浸出液循环使用。
4. 根据权利要求 1-3任一项所述的一种全面综合回收和基本无三废、零排放的湿法 冶金方法, 其特征在于, 各步骤产生的废水返回浸出或 /和提纯步骤继续使用。
5. 一种全面综合回收和基本无三废、 零排放的碲铋矿的湿法冶金方法, 包括浸出、 分离、 提纯成各种产品步骤, 其特征在于, 所述浸出步骤采用高强度浓硫酸浸出剂进行 浸出,其用量较常规方法浸出时增加 20%以上;加入 NH4C1和 /或 NH4Br等作为络合剂; 加入 NaC103、 H202、 03、 02等作为氧化剂。
6. 根据权利要求 5所述的一种全面综合回收和基本无三废、零排放的碲铋矿的湿法 冶金方法, 其特征在于, 所述浸出步骤产生的浸出液循环使用。
7. 一种全面综合回收和基本无三废、 零排放的辉锑矿的湿法冶金方法, 包括浸出、 分离、 提纯成各种产品步骤, 其特征在于, 所述浸出步骤采用高强度浓盐酸浸出剂进行 浸出,其用量较常规方法浸出时增加 20%以上;加入 NH4C1和 /或 NH4Br等作为络合剂。
8. 根据权利要求 7所述的一种全面综合回收和基本无三废、零排放的辉锑矿的湿法 冶金方法, 其特征在于, 所述浸出步骤产生的浸出液循环使用。
9. 一种全面综合回收和基本无三废、零排放的铜矿的湿法冶金方法, 包括浸出、 分 离、 提纯成各种产品步骤, 其特征在于, 所述浸出步骤采用高强度浓硫酸浸出剂进行浸 出, 其用量较常规方法浸出时增加 20%以上; 采用高压管道浸出方式浸出, 管道压力 >0.5Mpa; 加入 NH4C1和 /或 NH4Br等作为络合剂; 加入 NaC103、 H202、 03、 02等作为 氧化剂。
10. 根据权利要求 9所述的一种全面综合回收和基本无三废、 零排放的铜矿的湿法 冶金方法, 其特征在于, 所述浸出步骤产生的浸出液循环使用。
11. 一种全面综合回收和基本无三废、零排放的镍钼矿的湿法冶金方法,包括浸出、 分离、 提纯成各种产品步骤, 其特征在于, 所述浸出步骤采用高强度浓硫酸浸出剂进行 浸出, 其用量较常规方法浸出时增加 20%以上; 加入 NH4C1和 /或 NH4Br等作络合剂; 加入 NaC103、 H202、 03、 02等作氧化剂。
12. 根据权利要求 11所述的一种全面综合回收和基本无三废、零排放的镍钼矿的湿 法冶金方法, 其特征在于, 所述浸出步骤产生的浸出液循环使用。
13. 一种全面综合回收和基本无三废、 零排放的金矿的湿法冶金方法, 包括浸出、 分离、 提纯成各种产品步骤, 其特征在于, 所述浸出步骤采用高强度 ΝΗ3·Η20 浸出剂 进行浸出, 其用量较常规方法浸出时增加 20%以上。
14. 根据权利要求 13所述的一种全面综合回收和基本无三废、零排放的金矿的湿法 冶金方法, 其特征在于, 所述浸出步骤产生的浸出液循环使用。
15. 一种全面综合回收和基本无三废、 零排放的钼镍废催化剂的湿法冶金方法, 包 括浸出、 分离、 提纯成各种产品步骤, 其特征在于, 所述浸出步骤采用高强度浓硫酸浸 出剂进行浸出, 其用量较常规方法浸出时增加 20%以上; 在压力≥30kg/cm2的浸出条件 下进行浸出; 加入 NH4C1和 /或 NH4Br等作络合剂。
PCT/CN2012/077001 2011-06-15 2012-06-15 全面综合回收和基本无三废、零排放的湿法冶金方法 WO2012171481A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101597302A CN102212683A (zh) 2011-06-15 2011-06-15 全面综合回收和基本无三废、零排放的湿法冶金方法
CN201110159730.2 2011-06-15

Publications (1)

Publication Number Publication Date
WO2012171481A1 true WO2012171481A1 (zh) 2012-12-20

Family

ID=44744213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077001 WO2012171481A1 (zh) 2011-06-15 2012-06-15 全面综合回收和基本无三废、零排放的湿法冶金方法

Country Status (2)

Country Link
CN (1) CN102212683A (zh)
WO (1) WO2012171481A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11408053B2 (en) 2015-04-21 2022-08-09 Excir Works Corp. Methods for selective leaching and extraction of precious metals in organic solvents

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102212683A (zh) * 2011-06-15 2011-10-12 王钧 全面综合回收和基本无三废、零排放的湿法冶金方法
CN104099470A (zh) * 2014-08-06 2014-10-15 王钧 将矿物各组分转化为产品并基本无三废、零排放的方法
CN104212981B (zh) * 2014-08-08 2016-04-20 中南大学 从锑矿中浸出锑的方法
CN105063351B (zh) * 2015-09-22 2017-10-27 北京矿冶研究总院 一种从复杂钼精矿中选择性分离铜铼的方法
CN106987706A (zh) * 2017-04-13 2017-07-28 成都理工大学 一种碲铋矿的浸出方法
CN108328584A (zh) * 2018-03-19 2018-07-27 成都理工大学 一种碲铋矿硫酸浸液萃碲方法
CN109734105B (zh) * 2019-03-06 2021-04-06 北京科技大学 一种钛石膏循环转化金属自富集且整量利用的方法
CN109825711A (zh) * 2019-03-14 2019-05-31 何耀 一种硫酸法钛白废酸资源化利用方法
CN112831660B (zh) * 2020-12-30 2022-09-13 成都虹波钼业有限责任公司 一种钼矿浸出渣综合利用的工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005556A1 (en) * 2002-07-02 2004-01-15 Commonwealth Scientific And Industrial Research Organisation Process for leaching precious metals
CN101289171A (zh) * 2008-06-02 2008-10-22 王钧 提取99.99%Te、99.99%Bi2O3和综合回收副产品的湿法冶金方法
CN101792868A (zh) * 2009-12-07 2010-08-04 牛庆君 一种从新疆伊犁含镓粉煤灰中回收镓的方法
RU2412263C2 (ru) * 2009-02-18 2011-02-20 Дмитрий Борисович Басков Способ выщелачивания никеля из окисленных никелевых руд
CN102212683A (zh) * 2011-06-15 2011-10-12 王钧 全面综合回收和基本无三废、零排放的湿法冶金方法
CN102226236A (zh) * 2011-06-15 2011-10-26 王钧 全面综合回收红土镍矿中各组分为产品的湿法冶金方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1236082C (zh) * 2002-10-31 2006-01-11 云南铜业科技发展股份有限公司 湿法提铜工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005556A1 (en) * 2002-07-02 2004-01-15 Commonwealth Scientific And Industrial Research Organisation Process for leaching precious metals
CN101289171A (zh) * 2008-06-02 2008-10-22 王钧 提取99.99%Te、99.99%Bi2O3和综合回收副产品的湿法冶金方法
RU2412263C2 (ru) * 2009-02-18 2011-02-20 Дмитрий Борисович Басков Способ выщелачивания никеля из окисленных никелевых руд
CN101792868A (zh) * 2009-12-07 2010-08-04 牛庆君 一种从新疆伊犁含镓粉煤灰中回收镓的方法
CN102212683A (zh) * 2011-06-15 2011-10-12 王钧 全面综合回收和基本无三废、零排放的湿法冶金方法
CN102226236A (zh) * 2011-06-15 2011-10-26 王钧 全面综合回收红土镍矿中各组分为产品的湿法冶金方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENG, YONGXING ET AL.: "Experimental Research on Sulfuric Acid Leaching of an Iron Ore Containing Copper", MULTIPURPOSE UTILIZATION OF MINERAL RESOURCES, no. 1, February 2011 (2011-02-01), pages 25 - 27 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11408053B2 (en) 2015-04-21 2022-08-09 Excir Works Corp. Methods for selective leaching and extraction of precious metals in organic solvents
US11427886B2 (en) 2015-04-21 2022-08-30 Excir Works Corp. Methods for simultaneous leaching and extraction of precious metals
US11814698B2 (en) 2015-04-21 2023-11-14 Excir Works Corp. Methods for simultaneous leaching and extraction of precious metals

Also Published As

Publication number Publication date
CN102212683A (zh) 2011-10-12

Similar Documents

Publication Publication Date Title
WO2012171481A1 (zh) 全面综合回收和基本无三废、零排放的湿法冶金方法
CN101875129B (zh) 一种高铁铝土矿综合利用的方法
CN101638704B (zh) 一种提取铜冶炼废渣中铁的方法
CN100584764C (zh) 从粉煤灰和煤矸石中回收氧化铁的方法
CN105293564A (zh) 一种钢铁厂含锌烟尘灰循环利用的方法
CN101275187A (zh) 一种石煤湿法提钒工艺
CN106048251A (zh) 一种清洁高效处理砷冰铜的工艺方法
CN113637840A (zh) 利用钙化球磨焙烧-碱浸法从铁酸锌资源中回收锌的方法
CN113149075A (zh) 一种从低品位铌矿中制备五氧化二铌的方法
WO2012171480A1 (zh) 全面综合回收红土镍矿各组分为产品的湿法冶金方法
CN105110300B (zh) 一种含硫化锰的复合锰矿提取锰及硫的方法
CN101956085B (zh) 一种从炭质泥岩中提取氯化镓的方法
CN113817921B (zh) 一种从石煤钒矿中提取有价金属的方法
CN212532311U (zh) 一种煤矸石生产氧化铝的系统
CN113846227A (zh) 一种赤泥浸出液中多种金属组分的分离回收方法
CN107739841A (zh) 一种从含砷高铜浮渣中分离砷、回收铜的方法
CN117926027A (zh) 一种红土镍矿石的综合利用方法
CN106636680B (zh) 一种大型堆积炭化法从高硅石煤中提取钒
CN114196835B (zh) 一种从含锡冶金渣中选择性浸出锡的方法
CN113735179B (zh) 一种利用铁锰制备高纯硫酸铁的方法
CN110980753B (zh) 一种采用高硅铁矿生产优质硅酸钠的工艺
CN113430377B (zh) 一种综合提取煤矸石中有价组元的方法
CN116240373A (zh) 一种锂辉石与云母协同提锂的方法
CN110629043B (zh) 一种基于硫化铋矿相转化的提铋方法
CN110950348B (zh) 一种高硅铁矿石生产超纯纳米白炭黑的工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12799863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12799863

Country of ref document: EP

Kind code of ref document: A1