Nothing Special   »   [go: up one dir, main page]

WO2012157644A1 - 発光装置及びその製造方法 - Google Patents

発光装置及びその製造方法 Download PDF

Info

Publication number
WO2012157644A1
WO2012157644A1 PCT/JP2012/062418 JP2012062418W WO2012157644A1 WO 2012157644 A1 WO2012157644 A1 WO 2012157644A1 JP 2012062418 W JP2012062418 W JP 2012062418W WO 2012157644 A1 WO2012157644 A1 WO 2012157644A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting device
sealing member
protrusion
sealing
Prior art date
Application number
PCT/JP2012/062418
Other languages
English (en)
French (fr)
Inventor
蔵本 雅史
大典 岩倉
健司 小関
智陽 鶴羽
岡田 聡
林 正樹
Original Assignee
日亜化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日亜化学工業株式会社 filed Critical 日亜化学工業株式会社
Priority to CN201280035302.1A priority Critical patent/CN103688377B/zh
Priority to JP2013515166A priority patent/JP5983603B2/ja
Priority to EP19166558.7A priority patent/EP3544067B1/en
Priority to EP12786606.9A priority patent/EP2711995B1/en
Priority to US14/118,176 priority patent/US10090446B2/en
Publication of WO2012157644A1 publication Critical patent/WO2012157644A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45169Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00012Relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations

Definitions

  • the present invention relates to a light emitting device including a sealing member for sealing a light emitting element and a method for manufacturing the same.
  • Light-emitting devices equipped with light-emitting elements such as light-emitting diodes (LEDs) and laser diodes (Laser-diodes: LD) are expected to be the next-generation lighting source because of their low power consumption and long life. There is a need for further higher output and improved luminous efficiency.
  • LEDs light-emitting diodes
  • Laser-diodes: LD laser diodes
  • Patent Document 1 a damming portion having one edge portion on an upper surface is provided on a flat substrate on which a light emitting element is mounted, and a sealing resin for sealing the light emitting element is dammed by the damming portion.
  • a cured illuminating device and a method of manufacturing the same are described.
  • a plurality of LED chips, an annular light reflecting member that is formed by a coating method so as to surround the LED chips and forms a resin position-limited space, and a resin position-limited space are provided on the circuit board.
  • the LED package structure in which the weight of the resin and the area of the resin position limited space are in a predetermined ratio, and the manufacturing method thereof are described.
  • the light extraction efficiency of the light-emitting device is most easily increased by forming the surface of the sealing member into a spherical surface having the light-emitting element as the center.
  • the lighting device described in Patent Document 1 and the manufacturing method thereof in order to control the height of the sealing resin, high work accuracy is required for the edge portion of the damming portion. The simple method cannot obtain the accuracy, and the height of the sealing resin is likely to vary. Therefore, variation in light extraction efficiency of the light emitting device is likely to occur.
  • the surface of the convex lens can be molded only into a convex surface having a contact angle specific to the material with respect to the top horizontal surface of the annular light reflecting member. Light extraction efficiency cannot be obtained.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a light emitting device excellent in light extraction efficiency and a manufacturing method thereof.
  • the first light emitting device manufacturing method includes: In a step of forming a sealing member for sealing the light emitting element by dropping on a substrate having a conductive member to which the light emitting element is connected and a molded body integrally formed with the conductive member,
  • the sealing member is formed such that at least a part of an edge of the sealing member is provided on an outward surface of the conductive member or the molded body facing outward in a top view.
  • the first light emitting device is mainly manufactured by the first manufacturing method, A light emitting element; A substrate having a conductive member to which the light emitting element is connected, and a molded body integrally formed with the conductive member; A sealing member for sealing the light emitting element, At least a part of the edge of the sealing member is provided on an outward surface facing the outer side in the top view of the conductive member or the molded body, and with respect to the outward surface or the outward surface and the sealing member.
  • the contact point of the edge is provided so as to form a substantially contact angle or an angle less than the contact angle with respect to a tangential plane contacting the outward surface.
  • the second light emitting device manufacturing method includes: A first step of providing a protrusion outside the light emitting element on the upper surface of the wiring board on which the light emitting element is placed; And a second step of forming a sealing member for sealing the light emitting element by dropping, The sealing member is formed such that at least a part of an edge of the sealing member is provided on an outward surface facing the outer side of the projection as viewed from above.
  • the second light emitting device is mainly manufactured by the second manufacturing method, A light emitting element; A wiring board provided with a protrusion outside the light emitting element on the upper surface on which the light emitting element is placed; A sealing member for sealing the light emitting element, At least a part of the edge of the sealing member is provided on an outward surface facing the outer side of the projection when viewed from above, and the contact with the outward surface or the edge of the sealing member is the outer surface. It is characterized by being provided at an angle substantially less than or less than the contact angle with respect to the tangential plane in contact with the outward surface.
  • the “upper surface” is a surface on the light emission observation side of the light emitting device.
  • the “horizontal plane in the top view of the light emitting device” is a plane perpendicular to the optical axis of the light emitting device (which can be defined as an axis perpendicular to the upper surface of the light emitting element or the mounting surface of the light emitting element) Point to.
  • “Outward” and “outer” are directions away from the light emitting element when the light emitting device is viewed from above.
  • “inward” and “inner” are directions toward the light emitting element when the light emitting device is viewed from above.
  • the “outward surface” of the molded body, the conductive member, and the protrusion means that the normal vector of the surface includes an outward component on the surface of the molded body, the conductive member, and the protrusion (referred to as a molded body).
  • Means that “Substantially contact angle or less than contact angle” means an angle that is substantially equal to or less than the contact angle.
  • the surface of the sealing member is formed by the surface tension of the sealing member having fluidity before solidification.
  • the height of the sealing member (mainly, the distance from the mounting surface of the light emitting element to the surface of the sealing member in the optical axis direction of the light emitting device) is a seal in a state having fluidity with respect to the surface of the molded body or the like.
  • the lower the wettability of the stop member (that is, the higher the contact angle), the higher the stop member.
  • the contact angle can be artificially increased by the inclination angle of the outward surface. it can.
  • the height of the sealing member can be increased. Further, it is possible to control the height of the sealing member with high accuracy by controlling the inclination angle of the outward surface.
  • the first and second light emitting devices of the present invention can be manufactured by the above-described manufacturing method, a light emitting device with little variation in the height of the sealing member can be obtained. Further, according to the manufacturing method described above, the height of the sealing member can be adjusted, so that a light emitting device including a sealing member having a surface shape suitable for increasing the light extraction efficiency can be obtained. it can.
  • the surface of the sealing member can be easily formed into a highly protruding convex surface, so that a light-emitting device with excellent light extraction efficiency can be manufactured at low cost. Further, according to the light emitting device according to the present invention, since the surface of the sealing member is a convex surface protruding high, the light use efficiency toward the front direction of the light emitting device is increased, and the light emission excellent in light extraction efficiency is achieved. A device is obtained.
  • FIG. 1A is a schematic top view of a light emitting device according to an embodiment of the present invention
  • FIG. FIG. 3 is a schematic cross-sectional view (a) to (e) showing an example of a method for manufacturing a light-emitting device according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view (a) to (f) for explaining the relationship between a solid surface and the surface shape of a liquid droplet dropped thereon.
  • 1A is a schematic top view of a light emitting device according to an embodiment of the present invention
  • FIG. 1A is a schematic top view of a light emitting device according to an embodiment of the present invention
  • FIG. 1A is a schematic top view of a light emitting device according to an embodiment of the present invention
  • FIG. 1A is a schematic top view of a light emitting device according to an embodiment of the present invention
  • FIGS. 2B and 2C are schematic cross-sectional views of a DD section and an EE section.
  • 1A is a schematic top view of a light emitting device according to an embodiment of the present invention
  • FIG. 1A is a schematic top view of a light emitting device according to an embodiment of the present invention
  • FIG. FIG. 3 is a schematic cross-sectional view (a) to (e) showing an example of a method for manufacturing a light-emitting device according to an embodiment of the present invention
  • 1A is a schematic top view of a light emitting device according to an embodiment of the present invention
  • FIG. 1A is a schematic top view of a light emitting device according to an embodiment of the present invention
  • FIG. 1A to 1D are schematic views showing an example of a method for manufacturing a light emitting device according to an embodiment of the present invention. It is the schematic sectional drawing (a) of the light-emitting device which concerns on one Example of this invention, and the schematic sectional drawing (b) of the light-emitting device which concerns on one comparative example.
  • FIG. 1A is a schematic top view of the light-emitting device according to Embodiment 1
  • FIG. 1B is a schematic cross-sectional view showing a cross section AA in FIG. 1A.
  • the light emitting device 100 of the example shown in FIG. 1 seals the light emitting element 10, the base member 30 having the conductive member 20 to which the light emitting element 10 is connected and the molded body 25 integrally formed with the conductive member 20, and the light emitting element 10. Sealing member 40 to be provided.
  • the base 30 is a package having a pair of positive and negative lead frame conductive members 20 and a resin molded body 25 that integrally holds the conductive members.
  • the base body 30 includes a recess 31 on the upper surface side. A part of the bottom surface of the recess 31 is constituted by a part of the surface of the conductive member 20.
  • the light emitting element 10 is an LED chip, and is bonded to the bottom surface of the recess 31 of the base with an adhesive (not shown) and connected to the conductive member 20 with a wire.
  • the sealing member 40 is a sealing resin provided so as to cover the light emitting element 10 inside the recess 31 of the base.
  • the sealing member 40 may contain a phosphor or a diffusing agent.
  • the surface of the sealing member 40 protrudes upwards from the base
  • the surface on which the surface 45 of the sealing member rises in other words, the surface on which the edge of the sealing member 40 is provided is referred to as “sealing standing surface 37”.
  • the sealing upstanding surface 37 is an outward surface 38 facing outward from the top surface of the base body 30.
  • FIGS. 2A to 2E are schematic cross-sectional views showing an example of a method for manufacturing the light emitting device according to the first embodiment.
  • the light emitting device 100 shown in FIG. 1 is manufactured through the following steps. Note that the method for manufacturing a light emitting device of the present invention only needs to include at least a step of forming a sealing member on a substrate on which the light emitting element is mounted, and the manufacturing method described here is merely an example.
  • a molded body 25 is integrally formed with the conductive member 20 to form a base body 30.
  • a plate-like member in which a plurality of conductive members 20 are connected is sandwiched between an upper die and a lower die that have been processed into a predetermined shape, and a fluid state (liquid, sol).
  • a fluid state liquid, sol
  • the constituent material of the molded body 25 in the form of a slurry or a slurry is injected and solidified. Thereafter, when the molded body 25 is released from the mold, a plurality of base bodies 30 in a state of being connected to each other are obtained.
  • the light emitting element 10 is mounted on the substrate 30. Specifically, the light emitting element 10 is bonded to the base 30 with an adhesive, and is further connected to the conductive member 20 with a wire.
  • the sealing member 40 is formed on the base body 30.
  • the sealing member is formed by dropping (potting).
  • the dropping method is an inexpensive molding method that does not use a molding machine or a mold as compared with a compression molding method, a transfer molding method, an injection molding method, or a casting molding method.
  • the sealing member 40 in a fluid state liquid, sol, or slurry
  • the stop member 40 is solidified by heating or cooling.
  • the sealing member 40 is molded so that at least a part of the sealing standing surface 37 is the outward surface 38.
  • the sealing member 40 is shaped such that at least a part of the surface 45 rises from the outward surface 38 of the base body 30.
  • the angle formed between the tangent line of the surface 45 of the sealing member 40 (at the contact point between the outward surface 38 and the edge of the sealing member 40) and the outward surface 38 is a substantially contact angle.
  • the “contact angle” is determined by the physical properties of the sealing member 40 and the outward surface 38 in a state having fluidity before solidification.
  • the sealing member 40 may be solidified with the base body 30 turned upside down, that is, with the upper surface of the base body 30 onto which the sealing member 40 is dropped facing downward in the vertical direction. If it does so, the sealing resin 40 can be solidified in the state which the sealing resin 40 in the state which has fluidity
  • the plate-shaped member is cut to separate the light emitting device 100 into individual pieces.
  • the base member 30 may be separated into pieces by cutting the plate member.
  • the surface of the sealing resin rises from the upper surface that is higher (that is, inward) from the front of the horizontal direction of the damming portion or from the front of the resin flow direction. Yes.
  • the surface of the convex lens rises from the inner surface of the annular light reflecting member.
  • the sealing member since the sealing member is provided on the base as described above, the surface of the sealing member can be relatively stably formed into a convex surface that protrudes highly, and the light extraction efficiency is sufficient. Can be increased.
  • the inventors have raised the surface of the sealing member from the outward surface of the substrate, contrary to the conventional idea.
  • the present inventors have found that it is a secret that can be molded relatively stably. The principle will be described below.
  • 3 (a) to 3 (f) are schematic cross-sectional views for explaining the relationship between the solid surface and the surface shape of the liquid droplets dropped on the solid surface.
  • the droplet L dropped on the flat surface of the solid S has a convex curved surface that forms a contact angle ⁇ [degree] with the surface of the solid S due to its surface tension.
  • the contact angle ⁇ is defined as an angle formed by the tangent to the surface of the droplet L and the surface of the solid S (an angle including the droplet L) at the contact point between the surface (edge) of the droplet L and the solid S.
  • This contact angle ⁇ is determined by the surface tension of the material constituting each of the droplet L and the solid S.
  • the contact angle ⁇ takes a specific value.
  • the surface tension of the droplet L is ⁇ L
  • the surface tension of the solid S is ⁇ S
  • the interfacial tension ⁇ SL between the droplet L and the solid S is as follows (Young's equation)
  • the surface of the solid S is inclined at an angle ⁇ [degree] from the horizontal plane as shown in FIG.
  • the contact angle of the droplet L with respect to the surface of the inclined solid S is maintained substantially ⁇ , but the pseudo contact angle with respect to the horizontal plane is approximately ⁇ + ⁇ . Therefore, as shown in FIG. 3C, the height h of the droplet L can be increased by raising the surface of the droplet L from the outward surface facing outward in the top view of the solid S. As shown in FIG.
  • tangential plane when the surface of the solid S is a convex curved surface, a plane (“tangential plane”) that contacts the surface of the solid S at the contact point between the solid S and the edge of the droplet L. Call).
  • the tangential plane is inclined by an angle ⁇ [degree] with respect to the horizontal plane, and the pseudo contact angle of the droplet L with respect to the horizontal plane is substantially ⁇ + ⁇ .
  • the contact angle between the droplet L and the horizontal upper surface of the solid S is the original contact angle.
  • a phenomenon called “wetting pinning effect” that cannot get over the edge part until reaching the sum of ⁇ and the downward angle of the outward surface of the edge part (inclination angle from the upper surface) ⁇ [degrees]. is there.
  • the contact angle of the droplet L can take any value from ⁇ to ⁇ + ⁇ . Therefore, the height of the droplet L can be increased by utilizing this “wetting pinning effect”.
  • the droplet L at this time is in a relatively unstable state, and even if an attempt is made to control the height of the droplet L using this phenomenon, the height varies greatly. Further, as described above, in order to control the height of the droplet L using this phenomenon, high working accuracy is required at the edge portion.
  • FIG. 3C when the surface of the droplet L rises from the outward surface of the solid S, the droplet L has a substantially original contact angle ⁇ with respect to the outward surface of the solid S. Therefore, the height can be obtained with good reproducibility. As shown in FIG.
  • the contact angle ⁇ of the sealing member 40 is the sealing It is determined by the surface tension of the member 40, the surface tension of the base body 30 on which the edge of the sealing member 40 is provided, and the interfacial tension between the sealing member 40 and the base body 30.
  • the edge of the sealing member 40 on the outward surface 38, the angle formed by the tangent to the surface 45 of the sealing member (at the contact point between the outward surface 38 and the edge of the sealing member) and the outward surface 38.
  • the sealing member 40 is formed so that at least a part of the sealing rising surface 37 is the outward surface 38, and thus the surface 45 of the sealing member is easily raised in the vertical direction from the outward surface 38. Become.
  • the surface of the sealing member 40 can be easily formed into a highly protruding convex surface, preferably a convex curved surface, and thus a substantially spherical surface.
  • the surface shape can be obtained with good reproducibility. Therefore, a light emitting device having excellent light extraction efficiency can be manufactured at low cost.
  • the sealing member surface into a highly protruding convex surface by forming the sealing member by dropping after forming a film having a small surface tension over the entire upper surface of the substrate.
  • the adhesion between the base and the sealing member may be significantly reduced due to the coating interposed between the base and the sealing member.
  • the sealing member is basically in direct contact with the surface of the base, and high adhesion between the base and the sealing member is obtained. Can be provided. In particular, by raising the surface of the sealing member from the outward surface of the base, the edge of the sealing member acts so as to be locked to the base, and the adhesion between the base and the sealing member can be further enhanced. .
  • the base body 30 includes a protrusion 33.
  • the base body 30 of this example includes a groove 35 in addition to the protrusion 33. It may be said that the protrusion 33 is formed by the groove 35. Since the base body 30 includes the protrusions 33 or the grooves 35, the outward surface 38 is provided on the inner side of the outermost end surface of the base body 30. Then, at least a part of the surface 45 of the sealing member can be raised from the outward surface 38 of the protrusion 33 or the groove 35.
  • the outflow of the sealing member 40 to the outside of the base body 30 is suppressed, and the surface 45 of the sealing member can be stably formed into a highly protruding convex surface inside the outermost end face of the base body 30. it can. Moreover, it can suppress that the exposed part of the electrically-conductive member 20 used as the terminal part for external connection is contaminated with the oozing-out component of the sealing member 40.
  • the base body includes a protrusion or a groove, and at least a part of the sealing standing surface is provided on the outward surface of the protrusion or the groove.
  • substrate is provided with both a languages
  • channel may be provided mutually spaced apart.
  • the protrusions and grooves of the base body can be omitted, and at least a part or the whole of the sealing upright surface may be provided on the outward surface which is the outermost end surface of the base body.
  • the outward surface 38 of the protrusion 33 or the groove 35 is a lower surface continuous with the convex curved surface.
  • the sealing member in a fluid state is dropped onto the base and reaches the edge formed by the outward surface of the base and the continuous surface above the base.
  • the outward surface is a flat surface bent from the upper surface, the sealing member is temporarily accumulated on the upper surface of the outward surface due to the “wetting pinning effect” described above.
  • a sealing member gets over the edge part there exists a possibility of flowing out vigorously by the weight of itself enlarged and destroying the surface shape.
  • the outward surface of the substrate has a convex curved surface at the uppermost position, as described above, the “wetting pinning effect” can be suppressed and the sealing member can be smoothly moved onto the outward surface. . Thereby, it can make it easy to shape
  • at least a part of the sealing upright surface 37 may be a convex curved surface on the outward surface 38, or may be a surface that continues beyond the convex curved surface.
  • the outward surface 38 is preferably a convex curved surface or a lower surface continuous with the convex curved surface.
  • the uppermost surface of the outward surface 38 is a convex curved surface, so that chipping of the molded body 25 due to biting on the mold is suppressed and the moldability of the molded body 25 is improved. Can be increased.
  • the surface of the sealing member 40 can be protruded higher as the inclination angle ( ⁇ ) of the outward surface 38 from the substantially horizontal upper surface of the base body 30 is larger.
  • the inclination angle ( ⁇ ) of the outward surface 38 is preferably 90 degrees or less in consideration of the releasability of the base body 30 from the mold. Therefore, the inclination angle ( ⁇ ) of the outward surface 38 that becomes the sealing rising surface 37 is preferably 45 to 90 degrees, and more preferably 70 to 90 degrees.
  • the inward surface 391 of the protrusion 33 facing the inner side in the top view of the base body has a convex curved surface at the uppermost position.
  • a sealing member in a fluid state is dropped on a base and reaches an edge formed by an inward surface of the base and a continuous surface on the upper side.
  • the inward surface is a flat surface bent from the upper surface, the sealing member is temporarily accumulated on the inward surface due to the “wetting pinning effect” described above.
  • a sealing member gets over the edge part there exists a possibility of flowing out vigorously by the weight of itself enlarged, and also flowing out beyond an outward surface.
  • the inward surface 391 of the base body 30 has a convex curved surface at the uppermost position, as described above, the “wetting pinning effect” is suppressed, and the sealing member 40 is continuous to the upper side, and thus outward. It can be moved smoothly onto the surface 38. Thereby, it can make it easy to shape
  • at least a part, most preferably all, of the inwardly facing surface 391 inside the sealing rising surface 37 and facing the top surface of the base body is located at the topmost position. It preferably has a convex curved surface.
  • the protrusion 33 and the groove 35 are provided in a perfect circle shape surrounding the light emitting element 10 in a top view of the base body 30.
  • the protrusion 33 or the groove 35 provides an outward surface 38 for raising the surface 45 of the sealing member, and functions as a barrier for blocking the sealing member 40 in a fluid state.
  • the protrusion or the groove is provided in a frame shape surrounding the light emitting element.
  • the surface 45 of the sealing member is easily formed from the protrusion to the protrusion or from the groove to the groove, the symmetry of the surface shape of the sealing member 40 can be enhanced.
  • the protrusion 33 or the groove 35 is preferably provided in an annular shape in the top view of the base body 30, and is preferably provided in an elliptical shape, and more preferably provided in a perfect circular shape.
  • the surface of the sealing member 40 can be shape
  • the protrusion 33 or the groove 35 is disposed so that the light emitting element 10 is substantially at the center, thereby improving the symmetry of light distribution.
  • the protrusion is more preferable than the groove from the viewpoint of a barrier for blocking the sealing member having fluidity.
  • the base body 30 includes a recess 31, and the protrusion 33 and the groove 35 are provided in the recess 31.
  • the sealing member 40 is provided inside the recess 31.
  • the base body includes a recess in which the light emitting element is placed inside, and the sealing upright surface is provided in the recess. Since the base body 30 includes the concave portion 31, the outflow of the sealing member 40 to the outside of the base body 30 can be suppressed, and the sealing member 40 can be easily molded stably in the concave portion 31. Further, since the sealing member 40 is provided inside the recess 31, the apparatus can be reduced in size.
  • the molded body 25 constituting the recess 31 functions as a barrier that protects the sealing member 40 from damage due to external force and contamination by dust.
  • the inner wall surface of the recess 31 functions as a reflecting mirror that reflects light emitted from the light emitting element 10 toward the front of the device (above the base 30) and effectively extracts the light, thereby increasing the front luminous intensity of the light emitting device.
  • these effects can be remarkably obtained.
  • the sealing rising surface 37 is provided on the outward surface 38 of the groove 35, and the groove 35 has an inward surface 392 that faces the outward surface 38. is doing.
  • the inward surface 392 is a part of the inner wall surface of the recess 31.
  • the base body has an inward surface facing the inner side in the top view of the base body on the outer side than the outward surface on which the sealing upstanding surface is provided.
  • the light emitted from the edge of the sealing member 40 provided on the outward surface 38 of the base body 30 is directed to the front of the apparatus by the inward surface 392 and / or the bottom surface between the inward surface and the outward surface 38. It can be reflected and taken out effectively.
  • the inward surface 392 that faces the outward surface 38 on which the sealing standing surface 37 is provided is inclined so as to open upward or curved in such a manner. Thereby, the light radiate
  • the inward surface 392 that faces the outward surface 38 on which the sealing standing surface 37 is provided is preferably provided to substantially the same height as the outward surface 38, and is provided to extend higher than the outward surface 38. More preferably. Thereby, it is easy to reflect the light emitted from the edge of the sealing member 40 provided on the outward surface 38 of the base body 30 to the front of the apparatus.
  • Such an inward surface 392 is difficult to be provided in a molding method of a sealing member using a molding machine or a mold because the molding machine or the mold interferes.
  • FIG. 4A is a schematic top view of the light-emitting device according to Embodiment 2
  • FIG. 4B is a schematic cross-sectional view showing a BB cross section in FIG. 4A.
  • the light emitting device 200 of the example shown in FIG. 4 seals the light emitting element 10, the base member 30 having the conductive member 20 to which the light emitting element 10 is connected and the molded body 25 integrally formed with the conductive member 20, and the light emitting element 10. Sealing member 40 to be provided.
  • the base 30 is a package having a pair of positive and negative lead frame conductive members 20 and a resin molded body 25 that integrally holds the conductive members.
  • the base body 30 includes a recess 31 on the upper surface side. A part of the bottom surface of the recess 31 is constituted by a part of the surface of the conductive member 20.
  • the light emitting element 10 is an LED chip, and is bonded to the bottom surface of the recess 31 of the base with an adhesive (not shown) and connected to the conductive member 20 with a wire.
  • the sealing member 40 is a sealing resin provided so as to cover the light emitting element 10 inside the recess 31 of the base.
  • the base body 30 includes a first protrusion 331 and a second protrusion 332 provided outside the first protrusion 331.
  • the base body 30 of the present example includes a first groove 351 and a second groove 352 provided outside the first groove 351 in addition to these protrusions. It can be said that the first and second protrusions are formed by the first and second grooves, respectively.
  • the base body includes the first protrusion or the first groove and the second protrusion or the second groove outside the first protrusion or the first groove. It is preferable to be provided on the outward face of any one of the second protrusion and the first and second grooves.
  • the base body 30 includes the plurality of protrusions 331 and 332 or the plurality of grooves 351 and 352, the plurality of outward faces 38 are provided on the inner side of the outermost end surface of the base body 30. Then, at least a part of the surface 45 of the sealing member can be raised from the outward surface 38 of any one of the protrusions 331 and 332 or the grooves 351 and 352.
  • the outward surface 38 as the sealing standing surface can be selected, and the sealing member 40 is adjusted while adjusting the size of the sealing member 40.
  • the surface of 40 can be formed into a convex surface projecting high.
  • channel 351 is provided inside the wire connection part to which the wire of the electrically-conductive member 20 is connected. Thereby, it can suppress that the wire connection part of the electrically-conductive member 20 is contaminated with the oozing-out component of the adhesive which adhere
  • the first protrusion 331 or the first groove 351 can be formed in the conductive member 20 by press working, die molding, or the like.
  • the sealing member 40 includes a first sealing portion 401 that seals the light emitting element 10, and a second sealing portion 402 that seals the first sealing portion 401. It is equipped with.
  • the first sealing portion 401 includes at least a part of the first sealing rising surface 371 on which the surface 451 of the first sealing portion rises among the constituent surfaces of the base body 30 as the first protrusion 331 or the first The outer surface 38 of the groove 351 is formed.
  • the second sealing portion 402 has at least a part of the second sealing rising surface 372 on which the surface 452 of the second sealing portion rises among the constituent surfaces of the base body 30 as the second protrusion 332 or the second projection.
  • each sealing portion (each layer) can be relatively stably molded into a convex surface that protrudes highly. It is easy to suppress the reflection of light at the interface of the sealing portion and increase the light extraction efficiency.
  • each sealing portion may be made of the same material and have the same refractive index, but from the light emitting element 10 by gradually making the refractive index of each sealing portion closer to the refractive index of air. Light can be efficiently extracted into the sealing member 40, and reflection of light at the interface between the two sealing portions can be suppressed to further increase the light extraction efficiency.
  • the refractive index of the second sealing portion 402 is preferably lower than the refractive index of the first sealing portion 401.
  • the second sealing portion 402 may be molded after the first sealing portion 401 is completely solidified, but by molding the first sealing portion 401 in a semi-solidified or unsolidified state, The adhesion between the first sealing portion 401 and the second sealing portion 402 can be improved.
  • the 1st sealing part 401 is an internal area
  • the surface 451 of the first sealing portion 401 rises from the end of the upper surface serving as a boundary with the first protrusion 331 of the base body 30 or the outward surface 38 of the first groove 351.
  • a preferable aspect similar to that of the inward surface 392 described above can be applied to the first sealing portion 401 also on the inward surface facing the outward surface 38 of the first groove 351.
  • the sealing member 40 includes the phosphor 50 that is excited by the light emitted from the light emitting element 10 only in the first sealing portion 401.
  • the wavelength conversion and scattering of light by the phosphor 50 is performed only in the first sealing portion 401, that is, in the vicinity of the light emitting element 10 in the sealing member 40.
  • the light source can be made smaller with respect to the surface of the sealing member, and the light extraction efficiency can be increased.
  • the surface of the first sealing portion 401 can be formed into a highly protruding convex surface, the variation in the optical path length in each direction in the first sealing portion 401 can be reduced, and the first sealing portion 401 Even if the phosphor 50 is dispersed in 401, it is possible to emit light with substantially uniform chromaticity.
  • the fluorescent substance 50 may be settled and a diffusing agent may be disperse
  • the uppermost position of the outward surface 38 of the first protrusion 331 or the first groove 351 is a flat surface.
  • the outward surface 38 is most preferably a convex curved surface, but the downward angle from the upper plane continuous with the outward surface ( The plane may be preferably 45 ° or less, more preferably 30 ° or less.
  • the plane may be preferably 45 ° or less, more preferably 30 ° or less.
  • the “upper plane continuous with the outward surface” is not limited to the substantially horizontal upper surface of the base body 30 and may be an outward surface. That is, the outward surface 38 may be configured by a plurality of planes in which the descending angle of the lower plane from the upper plane is preferably 45 degrees or less, more preferably 30 degrees or less.
  • FIG. 5A is a schematic top view of the light-emitting device according to Embodiment 3, and FIG. 5B is a schematic cross-sectional view showing a CC cross section in FIG. 5A.
  • the light emitting device 300 of the example shown in FIG. 5 seals the light emitting element 10, the base member 30 having the conductive member 20 to which the light emitting element 10 is connected and the molded body 25 integrally formed with the conductive member 20, and the light emitting element 10. Sealing member 40 to be provided.
  • the base 30 is a package having a pair of positive and negative lead frame conductive members 20 and a resin molded body 25 that integrally holds the conductive members.
  • the base body 30 includes a recess 31 on the upper surface side. A part of the bottom surface of the recess 31 is constituted by a part of the surface of the conductive member 20.
  • the light emitting element 10 is an LED chip, and a plurality of light emitting elements 10 are bonded to the bottom surface of the concave portion 31 of the base with an adhesive (not shown) and connected to the conductive member 20 with a wire.
  • the sealing member 40 is a sealing resin provided on the base 30 so as to cover the light emitting element 10.
  • the base body 30 includes a protrusion 33 formed on the outside of the recess 31.
  • the protrusion 33 or the groove on the outer side of the recess 31 it becomes easier to form a larger sealing member 40 having at least a part of the sealing rising surface 37 as the outward surface 38 of the protrusion or groove, It is easy to increase the light extraction efficiency.
  • the concave portion 31 can be easily configured to have a large opening area so that substantially the entire area of the inner wall surface can be used as a reflecting mirror, and the light extraction efficiency can be easily increased. Therefore, it is easy to increase the light extraction efficiency even when the light source is relatively large or the substrate is relatively small.
  • the sealing member 40 is formed in two stages, and the phosphor 50 excited by the light emitted from the light emitting element 10 is limited to the first sealing portion 401 in the lower layer.
  • the first sealing portion 401 covers all the light emitting elements 10 and is filled up to the upper surface of the recess 31. Thereby, the inside of the 1st sealing part 401 is made into a surface light source.
  • the first sealing portion 401 may contain a diffusing agent.
  • the upper second sealing portion 402 is formed so that at least a part of the sealing rising surface 37 is the outward surface 38 of the protrusion 33, and has a highly convex surface 45 (452). . Thereby, a light-emitting device with a high luminous flux can be obtained.
  • the protrusion 33 is provided in a rectangular frame shape with rounded corners along the outline of the recess 31 in the top view of the base body 30. It is preferable that at least the corners of the protrusions or the grooves are curved as described above in the top view of the base body or the entire shape as in the perfect circle shape described in the first and second embodiments.
  • the protrusion or the groove is bent and bent in a top view of the substrate, the surface of the sealing member rising from the vicinity of the corner is distorted.
  • the protrusion or the groove does not necessarily have to be provided along the outline of the concave portion.
  • an annular protrusion or groove may be provided for the rectangular concave portion.
  • the coating 60 having a critical surface tension of 50 mN / m or less is limited to the outward surface 38 on which the sealing rising surface 37 of the base body 30 is provided and the constituent surface outside the outward surface 38. Is formed.
  • the contact angle of the sealing member 40 contact angle ⁇ of the droplet L in FIG. 3 is the substrate (FIG. 2). Then, it becomes so large that the surface tension of the outward surface 37 (solid S of FIG. 3) of the molded object 25) is small.
  • the sealing member 40 Before dropping the sealing member onto the substrate, only the outward surface on which the sealing upright surface of the substrate is provided, or the outward surface on which the sealing upstanding surface of the substrate is provided and the configuration outside the outward surface By forming a film having a small surface tension only on the surface, the surface of the sealing member can easily rise from the outward surface. Thereby, the surface of the sealing member 40 can be easily formed into a convex surface that protrudes high, and the light extraction efficiency can be easily increased. Further, by limiting the range in which the coating film 60 is provided in this way, the sealing member 40 is in direct contact with the surface of the base body 30 on the inner side of the outwardly facing surface 38, and thus the high adhesion between the base body 30 and the sealing member 40.
  • the molded body 25 is preferably made of a material having a critical surface tension of more than 50 mN / m because cohesive force for securing solder heat resistance and adhesion between the sealing member 40 are necessary.
  • the coating 60 is preferably made of a material having a critical surface tension of 50 mN / m or less. Specific materials for the coating 60 include a fluororesin material and a silicone material. Among these, silicone oil is preferable because it is absorbed by the sealing member during the solidification of the sealing member and hardly deteriorates the adhesion with the substrate.
  • FIG. 6 (a) is a schematic top view of the light emitting device according to Embodiment 4, and FIGS. 6 (b) and 6 (c) show a DD section and an EE section in FIG. 6 (a), respectively. It is a schematic sectional drawing shown.
  • the light emitting device 400 of the example shown in FIG. 6 seals the light emitting element 10, the base member 30 having the conductive member 20 to which the light emitting element 10 is connected and the molded body 25 integrally formed with the conductive member 20, and the light emitting element 10. Sealing member 40 to be provided.
  • the base 30 is a package having a pair of positive and negative lead frame conductive members 20 and a resin molded body 25 that integrally holds the conductive members.
  • the base body 30 includes a recess 31 on the upper surface side. A part of the bottom surface of the recess 31 is constituted by a part of the surface of the conductive member 20. A terminal portion for external connection of the conductive member 20 is provided to extend on the end face of the molded body 25.
  • the light emitting element 10 is an LED chip, and is bonded to the bottom surface of the recess 31 of the base with an adhesive (not shown) and connected to the conductive member 20 with a wire.
  • the sealing member 40 is a sealing resin provided on the base 30 so as to cover the light emitting element 10.
  • the lower surface (back surface) of the substrate 30 is the mounting surface.
  • the light emitting device 400 of the example shown in FIG. 6 has an end surface (side surface) of the base 30 as a mounting surface, and a vertical direction (y direction in the figure) substantially perpendicular to the end surface serving as the mounting surface is mounted. It becomes the thickness (height) direction.
  • Such a light emitting device 400 is installed on the side of the light guide plate as a light source for a backlight of a liquid crystal display, for example. Therefore, the base body 30 has a vertically long and horizontally long shape in a top view in order to reduce the thickness, and accordingly, the recess 31 has a similar shape.
  • the sealing member 40 is shaped so that at least a part of the sealing standing surface 37 is an outward surface 38 of the protrusion 33. As a result, at least in the lateral direction, the surface of the sealing member 40 can be formed into a highly projecting convex surface, and the light extraction efficiency can be increased.
  • the protrusions or grooves are not limited to the frame shape, and may be provided in a band shape. Thereby, it is easy to form a protrusion or a groove in a small size, and it is easy to provide an outward surface in a small area inside the outermost end surface of the base. In that case, it is preferable that at least two protrusions or grooves are provided so as to sandwich the light emitting element. Then, since the surface of the sealing member is easily formed from the protrusion to the protrusion or from the groove to the groove, the symmetry of the surface shape of the sealing member can be enhanced. In addition, a plurality of protrusions or grooves may be provided apart from each other as shown by a broken line, and may be further scattered.
  • FIG. 7A is a schematic top view of the light-emitting device according to Embodiment 5, and FIG. 7B is a schematic cross-sectional view showing the FF cross section in FIG. 7A.
  • the light emitting device 500 of the example shown in FIG. 7 has substantially the same configuration as the light emitting device of the above-described fourth embodiment except for the shapes of the recess 31 and the protrusion 33.
  • the shape of the recess 31 in a top view is rectangular, which is excellent in that the opening area of the recess 31 can be easily widened.
  • the top view shape of the recess 31 is a shape (oval shape) in which semicircles are combined on both sides (left and right) of the rectangle.
  • the protrusion 33 is formed in the strip
  • the corners or the whole of the base body 30 is curved in a top view.
  • FIG. 8A is a schematic top view of the light-emitting device according to Embodiment 6, and FIG. 8B is a schematic cross-sectional view showing a GG section in FIG. 8A.
  • the light emitting device 600 of the example shown in FIG. 8 encloses the light emitting element 10, the wiring board 22 on which the light emitting element 10 is placed, and the base 30 having the protrusions 34 provided on the upper surface of the wiring board 22, and the light emitting element 10. Sealing member 40 to be stopped.
  • the base body 30 includes a wiring board 22 having wiring electrodes on the upper surface, and a protrusion 34 that is a white resin molded body provided in a frame shape on the upper surface.
  • the light emitting element 10 is an LED chip, and a plurality of light emitting elements 10 are bonded to the inside of the protrusion 34 on the upper surface of the wiring substrate 22 with an adhesive (not shown), and are connected to the wiring electrodes with wires.
  • the sealing member 40 is a sealing resin provided on the base 30 so as to cover the light emitting element 10. In particular, in this example, the sealing member 40 is divided into two parts, and the phosphor 50 is excited only by the light emitted from the light emitting element 10 only in the first sealing part 401 in the lower layer. Contains.
  • the first sealing portion 401 covers all the light emitting elements 10 and is filled up to substantially the top of the protrusion 34. Thereby, the inside of the 1st sealing part 401 is made into a surface light source. Note that the first sealing portion 401 may contain a diffusing agent.
  • the surface of the sealing member 40, and the surface of the 2nd sealing part 402 of the upper layer more specifically, protrudes upwards from the base
  • at least a part, and most preferably all, of the seal rising surface 37 is an outward surface 27 facing outward in the top view of the protrusion 34.
  • FIGS. 9A to 9E are schematic cross-sectional views showing an example of a method for manufacturing the light emitting device according to Embodiment 6.
  • FIGS. The light emitting device 600 shown in FIG. 8 is manufactured through the following processes.
  • the first step of forming a base by providing a protrusion on the upper surface of the wiring substrate on which the light emitting element is mounted, and the sealing member for sealing the light emitting element are formed.
  • the manufacturing method described here is merely an example as long as it includes at least the second step.
  • the light emitting element 10 is mounted on the wiring board 22. Specifically, the light emitting element 10 is bonded to the wiring board 22 with an adhesive, and further connected to the wiring electrodes of the wiring board 22 with wires.
  • the wiring substrate 22 a composite substrate capable of forming a plurality of light emitting devices is used.
  • the base 30 is formed by providing protrusions 34 on the upper surface of the wiring board 22.
  • a constituent material of the protrusion 34 in a fluid state (liquid, sol, or slurry) is dropped on the upper surface of the wiring substrate 22 and drawn in a frame shape so as to surround the light emitting element 10. It is solidified by heating or cooling. Note that the order of the light emitting element mounting step and the protrusion forming step may be reversed.
  • the sealing member 40 is formed on the base body 30.
  • the sealing member is formed by dropping (potting).
  • the dropping method is an inexpensive molding method that does not use a molding machine or a mold as compared with a compression molding method, a transfer molding method, an injection molding method, or a casting molding method. Further, in the dropping method, the flow of the constituent material of the sealing member at the time of forming the sealing member is small, and deformation of the wire can also be suppressed.
  • the sealing member 40 in a fluid state liquid, sol, or slurry
  • a fluid state liquid, sol, or slurry
  • the stop member 40 is solidified by heating or cooling. At this time, the sealing member 40 is formed so that at least a part of the sealing standing surface 37 is the outward surface 27 of the protrusion 34. In other words, the sealing member 40 is formed such that at least a part of the surface 45 rises from the outward surface 27 of the protrusion 34. As described above, the angle formed between the tangent to the surface 45 of the sealing member 40 (at the contact point between the outward surface 27 and the edge of the sealing member 40) and the outward surface 27 is a substantially contact angle.
  • the constituent material of the first sealing portion 401 containing the phosphor 50 is dropped on the inside of the protrusion 34, and then the constituent material of the second sealing portion 402 is dropped thereon.
  • the second sealing portion 402 may be formed after the first sealing portion 401 is completely solidified, but the first sealing portion 401 is formed in a semi-solidified state or an unsolidified state, The adhesion between the sealing portion 401 and the second sealing portion 402 can be improved.
  • the sealing member 40 may be solidified with the base body 30 turned upside down, that is, with the upper surface of the base body 30 onto which the sealing member 40 is dropped facing downward in the vertical direction. If it does so, the sealing resin 40 can be solidified in the state which the sealing resin 40 in the state which has fluidity
  • the wiring board 22 (composite board) is cut to separate the light emitting device 600 into pieces.
  • the base body 30 may be separated into pieces, or the wiring substrate 22 separated into pieces for a single light emitting device from the beginning may be used.
  • the sealing member is provided on the base as described above, the surface of the sealing member can be relatively stably formed on the projecting surface, and the light extraction efficiency can be sufficiently increased. .
  • the contact angle ⁇ of the sealing member 402 is determined by the surface tension of the sealing member 402, It is determined by the surface tension of the base body 30 (specifically, the protrusion 34) on which the edge of the sealing member 402 is provided and the interfacial tension between the sealing member 402 and the base body 30 (protrusion 34).
  • the sealing member 402 is provided on the outward surface 27 of the protrusion 34, the tangent to the surface 45 of the sealing member (at the contact point between the outward surface 27 and the edge of the sealing member), the outward surface 27, and Is approximately the contact angle ⁇ , but the angle formed between the tangent to the surface 45 of the sealing member and the horizontal plane can be greater than the contact angle ⁇ . That is, the sealing member 40 is formed such that at least a part of the sealing rising surface 37 is the outward surface 27 of the projection 34, so that the surface 45 of the sealing member starts in the vertical direction from the outward surface 27. Easier to get up.
  • the surface of the sealing member 40 can be easily formed into a highly protruding convex surface, preferably a convex curved surface, and thus a substantially spherical surface. Moreover, the surface shape can be obtained with good reproducibility. Therefore, a light emitting device having excellent light extraction efficiency can be manufactured at low cost.
  • the sealing member is also possible to form the sealing member with a highly projecting convex surface by forming the sealing member by dropping after forming a film having a small surface tension over the entire upper surface of the substrate.
  • the adhesion between the base and the sealing member may be significantly reduced due to the coating interposed between the base and the sealing member.
  • the sealing member is basically in direct contact with the surface of the base, and high adhesion between the base and the sealing member is obtained. Can be provided.
  • the edge of the sealing member acts so as to be locked to the protrusion, and the adhesion between the base and the sealing member can be further enhanced. .
  • the outward surface 27 of the protrusion 34 is a convex curved surface.
  • the sealing member having fluidity is dropped onto the base and reaches the edge formed by the outward surface of the protrusion and the surface continuous above the protrusion.
  • the sealing member is temporarily accumulated on the upper surface of the outer surface due to the above-described “wetting pinning effect”. .
  • a sealing member gets over the edge part, there exists a possibility of flowing out vigorously by the weight of itself enlarged and destroying the surface shape.
  • the outward surface of the protrusion has a convex curved surface at the top, as described above, the “wetting pinning effect” can be suppressed and the sealing member can be smoothly moved onto the outward surface. .
  • the surface of the sealing member 40 can be easily and stably formed on a convex surface that protrudes highly.
  • at least a part of the sealing standing surface 37 may be a convex curved surface on the outward surface 27, or may be a surface that extends beyond the convex curved surface and continues to the lower side thereof.
  • the outward surface 27 is preferably a convex curved surface or a lower surface continuous with the convex curved surface.
  • the uppermost surface of the outward surface 27 of the protrusion 34 is formed as a convex curved surface, thereby suppressing the chipping of the protrusion 34 due to biting into the mold and the moldability of the protrusion 34. Can be increased.
  • the inward surface 29 facing the inner side in the top view of the protrusion 34 is a convex curved surface.
  • the sealing member in a fluid state is dropped on the base and reaches an edge portion formed by an inward surface of the protrusion and a surface continuous thereabove.
  • the inward surface of the protrusion is a flat surface bent from the upper surface, the sealing member is temporarily accumulated on the inward surface due to the “wetting pinning effect” described above.
  • a sealing member gets over the edge part there exists a possibility of flowing out vigorously by the weight of itself enlarged, and also flowing out beyond an outward surface.
  • the inward surface 29 of the protrusion 34 has a convex curved surface at the uppermost position, as described above, the “wetting pinning effect” is suppressed, and the surface of the sealing member 40 that is continuous to the upper side thereof is extended outward. It can be moved smoothly onto the surface 27. As a result, the surface of the sealing member 40 can be easily and stably formed on a convex surface that protrudes highly.
  • at least a part, most preferably all, of the inwardly facing surface 29 of the constituent surface of the base body 30 located on the inner side of the sealing standing surface 37 and facing the inner side of the projection as viewed from above is projected to the uppermost position. It is preferable to have a curved surface.
  • the protrusion 34 is provided in an annular shape surrounding the light emitting element 10 when viewed from above.
  • the protrusion 34 provides an outward surface 27 for raising the surface 45 of the sealing member, and functions as a barrier for blocking the sealing member 40 in a fluid state.
  • the protrusion is provided in a frame shape surrounding the light emitting element.
  • the protrusion 34 is preferably provided in an annular shape in a top view, and in particular, is preferably provided in an elliptical shape, and more preferably provided in a perfect circular shape.
  • the surface of the sealing member 40 can be formed in a convex surface with little distortion, light extraction efficiency can be easily improved, and light distribution excellent in symmetry can be obtained.
  • the protrusions 34 are arranged so that the light emitting element 10 is substantially at the center, thereby improving the symmetry of light distribution.
  • FIG. 10A is a schematic top view of the light-emitting device according to Embodiment 7, and FIG. 10B is a schematic cross-sectional view showing the HH cross section in FIG.
  • the light emitting device 700 of the example shown in FIG. 10 encloses the light emitting element 10, the substrate 30 on which the light emitting element 10 is placed, the base 30 having the protrusions 34 provided on the upper surface of the wiring board 22, and the light emitting element 10. Sealing member 40 to be stopped.
  • the base body 30 includes a wiring substrate 22 having wiring electrodes on the upper surface, a first protrusion 341 provided on the upper surface, and a second protrusion 342 on the outer side.
  • the first and second protrusions 341 and 342 are white resin molded bodies formed in a predetermined shape in advance, and are bonded to the upper surface of the wiring board 22 with an adhesive.
  • the light emitting element 10 is an LED chip, and one is bonded inside the protrusion 34 on the upper surface of the wiring substrate 22 with an adhesive (not shown), and is connected to the wiring electrode by a wire.
  • the sealing member 40 is a sealing resin provided on the base 30 so as to cover the light emitting element 10.
  • the first protrusion and the second protrusion outside the first protrusion are provided on the upper surface of the wiring substrate, and in the second step, at least a part of the sealing standing surface is provided.
  • the surface 45 of the sealing member can be raised from the outward surface 27 of any one of the protrusions 341 and 342.
  • the surface of the member 40 can be formed into a convex surface that protrudes highly.
  • the first protrusion 341 is provided outside the wire connection portion to which the wire of the wiring electrode of the wiring substrate 22 is connected, thereby suppressing or avoiding the distortion of the surface shape of the sealing member 40 due to the wire. Can do.
  • the first protrusion 341 may be provided on the inner side of the wire connection portion to which the wire of the wiring electrode of the wiring board 22 is connected. Thereby, it can suppress that the wire connection part of the wiring electrode of the wiring board 22 is contaminated with the oozing-out component of the adhesive which adhere
  • the sealing member 40 includes a first sealing portion 401 that seals the light emitting element 10, and a second sealing portion 402 that seals the first sealing portion 401. It is equipped with.
  • the first sealing portion 401 includes at least a part of the first sealing rising surface 371 where the surface 451 of the first sealing portion rises among the constituent surfaces of the base body 30, and the outward surface 27 of the first protrusion 341. It is formed as follows.
  • the second sealing portion 402 has at least a part of the second sealing rising surface 372 on which the surface 452 of the second sealing portion rises among the constituent surfaces of the base body 30, and the outward surface 27 of the second protrusion 342. It is formed as follows.
  • each sealing portion can be formed relatively stably on a convex surface that protrudes highly. It is easy to suppress the reflection of light at the interface of the sealing portion and increase the light extraction efficiency.
  • each sealing portion may be made of the same material and have the same refractive index, but from the light emitting element 10 by gradually making the refractive index of each sealing portion closer to the refractive index of air. Light can be efficiently extracted into the sealing member 40, and reflection of light at the interface between the two sealing portions can be suppressed to further increase the light extraction efficiency.
  • the refractive index of the second sealing portion 402 is preferably lower than the refractive index of the first sealing portion 401.
  • the second sealing portion 402 may be formed after the first sealing portion 401 is completely solidified, but by forming the first sealing portion 401 in a semi-solidified or non-solidified state, The adhesion between the first sealing portion 401 and the second sealing portion 402 can be improved. Further, since the first sealing portion 401 is an internal region of the sealing member 40, the first sealing portion 401 may be formed using the above-described “wetting pinning effect”. In this case, the surface 451 of the first sealing portion 401 rises from the end of the upper surface serving as a boundary with the outward surface 27 of the first protrusion 341.
  • the sealing member 40 contains the phosphor 50 excited only by the light emitted from the light emitting element 10 only in the first sealing portion 401.
  • the wavelength conversion and scattering of light by the phosphor 50 is performed only in the first sealing portion 401, that is, in the vicinity of the light emitting element 10 in the sealing member 40.
  • the light source can be made smaller with respect to the surface of the sealing member, and the light extraction efficiency can be increased.
  • the surface of the first sealing portion 401 can be formed as a convex surface that protrudes high, variation in the optical path length in each direction within the first sealing portion 401 can be reduced, and the first sealing portion 401 can be reduced. Even if the phosphor 50 is dispersed in 401, it is possible to emit light with substantially uniform chromaticity.
  • the fluorescent substance 50 may be settled and a diffusing agent may be contained.
  • the uppermost surface of the outward surface 27 of the first protrusion 341 is a flat surface.
  • the outwardly facing surface 27 of the protrusion is most preferably a convex curved surface, but the descending from the upper plane continuous with the outwardly facing surface.
  • An angle (tilt angle) may be a plane preferably 45 degrees or less, more preferably 30 degrees or less.
  • the “upper plane continuous with the outward surface” is not limited to the substantially horizontal upper surface of the protrusion, and may be an outward surface. That is, the outward surface 27 of the protrusion may be configured by a plurality of planes in which the descending angle of the lower plane from the upper plane is preferably 45 degrees or less, more preferably 30 degrees or less.
  • the angle formed by the outward surface 27 of the second protrusion 342 and the upper surface of the wiring board 22 is an acute angle.
  • the outward surface 27 of the second protrusion 342 is inclined so as to face the upper surface of the wiring board 22.
  • the protrusion separately provided on the wiring board can be formed in advance as a separate body from the wiring board, its shape and material can be easily selected. Further, the edge portion can be processed with high accuracy.
  • the protrusion that makes an acute angle between the outward surface of the protrusion and the upper surface of the wiring board can be easily provided, and the surface of the sealing member 40 can be easily protruded high.
  • the angle formed by the outward surface of the protrusion serving as the sealing standing surface and the upper surface of the wiring board is preferably 30 to 135 degrees, and preferably 45 to 90 degrees. It is more preferable. Thereby, the surface of the sealing member is easily protruded and formed, and the light extraction efficiency is easily increased.
  • the second protrusion 342 is provided in a rectangular frame shape with rounded corners when viewed from above. It is preferable that at least the corners of the protrusions are curved as described above in the top view or like the annular shape shown in the sixth embodiment.
  • the protrusion is angularly bent when viewed from above, the surface of the sealing member rising from the vicinity of the corner is distorted.
  • at least the corners of the protrusions are curved, so that the distortion can be reduced, the surface of the sealing member can be easily formed into a relatively smooth convex surface, and the light extraction efficiency can be easily improved.
  • a coating 60 having a critical surface tension of 50 mN / m or less is formed on the outward surface 27 of the second protrusion 342 provided with the sealing upright surface 372.
  • the contact angle of the sealing member 402 (contact angle ⁇ of the droplet L in FIG. 3) is outside the protrusion 34. The smaller the surface tension of the surface 27 (solid S in FIG. 3), the larger the surface tension.
  • the sealing member 40 is in direct contact with the surface of the base 30 on the inner side of the outward surface 27 by limiting the range in which the coating 60 is provided in this way, the high adhesion between the base 30 and the sealing member 40 is achieved. Can be maintained.
  • the material for the coating 60 include silicone oil, paraffinic hydrocarbon, higher alcohol, higher fatty acid, silicone resin, fluororesin, polyolefin resin, polynorbornene resin, and the like.
  • silicone oil is preferable because it is absorbed by the sealing member during the solidification of the sealing member and hardly deteriorates the adhesion with the substrate.
  • the number of protrusions is not particularly limited.
  • the protrusion may remain outside the sealing standing surface.
  • a third protrusion 343 may be further provided outside the second protrusion 342 on the upper surface of the wiring substrate 22 as indicated by a one-dot chain line in FIG. Then, the inward surface of the third protrusion 343 comes to face the outward surface 27 of the second protrusion 342 provided with the sealing rising surface 372. Thereby, the light emitted from the edge of the sealing member provided on the outward surface 27 of the second protrusion 342 can be effectively reflected by being reflected by the inward surface of the third protrusion 343 toward the front of the apparatus. .
  • the inward surface facing the outward surface on which the sealing standing surface is provided is inclined so as to open upward or is curved in such a manner. Thereby, the light radiate
  • one sealing portion (first sealing portion 401) is provided so as to be included in one sealing portion (second sealing portion 402).
  • the present invention is not limited to this, and when a plurality of projections and a plurality of sealing portions where at least part of the surface rises from the outward surface of the projections are provided, the plurality of sealing portions are included in one sealing portion. May be provided.
  • the plurality of inner sealing portions seal light emitting elements emitting red, green, and blue colors, respectively.
  • FIG. 11A is a schematic top view of the light-emitting device according to Embodiment 8, and FIG. 11B is a schematic cross-sectional view showing a JJ cross section in FIG.
  • the light emitting device 800 of the example shown in FIG. 11 encloses the light emitting element 10, the wiring substrate 22 on which the light emitting element 10 is placed, and the base 30 having the protrusions 34 provided on the upper surface of the wiring substrate 22, and the light emitting element 10. Sealing member 40 to be stopped.
  • the base body 30 is made of a white resin provided in a straight line extending in the vertical direction (y direction in the figure) on the left and right of the light-emitting element 10 on the upper surface of the wiring substrate 22 having wiring electrodes on the upper surface.
  • a projection 34 which is a molded body.
  • the light emitting element 10 is one LED chip, and is bonded to the wiring electrode with a conductive adhesive inside the protrusion 34 on the upper surface of the wiring substrate 22.
  • a covering member (first covering member) 70 is provided below the light emitting element 10, that is, between the light emitting element 10 and the wiring board 22.
  • the covering member 70 is a white resin. Thereby, the light radiate
  • the light emitting device 800 of this example includes a wavelength converter that includes a phosphor provided on the light emitting element 10 and excited by light emitted from the light emitting element 10.
  • a member 55 may be provided.
  • the wavelength conversion member 55 has, for example, a plate shape and is attached to the upper surface of the light emitting element 10.
  • the light emitting device 800 of this example includes a covering member (second covering member) 75 that covers the upper surface of the wiring substrate 22 around the light emitting element 10. Also good.
  • the covering member 75 is provided in various covering forms.
  • the covering member 75 covers at least a part of the upper surface of the wiring board 22. If the covering member 75 is made of a light-reflective member such as a white material, the light emitted from the light emitting element 10 can be suppressed from being absorbed by the wiring substrate 22 and the light extraction efficiency can be increased.
  • the covering member 75 may be provided on the outer side of the projection 34, but is preferably provided on the inner side of the projection 34, particularly on the inner side of the projection 34 on which the sealing standing surface 37 is provided. When a plurality of protrusions are provided, the covering member 75 may be provided between the protrusions. If the wiring electrode is covered with the covering member 75 having a gas barrier property higher than that of the sealing member 40, discoloration of the wiring electrode due to corrosive gas can be suppressed, and high light extraction efficiency can be easily maintained. In addition, the covering member 75 may be provided by exposing the upper surface of the light emitting element 10 and covering the side surface of the light emitting element.
  • the covering member 75 may be provided so that the upper surface of the wavelength conversion member 55 is exposed and the side surfaces of the light emitting element 10 and the wavelength conversion member 55 are covered. Accordingly, when the covering member 75 is a light reflective member, a light source having the main light extraction surface on the upper surface of the light emitting element 10 or the upper surface of the wavelength conversion member 55 is obtained.
  • the sealing member 40 is a sealing resin provided on the base 30 so as to cover the light emitting element 10 (or a composite light source in the case where the wavelength conversion member 55 is provided).
  • the surface of the sealing member 40 is a convex surface rising from the outward surface 27 of the left and right protrusions 34 in a cross section (xz plane) perpendicular to the y direction, and a cross section (yz plane) parallel to the y direction. ),
  • the both end surfaces are rectangular surfaces substantially flush with the end surface of the wiring board 22. That is, the sealing member 40 is provided in a substantially semi-cylindrical shape having such a surface shape.
  • the protrusion 34 is provided in a strip shape, at least a part of the surface 45 of the sealing member rises from the outward surface 27 of the protrusion 34 in a cross section perpendicular to the extending direction (y direction). And the surface of the sealing member 40 can be formed in the convex surface which protruded highly, and the extraction efficiency of light can be improved.
  • the protrusion is not limited to the frame shape, and may be provided in a band shape. Thereby, it is easy to form a projection in a small size, and it is easy to provide an outward surface in a small area inside the outermost end surface of the wiring board.
  • one protrusion may be provided, but at least two protrusions are preferably provided so as to sandwich the light emitting element. Then, since the surface of the sealing member is easily formed from the protrusion to the protrusion, the symmetry of the surface shape of the sealing member can be enhanced. Further, a plurality of protrusions may be provided so as to be spaced apart as indicated by a broken line, or may be further provided in the form of dots.
  • FIG. 12 (a) to 12 (d) are schematic views showing an example of the method for manufacturing the light emitting device according to Embodiment 8, each including a top view and a cross-sectional view taken along a two-dot chain line.
  • the light emitting device 800 shown in FIG. 11 is manufactured through the following steps.
  • the light emitting element 10 is mounted on the wiring board 22. Specifically, the light emitting element 10 is bonded to the wiring electrode of the wiring board with a conductive adhesive. At this time, the number of the light emitting elements 10 may be one, but it is preferable that the plurality of light emitting elements 10 are arranged in one direction (y direction in the figure). The number of columns may be one or more.
  • the wiring substrate 22 is a composite substrate capable of forming a plurality of light emitting devices.
  • the protrusions 34 are provided on the upper surface of the wiring substrate 22 to form the base body 30. Specifically, the constituent material of the projection 34 having fluidity is dropped on the upper surface of the wiring substrate 22 and drawn into a predetermined shape, and then solidified. At this time, the protrusion 34 is provided in a strip shape extending in a direction substantially parallel to the arrangement direction (y direction in the drawing) of the light emitting elements 10. Further, the protrusions 34 are provided on both sides of the light emitting element 10.
  • the “strip shape” as used herein includes a case where it is partially, and includes a frame-like protrusion. The order of the light emitting element mounting step and the protrusion forming step may be reversed.
  • the sealing member 40 is formed on the base 30 by dropping. Specifically, the sealing member 40 in a fluid state is dropped onto the base 30 so as to cover the light emitting element 10 using a dispenser or the like, and the sealing member 40 is solidified by heating or cooling. At this time, the sealing member 40 is formed so that at least a part of the sealing standing surface 37 is the outward surface 27 of the protrusion 34. In other words, the sealing member 40 is formed such that at least a part of the surface 45 rises from the outward surface 27 of the protrusion 34. In addition, the sealing member 40 is preferably provided across the protrusions 34 on both sides in order to enhance the symmetry of the surface shape.
  • the sealing member 40 may be solidified with the base body 30 turned upside down, that is, with the upper surface of the wiring board 22 onto which the sealing member 40 has been dropped facing downward in the vertical direction.
  • the surface of the sealing member 40 can be made to protrude highly using gravity.
  • the surface of the sealing member 40 can be formed to extend in the vertical direction for a long time, and a light emitting device with good directivity and high luminous intensity can be obtained.
  • a projection that is inclined so that the outward surface faces the upper surface of the wiring board, such as the second projection 342 of the seventh embodiment can easily hold a relatively large amount of sealing member, and can be sealed.
  • the sealing member 40 may be solidified in a normal posture, that is, in a state where the upper surface of the wiring board 22 is directed upward in the vertical direction.
  • the wiring board 22 and the sealing member 40 between the light emitting elements are cut, and the light emitting device 800 is separated into pieces. At this time, it is preferable to cut the wiring board 22 and the sealing member 40 in a direction substantially orthogonal to the arrangement direction of the light emitting elements 10.
  • the light emitting device 800 of the example shown in FIG. 11 can be manufactured with high productivity.
  • the cutting positions of the wiring board 22 and the sealing member 40 can be arbitrarily changed.
  • one light-emitting device is cut so that one light-emitting element is included, but one light-emitting device may be cut so that a plurality of light-emitting elements are included.
  • the projections 34 on both sides are open, the surface shape of the end portion of the sealing member 40 in a direction substantially parallel to the extending direction of the projection 34 is easily distorted. It may be excised.
  • the wiring board 22 and the sealing member 40 can be used as a relatively large light emitting device without being cut.
  • the belt-like protrusion 34 is not limited to a straight line, and may be provided in a curved shape such as a curved line or a wavy line. At this time, it is preferable that an antinode of a wave protruding outward is located next to the light emitting element 10. Thereby, even in a cross section substantially parallel to the arrangement direction of the light emitting elements 10, the surface of the sealing member 40 can be partially formed as a convex surface, and the light extraction efficiency can be easily improved. Furthermore, it is more preferable that the protrusions 34 are provided so as to be substantially symmetrical with respect to the light emitting element 10.
  • Light emitting element 10 As the light emitting element, a semiconductor light emitting element such as an LED element or an LD element can be used.
  • the light emitting element may be any element in which a pair of positive and negative electrodes is provided in an element structure composed of various semiconductors.
  • a light-emitting element of a nitride semiconductor In x Al y Ga 1-xy N, 0 ⁇ x, 0 ⁇ y, x + y ⁇ 1
  • light emitting elements of gallium arsenide and gallium phosphorus semiconductors that emit green to red light may be used.
  • the mounting form may be face-up mounting in which each electrode is connected to a conductive member or a wiring electrode of a wiring board by a wire
  • Face-down (flip chip) mounting connected to a conductive member or a wiring electrode of a wiring board with a conductive adhesive may also be used.
  • a light emitting element having a counter electrode structure in which a pair of positive and negative electrodes are provided on opposite surfaces may be used.
  • the number of light-emitting elements mounted on one light-emitting device may be one or more, and the size, shape, and emission wavelength may be arbitrarily selected.
  • red, green, and blue light emitting elements may be mounted on one light emitting device.
  • the plurality of light emitting elements may be irregularly arranged, but a preferable light distribution can be easily obtained by arranging regularly or periodically such as a matrix or a concentric circle.
  • the plurality of light emitting elements can be connected in series or in parallel by a conductive member, a wiring electrode of a wiring board, a wire, and the like.
  • the base is a member serving as a base on which the light emitting element is placed.
  • the base is mainly composed of a conductive member and a molded body integrally formed therewith.
  • the base is mainly composed of a wiring board and a protrusion provided on the upper surface thereof.
  • the substrate may be in the form of a plate having no recess (side wall) in addition to the recess having a part of the conductive member on the bottom surface.
  • Conductive member 20 As the conductive member, a metal member that is electrically connected to the light emitting element can be used. Specific examples include lead frames and wiring electrodes formed of copper, aluminum, gold, silver, tungsten, iron, nickel, cobalt, molybdenum, or alloys thereof, phosphor bronze, iron-containing copper, and the like. Further, the surface layer may be provided with a plating such as silver, aluminum, rhodium, gold, copper, or an alloy thereof, or a light reflection film, and among them, silver that is most excellent in light reflectivity is preferable.
  • a plating such as silver, aluminum, rhodium, gold, copper, or an alloy thereof, or a light reflection film, and among them, silver that is most excellent in light reflectivity is preferable.
  • the base material of the molded body is aliphatic polyamide resin, semi-aromatic polyamide resin, polyethylene terephthalate, polycyclohexane terephthalate, liquid crystal polymer, polycarbonate resin, syndiotactic polystyrene, polyphenylene ether, polyphenylene sulfide, polyether sulfone resin, polyether ketone.
  • Thermosetting resins such as thermoplastic resins such as resins and polyarylate resins, polybismaleimide triazine resins, epoxy resins, silicone resins, silicone modified resins, silicone modified resins, polyimide resins, and polyurethane resins.
  • glass silica, titanium oxide, magnesium oxide, magnesium carbonate, magnesium hydroxide, calcium carbonate, calcium hydroxide, calcium silicate, magnesium silicate, wollastonite, Mica, zinc oxide, barium titanate, potassium titanate, aluminum borate, aluminum oxide, zinc oxide, silicon carbide, antimony oxide, zinc stannate, zinc borate, iron oxide, chromium oxide, manganese oxide, carbon black, etc. Particles or fibers can be incorporated.
  • the molded body can be formed of glass, ceramics, or the like.
  • the wiring board is made of various substrates such as glass epoxy, glass, ceramics, various resins, aluminum, etc., which are provided with wiring electrodes and circuit components that are connected to the light emitting element and the terminal part (pad part) for external connection. It can.
  • the ceramic alumina, aluminum nitride, mullite, silicon carbide, silicon nitride and the like are preferable.
  • the resin epoxy resin, polyimide resin, phenol resin, BT resin, polyphthalamide resin (PPA), polyethylene terephthalate resin (PET), polybutylene terephthalate resin (PBT) and the like are preferable.
  • As the wiring electrode a metal member that is electrically connected to the light emitting element can be used.
  • the wiring electrode is formed of copper, aluminum, gold, silver, tungsten, iron, nickel, cobalt, molybdenum, or an alloy thereof, phosphor bronze, iron-containing copper, or the like.
  • the wiring electrode may be exposed on the upper surface, the lower surface (back surface), and the side surface of the substrate, or may be provided inside the substrate.
  • the wiring electrode exposed on the upper surface of the substrate may be provided with a plating or light reflecting film such as silver, aluminum, rhodium, gold, copper, or an alloy thereof on the surface layer. Silver with excellent properties can be used.
  • the wiring board may be provided with a recess or a hole at a position where the protrusion is provided, and the adhesion between the wiring board and the protrusion is improved by filling or locking a part of the protrusion in the recess or hole. Can be increased.
  • the concave portion or the hole is provided in, for example, a dot shape or a line shape in a top view.
  • the opening diameter of a recessed part or a hole is smaller than the width
  • the protrusion is mainly provided on the upper surface of the wiring board as a member that provides an outward surface for raising the surface of the sealing member.
  • the protrusion is usually provided outside the light emitting element, but may be provided below the light emitting element (in other words, the light emitting element may be provided on the protrusion).
  • the protrusion also functions as a light reflector that reflects upward the light emitted from the light emitting element to the side on the inner wall surface. Therefore, a white member having excellent light reflectivity is preferable, and one that is electrically insulated from the wiring electrode of the wiring board is preferable.
  • the protrusion is a member having excellent translucency, such as substantially transparent, the light distribution of the light emitting device can be widened.
  • thermosetting resin a thermoplastic resin, or the like
  • silicone resin epoxy resin, phenol resin, BT resin, PPA, PET, PBT, fluororesin, polyolefin resin, polynorbornene resin, and the like
  • particles of titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide, or the like are added to the resin as the base material, whereby light can be reflected efficiently.
  • protrusions are solidified after being discharged onto the wiring board by a dispenser or the like, for example.
  • the protrusion can be provided by fixing a member formed in an arbitrary shape to the wiring board.
  • the surface of the protrusion is preferably made of a material having a critical surface tension of 50 mN / m or less.
  • silicone resins, fluororesins, polyolefin resins, and polynorbornene resins are particularly preferable, and among them, silicone resins having excellent heat resistance and light resistance and relatively good adhesion are preferable.
  • the protrusion may be composed of a single layer, but may be composed of a plurality of layers.
  • the sealing member is a member that seals part of the light emitting element, the wire, and the conductive member, and protects them from dust, moisture, external force, and the like.
  • the base material of the sealing member may be any material that has electrical insulation, can transmit light emitted from the light-emitting element (preferably has a transmittance of 70% or more), and has fluidity before solidification.
  • Specific examples include silicone resins, silicone-modified resins, silicone-modified resins, epoxy resins, phenol resins, polycarbonate resins, acrylic resins, TPX resins, polynorbornene resins, or hybrid resins containing one or more of these resins. Glass may be used.
  • the base material of the sealing member is preferably mainly composed of phenyl silicone resin.
  • the phenyl silicone resin when the surface of the sealing member is a convex surface, the phenyl silicone resin is more excellent in light extraction efficiency than the dimethyl silicone resin.
  • the phenyl silicone resin is excellent in gas barrier properties and easily suppresses deterioration of the conductive member due to corrosive gas.
  • the sealing member may include particles having various functions such as fillers and phosphors in the base material.
  • a diffusing agent, a coloring agent, or the like can be used. Specifically, silica, titanium oxide, magnesium oxide, magnesium carbonate, magnesium hydroxide, calcium carbonate, calcium hydroxide, calcium silicate, zinc oxide, barium titanate, aluminum oxide, iron oxide, chromium oxide, manganese oxide, glass And carbon black.
  • the shape of the filler particles may be crushed or spherical. Further, it may be hollow or porous.
  • the phosphor absorbs at least part of the primary light emitted from the light emitting element, and emits secondary light having a wavelength different from that of the primary light.
  • YAG yttrium-aluminum-garnet
  • CaO—Al 2 O 3 —SiO 2 nitrogen-containing calcium aluminosilicate
  • Examples thereof include silicate ((Sr, Ba) 2 SiO 4 ).
  • a light emitting device that emits mixed light (for example, white light) of primary light and secondary light having a visible wavelength, or a light emitting device that emits visible light secondary light when excited by the primary light of ultraviolet light is used. Can do.
  • wavelength conversion member 55 As the wavelength conversion member, a translucent member containing the above phosphor can be used. Specifically, a resin or glass molded body similar to the sealing member in which the phosphor is blended, a sintered body of the phosphor and an inorganic binder, a crystal of the phosphor, and the like can be given.
  • the wavelength conversion member is formed in a plate shape, a film shape, or the like, and is bonded or directly bonded to the light emitting element with a light-transmitting adhesive, or a fluidized state is applied to the light emitting element, or
  • the phosphor is provided by electrophoretic electrodeposition on a light emitting element and then impregnating it with a resin.
  • the covering member is a member that covers the upper surface of the wiring substrate, the lower surface and the side surface of the light emitting element, and the like.
  • the covering member is preferably a white member having electrical insulation that can efficiently reflect light emitted from the light emitting element.
  • a resin similar to the protrusion or a resin to which particles similar to the protrusion are added can be used.
  • the wire is a member that electrically connects the electrode of the light emitting element and the conductive member or the wiring electrode of the wiring board.
  • a metal wire of gold, copper, silver, platinum, aluminum, or an alloy thereof can be used.
  • a gold wire that is unlikely to break due to stress from the sealing member and is excellent in thermal resistance or the like is preferable.
  • the adhesive is a member that fixes the light emitting element to the substrate or the wiring substrate.
  • an epoxy resin, a silicone resin, a polyimide resin, or a modified resin or a hybrid resin thereof can be used.
  • a conductive paste such as silver, gold or palladium, a solder such as gold-tin, or a brazing material such as a low melting point metal can be used.
  • the light emitting device of Example 1 is a surface light emitting device (top view) having a base of 5.0 mm in length, 6.5 mm in width, and 1.35 mm in thickness having an outer shape similar to that of the light emitting device 100 in the example shown in FIG. ) Type surface mount type LED.
  • the base is formed by integrally molding a molded body made of an epoxy resin containing a white pigment of titanium oxide and a silica filler on a conductive member which is a pair of positive and negative lead frames made of a copper alloy having a surface plated with silver. ,It is configured.
  • Such a base is produced by installing a conductive member in a mold and injecting and solidifying the constituent material of the molded body. Note that a part of the surface of the conductive member constitutes a part of the bottom surface of the recess and extends to the outside of the molded body.
  • a concave portion having a diameter of 4.3 mm and a depth of 0.85 mm in a top view is formed by a molded body.
  • the concave portion is of a two-stage type, and has an upper step portion having a perfect circle shape with a width of 0.33 mm at a position having a depth of 0.3 mm. Further, a projection having a circular shape in a top view with a width of 0.16 mm and a height of 0.1 mm is formed on the upper stage portion.
  • the upper portion is provided at a position having a depth of 0.2 mm, and a groove having a circular shape in a top view with a width of 0.17 mm and a depth of 0.1 mm is provided at the peripheral portion thereof.
  • the outer side surface of the surface is an inclined surface having an inclination angle of 78 to 82 degrees from the upper surface.
  • the corners formed by the outer and inner side surfaces and the upper surface of the protrusion are rounded and convex.
  • the inward surface of the groove that is, the inner wall surface of the upper part of the recess is also inclined from the upper surface of the substrate to the same extent as the outer side surface of the protrusion.
  • This light-emitting element has an n-type nitride semiconductor layer, an active layer, and a p-type layer sequentially stacked on a sapphire substrate, capable of emitting blue light (center wavelength of about 460 nm), 500 ⁇ m in length, 290 ⁇ m in width, and 120 ⁇ m in thickness. LED chip.
  • the sealing member is provided so as to cover the light emitting element inside the concave portion of the base.
  • This sealing member uses a phenyl silicone resin having a refractive index of 1.53 as a base material, and a YAG phosphor is dispersed therein.
  • the surface of the sealing member has a substantially convex curved surface, most of which rises from the outer side surface, which is the outward surface of the protrusion of the base, or from the corner of the convex curved surface.
  • the height of the surface of the sealing member (height near the apex) is 1.3 mm with the upper surface of the protrusion as the reference surface.
  • Such a sealing member is molded by being dripped from the dispenser so that most of the surface rises from the outward surface of the protrusion of the base in a fluid state, and solidified by heating in that state. .
  • Comparative Example 1 The light emitting device of Comparative Example 1 is the same as the light emitting device of Example 1 except that the surface of the sealing member is connected to the inward surface of the protrusion and is formed into a flat surface substantially flush with the upper surface of the protrusion. It is the same configuration.
  • each light emitting device is caused to emit light at a forward current of 350 mA (parallel), and the luminous flux is measured.
  • the luminous flux of the light emitting device of Comparative Example 1 is 119.8 [lm]
  • the luminous flux of the light emitting device of Example 1 is 129.4 [lm].
  • the luminous flux is 8.1% higher than that of the light emitting device of Comparative Example 1, and the surface of the sealing member is molded into a highly protruding convex surface. High light extraction efficiency is obtained.
  • the light-emitting device of Example 2 has a side surface (side view) having a base of 2.0 mm in length, 3.0 mm in width, and 1.2 mm in thickness having an outer shape similar to that of the light-emitting device 400 in the example shown in FIG. ) Type surface mount type LED.
  • the base is a conductive member, which is a pair of positive and negative lead frames made of copper alloy with silver plating on the surface, and a molded body made of polyphthalamide resin containing a white pigment of titanium oxide and a silica filler is integrally molded. Has been configured.
  • Such a base is produced by installing a conductive member in a mold and injecting and solidifying the constituent material of the molded body. Note that a part of the surface of the conductive member constitutes a part of the bottom surface of the recess and extends to the outside of the molded body.
  • a recess having a substantially rectangular shape in a top view with a length of 1.6 mm, a width of 2.2 mm, and a depth of 0.45 mm is formed by the molded body.
  • protrusions that are linear in a top view and have a length of 1.6 mm, a width of 0.26 mm and a height of 0.21 mm.
  • the cross-sectional shape of the protrusion is a substantially convex curved surface.
  • one light emitting element is bonded to the negative electrode side conductive member with an adhesive, which is a translucent epoxy resin, and each electrode is connected to the positive and negative electrode conductive members by gold wires. ing.
  • This light-emitting element has an n-type layer, an active layer, and a p-type layer of a nitride semiconductor stacked on a sapphire substrate in order to emit blue light (center wavelength of about 460 nm), length 200 ⁇ m, width 400 ⁇ m, thickness 85 ⁇ m. LED chip.
  • the sealing member is provided so as to cover the light emitting element inside the concave portion of the base.
  • This sealing member uses a phenyl silicone resin having a refractive index of 1.53 as a base material, and a YAG phosphor is dispersed therein.
  • the surface of the sealing member has a substantially convex curved surface, and rises from the outward surface of the protrusion in the longitudinal direction of the base.
  • the height of the surface of the sealing member (the height near the top) is 0.13 mm with the upper surface of the protrusion as the reference surface.
  • Such a sealing member is molded by being dropped from the dispenser so that its surface rises from the outward surface of the protrusion in the longitudinal direction of the substrate in a fluid state, and solidified by heating in that state.
  • Example 3 The light emitting device of Example 3 has the same configuration as the light emitting device of Example 2 except that the base material of the sealing member is a dimethyl silicone resin having a refractive index of 1.41.
  • the light emitting device of Comparative Example 3 has the same configuration as the light emitting device of Comparative Example 2, except that the base material of the sealing member is a dimethyl silicone resin having a refractive index of 1.41.
  • the light emitting devices of Examples 2 and 3 each have an initial light flux of 9.7% and 5.7% higher than that of Comparative Example 3, and are excellent in light extraction efficiency. I understand that.
  • the initial luminous flux of the light emitting device of Comparative Example 2 is 1.1% lower than the initial luminous flux of the light emitting device of Comparative Example 3. From this, it can be seen that a light emitting device with particularly high light extraction efficiency can be obtained by combining the surface of the sealing member with a convex surface and the base material of the sealing member with phenyl silicone resin.
  • the gas barrier property of the sealing member can be improved, discoloration of the conductive member due to the sulfur-containing gas can be suppressed, and a highly reliable light-emitting device can be obtained. Recognize.
  • the light emitting device of Example 4 is an example of the light emitting device 600 shown in FIG. 8, and is a white light emitting COB (Chip On Board) type LED module.
  • the wiring substrate 22 is an alumina substrate having a length of 16 mm, a width of 19 mm, and a thickness of 1.0 mm, and a wiring electrode having a gold plating on the outermost surface is provided on the upper surface thereof.
  • the protrusion 34 is formed by drawing and solidifying a dimethyl silicone resin containing 30% of titanium oxide by weight with respect to the resin in an annular shape having an outer diameter of 10 mm, a width of 1.0 mm, and a height of 0.5 mm.
  • the cross-sectional shape of the protrusion 34 is substantially semicircular.
  • the light-emitting element 10 includes a nitride semiconductor n-type layer, an active layer, and a p-type layer sequentially stacked on a sapphire substrate, capable of emitting blue light (center wavelength of about 460 nm), 290 ⁇ m long, 500 ⁇ m wide, and having a thickness. It is an LED chip of 80 ⁇ m.
  • the sealing member 40 includes two portions, a lower first sealing portion 401 and an upper second sealing portion 402.
  • the first sealing portion 401 is made of a dimethyl silicone resin having a refractive index of 1.41 as a base material, and YAG phosphors are dispersed therein.
  • the first sealing portion 401 covers all the light emitting elements 10 and is filled up to the vicinity of the top of the protrusion 34.
  • the first sealing portion 401 has a peripheral edge that rises up to the protrusion 34 and a central portion that is recessed.
  • the 2nd sealing part 402 uses the same dimethyl silicone resin as the 1st sealing part 401 as a base material, and 3% of colloidal silica is added in the weight ratio with respect to a base material in it.
  • Most of the surface of the sealing member 40 (the surface of the second sealing portion 401) is a substantially convex curved surface rising from the outward surface 27 of the protrusion 34.
  • the height of the surface of the sealing member 40 (height near the apex) is 3.0 mm with the upper surface of the wiring board as the reference surface.
  • Such a second sealing portion 402 is formed by dripping from the dispenser so that most of the surface rises from the outward surface 27 of the projection 34 in a fluid state, and solidifying by heating in that state. Is done.
  • the sealing member is composed only of the first sealing portion, and the surface thereof is formed on a substantially flat surface having substantially the same height as the top of the protrusions.
  • the light emitting device has the same configuration.
  • the light emitting device of Example 4 has a high initial luminous flux of 3.5% higher than that of the light emitting device of Comparative Example 4, and the surface of the sealing member is formed as a convex surface that protrudes high. The light extraction efficiency is obtained.
  • FIG. 13A is a schematic cross-sectional view of the light emitting device according to the fifth embodiment.
  • the light emitting device 900 in the example shown in FIG. 13A is a white light emitting LED.
  • the wiring substrate 22 is an alumina substrate containing copper-tungsten as a heat sink material having a length of 3.5 mm, a length of 3.5 mm, and a thickness of 0.45 mm, and the upper surface of the wiring substrate 22 is plated with gold. An electrode is provided.
  • the protrusions 34 are made by solidifying a dimethyl silicone resin containing 30% of titanium oxide by weight with respect to the resin, drawn with a dispenser in an annular shape having an outer diameter of 2.6 mm, a width of 0.4 mm, and a height of 0.15 mm. is there.
  • the cross-sectional shape of the protrusion 34 is substantially semicircular.
  • One light emitting element 10 is flip-chip mounted with gold-tin eutectic solder on the upper surface of the wiring board 22 inside the protrusion 34 and connected to the wiring electrode of the wiring board 22.
  • the light-emitting element 10 includes a nitride semiconductor n-type layer, an active layer, and a p-type layer sequentially stacked on a sapphire substrate.
  • the light-emitting element 10 emits blue light (center wavelength: about 460 nm) and has a length of 1.0 mm and a width of 1. This is an LED chip having a thickness of 0 mm and a thickness of 110 ⁇ m.
  • the light emitting element 10 is covered with a wavelength conversion member 55.
  • the wavelength converting member 55 is obtained by attaching a YAG phosphor to the light emitting element 10 by electrophoretic electrodeposition and impregnating it with a phenyl silicone resin having a refractive index of 1.51.
  • the sealing member 40 is made of dimethyl silicone resin having a refractive index of 1.41 as a base material, and colloidal silica is added to the base material by 2.5% by weight with respect to the base material.
  • Most of the surface of the sealing member 40 is a substantially convex curved surface rising from the outward surface 27 of the protrusion 34.
  • the height of the surface of the sealing member 40 (height near the apex) is 3.0 mm with the upper surface of the wiring board as the reference surface.
  • Such a sealing member 40 is formed by dripping from a dispenser so that most of the surface rises from the outward surface 27 of the protrusion 34 in a fluid state, and solidifying by heating in that state. .
  • Example 6 The light emitting device of Example 6 has the same configuration as the light emitting device of Example 5 except that the protrusion 34 does not contain titanium oxide and is substantially transparent.
  • FIG. 13B is a schematic cross-sectional view of a light emitting device according to Comparative Example 5.
  • the light emitting device 950 of the example shown in FIG. 13B is different from the light emitting device 900 of Example 5 in the formation method of the sealing member 48.
  • the light emitting element 10, the wiring board 22, and the wavelength conversion member 55 of the light emitting device 950 are the same as those of the light emitting device 900 of Example 5, and the constituent materials of the sealing member 48 are the same as those of the light emitting device of Example 5. It is.
  • the sealing member 48 is directly formed on the wiring board 22 by a compression molding method. There are no protrusions.
  • the sealing member 48 has a convex surface with an outer diameter of ⁇ 2.6 mm at the center and a height (height near the apex) of 1.55 mm with the upper surface of the wiring board as a reference surface.
  • each light emitting device is caused to emit light at a forward current of 350 [mA], and its luminous flux is measured.
  • the initial luminous flux of the light emitting device of Comparative Example 5 is 121.6 [lm]
  • the initial luminous flux of the light emitting device of Example 4 is 127.1 [lm]
  • the initial luminous flux of the light emitting device of Example 5 is It is 124.4 [lm].
  • each of the light emitting devices of Examples 5 and 6 has an initial light flux that is 4.5% and 2.3% higher than that of the light emitting device of Comparative Example 5, and is excellent in light extraction efficiency. I understand that.
  • the sealing member 48 formed on the wiring board using a mold such as a compression molding method has a surface with a convex central portion and the periphery thereof continuously. It has a hook-like portion that is a runner of the sealing member 48 provided so as to extend on the wiring board 22. For this reason, a part of the light emitted from the light emitting element 10 is guided to the bowl-shaped portion, the light loss due to the absorption of the wiring board 22 is increased, and the light extraction efficiency is lowered.
  • the sealing member 40 formed by the dropping method does not have such a hook-shaped portion, and can efficiently extract light emitted from the light emitting element 10. .
  • the light emitting device includes a backlight source of a liquid crystal display, various lighting devices, a large display, various display devices such as advertisements and destination guidance, and an image reading device in a digital video camera, a facsimile, a copier, a scanner, and the like. It can be used for projector devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

光の取り出し効率に優れる発光装置及びその製造方法を提供する。本発明の発光装置(100)の製造方法は、発光素子(10)が接続される導電部材(20)と、該導電部材(20)と一体成形された成形体(25)と、を有する基体(30)上に、前記発光素子(10)を封止する封止部材(40)を滴下により成形する工程において、前記封止部材(40)は、該封止部材(40)の縁の少なくとも一部が前記導電部材(20)又は前記成形体(25)の上面視外側に向いた外向面(38)に設けられる、ように成形されることを特徴とする。

Description

発光装置及びその製造方法
 本発明は、発光素子を封止する封止部材を備える発光装置及びその製造方法に関するものである。
 発光ダイオード(Light Emitting Diode:LED)やレーザダイオード(Laser Diode:LD)等の発光素子を搭載した発光装置は、消費電力が低く長寿命であるため、次世代の照明用光源として期待されており、更なる高出力化や発光効率の向上が求められている。このような発光装置において、光の取り出し効率を高める一手段として、発光素子を封止する封止部材の表面形状を制御することが考えられる。
 例えば特許文献1には、発光素子が搭載された平面基板上に、上面に1つのエッジ部分を備える堰止め部が設けられ、発光素子を封止する封止樹脂が堰止め部によって堰き止められて硬化した照明装置、及びその製造方法が記載されている。
 また例えば特許文献2には、回路基板上に、複数のLEDチップと、LEDチップを囲繞するように塗布方法で成形され樹脂位置限定スペースを形成する環状光反射部材と、樹脂位置限定スペース内に充填方法で収納されLEDチップを覆う凸レンズと、を具え、凸レンズの外周表面は環状光反射部材のプラズマ洗浄された内表面に付着し、凸レンズの位置及び体積は樹脂位置限定スペースによって限定され、凸レンズの重さと樹脂位置限定スペースの面積は所定の比率であるLEDパッケージ構造、及びその製造方法が記載されている。
特開2010-003994号公報 特開2011-014860号公報
 一般に、発光装置の光の取り出し効率は、封止部材の表面が発光素子を略中心とする球面に成形されることで、最も高められやすい。しかしながら、特許文献1に記載された照明装置及びその製造方法において、封止樹脂の高さを制御するには、堰止め部のエッジ部分に高い工作精度が必要となるが、金型成形等による簡便な方法ではその精度が得られず、封止樹脂の高さのばらつきが発生しやすい。よって、発光装置の光の取り出し効率のばらつきが発生しやすい。また、特許文献2に記載されたLEDパッケージ構造及びその製造方法において、凸レンズの表面は、最大でも環状光反射部材の頂上水平面に対して材料固有の接触角をなす凸面にしか成形できず、十分な光の取り出し効率が得られない。
 そこで、本発明は、かかる事情に鑑みてなされたものであり、光の取り出し効率に優れる発光装置及びその製造方法を提供することを目的とする。
 本発明に係る第1の発光装置の製造方法は、
 発光素子が接続される導電部材と、該導電部材と一体成形された成形体と、を有する基体上に、前記発光素子を封止する封止部材を滴下により成形する工程において、
 前記封止部材は、該封止部材の縁の少なくとも一部が前記導電部材又は前記成形体の上面視外側に向いた外向面に設けられる、ように成形されることを特徴とする。
 本発明に係る第1の発光装置は、主に第1の製造方法により製造されるものであり、
 発光素子と、
 前記発光素子が接続される導電部材と、該導電部材と一体成形された成形体と、を有する基体と、
 前記発光素子を封止する封止部材と、を備え、
 前記封止部材の縁の少なくとも一部は、前記導電部材又は前記成形体の上面視外側に向いた外向面に設けられ、且つ、前記外向面に対して又は該外向面と該封止部材の縁の接点において該外向面に接する接平面に対して、略接触角又は接触角未満の角度をなして設けられていることを特徴とする。
 本発明に係る第2の発光装置の製造方法は、
 発光素子が載置される配線基板の上面の前記発光素子の外側に突起を設ける第1の工程と、
 前記発光素子を封止する封止部材を滴下により形成する第2の工程と、を具備し、
 前記封止部材は、該封止部材の縁の少なくとも一部が前記突起の上面視外側に向いた外向面に設けられる、ように形成されることを特徴とする。
 本発明に係る第2の発光装置は、主に第2の製造方法により製造されるものであり、
 発光素子と、
 前記発光素子が載置される上面の該発光素子の外側に突起が設けられた配線基板と、
 前記発光素子を封止する封止部材と、を備え、
 前記封止部材の縁の少なくとも一部は、前記突起の上面視外側に向いた外向面に設けられ、且つ、前記外向面に対して又は該外向面と該封止部材の縁の接点において該外向面に接する接平面に対して、略接触角又は接触角未満の角度をなして設けられていることを特徴とする。
 本明細書において、「上面」とは、発光装置の発光観測側の面のことである。また、「発光装置の上面視における水平面」とは、発光装置の光軸(発光素子の上面又は発光素子の載置面に対して垂直な軸と定義することができる)に対して垂直な面を指す。
 「外向」、「外側」とは、発光装置を上面方向から視たときに、発光素子から離れる方向のことである。また、「内向」、「内側」とは、発光装置を上面方向から視たときに、発光素子に向かう方向のことである。
 成形体、導電部材および突起の「外向面」とは、成形体、導電部材および突起(成形体等と称する)の表面において、当該表面の法線ベクトルが、外向きの成分を含んでいることを意味する。なお、外向面が曲面の場合、「外向面」とは、封止部材の縁との接点における成形体、導電部材および突起の表面の接平面において、法線ベクトルが外向きの成分を含んでいることを意味する。
 「略接触角又は接触角未満」とは、実質的に接触角と等しいか、又は接触角より小さい角度のことを意味している。
 本発明の第1および第2の製造方法では、封止部材の表面は、固化前の流動性を有する状態の封止部材の表面張力によって成形される。そのため、封止部材の高さ(主として、発光装置の光軸方向における、発光素子の載置面から封止部材の表面までの距離)は、成形体等の表面に対する流動性を有する状態の封止部材の濡れ性が低いほど(つまり、接触角が大きいほど)、高くなる。しかしながら、本発明のように成形体等に外向面を設けて、封止部材の縁を外向面に位置させることにより、外向面の傾斜角の角度分、接触角を擬似的に増大させることができる。その結果、封止部材の高さを増大させることができる。また、外向面の傾斜角を制御することにより、封止部材の高さを精度よく制御することも可能である。
 また、本発明の第1および第2の発光装置は、上述の製造方法によって製造することができるので、封止部材の高さのばらつきが少ない発光装置が得られる。また、上述の製造方法によれば、封止部材の高さを調節することができるので、光の取出し効率を高めるのに適した表面形状を有する封止部材を備えた発光装置を得ることができる。
 本発明に係る発光装置の製造方法によれば、封止部材の表面を高く突出した凸面に容易に成形することができるので、光の取り出し効率に優れる発光装置を安価に製造することができる。また、本発明に係る発光装置によれば、封止部材の表面が高く突出した凸面になっているので、発光装置の正面方向に向かう光の利用効率が高まり、光の取り出し効率に優れた発光装置が得られる。
本発明の一実施の形態に係る発光装置の概略上面図(a)と、そのA-A断面における概略断面図(b)である。 本発明の一実施の形態に係る発光装置の製造方法の一例を示す概略断面図(a)~(e)である。 固体表面と、その上に滴下された液滴の表面形状と、の関係について説明する概略断面図(a)~(f)である。 本発明の一実施の形態に係る発光装置の概略上面図(a)と、そのB-B断面における概略断面図(b)である。 本発明の一実施の形態に係る発光装置の概略上面図(a)と、そのC-C断面における概略断面図(b)である。 本発明の一実施の形態に係る発光装置の概略上面図(a)と、そのD-D断面及びE-E断面における概略断面図(b)及び(c)である。 本発明の一実施の形態に係る発光装置の概略上面図(a)と、そのF-F断面における概略断面図(b)である。 本発明の一実施の形態に係る発光装置の概略上面図(a)と、そのG-G断面における概略断面図(b)である。 本発明の一実施の形態に係る発光装置の製造方法の一例を示す概略断面図(a)~(e)である。 本発明の一実施の形態に係る発光装置の概略上面図(a)と、そのH-H断面における概略断面図(b)である。 本発明の一実施の形態に係る発光装置の概略上面図(a)と、そのJ-J断面における概略断面図(b)である。 本発明の一実施の形態に係る発光装置の製造方法の一例を示す概略図(a)~(d)である。 本発明の一実施例に係る発光装置の概略断面図(a)と、一比較例に係る発光装置の概略断面図(b)である。
 以下、発明の実施の形態について適宜図面を参照して説明する。但し、以下に説明する発光装置及びその製造方法は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。
<実施の形態1>
 図1(a)は、実施の形態1に係る発光装置の概略上面図であり、図1(b)は、図1(a)におけるA-A断面を示す概略断面図である。図1に示す例の発光装置100は、発光素子10と、発光素子10が接続される導電部材20及び導電部材20と一体成形された成形体25を有する基体30と、発光素子10を封止する封止部材40と、を備えている。
 より詳細には、基体30は、正負一対のリードフレームの導電部材20と、この導電部材を一体的に保持する樹脂の成形体25と、を有するパッケージである。基体30は、上面側に、凹部31を備えている。凹部31の底面の一部は、導電部材20の表面の一部により構成されている。発光素子10は、LEDチップであり、基体の凹部31の底面に接着剤(不図示)で接着され、導電部材20にワイヤで接続されている。封止部材40は、基体の凹部31の内側において、発光素子10を被覆するように設けられた封止樹脂である。なお、封止部材40は、蛍光体や拡散剤を含んでいてもよい。
 そして、図1(b)に示すように、封止部材40の表面は、基体30から上方に突出して、凸面となっている。以降、基体30の構成面のうち、この封止部材の表面45が立ち上がる面、言い換えれば封止部材40の縁が設けられる面、を「封止起立面37」とする。そして、本実施の形態において、この封止起立面37の少なくとも一部、最も好ましくは全部、は、基体30の上面視外側に向いた外向面38となっている。
 図2(a)~(e)は、実施の形態1に係る発光装置の製造方法の一例を示す概略断面図である。図1に示す発光装置100は、以下のような工程を経て製造される。なお、本発明の発光装置の製造方法は、発光素子が実装された基体上に封止部材を成形する工程を少なくとも含んでいればよく、ここで説明する製造方法は一例に過ぎない。
 まず、図2(a)に示すように、導電部材20に成形体25を一体成形し、基体30を形成する。具体的には、複数の導電部材20が連なった板状部材を、所定の形状に加工された上金型と下金型で挟み、その金型の空隙に流動性を有する状態(液状、ゾル状、又はスラリー状)の成形体25の構成材料を注入し、固化させる。その後、成形体25を金型から離型させると、互いに連なった状態の複数の基体30が得られる。
 次に、図2(b)に示すように、基体30に発光素子10を実装する。具体的には、発光素子10を、基体30に接着剤で接着し、さらに導電部材20とワイヤで接続する。
 次に、図2(c),(d)に示すように、基体30上に封止部材40を成形する。特に本発明では、封止部材を滴下(ポッティング)により成形する。滴下法は、圧縮成形法、トランスファーモールド法、射出成形法又は注型成形法に比べ、成形機や金型を使用しない安価な成形方法である。具体的には、流動性を有する状態(液状、ゾル状、又はスラリー状)の封止部材40を、ディスペンサ等を用いて、発光素子10を被覆するように基体40上に滴下し、そのまま封止部材40を加熱又は冷却等により固化させる。このとき、封止部材40は、封止起立面37の少なくとも一部を外向面38とするように成形される。言い換えれば、封止部材40は、その表面45の少なくとも一部が、基体30の外向面38から立ち上がるように成形される。
 後述するように、(外向面38と封止部材40の縁との接点における)封止部材40の表面45の接線と、外向面38とのなす角度は、略接触角になる。「接触角」は、固化前の流動性を有する状態の封止部材40および外向面38の物性によって決定される。
 また、基体30を逆さにして、つまり封止部材40が滴下された基体30の上面が鉛直方向下側に向いた状態で、封止部材40を固化させてもよい。そうすれば、流動性を有する状態の封止樹脂40が重力によって垂れ下がった状態のまま、封止樹脂40を固化させることができる。これにより、重力を利用して、封止部材40の表面を高く突出させることができる。この場合、封止部材の表面45の接線と外向面38とのなす角度は、封止樹脂40が重力によって垂れ下がることにより、接触角未満になりえる。
 最後に、図2(e)に示すように、板状部材を切断して、発光装置100を個片化する。なお、封止部材40を成形する以前に、板状部材を切断して基体30を個片化してもよい。
 ここで、上記特許文献1に記載の照明装置において、封止樹脂の表面は、堰止め部の水平な又は樹脂の流れ方向手前から奥に向かって高くなる(つまり内向きの)上面から立ち上がっている。また、上記特許文献2に記載のLEDパッケージ構造においても、凸レンズの表面は、環状光反射部材の内表面から立ち上がっている。このように、当業者は通常、封止部材を滴下により成形する際、流動性を有する状態の封止部材が、それを堰き止めるための堰から外側に出ることを防止するように、プロセスを設計する。しかし、これでは、封止部材の表面を扁平な凸面にしか成形できず、光の取り出し効率を十分に高めることができなかった。
 これに対して、本発明では、封止部材が基体上に上記のように設けられることで、封止部材の表面を高く突出した凸面に比較的安定して成形でき、光の取り出し効率を十分に高めることができる。すなわち、本発明者らは、鋭意研究を重ねた結果、従来の考えとは逆に、封止部材の表面を基体の外向面から立ち上がらせることこそが、封止部材の表面を高く突出した凸面に比較的安定して成形し得る秘訣であることを見出し、本発明に至ったのである。以下に、その原理について説明する。
 図3(a)~(f)は、固体表面と、その上に滴下された液滴の表面形状と、の関係について説明する概略断面図である。まず、図3(a)に示すように、固体Sの平坦な表面に滴下された液滴Lは、その表面張力によって、固体Sの表面と接触角θ[度]をなす凸曲面の表面を持って存在する。接触角θは、液滴Lの表面(縁)の固体Sとの接点において、液滴Lの表面の接線と固体Sの表面がなす角度(液滴Lを含むほうの角度)で定義される。この接触角θは、液滴Lと固体Sを各々構成する材料の表面張力によって決まり、同一の固体Sと液滴Lであれば、それに固有の値を取る。
 液滴Lの表面張力をγ、固体Sの表面張力をγ、液滴Lと固体Sとの間の界面張力γSLとすると、以下の式が成り立つ(Youngの式)
Figure JPOXMLDOC01-appb-M000001
 そこで、液滴Lの高さhを大きくするために、図3(b)に示すように、固体Sの表面を水平面から角度α[度]傾斜させることを考える。このとき、傾斜した固体Sの表面に対する液滴Lの接触角はほぼθを維持するが、水平面に対する疑似的な接触角はほぼθ+αになっている。したがって、図3(c)に示すように、液滴Lの表面を固体Sの上面視で外側に向いた外向面から立ち上がらせることにより、液滴Lの高さhを大きくすることができる。なお、図3(d)に示すように、固体Sの表面が凸曲面である場合には、固体Sと液滴Lの縁の接点において該固体Sの表面に接する平面(「接平面」と呼ぶ)を基準に考えればよい。図示する例では、接平面は水平面に対して角度β[度]傾斜しており、液滴Lの水平面に対する疑似的な接触角は、ほぼθ+βになっている。
 また、図3(e)に示すように、液滴Lが固体Sの角張ったエッジ部に差し掛かっているとき、液滴Lは、固体Sの水平な上面となす接触角が、本来の接触角θと、エッジ部の外向面の下り角度(上面からの傾斜角度)ε[度]と、の和に達するまでエッジ部を乗り越えることができない「濡れのピン止め効果」と呼ばれる現象を呈する場合がある。このとき、液滴Lの接触角は、θからθ+εまでの任意の値を取ることができる。よって、この「濡れのピン止め効果」を利用することで、液滴Lの高さを大きくすることができる。しかしながら、このときの液滴Lは比較的不安定な状態にあり、この現象を利用して液滴Lの高さを制御しようとしても、その高さは大きくばらついてしまう。また上述のように、この現象を利用して液滴Lの高さを制御するには、エッジ部に高い工作精度が必要となる。一方、図3(c)に示すように、液滴Lの表面が固体Sの外向面から立ち上がっている場合には、液滴Lは、固体Sの外向面に対してほぼ本来の接触角θをなして存在し、比較的安定な状態にあるため、その高さを再現性良く得ることができる。なお、図3(f)に示すように、固体Sのエッジ部が、丸みを帯びて、凸曲面Rであると、固体Sの表面が上面から外向面へ緩やかに変化しているため、「濡れのピン止め効果」を抑制して、液滴Lを滑らかに外向面上へ移動させることができる。
 以上の説明のように、固化前の流動性を有する状態の封止部材40で液滴Lを形成し、基体30で固体Sを形成する場合、封止部材40の接触角θは、封止部材40の表面張力と、封止部材40の縁が設けられる基体30の表面張力と、封止部材40と基体30との間の界面張力によって決定される。このとき、封止部材40の縁を外向面38に設けることにより、(外向面38と封止部材の縁との接点における)封止部材の表面45の接線と、外向面38とのなす角度は略接触角θであるが、封止部材の表面45の接線と、水平面とのなす角度は接触角θより大きくすることができる。つまり、封止部材40が、封止起立面37の少なくとも一部を外向面38とするように成形されることで、その外向面38を起点として封止部材の表面45が鉛直方向に立ち上がりやすくなる。その結果、封止部材40の表面を、高く突出した凸面、好ましくは凸曲面、ひいては略球面に、容易に成形することができる。また、その表面形状を再現性良く得ることができる。したがって、光の取り出し効率に優れる発光装置を安価に製造することができる。
 なお、基体の上面の全域に表面張力の小さい被膜を形成した後、封止部材を滴下により成形することで、封止部材の表面を高く突出した凸面に成形することも可能である。しかしながら、その場合、基体と封止部材の間の全域にその被膜が介することで、基体と封止部材の密着性が大幅に低下する虞がある。これに対して、本実施の形態では、基本的に、封止部材は基体の表面と直接接触しており、基体と封止部材との高い密着性が得られ、信頼性の高い発光装置を提供することができる。特に、封止部材の表面を基体の外向面から立ち上がらせることにより、その封止部材の縁部が基体に係止するように作用し、基体と封止部材の密着性を更に高めることができる。
 以下、基体30と封止部材40の好ましい形態について詳述する。
 図1に示す例の発光装置100において、基体30は、突起33を備えている。特に本例の基体30は、突起33に加え、溝35を備えている。突起33は、溝35により形成されていると言ってもよい。基体30が突起33又は溝35を備えることにより、外向面38が基体30の最外郭の端面より内側に設けられる。そして、封止部材の表面45の少なくとも一部を、突起33又は溝35の外向面38から立ち上がらせることができる。これにより、封止部材40の基体30外への流出を抑制し、基体30の最外郭の端面より内側において、封止部材の表面45を高く突出した凸面に安定して成形しやすくすることができる。また、外部接続用の端子部となる導電部材20の露出部が、封止部材40の滲み出し成分により汚染されることを抑制できる。このように、基体は突起又は溝を備え、封止起立面の少なくとも一部は、突起又は溝の外向面に設けられていることが好ましい。なお、基体が突起と溝の両方を備える場合、突起と溝は互いに離間して設けられてもよい。また、基体の突起や溝は省略可能であり、封止起立面の少なくとも一部又は全部は、基体の最外郭の端面である外向面に設けられてもよい。
 図1に示す例の発光装置100において、突起33又は溝35の外向面38は、凸曲面に連続する下側の面となっている。ここで、流動性を有する状態の封止部材が、基体上に滴下され、基体の外向面と、その上側に連続する面と、がなすエッジ部に差し掛かったときを考える。外向面がその上側に連続する面から屈曲した平面である場合、封止部材は、上述の「濡れのピン止め効果」により、その外向面の上側に連続する面上において一旦蓄積される。そして、封止部材は、そのエッジ部を乗り越える際、肥大した自身の重さによって勢いよく流れ出し、その表面形状を崩してしまう虞がある。しかしながら、基体の外向面が、その最上位に凸曲面を有する場合、上述のように、「濡れのピン止め効果」を抑制して、封止部材を外向面上へ滑らかに移動させることができる。これにより、封止部材40の表面を高く突出した凸面に安定して成形しやすくすることができる。このとき、封止起立面37の少なくとも一部は、外向面38における、凸曲面であってもよいし、該凸曲面を越えてその下側に連続する面であってもよい。このように、外向面38は、凸曲面、又は該凸曲面に連続する下側の面、であることが好ましい。なお、外向面38が成形体25に設けられる場合、外向面38の最上位を凸曲面とすることで、金型への食い付きによる成形体25の欠けを抑制し、成形体25の成形性を高めることができる。
 なお、上述のように、基体30の略水平な上面からの外向面38の傾斜角度(α)が大きいほど、封止部材40の表面を高く突出させることができる。しかしながら、基体30が金型を用いて成形される場合、金型からの基体30の離型性を考慮すると、外向面38の傾斜角度(α)は90度以下とすることが好ましい。したがって、封止起立面37となる外向面38の傾斜角度(α)は、45~90度であることが好ましく、70~90度であることがより好ましい。
 図1に示す例の発光装置100において、突起33の該基体の上面視内側に向いた内向面391の少なくとも一部は、その最上位に凸曲面を有している。ここで、流動性を有する状態の封止部材が、基体上に滴下され、基体の内向面と、その上側に連続する面と、がなすエッジ部に差し掛かったときを考える。内向面がその上側に連続する面から屈曲した平面である場合、封止部材は、上述の「濡れのピン止め効果」により、その内向面上において一旦蓄積される。そして、封止部材は、そのエッジ部を乗り越える際、肥大した自身の重さによって勢いよく流れ出し、更に外向面を越えて流出してしまう虞がある。しかしながら、基体30の内向面391が、その最上位に凸曲面を有する場合、上述のように、「濡れのピン止め効果」を抑制して、封止部材40をその上側に連続する面ひいては外向面38上へ滑らかに移動させることができる。これにより、封止部材40の表面を高く突出した凸面に安定して成形しやすくすることができる。このように、基体30の構成面のうち、封止起立面37より内側にある、該基体の上面視内側に向いた内向面391の少なくとも一部、最も好ましくは全部、は、その最上位に凸曲面を有することが好ましい。
 図1に示す例の発光装置100において、突起33及び溝35は、基体30の上面視において、発光素子10を囲む真円状に設けられている。突起33又は溝35は、封止部材の表面45を立ち上がらせる外向面38を提供すると共に、流動性を有する状態の封止部材40を堰き止める障壁として機能する。このため、突起又は溝は、発光素子を囲む枠状に設けられていることが好ましい。突起33又は溝35が枠状に設けられることで、封止部材40を堰き止めやすく、突起33又は溝35の外向面38を封止起立面37とする割合が増え、封止部材40の表面を高く突出させやすい。また、封止部材の表面45が突起から突起又は溝から溝へ跨って形成されやすいため、封止部材40の表面形状の対称性を高めることができる。特に、突起33又は溝35は、基体30の上面視において、円環状に設けられることが好ましく、なかでも楕円状に設けられることが好ましく、真円状に設けられることがより好ましい。これにより、封止部材40の表面を歪みの少ない凸面に成形することができ、光の取り出し効率を高めやすく、また対称性に優れた配光を得ることができる。また、突起33又は溝35は、発光素子10を略中心とするように配置されることで、配光の対称性が高められ、好ましい。なお、流動性を有する状態の封止部材を堰き止める障壁の観点では、溝より突起のほうが好ましい。
 図1に示す例の発光装置100において、基体30は凹部31を備えており、突起33及び溝35は凹部31内に設けられている。そして、封止部材40は、凹部31の内側に設けられている。このように、基体は、発光素子がその内側に載置される凹部を備え、封止起立面は、凹部内に設けられていることが好ましい。基体30が凹部31を備えることで、封止部材40の基体30外への流出を抑制し、凹部31において封止部材40を安定して成形しやすくすることができる。また、封止部材40が凹部31の内側に設けられることで、装置の小型化を図ることができる。また、凹部31を構成する成形体25は、封止部材40を外力による損傷や埃による汚染から保護する防壁として機能する。さらに、凹部31の内壁面は、発光素子10から出射される光を装置正面(基体30上方)へ反射させ有効に取り出す反射鏡として機能し、これにより発光装置の正面光度を高めることができる。特に、封止部材の表面の全てがその開口上面より内側に設けられるような凹部の場合、これらの効果を顕著に得られる。
 図1に示す例の発光装置100において、封止起立面37の少なくとも一部は、溝35の外向面38に設けられており、その溝35は、外向面38に対峙する内向面392を有している。特に本例では、その内向面392は、凹部31の内壁面の一部であるとも言える。このように、基体は、封止起立面が設けられる外向面より外側に、該基体の上面視内側に向いた内向面を有することが好ましい。これにより、基体30の外向面38上に設けられる封止部材40の縁部から出射される光を、内向面392及び/又は、該内向面と外向面38の間の底面、により装置正面へ反射させ有効に取り出すことができる。特に、封止起立面37が設けられる外向面38に対峙する内向面392は、上方に向かって開くように傾斜している、又はそのように湾曲していることが好ましい。これにより、基体30の外向面38上に設けられる封止部材40の縁部から出射される光を、効率良く装置正面へ反射させることができる。また、上述の金型からの基体30の離型性の点においても好ましい。さらに、封止起立面37が設けられる外向面38に対峙する内向面392は、その外向面38と略同じ高さまで設けられていることが好ましく、その外向面38より高く延伸して設けられていることがより好ましい。これにより、基体30の外向面38上に設けられる封止部材40の縁部から出射される光を装置正面へ反射させやすい。なお、このような内向面392は、成形機や金型を使用する封止部材の成形方法においては、その成形機や金型が干渉するため、設けられにくいものである。
<実施の形態2>
 図4(a)は、実施の形態2に係る発光装置の概略上面図であり、図4(b)は、図4(a)におけるB-B断面を示す概略断面図である。図4に示す例の発光装置200は、発光素子10と、発光素子10が接続される導電部材20及び導電部材20と一体成形された成形体25を有する基体30と、発光素子10を封止する封止部材40と、を備えている。
 より詳細には、基体30は、正負一対のリードフレームの導電部材20と、この導電部材を一体的に保持する樹脂の成形体25と、を有するパッケージである。基体30は、上面側に、凹部31を備えている。凹部31の底面の一部は、導電部材20の表面の一部により構成されている。発光素子10は、LEDチップであり、基体の凹部31の底面に接着剤(不図示)で接着され、導電部材20にワイヤで接続されている。封止部材40は、基体の凹部31の内側において、発光素子10を被覆するように設けられた封止樹脂である。
 図4に示す例の発光装置200において、基体30は、第1の突起331と、それより外側に設けられた第2の突起332と、を備えている。特に本例の基体30は、これらの突起に加え、第1の溝351と、それより外側に設けられた第2の溝352と、を備えている。第1及び第2の突起は各々、第1及び第2の溝により形成されていると言ってもよい。このように、基体は、第1の突起又は第1の溝と、それより外側にある第2の突起又は第2の溝と、を備え、封止起立面の少なくとも一部は、第1及び第2の突起、第1及び第2の溝のうちのいずれかの外向面に設けられていることが好ましい。基体30が複数の突起331,332又は複数の溝351,352を備えることにより、複数の外向面38が基体30の最外郭の端面より内側に設けられる。そして、封止部材の表面45の少なくとも一部を、これらの突起331,332又は溝351,352のうちのいずれかの外向面38から立ち上がらせることができる。これにより、封止部材40を基体30上に滴下して成形する際、封止起立面とする外向面38を選択することができ、封止部材40の大きさを調整しながら、封止部材40の表面を高く突出した凸面に成形することができる。また、第1の突起331又は第1の溝351は、導電部材20のワイヤが接続されるワイヤ接続部より内側に設けられることが好ましい。これにより、導電部材20のワイヤ接続部が、発光素子10を接着する接着剤の滲み出し成分により汚染されることを抑制し、ワイヤの接続不良を抑制することができる。なお、第1の突起331又は第1の溝351は、プレス加工や金型成形等により導電部材20に形成することができる。
 図4に示す例の発光装置200において、封止部材40は、発光素子10を封止する第1封止部401と、この第1封止部401を封止する第2封止部402と、を備えている。そして、第1封止部401は、基体30の構成面のうち該第1封止部の表面451が立ち上がる第1封止起立面371の少なくとも一部を、第1の突起331又は第1の溝351の外向面38とする、ように成形されている。また、第2封止部402は、基体30の構成面のうち該第2封止部の表面452が立ち上がる第2封止起立面372の少なくとも一部を、第2の突起332又は第2の溝352の外向面38とする、ように成形されている。このように、封止部材40を複数の段階に分けて成形する場合においても、各封止部(各層)の表面を高く突出した凸面に比較的安定して成形することができるので、2つの封止部の界面における光の反射を抑え、光の取り出し効率を高めやすい。また、各封止部は同一の材料で構成され屈折率が同じであってもよいが、各封止部の屈折率を段階的に空気の屈折率に近づけていくことにより、発光素子10から封止部材40内に効率良く光を取り出すと共に、2つの封止部の界面における光の反射を抑え、光の取り出し効率をより高めることができる。よって、第2封止部402の屈折率は、第1封止部401の屈折率より低いことが好ましい。なお、第2封止部402は、第1封止部401を完全に固化させた後に成形してもよいが、第1封止部401が半固化又は未固化の状態において成形することで、第1封止部401と第2封止部402の密着性を高めることができる。また、第1封止部401は、封止部材40の内部領域であるので、上述の「濡れのピン止め効果」を利用して成形されてもよい。この場合、第1封止部401の表面451は、基体30の第1の突起331又は第1の溝351の外向面38との境界となる上面の終端から立ち上がる。さらに、この第1の溝351の外向面38に対峙する内向面においても、第1封止部401に対して、上述の内向面392と同様の好ましい態様を適用することができる。
 図4に示す例の発光装置200において、封止部材40は、第1封止部401内に限って、発光素子10から出射される光に励起される蛍光体50を含有している。これにより、第1封止部401内、つまり封止部材40内の発光素子10の近傍の領域、に限って、蛍光体50による光の波長変換及び散乱がなされるため、封止部材40内の略全域に蛍光体が分散されている場合に比べ、封止部材の表面に対して光源を小さくでき、光の取り出し効率を高めることができる。また、本実施の形態では、第1封止部401の表面を高く突出した凸面に成形できるので、第1封止部401内の各方位における光路長のばらつきを小さくでき、第1封止部401内に蛍光体50を分散させても、略均一な色度の発光が可能となる。なお、第1封止部401内において、蛍光体50を沈降させ、拡散剤を分散させてもよい。
 図4に示す例の発光装置200において、第1の突起331又は第1の溝351の外向面38の最上位は、平面で構成されている。上述のように、「濡れのピン止め効果」を抑制するため、外向面38は、その最上位が凸曲面であることが最も好ましいが、該外向面に連続する上側の平面からの下り角度(傾斜角度)が、好ましくは45度以下、より好ましくは30度以下の平面であってもよい。これにより、その隣接する2つの平面により形成されるエッジ部が比較的緩やかなものとなるため、「濡れのピン止め効果」による封止部材40の蓄積を抑え、封止部材40を外向面38上へ比較的滑らかに移動させることができる。なお、ここでいう「外向面に連続する上側の平面」は、基体30の略水平な上面に限られず、外向面であってもよい。つまり、外向面38は、上側の平面からの下側の平面の下り角度が、好ましくは45度以下、より好ましくは30度以下の複数の平面で構成されていてもよい。
<実施の形態3>
 図5(a)は、実施の形態3に係る発光装置の概略上面図であり、図5(b)は、図5(a)におけるC-C断面を示す概略断面図である。図5に示す例の発光装置300は、発光素子10と、発光素子10が接続される導電部材20及び導電部材20と一体成形された成形体25を有する基体30と、発光素子10を封止する封止部材40と、を備えている。
 より詳細には、基体30は、正負一対のリードフレームの導電部材20と、この導電部材を一体的に保持する樹脂の成形体25と、を有するパッケージである。基体30は、上面側に、凹部31を備えている。凹部31の底面の一部は、導電部材20の表面の一部により構成されている。発光素子10は、LEDチップであり、基体の凹部31の底面に複数個、接着剤(不図示)で接着され、導電部材20にワイヤで接続されている。封止部材40は、基体30上に、発光素子10を被覆するように設けられた封止樹脂である。
 図5に示す例の発光装置300において、基体30は、凹部31の外側に形成された突起33を備えている。このように、突起33又は溝が凹部31の外側に設けられることにより、封止起立面37の少なくとも一部を突起又は溝の外向面38とする封止部材40をより大きく形成しやすくなり、光の取り出し効率を高めやすい。また、凹部31を、その内壁面の略全域を反射鏡として利用できるように簡素に、且つその開口面積を大きく、構成しやすくなり、光の取り出し効率を高めやすい。したがって、光源が比較的大きい場合や、基体が比較的小さい場合においても、光の取り出し効率を高めやすい。特に本例では、封止部材40は、2段階に分けて成形されており、下層の第1封止部401内に限って、発光素子10から出射される光に励起される蛍光体50を含有している。第1封止部401は、全ての発光素子10を被覆して凹部31の略開口上面まで充填されている。これにより、第1封止部401内を面光源化している。なお、第1封止部401に拡散剤を含有させてもよい。そして、上層の第2封止部402は、封止起立面37の少なくとも一部を突起33の外向面38とするように成形され、高く突出した凸面の表面45(452)を有している。これにより、高光束の発光装置を得ることができる。
 図5に示す例の発光装置300において、突起33は、基体30の上面視において、凹部31の輪郭に沿って、角が丸みを帯びた矩形の枠状に設けられている。突起又は溝は、基体の上面視において、このように少なくともその角部が、又は実施の形態1,2で示した真円状のように全体が、湾曲していることが好ましい。基体の上面視において、突起又は溝が角張って屈曲していると、その角部近傍から立ち上がる封止部材の表面に歪みが生じる。そこで、基体30の上面視において、突起33又は溝の少なくとも角部を湾曲させることで、その歪みを緩和し、封止部材40の表面を比較的滑らかな凸面に成形しやすく、光の取り出し効率を高めやすい。なお、基体の上面視において、突起又は溝は、必ずしも凹部の輪郭に沿って設けられなくてもよく、例えば矩形状の凹部に対して、円環状の突起又は溝が設けられてもよい。
 図5に示す例の発光装置300において、基体30の封止起立面37が設けられる外向面38及び該外向面38より外側の構成面に限って、臨界表面張力が50mN/m以下の被膜60が形成されている。図2(c)で示したように形成された流動性を有する状態の封止部材40について、封止部材40の接触角(図3の液滴Lの接触角θ)は、基体(図2では成形体25)の外向面37(図3の固体S)の表面張力が小さいほど大きくなる。このため、封止部材を基体上に滴下する前に、基体の封止起立面が設けられる外向面に限って、又は基体の封止起立面が設けられる外向面及び該外向面より外側の構成面に限って、表面張力の小さい被膜を形成することにより、封止部材の表面がその外向面から立ち上がりやすくすることができる。これにより、封止部材40の表面を高く突出した凸面に成形しやすく、光の取り出し効率を高めやすい。また、被膜60が設けられる範囲をこのように限定することで、その外向面38より内側では封止部材40は基体30の表面と直接接触するため、基体30と封止部材40の高い密着性を維持することができる。成形体25は、はんだ耐熱性を確保するための凝集力と封止部材40との密着性が必要であるため、臨界表面張力が50mN/mより大きい材料により構成されることが好ましい。したがって、被膜60は、臨界表面張力が50mN/m以下の材料により構成されることが好ましい。被膜60の具体的な材料としては、フッ素樹脂材料やシリコーン材料などが挙げられる。そのなかでも、シリコーンオイルが、封止部材の固化中に封止部材に吸収され、基体との密着性の低下を起しにくいため、好ましい。
<実施の形態4>
 図6(a)は、実施の形態4に係る発光装置の概略上面図であり、図6(b),(c)は各々、図6(a)におけるD-D断面,E-E断面を示す概略断面図である。図6に示す例の発光装置400は、発光素子10と、発光素子10が接続される導電部材20及び導電部材20と一体成形された成形体25を有する基体30と、発光素子10を封止する封止部材40と、を備えている。
 より詳細には、基体30は、正負一対のリードフレームの導電部材20と、この導電部材を一体的に保持する樹脂の成形体25と、を有するパッケージである。基体30は、上面側に、凹部31を備えている。凹部31の底面の一部は、導電部材20の表面の一部により構成されている。導電部材20の外部接続用の端子部は、成形体25の端面上に延出して設けられている。発光素子10は、LEDチップであり、基体の凹部31の底面に接着剤(不図示)で接着され、導電部材20にワイヤで接続されている。封止部材40は、基体30上に、発光素子10を被覆するように設けられた封止樹脂である。
 上述の実施の形態1~3の発光装置は、基体30の下面(裏面)を実装面とするものである。一方、図6に示す例の発光装置400は、基体30の端面(側面)を実装面とするものであり、その実装面となる端面に略垂直な縦方向(図中y方向)が実装時の厚さ(高さ)方向になる。このような発光装置400は、例えば液晶ディスプレイのバックライト用光源として、導光板の側方に設置される。したがって、基体30は、薄型化のため、上面視において、縦に短く横に長い形状とされ、これに伴い凹部31も同様の形状とされている。また、光の取り出し効率を高めるため、凹部31の開口面積を広くする必要がある。このため、基体30の凹部31外周部の縦方向には突起又は溝を形成可能な余地が少ない。しかしながら、基体30の凹部31外周部の横方向(図中x方向)つまり凹部31の左右には突起又は溝を形成可能な余地が十分にある。そこで、本例の発光装置400においては、基体30の上面における凹部31の左右に、縦方向に延伸する直線状の突起33が形成されている。そして、封止部材40は、封止起立面37の少なくとも一部を突起33の外向面38とする、ように成形されている。これにより、少なくとも横方向において、封止部材40の表面を高く突出した凸面に成形することができ、光の取り出し効率を高めることができる。
 このように、突起又は溝は、枠状に限られず、帯状に設けられてもよい。これにより、突起又は溝を小型に形成しやすく、基体の最外郭の端面より内側の小さい領域に外向面を設けやすい。また、その場合、突起又は溝は、発光素子を挟むように、少なくとも2つ設けられることが好ましい。そうすれば、封止部材の表面が突起から突起又は溝から溝へ跨って形成されやすいため、封止部材の表面形状の対称性を高めることができる。また、突起又は溝は、破線状のように離間して複数設けられてもよく、更には点在していてもよい。
<実施の形態5>
 図7(a)は、実施の形態5に係る発光装置の概略上面図であり、図7(b)は、図7(a)におけるF-F断面を示す概略断面図である。図7に示す例の発光装置500は、凹部31及び突起33の形状を除いて、上述の実施の形態4の発光装置と略同じ構成である。上述の実施の形態4の発光装置において、凹部31の上面視形状は矩形状であり、凹部31の開口面積を広くしやすい点で優れている。一方、図7に示す例の発光装置500において、凹部31の上面視形状は、矩形の両側(左右)に半円を組み合わせたような形状(小判形)となっている。そして、突起33は、基体30の凹部31外周部において、半円部の輪郭に沿って湾曲した帯状に形成されている。このように、突起又は溝は、帯状に設けられる場合においても、基体30の上面視において、その角部又は全体が湾曲していることが好ましい。これにより、封止部材40の表面に生じる歪みを緩和し、封止部材40の表面を比較的滑らかな凸面に成形することができ、光の取り出し効率を高めやすい。
<実施の形態6>
 図8(a)は、実施の形態6に係る発光装置の概略上面図であり、図8(b)は、図8(a)におけるG-G断面を示す概略断面図である。図8に示す例の発光装置600は、発光素子10と、発光素子10が載置される配線基板22及び配線基板22の上面に設けられた突起34を有する基体30と、発光素子10を封止する封止部材40と、を備えている。
 より詳細には、基体30は、上面に配線電極を備える配線基板22と、その上面に枠状に設けられた白色の樹脂の成形体である突起34と、を有している。発光素子10は、LEDチップであり、配線基板22の上面の突起34の内側に複数個、接着剤(不図示)で接着され、配線電極にワイヤで接続されている。封止部材40は、基体30上に、発光素子10を被覆するように設けられた封止樹脂である。特に本例では、封止部材40は、2つの部位に分けて形成されており、下層の第1封止部401内に限って、発光素子10から出射される光に励起される蛍光体50を含有している。第1封止部401は、全ての発光素子10を被覆して突起34の略頂上まで充填されている。これにより、第1封止部401内を面光源化している。なお、第1封止部401に拡散剤を含有させてもよい。
 そして、図8(b)に示すように、封止部材40の表面、より詳細には上層の第2封止部402の表面は、基体30から上方に突出して、凸面となっている。本実施の形態において、この封止起立面37の少なくとも一部、最も好ましくは全部、は、突起34の上面視外側に向いた外向面27となっている。
 図9(a)~(e)は、実施の形態6に係る発光装置の製造方法の一例を示す概略断面図である。図8に示す発光装置600は、以下のような工程を経て製造される。なお、本発明の発光装置の製造方法は、発光素子が載置される配線基板の上面に突起を設けて基体を形成する第1の工程と、発光素子を封止する封止部材を形成する第2の工程と、を少なくとも含んでいればよく、ここで説明する製造方法は一例に過ぎない。
 まず、図9(a)に示すように、配線基板22に発光素子10を実装する。具体的には、発光素子10を、配線基板22に接着剤で接着し、さらに配線基板22の配線電極とワイヤで接続する。なお、ここでは、配線基板22は、複数の発光装置を形成可能な複合基板を用いる。
 次に、図9(b)に示すように、配線基板22の上面に突起34を設けて基体30を形成する。具体的には、配線基板22の上面に、流動性を有する状態(液状、ゾル状、又はスラリー状)の突起34の構成材料を滴下し、発光素子10を囲むように枠状に描画した後、加熱又は冷却等によりそれを固化させる。なお、発光素子の実装工程と、突起の形成工程と、の順序は、この逆であってもよい。
 次に、図9(c),(d)に示すように、基体30上に封止部材40を形成する。特に本発明では、封止部材を滴下(ポッティング)により形成する。滴下法は、圧縮成形法、トランスファーモールド法、射出成形法又は注型成形法に比べ、成形機や金型を使用しない安価な成形方法である。また、滴下法では、封止部材の形成時における封止部材の構成材料の流動が小さく、ワイヤの変形を抑制することもできる。具体的には、流動性を有する状態(液状、ゾル状、又はスラリー状)の封止部材40を、ディスペンサ等を用いて、発光素子10を被覆するように基体30上に滴下し、そのまま封止部材40を加熱又は冷却等により固化させる。このとき、封止部材40は、封止起立面37の少なくとも一部を突起34の外向面27とするように形成される。言い換えれば、封止部材40は、その表面45の少なくとも一部が、突起34の外向面27から立ち上がるように形成される。
 上述したように、(外向面27と封止部材40の縁との接点における)封止部材40の表面45の接線と、外向面27とのなす角度は、略接触角になる。
 なお、本例では、まず蛍光体50を含有する第1封止部401の構成材料を突起34の内側に滴下した後、その上に第2封止部402の構成材料を滴下する。第2封止部402は、第1封止部401を完全に固化させた後に形成してもよいが、第1封止部401が半固化又は未固化の状態において形成することで、第1封止部401と第2封止部402の密着性を高めることができる。
 また、基体30を逆さにして、つまり封止部材40が滴下された基体30の上面が鉛直方向下側に向いた状態で、封止部材40を固化させてもよい。そうすれば、流動性を有する状態の封止樹脂40が重力によって垂れ下がった状態のまま、封止樹脂40を固化させることができる。これにより、重力を利用して、封止部材40の表面を高く突出させることができる。この場合、封止部材の表面45の接線と外向面38とのなす角度は、封止樹脂40が重力によって垂れ下がることにより、接触角未満になりえる。
 最後に、図9(e)に示すように、配線基板22(複合基板)を切断して、発光装置600を個片化する。なお、封止部材40を形成する以前に基体30を個片化してもよいし、当初から単一の発光装置用に個片化された配線基板22を使用してもよい。
 本発明では、封止部材が基体上に上記のように設けられることで、封止部材の表面を高く突出した凸面に比較的安定して形成でき、光の取り出し効率を十分に高めることができる。
 固化前の流動性を有する状態の封止部材402で液滴Lを形成し、基体30で固体Sを形成する場合、封止部材402の接触角θは、封止部材402の表面張力と、封止部材402の縁が設けられる基体30(具体的には突起34)の表面張力と、封止部材402と基体30(突起34)との間の界面張力によって決定される。このとき、封止部材402の縁を突起34の外向面27に設けることにより、(外向面27と封止部材の縁との接点における)封止部材の表面45の接線と、外向面27とのなす角度は略接触角θであるが、封止部材の表面45の接線と、水平面とのなす角度は接触角θより大きくすることができる。つまり、封止部材40が封止起立面37の少なくとも一部を突起34の外向面27とするように形成されることで、その外向面27を起点として封止部材の表面45が鉛直方向に立ち上がりやすくなる。その結果、封止部材40の表面を、高く突出した凸面、好ましくは凸曲面、ひいては略球面に、容易に形成することができる。また、その表面形状を再現性良く得ることができる。したがって、光の取り出し効率に優れる発光装置を安価に製造することができる。
 なお、基体の上面の全域に表面張力の小さい被膜を形成した後、封止部材を滴下により形成することで、封止部材の表面を高く突出した凸面に形成することも可能である。しかしながら、その場合、基体と封止部材の間の全域にその被膜が介することで、基体と封止部材の密着性が大幅に低下する虞がある。これに対して、本実施の形態では、基本的に、封止部材は基体の表面と直接接触しており、基体と封止部材との高い密着性が得られ、信頼性の高い発光装置を提供することができる。特に、封止部材の表面を突起の外向面から立ち上がらせることにより、その封止部材の縁部が突起に係止するように作用し、基体と封止部材の密着性を更に高めることができる。
 以下、突起34と封止部材40の好ましい形態について詳述する。
 図8に示す例の発光装置600において、突起34の外向面27は、凸曲面となっている。ここで、流動性を有する状態の封止部材が、基体上に滴下され、突起の外向面と、その上側に連続する面と、がなすエッジ部に差し掛かったときを考える。突起の外向面がその上側に連続する面から屈曲した平面である場合、封止部材は、上述の「濡れのピン止め効果」により、その外向面の上側に連続する面上において一旦蓄積される。そして、封止部材は、そのエッジ部を乗り越える際、肥大した自身の重さによって勢いよく流れ出し、その表面形状を崩してしまう虞がある。しかしながら、突起の外向面が、その最上位に凸曲面を有する場合、上述のように、「濡れのピン止め効果」を抑制して、封止部材を外向面上へ滑らかに移動させることができる。これにより、封止部材40の表面を高く突出した凸面に安定して形成しやすくすることができる。このとき、封止起立面37の少なくとも一部は、外向面27における、凸曲面であってもよいし、該凸曲面を越えてその下側に連続する面であってもよい。このように、外向面27は、凸曲面、又は該凸曲面に連続する下側の面、であることが好ましい。なお、突起34が金型により形成される場合、突起34の外向面27の最上位を凸曲面とすることで、金型への食い付きによる突起34の欠けを抑制し、突起34の成形性を高めることができる。
 図8に示す例の発光装置600において、突起34の上面視内側に向いた内向面29は、凸曲面となっている。ここで、流動性を有する状態の封止部材が、基体上に滴下され、突起の内向面と、その上側に連続する面と、がなすエッジ部に差し掛かったときを考える。突起の内向面がその上側に連続する面から屈曲した平面である場合、封止部材は、上述の「濡れのピン止め効果」により、その内向面上において一旦蓄積される。そして、封止部材は、そのエッジ部を乗り越える際、肥大した自身の重さによって勢いよく流れ出し、更に外向面を越えて流出してしまう虞がある。しかしながら、突起34の内向面29が、その最上位に凸曲面を有する場合、上述のように、「濡れのピン止め効果」を抑制して、封止部材40をその上側に連続する面ひいては外向面27上へ滑らかに移動させることができる。これにより、封止部材40の表面を高く突出した凸面に安定して形成しやすくすることができる。このように、基体30の構成面のうち、封止起立面37より内側にある、突起の上面視内側に向いた内向面29の少なくとも一部、最も好ましくは全部、は、その最上位に凸曲面を有することが好ましい。
 図8に示す例の発光装置600において、突起34は、上面視において、発光素子10を囲む円環状に設けられている。突起34は、封止部材の表面45を立ち上がらせる外向面27を提供すると共に、流動性を有する状態の封止部材40を堰き止める障壁として機能する。このため、突起は、発光素子を囲む枠状に設けられていることが好ましい。突起34が枠状に設けられることで、封止部材40を堰き止めやすく、突起34の外向面27を封止起立面37とする割合が増え、封止部材40の表面を高く突出させやすい。また、封止部材の表面45が突起から突起へ跨って形成されやすいため、封止部材40の表面形状の対称性を高めることができる。特に、突起34は、上面視において、円環状に設けられることが好ましく、なかでも楕円状に設けられることが好ましく、真円状に設けられることがより好ましい。これにより、封止部材40の表面を歪みの少ない凸面に形成することができ、光の取り出し効率を高めやすく、また対称性に優れた配光を得ることができる。また、突起34は、発光素子10を略中心とするように配置されることで、配光の対称性が高められ、好ましい。
<実施の形態7>
 図10(a)は、実施の形態7に係る発光装置の概略上面図であり、図10(b)は、図10(a)におけるH-H断面を示す概略断面図である。図10に示す例の発光装置700は、発光素子10と、発光素子10が載置される配線基板22及び配線基板22の上面に設けられた突起34を有する基体30と、発光素子10を封止する封止部材40と、を備えている。
 より詳細には、基体30は、上面に配線電極を備える配線基板22と、その上面に設けられた、第1の突起341と、それより外側にある第2の突起342と、を有している。この第1及び第2の突起341,342は、予め所定の形状に形成された白色の樹脂の成形体であり、配線基板22の上面に接着剤で接着されている。発光素子10は、LEDチップであり、配線基板22の上面の突起34の内側に1個、接着剤(不図示)で接着され、配線電極にワイヤで接続されている。封止部材40は、基体30上に、発光素子10を被覆するように設けられた封止樹脂である。
 図10に示す例の発光装置700において、封止部材40の表面、つまり第2封止部402の表面452の少なくとも一部は、第2の突起342の外向面27から立ち上がっている。このように、第1の工程において、配線基板の上面に、第1の突起と、それより外側にある第2の突起と、を設け、第2の工程において、封止起立面の少なくとも一部が、第1の突起及び第2の突起のうちのいずれかの外向面に設けられることは好ましい。配線基板22上に複数の突起341,342を設けることにより、複数の外向面27が配線基板22の最外郭の端面より内側に設けられる。そして、封止部材の表面45の少なくとも一部を、これらの突起341,342のうちのいずれかの外向面27から立ち上がらせることができる。これにより、封止部材40を基体30上に滴下して形成する際、封止起立面が設けられる外向面27を選択することができ、封止部材40の大きさを調整しながら、封止部材40の表面を高く突出した凸面に形成することができる。また、第1の突起341は、配線基板22の配線電極のワイヤが接続されるワイヤ接続部より外側に設けられることで、ワイヤにより封止部材40の表面形状が歪むのを抑制又は回避することができる。一方、第1の突起341は、配線基板22の配線電極のワイヤが接続されるワイヤ接続部より内側に設けられてもよい。これにより、配線基板22の配線電極のワイヤ接続部が、発光素子10を接着する接着剤の滲み出し成分により汚染されることを抑制し、ワイヤの接続不良を抑制することができる。
 図10に示す例の発光装置700において、封止部材40は、発光素子10を封止する第1封止部401と、この第1封止部401を封止する第2封止部402と、を備えている。そして、第1封止部401は、基体30の構成面のうち該第1封止部の表面451が立ち上がる第1封止起立面371の少なくとも一部を、第1の突起341の外向面27とする、ように形成されている。また、第2封止部402は、基体30の構成面のうち該第2封止部の表面452が立ち上がる第2封止起立面372の少なくとも一部を、第2の突起342の外向面27とする、ように形成されている。このように、封止部材40を複数の部位に分けて形成する場合においても、各封止部(各層)の表面を高く突出した凸面に比較的安定して形成することができるので、2つの封止部の界面における光の反射を抑え、光の取り出し効率を高めやすい。また、各封止部は同一の材料で構成され屈折率が同じであってもよいが、各封止部の屈折率を段階的に空気の屈折率に近づけていくことにより、発光素子10から封止部材40内に効率良く光を取り出すと共に、2つの封止部の界面における光の反射を抑え、光の取り出し効率をより高めることができる。よって、第2封止部402の屈折率は、第1封止部401の屈折率より低いことが好ましい。なお、第2封止部402は、第1封止部401を完全に固化させた後に形成してもよいが、第1封止部401が半固化又は未固化の状態において形成することで、第1封止部401と第2封止部402の密着性を高めることができる。また、第1封止部401は、封止部材40の内部領域であるので、上述の「濡れのピン止め効果」を利用して形成されてもよい。この場合、第1封止部401の表面451は、第1の突起341の外向面27との境界となる上面の終端から立ち上がる。
 図10に示す例の発光装置700において、封止部材40は、第1封止部401内に限って、発光素子10から出射される光に励起される蛍光体50を含有している。これにより、第1封止部401内、つまり封止部材40内の発光素子10の近傍の領域、に限って、蛍光体50による光の波長変換及び散乱がなされるため、封止部材40内の略全域に蛍光体が分散されている場合に比べ、封止部材の表面に対して光源を小さくでき、光の取り出し効率を高めることができる。また、本実施の形態では、第1封止部401の表面を高く突出した凸面に形成できるので、第1封止部401内の各方位における光路長のばらつきを小さくでき、第1封止部401内に蛍光体50を分散させても、略均一な色度の発光が可能となる。なお、第1封止部401内において、蛍光体50を沈降させてもよく、また拡散剤を含有させてもよい。
 図10に示す例の発光装置700において、第1の突起341の外向面27の最上位は、平面で構成されている。上述のように、「濡れのピン止め効果」を抑制するため、突起の外向面27は、その最上位が凸曲面であることが最も好ましいが、該外向面に連続する上側の平面からの下り角度(傾斜角度)が、好ましくは45度以下、より好ましくは30度以下の平面であってもよい。これにより、その隣接する2つの平面により形成されるエッジ部が比較的緩やかなものとなるため、「濡れのピン止め効果」による封止部材40の蓄積を抑え、封止部材40を突起の外向面27上へ比較的滑らかに移動させることができる。なお、ここでいう「外向面に連続する上側の平面」は、突起の略水平な上面に限られず、外向面であってもよい。つまり、突起の外向面27は、上側の平面からの下側の平面の下り角度が、好ましくは45度以下、より好ましくは30度以下の複数の平面で構成されていてもよい。
 図10に示す例の発光装置700において、第2の突起342の外向面27と、配線基板22の上面と、のなす角度(突起の外側のほうの角度)は、鋭角となっている。言い換えれば、第2の突起342の外向面27は、配線基板22の上面に面するように傾斜している。上述のように、基体30の略水平な上面からの外向面27の傾斜角度(α)が大きいほど、封止部材40の表面を高く突出させやすい。また、配線基板上に別途設けられる突起は、配線基板とは別体として予め形成することができるため、その形状や材質を選択しやすい。また、そのエッジ部を高精度に加工することもできる。したがって、このように、突起の外向面と、配線基板の上面と、のなす角度が鋭角となるような突起を容易に設けることができ、封止部材40の表面を高く突出させやすい。なお、封止起立面となる突起の外向面と、配線基板の上面と、のなす角度(突起の外側のほうの角度)は、30~135度であることが好ましく、45~90度であることがより好ましい。これにより、封止部材の表面を高く突出させて形成しやすく、光の取り出し効率を高めやすい。
 図10に示す例の発光装置700において、第2の突起342は、上面視において、角が丸みを帯びた矩形の枠状に設けられている。突起は、上面視において、このように少なくともその角部が、又は実施の形態6で示した円環状のように全体が、湾曲していることが好ましい。基体の上面視において、突起が角張って屈曲していると、その角部近傍から立ち上がる封止部材の表面に歪みが生じる。そこで、上面視において、突起の少なくとも角部を湾曲させることで、その歪みを緩和し、封止部材の表面を比較的滑らかな凸面に形成しやすく、光の取り出し効率を高めやすい。
 図10に示す例の発光装置700において、封止起立面372が設けられる第2の突起342の外向面27には、臨界表面張力が50mN/m以下の被膜60が形成されている。図9(c)で示したように形成された流動性を有する状態の封止部材402について、封止部材402の接触角(図3の液滴Lの接触角θ)は、突起34の外表面27(図3の固体S)の表面張力が小さいほど大きくなる。このため、封止部材を基体上に滴下する前に、基体の封止起立面が設けられる外向面に限って、又は基体の封止起立面が設けられる外向面及び該外向面より外側の構成面に限って、表面張力の小さい、具体的には臨界表面張力が50mN/m以下の被膜を形成することにより、封止部材の表面がその外向面から立ち上がりやすくすることができる。これにより、封止部材40の表面を高く突出した凸面に形成しやすく、光の取り出し効率を高めやすい。また、被膜60が設けられる範囲をこのように限定することで、その外向面27より内側では封止部材40は基体30の表面と直接接触するため、基体30と封止部材40の高い密着性を維持することができる。被膜60の具体的な材料としては、シリコーンオイル、パラフィン系炭化水素、高級アルコール、高級脂肪酸、シリコーン樹脂、フッ素樹脂、ポリオレフィン樹脂、ポリノルボルネン樹脂などが挙げられる。そのなかでも、シリコーンオイルが、封止部材の固化中に封止部材に吸収され、基体との密着性の低下を起しにくいため、好ましい。
 なお、突起の数は、特に限定されない。また、基体上に封止部材が形成された後、封止起立面より外側に突起が残存していてもよい。例えば、図10に一点鎖線で示すように、配線基板22の上面の第2の突起342より外側に、さらに第3の突起343が設けられてもよい。そうすると、封止起立面372が設けられる第2の突起342の外向面27に、第3の突起343の内向面が対峙するようになる。これにより、第2の突起342の外向面27上に設けられる封止部材の縁部から出射される光を、その第3の突起343の内向面により装置正面へ反射させ有効に取り出すことができる。特に、封止起立面が設けられる外向面に対峙する内向面は、上方に向かって開くように傾斜している、又はそのように湾曲していることが好ましい。これにより、突起の外向面上に設けられる封止部材の縁部から出射される光を、効率良く装置正面へ反射させることができる。さらに、封止起立面が設けられる外向面に対峙する内向面は、その対峙する外向面と略同じ高さまで設けられていることが好ましく、その対峙する外向面より高く設けられていることがより好ましい。これにより、基体の外向面上に設けられる封止部材の縁部から出射される光を装置正面へ反射させやすい。
 また、図10に示す例の発光装置700において、1つの封止部(第1封止部401)が、1つの封止部(第2封止部402)に内包されて設けられているが、これに限定されず、突起と、該突起の外向面から表面の少なくとも一部が立ち上がる封止部と、が各々複数設けられる場合、複数の封止部が、1つの封止部に内包されて設けられてもよい。例えば、内側の複数の封止部を、赤、緑、青の各色発光の発光素子を各々封止するものとする場合が挙げられる。
<実施の形態8>
 図11(a)は、実施の形態8に係る発光装置の概略上面図であり、図11(b)は、図11(a)におけるJ-J断面を示す概略断面図である。図11に示す例の発光装置800は、発光素子10と、発光素子10が載置される配線基板22及び配線基板22の上面に設けられた突起34を有する基体30と、発光素子10を封止する封止部材40と、を備えている。より詳細には、基体30は、上面に配線電極を備える配線基板22と、その上面の発光素子10の左右に縦方向(図中y方向)に延伸する直線状に設けられた白色の樹脂の成形体である突起34と、を有している。発光素子10は、1個のLEDチップであり、配線基板22の上面の突起34の内側において、配線電極に導電性の接着剤で接着されている。また、発光素子10の下位、つまり発光素子10と配線基板22の間には、被覆部材(第1の被覆部材)70が設けられている。この被覆部材70は、白色の樹脂である。これにより、発光素子10から下方に出射される光を反射させ、上方に効率良く取り出すことができる。
 なお、図11(b)に点線で示すように、本例の発光装置800は、発光素子10上に設けられた、発光素子10から出射される光に励起される蛍光体を含有する波長変換部材55を備えてもよい。この波長変換部材55は、例えば、板状であって、発光素子10の上面に接着されて設けられる。
 また、同様に図11(b)に点線で示すように、本例の発光装置800は、発光素子10の周囲の配線基板22の上面を覆う被覆部材(第2の被覆部材)75を備えてもよい。この被覆部材75は、種々の被覆形態にて設けられる。被覆部材75は、少なくとも配線基板22の上面の一部を被覆する。被覆部材75を白色系など光反射性の部材とすれば、発光素子10から出射される光が配線基板22に吸収されるのを抑制し、光の取り出し効率を高めることができる。このため、被覆部材75は、突起34の外側に設けられてもよいが、突起34の内側、特に封止起立面37が設けられる突起34の内側、に設けられることが好ましい。突起が複数設けられる場合には、被覆部材75が突起と突起の間に設けられてもよい。また、被覆部材75を封止部材40よりガスバリア性の高い部材として配線電極を被覆させれば、配線電極の腐食性ガスによる変色を抑制し、高い光取り出し効率を維持しやすい。このほか、被覆部材75は、発光素子10の上面を露出させ、該発光素子の側面を被覆して設けられてもよい。また、被覆部材75は、波長変換部材55の上面を露出させ、発光素子10及び波長変換部材55の側面を被覆して設けられてもよい。これらにより、被覆部材75を光反射性の部材とする場合、発光素子10の上面又は波長変換部材55の上面を主光取り出し面とする光源が得られる。
 そして、封止部材40は、基体30上に、発光素子10(波長変換部材55を備える場合はその複合光源)を被覆するように設けられた封止樹脂である。封止部材40の表面は、y方向に垂直な断面(xz面)において、その少なくとも一部が左右の突起34の外向面27から立ち上がる凸面となっており、y方向に平行な断面(yz面)において、両端面が配線基板22の端面と略同一面の矩形状の面となっている。つまり、封止部材40は、このような表面形状を有する略半円柱状に設けられている。このように、突起34が帯状に延伸して設けられても、その延伸方向(y方向)に垂直な断面において、封止部材の表面45の少なくとも一部を突起34の外向面27から立ち上がらせ、封止部材40の表面を高く突出した凸面に形成することができ、光の取り出し効率を高めることができる。
 以上のように、突起は、枠状に限られず、帯状に設けられてもよい。これにより、突起を小型に形成しやすく、配線基板の最外郭の端面より内側の小さい領域に外向面を設けやすい。また、その場合、突起は、1つでもよいが、発光素子を挟むように、少なくとも2つ設けられることが好ましい。そうすれば、封止部材の表面が突起から突起へ跨って形成されやすいため、封止部材の表面形状の対称性を高めることができる。また、突起は、破線状のように離間して複数設けられてもよく、更には点状に設けられてもよい。
 図12(a)~(d)は、実施の形態8に係る発光装置の製造方法の一例を示す概略図であり、上面図とその二点鎖線部における断面図を各々含む。図11に示す発光装置800は、以下のような工程を経て製造される。
(第1の工程)
 まず、図12(a)に示すように、配線基板22に発光素子10を実装する。具体的には、発光素子10を、配線基板の配線電極に導電性の接着剤で接着する。このとき、発光素子10は1個でもよいが、複数個の発光素子10が一方向(図中y方向)に配列されることが好ましい。列の数は、1つでも複数でもよい。また、ここでは、配線基板22は、複数の発光装置を形成可能な複合基板を用いる。
 次に、配線基板22の上面に突起34を設けて基体30を形成する。具体的には、配線基板22の上面に、流動性を有する状態の突起34の構成材料を滴下し所定の形状に描画した後、それを固化させる。このとき、突起34は、発光素子10の配列方向(図中y方向)に略平行な方向に延伸する帯状に設けられる。また、突起34は、発光素子10の両側に設けられる。なお、ここでいう「帯状」とは、部分的にそうである場合も含み、枠状の突起を含むものである。また、発光素子の実装工程と、突起の形成工程と、の順序は、この逆であってもよい。
(第2の工程)
 次に、図12(b),(c)に示すように、基体30上に封止部材40を滴下により形成する。具体的には、流動性を有する状態の封止部材40を、ディスペンサ等を用いて発光素子10を被覆するように基体30上に滴下し、封止部材40を加熱又は冷却等により固化させる。このとき、封止部材40は、封止起立面37の少なくとも一部を突起34の外向面27とするように形成される。言い換えれば、封止部材40は、その表面45の少なくとも一部が、突起34の外向面27から立ち上がるように形成される。また、封止部材40は、その表面形状の対称性を高めるため、両側の突起34に跨って設けられることが好ましい。さらに、図示するように、基体30を逆さにして、つまり封止部材40が滴下された配線基板22の上面が鉛直方向下側に向いた状態で、封止部材40を固化させてもよい。これにより、重力を利用して、封止部材40の表面を高く突出させることができる。特に、封止部材40の表面を鉛直方向に長く延出させて形成することができ、指向性の良好な、光度を高い発光装置を得ることができる。さらには、実施の形態7の第2の突起342のように、外向面が配線基板の上面に面するように傾斜している突起では、比較的多量の封止部材を保持しやすく、封止部材の表面をより高く突出させるために、本姿勢での固化が特に好適である。なお、勿論、通常の姿勢、つまり配線基板22の上面が鉛直方向上側に向いた状態で、封止部材40を固化させてもよい。
(第3の工程)
 最後に、図12(d)に示すように、発光素子と発光素子との間の配線基板22及び封止部材40を切断して、発光装置800を個片化する。このとき、発光素子10の配列方向に略直交する方向に配線基板22及び封止部材40を切断することが好ましい。以上のような方法により、図11に示す例の発光装置800を生産性良く製造することができる。
 なお、配線基板22及び封止部材40の切断位置は、任意に変更することができる。ここでは、1つの発光装置に1つの発光素子が含まれるように切断しているが、1つの発光装置に複数の発光素子が含まれるように切断してもよい。また、図示するように、両側の突起34が開放している場合には、突起34の延伸方向に略平行な方向の封止部材40の終端部の表面形状が歪みやすいため、その終端部を切除してもよい。さらに、配線基板22及び封止部材40を切断せずに、比較的大型の発光装置として使用することもできる。
 また、帯状の突起34は、直線状に限られず、曲線状や波線状など湾曲した形状に設けられてもよい。このとき、発光素子10の隣に、外側に凸となる波の腹が位置するようにすると良い。これにより、発光素子10の配列方向に略平行な断面においても、部分的に、封止部材40の表面を凸面に形成することができ、光の取り出し効率を高めやすい。さらに、突起34が、発光素子10を挟んで略対称となるように設けられると、なお良い。
 以下、本発明の発光装置の各構成要素について説明する。
(発光素子10)
 発光素子は、LED素子やLD素子などの半導体発光素子を用いることができる。発光素子は、種々の半導体で構成される素子構造に正負一対の電極が設けられているものであればよい。特に、蛍光体を効率良く励起可能な窒化物半導体(InAlGa1-x-yN、0≦x、0≦y、x+y≦1)の発光素子が好ましい。このほか、緑色~赤色発光のガリウム砒素系、ガリウム燐系半導体の発光素子でもよい。正負一対の電極が同一面側に設けられている発光素子の場合、その実装形態は、各電極がワイヤで導電部材又は配線基板の配線電極と接続されるフェイスアップ実装でもよいし、各電極が導電性の接着剤で導電部材又は配線基板の配線電極と接続されるフェイスダウン(フリップチップ)実装でもよい。このほか、正負一対の電極が互いに反対の面に各々設けられている対向電極構造の発光素子でもよい。発光素子の実装面側に、銀やアルミニウムなどの金属層や誘電体反射膜が設けられることで、光の取り出し効率を高めることができる。1つの発光装置に実装される発光素子の個数は1つでも複数でもよく、その大きさや形状、発光波長も任意に選べばよい。例えば、1つの発光装置に、赤色、緑色、青色発光の発光素子が実装されてもよい。複数の発光素子は、不規則に配置されてもよいが、行列や同心円状など規則的又は周期的に配置されることで、好ましい配光が得られやすい。また、複数の発光素子は、導電部材、配線基板の配線電極、およびワイヤ等により直列又は並列に接続できる。
(基体30)
 基体は、発光素子が載置される台座となる部材である。実施の形態1~5では、基体は、主として、導電部材と、これと一体成形された成形体と、により構成される。実施の形態6~8では、基体は、主として、配線基板と、その上面に設けられる突起と、により構成される。基体は、導電部材の一部を底面に含む凹部を備えた形態のほか、凹部(側壁)を備えない板状の形態でもよい。
(導電部材20)
 導電部材は、発光素子に接続されて導電可能な金属部材を用いることができる。具体的には、銅、アルミニウム、金、銀、タングステン、鉄、ニッケル、コバルト、モリブデン、又はこれらの合金、燐青銅、鉄入り銅などで形成されたリードフレームや配線電極が挙げられる。また、その表層に、銀、アルミニウム、ロジウム、金、銅、又はこれらの合金などの鍍金や光反射膜が設けられていてもよく、なかでも光反射性に最も優れる銀が好ましい。
(成形体25)
 成形体の母材は、脂肪族ポリアミド樹脂、半芳香族ポリアミド樹脂、ポリエチレンテレフタレート、ポリシクロヘキサンテレフタレート、液晶ポリマー、ポリカーボネート樹脂、シンジオタクチックポリスチレン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリアリレート樹脂などの熱可塑性樹脂、ポリビスマレイミドトリアジン樹脂、エポキシ樹脂、シリコーン樹脂、シリコーン変性樹脂、シリコーン変成樹脂、ポリイミド樹脂、ポリウレタン樹脂、などの熱硬化性樹脂が挙げられる。また、これらの母材中に、充填剤又は着色顔料として、ガラス、シリカ、酸化チタン、酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、水酸化カルシウム、珪酸カルシウム、珪酸マグネシウム、ワラストナイト、マイカ、酸化亜鉛、チタン酸バリウム、チタン酸カリウム、ホウ酸アルミニウム、酸化アルミニウム、酸化亜鉛、炭化ケイ素、酸化アンチモン、スズ酸亜鉛、ホウ酸亜鉛、酸化鉄、酸化クロム、酸化マンガン、カーボンブラックなどの粒子又は繊維を混入させることができる。このほか、成形体は、ガラス、セラミックスなどで形成することもできる。
(配線基板22)
 配線基板は、ガラスエポキシ、ガラス、セラミックス、各種樹脂、アルミニウム等の各種基板に、発光素子及び外部接続用の端子部(パッド部)と接続される配線電極や回路部品が設けられたものを利用できる。特に、セラミックスとしては、アルミナ、窒化アルミニウム、ムライト、炭化珪素、窒化珪素などが好ましい。樹脂としては、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂、BTレジン、ポリフタルアミド樹脂(PPA)、ポリエチレンテレフタレート樹脂(PET)、ポリブチレンテレフタレート樹脂(PBT)などが好ましい。配線電極は、発光素子に接続されて導電可能な金属部材を用いることができる。具体的には、配線電極は、銅、アルミニウム、金、銀、タングステン、鉄、ニッケル、コバルト、モリブデン、又はこれらの合金、燐青銅、鉄入り銅などで形成される。配線電極は、基板の上面、下面(裏面)、側面に露出されてもよいし、基板内部に設けられてもよい。特に、基板上面に露出される配線電極は、その表層に、銀、アルミニウム、ロジウム、金、銅、又はこれらの合金などの鍍金や光反射膜が設けられていてもよく、なかでも例えば光反射性に優れる銀を採用できる。配線基板は、突起が設けられる位置に、凹部又は孔を備えてもよく、その凹部又は孔に突起の一部が充填又は係止されるようにすることで、配線基板と突起の密着性を高めることができる。このとき、凹部又は孔は、上面視において、例えば点状又は線状に設けられる。また、凹部又は孔の開口径は、突起の幅より小さいことが好ましい。
(突起34)
 突起は、主として、封止部材の表面を立ち上がらせる外向面を提供する部材として、配線基板の上面に設けられる。突起は通常、発光素子の外側に設けられるが、発光素子の下部に設けられてもよい(言い換えれば、発光素子が突起上に設けられてもよい)。また、突起は、その内壁面で発光素子から側方へ出射された光を上方へ反射させる光反射体としても機能する。したがって、光反射性に優れる白色系の部材であることが好ましく、さらに配線基板の配線電極と電気的に絶縁されるものが好ましい。このほか、突起は、略透明など、透光性に優れる部材であることで、発光装置の配光を広げることもできる。樹脂としては、熱硬化性樹脂、熱可塑性樹脂などを用いることができる。具体的には、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、BTレジン、PPA、PET、PBT、フッ素樹脂、ポリオレフィン樹脂、ポリノルボルネン樹脂などが挙げられる。そして、これらの母材となる樹脂に、例えば、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウムなどの粒子が添加されることで、効率良く光を反射させることができる。このような突起は、例えば、ディスペンサなどにより配線基板上に吐出された後、固化されて設けられる。このほか、突起は、任意の形状に形成された部材を配線基板に固定することで設けることもできる。その場合、材料としては、上述の樹脂に加え、セラミックスを用いることができる。金属でもよい。なお、封止部材の表面を高く突出した凸面に形成しやすくするために、突起の少なくとも表面は、臨界表面張力が50mN/m以下の材料により構成されていることが好ましい。上記材料中では、シリコーン樹脂、フッ素樹脂、ポリオレフィン樹脂、ポリノルボルネン樹脂が特に好ましく、なかでも、耐熱性や耐光性に優れ、接着性の比較的良好なシリコーン樹脂が好ましい。また、突起は、単一の層で構成されてもよいが、複数の層で構成されてもよい。
(封止部材40)
 封止部材は、発光素子、ワイヤおよび導電部材の一部を封止して、それらを埃や水分、外力などから保護する部材である。封止部材の母材は、電気的絶縁性を有し、発光素子から出射される光を透過可能(好ましくは透過率70%以上)であり、固化前は流動性を有する材料であればよい。具体的には、シリコーン樹脂、シリコーン変性樹脂、シリコーン変成樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、TPX樹脂、ポリノルボルネン樹脂、又はこれらの樹脂を1種以上含むハイブリッド樹脂が挙げられる。ガラスでもよい。なかでも、シリコーン樹脂は、耐熱性や耐光性に優れ、固化後の体積収縮が少ないため、好ましい。特に、封止部材の母材は、フェニルシリコーン樹脂を主成分とすることが好ましい。下記実施例において示すように、封止部材の表面を凸面とする場合には、ジメチルシリコーン樹脂よりフェニルシリコーン樹脂が光の取り出し効率に優れている。また、フェニルシリコーン樹脂は、ガスバリア性にも優れ、腐食性ガスによる導電部材の劣化を抑制しやすい。
 封止部材は、その母材中に、充填剤や蛍光体など、種々の機能を持つ粒子が添加されてもよい。充填剤は、拡散剤や着色剤などを用いることができる。具体的には、シリカ、酸化チタン、酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、水酸化カルシウム、珪酸カルシウム、酸化亜鉛、チタン酸バリウム、酸化アルミニウム、酸化鉄、酸化クロム、酸化マンガン、ガラス、カーボンブラックなどが挙げられる。充填剤の粒子の形状は、破砕状でも球状でもよい。また、中空又は多孔質のものでもよい。
(蛍光体50)
 蛍光体は、発光素子から出射される一次光の少なくとも一部を吸収して、一次光とは異なる波長の二次光を出射する。具体的には、セリウムで賦活されたイットリウム・アルミニウム・ガーネット(YAG)、ユウロピウム及び/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム(CaO-Al-SiO)、ユウロピウムで賦活されたシリケート((Sr,Ba)SiO)などが挙げられる。これにより、可視波長の一次光及び二次光の混色光(例えば白色系)を出射する発光装置や、紫外光の一次光に励起されて可視波長の二次光を出射する発光装置とすることができる。
(波長変換部材55)
 波長変換部材は、上記のような蛍光体を含む透光性部材を用いることができる。具体的には、蛍光体が配合された上記封止部材と同様の樹脂やガラスの成形体、蛍光体と無機結合剤との焼結体、蛍光体の結晶などが挙げられる。波長変換部材は、板状やフィルム状などに予め形成されたものを発光素子に透光性の接着剤で接着若しくは直接接合する、又は流動性を有する状態のものを発光素子に塗布する、又は蛍光体を発光素子に電気泳動電着した後それに樹脂を含浸させる、などして設けられる。
(被覆部材70,75)
 被覆部材は、配線基板の上面、発光素子の下面や側面などを被覆する部材である。特に、被覆部材は、発光素子から出射される光を効率良く反射できる、電気的絶縁性を有する白色系の部材であることが好ましい。具体的な材料としては、上記突起と同様の樹脂、又は上記突起と同様の粒子が添加された樹脂を用いることができる。
(ワイヤ)
 ワイヤは、発光素子の電極と、導電部材又は配線基板の配線電極とを電気的に接続する部材である。ワイヤは、金、銅、銀、白金、アルミニウム又はこれらの合金の金属線を用いることができる。特に、封止部材からの応力による破断が生じにくく、熱抵抗などに優れる金線が好ましい。
(接着剤)
 接着剤は、発光素子を基体又は配線基板に固定する部材である。絶縁性の接着剤は、エポキシ樹脂、シリコーン樹脂、ポリイミド樹脂、又はこれらの変性樹脂やハイブリッド樹脂などを用いることができる。導電性の接着剤としては、銀、金、パラジウムなどの導電性ペーストや、金-錫などの半田、低融点金属などのろう材を用いることができる。
 以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施例のみに限定されないことは言うまでもない。
<実施例1>
 実施例1の発光装置は、図1に示す例の発光装置100に似た外形を有する、縦5.0mm、横6.5mm、厚さ1.35mmの基体を備えた、表面発光(トップビュー)式の表面実装型LEDである。基体は、表面に銀の鍍金が施された銅合金製の正負一対のリードフレームである導電部材に、酸化チタンの白色顔料とシリカの充填剤を含むエポキシ樹脂製の成形体が一体成形されて、構成されている。このような基体は、金型内に、導電部材を設置して、成形体の構成材料を注入し固化させることで作製される。なお、導電部材は、その表面の一部が凹部底面の一部を構成し、且つ成形体の外側に延出している。
 基体の略中央には、成形体によって、直径4.3mm、深さ0.85mmの上面視真円状の凹部が形成されている。この凹部は、2段式であって、深さ0.3mmの位置に、幅0.33mmの上面視真円状の上段部を有している。また、この上段部には、幅0.16mm、高さ0.1mmの上面視真円状の突起が形成されている。(言い換えれば、上段部が深さ0.2mmの位置に設けられて、その周縁部に幅0.17mm、深さ0.1mmの上面視真円状の溝が設けられている。)この突起の外側の側面は、上面からの傾斜角度が78~82度の傾斜面になっている。さらに、この突起の外側及び内側の両側面と上面がなす角部は、丸みを帯びて凸曲面になっている。なお、溝の内向面つまり凹部上段の内壁面も、上記突起の外側の側面と同程度、基体上面から傾斜している。
 基体の凹部底面には、6つの発光素子が、負極側の導電部材上に透光性エポキシ樹脂である接着剤で接着され、その各電極が金のワイヤにより正負両極の導電部材と各々接続されている。この発光素子は、サファイア基板上に、窒化物半導体のn型層、活性層、p型層が順次積層された、青色(中心波長約460nm)発光可能な、縦500μm、横290μm、厚さ120μmのLEDチップである。
 そして、封止部材は、基体の凹部の内側において、発光素子を被覆して設けられている。この封止部材は、屈折率1.53のフェニルシリコーン樹脂を母材とし、その中にYAGの蛍光体が分散されたものである。封止部材の表面は、その大部分が基体の突起の外向面である外側の側面又は凸曲面の角部から立ち上がった、略凸曲面になっている。封止部材の表面の高さ(頂点近傍の高さ)は、突起の上面を基準面として1.3mmである。このような封止部材は、流動性を有する状態において、その表面の大部分が基体の突起の上記外向面から立ち上がるようにディスペンサから滴下され、その状態のまま加熱により固化させることで成形される。
<比較例1>
 比較例1の発光装置は、封止部材の表面が、突起の内向面に接続され、突起の上面と略同一面の平坦面に成形されていることを除けば、実施例1の発光装置と同じ構成である。
<検証1>
 実施例1及び比較例1の発光装置における光の取り出し効率を光束の測定により検証する。具体的には、各発光装置を順電流350mA(並列)で各々発光させ、その光束を測定する。比較例1の発光装置の光束は119.8[lm]であり、実施例1の発光装置の光束は129.4[lm]である。なお、この光束は、比較のため、色度(x,y)=(0.345,0.357)における値に換算している。このように、実施例1の発光装置は、その光束が比較例1の発光装置に比べ8.1%も高くなっており、封止部材の表面が高く突出した凸面に成形されていることで、高い光の取り出し効率が得られている。
<実施例2>
 実施例2の発光装置は、図6に示す例の発光装置400に似た外形を有する、縦2.0mm、横3.0mm、厚さ1.2mmの基体を備えた、側面発光(サイドビュー)式の表面実装型LEDである。基体は、表面に銀の鍍金が施された銅合金製の正負一対のリードフレームである導電部材に、酸化チタンの白色顔料とシリカの充填剤を含むポリフタルアミド樹脂製の成形体が一体成形されて、構成されている。このような基体は、金型内に、導電部材を設置して、成形体の構成材料を注入し固化させることで作製される。なお、導電部材は、その表面の一部が凹部底面の一部を構成し、且つ成形体の外側に延出している。
 基体の略中央には、成形体によって、縦1.6mm、横2.2mm、深さ0.45mmの上面視略矩形状の凹部が形成されている。また、基体の上面において、凹部の長手方向の両側に、短手方向に延びる長さ1.6mm、幅0.26mm、高さ0.21mmの上面視直線状の突起が形成されている。突起の断面形状は、略凸曲面である。
 基体の凹部底面には、1つの発光素子が、負極側の導電部材上に透光性エポキシ樹脂である接着剤で接着され、その各電極が金のワイヤにより正負両極の導電部材と各々接続されている。この発光素子は、サファイア基板上に、窒化物半導体のn型層、活性層、p型層が順次積層された、青色(中心波長約460nm)発光可能な、縦200μm、横400μm、厚さ85μmのLEDチップである。
 そして、封止部材は、基体の凹部の内側において、発光素子を被覆して設けられている。この封止部材は、屈折率1.53のフェニルシリコーン樹脂を母材とし、その中にYAGの蛍光体が分散されたものである。封止部材の表面は、略凸曲面になっており、基体の長手方向において突起の外向面から立ち上がっている。封止部材の表面の高さ(頂上近傍の高さ)は、突起の上面を基準面として0.13mmである。このような封止部材は、流動性を有する状態において、その表面が基体の長手方向において突起の外向面から立ち上がるようにディスペンサから滴下され、その状態のまま加熱により固化させることで成形される。
<実施例3>
 実施例3の発光装置は、封止部材の母材が屈折率1.41のジメチルシリコーン樹脂であることを除くと、実施例2の発光装置と同じ構成である。
<比較例2>
 比較例2の発光装置は、基体に突起が設けられておらず、封止部材の表面が、凹部の内向面に接続され、凹部の上面と略同一面の平坦面に成形されていることを除けば、実施例2の発光装置と同じ構成である。
<比較例3>
 比較例3の発光装置は、封止部材の母材が屈折率1.41のジメチルシリコーン樹脂であることを除けば、比較例2の発光装置と同じ構成である。
<検証2>
 実施例2,3及び比較例2,3の発光装置における光の取り出し効率を初期光束の測定により検証する。具体的には、各発光装置を順電流20[mA]で各々発光させ、その光束を測定する。なお、以下に示す初期光束は、比較のため、色度(x,y)=(0.300,0.286)における値に換算している。
<検証3>
 また、実施例2,3及び比較例2,3の発光装置における信頼性を硫化試験により検証する。具体的には、密閉容器中に、発光装置と1gの硫化ナトリウムを入れ、80℃に加熱して24時間放置し、試験前後における光束の維持率を測定する。
 以上2つの検証の結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例2,3の発光装置は各々、その初期光束が比較例3の発光装置に比べて9.7%、5.7%高く、光の取り出し効率に優れていることがわかる。一方、比較例2の発光装置の初期光束は、比較例3の発光装置の初期光束に比べて1.1%低下している。このことから、封止部材の表面を凸面とすることと、封止部材の母材をフェニルシリコーン樹脂とすること、の組み合わせにより、特に光の取り出し効率の高い発光装置を得られることがわかる。また、封止部材の表面を凸面とすることで、封止部材のガスバリア性が向上し、硫黄含有ガスによる導電部材の変色を抑制することができ、信頼性の高い発光装置を得られることがわかる。
<実施例4>
 実施例4の発光装置は、図8に示す発光装置600の一例であり、白色系発光のCOB(Chip On Board)タイプのLEDモジュールである。配線基板22は、縦16mm、横19mm、厚さ1.0mmのアルミナ基板であり、その上面には最表面に金の鍍金が施された配線電極が設けられている。突起34は、酸化チタンを樹脂に対する重量比で30%含むジメチルシリコーン樹脂が、外径10mm、幅1.0mm、高さ0.5mmの円環状にディスペンサで描画され、固化されたものである。この突起34の断面視形状は、略半円状である。
 突起34の内側の配線基板22の上面には、110個の発光素子10が、透光性エポキシ樹脂である接着剤で接着され、金のワイヤにより、隣の発光素子10同士又は配線基板22の配線電極と接続されている(11個の発光素子10の直列接続×10の並列接続)。この発光素子10は、サファイア基板上に、窒化物半導体のn型層、活性層、p型層が順次積層された、青色(中心波長約460nm)発光可能な、縦290μm、横500μm、厚さ80μmのLEDチップである。
 封止部材40は、下層の第1封止部401と上層の第2封止部402の2つの部位を含む。第1封止部401は、屈折率1.41のジメチルシリコーン樹脂を母材とし、その中にYAGの蛍光体が分散されたものである。第1封止部401は、全ての発光素子10を被覆して、突起34の頂上付近まで充填されている。なお、第1封止部401は、その周縁部が突起34に這い上がり、中央部は窪んでいる。第2封止部402は、第1封止部401と同様のジメチルシリコーン樹脂を母材とし、その中にコロイダルシリカが母材に対する重量比で3%添加されたものである。封止部材40の表面(第2封止部401の表面)は、その大部分が突起34の外向面27から立ち上がった、略凸曲面になっている。封止部材40の表面の高さ(頂点近傍の高さ)は、配線基板の上面を基準面として3.0mmである。このような第2封止部402は、流動性を有する状態において、その表面の大部分が突起34の外向面27から立ち上がるようにディスペンサから滴下され、その状態のまま加熱により固化させることで形成される。
<比較例4>
 比較例4の発光装置は、封止部材が第1封止部のみからなり、その表面が突起の頂上と略同じ高さのほぼ平坦な面に形成されていることを除けば、実施例4の発光装置と同じ構成である。
<検証4>
 実施例4及び比較例4の発光装置における光の取り出し効率を初期光束の測定により検証する。具体的には、各発光装置を順電流320[mA]で各々発光させ、その光束を測定する。比較例4の発光装置の初期光束は1113[lm]であるのに対して、実施例4の発光装置の初期光束は1152[lm]である。なお、この光束は、比較のため、色度x値=0.32における値に換算したものである。このように、実施例4の発光装置は、その初期光束が比較例4の発光装置に比べて3.5%高く、封止部材の表面が高く突出した凸面に形成されていることで、高い光の取り出し効率が得られている。
<実施例5>
 図13(a)は、実施例5に係る発光装置の概略断面図である。図13(a)に示す例の発光装置900は、白色系発光のLEDである。配線基板22は、縦3.5mm、縦3.5mm、厚さ0.45mmのヒートシンク材料として銅-タングステンを内蔵するアルミナ基板であり、その上面には最表面に金の鍍金が施された配線電極が設けられている。突起34は、酸化チタンを樹脂に対する重量比で30%含むジメチルシリコーン樹脂が、外径2.6mm、幅0.4mm、高さ0.15mmの円環状にディスペンサで描画され、固化されたものである。この突起34の断面視形状は、略半円状である。
 突起34の内側の配線基板22の上面には、1個の発光素子10が金-錫共晶半田でフリップチップ実装され、配線基板22の配線電極と接続されている。この発光素子10は、サファイア基板上に、窒化物半導体のn型層、活性層、p型層が順次積層された、青色(中心波長約460nm)発光可能な、縦1.0mm、横1.0mm、厚さ110μmのLEDチップである。また、発光素子10は、波長変換部材55に被覆されている。この波長変換部材55は、YAGの蛍光体を電気泳動電着により発光素子10に付着させ、それに屈折率1.51のフェニルシリコーン樹脂を含浸させたものである。
 封止部材40は、屈折率1.41のジメチルシリコーン樹脂を母材とし、その中にコロイダルシリカが母材に対する重量比で2.5%添加されたものである。封止部材40の表面は、その大部分が突起34の外向面27から立ち上がった、略凸曲面になっている。封止部材40の表面の高さ(頂点近傍の高さ)は、配線基板の上面を基準面として3.0mmである。このような封止部材40は、流動性を有する状態において、その表面の大部分が突起34の外向面27から立ち上がるようにディスペンサから滴下され、その状態のまま加熱により固化させることで形成される。
<実施例6>
 実施例6の発光装置は、突起34が酸化チタンを含まず略透明なものであることを除けば、実施例5の発光装置と同じ構成である。
<比較例5>
 図13(b)は、比較例5に係る発光装置の概略断面図である。図13(b)に示す例の発光装置950は、封止部材48の形成方法が実施例5の発光装置900と異なる。なお、発光装置950の発光素子10、配線基板22、及び波長変換部材55は、実施例5の発光装置900と同じものであり、封止部材48の構成材料は実施例5の発光装置と同じである。この封止部材48は、圧縮成形法により配線基板22に直接形成されたものである。突起は設けられていない。封止部材48は、表面が凸面の中央部の外径がΦ2.6mmであり、その高さ(頂点近傍の高さ)が配線基板の上面を基準面として1.55mmである。
<検証5>
 実施例5,6及び比較例5の発光装置における光の取り出し効率を初期光束の測定により検証する。具体的には、各発光装置を順電流350[mA]で各々発光させ、その光束を測定する。比較例5の発光装置の初期光束は121.6[lm]であるのに対して、実施例4の発光装置の初期光束は127.1[lm]、実施例5の発光装置の初期光束は124.4[lm]である。なお、この光束は、比較のため、色度x値=0.355における値に換算したものである。このように、実施例5,6の発光装置は各々、その初期光束が比較例5の発光装置に比べて4.5%、2.3%高くなっており、光の取り出し効率に優れていることがわかる。
 また、図13(b)に示すように、圧縮成形法など、金型を用いて配線基板上に形成される封止部材48は、表面が凸面の中央部と、その周囲に連続して、配線基板22上に展延して設けられる、封止部材48のランナーである鍔状部を有するようになる。このため、発光素子10から出射される光の一部がこの鍔状部に導光され、配線基板22の吸収による光損失が増大し、光の取り出し効率が低くなってしまう。一方、図13(a)に示すように、滴下法で形成される封止部材40は、このような鍔状部が形成されず、発光素子10から出射される光を効率良く取り出すことができる。
 本発明に係る発光装置は、液晶ディスプレイのバックライト光源、各種照明器具、大型ディスプレイ、広告や行き先案内等の各種表示装置、さらには、デジタルビデオカメラ、ファクシミリ、コピー機、スキャナ等における画像読取装置、プロジェクタ装置などに利用することができる。
10…発光素子、20…導電部材、25…成形体、30…基体、31…凹部、33…突起(331…第1の突起,332…第2の突起)、35…溝(351…第1の溝,352…第2の溝)、37…封止起立面(371…第1封止起立面,372…第2封止起立面)、38…外向面、391,392…内向面、40…封止部材(401…第1封止部,402…第2封止部)、45…封止部材の表面(451…第1封止部の表面,452…第2封止部の表面)、50…蛍光体、60…表面張力の小さい被膜、100,200,300,400,500…発光装置、22…配線基板、34…突起(341…第1の突起,342…第2の突起,343…第3の突起)、27…外向面、29…内向面、48…封止部材(比較例)、55…波長変換部材、70…被覆部材(第1被覆部材)、75…被覆部材(第2被覆部材)、600,700,800,900,950…発光装置

Claims (52)

  1.  発光素子が接続される導電部材と、該導電部材と一体成形された成形体と、を有する基体上に、前記発光素子を封止する封止部材を滴下により成形する工程において、
     前記封止部材は、該封止部材の縁の少なくとも一部が前記導電部材又は前記成形体の上面視外側に向いた外向面に設けられる、ように成形される発光装置の製造方法。
  2.  前記外向面は、凸曲面、又は該凸曲面に連続する下側の面、である請求項1に記載の発光装置の製造方法。
  3.  前記外向面は、該外向面に連続する上側の平面からの傾斜角度が45度以下の平面である請求項1に記載の発光装置の製造方法。
  4.  前記基体の構成面のうち、前記封止部材の縁より内側にある、該基体の上面視内側に向いた内向面の少なくとも一部は、その最上位に凸曲面を有する請求項1乃至3のいずれか一項に記載の発光装置の製造方法。
  5.  前記基体は、突起又は溝を備え、
     前記封止部材の縁の少なくとも一部は、前記突起又は溝の外向面に設けられる請求項1乃至4のいずれか一項に記載の発光装置の製造方法。
  6.  前記基体は、第1の突起又は第1の溝と、それより外側にある第2の突起又は第2の溝と、を備え、
     前記封止部材の縁の少なくとも一部は、前記第1及び第2の突起、前記第1及び第2の溝のうちのいずれかの外向面に設けられる請求項5に記載の発光装置の製造方法。
  7.  前記封止部材は、前記発光素子を封止する第1封止部と、該第1封止部を封止する第2封止部と、を備え、
     前記第1封止部は、該第1封止部の縁の少なくとも一部が前記第1の突起又は第1の溝の外向面に設けられる、ように成形され、
     前記第2封止部は、該第2封止部の縁の少なくとも一部が前記第2の突起又は第2の溝の外向面に設けられる、ように成形される請求項6に記載の発光装置の製造方法。
  8.  前記封止部材は、前記第1封止部内に限って、前記発光素子から出射される光に励起される蛍光体を含有している請求項7に記載の発光装置の製造方法。
  9.  前記突起又は溝は、該基体の上面視において、その角部又は全体が湾曲している請求項5乃至8のいずれか一項に記載の発光装置の製造方法。
  10.  前記突起又は溝は、前記発光素子を囲む枠状に設けられている請求項5乃至9のいずれか一項に記載の発光装置の製造方法。
  11.  前記基体は、前記発光素子がその内側に載置される凹部を備え、
     前記封止部材の縁は、前記凹部内に設けられる請求項1乃至10のいずれか一項に記載の発光装置の製造方法。
  12.  前記封止部材を前記基体上に滴下する前に、前記基体の前記封止部材の縁が設けられる外向面に限って、又は該外向面及び該外向面より外側の構成面に、臨界表面張力が50mN/m以下の被膜を形成する請求項1乃至11のいずれか一項に記載の発光装置の製造方法。
  13.  前記封止部材の母材は、フェニルシリコーン樹脂を主成分とする請求項1乃至12のいずれか一項に記載の発光装置の製造方法。
  14.  発光素子と、
     前記発光素子が接続される導電部材と、該導電部材と一体成形された成形体と、を有する基体と、
     前記発光素子を封止する封止部材と、を備え、
     前記封止部材の縁の少なくとも一部は、前記導電部材又は前記成形体の上面視外側に向いた外向面に設けられ、且つ、前記外向面に対して又は該外向面と該封止部材の縁の接点において該外向面に接する接平面に対して、略接触角又は接触角未満の角度をなして設けられている発光装置。
  15.  前記封止部材の縁の少なくとも一部は、前記発光装置の上面視における水平面に対して、前記接触角より大きい角度をなして設けられていることを特徴とする請求項14に記載の発光装置。
  16.  前記外向面は、凸曲面、又は該凸曲面に連続する下側の面、である請求項14に記載の発光装置。
  17.  前記外向面は、該外向面に連続する上側の平面からの傾斜角度が45度以下の平面である請求項14に記載の発光装置。
  18.  前記基体は、突起又は溝を備え、
     前記封止部材の縁の少なくとも一部は、前記突起又は溝の外向面に設けられている請求項14乃至17のいずれか一項に記載の発光装置。
  19.  前記封止部材は、前記発光素子を封止する第1封止部と、該第1封止部を封止する第2封止部と、を備え、且つ、前記第1封止部内に限って、前記発光素子から出射される光に励起される蛍光体を含有しており、
     前記第2封止部の縁の少なくとも一部は、前記突起又は溝の外向面に設けられている請求項18に記載の発光装置。
  20.  前記基体は、前記発光素子がその内側に載置される凹部を備え、
     前記突起又は溝は、前記凹部内に設けられている請求項18又は19に記載の発光装置。
  21.  前記基体は、前記発光素子がその内側に載置される凹部を備え、
     前記突起又は溝は、前記凹部の外側に設けられている請求項18又は19に記載の発光装置。
  22.  前記突起又は溝は、前記発光素子を囲む枠状に設けられている請求項18乃至21のいずれか一項に記載の発光装置。
  23.  前記突起又は溝は、前記凹部の左右に帯状に設けられている請求項21に記載の発光装置。
  24.  前記突起又は溝は、該基体の上面視において、その角部又は全体が湾曲している請求項18乃至23のいずれか一項に記載の発光装置。
  25.  前記基体は、第1の突起又は第1の溝と、それより外側にある第2の突起又は第2の溝と、を備え、
     前記封止部材は、前記発光素子を封止する第1封止部と、該第1封止部を封止する第2封止部と、を備え、且つ、前記第1封止部内に限って、前記発光素子から出射される光に励起される蛍光体を含有しており、
     前記第1封止部は、該第1封止部の縁の少なくとも一部が前記第1の突起又は第1の溝の外向面に設けられ、
     前記第2封止部は、該第2封止部の縁の少なくとも一部が前記第2の突起又は第2の溝の外向面に設けられている請求項14乃至17のいずれか一項に記載の発光装置。
  26.  前記基体は、前記封止部材の縁が設けられる前記外向面より外側に、該基体の上面視内側に向いた内向面を有する請求項14乃至25のいずれか一項に記載の発光装置。
  27.  前記封止部材の母材は、フェニルシリコーン樹脂を主成分とする請求項14乃至26のいずれか一項に記載の発光装置。
  28.  発光素子と、
     前記発光素子が接続される導電部材と、該導電部材と一体成形された成形体と、を有する基体と、
     前記発光素子を封止する封止部材と、を備え、
     前記封止部材の縁の少なくとも一部は、前記導電部材又は前記成形体の上面視外側に向いた外向面に設けられ、
     前記基体は、前記封止部材の縁が設けられる前記外向面より外側に、該基体の上面視内側に向いた内向面を有する発光装置。
  29.  発光素子が載置される配線基板の上面の前記発光素子の外側に突起を設ける第1の工程と、
     前記発光素子を封止する封止部材を滴下により形成する第2の工程と、を具備し、
     前記封止部材は、該封止部材の縁の少なくとも一部が前記突起の上面視外側に向いた外向面に設けられる、ように形成される発光装置の製造方法。
  30.  前記外向面は、凸曲面、又は該凸曲面に連続する下側の面、である請求項29に記載の発光装置の製造方法。
  31.  前記外向面は、該外向面に連続する上側の平面からの傾斜角度が45度以下の平面である請求項29に記載の発光装置の製造方法。
  32.  前記外向面は、前記配線基板の上面に面するように傾斜している請求項29乃至31のいずれか一項に記載の発光装置の製造方法。
  33.  前記封止部材の縁より内側にある、前記突起の上面視内側に向いた内向面の少なくとも一部は、その最上位に凸曲面を有する請求項29乃至32のいずれか一項に記載の発光装置の製造方法。
  34.  前記第1の工程において、前記配線基板の上面に、第1の突起と、それより外側にある第2の突起と、を設け、
     前記第2の工程において、前記封止部材の縁の少なくとも一部は、前記第1の突起及び前記第2の突起のうちのいずれかの外向面に設けられる請求項29乃至33のいずれか一項に記載の発光装置の製造方法。
  35.  前記封止部材は、前記発光素子を封止する第1封止部と、該第1封止部を封止する第2封止部と、を備え、
     前記第1封止部は、該第1封止部の縁の少なくとも一部が前記第1の突起の外向面に設けられる、ように形成され、
     前記第2封止部は、該第2封止部の縁の少なくとも一部が前記第2の突起の外向面に設けられる、ように形成される請求項34に記載の発光装置の製造方法。
  36.  前記封止部材は、前記第1封止部内に限って、前記発光素子から出射される光に励起される蛍光体を含有している請求項35に記載の発光装置の製造方法。
  37.  前記突起は、上面視において、その角部又は全体が湾曲している請求項29乃至36のいずれか一項に記載の発光装置の製造方法。
  38.  前記突起は、前記発光素子を囲む枠状に設けられる請求項29乃至37のいずれか一項に記載の発光装置の製造方法。
  39.  前記第1の工程において、前記発光素子は、前記配線基板上に複数個配列されており、
     前記突起は、前記発光素子の両側に、前記発光素子の配列方向と略平行な方向に延伸する帯状に設けられ、
     前記第2の工程において、前記封止部材は、前記両側の突起に跨って設けられ、
     前記第2の工程後、前記発光素子と発光素子との間の前記封止部材及び前記配線基板を切断する第3の工程を具備する請求項29乃至38のいずれか一項に記載の発光装置の製造方法。
  40.  前記突起の少なくとも表面は、臨界表面張力が50mN/m以下の材料により構成されている請求項29乃至39のいずれか一項に記載の発光装置の製造方法。
  41.  前記第2の工程の前に、前記配線基板と前記突起により構成される基体の前記封止部材の縁が設けられる外向面に限って、又は該外向面及び該外向面より外側の構成面に限って、臨界表面張力が50mN/m以下の被膜を形成する請求項29乃至40のいずれか一項に記載の発光装置の製造方法。
  42.  前記封止部材の母材は、フェニルシリコーン樹脂を主成分とする請求項29乃至41のいずれか一項に記載の発光装置の製造方法。
  43.  発光素子と、
     前記発光素子が載置される上面の該発光素子の外側に突起が設けられた配線基板と、
     前記発光素子を封止する封止部材と、を備え、
     前記封止部材の縁の少なくとも一部は、前記突起の上面視外側に向いた外向面に設けられ、且つ、前記外向面に対して又は該外向面と該封止部材の縁の接点において該外向面に接する接平面に対して、略接触角又は接触角未満の角度をなして設けられている発光装置。
  44.  前記封止部材の縁の少なくとも一部は、前記発光装置の上面視における水平面に対して、前記接触角より大きい角度をなして設けられていることを特徴とする請求項43に記載の発光装置。
  45.  前記外向面は、凸曲面、又は該凸曲面に連続する下側の面、である請求項43に記載の発光装置。
  46.  前記外向面は、該外向面に連続する上側の平面からの傾斜角度が45度以下の平面である請求項43に記載の発光装置。
  47.  前記外向面は、前記配線基板の上面に面するように傾斜している請求項43乃至46のいずれか一項に記載の発光装置。
  48.  前記封止部材は、前記発光素子を封止する第1封止部と、該第1封止部を封止する第2封止部と、を備え、且つ、前記第1封止部内に限って、前記発光素子から出射される光に励起される蛍光体を含有しており、
     前記第2封止部の縁の少なくとも一部は、前記突起の外向面に設けられている請求項43乃至47のいずれか一項に記載の発光装置。
  49.  前記突起は、前記発光素子を囲む枠状に設けられている請求項43乃至48のいずれか一項に記載の発光装置。
  50.  前記突起は、該基体の上面視において、その角部又は全体が湾曲している請求項43乃至49のいずれか一項に記載の発光装置。
  51.  前記突起の少なくとも表面は、臨界表面張力が50mN/m以下の材料により構成されている請求項43乃至50のいずれか一項に記載の発光装置。
  52.  前記封止部材の母材は、フェニルシリコーン樹脂を主成分とする請求項43乃至51のいずれか一項に記載の発光装置。
PCT/JP2012/062418 2011-05-16 2012-05-15 発光装置及びその製造方法 WO2012157644A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280035302.1A CN103688377B (zh) 2011-05-16 2012-05-15 发光装置及其制造方法
JP2013515166A JP5983603B2 (ja) 2011-05-16 2012-05-15 発光装置及びその製造方法
EP19166558.7A EP3544067B1 (en) 2011-05-16 2012-05-15 Light diode emitting device and method for manufacturing the same
EP12786606.9A EP2711995B1 (en) 2011-05-16 2012-05-15 Light-emitting device and method for manufacturing same
US14/118,176 US10090446B2 (en) 2011-05-16 2012-05-15 Light emitting device and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-109134 2011-05-16
JP2011109134 2011-05-16
JP2011163510 2011-07-26
JP2011-163510 2011-07-26

Publications (1)

Publication Number Publication Date
WO2012157644A1 true WO2012157644A1 (ja) 2012-11-22

Family

ID=47176961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062418 WO2012157644A1 (ja) 2011-05-16 2012-05-15 発光装置及びその製造方法

Country Status (6)

Country Link
US (1) US10090446B2 (ja)
EP (2) EP3544067B1 (ja)
JP (2) JP5983603B2 (ja)
CN (2) CN107768502B (ja)
TW (1) TWI574437B (ja)
WO (1) WO2012157644A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003151A (ja) * 2012-06-18 2014-01-09 Mitsubishi Electric Corp 発光装置
JP2014116417A (ja) * 2012-12-07 2014-06-26 Fuji Xerox Co Ltd 半導体ウエハー、半導体発光装置、光伝送装置、情報処理装置および半導体発光素子の製造方法
JP2014127636A (ja) * 2012-12-27 2014-07-07 Nichia Chem Ind Ltd 発光装置およびその製造方法
JP2014209602A (ja) * 2013-03-29 2014-11-06 日亜化学工業株式会社 発光装置およびその製造方法
JP2015012287A (ja) * 2013-06-27 2015-01-19 エルジー イノテック カンパニー リミテッド 発光素子パッケージ
US20150060894A1 (en) * 2013-08-30 2015-03-05 Toshiba Lighting & Technology Corporation Light Emitting Device
CN104570169A (zh) * 2013-10-24 2015-04-29 富士施乐株式会社 透镜阵列及其制造方法
JP2015109333A (ja) * 2013-12-04 2015-06-11 日亜化学工業株式会社 発光装置およびその製造方法
EP2881658A3 (en) * 2013-12-05 2015-08-12 LG Innotek Co., Ltd. Light conversion member and lighting device including the same
JP2017112211A (ja) * 2015-12-16 2017-06-22 豊田合成株式会社 発光装置の製造方法
KR101770653B1 (ko) * 2016-03-02 2017-08-23 주식회사 반디 자동차 실내등용 엘이디램프 및 그 제조방법
JP2018085356A (ja) * 2016-11-21 2018-05-31 日亜化学工業株式会社 発光装置の製造方法
JP2018521498A (ja) * 2015-05-13 2018-08-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH オプトエレクトロニクス照明デバイス用のレンズを製造するための方法
WO2020021851A1 (ja) * 2018-07-25 2020-01-30 株式会社フーマイスターエレクトロニクス 指向性を有するled光源装置、led光源装置の製造方法およびプロジェクター
US10862012B2 (en) 2018-04-25 2020-12-08 Nichia Corporation Method of manufacturing light emitting device, and light emitting device
JP2021002589A (ja) * 2019-06-21 2021-01-07 スタンレー電気株式会社 半導体装置、および、その製造方法

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8698291B2 (en) * 2011-12-15 2014-04-15 Freescale Semiconductor, Inc. Packaged leadless semiconductor device
US8803302B2 (en) 2012-05-31 2014-08-12 Freescale Semiconductor, Inc. System, method and apparatus for leadless surface mounted semiconductor package
TWI479175B (zh) * 2013-01-15 2015-04-01 Architek Material Co Ltd 轉換結構、影像偵測裝置以及轉換結構之製備方法
JP5998962B2 (ja) * 2013-01-31 2016-09-28 三菱電機株式会社 半導体光装置
CN103972371B (zh) * 2013-02-04 2017-02-08 展晶科技(深圳)有限公司 发光二极管封装结构及其制造方法
CN104022215B (zh) * 2013-03-01 2017-02-01 展晶科技(深圳)有限公司 发光二极管封装结构及其制造方法
JP6131664B2 (ja) 2013-03-25 2017-05-24 日亜化学工業株式会社 発光装置の製造方法および発光装置
TWI506828B (zh) * 2013-11-20 2015-11-01 Lextar Electronics Corp 發光裝置
JP2015159204A (ja) * 2014-02-25 2015-09-03 日本特殊陶業株式会社 セラミックパッケージ
US10439111B2 (en) 2014-05-14 2019-10-08 Genesis Photonics Inc. Light emitting device and manufacturing method thereof
US9997676B2 (en) 2014-05-14 2018-06-12 Genesis Photonics Inc. Light emitting device and manufacturing method thereof
US9680073B2 (en) * 2014-05-30 2017-06-13 Seoul Semiconductor Co., Ltd. Light emitting module
TWI557952B (zh) 2014-06-12 2016-11-11 新世紀光電股份有限公司 發光元件
JP2016004823A (ja) * 2014-06-13 2016-01-12 豊田合成株式会社 発光装置の製造方法
JP6413412B2 (ja) * 2014-07-11 2018-10-31 日亜化学工業株式会社 半導体発光装置及びその製造方法
DE102014111483A1 (de) * 2014-08-12 2016-02-18 Osram Opto Semiconductors Gmbh Herstellung eines optoelektronischen Bauelements und optoelektronisches Bauelement
JP6457225B2 (ja) * 2014-09-25 2019-01-23 株式会社小糸製作所 発光装置
KR20160038568A (ko) * 2014-09-30 2016-04-07 (주)포인트엔지니어링 복수의 곡면 캐비티를 포함하는 칩 기판
WO2016139954A1 (en) 2015-03-05 2016-09-09 Nichia Corporation Light emitting device
JP6805505B2 (ja) * 2015-03-05 2020-12-23 日亜化学工業株式会社 発光装置
CN105990507B (zh) 2015-03-18 2019-09-17 新世纪光电股份有限公司 侧照式发光二极管结构及其制造方法
TWI657597B (zh) * 2015-03-18 2019-04-21 新世紀光電股份有限公司 側照式發光二極體結構及其製造方法
US9972752B2 (en) * 2015-04-08 2018-05-15 Nichia Corporation Light-emitting device manufacturing method
US9859480B2 (en) * 2015-08-20 2018-01-02 Nichia Corporation Light emitting device and method of manufacturing light emitting device
CN111211206A (zh) 2015-09-18 2020-05-29 新世纪光电股份有限公司 发光装置及其制造方法
CN108886079B (zh) * 2016-03-22 2022-07-19 苏州乐琻半导体有限公司 发光器件
US9865571B2 (en) * 2016-04-25 2018-01-09 Prolight Opto Technology Corporation Light emitting diode lighting module
US10274168B2 (en) * 2016-07-20 2019-04-30 Nichia Corporation Light emitting device
CN106299084B (zh) * 2016-08-30 2018-10-16 开发晶照明(厦门)有限公司 Led封装结构
JP6729254B2 (ja) * 2016-09-30 2020-07-22 日亜化学工業株式会社 発光装置及び表示装置
JP6928823B2 (ja) * 2016-10-17 2021-09-01 パナソニックIpマネジメント株式会社 発光モジュール及び照明器具
US10388838B2 (en) 2016-10-19 2019-08-20 Genesis Photonics Inc. Light-emitting device and manufacturing method thereof
JPWO2018154758A1 (ja) * 2017-02-27 2019-12-19 少輝 潘 スキンケア装置
US10615319B2 (en) * 2017-10-20 2020-04-07 Nichia Corporation Light emitting device
TW202249306A (zh) 2017-11-05 2022-12-16 新世紀光電股份有限公司 發光裝置
US10784423B2 (en) 2017-11-05 2020-09-22 Genesis Photonics Inc. Light emitting device
US20190267525A1 (en) * 2018-02-26 2019-08-29 Semicon Light Co., Ltd. Semiconductor Light Emitting Devices And Method Of Manufacturing The Same
DE102018104382A1 (de) 2018-02-27 2019-08-29 Osram Opto Semiconductors Gmbh Optoelektronisches bauelement und herstellungsverfahren
CN110534628B (zh) * 2018-05-24 2021-03-09 光宝光电(常州)有限公司 发光装置及其制造方法
US11107957B2 (en) * 2019-03-08 2021-08-31 Foshan Nationstar Optoelectronics Co., Ltd. LED device and backlight module
JP6777253B2 (ja) * 2019-03-08 2020-10-28 日亜化学工業株式会社 光源装置
CN110925635A (zh) * 2019-11-29 2020-03-27 广东华辉煌光电科技有限公司 一种灯条封胶结构
JP7500317B2 (ja) * 2020-07-22 2024-06-17 スタンレー電気株式会社 半導体発光装置
CN116764911A (zh) * 2023-06-27 2023-09-19 武汉优炜芯科技有限公司 一种新能源电池表面喷涂紫外固化系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131761A (ja) * 1997-07-11 1999-02-02 Denso Corp 半導体部品及びその製造方法
JP2000315823A (ja) * 1999-04-30 2000-11-14 Runaraito Kk 発光ダイオードおよびその製造方法
JP2004179343A (ja) * 2002-11-26 2004-06-24 Matsushita Electric Works Ltd 半導体基板とその製造方法
WO2008018336A1 (en) * 2006-08-07 2008-02-14 Sony Chemical & Information Device Corporation Luminescent element module
JP2008130836A (ja) * 2006-11-21 2008-06-05 Sharp Corp 発光装置
JP2008147270A (ja) * 2006-12-07 2008-06-26 Nichia Chem Ind Ltd 発光装置及びその製造方法
JP2010003994A (ja) 2008-06-23 2010-01-07 Sharp Corp 照明装置、バックライト装置および照明装置の製造方法
JP2011014860A (ja) 2009-07-06 2011-01-20 Paragon Semiconductor Lighting Technology Co Ltd 充填方法で凸レンズを成形することにより光射出角度を調整することができる発光ダイオードパッケージ構造及びその製作方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3492178B2 (ja) 1997-01-15 2004-02-03 株式会社東芝 半導体発光装置及びその製造方法
US6274890B1 (en) 1997-01-15 2001-08-14 Kabushiki Kaisha Toshiba Semiconductor light emitting device and its manufacturing method
JP2001068742A (ja) 1999-08-25 2001-03-16 Sanyo Electric Co Ltd 混成集積回路装置
US6489637B1 (en) 1999-06-09 2002-12-03 Sanyo Electric Co., Ltd. Hybrid integrated circuit device
US6548832B1 (en) 1999-06-09 2003-04-15 Sanyo Electric Co., Ltd. Hybrid integrated circuit device
JP4412787B2 (ja) 1999-06-09 2010-02-10 三洋電機株式会社 金属基板を採用した照射装置および照射モジュール
JP2006066786A (ja) 2004-08-30 2006-03-09 Seiwa Electric Mfg Co Ltd 発光ダイオード
DE102004062342A1 (de) * 2004-12-20 2006-07-06 Imt Armaturen Ag Kugelhahn
JP2006269778A (ja) 2005-03-24 2006-10-05 Nichia Chem Ind Ltd 光学装置
US8835952B2 (en) 2005-08-04 2014-09-16 Cree, Inc. Submounts for semiconductor light emitting devices and methods of forming packaged light emitting devices including dispensed encapsulants
US7365371B2 (en) 2005-08-04 2008-04-29 Cree, Inc. Packages for semiconductor light emitting devices utilizing dispensed encapsulants
US7646035B2 (en) 2006-05-31 2010-01-12 Cree, Inc. Packaged light emitting devices including multiple index lenses and multiple index lenses for packaged light emitting devices
TWI260804B (en) 2005-10-28 2006-08-21 Lustrous Technology Ltd Light emitting diode package with at least a groove
US7521728B2 (en) * 2006-01-20 2009-04-21 Cree, Inc. Packages for semiconductor light emitting devices utilizing dispensed reflectors and methods of forming the same
KR100875443B1 (ko) * 2006-03-31 2008-12-23 서울반도체 주식회사 발광 장치
US20080029775A1 (en) * 2006-08-02 2008-02-07 Lustrous Technology Ltd. Light emitting diode package with positioning groove
JP5279197B2 (ja) 2007-05-07 2013-09-04 信越化学工業株式会社 硬化性有機ケイ素組成物およびその硬化物
US20090065792A1 (en) * 2007-09-07 2009-03-12 3M Innovative Properties Company Method of making an led device having a dome lens
WO2009069345A1 (ja) * 2007-11-30 2009-06-04 Nichia Corporation 蛍光体及びこれを用いた発光装置並びに蛍光体の製造方法
JP2010050236A (ja) * 2008-08-20 2010-03-04 Mitsubishi Chemicals Corp 半導体発光装置およびその製造方法
WO2010021346A1 (ja) 2008-08-20 2010-02-25 三菱化学株式会社 半導体発光装置およびその製造方法
EP2416389A4 (en) 2009-03-31 2012-08-01 Toshiba Lighting & Technology LIGHT-EMITTING DEVICE AND LIGHTING DEVICE
TWI411092B (en) 2009-06-24 2013-10-01 Led package structure with external lateral cutting beveled edges and method for manufacturing the same
JP2011071242A (ja) * 2009-09-24 2011-04-07 Toshiba Lighting & Technology Corp 発光装置及び照明装置
JP3164311U (ja) * 2010-07-23 2010-11-25 研晶光電股▲ふん▼有限公司 高演色性の光源モジュール

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131761A (ja) * 1997-07-11 1999-02-02 Denso Corp 半導体部品及びその製造方法
JP2000315823A (ja) * 1999-04-30 2000-11-14 Runaraito Kk 発光ダイオードおよびその製造方法
JP2004179343A (ja) * 2002-11-26 2004-06-24 Matsushita Electric Works Ltd 半導体基板とその製造方法
WO2008018336A1 (en) * 2006-08-07 2008-02-14 Sony Chemical & Information Device Corporation Luminescent element module
JP2008130836A (ja) * 2006-11-21 2008-06-05 Sharp Corp 発光装置
JP2008147270A (ja) * 2006-12-07 2008-06-26 Nichia Chem Ind Ltd 発光装置及びその製造方法
JP2010003994A (ja) 2008-06-23 2010-01-07 Sharp Corp 照明装置、バックライト装置および照明装置の製造方法
JP2011014860A (ja) 2009-07-06 2011-01-20 Paragon Semiconductor Lighting Technology Co Ltd 充填方法で凸レンズを成形することにより光射出角度を調整することができる発光ダイオードパッケージ構造及びその製作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2711995A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003151A (ja) * 2012-06-18 2014-01-09 Mitsubishi Electric Corp 発光装置
JP2014116417A (ja) * 2012-12-07 2014-06-26 Fuji Xerox Co Ltd 半導体ウエハー、半導体発光装置、光伝送装置、情報処理装置および半導体発光素子の製造方法
JP2014127636A (ja) * 2012-12-27 2014-07-07 Nichia Chem Ind Ltd 発光装置およびその製造方法
JP2014209602A (ja) * 2013-03-29 2014-11-06 日亜化学工業株式会社 発光装置およびその製造方法
JP2015012287A (ja) * 2013-06-27 2015-01-19 エルジー イノテック カンパニー リミテッド 発光素子パッケージ
US20150060894A1 (en) * 2013-08-30 2015-03-05 Toshiba Lighting & Technology Corporation Light Emitting Device
CN104570169A (zh) * 2013-10-24 2015-04-29 富士施乐株式会社 透镜阵列及其制造方法
US9715046B2 (en) 2013-10-24 2017-07-25 Fuji Xerox Co., Ltd. Lens array, and method for manufacturing the same
JP2015109333A (ja) * 2013-12-04 2015-06-11 日亜化学工業株式会社 発光装置およびその製造方法
EP2881658A3 (en) * 2013-12-05 2015-08-12 LG Innotek Co., Ltd. Light conversion member and lighting device including the same
US9568155B2 (en) 2013-12-05 2017-02-14 Lg Innotek Co., Ltd. Light conversion member and lighting device including the same
JP2018521498A (ja) * 2015-05-13 2018-08-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH オプトエレクトロニクス照明デバイス用のレンズを製造するための方法
JP2017112211A (ja) * 2015-12-16 2017-06-22 豊田合成株式会社 発光装置の製造方法
KR101770653B1 (ko) * 2016-03-02 2017-08-23 주식회사 반디 자동차 실내등용 엘이디램프 및 그 제조방법
JP2018085356A (ja) * 2016-11-21 2018-05-31 日亜化学工業株式会社 発光装置の製造方法
US10553765B2 (en) 2016-11-21 2020-02-04 Nichia Corporation Method for manufacturing light emitting device
US10862012B2 (en) 2018-04-25 2020-12-08 Nichia Corporation Method of manufacturing light emitting device, and light emitting device
US11552227B2 (en) 2018-04-25 2023-01-10 Nichia Corporation Method of manufacturing light emitting device, and light emitting device
WO2020021851A1 (ja) * 2018-07-25 2020-01-30 株式会社フーマイスターエレクトロニクス 指向性を有するled光源装置、led光源装置の製造方法およびプロジェクター
JP2021002589A (ja) * 2019-06-21 2021-01-07 スタンレー電気株式会社 半導体装置、および、その製造方法
JP7222827B2 (ja) 2019-06-21 2023-02-15 スタンレー電気株式会社 半導体装置、および、その製造方法

Also Published As

Publication number Publication date
TW201301584A (zh) 2013-01-01
EP3544067A1 (en) 2019-09-25
JPWO2012157644A1 (ja) 2014-07-31
CN103688377B (zh) 2018-06-08
JP5983603B2 (ja) 2016-08-31
CN107768502A (zh) 2018-03-06
US10090446B2 (en) 2018-10-02
CN107768502B (zh) 2019-07-05
EP2711995A4 (en) 2014-11-26
JP6274271B2 (ja) 2018-02-07
CN103688377A (zh) 2014-03-26
EP3544067B1 (en) 2020-09-09
EP2711995A1 (en) 2014-03-26
EP2711995B1 (en) 2019-06-26
JP2016213492A (ja) 2016-12-15
TWI574437B (zh) 2017-03-11
US20140124812A1 (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP6274271B2 (ja) 発光装置及びその製造方法
US9159884B2 (en) Light emitting device having cavity side surfaces with recesses
US9287480B2 (en) Light emitting device mount and light emitting apparatus
JP6107136B2 (ja) 発光装置用パッケージ及びそれを備える発光装置、並びにその発光装置を備える照明装置
TWI593074B (zh) 半導體裝置之安裝構造、背光裝置及安裝基板
JP5418592B2 (ja) 発光装置
US9728685B2 (en) Light emitting device and lighting device including same
JP5569389B2 (ja) 発光装置の製造方法及び発光装置
JP6668996B2 (ja) 発光装置及びその製造方法
JP2008277592A (ja) 窒化物半導体発光素子、これを備える発光装置及び窒化物半導体発光素子の製造方法
JP5849694B2 (ja) 発光装置及びその製造方法
JP5347681B2 (ja) 発光装置
JP6326830B2 (ja) 発光装置及びそれを備える照明装置
JP6303457B2 (ja) 発光装置およびその製造方法
JP5747947B2 (ja) 発光装置及びその製造方法
JP5229115B2 (ja) 発光装置
JP2017017162A (ja) 発光装置
JP6593062B2 (ja) 発光装置
KR102075522B1 (ko) 발광소자패키지
KR20110108097A (ko) 발광소자 패키지 및 이를 포함하는 조명시스템
JP7481610B2 (ja) 発光装置
JP6414609B2 (ja) 発光装置用パッケージ及びそれを備える発光装置、並びにその発光装置を備える照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013515166

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012786606

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14118176

Country of ref document: US